DATABASE

DESIGN, APPLICATION
DEVELOPMENT, & ADMINISTRATION

MICHAEL M

DATABASE DESIGN,
APPLICATION DEVELOPMENT,
AND ADMINISTRATION

DATABASE DESIGN,
APPLICATION
DEVELOPMENT, AND
ADMINISTRATION

SEVENTH EDITION

© 2019 CHICAGO BUSINESS PRESS

DATABASE DESIGN, APPLICATION DEVELOPMENT, AND ADMINISTRATION
SEVENTH EDITION

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored or used in any form or by any means graphic, electronic, or
mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping,
web distribution, information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the publisher.

For product information or assistance visit: www.chicagobusinesspress.com

ISBN-13: 978-1-948426-00-8
ISBN-10: 1-948426-00-5

BRIEF CONTENTS

Partl INTRODUCTION TO DATABASE ENVIRONMENTS 1

1 Introduction to Database Management 3
2 Introduction to Database Development 25

Partll UNDERSTANDING RELATIONAL DATABASES 45

3 The Relational Data Model 47
4 Query Formulation with SQL 77

Partll. DATA MODELING 141

5 Understanding Entity Relationship Diagrams 143
6 Developing Data Models for Business Databases 179

PartlV RELATIONAL DATABASE DESIGN 233

7 Normalization Concepts and Processes 235
8 Physical Database Design 267

PartV APPLICATION DEVELOPMENT WITH RELATIONAL DATABASES 319

9 Advanced Query Formulation with SQL 321
10 Application Development with Views 375
11 Stored Procedures and Triggers 415

PartVI DATA WAREHOUSE PROCESSING 477

12 Data Warehouse Concepts and Management 479
13 Conceptual Design of Data Warehouses 509

14 Data Integration Concepts and Practices 549

15 Query Formulation for Data Warehouses 585

vi Brief Contents

Part Vi MANAGING DATABASE ENVIRONMENTS 641

16 Data and Database Administration 643
17 Transaction Management 681

18 Client-Server Processing, Parallel Database Processing, and Distributed Databases 725
19 DBMS Extensions for Object and NoSQL Databases 767

Bibliography 829
Indexes 833

CONTENTS

Part |

INTRODUCTION TO DATABASE ENVIRONMENTS 1

Introduction to Database Management 3
Learning Objectives 3

Overview 3

1.1 Database Characteristics 4

1.2 Features of Database Management Systems 6
1.2.1 Database Definition 6
1.2.2 Nonprocedural Access 7
1.2.3 Application Development and Procedural Language Interface
1.2.4 Features to Support Database Operations 9
1.2.5 Third-Party Features 10

1.3 Development of Database Technology and Market Structure 10
1.3.1 Evolution of Database Technology 11
1.3.2 Current Market for Database Software 12

1.4 Architectures of Database Management Systems 13
1.4.1 Data Independence and the Three Schema Architecture 13
1.4.2 Parallel and Distributed Database Processing 15

1.5 Organizational Impacts of Database Technology 17
1.5.1 Interacting with Databases 18
1.5.2 Managing Data Resources in Organizations 19

Closing Thoughts 20

Review Concepts 21

Questions 21

Problems 23

References for Further Study 23

Introduction to Database Development 25
Learning Objectives 25
Overview 25
2.1 Information Systems 26
2.1.1 Components of Information Systems 26
2.1.2 Information Systems Development Process 26
2.2 Goals of Database Development 28
2.2.1 Develop a Common Vocabulary 28
2.2.2 Define the Meaning of Data 29
2.2.3 Ensure Data Quality 29
2.2.4 Find an Efficient Implementation 30
2.3 Database Development Process 30
2.3.1 Phases of Database Development 30
2.3.2 Skills in Database Development 34

8

vii

viii Contents

2.4 Tools for Database Development 35
2.4.1 Diagramming 35
2.4.2 Documentation 36
2.4.3 Analysis 36
2.44 Prototyping Tools 36
2.4.5 Commercial CASE Tools 37
Closing Thoughts 40
Review Concepts 41
Questions 42
Problems 43
References for Further Study 43

Partll UNDERSTANDING RELATIONAL DATABASES 45

3 The Relational Data Model 47
Learning Objectives 47
Overview 47
3.1 Basic Elements 48
3.1.1 Tables 48
3.1.2 Connections among Tables 49
3.1.3 Alternative Terminology 51
3.2 Integrity Rules 51
3.2.1 Definition of the Integrity Rules 51
3.2.2 Application of the Integrity Rules 52
3.2.3 Graphical Representation of Referential Integrity 56
3.3 Delete and Update Actions for Referenced Rows 57
3.4 Operators of Relational Algebra 59
3.4.1 Restrict (Select) and Project Operators 59
3.4.2 Extended Cross Product Operator 60
3.4.3 Join Operator 61
3.4.4 Outer Join Operator 63
3.4.5 Union, Intersection, and Difference Operators 66
3.4.6 Summarize Operator 68
3.4.7 Divide Operator 69
3.4.8 Summary of Operators 70
Closing Thoughts 71
Review Concepts 71
Questions 72
Problems 73
References for Further Study 76
Appendix 3.A: CREATE TABLE Statements for the University Database Tables ONLINE
Appendix 3.B: SQL:2016 Syntax Summary ONLINE

Appendix 3.C: Generation of Unique Values for Primary Keys ONLINE

4 Query Formulation with SQL 77

Learning Objectives 77

Overview 77

4.1 Background 78
4.1.1 Brief History of SQL 78
4.1.2 Scope of SQL 79

4.2 Getting Started with the SELECT Statement 80
4.2.1 Single Table Problems 83
4.2.2 Joining Tables 91

Contents ix

4.2.3 Summarizing Tables with GROUP BY and HAVING 93
4.2.4 Improving the Appearance of Results 97
4.3 Conceptual Evaluation Process for SELECT Statements 99
4.4 Critical Questions for Query Formulation 104
4.5 Refining Query Formulation Skills with Examples 105
4.5.1 Joining Multiple Tables with the Cross Product Style 105
4.5.2 Joining Multiple Tables with the Join Operator Style 109
4.5.3 Self-Joins and Multiple Joins between Two Tables 112
4.5.4 Combining Joins and Grouping 114
4.5.5 Traditional Set Operators in SQL 115

4.6 SQL Modification Statements 117
4.7 Query Formulation Errors and Coding Practices 120

Closing Thoughts 124

Review Concepts 125

Questions 128

Problems 130

References for Further Study 140

Appendix 4.A: SQL:2016 Syntax Summary ONLINE

Appendix 4.B: Syntax Differences among Major DBMS Products ONLINE

Partll. DATA MODELING 141

5 Understanding Entity Relationship Diagrams 143
Learning Objectives 143
Overview 143
5.1 Introduction to Entity Relationship Diagrams 144
5.1.1 Basic Symbols 144
5.1.2 Relationship Cardinality 145
5.1.3 Comparison to Relational Database Diagrams 147
5.2 Understanding Relationships 147
5.2.1 Identification Dependency (Weak Entity Types and Identifying Relationships) 147
5.2.2 Relationship Patterns 148
5.2.3 Equivalence between 1-M and M-N Relationships 152

5.3 Classification in the Entity Relationship Model 153
5.3.1 Generalization Hierarchies 153
5.3.2 Disjointness and Completeness Constraints 154
5.3.3 Multiple Levels of Generalization 154

5.4 Notation Summary and Diagram Rules 155
5.4.1 Notation Summary 155
5.4.2 Diagram Rules 157

5.5 Comparison to Other Notations 160
5.5.1 Range of ERD Variations in Data Modeling Tools 160
5.5.2 ERD Notation in Aqua Data Studio 161
5.5.3 ERD Notation in Oracle SQL Developer 163
5.5.4 Entity Relationship Stencil in Visio Professional 164
5.5.5 ERD Notation in Visual Paradigm 165
5.5.6 Class Diagram Notation of the Unified Modeling Language 165

Closing Thoughts 168

Review Concepts 169

Questions 169

Problems 171

References for Further Study 177

X Contents

6 Developing Data Models for Business Databases 179
Learning Objectives 179
Overview 179

6.1 Analyzing Business Data Modeling Problems 180
6.1.1 Guidelines for Analyzing Business Information Needs 180
6.1.2 Analysis of Problem Narrative for the Water Utility Database 182

6.2 Refinements to an ERD 185
6.2.1 Expanding Attributes 185
6.2.2 Splitting Compound Attributes 185
6.2.3 Expanding Entity Types 185
6.2.4 Transforming a Weak Entity Type into a Strong Entity Type 187
6.2.5 Adding History 188
6.2.6 Adding Generalization Hierarchies 190
6.2.7 Summary of Transformations 191

6.3 Finalizing an ERD 192
6.3.1 Documenting an ERD 193
6.3.2 Detecting Common Design Errors 194

6.4 Converting an ERD to a Table Design 197
6.4.1 Basic Conversion Rules 197
6.4.2 Converting Optional 1-M Relationships 200
6.4.3 Converting Generalization Hierarchies 203
6.4.4 Converting 1-1 Relationships 205
6.4.5 Comprehensive Conversion Example 205
6.4.6 Conversion Practices in Commercial CASE Tools 205

Closing Thoughts 209

Review Concepts 210

Questions 210

Problems 212

References for Further Study 232

PartlV RELATIONAL DATABASE DESIGN 233

7 Normalization Concepts and Processes 235
Learning Objectives 235
Overview 235

7.1 Overview of Relational Database Design 236
7.1.1 Avoidance of Modification Anomalies 236
7.1.2 Functional Dependencies 236
7.1.3 Falsification of FDs using Sample Data 238

7.2 Basic Normal Forms 239
7.2.1 First Normal Form 240
7.2.2 Boyce-Codd Normal Form 240
7.2.3 Simple Synthesis Procedure 243

7.3 Refining M-Way Relationships 246
7.3.1 Relationship Independence 246
7.3.2 Multivalued Dependencies and Fourth Normal Form 249

7.4 Higher Level Normal Forms 249
7.4.1 Fifth Normal Form 249
7.4.2 Domain Key Normal Form 250
7.5 Practical Concerns about Normalization 251
7.5.1 Role of Normalization in the Database Development Process 251
7.5.2 Analyzing the Normalization Objective 253

Contents xi

Closing Thoughts 254

Review Concepts 254
Questions 255

Problems 256

References for Further Study 266

Appendix 7.A: Second and Third Normal Forms ONLINE

8 Physical Database Design 267
Learning Objectives 267
Overview 267

8.1 Overview of Physical Database Design 268
8.1.1 Storage Level of Databases 268
8.1.2 Objectives and Constraints 269
8.1.3 Inputs, Outputs, and Environment 270
8.1.4 Difficulties 270

8.2 Inputs of Physical Database Design 271
8.2.1 Table Profiles 271
8.2.2 Application Profiles 274

8.3 File Structures 275
8.3.1 Sequential Files 275
8.3.2 Hash Files 276
8.3.3 Multiway Tree (Btrees) Files 278
8.3.4 Bitmap Indexes 282
8.3.5 Columnstore Indexes 285
8.3.6 Summary of File Structures 286
8.3.7 Oracle Storage Concepts and File Structures 286
8.4 Query Optimization 288
8.4.1 Translation Tasks 288
8.4.2 Improving Optimization Decisions 292
8.5 Index Selection 295
8.5.1 Problem Definition 295
8.5.2 Trade-offs and Difficulties 296
8.5.3 Selection Rules 298
8.6 Additional Choices in Physical Database Design 301
8.6.1 Denormalization 301
8.6.2 Record Formatting 302
8.6.3 Parallel Processing 303
8.6.4 Other Ways to Improve Performance 305
Closing Thoughts 306
Review Concepts 306
Questions 307
Problems 310
References for Further Study 318

PartV APPLICATION DEVELOPMENT WITH RELATIONAL DATABASES 319

9 Advanced Query Formulation with SQL 321
Learning Objectives 321
Overview 321

9.1 Outer Join Problems 322
9.1.1 SQL Support for Outer Join Problems 322
9.1.2 Mixing Inner and Outer Joins 324

xii Contents

9.2 Understanding Nested Queries 328
9.2.1 Type I Nested Queries 328
9.2.2 Limited SQL Formulations for Difference Problems 331
9.2.3 Using Type II Nested Queries for Difference Problems 334
9.2.4 Nested Queries in the FROM Clause 338
9.3 Formulating Division Problems 340
9.3.1 Review of the Divide Operator 340
9.3.2 Simple Division Problems 341
9.3.3 Advanced Division Problems 342
9.4 Null Value Considerations 345
9.4.1 Effect on Simple Conditions 345
9.4.2 Effect on Compound Conditions 347
9.4.3 Effect on Aggregate Calculations and Grouping 347
9.5 Hierarchical Queries 349
9.5.1 Hierarchical Data Example 349
9.5.2 Proprietary Oracle Extensions for Hierarchical Queries 351
9.5.3 Extensions in the SQL Standard for Hierarchical Queries 359
Closing Thoughts 362
Review Concepts 362
Questions 365
Problems 366
References for Further Study 374
Appendix 9.A: Usage of Multiple Statements in Microsoft Access ONLINE
Appendix 9.B: SQL:2016 Syntax Summary ONLINE
Appendix 9.C: Oracle 8i Notation for Outer Joins ONLINE

10 Application Development with Views 375
Learning Objectives 375
Overview 375
10.1 Background 376
10.1.1 Motivation 376
10.1.2 View Definition 376
10.2 Using Views for Retrieval 378
10.2.1 Using Views in SELECT Statements 379
10.2.2 Processing Queries with View References 379
10.3 Updating Using Views 382
10.3.1 Single-Table Updatable Views 382
10.3.2 Multiple-Table Updatable Views 386
10.4 Using Views in Hierarchical Forms 391
10.4.1 Hierarchical Forms 391
10.4.2 Relationship between Hierarchical Forms and Tables 392
10.4.3 Data Requirements for Hierarchical Forms 393
10.5 Using Views in Reports 399
10.5.1 Hierarchical Reports 399
10.5.2 Data Requirements for Hierarchical Reports 400
Closing Thoughts 402
Review Concepts 403
Questions 404
Problems 405
References for Further Study 414
Appendix 10.A: SQL:2016 Syntax Summary ONLINE
Appendix 10.B: Rules for Updatable Join Views in Oracle ONLINE
Appendix 10.C: Solutions for Query Formulation Errors ONLINE

Contents xiii

11 Stored Procedures and Triggers 415
Learning Objectives 415
Overview 415

11.1 Database Programming Languages and PL/SQL 416
11.1.1 Motivation for Database Programming Languages 416
11.1.2 Design Issues 418
11.1.3 PL/SQL Statements 420
11.1.4 Executing PL/SQL Statements in Anonymous Blocks 426

11.2 Stored Procedures 428
11.2.1 PL/SQL Procedures 428
11.2.2 PL/SQL Functions 431
11.2.3 Using Cursors 434
11.2.4 PL/SQL Packages 437
11.3 Triggers 441
11.3.1 Motivation and Classification of Triggers 441
11.3.2 Basic Trigger Development using Oracle PL/SQL 442
11.3.3 Specialized Oracle Triggers using the INSTEAD OF Event 454
11.3.4 Understanding Trigger Execution 463
Closing Thoughts 467
Review Concepts 468
Questions 469
Problems 471
References for Further Study 475

Appendix 11.A: SQL:2016 Syntax Summary ONLINE

PartVI DATA WAREHOUSE PROCESSING 477

12 Data Warehouse Concepts and Management 479
Learning Objectives 479
Overview 479
12.1 Basic Concepts 480
12.1.1 Transaction Processing versus Business Intelligence 480
12.1.2 Characteristics of Data Warehouses 482
12.1.3 Applications of Data Warehouses 483
12.2 Management of Data Warehouse Development 484
12.2.1 Development Challenges and Learning Effects 485
12.2.2 Architectures for Data Warehouse Deployment 487
12.2.3 Data Warehouse Maturity Concepts 490
12.2.4 Business Strategy Game for Data Warehouse Development 492
12.3 Data Warehouse Examples 497
12.3.1 Data Warehouses in Retail 497
12.3.2 Data Warehouses in Education 498
12.3.3 Data Warehouses in Health Care 501
Closing Thoughts 504
Review Concepts 504
Questions 505
Problems 507
References for Further Study 508

13 Conceptual Design of Data Warehouses 509
Learning Objectives 509

Overview 509

Xiv Contents

13.1 Multidimensional Representation of Data 510
13.1.1 Example of a Multidimensional Data Cube 510
13.1.2 Multidimensional Terminology 512
13.1.3 Time-Series Data 513
13.1.4 Data Cube Operators 514
13.2 Relational Data Modeling Patterns for Data Warehouses 516
13.2.1 Schema Patterns 517
13.2.2 Example Table Designs for Data Warehouses 519
13.2.3 Time Representation and Historical Integrity 522
13.2.4 Extensions for Dimension Representation 524
13.3 Summarizability Problems and Patterns 527
13.3.1 Dimension-Fact Summarizability Problems and Patterns 527
13.3.2 Dimension-Fact Summarizability Problems and Patterns 529
13.4 Schema Integration and Design Methodologies 532
13.4.1 Schema Integration Process 533
13.4.2 Data Warehouse Design Methodologies 536
Closing Thoughts 538
Review Concepts 538
Questions 539
Problems 541
Practice Mini Case Study for Schema Integration 544
References for Further Study 548

Appendix 13.A: Details of the Schema Integration Problem ONLINE
Appendix 13.B: Solution for the Schema Integration Problem ONLINE

14 Data Integration Concepts and Practices 549
Learning Objectives 549
Overview 549
14.1 Data Integration Concepts 550
14.1.1 Sources of Data 550
14.1.2 Workflow for Maintaining a Data Warehouse 552
14.1.3 Managing the Refresh Process 554
14.2 Data Cleaning Techniques 555
14.2.1 String Parsing with Regular Expressions 555
14.2.2 Correcting and Standardizing Values 559
14.2.3 Entity Matching 560
14.3 Data Integration Tools 562
14.3.1 Architectures and Features of Data Integration Tools 562
14.3.2 Talend Open Studio 565
14.3.3 Pentaho Data Integration 568
14.3.4 Oracle Data Integrator 570
14.3.5 Oracle SQL Statements for Data Integration 573
Closing Thoughts 579
Review Concepts 579
Questions 581
Problems 582
References for Further Study 584
Appendix 14.A: CREATE TABLE Statements for Examples in Section 14.3.5 ONLINE
Appendix 14.B: CREATE TABLE Statements for End of Chapter Problems ONLINE

15 Query Formulation for Data Warehouses 585
Learning Objectives 585
Overview 585

Contents XV

15.1 Online Analytic Processing (OLAP) 586
15.1.1 Microsoft Multidimensional Expressions (MDX) 586
15.1.2 Pivot Table Tools for OLAP Queries 589

15.2 SQL Extensions for Subtotal Calculations 592
15.2.1 CUBE Operator 593
15.2.2 ROLLUP Operator 598
15.2.3 GROUPING SETS Operator 602
15.2.4 Variations of Subtotal Operators 604

15.3 SQL Extensions for Analytic Functions 606
15.3.1 Motivation and Processing Overview 606
15.3.2 Query Formulation for Relative Performance 608
15.3.3 Query Formulation for Trend Analysis 611
15.3.4 Query Formulation for Ratio Comparisons 617
15.4 Summary Data Management and Optimization 621
15.4.1 Materialized Views in Oracle 621
15.4.2 Query Rewriting Principles 623
15.4.3 Storage and Optimization Technologies 628

Closing Thoughts 631

Review Concepts 631

Questions 632

Problems 634

References for Further Study 639

Part Vi MANAGING DATABASE ENVIRONMENTS 641

16 Data and Database Administration 643
Learning Objectives 643
Overview 643

16.1 Organizational Context for Managing Databases 644
16.1.1 Database Support for Management Decision Making 644
16.1.2 Approaches for Managing Data Resources 645
16.1.3 Responsibilities of Data Specialists 647
16.1.4 Challenges of Big Data 648

16.2 Tools of Database Administration 649
16.2.1 Security 649
16.2.2 Integrity Constraints 653
16.2.3 Management of Triggers and Stored Procedures 657
16.2.4 Data Dictionary Manipulation 658

16.3 Processes for Database Specialists 660
16.3.1 Data Planning 661
16.3.2 Data Governance Processes and Tools 662
16.3.3 Selection and Evaluation of Database Management Systems 665

16.4 Managing Database Environments 670
16.4.1 Transaction Processing 670
16.4.2 Data Warehouse Processing 670
16.4.3 Distributed Environments 671
16.4.4 Object Databases and NoSQL Databases 672
Closing Thoughts 673
Review Concepts 673
Questions 675
Problems 678
References for Further Study 679

Appendix 16.A: SQL:2016 Syntax Summary ONLINE

Xvi

Contents

17 Transaction Management 681

Learning Objectives 681
Overview 681

17.1 Basics of Database Transactions 682
17.1.1 Transaction Examples 682
17.1.2 Transaction Properties 684

17.2 Concurrency Control 686
17.2.1 Objective of Concurrency Control 686
17.2.2 Interference Problems 686
17.2.3 Concurrency Control Tools 688

17.3 Recovery Management 693
17.3.1 Data Storage Devices and Failure Types 693
17.3.2 Recovery Tools 694
17.3.3 Recovery Processes 696

17.4 Transaction Design Issues 700
17.4.1 Transaction Boundary and Hot Spots 700
17.4.2 Isolation Levels 704
17.4.3 Timing of Integrity Constraint Enforcement 706
17.4.4 Save Points 708
17.4.5 Relaxed Transaction Consistency Model 709

17.5 Workflow Management 709
17.5.1 Characterizing Workflows 710
17.5.2 Enabling Technologies 711

Closing Thoughts 712

Review Concepts 713

Questions 714

Problems 716

References for Further Study 723

Appendix 17.A: SQL:2016 Syntax Summary ONLINE

18 Client-Server Processing, Parallel Database Processing, and Distributed Databases

Learning Objectives 725
Overview 725

18.1 Overview of Distributed Processing and Distributed Data 726
18.1.1 Motivation for Client-Server Processing 726
18.1.2 Motivation for Parallel Database Processing 727
18.1.3 Motivation for Distributed Data 728
18.1.4 Motivation for Cloud Based Computing 728
18.1.5 Summary of Advantages and Disadvantages 729

18.2 Client-Server Database Architectures 730
18.2.1 Design Issues 730
18.2.2 Basic Architectures 732
18.2.3 Specialized Architectures 734

18.3 Parallel Database Processing 737
18.3.1 Architectures and Design Issues 738
18.3.2 Commercial Parallel Database Technology 739
18.3.3 Big Data Parallel Processing Architectures 741
18.4 Architectures for Distributed Database Management Systems 743
18.4.1 Component Architecture 743
18.4.2 Schema Architectures 745
18.5 Transparency for Distributed Database Processing 746
18.5.1 Motivating Example 747
18.5.2 Fragmentation Transparency 749

725

Contents xvii

18.5.3 Location Transparency 749
18.5.4 Local Mapping Transparency 750
18.5.5 Transparency in Oracle Distributed Databases 752

18.6 Distributed Database Processing 754
18.6.1 Distributed Query Processing 754
18.6.2 Distributed Transaction Processing 756

Closing Thoughts 759

Review Concepts 760

Questions 761

Problems 763

References for Further Study 765

19 DBMS Extensions for Object and NoSQL Databases 767
Learning Objectives 767
Overview 767

19.1 Motivation for Object Database Management 768
19.1.1 Complex Data 768
19.1.2 Type System Mismatch 768
19.1.3 Application Examples 769

19.2 Object Database Features in SQL:2016 770
19.2.1 User-Defined Types 771
19.2.2 Table Definitions 773
19.2.3 Subtable Families 775
19.4.4 Manipulating Complex Objects and Subtable Families 776

19.3 Object Database Features in Oracle 779
19.3.1 Defining User-Defined Types and Typed Tables in Oracle 779
19.3.2 Using Typed Tables in Oracle 782
19.3.3 Dependencies among Types and Typed Tables 786
19.3.4 Other Object Features in Oracle 787
19.4 Overview of NoSQL Database Management 792
19.4.1 Motivation and Features 792
19.4.2 Data Models in NoSQL DBMSs 794
19.5 Database Definition and Manipulation with Couchbase N1QL 800
19.5.1 JavaScript Object Notation (JSON) 800
19.5.2 Couchbase N1QL Statements 802
Closing Thoughts 816
Review Concepts 817
Questions 818
Problems 820
References for Further Study 828

Appendix 19.A: INSERT Statements for N1QL Buckets ONLINE

Bibliography 829
Indexes 833

PREFACE

MOTIVATING EXAMPLE

Paul Hong, the owner of International Industrial Adhesives, Inc., is excited about
potential opportunities in the growing global economy. He senses major opportuni-
ties in new product development, new sources of demand, and industry consolida-
tion. These opportunities, however, involve substantial risks with major changes in his
business and industry. He senses risk from new mergers and acquisitions, new com-
petitors, increased government regulation and litigation in areas affecting his busi-
ness, and data security threats. New mergers and acquisitions may involve challenges
integrating disparate information technology and sharp increases in data and transac-
tion volumes. The success of his business has attracted new competitors focusing on
his most profitable customers and products. New environmental, financial, and health
regulations impose costly data collection efforts, reporting requirements, and compli-
ance activities. Data security breaches pose a constant threat especially with a large
competitor having a recent, major disclosure of sensitive customer records. Despite
tremendous opportunities for growth, he remains cautious about new directions to
manage risk effectively.

Paul Hong must make timely and appropriate information technology invest-
ments to deal with strategic acquisitions, respond to competitors, control costs of
government mandates, and thwart attacks on data assets. To manage mergers and
acquisitions, he must increase information technology capacity to process large new
volumes of transactions, manage increasing amounts of data for operations, business
intelligence, and long-term archival storage, and integrate disparate systems and data.
To match competitors, he needs more detailed and timely data about industry trends,
competitors” actions, and intellectual property developments. To comply with new
regulations, he must develop new data collection practices, conduct information tech-
nology audits, and fulfill other government reporting requirements for public compa-
nies. To thwart data attacks, he must review potential risks and invest in monitoring
tools. For all of these concerns, he is unsure about managing risks, choosing informa-
tion technology suppliers, and hiring competent staff.

These concerns involve significant usage of database technology as well as new
data management initiatives to ensure accountability. New developments in NoSQL
database technology, parallel processing architectures, and data lifecycle management
can provide cost effective solutions to meet challenges of big data. These technologies
can be deployed in cloud computing environments that provide economies of scale,
elimination of fixed infrastructure costs, and dynamic scalability. A data governance
organization can mitigate risks associated with the complex regulatory environment
through a system of checks and balances using data rules and policies. Mergers and
acquisitions often trigger data governance initiatives to ensure consistent data defini-
tions and integrate corporate policies involving data privacy and security.

However, the solutions to Paul Hong’s concerns involve more than technology.
Utilization of appropriate information technology requires a vision for an organiza-
tion’s future, a deep understanding of technology, and traditional management skills
to control risk. Paul Hong realizes that his largest challenge is to blend these skills to
develop effective solutions for International Industrial Adhesives, Inc.

xviii

Preface

INTRODUCTION

This textbook provides a foundation to understand database technology supporting enter-
prise computing concerns such as those faced by Paul Hong. As a new student of database
management, you first need to understand fundamental concepts of database manage-
ment and the relational data model. Then you need to master skills in query formulation,
database design, and database application development. This textbook provides tools to
help you understand relational databases and acquire skills to solve basic and advanced
problems in query formulation, data modeling, normalization, data requirements for busi-
ness applications, and customization of database applications.

After establishing these skills, you are ready to study the organizational context,
role of database specialists, and the processing environments in which databases are
used. Students will learn about decision-making needs, accountability requirements,
organization structures, business architectures, and roles of database specialists asso-
ciated with databases and database technology. For environments, this textbook pres-
ents fundamental database technologies in each processing environment and relates
these technologies to new advances in electronic commerce and business intelligence.
You will learn vocabulary, architectures, and design issues of database technology
that provide a background for advanced study of enterprise information systems, elec-
tronic commerce applications, and business intelligence.

WHAT’S NEW IN THE SEVENTH EDITION

The seventh edition makes substantial revisions to the sixth edition while preserving
the proven pedagogy developed in the first sixth editions. Experience gained from
instruction of university students and online learners along with feedback from adopt-
ers of the earlier editions has led to the development of new material and refinements
to existing material. A five-course specialization developed for the Coursera platform
in 2016 provided the impetus for substantial new material in the seventh edition about
data warehouses.

The most significant changes in the seventh edition are a substantial expan-
sion of data warehouse material and new coverage of NoSQL database technology
and features. Many organizations focus on business intelligence to gain competitive
advantage, manage risks, and connect with customers. Data warehouse technology
and practices provide a foundation for business intelligence in many organizations.
The seventh edition expands, updates, and reorganizes data warehouse material from
two to four chapters. The seventh edition contains substantial new material about
management of data warehouse development, data warehouses in major industries,
the schema integration process, a mini case study about data warehouse design, SQL
statements for data integration, data integration tools, SQL extensions for analytic que-
ries, the Microsoft Multidimensional Expressions language, pivot table tools, and a
business strategy game for managing development of data warehouses. Besides new
material, the seventh edition substantially updates existing material in the sixth edi-
tion such as indicating the market decline of data warehouse appliances.

Organizations continue to face challenging demands from big data applications
involving batch processing of large volumes of semi-structured data and online
processing of intense levels of transactions. NoSQL database technology provides a
foundation to deal with these big data applications in a growing number of organi-
zations. The seventh edition contains substantial new material on NoSQL database
technology about column-oriented storage, big data parallel processing architectures,
and in-memory transaction processing. Both NoSQL DBMSs and enterprise relational
DBMSs support these technologies. To understand explosive growth in NoSQL data-
base DBMSs, the seventh edition provides an overview about features and data mod-
els in NoSQL DBMSs as well as detailed coverage of the JavaScript Object Notation
(JSON) and the N1QL query language in Couchbase Server, a leading NoSQL DBMS.

XX Preface

Besides the expanded coverage of data warehouses and NoSQL database technol-
ogy, the seventh edition provides numerous refinements to existing material based on
classroom experience. Chapters 4 to 11 contain new examples in response to difficul-
ties students had with textbook gaps. The seventh edition makes substantial revisions
to coverage of data modeling tools, query formulation guidelines, normalization pro-
cesses, and trigger coding guidelines. In addition, refinements and updates to most
chapters have improved the presentation and currency of the material.

For database application development, the seventh edition covers SQL:2016, an
evolutionary change from previous SQL standard versions (SQL:1999 to SQL:2011).
The seventh edition explains the scope of SQL:2016, the difficulty of conformance with
the standard, and new elements of the standard. Numerous refinements of details
about database application development extend the proven coverage of the first sixth
editions: query formulation guidelines, query formulation errors, count method for
division problems, query formulation steps for hierarchal forms and reports, common
errors in queries for forms, trigger formulation guidelines, and transaction design
guidelines.

For database administration and processing environments, the seventh edition
provides expanded coverage of NoSQL technology. The most significant new topics
are columnstore indexes, in-memory transaction processing, and parallel processing
architectures for big data applications.

In addition to new material and refinements to existing material, the seventh edi-
tion extends chapter supplements. The seventh edition contains new end-of-chapter
questions and problems in most chapters. New material in the textbook’s website
includes detailed tutorials about Microsoft Access 2016, Visio Professional 2010, and
Aqua Data Studio, assignments for first and second database courses, and sample
exams. The software tutorials for Microsoft Access, Visio Professional, and Aqua Data
Studio support concepts presented in textbook chapters 4, 5, 6, 9, and 10.

To make room for new material, the seventh edition eliminates two chapters from
the sixth edition. The seventh edition contains two chapters of new material about data
warehouses. New material about NoSQL technology replaces outdated material about
object-oriented databases. To remove bloat, the seventh edition eliminates chapters
covering a form-based approach for database design and a case study about data-
base design. The course website contains these chapters for continuity with the sixth
edition.

COMPETITIVE ADVANTAGES

This textbook provides outstanding features unmatched in competing textbooks. The
unique features include detailed SQL coverage for both Microsoft Access and Oracle,
problem-solving guidelines to aid acquisition of key skills, carefully designed sample
databases and examples, advanced topic coverage, integrated lab material, prominent
data modeling tools, extensive data warehouse details, and substantial NoSQL cover-
age. These features provide a complete package for both introductory and advanced
database courses. The following list describes each feature in more detail while Table
P-1 summarizes competitive advantages by chapter.

* SQL Coverage: The breadth and depth of the SQL coverage in this text is
unmatched by competing textbooks. Table P-2 summarizes SQL coverage by
chapter. Parts 2 and 5 provide thorough coverage of the CREATE TABLE,
SELECT, UPDATE, INSERT, DELETE, CREATE VIEW, and CREATE TRIGGER
statements. Part 6 provides extensive coverage of SQL statements for data
warehouses. The chapters in parts 2 to 6 provide numerous examples of basic,
intermediate, and advanced problems. The chapters in Part 7 cover statements
useful for database administrators as well as statements used in specific
processing environments.

e Access and Oracle Coverage: The chapters in Parts 2 and 5 provide detailed
coverage of both Microsoft Access and Oracle SQL. Each example for the
SELECT, INSERT, UPDATE, DELETE, and CREATE VIEW statements is shown
for both DBMSs. Significant coverage of advanced Oracle 12¢ SQL features
appears in Chapters 8, 9, 11, 14, 15, 17, and 19. In addition, the chapters in Parts
2 and 5 cover SQL:2016 syntax to support instruction with other prominent
database management systems.

* Problem-Solving Guidelines: Students need more than explanations of concepts
and examples to solve problems. Students need guidelines to help structure
their thinking process to tackle problems in a systematic manner. The guidelines
provide mental models to help students apply the concepts to solve basic
and advanced problems. Table P-3 summarizes the unique problem-solving
guidelines by chapter.

* Sample Databases and Examples: To provide consistency and continuity, Parts 2
to 5 use two sample databases in chapter bodies and problems. The University
database is used in the chapter examples, while the Order Entry database is used
in the end-of-chapter problems. Numerous examples and problems with these
databases depict the fundamental skills of query formulation and application
data requirements. Revised versions of the databases provide separation between
basic and advanced examples. The website contains CREATE TABLE statements,
sample data, data manipulation statements, and Access database files for both
databases.

Chapters in Parts 3, 4, 6, and 7 use additional databases to broaden exposure to more
diverse business situations. Students need exposure to a variety of business situations
to acquire database design skills and understand concepts important to database spe-
cialists. The supplementary databases cover water utility operations, patient visits,
academic paper reviews, personal financial tracking, airline reservations, placement
office operations, automobile insurance, store sales tracking, and real estate sales. In
addition, Chapter 12 on data warehouse concepts presents data warehouses in retail,
education, and health care.

* Optional Integrated Labs: Database management is best taught when concepts are
closely linked to the practice of designing, implementing, and using databases
with a commercial DBMS. To help students apply the concepts described in
the textbook, optional supplementary lab materials are available on the text’s
website. The website contains labs for five Microsoft Access versions (2003,
2007, 2010, 2013, and 2016) as well as practice databases and exercises. The
Microsoft Access labs integrate a detailed coverage of Access with the application
development concepts covered in Parts 2 and 5.

* Data Modeling Tools: The sixth edition expands coverage of commercial data
modeling tools for database development. Students will find details about Aqua
Data Studio, Oracle SQL Developer, and Visual Paradigm.

* Data Warehouse Coverage: The four data warehouse chapters (12 to 15) along
with the database administration chapter provide details for an entire
course on data warehouses in a business intelligence curriculum. No other
competing textbook provides the breadth and depth of coverage about data
warehouses. Chapter 12 presents data warehouse concepts and management
with unique details about management of the data warehouse development
process. Chapter 13 contains data warehouse design background with unique
details about the schema integration process. Chapter 14 presents data
integration concepts and tools with extensive coverage of data integration
tools. Chapter 15 presents query formulation for data warehouses with
extensive coverage of pivot table tools and SQL statement extensions. The
course website contains assignments for pivot table tools, query formulation,
data integration, schema integration, and materialized view processing to
augment chapter coverage.

xxi

xxii Preface

TABLE P-1
Summary of Competitive
Advantages by Chapter

* NoSQL Coverage: Major organizations have strong demand for individuals with
background about NoSQL technology and systems. The seventh edition supports
this need with substantial material about features in NoSQL DBMSs as well as
detailed coverage of a major NoSQL DBMS. Numerous examples and problems
provide opportunity for students to obtain a foundation of skills for data
modeling and query formulation using a NoSQL DBMS.

Due to the nature of NoSQL technology, the textbook distributes coverage across sev-
eral chapters. Chapters 8, 17, and 18 present important technologies (column-oriented
storage, in-memory transaction processing, big data parallel processing architectures,
and BASE principle for distributed transaction processing) used in both NoSQL and
enterprise relational DBMSs. Chapter 19 contains extensive details about features and
data models used in NoSQL DBMSs. To provide practice-oriented coverage of NoSQL
technology, Chapter 19 covers the Java Script Object Notation (JSON) and the Couch-
base N1QL query language to manipulate JSON databases.

* Current and Cutting-Edge Topics: This textbook covers many topics omitted
in competing textbooks: advanced query formulation, updatable views,
development and management of stored procedures and triggers, hierarchical
query formulation, business strategy game for managing data warehouse

Chapter Unique Features

2 Conceptual introduction to the database development process

3 Visual representation of relational algebra operators

4 Query formulation guidelines; Errors in query formulation, Oracle, Access, and SQL:2016 SQL
coverage

5 Emphasis on ERD notation, business rules, and diagram rules; Overview about data modeling
notation in prominent commercial data modeling tools

6 Strategies for analyzing business information needs; Data modeling transformations;
Detection of common design errors

7 Normalization guidelines and procedures

8 Index selection rules; SQL tuning guidelines, Integrated coverage of query optimization, file

structures, and index selection

9 Query formulation guidelines; Oracle 12c, Access, and SQL:2016 coverage; Advanced topic
coverage of nested queries, division problems, difference problems, null value handling, and
hierarchical queries

10 Rules for updatable views; Data requirement steps for forms and reports; Common query
formulation errors for hierarchical forms

" Integrated coverage of database programming languages, stored procedures, and triggers;
Trigger formulation guidelines; Common trigger coding errors

12 Management of data warehouse development; Business strategy game for data warehouse
maturity; Examples of data warehouses in major industries

13 Building blocks for conceptual data warehouse design; Schema integration process

14 Data integration concepts, techniques, and tools; Supplementary material for data integration
tool usage

15 Overview of Microsoft MDX and pivot table tools; Detailed coverage of SQL statement
extensions for data warehouse queries

16 Guidelines to control trigger complexity, coding practices, and database dependencies; Data
governance processes; Selection and evaluation process for a DBMS

17 Transaction design guidelines; Mini case study about transaction design

18 Integrated coverage of client-server processing, parallel database processing, and distributed
databases integrated with impact of cloud computing

19 Object-relational features in SQL:2016 and Oracle 12¢c; NoSQL DBMS features; Query

formulation using JSON documents and Couchbase N1QL

Preface xxiii

development, schema integration process, parallel database architectures, data
integration tools, SQL extensions for data warehouses, in-memory transaction
processing, object-relational features in SQL:2016 and Oracle 12¢, and transaction

o LG c TABLE P-2
apter QL Statement Coverage SQL Statement Coverage by

3 CREATE TABLE Chapter

4 SELECT, INSERT, UPDATE, DELETE; Access and Oracle coverage

9 SELECT (nested queries, outer joins, null value handling, hierarchical queries); Access and
Oracle coverage

10 CREATE VIEW; retrieval and manipulation statements using views

N CREATE PROCEDURE (Oracle), CREATE TRIGGER (Oracle and SQL:2016)

13 CREATE DIMENSION (Oracle)

14 MERGE (SQL:2016 and Oracle); Multiple table INSERT (Oracle)

15 SELECT statement extensions for subtotal computations and analytic functions (Oracle and
SQL:2016); CREATE MATERIALIZED VIEW (Oracle) and query rewriting

16 GRANT, REVOKE, CREATE ROLE, CREATE ASSERTION, CHECK clause of the CREATE TABLE
statement, CREATE DOMAIN

17 COMMIT, ROLLBACK, SET TRANSACTION, SET CONSTRAINTS, SAVEPOINT

19 CREATE TYPE, CREATE TABLE (typed tables and subtables), SELECT extensions (object

identifiers, path expressions, dereference operator); SQL:2016 and Oracle coverage;
Couchbase N1QL INSERT and SELECT statements for JSON databases

TABLE P-3
Chapter Problem-Solving Guidelines Problem-Solving Guidelines

3 Visual representations of relationships and relational algebra operators by Chapter
4 Conceptual evaluation process; Query formulation questions; Query formulation errors

5 Diagram rules

6 Guidelines for analyzing business information needs; Design transformations; Detection of

common design errors; Conversion rules

7 Guidelines for identifying functional dependencies; Usage of sample data to falsify functional
dependencies; Simple synthesis procedure
8 Index selection rules; SQL tuning guidelines
9 Difference problem formulation guidelines; Nested query evaluation; Count method for division
problem formulation; Hierarchical query formulation guidelines
10 Rules for updatable queries; Steps for analyzing data requirements in forms and reports
n Trigger execution procedure; Trigger formulation guidelines
12 Drivers of difficulties in data warehouse projects; Learning curve concepts; Architectures for
data warehouse deployment; Architecture selection guidelines
13 Schema patterns with example data warehouse designs; Summarizability patterns; Steps of the
schema integration process
14 Factors influencing refresh process objective; Features of data integration tools
15 Mapping of GROUPING SETS operator to CUBE and ROLLUP operators; Factors influencing

analytic function extensions; Extension of SELECT statement processing for analytic functions;
Comparison of traditional views and materialized views; Processing for materialized views;
Matching requirements for query rewriting

16 Guidelines to manage stored procedures and triggers; Data planning process; DBMS selection
process; Core processes and risk matrix in the Microsoft Data Governance Framework

17 Transaction timeline; Transaction design guidelines

18 Progression of transparency levels for distributed databases

19 Comparison between relational and object-relational representations; Multiple representations

of JSON documents (fully nested, partially nested, and flat)

XXiv Preface

design principles. These topics enable motivated students to obtain a deeper
understanding of database management.

* Complete Package for Courses: Depending on the course criteria, some students
may need to purchase as many as four books for an introductory database
course: a textbook covering principles, laboratory books covering details of
a DBMS, a supplemental SQL book, and a casebook with realistic practice
problems. This textbook and supplemental material provide a complete,
integrated, and less expensive resource for students.

TEXT AUDIENCE

This book supports two database courses at the undergraduate or graduate level. At
the undergraduate level, students should have a concentration (major or minor) or
active interest in information systems. For two-year institutions, the instructor may
want to skip advanced topics and place more emphasis on the optional Access lab
book. Undergraduate students should have a first course covering general information
systems concepts, spreadsheets, word processing, and possibly a brief introduction to
databases.

At the graduate level, this book is suitable in either MBA or Master of Science (in
information systems) programs. The advanced material in this book should be espe-
cially suitable for Master of Science students.

Except for Chapter 11, a previous course in computer programming can be use-
ful background but is not mandatory. The other chapters reference some computer
programming concepts, but writing code is not covered. For a complete mastery of
Chapter 11, computer programming background is essential. However, the basic con-
cepts and trigger details in Chapter 11 can be covered even if students do not have a
computer programming background.

ORGANIZATION

As the title suggests, Database Design, Application Development, and Administration
emphasizes three sets of skills. Before acquiring these skills, students need a foun-
dation about basic concepts. Part 1 provides conceptual background for subsequent
detailed study of database design, database application development, and database
administration. The chapters in Part 1 present the principles of database management
and a conceptual overview of the database development process.

Part 2 provides foundational knowledge about the relational data model. Chapter
3 covers table definition, integrity rules, and operators to retrieve useful information
from relational databases. Chapter 4 presents guidelines for query formulation and
numerous examples of SQL statements.

Parts 3 and 4 emphasize practical skills and design guidelines for the database
development process. Students desiring a career as a database specialist should be
able to perform each step of the database development process. Students should learn
skills of data modeling, schema conversion, normalization, and physical database de-
sign. The Part 3 chapters (Chapters 5 and 6) cover data modeling using the Entity
Relationship Model. Chapter 5 covers the structure of entity relationship diagrams,
while Chapter 6 presents usage of entity relationship diagrams to analyze business
information needs. The Part 4 chapters (Chapters 7 and 8) cover table design principles
and practice for logical and physical design. Chapter 7 covers motivation, function-
al dependencies, normal forms, and practical considerations of data normalization.
Chapter 8 contains broad coverage of physical database design including objectives,
inputs, file structures, query optimization principles, and important design choices.

Part 5 provides a foundation for building database applications by helping stu-
dents acquire skills in advanced query formulation, specification of data requirements

Preface XXV

for data entry forms and reports, and coding triggers and stored procedures. Chapter
9 presents additional examples of intermediate and advanced SQL, along with cor-
responding query formulation skills. Chapter 10 describes motivation, definition, and
usage of relational views along with specification of view definitions for data entry
forms and reports. Chapter 11 presents concepts and coding practices of database pro-
gramming languages, stored procedures, and triggers for customization of database
applications.

Part 6 provides detailed coverage of data warehouse management, design, data
integration, and query formulation. Chapter 12 presents basic concepts, management
background, and examples of data warehouses in important industries. Chapter 13
describes conceptual design of data warehouses with coverage of multidimensional
representation, schema patterns, summarizability patterns, and the schema integra-
tion process. Chapter 14 provides details about data integration concepts, techniques,
and tools. Chapter 15 covers query formulation for online analytic processing, SQL
SELECT statement extensions for subtotal calculations, SQL SELECT statement exten-
sions for analytic functions, and summary data management. Together, the chapters in
Part 6 provide a strong foundation for students to pursue a career as a data warehouse
or business intelligence professional.

Beyond database design and application development skills, this textbook pre-
pares students for careers as database specialists. Students need to understand the
responsibilities, tools, and processes employed by data administrators and database
administrators as well as the various environments in which databases operate.

The chapters in Part 7 emphasize the role of database specialists and the details of
managing databases in various environments. Chapter 16 provides a context for the
other chapters through coverage of the responsibilities, tools, and processes used by
database administrators and data administrators. The other chapters in Part 7 provide
a foundation for managing databases in important environments: Chapter 17 on trans-
action processing, Chapter 18 on distributed processing and data, and Chapter 19 on
object and NoSQL databases. These chapters emphasize concepts, architectures, and
design choices important for database specialists, while providing some coverage of
advanced application development topics.

TEXT APPROACH AND THEME

To support acquisition of the necessary skills for learning and understanding appli-
cation development, database design, and managing databases, this book adheres to
three guiding principles.

(1) Combine concepts and practice. Database management is more easily learned
when concepts are closely linked to the practice of designing and implementing
databases using a commercial DBMS. The textbook and the accompanying
supplements have been designed to provide close integration between concepts
and practice through the following features:

* SQL examples for both Access and Oracle as well as SQL:2016 coverage

* Emphasis of the relationship between application development and query
formulation

» Usage of data modeling notations supported by professional database
development products

* Supplemental laboratory practice chapters that combine textbook concepts
with details of commercial DBMSs

(2) Emphasize problem-solving skills. This book features problem-solving guidelines

to help students master fundamental skills of data modeling, normalization,

query formulation, and application development. The textbook and associated

supplements provide a wealth of questions, problems, case studies, and

laboratory practices in which students can apply their skills. With mastery of the

XXVi Preface

fundamental skills, students will be poised for future learning about databases
and change the way they think about computing in general.

(3) Provide introductory and advanced material. Business students who use this book
may have a variety of backgrounds. This book provides enough depth to satisfy
the most eager students. However, the advanced parts are placed so that they
can be skipped by the less inclined.

PEDAGOGICAL FEATURES

This book contains the following pedagogical features to help students navigate
through chapter content in a systematic fashion:

* Learning Objectives focus on the knowledge and skills students will acquire
from studying the chapter.

* Overviews provide a snapshot or preview of chapter contents.

* Key Terms are highlighted and defined in boxed areas as they appear in the
chapter.

* Examples are clearly separated from the rest of the chapter material for easier
review and studying purposes.

* Running Database Examples — examples using the University database as well
as other databases with clear separation from surrounding text.

* Closing Thoughts summarize chapter content in relation to the learning
objectives.

* Review Concepts are the important conceptual highlights from the chapter, not
just a list of terminology.

* Questions are provided to review the chapter concepts.

* Problems help students practice and implement the detailed skills presented in
the chapter.

* References for Further Study point students to additional sources on chapter
content.

* Chapter Appendixes provide additional details, convenient summaries of
SQL:2016 syntax, and other topics beyond normal chapter coverage.

At the end of the text, students will find the following additional resources:

* Glossary: Provides a complete list of terms and definitions used throughout the
text.

* Bibliography: A list of helpful industry, academic, and other printed material for
further research or study.

¢ Index: A list of keywords with page references to help readers of the printed
edition.

MICROSOFT ACCESS LABS

Lab books for several versions of Microsoft Access (2003, 2007, 2010, 2013, and 2016)
are available. The lab books provide detailed coverage of features important to be-
ginning database students as well as many advanced features. The lab chapters pro-
vide a mixture of guided practice and reference material organized into the following
chapters:

1. An Introduction to Microsoft Access
2. Database Creation Lab

3. Query Lab

4. Single Table Form Lab

Preface xxvii

5. Hierarchical Form Lab
6. Report Lab

7. Pivot Tables

8. User Interface Lab

Each lab chapter follows the pedagogy of the textbook with Learning Objectives, Over-
view, Closing Thoughts, Additional Practice exercises, and Appendixes of helpful tips.
Most lab chapters reference concepts from the textbook for close integration with corre-
sponding textbook chapters. Each lab book also includes a glossary of terms and an index.

INSTRUCTOR RESOURCES

A comprehensive set of supplements for the text and lab manuals is available to
adopters.

* Powerpoint slides for each chapter

* Solutions to end of chapter problems for each chapter

* Solutions to end of chapter questions for each chapter

* Access databases for the university and order entry textbook databases

* Oracle SQL statements to create and populate the university and order entry
textbook databases

¢ Files containing SQL statements used in the textbook chapters

¢ Case studies along with case study solutions

* Assignments used in a first database course. The assignments involve database
creation, query formulation, application development with forms, data modeling,
and normalization. In addition, a project assignment integrates material about
database development and application development.

* Assignments used in a second database course on database administration and
processing environments. The assignments involve database creation, triggers,
data warehouse design, data integration practices, query formulation for data
warehouses, and object relational databases. In addition, projects are provided
about Oracle advanced features, benchmark development, and management
practices to develop or manage a significant database or data warehouse in an
organization.

* Assignments used in a second course on data warehouses. The assignments
involve pivot table tools, data warehouse design, SELECT statement extensions
for subtotal operators, SELECT statement extensions for analytic functions, and
materialized views and query rewriting. A comprehensive case study integrating
other parts of the course can be used in the last part of the course.

* Sample exams for a first course in database management

* Sample exams for an advanced course in database management

* Access databases for each lab chapter

* Access databases for end of chapter problems in each lab chapter

TEACHING PATHS

The textbook can be covered in several orders in a one- or a two-semester sequence.
The author has taught a one-semester course with the ordering of relational database
basics, query formulation, application development, database development, and data-
base processing environments. This ordering has the advantage of covering the more
concrete material (query formulation and application development) before the more
conceptual material (database development). Lab chapters and assignments are used
for practice beyond the textbook chapters. To fit into one semester, advanced topics are
skipped in Chapters 8 and 11 to 19.

xxviii Preface

A second ordering is to cover database development before application devel-
opment. For this ordering, the author recommends the following textbook chapter
ordering: 1, 2,5, 6, 3,7, 4, 9, and 10. The material on schema conversion in Chapter 6
should be covered after Chapter 3. This ordering supports a more thorough coverage
of database development while not neglecting application development. To fit into
one semester, advanced topics are skipped in Chapters 8 and 11 to 19.

A third possible ordering is to use the textbook in a two-course sequence. The first
course covers database management fundamentals from Parts 1 and 2, data modeling
and normalization from Parts 3 and 4, and advanced query formulation, and applica-
tion development with views. The second course emphasizes database administration
skills with physical database design from Part 4, triggers and stored procedures from
Part 5, and the processing environments from Part 7 along with Chapter 12 on data
warehouses. A comprehensive project can be used in the second course to integrate
application development, database development, and database administration.

An alternative second course covers data warehouses and database administra-
tion. This course fits well in a business intelligence track. This course uses the four
chapters in Part 6 about data warehouses and selected parts of Chapter 16 on data
and database administration. A detailed case study can be used to provide integrative
material in the last part of the course.

ACKNOWLEDGMENTS

The seventh edition culminates 40 years of instruction, research, and industry ex-
perience. Before beginning the first edition, I wrote tutorials, laboratory practices,
and case studies. This material was first used to supplement other textbooks. After
encouragement from students, this material was used without a textbook. This mate-
rial, revised many times through student comments, was the foundation for the first
edition. During the development of the first edition, the material was classroom tested
for three years with hundreds of undergraduate and graduate students, along with
careful review through four drafts by many outside reviewers. The second edition
was developed through classroom usage of the first edition for three years, along with
teaching an advanced database course for several years. The third edition was devel-
oped through experience of three years with the second edition in basic and advanced
database courses. The fourth edition was developed through three years of instruction
with the third edition in beginning and advanced database courses. The fifth edition
was developed through two years of instruction with the fourth edition in beginning
and advanced database courses. The sixth edition was developed through two years
of instruction with the fifth edition in beginning and advanced database courses. The
seventh edition was developed through three years of instruction with the sixth edi-
tion as well as development of a Coursera specialization on data warehousing.

I wish to acknowledge the excellent support that I have received in completing
the seventh edition. I thank my publisher, Paul Ducham, for his expertise in pro-
ducing and marketing this textbook. Without his expertise, this textbook would not
reach its intended audience. I thank my many database students, especially those in
ISMG6080 and ISMG6480 at the University of Colorado Denver and more than 50,000
learners in the Coursera specialization, Data Warehousing for Business Intelligence.
Your comments and reaction to my courses and the textbook have been invaluable to
its improvement.

ABOUT THE AUTHOR

Michael V. Mannino has been involved in the database field since 1978 when he began
graduate studies at the University of Arizona. He has taught database management
since 1983 at several major universities (University of Florida, University of Texas at
Austin, University of Washington, and University of Colorado Denver). His audiences
have included undergraduate MIS students, graduate MIS students, MBA students,
and doctoral students as well as thousands of Coursera learners. He has also been
active in database research with publications in major journals of the IEEE (Transac-
tions on Knowledge and Data Engineering and Transactions on Software Engineering), ACM
(Communications, Journal of Data and Information Quality, Transactions on Management
Information Systems, and Computing Surveys), and INFORMS (Informs Journal on Com-
puting and Information Systems Research). His research includes several popular sur-
vey and tutorial articles as well as many papers presenting original research. Practical
results of his research have been incorporated into Chapter 12 on management of the
data warehouse development, especially the design and implementation of the educa-
tional game, Emerge2Maturity, for providing insights about data warehouse maturity
in organizations.

XXix

part one

Introduction

to Database
Environments

Part 1 provides a background for subsequent detailed study of database design, database
application development, and database administration. The chapters in Part 1 present the
principles of database management and the nature of the database development process.
Chapter 1 covers the basic concepts of database management including database character-
istics, features and architectures of database management systems, the market for database
management systems, and organizational impacts of database technology. Chapter 2 intro-
duces the context, objectives, phases, and tools of the database development process.

chapter

Introduction
to Database
Management

Learning Objectives

This chapter provides an introduction to database technology and the
impact of this technology on organizations. After this chapter the student
should have acquired the following knowledge and skills:

® Describe the characteristics of business databases and the features
of database management systems

® Understand the importance of nonprocedural access for software
productivity

OVERVIEW

You may not be aware of it, but database technology
dramatically affects your life. Modern organizations can-
not operate efficiently without databases and associ-
ated database technology. You come into contact with
databases on a daily basis through activities such as
shopping at a supermarket, withdrawing cash using an
automated teller machine, making an airline reserva-
tion, ordering a book online, and registering for classes.
The proliferation of databases and supporting database
technology provides convenience in your daily life.
Database technology is not only improving the daily
operations of organizations but also the quality of deci-
sions that affect our lives. Databases contain a flood of
data about many aspects of our lives such as consumer
preferences, telecommunications usage, credit his-
tory, television viewing habits, and taxation documents.
Database technology helps to summarize this mass of

® Appreciate the advances in database technology and the
contributions of database technology to modern society

® Understand the impact of database management system
architectures on distributed processing and software
maintenance

® Perceive career opportunities related to database application devel-
opment and database administration

data into useful information for decision-making. Man-
agement uses information gleaned from databases to
make long-range decisions such as investing in plants
and equipment, locating stores, adding new items
to inventory, and entering new businesses. Govern-
ment uses information mined from databases to target
taxation enforcement, refine pollution control efforts,
target interest groups for election appeals, and develop
new laws.

This first chapter provides a starting point for your
exploration of database technology. It surveys database
characteristics, database management system features,
system architectures, and human roles in managing and
using databases. The other chapter in Part 1 (Chapter 2)
provides a conceptual overview of the database devel-
opment process. Chapter 1 provides a broad picture of
database technology and shares the excitement about
the journey ahead.

4 Part1 |Introduction to Database Environments

1.1 DATABASE CHARACTERISTICS

Database

a collection of persistent
data that can be shared and
interrelated.

Every day, businesses collect mountains of facts about persons, things, and events such
as credit card numbers, bank balances, and purchase amounts. Databases contain
these types of simple facts as well as nonconventional facts such as medical images,
fingerprints, product photos, and maps. With the proliferation of the Internet and the
means to capture data in digital format, a vast amount of data is available at the click
of a mouse button. Organizing these data for ease of retrieval and maintenance is para-
mount. Thus, managing databases has become a vital task in most organizations.

Before learning about managing databases, you must first understand some
important properties of databases, as discussed in the following list:

 Persistent means that data reside on stable storage such as a magnetic disk. For
example, organizations need to retain data about customers, suppliers, and
inventory on stable storage because these data are repetitively used. A variable
in a computer program is not persistent because it resides in main memory and
disappears after the program terminates. Persistency does not mean that data
lasts forever. When data are no longer relevant (such as a supplier going out of
business), they are removed or archived.

Persistency depends on relevance of intended usage. For example, the mile-
age you drive for work is important to maintain if you are self-employed. Like-
wise, the amount of your medical expenses is important if you can itemize your
deductions or you have a health savings account. Because storing and maintain-
ing data is costly, only data likely to be relevant for actions and decisions should
be stored.

* Shared means that a database can have multiple uses and users. A database
provides a common memory for multiple functions in an organization. For
example, a personnel database can support payroll calculations, performance
evaluations, government reporting requirements, and so on. Many users
can access a database at the same time. For example, many customers can
simultaneously make airline reservations. Unless two users are simultaneously
trying to change the same data, they can proceed without waiting on each
other.

¢ Interrelated means that data stored as separate units can be connected to
provide a whole picture. For example, a customer database relates customer
data (name, address, ...) to order data (order number, order date, ...) to
facilitate order processing. Databases contain both entities and relationships
among entities. An entity is a cluster of data usually about a single subject
that can be accessed together. An entity can denote a person, place, thing, or
event. For example, a personnel database contains entities such as employees,
departments, and skills as well as relationships showing employee assignments
to departments, skills possessed by employees, and salary history of employees.
A typical business database may have hundreds of types of entities and
relationships.

To depict these characteristics, let us consider a number of databases. We begin with a
simple university database (Figure 1.1) since you have some familiarity with the work-
ings of a university. A simplified university database contains data about students,
faculty, courses, course offerings, and enrollments. The database supports procedures
such as registering for classes, assigning faculty to course offerings, recording grades,
and scheduling course offerings. Relationships in the university database support
answers to questions such as

* What offerings are available for a course in a given academic period?
* Who is the instructor for an offering of a course?
* What students are enrolled in an offering of a course?

Chapter 1 Introduction to Database Management 5

T Faculy FIGURE 1.1
Registration | . assignment Depiction of a Simplified
Entities: University Database

students, faculty, courses,

) Note: Words surrounding the
offerings, enroliments

database denote processes

Relationships: that use the database.

faculty teach offerings,

Grade
recording t students enroll in offerings, | COUFS?
offerings made of courses, ... scheduling
v

University Database

Next, let us consider a water utility database as depicted in Figure 1.2. The pri-
mary function of a water utility database is billing customers for water usage. Periodi-
cally, the water utility measures a customer’s water consumption from a meter and
generates a bill. Many aspects can influence the preparation of a bill such as a cus-
tomer’s payment history, meter characteristics, type of customer (low income, renter,
homeowner, small business, large business, etc.), and billing cycle. Relationships in
the water utility database support answers to questions such as

* What is the date of the last bill sent to a customer?
* How much water usage was recorded when a customer’s meter was last read?
* When did a customer make his/her last payment?

Finally, let us consider a hospital database as depicted in Figure 1.3. The hospital
database supports treatment of patients by physicians. Many different health provid-
ers read and contribute to a patient’s medical record. Physicians make diagnoses and
prescribe treatments based on symptoms. Nurses monitor symptoms and provide
medication. Food staff prepares meals according to dietary plans. Relationships in the
database support answers to questions such as

* What are the most recent symptoms of a patient?
* Who prescribed a given treatment of a patient?
* What diagnosis did a doctor make for a patient?

—— FIGURE 1.2
~ N Payment Depiction of a Simplified

Biling —— Entities: processing Water Utility Database

customers, meters, bills,
payments, meter readings
Relationships:

bills sent to customers,

Metgr | customers make payments, Service start/
reading customers use meters, ... | stop
v

Water Utility Database

T FIGURE 1.3

~ N] Symptom Depiction of a Simplified

| Entities: monitoring Hospital Database
patients, providers,
treatments, diagnoses,
symptoms
Relationships:
patients have symptoms,

Diagnosis | providers prescribe Patient

trgatments, providers make care
diagnoses, ...

v

Hospital Database

Treatment

6 Part1 Introduction to Database Environments

These simplified databases lack many kinds of data found in real databases. For
example, the simplified university database does not contain data about course prereq-
uisites and classroom capacities and locations. Real versions of these databases would
have many more entities, relationships, and additional uses. Nevertheless, these sim-
ple databases have the essential characteristics of business databases: persistent data,
multiple users and uses, and multiple types of entities connected by relationships.

1.2 FEATURES OF DATABASE MANAGEMENT SYSTEMS

Database Management
System (DBMS)
a collection of components

that support data acquisition,

dissemination, maintenance,
retrieval, and formatting.

Table

a named, two-dimensional
arrangement of data. A table
consists of a heading part
and a body part.

SQL

an industry standard
database language that
includes statements for
database definition,
database manipulation,
and database control.

TABLE 11
Summary of Common
Features of DBMSs

A database management system (DBMS) is a collection of components that supports
the creation, use, and maintenance of databases. Initially, DBMSs provided efficient
storage and retrieval of data. Due to marketplace demands and product innovation,
DBMSs have evolved to provide a broad range of features for data acquisition, storage,
dissemination, maintenance, retrieval, and formatting. The evolution of these features
has made DBMSs rather complex. It can take years of study and use to master a par-
ticular DBMS. Because DBMSs continue to evolve, you must continually update your
knowledge.

To provide insight about features that you will encounter in commercial DBMSs,
Table 1-1 summarizes a common set of features. The remainder of this section presents
examples of these features. Some examples are drawn from Microsoft Access, a popu-
lar desktop DBMS and Oracle, a prominent enterprise DBMS. Later chapters expand
upon the introduction provided here.

1.21 Database Definition

To define a database, a database designer specifies entities and relationships. In most
commercial DBMSs, tables store collections of entities. A table (Figure 1.4) has a head-
ing row (first row) showing the column names and a body (other rows) showing the
contents of the table. Relationships indicate connections among tables. For example,
the relationship connecting the student table to the enrollment table shows the course
offerings taken by each student.

Most DBMSs provide several tools to define databases. The Structured Query
Language (SQL) is an industry standard language supported by most DBMSs. SQL
can be used to define tables, relationships among tables, integrity constraints (rules
that define allowable data), and authorization rights (rules that restrict access to data).
Chapter 3 describes SQL statements to define tables and relationships.

In addition to SQL, many DBMSs provide graphical, window-oriented tools.
Figures 1.5 and 1.6 depict graphical tools for defining tables and relationships. Using
the Table Definition window in Figure 1.5, a user can define properties of columns
such as the data type, field size, and format. Using the Relationship Definition window

Feature Description

Database definition Language and graphical tools to define entity types, relationships, integrity
constraints, and authorization rights

Nonprocedural access Language and graphical tools to access data without complicated coding

Application development Graphical tools to develop menus, data entry forms, and reports; data

requirements for forms and reports are specified using nonprocedural access

Procedural language
interface

Language that combines nonprocedural access with full capabilities of a
programming language such as Java or Javascript

Control mechanisms to prevent interference from simultaneous users and
recover lost data after a failure

Transaction processing

Database tuning Tools to monitor and improve database performance

Chapter 1 Introduction to Database Management 7

StdFirstName StdLastName StdCity StdState StdZip StdMajor StdClass StdGPA '[:)II(:; ;E;f:tu dent Table in
HOMER WELLS SEATTLE WA 98121-1111 S FR 3.00 Microsoft Access

BOB NORBERT BOTHELL WA 9801-2121 FIN JR 270

CANDY KENDALL TACOMA WA 99042-3321 ACCT JR 3.50

WALLY KENDALL SEATTLE WA 98123-1141 IS SR 2.80

JOE ESTRADA SEATTLE WA 98121-2333 FIN SR 3.20

MARIAH DODGE SEATTLE WA 98114-0021 IS JR 360

TESS DODGE REDMOND WA 98116-2344 ACCT SO 330

FIGURE 1.5
Table Definition Window in
Microsoft Access

in Figure 1.6, relationships among tables can be defined. After defining the structure,
a database can be populated. The data in Figure 1.4 should be added after the Table
Definition window and Relationship Definition window are complete.

Nonprocedural Database
1.2.2 Nonprocedural Access Language

The most important feature of a DBMS is the ability to answer queries. A query is alanguage such as SQL
a request for data to answer a question. For example, the user may want to know thatallows you to specify
customers having large balances or products with strong sales in a particular region. :‘C‘ngasrtsa;’;: ?:;iiisce;g

. e r r e
Nonprocedur'a.l access allows users with limited computing skills to su}omlt queries. o ojex procedure. Non-
The user specifies the parts of a database to retrieve, not implementation details of procedural languages do not

how retrieval occurs. Implementation details involve coding complex procedures with include looping statements.

FIGURE 1.6
Relationship Definition
Window in Microsoft Access

8 Part1 Introduction to Database Environments

FIGURE 1.7
Query Design Window in
Microsoft Access

FIGURE 1.8
Result of Executing Query in
Figure 1.7

loops. Nonprocedural languages do not have looping statements (for, while, and so
on) because only the parts of a database to retrieve are specified.

Nonprocedural access can reduce the number of lines of code by a factor of 100
as compared to procedural access. Because a large part of business software involves
data access, nonprocedural access can provide a dramatic improvement in software
productivity.

To appreciate the significance of nonprocedural access, consider an analogy to
planning a vacation. You specify the destination, travel budget, length of stay, and
departure date. These facts indicate the “what” of your trip. To specify the “how” of
your trip, you need a detailed plan with details about the best route to your destina-
tion, the most desirable hotel, ground transportation, and so on. A planning profes-
sional can facilitate your planning process by completing these details. Like a planning
professional, a DBMS performs the detailed planning to answer queries expressed in
a nonprocedural language.

Most DBMSs provide more than one tool for nonprocedural access. The SELECT
statement of SQL, presented in Chapter 4, provides a nonprocedural way to access
a database. Most DBMSs also provide graphical tools to access databases. Figure 1.7
depicts a graphical tool available in Microsoft Access. To pose a query using the data-
base, a user only indicates the required tables, relationships, and columns. Access gen-
erates the plan to retrieve the requested data. Figure 1.8 shows the result of executing
the query in Figure 1.7.

1.2.3 Application Development and Procedural Language Interface

Most DBMSs go well beyond simply accessing data. DBMSs provide graphical tools
for building complete applications using forms and reports. Data entry forms sup-
port convenient data entry and display, while reports enhance the appearance of
data that is displayed or printed. The form in Figure 1.9 can be used to add new
course assignments for a professor and to change existing assignments. The report in
Figure 1.10 uses indentation to show courses taught by faculty in various departments.

StdFirstName StdLastName StdCity OfferNo EnrGrade
MARIAH DODGE SEATTLE 1234 3.8
BOB NORBERT BOTHELL 5679 37
ROBERTO MORALES SEATTLE 5679 3.8
MARIAH DODGE SEATTLE 6666 36
LUKE BRAZZI SEATTLE 7777 37

WILLIAM PILGRIM BOTHELL 9876 4

Chapter 1

Faculty Work Load Report for the 2016-2017 Academic Year

Department Name Term Offer Units Limit Enrollment Percent Low
Number Full Enrollment
FIN
JULIA MILLS
WINTER 5678 4 20 1 5.00%
Summary for term’ = WINTER (1 detail record)
Sum 4 1
Avg 5.00%
Summary for
JULIA MILLS
Sum 4 1
Avg 5.00%
Summary for ‘department’ = FIN (1 detail record)
Sum 4 1
Avg 5.00%

The indentation style can be easier to view than the tabular style shown in Figure 1.8.
Many forms and reports can be developed with a graphical tool without detailed cod-
ing. For example, Figures 1.9 and 1.10 were developed without coding. Chapter 10
describes concepts underlying form and report development.

Nonprocedural access makes form and report creation possible without extensive
coding. As part of creating a form or report, the user indicates the data requirements
using a nonprocedural language (SQL) or graphical tool. To complete a form or report
definition, the user indicates formatting of data, user interaction, and other details.

In addition to application development tools, a procedural language interface
adds the full capabilities of a computer programming language. Nonprocedural access
and application development tools, though convenient and powerful, are sometimes
not efficient enough or do not provide the level of control necessary for application
development. When these tools are not adequate, DBMSs provide the full capabilities
of a programming language. Most commercial DBMSs have a procedural language
interface. For example, Oracle has the language PL/SQL and Microsoft SQL Server has
the language Transact-SQL. Chapter 11 describes procedural language interfaces and
the PL/SQL language.

1.2.4 Features to Support Database Operations

Transaction processing enables a DBMS to process large volumes of repetitive work.
A transaction is a unit of work that should be processed reliably without interference
from other users and without loss of data due to failures. Examples of transactions
are withdrawing cash at an ATM, making an airline reservation, and registering for
a course. A DBMS ensures that transactions are free of interference from other users,

Introduction to Database Management

FIGURE 1.9
Microsoft Access Form for
Assigning Courses to Faculty

FIGURE 1.10
Microsoft Access Report of
Faculty Workload

Procedural Language
Interface

a method to combine a
nonprocedural language
such as SQL with a
programming language
such as Java or Visual Basic.

Transaction Processing
reliable and efficient pro-
cessing of large volumes
of repetitive work. DBMSs
ensure that simultaneous
users do not interfere with
each other and failures do
not cause lost work.

10 Part1

Introduction to Database Environments

parts of a transaction are not lost due to a failure, and transactions do not make the
database inconsistent. Transaction processing is largely an unseen, back-office affair.
The user does not know the details about transaction processing other than the assur-
ances about reliability.

Database tuning involves components to monitor and improve performance.
Some DBMSs can monitor database performance and generate events indicating con-
ditions that may warrant investigation. DBMSs provide components to improve per-
formance such as reorganization of a database, selection of physical structures, and
repair of damaged parts of a database.

Transaction processing and database tuning are most prominent on DBMSs that
support large databases with many simultaneous users. These DBMSs are known
as enterprise DBMSs, designed to support databases that are critical to the function-
ing of an organization. Enterprise DBMSs usually run on powerful servers and have
a high cost. In contrast, desktop DBMSs running on personal computers and small
servers support limited transaction processing features but have a much lower cost.
Desktop DBMSs support databases used by work teams and small businesses. Embed-
ded DBMSs are an emerging category of database software. As its name implies, an
embedded DBMS resides in a larger system, either an application or a device such as
a personal digital assistant (PDA) or a smart phone. Embedded DBMSs provide lim-
ited transaction processing features but have low memory, processing, and storage
requirements.

1.2.5 Third-Party Features

In addition to features provided directly by vendors of DBMSs, third-party software
is also available for many DBMSs. In most cases, third-party software extends the fea-
tures available with the database software. For example, many third-party vendors
provide advanced database design tools that extend the database definition and tun-
ing capabilities provided by DBMSs. Figure 1.11 shows a database diagram (an entity
relationship diagram) created with Visio Professional, a tool for database design. The
ERD in Figure 1.11 can be converted into the tables supported by most commercial
DBMSs. In some cases, third-party software competes directly with the database prod-
uct. For example, third-party vendors provide application development tools that can
be used in place of the ones provided with the database product.

1.3 DEVELOPMENT OF DATABASE TECHNOLOGY AND MARKET

STRUCTURE

FIGURE 1.1

Entity Relationship Diagram
(ERD) for the University

Database

The previous section provided a quick tour of the features found in typical DBMSs.
The features in today’s products are a significant improvement over just a few years
ago. Database management, like many other areas of computing, has undergone

Student Offering Faculty
StdNo OfferNo FacNo
StdClass OffLocation >O---Teaches---OHFacSalary O
StdMajor OffTime o FacRank i
StdGPA Has FacHireDate i
¥ 9. superi
o e upervises
Accepts ;
Registers % Course
Enrollment CourseNo
CrsDesc
EnrGrade CrsUnits

Chapter1 Introduction to Database Management 1"

tremendous technological growth. To provide a context to appreciate today’s DBMSs,
this section reviews past changes in technology and suggests future trends. After this
review, the current market for database software is presented.

1.341 Evolution of Database Technology

Table 1-2 depicts a brief history of database technology through four generations' of
systems. The first generation supported sequential and random searching, but the user
was required to write a computer program to obtain access. For example, a program
could be written to retrieve all customer records or to just find the customer record
with a specified customer number. Because first-generation systems did not offer
much support for relating data, they are usually regarded as file processing systems
rather than DBMSs. File processing systems can manage only one entity type rather
than many entity types and relationships managed by a DBMS.

The second-generation products were the first true DBMSs as they could manage
multiple entity types and relationships. However, to obtain access to data, a computer
program still had to be written. Second-generation systems are referred to as “navi-
gational” because the programmer had to write code to navigate among a network of
linked records. Some of the second-generation products adhered to a standard data-
base definition and manipulation language developed by the Committee on Data Sys-
tems Languages (CODASYL), a standards organization. The CODASYL standard had
only limited market acceptance partly because IBM, the dominant computer company
during this time, ignored the standard. IBM supported a different approach known as
the hierarchical data model.

Rather than focusing on the second-generation standard, research labs at IBM and
academic institutions developed the foundations for a new generation of DBMSs. The
most important development involved nonprocedural languages for database access.
Third-generation systems are known as relational DBMSs because of the foundation
based on mathematical relations and associated operators. Optimization technology
was developed so that access using nonprocedural languages would be efficient.
Because nonprocedural access provided such an improvement over navigational
access, third-generation systems supplanted the second generation. Since the technol-
ogy was so different, most of the new systems were founded by start-up companies
rather than by vendors of previous generation products. IBM was the major exception.
It was IBM’s weight that led to the adoption of SQL as a widely accepted standard.

Fourth-generation DBMSs have extended the boundaries of database technology
to unconventional data, new kinds of distributed processing, data warehouse process-
ing, and big data demands especially with semi-structured data. As an early emphasis,
fourth-generation DBMSs provided support for unconventional data types such as
images, videos, maps, sounds, animations, and web pages. Most DBMSs now feature

TABLE 1-2
Era Generation Orientation Major Features Brief Evolution of Database
1960s It generation File File structures and proprietary program interfaces Technology

1970s 2" generation Network navigation Networks and hierarchies of related records,
standard program interfaces

1980s 39 generation Relational Nonprocedural languages, optimization,
transaction processing

1990s to 2010s 4" generation ~ Object Multi-media, active, distributed processing,
more powerful operators, data warehouse
processing, XML enabled, cloud computing,
big data demands, semi-structured data

'The generations of DBMSs should not be confused with the generations of programming languages.
In particular, fourth-generation language refers to programming language features, not DBMS features.

12

Part1

Introduction to Database Environments

convenient ways to publish static and dynamic web pages using the eXtensible Markup
Language (XML) as a publishing standard. Because these DBMSs view any kind of
data as an object to manage, fourth-generation systems were called object-relational.

In the last 15 years, DBMS vendors have extended their fourth-generation prod-
ucts for data warehouse processing. A data warehouse is a database that supports
mid-range and long-range decision making in organizations. The retrieval of summa-
rized data dominate data warehouse processing, whereas a mixture of updating and
retrieving data occur for databases that support the daily operations of an organiza-
tion. Part 6 provides four chapters about data warehouse concepts and DBMS features
to support data warehouse processing.

Cloud computing is a recent area of product development for both established
DBMS vendors and new vendors. Cloud computing supports on-demand and pay-per
use access for both data and software. Cloud computing usage is web-based without
fixed costs of software ownership. Major DBMS vendors have developed cloud com-
puting models as an alternative to their traditional approach of product licensing and
ownership. In addition, a number of new vendors have created DBMS products tai-
lored to the cloud computing model.

Part of the promise of cloud computing is support for applications with exploding
data growth known as big data. The growth in data comes from a variety of sources
such as sensors in smart phones, energy meters, and automobiles, interaction of indi-
viduals in social media websites, radio frequency identification tags in retail, and digi-
tized media content in medicine, entertainment, and security. Big data exceeds the
limits of commercial database software to support applications with exploding data
growth.

NoSQL (Not only SQL) database technology has been developed to deal with
some of the challenges of big data. As the name implies, NoSQL database technol-
ogy does not use the traditional relational database model and SQL standard. Instead
NoSQL database products use simplified database models, less stringent transaction
processing models, and distributed processing to reduce bottlenecks for dealing with
big data. NoSQL products cover a wide range of data models to support management
of semi-structured data with key-record pairs, documents, and graphs.

The market for fourth generation systems is a battle between vendors of third-
generation systems who are upgrading their products against a new group of systems
often developed as open-source software with subscriptions for premium services.
The existing companies seem to have the upper hand, but the open source DBMS
products have gained important commercial usage.

1.3.2 Current Market for Database Software

The market positions for the enterprise DBMSs have changed a little in the last decade.
According to a 2015 report by the Gartner Group, Oracle continues as the market
leader with 41.6% of revenues. Microsoft SQL Server and IBM DB2 have switched
positions after 2013 with Microsoft at 19.4% and IBM at 16.5%. SAP Sybase and Tera-
data complete the top 5 in 2015 revenues. Amazon Web Services has emerged as a
strong competitor with a market share of 2.3%, just behind the Teradata share. The
top five NoSQL vendors collectively have just above 1% of the market indicating the
growing but still small impact of NoSQL products.

DB-Engines.com ranks DBMS products by popularity using the number of men-
tions on websites, frequency of search in Google Trends, job offers in leading job
websites, and profiles in professional websites. The DB-Engines ranking (top 10) in
June 2017 was Oracle, MySQL, Microsoft SQL Server, PostgreSQL, MongoDB (NoSQL
product), DB2, Microsoft Access, Cassandra (NoSQL product), Redis (NoSQL), and
SQLite.

Open source DBMS products have begun to challenge the commercial DBMS
products at the low end of the enterprise DBMS market. Although source code for
open source DBMS products is available without charge, most organizations purchase

Chapter 1 Introduction to Database Management 13

support contracts so the open source products are not free. Still, many organizations
have reported lower cost of ownership using open source DBMS products. MySQL,
first introduced in 1995, is the leader in the open source DBMS market. Open source
DBMS products feature prominently in the DB-Engines.com ranking with six open
source products (MySQL, PostgreSQL, MongoDB, Cassandra, Redis, and SQLite).

In the market for desktop database software, Microsoft Access dominates at least
in part because of the dominance of Microsoft Office. Desktop database software is
primarily sold as part of office productivity software. With Microsoft Office holding
about 90% of the office productivity market, Access holds a comparable share of the
desktop database software market. Other significant products in the desktop database
market are open source products LibreOffice Base and OpenOffice Base along with
commercial product FileMaker Pro.

To provide coverage of both enterprise and desktop database software, this book
provides significant coverage of Oracle and Microsoft Access. In addition, the empha-
sis on the SQL standard in Parts 2 and 5 provides database language coverage for the
other major products.

Because of the potential growth of personal computing devices, most major
DBMS vendors have now entered the embedded DBMS market. Embedded DBMS
software is sold primarily by value-added software resellers as part of an applica-
tion, such as an accounting package. Thus, embedded DBMSs are hidden from users
and require little or no ongoing maintenance. Some of the leading embedded DBMS
products are Oracle Berkeley DB, Firebird Embedded, MySQL Embedded, SQLite,
UNICOM Global SolidDB, Microsoft SQL Server Compact, and Sybase Advantage
Database Server.

The market for cloud-based DBMSs is rapidly evolving so market shares and
size are difficult to determine. Most major DBMS vendors offer cloud based solutions
with some vendors providing both traditional SQL and emerging NoSQL products.
For example, Amazon offers Relational Data Service (SQL) and Amazon DynamoDB
(NoSQL) while Microsoft offers Azure (SQL) and DocumentDB (NoSQL). The impact
of cloud computing on the DBMS market has begun to mature in 2017.

1.4 ARCHITECTURES OF DATABASE MANAGEMENT SYSTEMS

To provide insight about the internal organization of DBMSs, this section describes
two architectures or organizing frameworks. The first architecture describes an orga-
nization of database definitions to reduce the cost of software maintenance. The sec-
ond architecture describes an organization of data and software to support remote
access. These architectures promote a conceptual understanding rather than indicate
actual DBMS implementation.

1.41 Data Independence and the Three Schema Architecture

In early DBMSs, there was a close connection between a database and computer pro-
grams that accessed the database. Essentially, the DBMS was considered part of a pro-
gramming language. As a result, the database definition was part of the computer
programs that accessed the database. In addition, the conceptual meaning of a data-
base was not separate from its physical implementation on magnetic disk. The defini-
tions about the structure of a database and its physical implementation were mixed
inside computer programs.

The close association between a database and related programs led to problems
in software maintenance. Software maintenance encompassing requirement changes,
corrections, and enhancements can consume a large fraction of software development
budgets. In early DBMSs, most changes to the database definition caused changes to
computer programs. In many cases, changes to computer programs involved detailed
inspection of the code, a labor-intensive process. This code inspection work is similar

14 Part1 Introduction to Database Environments

Data Independence

a database should have an
identity separate from the
applications (computer
programs, forms, and
reports) that use it. The
separate identity allows the
database definition to be
changed without affecting
related applications.

Three Schema Architecture
an architecture for
compartmentalizing
database descriptions.

The Three Schema
Architecture was proposed
as a way to achieve data
independence.

FIGURE 1.12
Three Schema Architecture

TABLE 1-3

University Database Example
Depicting Differences among
Schema Levels

to year 2000 compliance in which date formats were changed to four digits. Perfor-
mance tuning of a database was difficult because sometimes hundreds of computer
programs had to be recompiled for every change. Because database definition changes
are common, a large fraction of software maintenance resources were devoted to data-
base changes. Some studies have estimated the percentage as high as 50% of software
maintenance resources.

The concept of data independence emerged to alleviate problems with program
maintenance. Data independence means that a database should have an identity
separate from the applications (computer programs, forms, and reports) that use it.
The separate identity allows the database definition to be changed without affecting
related applications. For example, if a new column is added to a table, applications not
using the new column should not be affected. Likewise if a new table is added, only
applications that need the new table should be affected. This separation should be
even more pronounced if a change only affects physical implementation of a database.
Database specialists should be free to experiment with performance tuning without
concern about computer program changes.

In the mid-1970s, the concept of data independence led to the proposal of the
Three Schema Architecture depicted in Figure 1.12. The word schema as applied to
databases means database description. The Three Schema Architecture includes three
levels of database description. The external level is the user level. Each group of users
can have a separate external view (or view for short) of a database tailored to the
group’s specific needs.

In contrast, the conceptual and internal schemas represent the entire database.
The conceptual schema defines the entity types and relationships. For a business data-
base, the conceptual schema can be quite large, perhaps hundreds of entity types and
relationships. Like the conceptual schema, the internal schema represents the entire
database. However, the internal schema represents the storage view of the database
whereas the conceptual schema represents the logical meaning of the database. The
internal schema defines files, collections of data on a storage device such as a hard
disk. A file can store one or more entity types described in the conceptual schema.

To make the three schema levels clearer, Table 1-3 shows differences among data-
base definition at the three schema levels using examples from the features described
in Section 1.2. Even in a simplified university database, the differences among the
schema levels are clear. With a more complex database, the differences would be even

External
View 1 View 2 View n level
External to ‘ ‘ ‘ ‘
conceptual
Conceptual
mappings Conceptual I PI
schema eve
Conceptual
to internal
mappings Int | Internal
nterna level
schema

Schema Level Description

External HighGPAView: data required for the query in Figure 1.7
FacultyAssignmentFormView: data required for the form in Figure 1.9
FacultyWorkLoadReportView: data required for the report in Figure 110
Conceptual Student, Enrollment, Course, Faculty, and Enroliment tables and relationships (Figure 1.6)
Internal Files needed to store the tables; extra files (indexed property in Figure 1.5) to improve

performance

Chapter1 Introduction to Database Management 15

more pronounced with many more views, a much larger conceptual schema, and a
more complex internal schema.

The schema mappings describe how a schema at a higher level is derived from a
schema at a lower level. For example, the external views in Table 1-3 are derived from
the tables in the conceptual schema. The mapping provides the knowledge to convert
arequest using an external view (for example, HighGPAView) into a request using the
tables in the conceptual schema. The mapping between conceptual and internal levels
shows how entities are stored in files.

DBMSs, using schemas and mappings, ensure data independence. Typically,
applications access a database using a view. The DBMS converts an application’s
request into a request using the conceptual schema rather than the view. The DBMS
then transforms the conceptual schema request into a request using the internal
schema. Most changes to the conceptual or internal schema do not affect applications
because applications do not use the lower schema levels. The DBMS, not the user,
is responsible for using the mappings to make the transformations. For more details
about mappings and transformations, Chapter 10 describes views and transformations
between the external and conceptual levels. Chapter 8 describes query optimization,
the process of converting a conceptual level query into an internal level representation.

The Three Schema Architecture is an official standard of the American National
Standards Institute (ANSI). However, the specific details of the standard were never
widely adopted. Rather, the standard serves as a guideline about data independence.
The spirit of the Three Schema Architecture is widely implemented in third- and
fourth-generation DBMSs.

1.4.2 Parallel and Distributed Database Processing

With the growing importance of computer networks and electronic commerce, dis-
tributed processing is becoming a crucial function of DBMSs. Distributed processing
allows geographically dispersed computers to cooperate when providing data access.
A large part of electronic commerce on the Web involves accessing and updating
remote databases. Many databases in retail, banking, and security trading are now
available through the Web. DBMSs use available network capacity and local process-
ing capabilities to provide efficient remote database access.

Distributed processing can be applied to databases to distribute tasks among serv-
ers, divide a task among processing resources, and distribute data among network
sites. To distribute tasks among servers, many DBMSs use the client-server archi-
tecture. A client is a program that submits requests to a server. A server processes
requests on behalf of a client. For example, a client may request a server to retrieve
product data. The server locates the data and sends them back to the client. The client
may perform additional processing on the data before displaying the results to the
user. DBMSs may employ one or more levels of servers to distribute different kinds
of database processing. In Figure 1.13(a), the database server and database are located
on a remote computer. In Figure 1.13(b), an additional middleware server is added to
efficiently process messages from a large number of clients.

In the last decade, parallel database technology has gained commercial acceptance
for large organizations. Most enterprise DBMS vendors and some open source DBMSs
support parallel database technology to meet market demand. Organizations are uti-
lizing these products to realize the benefits of improved performance and availability.
Parallel database processing can improve performance through speedup (performing
a task faster) and scaleup (performing more work in the same time). Parallel database
processing can increase availability because a DBMS can dynamically adjust to the
level of available resources. Figure 1.14 depicts two common parallel database archi-
tectures that can provide improved performance and availability. In Figure 1.14(a)
known as the shared disk (SD) architecture, each processor has its own memory but
the processors share the disks. In Figure 1.14(b) known as shared nothing (SN) archi-
tecture, each processor has its own memory and disks.

Client-Server Architecture
an arrangement of
components (clients and
servers) among computers
connected by a network. The
client-server architecture
supports efficient processing
of messages (requests for
service) between clients and
servers.

16 Part1 Introduction to Database Environments

FIGURE 1.13
Typical Client-Server
Architectures

Database |

Database
server

=
=
=
==
=

Ll
T L Databasj

A 000000 |

Middleware Database
server server
FIGQRE 1.14 (a) sD (b) oy
Basic Parallel Database
Architectures | N | | N |

Parallel DBMS

a DBMS capable of utilizing
tightly-coupled computing
resources (processors, disks,
and memory). Tight coupling
is achieved by networks with
data exchange time com-
parable to the time of the
data exchange with a disk. P: processor
Parallel database technol- M: memory
ogy promises performance
improvements and high
availability.

N: high-speed network
SD: shared disk
SN: shared nothing

Distributed data provides local control and reduced communication costs. Distrib-
uting a database allows the location of data to match an organization’s structure. Deci-
sions about sharing and maintaining data can be set locally to provide control closer
to the data usage. Data should be located so that 80 percent of the requests are local.
Local requests incur little or no communication costs and delays compared to remote
requests. Figure 1.15 depicts a distributed database with three sites in Denver, Lon-
don, and Tokyo. Each site can control access to its local data and cooperate to provide
data sharing for tasks needing data from more than one site.

Introduction to Database Management

FIGURE 1.15
Distributed Database with
Three Sites

Distributed Database
a database in which parts
are located at different
network sites. Distributed
database technology sup-

Chapter 1
Tokyo
Client % Server
Client Database
Denver London
Client Server ¢ Server % Client
Client Client

3 €

Database Database

ports local control of data,
data sharing for requests
involving data from more
than one site, and reduced
communication overhead.

Client-server architectures, parallel database processing, and distributed data-
bases provide flexible ways for DBMSs to interact with computer networks. The dis-
tribution of data and processing among clients and servers and the possible choices to
locate data and software are much more complex than described here. You will learn
more details about these architectures in Chapter 18.

The architectures presented in this section assume a traditional product licens-
ing and hosting approach. Cloud computing provides a new approach without ini-
tial product licensing costs and no hosting requirements. Using web-based interfaces,
organizations can design and deploy databases with dynamic resource allocation pro-
vided by the cloud as depicted in Figure 1.16. The cloud service may restrict the design
flexibility for database design and operations available for database usage. Internally,
the cloud can use any distributed processing approach although the internal details of
the cloud are invisible to organizations using the cloud service.

FIGURE 1.16
Cloud-Based Database
Architecture

1.5 ORGANIZATIONAL IMPACTS OF DATABASE TECHNOLOGY

This section completes your introduction to database technology by discussing the
effects of database technology on organizations. The first subsection describes pos-
sible interactions that you may have with a database in an organization. The second

18 Part1 Introduction to Database Environments

Database Administrator
a support position that
specializes in managing
individual databases and
DBMSs.

FIGURE 1.17
Classification of Roles

subsection describes approaches to plan and control data produced and used by an
organization. Special attention is given to management roles that you can play as part
of an effort to control data resources. Chapter 16 provides more detail about the tools
and processes used in these management roles.

1.541 Interacting with Databases

Because databases are pervasive, there are a variety of ways in which you may inter-
act with databases. The classification in Figure 1.17 distinguishes between functional
users who interact with databases as part of their work and information systems
professionals who participate in designing and implementing databases. Each box
in the hierarchy represents a role that you may play. You may simultaneously play
more than one role. For example, a functional user in a job such as a financial analyst
may play all three roles in different databases. In some organizations, the distinc-
tion between functional users and information systems professionals is blurred. In
these organizations, functional users may participate in designing and implementing
databases.

Functional users can play a passive or an active role when interacting with data-
bases. Indirect usage of a database is a passive role. An indirect user is given a report
or some data extracted from a database. A parametric user is more active than an indi-
rect user. A parametric user requests existing forms or reports using parameters, input
values that change from usage to usage. For example, a parameter may indicate a date
range, sales territory, or department name. The power user is the most active. Because
decision-making needs can be difficult to predict, ad hoc or unplanned usage of a
database is important. A power user is skilled enough to build a form or report when
needed. Power users should have a good understanding of nonprocedural access, a
skill described in Parts 2 and 5 of this book.

Information systems professionals interact with databases as part of developing
an information system. Analyst/programmers are responsible for collecting require-
ments, designing applications, and implementing information systems. They create
and use external views to develop forms, reports, and other parts of an information
system. Management has an oversight role in the development of databases and infor-
mation systems. Information systems professionals in analyst/programmer roles
should have a good knowledge of database development and application develop-
ment in Parts 3 to 5 of this book.

Database administrators assist both information systems professionals and
functional users. Database administrators have a variety of both technical and non-
technical responsibilities (Table 1-4). Technical skills are more detail-oriented; non-
technical responsibilities are more people-oriented. The primary technical responsibility
is database design. On the non-technical side, the database administrator’s time is split
among a number of activities. Database administrators can also have responsibilities
in planning databases and evaluating DBMSs. Chapter 16 provides more details about
responsibilities and tools of database administrators.

Specialization
Functional User | Information Systems |

‘ Indirect | | Parametric | | Power | DBA | | Analyst/Programmer || Management|

| Technical | | Non Technical |

Chapter 1 Introduction to Database Management 19

Technical Non-technical

Designing conceptual schemas Setting database standards
Designing internal schemas Devising training materials
Monitoring database performance Promoting benefits of databases
Selecting and evaluating database software Consulting with users

Managing security for database usage Planning new databases

Troubleshooting database problems

1.5.2 Managing Data Resources in Organizations

Organizations have used two approaches to manage data resources. The more estab-
lished approach, information resource management, focuses on information technol-
ogy as a tool for processing, distributing, and integrating information throughout an
organization. Management of information resources has many similarities with man-
aging physical resources such as inventory. Inventory management involves activities
such as safeguarding inventory from theft and deterioration, storing it for efficient
usage, choosing suppliers, handling waste, coordinating movement, and reducing
holding costs. Information resource management involves similar activities: planning
databases, acquiring data, protecting data from unauthorized access, ensuring reli-
ability, coordinating flow among information systems, and eliminating duplication.

Due to the rapid growth of electronic commerce and financial scandals in the
2000s, data governance has emerged as a complementary approach for managing data
resources. According to the Data Governance Institute (www.dgi.com), “data gov-
ernance is the exercise of decision-making and authority for data-related matters.”
Data governance provides a system of checks and balances to develop data rules and
policies, support application of data rules and policies, and evaluate compliance of
data rules and policies. Organizations use the artifacts of data governance to miti-
gate risks associated with the complex regulatory environment, information security,
and information privacy especially for personal identifiable data and related business
transactions.

As part of controlling data resources, new management responsibilities have been
created in many organizations. The data administrator is a management role with
responsibilities to plan the development of new databases and control usage of data
throughout an organization. The data administrator maintains an enterprise data
architecture that describes existing databases and new databases and also evaluates
new information technologies and determines standards for managing databases. The
data administrator supports data governance through participation in the data gov-
ernance organization and consultation on activities managed by the data governance
office.

The data administrator role typically has broader responsibilities than the data-
base administrator role. A data administrator primarily has planning and policy
setting roles, while a database administrator has a more technical role focused on indi-
vidual databases and DBMSs. A data administrator also views data resources in a
broader context and considers all kinds of data, both traditional business data and
non-traditional unstructured data such as images, videos, and social media. A major
effort in many organizations is to develop a data governance program to manage risks
associated with usage of corporate data assets. Data administrators typically assume
in a leadership role in the data governance program while database administrators
serve in support roles by implementing controls for data governance policies.

Because of broader responsibilities, the data administrator typically is higher in an
organization chart. Figure 1.18 depicts two possible placements of data administrators
and database administrators. In a small organization, both roles may be combined in
systems administration.

TABLE 1-4
Responsibilities of the
Database Administrator

Data Administrator

a management position

that performs planning and
policy setting for the data
resources of an organization.

20 Part1 Introduction to Database Environments

FIGURE 1.18
Organizational Placement
of Data and Database
Administration

a) Data administrator under MIS director

MIS Director

Technical Support Application Development Operations Data Administration

Database Administration

b) Data administrator parallel to MIS director

|

Data Administration MIS Director

|

Technical Support Application Development Operations Database Administration

CLOSING THOUGHTS

Chapter 1 has provided a broad introduction to DBMSs. You should use this back-
ground as a context for the skills and knowledge you will acquire in subsequent chap-
ters. You learned that databases contain interrelated data that can be shared across
multiple parts of an organization. DBMSs support transformation of data for decision
making. To support this transformation, database technology has evolved from simple
file access to powerful systems that support database definition, nonprocedural access,
application development, transaction processing, and performance tuning. Nonproce-
dural access is the most vital element because it allows access without detailed coding.
You learned about two architectures that provide organizing principles for DBMSs.
The Three Schema Architecture supports data independence, an important concept
for reducing the cost of software maintenance. Client-server architectures, parallel
database processing, and distributed databases allow databases to be accessed over
computer networks, a feature vital in today’s networked world.

The skills emphasized in later chapters should enable you to work as an active
functional user or analyst. Both kinds of users need to understand the skills taught
in the second part of this book. The fifth part of the book provides skills for analysts/
programmers. This book also provides the foundation of skills to obtain a specialist
position as a database or data administrator. The skills in the third, fourth, sixth, and
seventh parts of this book are most useful for a position as a database administrator.
However, you will probably need to take additional courses, learn details of popular
DBMSs, and acquire management experience before obtaining a specialist role. A posi-
tion as a database specialist can be an exciting and lucrative career opportunity that
you should consider.

Chapter1 Introduction to Database Management 21

REVIEW CONCEPTS

Database characteristics: persistent, interrelated, and shared
Features of database management systems (DBMSs)
Nonprocedural access: a key to software productivity
Transaction: a unit of work that should be processed reliably

Application development using nonprocedural access to specify the data
requirements of forms and reports

Procedural language interface for combining nonprocedural access with a
programming language such as Java or Visual Basic

Evolution of database software over four generations of technological
improvement

Current emphasis on database software for multimedia support, distributed
processing, more powerful operators, data warehouses, and big data

Types of DBMSs: enterprise, desktop, embedded

Impact of big data demands and NoSQL database technology to deal with big
data challenges

Data independence to alleviate problems with maintenance of computer
programs

Three Schema Architecture for reducing the impact of database definition
changes

Client-server processing, parallel database processing, and distributed database
processing for using databases over computer networks

Cloud-based database architecture for scalable, on-demand database services
without ownership costs and risks

Database specialist roles: database administrator and data administrator
Information resource management for utilizing information technology

Data governance for mitigating risks associated with the complex regulatory
environment, information security, and information privacy

QUESTIONS

1.

O 0 N3 O U1

10

Describe a database that you have used on a job or as a consumer. List the
entities and relationships that the database contains. If you are not sure, imagine
the entities and relationships that are contained in the database.

. For the database in question (1), list different user groups that can use the
database.

. For one of the groups in question (2), describe an application (form or report)
that the group uses.

. Explain the persistent property for databases.

. Explain the interrelated property for databases.
. Explain the shared property for databases.

. What is a DBMS?

. What is SQL?

. Describe the difference between a procedural and a nonprocedural language.
What statements belong in a procedural language but not in a nonprocedural
language?

. Why is nonprocedural access an important feature of DBMSs?

22

Part1

Introduction to Database Environments

11.

12.
13.
14.
15.
16.

17.
18.
19.
20.
21.
22.
23.
24.

25.

26.

27.

28.
29.

30.

31.

32

33.

34.
35.

36.
37.
38.

39.

40.

What is the connection between nonprocedural access and application (form
or report) development? Can nonprocedural access be used in application
development?

What is the difference between a form and a report?

What is a procedural language interface?

What is a transaction?

What features does a DBMS provide to support transaction processing?

For the database in question (1), describe a transaction that uses the database.
How often do you think that the transaction is submitted to the database? How
many users submit transactions at the same time? Make guesses for the last two
parts if you are unsure.

What is an enterprise DBMS?

What is a desktop DBMS?

What is an embedded DBMS?

What were the prominent features of first-generation DBMSs?
What were the prominent features of second-generation DBMSs?
What were the prominent features of third-generation DBMSs?
What are the prominent features of fourth-generation DBMSs?

For the database you described in question (1), make a table to depict differences
among schema levels. Use Table 1-4 as a guide.

What is the purpose of the mappings in the Three Schema Architecture? Is the
user or DBMS responsible for using the mappings?

Explain the ways that the Three Schema Architecture supports data
independence.

In a client-server architecture, why are processing capabilities divided between a
client and server? In other words, why not have the server do all the processing?

What benefits can be provided by parallel database processing?

What benefits can be provided by distributing parts of a database among
different network sites?

For the database in question (1), describe how functional users may interact
with the database. Try to identify indirect, parametric, and power uses of the
database.

Explain the differences in responsibilities between an active functional user of a
database and an analyst. What schema level is used by both kinds of users?

. Which role, database administrator or data administrator, is more appealing to

you as a long-term career goal? Briefly explain your preference.

What advantages are reported by organization using open source DBMS
products?

What is the state of the cloud computing segment of the DBMS marketplace?

What is the relationship between the cloud-based database architecture and
other distributed processing architectures for database computing?

What is information resource management?
What is data governance?

What are the responsibilities of data administrators versus database
administrators for data governance programs?

Identify several sources of data growth that challenge organizations and vendors
of database products.

What features of NoSQL database products address the challenges of big data?

Chapter 1 Introduction to Database Management 23

PROBLEMS

Because of the introductory nature of this chapter, there are no problems in this
chapter. Problems appear at the end of most other chapters.

REFERENCES FOR FURTHER STUDY

The Databases section of InfoWorld (www.infoworld.com/category/database) pro-
vides details about database software, data management practices, and current
industry trends. To learn more about the role of database specialists and information
resource management, you should consult Mullins (2012).

chapter

Introduction
to Database
Development

Learning Objectives

This chapter provides an overview of the database development
process. After this chapter, the student should have acquired the
following knowledge and skills:

® Explain the steps in the information systems life cycle
® Describe the role of databases in an information system

OVERVIEW

Chapter 1 provided a broad introduction to database
usage in organizations and database technology. You
learned about the characteristics of business databases,
essential features of database managements systems
(DBMSs), architectures for deploying databases, and
organizational roles interacting with databases. This
chapter continues your introduction to database man-
agement with a broad focus on database development.
You will learn about the context, goals, phases, and tools
of database development to facilitate the acquisition of
specific knowledge and skills in Parts 3 and 4.

® Explain the goals of database development

® Understand the relationships among phases in the database
development process

® Describe features typically provided by CASE tools for database
development

Before you can learn specific skills, you need to
understand the broad context for database develop-
ment. This chapter presents a context for databases
as part of an information system. You will learn about
components of information systems, the life cycle of
information systems, and the role of database develop-
ment as part of information systems development. This
information systems context provides a background for
database development. You will learn the phases of
database development, the kind of skills used in data-
base development, and software tools that can help you
develop databases.

25

26 Part1 Introduction to Database Environments

2.1 INFORMATION SYSTEMS

FIGURE 2.1
Overview of Student Loan
Processing System

Databases exist as part of an information system. Before you can understand database
development, you must understand the larger environment that surrounds a database.
This section describes the components of an information system and several method-
ologies to develop information systems.

241 Components of Information Systems

A system is a set of related components that work together to accomplish some objec-
tives. Objectives are accomplished by interacting with the environment and perform-
ing functions. For example, the human circulatory system, consisting of blood, blood
vessels, and the heart, makes blood flow to various parts of the body. The circulatory
system interacts with other systems of the body to ensure that the right quantity and
composition of blood arrives in a timely manner to various body parts.

An information system is similar to a physical system (such as the circulatory sys-
tem) except that an information system manipulates data rather than a physical object
like blood. An information system accepts data from its environment, processes data,
and produces information for decision making. For example, an information system
for processing student loans (Figure 2.1) helps a service provider track loans for lend-
ing institutions. The environment of this system consists of lenders, students, and gov-
ernment agencies. Lenders send approved loan applications and students receive cash
for school expenses. After graduation, students receive monthly statements and remit
payments to retire their loans. If a student defaults, a government agency receives a
delinquency notice.

Databases provide long-term memory for information systems, an essential role.
The long-term memory contains entities and relationships. The database in Figure 2.1
contains data about students, loans, and payments so that the statements, cash dis-
bursements, and delinquency notices can be generated. Information systems without
permanent memory or with only a few variables in permanent memory are typically
embedded in a device to provide a limited range of functions rather than an open
range of functions as business information systems provide.

Databases are not the only components of information systems. Information sys-
tems also contain people, procedures, input data, output data, software, and hardware.
Thus, developing an information system involves more than developing a database, as
discussed in the next subsection.

24.2 Information Systems Development Process

Figure 2.2 shows the phases of the traditional systems development life cycle. The
particular phases of the life cycle are not standard. Different authors and organizations

INPUTS OUTPUTS
=7
Loan Applications)
$ \ PROCESSES (

Delinquency
/" Notices 2

Student Loan

Payments ——» Processing |—— Statements 3
System [
‘ \ Cash Z
Status / ‘ \ Disbursements n
Changes
ENVIRONMENT

ENVIRONMENT
DATABASE

Chapter 2

Introduction to Database Development

Preliminary
Investigation

Problem Statement,
Feasibility Study

have proposed from 3 to 20 phases. The traditional life cycle, known as the waterfall
model, contains sequential flow in which the result of each phase flows to the next
phase. The traditional life cycle is mostly a reference framework. For most systems, the
boundary between phases is blurred and there is considerable backtracking between
phases. However, the traditional life cycle is still useful because it describes the kind
of activities and shows addition of detail until an operational system emerges. The

=

System Requirements
Systems
Analysis
*
7777777777777777 Systems Design Specifications
Feedback Design
A
Systems
Feedback

Operational
System

Feedback

Implementation
1
1
|
|
|

Maintenance

following items describe the activities in each phase:

* Preliminary Investigation Phase: Produces a problem statement and feasibility

study. The problem statement contains the objectives, constraints, and scope of
the system. The feasibility study identifies costs and benefits of the system. If the

system is feasible, approval is given to begin systems analysis.
* Systems Analysis Phase: Produces requirements describing processes, data,
and environment interactions. This phases uses diagramming techniques
to document processes, data, and environment interactions. To produce
requirements, work in this phase studies the current system and interviews
users of the proposed system.

° Systems Design Phase: Produces a plan to efficiently implement the requirements.

Work in this phase produces design specifications for processes, data, and

environment interaction. The design specifications focus on choices to optimize

resources given constraints.
° Systems Implementation Phase: Produces executable code, databases, and user
documentation. To implement the system, work in this phase generates code

to implement design specifications. Before making the new system operational,

a transition plan from the old system to the new system is devised. To gain
confidence and experience with the new system, an organization may run the
old system in parallel to the new system for a period of time.
* Maintenance Phase: Produces corrections, changes, and enhancements to an
operating information system. The maintenance phase commences when
an information system becomes operational. The maintenance phase is
fundamentally different from other phases because it comprises activities
from all of the other phases. The maintenance phase ends after deploying a

replacement system and retiring the current system. Due to the high fixed costs

of developing new systems, the maintenance phase can last decades.

FIGURE 2.2
Traditional Systems

Development Life Cycle

28 Part1 Introduction to Database Environments

The traditional life cycle has been criticized for several reasons. First, an operating
system is not produced until late in the process. By the time a system is operational,
the requirements may have already changed. Second, there is often a rush to begin
implementation so that a product is visible. In this rush, appropriate time may not be
devoted to analysis and design.

A number of alternative methodologies have been proposed to alleviate these dif-
ficulties. Spiral development methodologies perform life cycle phases for subsets of a
system, progressively producing a larger system until the complete system emerges.
Rapid application development methodologies delay producing design documents
until requirements are clear. Scaled-down versions of a system, known as prototypes,
clarify requirements. Prototypes can be implemented rapidly using graphical devel-
opment tools for generating menus, forms, reports, and other code. Implementing a
prototype allows users to provide meaningful feedback to developers. Often, users
may not understand the requirements unless they can experience a prototype. Thus,
prototyping can reduce the risk of developing an information system because it allows
earlier and more direct feedback about the system.

Agile development methodologies are another variation to traditional informa-
tion systems development. Agile development methodologies promote active user
involvement and team empowerment, viewing software development as an empirical
process. Requirements evolve in agile development but the timescale of development
is fixed. Agile development involves iteration through small incremental releases with
testing integrated throughout the project lifecycle. Extreme programming, a promi-
nent Agile development approach, features a set of primary technical practices and a
set of corollary technical practices.

All development methodologies produce graphical models of the data, processes,
and environment interactions. The data model describes the kinds of data and rela-
tionships. The process model describes relationships among processes. A process can
provide input data used by other processes and use the output data of other processes.
The environment interaction model describes relationships between events and pro-
cesses. An event such as the passage of time or an action from the environment can
trigger a process to start or stop. The systems analysis phase produces an initial ver-
sion of these models. The systems design phase adds more details to efficiently imple-
ment the models.

Even though models of data, processes, and environment interactions are neces-
sary to develop an information system, this book emphasizes data models only. In
many information systems development efforts, the data model is the most important.
For business information systems, development processes usually product the pro-
cess and environment interaction models after the data model. Rather than present
notation for the process and environment interaction models, this book emphasizes
form and report development to depict connections among data, processes, and the
environment.

2.2 GOALS OF DATABASE DEVELOPMENT

Broadly, the goal of database development is to create a database that provides an
important resource for an organization. To fulfill this broad goal, the database should
serve a large community of users, support organizational policies, contain high quality
data, and provide efficient access. The remainder of this section describes the goals of
database development in more detail.

2.21 Develop a Common Vocabulary

A database provides a common vocabulary for an organization. Before implement-
ing a common database, different parts of an organization may have different termi-
nology. For example, there may be multiple formats for addresses, multiple ways to
identify customers, and different ways to calculate interest rates. After implementing a

Chapter 2 Introduction to Database Development

database, communication can improve among different parts of an organization. Thus,
a database can unify an organization by establishing a common vocabulary.

Achieving a common vocabulary is not easy. Developing a database requires com-
promise to satisfy a large community of users. In some sense, a good database designer
shares some characteristics with a good politician. A good politician often finds solu-
tions with which everyone finds something to agree and disagree. In establishing a
common vocabulary, a good database designer also finds similar imperfect solutions.
Forging compromises can be difficult, but the results can improve productivity, cus-
tomer satisfaction, and other measures of organizational performance.

2.2.2 Define the Meaning of Data

A database contains business rules to support organizational policies. Defining busi-
ness rules is the essence of defining the semantics or meaning of a database. For
example, in an order entry system, an important rule is that an order must precede a
shipment. The database can contain an integrity constraint to support this rule. Defin-
ing business rules enables a database to actively support organizational policies. This
active role contrasts with the more passive role that databases have in establishing a
common vocabulary.

In establishing the meaning of data, a database designer must choose appropriate
constraint levels. Selecting appropriate constraint levels may require compromise to
balance the needs of different groups. Overly strict constraints may force work-around
solutions to handle exceptions. In contrast, loose constraints may allow incorrect data
in a database. For example, in a university database, a designer must decide if a course
offering can be stored without knowing the instructor. Some user groups may want
initial entry of the instructor to ensure that course commitments can be met. Other
user groups may want more flexibility because course catalogs are typically released
well in advance of the beginning of the academic period. Forcing entry of the instruc-
tor at the time a course offering is stored may be too strict. If a database contains this
constraint, users may use workarounds by using a default value such as TBA (to be
announced). The appropriate constraint (forcing entry of the instructor or allowing
later entry) depends on the importance of the needs of the user groups to the goals of
the organization.

2.2.3 Ensure Data Quality

The importance of data quality is analogous to the importance of product quality in man-
ufacturing. Poor product quality can lead to loss of sales, lawsuits, and customer dissat-
isfaction. Because data are the product of an information system, data quality is equally
important. Poor data quality can lead to poor decision making about communicating
with customers, identifying repeat customers, tracking sales, and resolving customer
problems. For example, communicating with customers can be difficult if addresses are
outdated or customer names are inconsistently spelled on different orders.

Data quality has many dimensions or characteristics, as depicted in Table 2-1. The
importance of data quality characteristics can depend on the part of the database in
which they are applied. For example, in the product part of a retail grocery database,
important characteristics of data quality may be the timeliness and consistency of
prices. For other parts of the database, other characteristics may be more important.

A database design should help achieve adequate data quality. When evaluating
alternatives, a database designer should consider data quality characteristics. For
example, in a customer database, a database designer should consider the possibility
that some customers may not have U.S. addresses. Therefore, the database design may
be incomplete if it fails to support non-U.S. addresses.

Achieving adequate data quality may require a cost-benefit trade-off. For example,
in a grocery store database, the benefits of timely price updates are reduced consumer
complaints and less loss in fines from government agencies. Achieving data quality
can be costly both in preventative and monitoring activities. For example, to improve

29

30 Part1 Introduction to Database Environments

TABLE 2-1
Common Characteristics of Characteristic Meaning

Data Quality Completeness Database represents all important parts of the information system.
Lack of ambiguity Each part of the database has only one meaning.
Correctness Database contains values perceived by the user.
Timeliness Business changes are posted to the database without excessive delays.
Reliability Failures or interference do not corrupt database.
Consistency Different parts of the database do not conflict.

the timeliness and accuracy of price updates, automated data entry may be used (pre-
ventative activity) as well as sampling the accuracy of the prices charged to consumers
(monitoring activity).

The cost-benefit trade-off for data quality should consider long-term as well as
short-term costs and benefits. Often the benefits of data quality are long-term, espe-
cially data quality issues that cross individual databases. For example, consistency of
customer identification across databases can be a crucial issue for strategic decision
making. The issue may not be important for individual databases. Chapter 14 on data
integration addresses issues of data quality related to strategic decision making.

Organizations increasingly recognize that poor data quality can bring extra risks
to an organization especially related to litigation and government regulations. Many
businesses and government agencies have data governance organizations that deal
with data quality, privacy, and security issues in a broad context. For data quality
improvements, data governance initiatives typically focus on development of data
quality measures, reporting status of data quality, and establishing decision rights and
accountabilities. Chapter 16 provides details about data governance processes and
tools covering data quality issues.

2.2.4 Find an Efficient Implementation

Even if the other design goals are met, a slow-performing database will not be used.
Thus, finding an efficient implementation is paramount. However, an efficient imple-
mentation should respect the other goals as much as possible. An efficient imple-
mentation that compromises the meaning of the database or database quality may be
rejected by database users.

Finding an efficient implementation is an optimization problem with an objec-
tive and constraints. Informally, the objective is to maximize performance subject to
constraints about resource usage, data quality, and data meaning. Finding an efficient
implementation can be difficult because of the number of choices available, the inter-
action among choices, and the difficulty of describing inputs. In addition, finding an
efficient implementation is a continuing effort. Performance should be monitored and
design changes should be made if warranted.

2.3 DATABASE DEVELOPMENT PROCESS

This section describes the phases of the database development process and discusses
relationships to the information systems development process. The chapters in Parts 3
and 4 elaborate on the framework provided here.

2.31 Phases of Database Development

The goal of the database development process is to produce an operational database
for an information system. To produce an operational database, you need to define

Chapter 2

the three schemas (external, conceptual, and internal) and populate (supply
with data) the database. To create these schemas, you can follow the process
depicted in Figure 2.3. The first two phases are concerned with the information
content of the database while the last two phases are concerned with efficient
implementation. These phases are described in more detail in the remainder of
this section.

Conceptual Data Modeling The conceptual data modeling phase uses data
requirements and produces entity relationship diagrams (ERDs) for the con-
ceptual schema and each external schema. Data requirements can have many
formats such as interviews with users, documentation of existing systems, and
proposed forms and reports. The conceptual schema should represent all the
requirements and formats. In contrast, the external schemas (or views) repre-
sent the requirements of a particular usage of the database such as a form or
report rather than all requirements. Thus, external schemas are generally much
smaller than the conceptual schema.

The conceptual and external schemas follow the rules of the Entity Rela-
tionship Model, a graphical representation that depicts things of interest (enti-
ties) and relationships among entities. Figure 2.4 depicts an entity relationship
diagram (ERD) for part of a student loan system. The rectangles (Student and
Loan) represent entity types and labeled lines (Receives) represent relationships.
Attributes or properties of entities are listed inside the rectangle. The under-
lined attribute, known as the primary key, provides unique identification for the
entity type. Chapter 3 provides a precise definition of primary keys. Chapters
5 and 6 present more details about the Entity Relationship Model. Because the
Entity Relationship Model is not fully supported by any DBMS, the conceptual
schema is not biased toward any specific DBMS.

Logical Database Design The logical database design phase transforms the
conceptual data model into a format understandable by a commercial DBMS.
The logical design phase is not concerned with efficient implementation. Rather,
the logical design phase is concerned with refinements to the conceptual data
model. The refinements preserve the information content of the conceptual data
model while enabling implementation on a commercial DBMS. Because most business
databases are implemented on relational DBMSs, the logical design phase usually
produces a table design.

The logical database design phase consists of two refinement activities: conver-
sion and normalization. The conversion activity transforms ERDs into table designs
using conversion rules. As you will learn in Chapter 3, a table design includes tables,
columns, primary keys, foreign keys (links to other related tables), and other con-
straints. For example, the ERD in Figure 2.4 is converted into two tables as depicted in
Figure 2.5. The normalization activity removes redundancies in a table design using
constraints or dependencies among columns. Chapter 6 presents conversion rules
while Chapter 7 presents normalization techniques.

Distributed Database Design The distributed database design phase marks a
departure from the first two phases. The distributed database design and physical
database design phases are both concerned with an efficient implementation. In con-
trast, the first two phases (conceptual data modeling and logical database design) are
concerned with the information content of the database.

Introduction to Database Development

FIGURE 2.3
Phases of Database
Development

Data Requirements

'

Conceptual Data
Modeling

l

Entity Relationship Diagrams
(Conceptual and External)

Logical Database
Design

[
1

Relational Database Tables

v

Distributed
Database Design

[

I
Distribution Schema

v

Physical
Database Design

[
T

v

Internal Schema, Populated Database

Student Loan
StdNo L — — —Receives— — — -O<]LoanNo
StdName LoanAmt

FIGURE 2.4

Partial ERD for the Student

Loan System

32 Part1 Introduction to Database Environments

FIGURE 2.5
Conversion of Figure 2.4

CREATE TABLE Student
(StdNo INTEGER NOT NULL,
StdName CHAR(50),

PRIMARY KEY (StdNo))

CREATE TABLE Loan

(LoanNo INTEGER NOT NULL,
LoanAmt DECIMAL(10,2),
StdNo INTEGER NOT NULL,

PRIMARY KEY (LoanNo),
FOREIGN KEY (StdNo) REFERENCES Student)

Distributed database design involves choices about the location of data and pro-
cesses to improve performance and provide local control of data. Performance can
be measured in many ways such as reduced response time, improved availability of
data, and improved control. For data location decisions, the database can be split in
many ways to distribute it among computer sites. For example, a loan table can be
distributed according to the location of the bank granting the loan. Another technique
to improve performance is to replicate or make copies of parts of the database. Replica-
tion improves availability of the database but makes updating more difficult because
multiple copies must be kept consistent.

Data location decisions should respect data ownership. An organization that con-
trols some part of a database should control access to its data. For example, a franchise
store should have control over access to its locally generated data. Distributed data-
base technology presented in Chapter 18 enables an organization to align data location
with data control.

For process location decisions, some of the work is typically performed on a server
and some of the work is performed by a client. For example, the server often retrieves
data and sends them to the client. The client displays the results in an appealing man-
ner. There are many other options about the location of data and processing that are
explored in Chapter 18.

Physical Database Design The physical database design phase, like the distrib-
uted database design phase, is concerned with an efficient implementation. Unlike
distributed database design, physical database design involves performance at one
computer location only. If a database is distributed, physical design decisions must be
made for each location. An efficient implementation minimizes response time without
using excessive resources such as disk space and main memory. Because response
time is difficult to directly measure, other measures such as the amount of disk input-
output activity is often used as a substitute.

In the physical database design phase, two important choices involve indexes and
data placement. An index is an auxiliary file that can improve performance. For each
column of a table, the designer decides whether an index can improve performance.
An index can improve performance on retrievals but reduce performance on updates.
For example, indexes on the primary keys (StdNo and LoanNo in Figure 2.5) can usu-
ally improve performance. For data placement, a designer makes decisions about clus-
tering to locate data close together on a disk. For example, performance might improve
by placing student rows near the rows of associated loans. Chapter 8 describes details
of physical database design including index selection and data placement.

Splitting Conceptual Design for Large Projects The database development pro-
cess shown in Figure 2.3 works well for moderate-size databases. For large databases,
the conceptual modeling phase is usually modified. Designing large databases is a
time-consuming and labor-intensive process often involving a team of designers. The

Chapter 2 Introduction to Database Development 33

development effort can involve requirements from many different groups of users. To
manage complexity, a divide and conquer strategy is used in many areas of comput-
ing. Dividing a large problem into smaller problems allows the smaller problems to be
solved independently. The solutions to the smaller problems are then combined into
a solution for the entire problem.

View design and integration (Figure 2.6) is an approach to managing the complex-
ity of large database development efforts. In view design, an ERD is constructed for
each group of users. A view is typically small enough for a single person to design.
Multiple designers can work on views covering different parts of the database. The
view integration process merges the views into a complete and consistent conceptual
schema. Integration involves recognizing and resolving conflicts. To resolve conflicts,
it is sometimes necessary to revise the conflicting views. Compromise is an important
part of conflict resolution in the view integration process.

Cross-Checking with Application Development The database development pro-
cess does not exist in isolation. Database development occurs sometimes concurrently
with activities in the systems analysis, systems design, and systems implementation
phases. The conceptual data modeling phase is part of the systems analysis phase. The
logical database design phase is performed during systems design. The distributed
database design and physical database design phases are usually divided between
systems design and systems implementation. Most of the preliminary decisions for
the last two phases can be made in systems design. However, many physical design
and distributed design decisions must be tested on a populated database. Thus, some
activities in the last two phases occur in systems implementation.

To fulfill the goals of database development, the database development process
must be tightly integrated with other parts of information systems development.
To produce data, process, and interaction models that are consistent and complete,
cross-checking can be performed, as depicted in Figure 2.7. The information systems
development process can be split between database development and applications
development. The database development process produces ERDs, table designs, and
so on as described in this section. The applications development process produces pro-
cess models, interaction models, and prototypes. Prototypes are especially important
for cross-checking. A database has no value unless it supports intended applications
such as forms and reports. Prototypes can help reveal mismatches between the data-
base and applications using the database.

4 ™ FIGURE 2.6
Conceptual Data Modeling Splitting of Conceptual Data
‘ Modeling into View Design
and View Integration

Data Requirements

,

View Design

[
[
View ERDs

View Integration

[
!

Entity Relationship Diagrams

34 Part1 Introduction to Database Environments

FIGURE 2.7

Interaction between
Database and Application
Development

FIGURE 2.8
Design Skills Used in
Database Development

System
Requirements

Data Requirements Application Requirements
Database Application
Development Development
¢ Cross Checking—» Process Models,
ERDs, Table Design Interaction Models,
Prototypes
Operational Database Operational Applications

Operational
System

2.3.2 Skills in Database Development

As a database designer, you need two different kinds of skills as depicted in Figure 2.8.
The conceptual data modeling and logical database design phases involve mostly soft
skills. Soft skills are qualitative, subjective, and people-oriented. Qualitative skills
emphasize the generation of feasible alternatives rather than the best alternatives. As
a database designer, you want to generate a range of feasible alternatives. The choice
among feasible alternatives can be subjective. You should note the assumptions in

Data Requirements Design Skills

'

Conceptual Data
Modeling

N
\

Entity Relationship Diagrams

Soft

Logical Database
Design

Relational Database Tables

v

Distributed
Database Design

{

I
Distribution Schema

Physical
Database Design
[

I
Internal Schema, Populated Database Hard

¢ v

Chapter 2 Introduction to Database Development 35

which each feasible alternative is preferred. The alternative chosen is often subjective
based on the designer’s assessment of the most reasonable assumptions. Conceptual
data modeling is especially people-oriented. In performing data modeling, you need
to obtain requirements from diverse groups of users. Compromise and effective listen-
ing are essential skills in data modeling.

Distributed database design and physical database design involve mostly hard
skills. Hard skills are quantitative, objective, and data intensive. A background in
quantitative disciplines such as statistics and operations management can be useful to
understand mathematical models used in these phases. Many of the decisions in these
phases can be modeled mathematically using an objective function and constraints.
For example, the objective function for index selection is to minimize disk reads and
writes with constraints about the amount of disk space and response time limitations.
Many decisions cannot be based on objective criteria alone because of uncertainty
about database usage. To resolve uncertainty, intensive data analysis can be useful.
The database designer should collect and analyze data to understand patterns of data-
base usage and database performance.

Because of the diverse skills and background knowledge required in different
phases of database development, role specialization can occur. Large organizations
typically provide specialization in database design roles between data modelers and
database performance experts. Data modelers perform conceptual data modeling and
logical database design phases. Database performance experts mostly perform tasks
in the distributed and physical database design phases. Because the skills are differ-
ent in these roles, the same person will not perform both roles in large organizations.
Small organizations typically lack role diversification with the same person fulfilling
multiple roles.

2.4 TOOLS FOR DATABASE DEVELOPMENT

To improve productivity in developing information systems, computer-aided soft-
ware engineering (CASE) tools have been created. CASE tools can help improve the
productivity of information systems professionals working on large projects as well
as end users working on small projects. A number of studies have provided evidence
that CASE tools facilitate improvements in the early phases of systems development
leading to lower cost, higher quality, and faster implementations.

Most CASE tools support the database development process. Some CASE tools
support database development as a part of information systems development. Other
CASE tools target various phases of database development without supporting other
aspects of information systems development.

CASE tools can be classified as front-end or back-end tools. Front-end CASE
tools help designers diagram, analyze, and document models used in the database
development process. Back-end CASE tools create prototypes and generate code
that can be used to cross-check a database with other components of an information
system. This section presents features of CASE tools for database development and
demonstrates a commercial CASE tool, Aqua Data Studio, with a focus on database
development.

2.41 Diagramming

Diagramming is the most important and widely used function in CASE tools. Most
CASE tools provide predefined shapes and connections among the shapes. The con-
nection tools typically allow shapes to be moved while remaining connected as though
glued. This glue feature provides important flexibility because symbols on a diagram
typically are rearranged many times.

For large drawings, CASE tools provide several features. Most CASE tools allow
diagrams to span multiple pages. Multiple-page drawings can be printed so that the

36

Part1

Introduction to Database Environments

pages can be pasted together to make a wall display. Layout can be difficult for large
drawings. Some CASE tools try to improve the visual appeal of a diagram by per-
forming automatic layout. The automatic layout feature may minimize the number
of crossing connections in a diagram. Although automated layout is not typically suf-
ficient by itself, a designer can use it as a first step to improve the visual appearance of
a large diagram.

2.4.2 Documentation

Documentation is one of the oldest and most valuable functions of CASE tools. CASE
tools store various properties of a data model and link the properties to symbols on
the diagram. Example properties stored in a CASE tool include alias names, integrity
rules, data types, and owners. In addition to properties, CASE tools store text describ-
ing assumptions, alternatives, and notes. Both the properties and text are stored in the
data dictionary, the database of the CASE tool. The data dictionary is also known as
the repository or encyclopedia.

To support system evolution, many CASE tools can document versions. A version
is a group of changes and enhancements to a system that is released together. Because
of the volume of changes, groups of changes rather than individual changes are typi-
cally released together. In the life of an information system, many versions can be
made. To aid in understanding relationships among versions, many CASE tools sup-
port documentation for individual changes and entire versions.

2.4.3 Analysis

CASE tools can provide active assistance to database designers through analysis
functions. In documentation and diagramming, CASE tools help designers become
more proficient. In analysis functions, CASE tools can perform the work of a database
designer. An analysis function is any form of reasoning applied to specifications pro-
duced in the database development process. For example, an important analysis func-
tion is to convert between an ERD and a table design. Converting from an ERD to a
table design is known as forward engineering and converting in the reverse direction
is known as reverse engineering.

Analysis functions can be provided in each phase of database development. In the
conceptual data modeling phase, analysis functions can reveal conflicts in an ERD. In
the logical database design phase, conversion and normalization are common analysis
functions. Conversion produces a table design from an ERD. Normalization removes
redundancy in a table design. In the distributed database design and physical data-
base design phases, analysis functions can suggest decisions about data location and
index selection. In addition, analysis functions for version control can cross database
development phases. Analysis functions can convert between versions and show a list
of differences between versions.

Because analysis functions are advanced features in CASE tools, availability of
analysis functions varies widely. Some CASE tools support little or no analysis func-
tions while others support extensive analysis functions. Because analysis functions
can be useful in each phase of database development, no single CASE tool provides a
complete range of analysis functions. CASE tools tend to specialize by the phases sup-
ported. CASE tools independent of a DBMS typically specialize in analysis functions
in the conceptual data modeling phase. In contrast, CASE tools offered by a DBMS
vendor often specialize in physical database design phases.

2.4.4 Prototyping Tools

Prototyping tools provide a link between database development and application devel-
opment. Prototyping tools can be used to create forms and reports that use a database.
Because prototyping tools may generate code (SQL statements and programming lan-
guage code), they are sometimes known as code generation tools. Prototyping tools

Chapter 2 Introduction to Database Development

are often provided as part of a DBMS. The prototyping tools may provide wizards to
aid a developer in quickly creating applications that can be tested by users. Prototyp-
ing tools can also create an initial database design by retrieving existing designs from
a library of designs. This kind of prototyping tool can be very useful to end users and
novice database designers.

2.4.5 Commercial CASE Tools

Table 2-2 summarizes major CASE tools that provide extensive features for database
development. Each product in Table 2-2 supports multiple steps in database devel-
opment although the quality, depth, and breadth of features varies across products.
In addition, most of the products in Table 2-2 provide several versions that vary in
price and features. All of the products are relatively neutral to a particular DBMS even
though two products are offered by organizations with major DBMS products. Besides
the full featured products listed in Table 2-2, other companies offer more drawing
tools for database diagrams.

ER Modeler in Aqua Data Studio To depict features of commercial CASE tools,
this section concludes with an overview of the ER Modeler component of Aqua
Data Studio. The ER Modeler provides excellent drawing capabilities, forward

37

Tool Vendor Innovative Features

SAP PowerDesigner SAP Forward and reverse engineering for relational databases
and many programming languages; model management
support for comparing and merging models; application code
generation; UML support; business process modeling; XML
code generation; version control; data integration support;
physical design support; support for industry standard
enterprise architecture frameworks

Oracle SQL Developer Oracle Forward and reverse engineering for relational databases;

Data Modeler data warehouse modeling; code generation for other DBMSs;
compare and merge models; version control; name
standardization; design rules; impact analysis; wizards for
view creation, view discovery, and foreign key discovery

erwin Data Modeler ERWin Forward and reverse engineering for relational databases;
model reuse tools; bi-directional compare; model change
impact analysis; schema and design analysis; version control;
sub modeling support; workgroup support

ER/Studio Data Archi- IDERA Forward and reverse engineering for relational databases;

tect automated diagram layout; visual data lineage; model
management support for comparing and merging models;
UML support; version control; schema patterns for model
reuse; workgroup support; data integration support

Visible Analyst Visible Systems Forward and reverse engineering for relational databases
and XML; model management support for comparing and
merging models; version control; database view design;
data warehouse design diagrams; business requirements
traceability; process integration with data; Enterprise Edition
supports Zachman Framework for enterprise architecture
design

Aqua Data Studio AquaFold Forward and reverse engineering, schema comparison, version
control, DBA tools, query builder, schema object management

Database Engineering Visual Paradigm Forward and reverse engineering, editors for tables and
views, generation of database patch scripts, trigger and
stored procedure support, support for project management,
enterprise architecture, system modeling, business modeling,
user interface requirements, and software requirements in
Visual Paradigm tool

TABLE 2-2
Prominent CASE Tools for
Database Development

38 Part1 Introduction to Database Environments

FIGURE 2.9
ER Modeler Window

and reverse engineering tools, and schema comparison tools. In addition to the ER
Modeler component, Aqua Data Studio provides DBA tools for managing databases
in a variety of DBMSs, a query builder, and code generation. Thus, Aqua Data Studio
supports traditional CASE tool features as well as features to manage operations of
databases.

The ER Modeler window contains panes for a drawing area, model objects, a pal-
ette of diagram shapes, an overview pane for managing large drawings, and an object
summary as shown in Figure 2.9. The drawing pane contains a number of drawing
sheets, each containing a database diagram. In Figure 2.9, the drawing pane contains
one sheet showing a database diagram for an order entry database. The Palette pane
shows entities (table, view, note, and region) and relationships (One to Many, One to
Many (NI), and Subcategory) that can be placed in a drawing sheet. The Overview
pane compresses the entire diagram with a red rectangle surrounding the visible part
of the diagram. The Model pane displays the objects in a diagram (tables and relation-
ships) with expansion to display details. In Figure 2.9, the Model pane expands tables
and relationships to show the objects in the diagram. The Object Properties pane lists
properties of the object selected in the drawing sheet. In Figure 2.9, the Object Prop-
erties pane lists properties of the entire diagram because no object in the diagram is
selected.

Chapter 2 Introduction to Database Development 39

The ER Modeler provides multiple levels of detail in the drawing pane. Figure 2.9
shows the attribute level with table and column names. Relationship names can be
added to the attribute level display as shown in Figure 2.9. The ER Modeler supports
less detail with the primary key level (table and primary key names) and the entity
level (just table names) and more detail with the physical schema level (data types
added to the attribute level), nullable columns (attribute level and null constraints),
and the comment level (attribute level and comments).

The ER Modeler provides a data dictionary with details of each object in a dia-
gram. To edit properties in the data dictionary, you use the properties window for
a specified object. Figure 2.10 displays the properties window for the Product table
with tabs separating different collections of properties. The General tab shows the col-
umn names, data types, lengths and nulls allowed values for each column. Figure 2.11
displays properties for the PurchasedIn relationship with tabs for several collection of
properties. The General tab contains the most prominent properties including cardi-
nality, type, and nulls.

FIGURE 2.10
Table Properties Window for
the Product Table

40 Part1 Introduction to Database Environments

FIGURE 2.11

Relationships Properties
Window for the Purchasedin
Relationship

CLOSING THOUGHTS

This chapter initially described the role of databases in information systems and the
nature of the database development process. Information systems are collections of
related components that produce data for decision making. A database provides the
permanent memory for an information system. Development of an information sys-
tem involves a repetitive process of analysis, design, and implementation. Database
development occurs in all phases of systems development. Because a database is often
a crucial part of an information system, database development can be the dominant
part of information systems development. Development of the processing and envi-
ronment interaction components are often performed after the database development.
Cross-checking between a database and applications connects the database develop-
ment process to the information systems development process.

After presenting the role of databases and the nature of database development,
this chapter described the goals, phases, and tools of database development. The goals
emphasize both the information content of the database as well as efficient implemen-
tation. The phases of database development first establish the information content of
the database and then find an efficient implementation. The conceptual data model-
ing and logical database design phases involve the information content of the data-
base. The distributed database design and physical database design phases involve

Chapter 2 Introduction to Database Development

efficient implementation. Because developing databases can be a challenging process,
computer-aided software engineering (CASE) tools have been created to improve
productivity. CASE tools can be essential in helping the database designer to draw,
document, and prototype the database. In addition, some CASE tools provide active
assistance with analyzing a database design.

This chapter provides a context for the chapters in Parts 3 and 4. You might want
to reread this chapter after completing the chapters in Parts 3 and 4. The chapters in
Parts 3 and 4 provide details about the phases of database development. Chapters 5
and 6 present details of the Entity Relationship Model, data modeling practice using
the Entity Relationship Model, and conversion from the Entity Relationship Model
to the Relational Model. Chapter 7 presents normalization techniques for relational
tables. Chapter 8 presents physical database design techniques.

REVIEW CONCEPTS

* System: related components that work together to accomplish objectives
* Information system: system that accepts, processes, and produces data

* Waterfall model of information systems development: reference framework for
activities in the information systems development process

* Spiral development methodologies, rapid application development
methodologies, and Agile development methodologies to alleviate the problems
in the traditional waterfall development approach

* Role of databases in information systems: provide permanent memory
* Define a common vocabulary to unify an organization

¢ Define business rules to support organizational processes

* Ensure data quality to improve the quality of decision making

* Evaluate investment in data quality using a cost-benefit approach

* Find an efficient implementation to ensure adequate performance while not
compromising other design goals

* Conceptual data modeling to represent the information content independent of
a target DBMS

* View design and view integration to manage the complexity of large data
modeling efforts

* Logical database design to refine a conceptual data model to a target DBMS

e Distributed database design to determine locations of data and processing to
achieve an efficient and reliable implementation

* Physical database design to achieve efficient implementations on each computer
site

* Develop prototype forms and reports to cross check among the database and
applications using the database

* Soft skills for conceptual data modeling: qualitative, subjective, and people-
oriented

e Hard skills for finding an efficient implementation: quantitative, objective, and
data intensive

* Computer-aided software engineering (CASE) tools to improve productivity in
the database development process

* Fundamental assistance of CASE tools: drawing and documenting
* Active assistance of CASE tools: analysis and prototyping

42 Part1 Introduction to Database Environments

QUESTIONS

1. What is the relationship between a system and an infomation system?
2. Provide an example of a system that is not an information system.

3. For an information system of which you are aware, describe some of the
components (input data, output data, people, software, hardware, and
procedures).

4. Briefly describe some of the kinds of data in the database for the information
system in question 3.

. Describe the phases of the waterfall model.
. Why is the waterfall model considered only a reference framework?
. What are the shortcomings in the waterfall model?

N0 o O

. What alternative methodologies have been proposed to alleviate the difficulties
of the waterfall model?

9. What is the relationship of the database development process to the information
systems development process?

10. What is a data model? Process model? Environment interaction model?

11. What is the purpose of prototyping in the information systems development
process?

12. How is a database designer like a politician in establishing a common
vocabulary?

13. Why should a database designer establish the meaning of data?

14. What factors should a database designer consider when choosing database
constraints?

15. Why is data quality important?

16. Provide examples of data quality problems according to two characteristics
mentioned in Section 2.2.3.

17. How does a database designer decide on the appropriate level of data quality?
18. Why is it important to find an efficient implementation?

19. What are the inputs and the outputs of the conceptual data modeling phase?
20. What are the inputs and the outputs of the logical database design phase?

21. What are the inputs and the outputs of the distributed database design phase?
22. What are the inputs and the outputs of the physical database design phase?

23. What does it mean to say that the conceptual data modeling phase and the
logical database design phase are concerned with the information content of the
database?

24. Why are there two phases (conceptual data modeling and logical database
design) that involve the information content of the database?

25. What is the relationship of view design and view integration to conceptual data
modeling?

26. What is a soft skill?

27. What phases of database development primarily involve soft skills?
28. What is a hard skill?

29. What phases of database development primarily involve hard skills?
30. What kind of background is appropriate for hard skills?

31. Why do large organizations sometimes have different people performing design
phases dealing with information content and efficient implementation?

Chapter 2 Introduction to Database Development 43

32. Why are CASE tools useful in the database development process?

33. What is the difference between front-end and back-end CASE tools?

34. What kinds of support can a CASE tool provide for drawing a database
diagram?

35. What kinds of support can a CASE tool provide for documenting a database
design?

36. What kinds of support can a CASE tool provide for analyzing a database design?

37. What kinds of support can a CASE tool provide for prototyping?

38. Should you expect to find one software vendor providing a full range of
functions (drawing, documenting, analyzing, and prototyping) for the database
development process? Why or why not?

39. How has data quality moved beyond an issue just for the design of individual
databases and data integration efforts?

PROBLEMS

Because of the introductory nature of this chapter, there are no problems in this
chapter. Problems appear at the end of chapters in Parts 3 and 4.

REFERENCES FOR FURTHER STUDY

For a more detailed description of the database development process, you can consult
specialized books on database design such as Batini, Ceri, and Navathe (1992) and
Teorey et al. (2005). For more details about data quality, consult specialized books
about data quality including Loshin (2011), Olson (2002), Redman (2001) along with
the International Conference on Information Quality (mitiq.mit.edu/ICIQ/2015).

part two

Understanding

Relational
Databases

The chapters in Part 2 provide a detailed introduction to the Relational Data Model to instill
a foundation for database design and application development with relational databases.
Chapter 3 presents data definition concepts and retrieval operators for relational databases.
Chapter 4 demonstrates SQL retrieval and modification statements for problems of basic

and intermediate complexity and emphasizes problem solving guidelines to develop query
formulation skills.

45

chapter

The Relational
Data Model

Learning Objectives

This chapter provides the foundation for using relational databases. After
this chapter, the student should have acquired the following knowledge
and skills:

® Recognize relational database terminology

® Understand the meaning of the integrity rules for relational data-
bases

OVERVIEW

The chapters in Part 1 provided a starting point for your
exploration of database technology and your under-
standing of the database development process. You
broadly learned about database characteristics, DBMS
features, the goals of database development, and the
phases of the database development process. This
chapter narrows your focus to the relational data model.
Relational DBMSs dominate the market for business
DBMSs. You will undoubtedly use relational DBMSs
throughout your career as an information systems pro-
fessional. This chapter provides background so that
you will become proficient in designing databases and
developing applications for relational databases in later
chapters.

To use a relational database effectively, you need
two kinds of knowledge. First, you need to understand

® Understand the impact of referenced rows on maintaining relational
databases

® Understand the meaning of each relational algebra operator

® |ist tables that must be combined to obtain desired results for simple
retrieval requests

the structure and contents of database tables. Under-
standing the connections among tables is especially
critical because most database retrievals involve mul-
tiple tables. To help you understand relational data-
bases, this chapter presents the basic terminology, the
integrity rules, and a notation to visualize connections
among tables. Second, you need to understand the
operators of relational algebra as they are the building
blocks of most commercial query languages. Under-
standing the operators will improve your knowledge
of the SQL SELECT statement, the most widely used
query language statement. You will learn the details
for the SQL SELECT statement in Chapter 4. To help
you understand the meaning of each operator, this
chapter provides a visual representation of each oper-
ator and several convenient summaries.

47

48 Part2 Understanding Relational Databases

3.1 BASIC ELEMENTS

Table

a two dimensional
arrangement of data.

A table consists of a heading
defining the table name and
column names and a body
containing rows of data.

Data Type

defines a set of values and
permissible operations on
the values. Each column of
a table is associated with a
data type.

TABLE 3-1
Sample Table Listing of the
Student Table

Relational databases promised familiarity, simplicity, and mathematical rigor to man-
age data. Because many disciplines use tables to communicate complex ideas, the
terminology of tables, rows, and columns is familiar to most users. During the early
years of relational databases (1970s), the simplicity and familiarity of relational data-
bases had strong appeal especially as compared to the procedural orientation of other
data models. In addition to the familiarity and simplicity of relational databases, a
strong mathematical basis also exists. The mathematics of relational databases involve
conceptualizing tables as sets. The combination of familiarity and simplicity with a
mathematical foundation provided a powerful combination enabling commercial
dominance of relational DBMSs.

This section presents the basic terminology of relational databases and introduces
the CREATE TABLE statement of the Structured Query Language (SQL). Sections 3.2
through 3.4 provide more detail about the elements defined in this section.

34141 Tables

A relational database consists of a collection of tables. Each table has a heading or defi-
nition part and a body or content part. The heading part consists of the table name and
the column names. For example, a student table may have columns for student num-
ber, name, street address, city, state, zip, class (freshman, sophomore, etc.), major, and
cumulative grade point average (GPA). The body shows the rows of the table. Each
row in a student table represents a student enrolled at a university. A student table
for a major university may have more than 30,000 rows, too many to view at one time.

To understand a table, it is also useful to view some of its rows. A table listing or
datasheet shows the column names in the first row and the body in the other rows.
Table 3-1 shows a table listing for the Student table. Three sample rows representing
university students are displayed. In this book, the naming convention for column
names uses a table abbreviation (Std) followed by a descriptive name. Because col-
umn names are often used without identifying the associated tables, the abbreviation
supports easy table association. Mixed case highlights the different parts of a column
name.

A CREATE TABLE statement can be used to define the heading part of a table.
CREATE TABLE is a statement in the Structured Query Language (SQL). Because SQL
is an industry standard language, the CREATE TABLE statement can be used to create
tables in most DBMSs. The CREATE TABLE statement that follows' creates the Stu-
denttable. For each column, the column name and data type are specified. Data types
indicate the kind of data (character, numeric, Yes/No, etc.) and permissible operations
(numeric operations, text operations, etc.) for the column. Each data type has a name
(for example, CHAR for character) and usually a length specification. Table 3-2 lists
common data types? used in relational DBMSs.

StdNo StdFirstName StdLastName StdCity StdState StdZip StdMajor StdClass StdGPA
123-45-6789 HOMER WELLS SEATTLE WA 98121-111 IS FR 3.00
124-56-7890 BOB NORBERT BOTHELL WA 98011-2121 FIN JR 270
234-56-7890 CANDY KENDALL TACOMA WA 99042-3321 ACCT JR 3.50

! The CREATE TABLE statements in this chapter conform to the standard SQL syntax. There are slight syn-
tax differences for most commercial DBMSs.

?Data types are not standard across relational DBMSs. The data types used in this chapter are specified in
the latest SQL standard. Most DBMSs support these data types although the data type names may differ.

Chapter 3 The Relational Data Model 49

CREATE TABLE Student

(StdNo CHAR(11),
StdFirstName VARCHAR(50),
StdLastName VARCHAR(50),
StdCity VARCHAR(50),
StdState CHAR(2),
Stdzip CHAR(10),
StdMajor CHAR(6),
StdClass CHAR(6),
StdGPA DECIMAL(3,2))

341.2 Connections among Tables

It is not enough to understand each table individually. To understand a relational
database, connections or relationships among tables also must be understood. The
rows in a table are usually related to rows in other tables. Matching (identical) values
indicate relationships between tables. Consider the sample Enrollment table (Table 3-3)
in which each row represents a student enrolled in an offering of a course. The values
in the StdNo column of the Enrollment table match the StdNo values in the sample
Student table (Table 3-1). For example, the first and third rows of the Enrollment table
have the same StdNo value (123-45-6789) as the first row of the Student table. Likewise,
the values in the OfferNo column of the Enrollment table match the OfferNo column in
the Offering table (Table 3-4). Figure 3.1 shows a graphical depiction of the matching
values.

Data Type Description

CHAR(L) For fixed length text entries such as state abbreviations and fixed length postal codes.
Each column value using CHAR contains the maximum number of characters (L) even
if the actual length is shorter. Most DBMSs have an upper limit on the length (L) such as
255.

VARCHAR(L) For variable length text such as names and street addresses. Column values using
VARCHAR contain only the actual number of characters, not the maximum length for
CHAR columns. Most DBMSs have an upper limit on the length such as 255.

FLOAT(P) For columns containing numeric data with a floating precision such as interest rate
calculations and scientific calculations. The precision parameter P indicates the number
of significant digits. Most DBMSs have an upper limit on P such as 38. Some DBMSs have
two data types, REAL and DOUBLE PRECISION, for low- and high-precision floating point
numbers instead of the variable precision with the FLOAT data type.

DATE/TIME For columns containing dates and times such as an order date. These data types are
not standard across DBMSs. Some systems support three data types (DATE, TIME, and
TIMESTAMP) while other systems support a combined data type (DATE) storing both the
date and time.

DECIMAL(W,R) For columns containing numeric data with a fixed precision such as monetary amounts.
The W value indicates the total number of digits and the R value indicates the number
of digits to the right of the decimal point. This data type is also called NUMERIC in some
DBMSs.

INTEGER For columns containing whole numbers (numbers without a decimal point). Some DBMSs
have the SMALLINT data type for very small whole numbers and the LONG data type for
very large integers.

BOOLEAN For columns containing data with two values such as true/false or yes/no.

Relationship

connection between rows in
two tables. Relationships are
shown by column values in
one table that match column
values in another table.

TABLE 3-2
Brief Description of Common
SQL Data Types

50 Part 2 Understanding Relational Databases

TABLE 3-3

Sample Enroliment Table OfferNo StdNo EnrGrade
1234 123-45-6789 33
1234 234-56-7890 35
4321 123-45-6789 35
4321 124-56-7890 3.2

TABLE 3-4

Sample Offering Table OfferNo CourseNo OffTerm OffYear OffLocation OffTime FacNo OffDays
1m 1S320 SUMMER 2017 BLM302 10:30 AM MW
1234 1S320 FALL 2016 BLM302 10:30 AM 098-76-5432 MW
2222 1S460 SUMMER 2016 BLM412 1:30 PM TTH
3333 I1S320 SPRING 2017 BLM214 8:30 AM 098-76-5432 MW
4321 1S320 FALL 2016 BLM214 3:30 PM 098-76-5432 TTH
4444 IS320 SPRING 2017 BLM302 3:30 PM 543-21-0987 TTH
5678 1S480 SPRING 2017 BLM302 10:30 AM 987-65-4321 MW
5679 1S480 SPRING 2017 BLM412 3:30 PM 876-54-3210 TTH
9876 1IS460 SPRING 2017 BLM307 1:30 PM 654-32-1098 TTH

FIGURE 3.1 .

Matching Values among the Student Offering

Enroliment, Offering, and StdNo StdLastName OfferNo CourseNo

Student Tables 123-45-6789 WELLS 1234 1S320

124-56-7890 KENDALL 4321 1S320
234-56-7890\ NORBERT

Enroliment

StdNo OfferN;/
123-45-6789 1234
234-56-7890 1234

\

123-45-6789 4321

]
124-56-7890 4321

The concept of matching values is crucial in relational databases. As you will
see, relational databases typically contain many tables. Even a modest-size database
can have 10 to 15 tables. Major databases for business and government organizations
contain hundreds of tables. To extract meaningful information, you must combine
multiple tables using matching values. By matching on Student.StdNo and Enrollment
.5tdNo, you could combine the Student and Enrollment tables®. Similarly, by match-
ing on Enrollment.OfferNo and Offering.OfferNo, you could combine the Enrollment and
Offering tables. As you will see later in this chapter, the join operator combines tables
on matching values. Understanding the connections between tables (or columns on
which tables can be combined) is crucial for extracting useful data.

* When columns have identical names in two tables, it is customary to precede the column name with the
table name and a period as Student.StdNo and Enrollment.StdNo.

Chapter 3 The Relational Data Model 51

34.3 Alternative Terminology TABLE 3-5

You should be aware about other commonly used terminology Alternative Terminology for Relational Databases
besides table, row, and column. Table 3-5 shows three roughly

equivalent terminologies. The divergence in terminology is RELIERSIELIEERETZe () CE R EEE L ERe [C0

due to different groups that use databases. The table-oriented 1. pc

ol | h . ol Relation Record type, file
terminology appeals to end users; the set-oriented terminol- Tuple —
ogy appeals to academic researchers; and the record-oriented
Column Attribute Field

terminology appeals to information systems professionals. In
practice, these terms may be mixed. For example, in the same
sentence you might hear both “tables” and “fields.” You should
expect to see a mix of terminology in your career.

3.2 INTEGRITY RULES

In the previous section, you learned that a relational database consists of a collection of
interrelated tables. To ensure that a database provides meaningful information, integ-
rity rules are necessary. This section describes two important integrity rules (entity
integrity and referential integrity), examples of their usage, and a notation to visualize
referential integrity.

3.21 Definition of the Integrity Rules

Entity integrity* means that each table must have a column or combination of columns
with unique values. Unique means that no two rows of a table have the same value.
For example, StdNo in Student is unique and the combination of StdNo and OfferNo is
unique in Enrollment. Entity integrity ensures unique identification of entities (people,
things, places, and events) in a database. For auditing, security, and communication
reasons, business entities must be easily traceable.

Referential integrity means that the column values in one table must match col-
umn values in a related table. For example, the value of StdNo in each row of the
Enrollment table must match the value of StdNo in some row of the Student table. Ref-
erential integrity ensures that a database contains valid connections. For example, it is
critical that each row of the Enrollment table contains a student number of a valid stu-
dent. Otherwise, some enrollments can be meaningless, possibly resulting in students
denied enrollment because non existing students took their places.

For more precise definitions of entity integrity and referential integrity, some
other definitions are necessary. These prerequisite definitions and the more precise
definitions follow.

Definitions

* Superkey: a column or combination of columns containing unique values for
each row. The combination of every column in a table is always a superkey
because rows in a table must be unique’.

* Candidate key: a minimal superkey. A superkey is minimal if removing any
column makes it no longer unique. A single column superkey is minimal because
no columns can be removed.

* Null value: a special value that represents the absence of an actual value. A null
value can mean that the actual value is unknown or does not apply to a specified
row.

*Entity integrity is also known as uniqueness integrity.

*The SQL standard does not require uniqueness of rows although uniqueness is a basic tenet of the
relational model.

52

Part2 Understanding Relational Databases

* Primary key: a specially designated candidate key. The primary key of a table
cannot contain null values. Each table contains one primary key.

* Foreign key: a column or combination of columns in which the values must
match those of a candidate key. A foreign key must have the same data type as
its associated candidate key. In the CREATE TABLE statement of SQL, a foreign
key must be associated with a primary key rather than merely a candidate key.

Integrity Rules

* Entity integrity rule: No two rows of a table can contain the same value for the
primary key. In addition, no row can contain a null value for any column of a
primary key.

* Referential integrity rule: Only two kinds of values can be stored in a foreign key:

— avalue matching a candidate key value in some row of the table containing
the associated candidate key or
— anull value.

3.2.2 Application of the Integrity Rules

To extend your understanding, let us apply the integrity rules to several tables in the
university database. The primary key of Student is StdNo. You specify a primary key
as part of the CREATE TABLE statement. To designate StdNo as the primary key of
Student, you use a CONSTRAINT clause for the primary key at the end of the CRE-
ATE TABLE statement. The constraint name (PKStudent) following the CONSTRAINT
keyword facilitates identification of the constraint if a violation occurs when a row is
inserted or updated.

CREATE TABLE Student

(StdNo CHAR(11),
StdFirstName VARCHAR(50),
StdLastName VARCHAR(50),

StdCity VARCHAR(50),
StdState CHAR(2),
Stdzip CHAR(10),
StdMajor CHAR(6),
StdClass CHAR(2),
StdGPA DECIMAL(3,2),

CONSTRAINT PKStudent PRIMARY KEY (StdNo))

Many organizations including universities in the U.S.A. previously used Social Secu-
rity numbers as unique identifiers. Because of the increase in identity theft, most orga-
nizations have eliminated the usage of government identifiers such as Social Security
numbers as primary keys. Instead, organizations typically use unique identifiers spe-
cific to an organization. For example, an organization may generate unique customer
numbers, product numbers, and employee numbers. In these cases, automatic gen-
eration of unique values is required. Most DBMSs support automatic generation of
unique values as explained in Appendix 3.C. In some situations, an organization uses
an external identifier already possessed by an individual such as an email address.

Chapter 3 The Relational Data Model 53

Entity Integrity Variations The UNIQUE keyword designates candidate keys that
are not primary keys. The Course table (see Table 3-6) contains two candidate keys:
CourseNo (primary key) and CrsDesc (course description). The CourseNo column is the
primary key because it is more stable than the CrsDesc column. Course descriptions
may change over time, but course numbers remain the same. In addition, course num-
bers are shorter requiring less space to store in related tables.

CREATE TABLE Course
(CourseNo CHAR(6),
CrsDesc VARCHAR(250),
CrsUnits SMALLINT,
CONSTRAINT PKCourse PRIMARY KEY(CourseNo),

CONSTRAINT UniqueCrsDesc UNIQUE (CrsDesc))

Some tables need more than one column in the primary key. In the Enrollment table,
the primary key consists of the combination of StdNo and OfferNo. You must provide
values for both columns to identify a row. A composite or combined primary contains
more than one column. In the CREATE TABLE statement for the Enrollment table, you
should note that both OfferNo and StdNo appear inside the parentheses following the
PRIMARY KEY keywords.

CREATE TABLE Enrollment

(OfferNo INTEGER,
StdNo CHAR(11),
EnrGrade DECIMAL(3,2),

CONSTRAINT PKEnrollment PRIMARY KEY(OfferNo, StdNo))

Superkeys that are not candidate keys are not important. Recall that a candidate key
is a minimal superkey. Nonminimal superkeys are usually ignored because they are
common and contain columns that do not contribute to the uniqueness property. For
example, the combination of StdNo and StdLastName is unique so it is a superkey.
However, if StdLastName is removed, StdNo is still unique so the combination of StdNo
and StdLastName is not minimal and hence not a candidate key. Thus, the superkey
with StdNo and StdLastName is not important.

Referential Integrity For referential integrity, the columns StdNo and OfferNo are
foreign keys in the Enrollment table. The StdNo column refers to the Student table and
the OfferNo column refers to the Offering table (Table 3-4). An Offering row represents
a course given in an academic period (summer, winter, etc.), year, time, location, and

TABLE 3-6
CourseNo CrsDesc CrsUnits Sample Course Table
1S320 FUNDAMENTALS OF BUSINESS PROGRAMMING 4
1S460 SYSTEMS ANALYSIS 4
1S470 BUSINESS DATA COMMUNICATIONS 4
1S480 FUNDAMENTALS OF DATABASE MANAGEMENT 4

54

Part 2 Understanding Relational Databases

days of the week. The primary key of Offering is OfferNo. A course such as 15480 will
have different offer numbers each time it is taught.

You can define referential integrity constraints similarly to the way of defining
primary keys. For example, to define the foreign keys in Enrollment, you should use
CONSTRAINT clauses for foreign keys at the end of the CREATE TABLE statement as

shown in the revised CREATE TABLE statement for the Enrollment table.

CREATE TABLE Enrollment
(OfferNo INTEGER,
StdNo CHAR(11),
EnrGrade DECIMAL(3,2),
CONSTRAINT PKEnrollment PRIMARY KEY(OfferNo, StdNo),
CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo) REFERENCES Offering,
CONSTRAINT FKStdNo FOREIGN KEY (StdNo) REFERENCES Student)

Although referential integrity permits foreign keys to have null values, it is not com-
mon for foreign keys to have null values. When a foreign key is part of a primary key,
null values are not permitted because of the entity integrity rule. For example, null val-
ues are not permitted for either Enrollment.StdNo or Enrollment.OfferNo because each
column is part of the primary key.

When a foreign key is not part of a primary key, organizational practice dictates if
null values should be permitted. For example, Offering.CourseNo, a foreign key refer-
ring to Course (Table 3-4), is not part of a primary key, yet null values are not permit-
ted. In most universities, a course cannot be offered before it is approved. Thus, an
offering should not be inserted without a related course.

The NOT NULL keywords indicate that a column cannot have null values as shown
in the CREATE TABLE statement for the Offering table. The NOT NULL constraints
are inline constraints associated with a specific column. In contrast, the primary and
foreign key constraints in the CREATE TABLE statement for the Offering table are
table constraints in which the associated columns must be specified in the constraint.
Constraint names should be used with both table and inline constraints to facilitate
identification when a violation occurs. Without using a meaningful constraint name, it
is difficult to identify the constraint and understand the constraint violation.

CREATE TABLE Offering
(OfferNo INTEGER,

CourseNo CHAR(6) CONSTRAINT OffCourseNoRequired NOT
NULL,
OffLocation VARCHAR(50),

OffDays CHAR(6),
OffTerm CHAR(6) CONSTRAINT OffTermRequired NOT NULL,
OffYear INTEGER CONSTRAINT OffYearRequired NOT NULL,
FacNo CHAR(11),

OffTime DATE,

Chapter 3 The Relational Data Model 55

CONSTRAINT PKOffering PRIMARY KEY (OfferNo),
CONSTRAINT FKCourseNo FOREIGN KEY(CourseNo) REFERENCES Course,
CONSTRAINT FKFacNo FOREIGN KEY(FacNo) REFERENCES Faculty)

In contrast, Offering.FacNo referring to the faculty member teaching the offering,
may be null. A null value for Offering.FacNo means that a faculty member is not yet
assigned to teach the offering. For example, an instructor is not assigned in the first
and third rows of Table 3-4. Because offerings must be scheduled perhaps a year in
advance, it is likely that instructors for some offerings will not be known until after
the offering row is initially stored. Therefore, permitting null values in the Offering
table is prudent.

Referential Integrity for Self-Referencing (Unary) Relationships A refer-
ential integrity constraint involving a single table is known as a self-referencing seif-Referencing
relationship or unary relationship. Self-referencing relationships are not common, Relationship
but they are important in certain business situations. In the university database, a @ relationship in which a
faculty member can supervise other faculty members and be supervised by a faculty 2‘;:“:5?8';?: rse;fffetf(; :::Cmg
member. For example, Victoria Emmanuel (second row) supervises Leonard Fibon relationshibs represent asso-
(third row) in the sample Faculty table found in Table 3-7. The FacSupervisor column ciations among members of
shows this relationship: the FacSupervisor value in the third row (543-21-0987) matches the same set.
the FacNo value in the second row. Note that null values for FacSupervisor represent
faculty without supervisors. The second row (Victoria Emmanuel) and fourth row
(Nicki Macon) are faculty without supervisors.

A referential integrity constraint involving the FacSupervisor column represents
the self-referencing relationship. In the CREATE TABLE statement, the referential
integrity constraint for a self-referencing relationship uses the same table (Faculty) fol-
lowing the REFERENCES keyword.

CREATE TABLE Faculty

(FacNo CHAR(11),
FacFirstName VARCHAR(50) CONSTRAINT FacFirstNameRequired NOT NULL,
FacLastName VARCHAR(50) CONSTRAINT FacLastNameRequired NOT NULL,
FacCity VARCHAR(50) CONSTRAINT FacCityRequired NOT NULL,
FacState CHAR(2) CONSTRAINT FacStateRequired NOT NULL,
FacZipCode CHAR(10) CONSTRAINT FacZipRequired NOT NULL,
FacHireDate DATE,
FacDept CHAR(6),
FacRank CHAR(4),
FacSalary DECIMAL(10,2),

FacSupervisor CHAR(11),
CONSTRAINT PKFaculty PRIMARY KEY (FacNo),

CONSTRAINT FKFacSupervisor FOREIGN KEY (FacSupervisor) REFERENCES Faculty)

56 Part2 Understanding Relational Databases

TABLE 3-7
Sample Faculty Table

FacFirstName FacLastName FacCity FacState FacDept FacRank FacSalary FacSupervisor FacHireDate FacZipCode

098-76-5432 LEONARD
543-21-0987 VICTORIA
654-32-1098 LEONARD
765-43-2109 NICKI
876-54-3210 CRISTOPHER
987-65-4321 JULIA

FIGURE 3.2
Relationship Window for the
University Database

VINCE SEATTLE WA MS ASST $35,000 654-32-1098 10-Apr-2004 98111-9921
EMMANUEL BOTHELL WA MS PROF $120,000 15-Apr-2005 980M-2242
FIBON SEATTLE WA MS ASSC $70,000 543-21-0987 01-May-2003 ~ 98121-0094
MACON BELLEVUE WA FIN PROF $65,000 N-Apr-2006 98015-9945
COLAN SEATTLE WA MS ASST $40,000 654-32-1098 01-Mar-2008 98114-1332
MILLS SEATTLE WA FIN ASSC $75,000 765-43-2109 15-Mar-2009 98114-9954

3.2.3 Graphical Representation of Referential Integrity

In recent years, commercial DBMSs have provided graphical representations for ref-
erential integrity constraints. The graphical representation makes referential integrity
easier to define and understand than the text representation in the CREATE TABLE
statement. In addition, a graphical representation supports nonprocedural data access.

To depict a graphical representation, let us study the Relationship window in
Microsoft Access. Access provides the Relationship window to visually define and
display referential integrity constraints. Figure 3.2 shows the Relationship window for
the tables of the university database. Each line represents a referential integrity con-
straint or relationship. In a relationship, the primary key table is known as the parent
or “1” table (for example, Student) and the foreign key table (for example, Enrollment)
is known as the child or “M” (many) table.

The relationship from Student to Enrollment is called “1-M” (one-to-many) because
a student can be related to many enrollments but an enrollment can be related to only
one student. Similarly, the relationship from the Offering table to the Enrollment table
means that an offering can be related to many enrollments but an enrollment can be
related to only one offering. You should practice by writing similar sentences for the
other relationships in Figure 3.2.

M-N (many-to-many) relationships are not directly represented in the Rela-
tional Model. An M-N relationship means that rows from each table can be related
to many rows of the other table. For example, a student enrolls in many course offer-
ings and a course offering contains many students. In the Relational Model, a pair of

Chapter 3 The Relational Data Model 57

1-M relationships and a linking or associative table represents an M-N relation-
ship. In Figure 3.2, the linking table Enrollment and its relationships with Offering and
Student represent an M-N relationship between the Student and Offering tables.

Self-referencing relationships are represented indirectly in the Relationship win-
dow. The self-referencing relationship involving Faculty is represented as a relation-
ship between the Faculty and Faculty_1 tables. Faculty 1 is not a real table as it is
created only inside the Access Relationship window. Access can only indirectly show
self-referencing relationships.

A graphical representation such as the Relationship window makes it easy to iden-
tify tables that should be combined to answer a retrieval request. For example, assume
that you want to find instructors who teach courses with “database” in the course
description. Clearly, you need the Course table to find “database” courses. You also
need the Faculty table to display instructor data. Figure 3.2 shows that you also need
the Offering table because Course and Faculty are not directly connected. Rather, Course
and Faculty are connected through Offering. Thus, visualizing relationships helps to
identify tables needed to fulfill retrieval requests. Before attempting the retrieval prob-
lems in later chapters, you should carefully study a graphical representation of the
relationships. You should construct your own diagram if one is not available.

1-M Relationship

a connection between two
tables in which one row

of a parent table can be
referenced by many rows

of a child table. 1-M
relationships are the most
common kind of relationship.

M-N Relationship

a connection between two
tables in which rows of one
table can be related to many
rows of the other table. M-N
relationships cannot be
directly represented in the
Relational Model. Two 1-M
relationships and a linking or
associative table represent
an M-N relationship.

3.3 DELETE AND UPDATE ACTIONS FOR REFERENCED ROWS

For each referential integrity constraint, you should carefully consider actions on refer-
enced rows in parent tables of 1-M relationships. A parent row is referenced if there are
rows in a child table with foreign key values identical to the primary key value of the
parent table row. For example, the first row of the Course table (Table 3-6) with CourseNo
“1S320” is referenced by the first row of the Offering table (Table 3-4). It is natural to con-
sider the impact on related Offering rows when deleting the referenced Course row or
updating the CourseNo value. More generally, these concerns can be stated as

Deleting a referenced row: What happens to related rows (that is, rows in the child
table with the identical foreign key value) when deleting the referenced row in the
parent table?

Updating the primary key of a referenced row: What happens to related rows
when updating the primary key of the referenced row in the parent table?

Actions on referenced rows are important when changing the rows of a database.
When developing data entry forms (discussed in Chapter 10), actions on referenced
rows can be especially important. For example, if a data entry form permits deletion of
rows in the Course table, actions on related rows in the Offering table must be carefully
planned. Otherwise, the database can become inconsistent or difficult to use.

Possible Actions

There are several possible actions in response to the deletion of a referenced row or
the update of the primary key of a referenced row. The appropriate action depends on
organizational practices and tables involved. The following list describes the actions
and provides examples of usage.

* Restrict®: Do not allow the action on the referenced row. For example, do not
permit a Student row to be deleted if there are any related Enrollment rows.

®There is a related action designated by the keywords NO ACTION. The difference between RESTRICT and
NO ACTION involves the concept of deferred integrity constraints, discussed in Chapter 17.

58

Part2 Understanding Relational Databases

Similarly, do not allow Student.StdNo to be updated if there are related Enrollment
rOWSs.

e Cascade: Perform the same action (cascade the action) on related rows. For
example, if a Student is deleted, then delete the related Enrollment rows. Likewise,
if Student.StdNo is changed in some row, update StdNo in the related Enrollment
rows.

* Nullify: Set the foreign key of related rows to null. For example, if a Faculty row
is deleted, then set FacNo to NULL in related Offering rows. Likewise, if Faculty.
FacNo is updated, then set FacNo to NULL in related Offering rows. The nullify
action is valid only if the foreign key allows null values. For example, the nullify
option is not valid when deleting rows of the Student table because Enrollment.
StdNo is part of the primary key of Enrollment.

* Default: Set the foreign key of related rows to its default value. For example, if
a Faculty row is deleted, then set FacNo to a default faculty number in related
Offering rows. The default faculty number might have an interpretation such as
“to be announced”. Likewise, if Faculty.FacNo is updated, then set FacNo to its
default value in related Offering rows. The default action is an alternative to the
nullify action as the default action avoids null values.

The delete and update actions can be specified in the CREATE TABLE statement using
the ON DELETE and ON UPDATE clauses. These clauses are part of foreign key con-
straints. For example, the revised CREATE TABLE statement for the Enrollment table
shows ON UPDATE clauses for the Enrollment table. The ON DELETE clause is not
used because the default is to restrict deletions with referenced rows’. The keywords
CASCADE, SET NULL, and SET DEFAULT can be used to specify the second through
fourth options, respectively.

CREATE TABLE Enrollment

(OfferNo INTEGER,
StdNo CHAR(11),
EnrGrade DECIMAL(3,2),

CONSTRAINT PKEnrollment PRIMARY KEY(OfferNo, StdNo),
CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo) REFERENCES Offering
ON UPDATE CASCADE,
CONSTRAINT FKStdNo FOREIGN KEY (StdNo) REFERENCES Student
ON UPDATE CASCADE)

-— ON UPDATE is not valid Oracle SQL syntax but valid SQL:2016 syntax

Before finishing this section, you should understand the impact of referenced rows
on insert operations. A referenced row must be inserted before its related rows. For
example, before inserting a row in the Enrollment table, the referenced rows in the Stu-
dent and Offering tables must exist. Referential integrity places an ordering on insertion
of rows from different tables. When designing data entry forms, you should carefully
consider the impact of referential integrity on the order that users complete forms.

"Note that the ON UPDATE and RESTRICT keywords are not valid syntax in Oracle. Oracle does not pro-
vide syntax for the restrict action as the restrict action is default. The Enrollment table example is not valid
Oracle syntax because of the ON UPDATE clauses, but it is valid SQL:2016 syntax.

Chapter 3 The Relational Data Model 59

3.4 OPERATORS OF RELATIONAL ALGEBRA

In previous sections of this chapter, you studied the terminology and integrity rules
of relational databases with the goal of understanding existing relational databases. In
particular, understanding connections among tables was emphasized as a prerequisite
to retrieving useful information. This section describes some fundamental operators
that can be used to retrieve useful data from a relational database.

You can think of relational algebra similarly to the algebra of numbers except that
the objects are different: algebra applies to numbers and relational algebra applies to
tables. In algebra, each operator transforms one or more numbers into another num-
ber. Similarly, each operator of relational algebra transforms a table (or two tables) into
anew table.

This section emphasizes the study of each relational algebra operator in isolation.
For each operator, you should understand its purpose and inputs. While it is possible
to combine operators to make complicated formulas, this level of understanding is not
important for developing query formulation skills. Using relational algebra by itself
to write queries can be awkward because of details such as ordering of operations
and parentheses. Therefore, you should seek only to understand the meaning of each
operator, not how to combine operators to write expressions. In Chapter 4, you will
learn the SELECT statement of SQL to perform retrievals that would involve complex
combinations of relational algebra operators.

The coverage of relational algebra groups the operators into three categories.
The most widely used operators (restrict, project, and join) are presented first. The
extended cross product operator is also presented to provide background for the join
operator. Knowledge of these operators will help you to formulate a large percentage
of queries. More specialized operators are covered in latter parts of the section. The
more specialized operators include the traditional set operators (union, intersection,
and difference) and advanced operators (summarize and divide). Knowledge of these
operators will help you formulate more difficult queries.

3.41 Restrict (Select) and Project Operators

The restrict® (also known as select) and project operators produce subsets of a table. Restrict
Because users often want to see a subset rather than an entire table, these operators are an operator that retrieves
widely used. These operators are also popular because they are easy to understand. a subset of the rows of the

input table that satisfy a

The restrict and project operators produce an output table that is a subset of an : o
given condition.

input table (Figure 3.3). Restrict produces a subset of the rows, while project produces
a subset of the columns. Restrict uses a condition or logical expression to indicate the ~ Preject _
rows to retain in the output. Project uses a list of column names to indicate the columns 2" OPQf‘tZr thst rtetrﬁ;es
to retain in the output. Restrict and project are often used together because tables can i OSIF::% Sleof ;l: o ?:p:)t tal:?l N
have many rows and columns. It is rare that a user wants to see all rows and columns.

The logical expression used in the restrict operator can include comparisons
involving columns and constants. Complex logical expressions can be formed using =~ === :
the logical operators AND, OR, and NOT. For example, Table 3-8 shows the result of ;'GU:E ?; -
a restrict operation on Table 3-4 where the logical expression is: OffDays = MW' AND . fr ?%Zsltfiit aizrif;r;:t on
OffTerm = 'SPRING' AND OffYear = 2017. Operators

A project operation can have a side effect. Sometimes after retrieving a subset
of columns, duplicate rows exist. When this occurs, the project operator removes the Restrict Project
duplicate rows. For example, if Offering.CourseNo is the only column used in a project
operation, only three rows are in the result (Table 3-9) even though the Offering table
(Table 3-4) has nine rows. The column Offering.CourseNo contains only three unique
values in Table 3-4. Note that if the primary key or a candidate key is included in
the list of columns, the resulting table has no duplicates. For example, if OfferNo was

8In this book, the operator name restrict is used to avoid confusion with the SQL SELECT statement. The
operator is more widely known as select.

60 Part2 Understanding Relational Databases

TABLE 3-8

Result of Restrict Operation
on the Sample Offering Table
(Table 3-4)

TABLE 3-9
Result of a Project Operation
on Offering.CourseNo

CourseNo

1S320
1S460
1S480

Extended Cross Product
an operator that builds

a table consisting of all
combinations of rows from
each of the two input tables.

FIGURE 3.4
Cross Product Example

OfferNo CourseNo OffTerm OffYear OffLocation OffTime FacNo OffDays

SEEE 1S320 SPRING 2017 BLM214 8:30 AM 098-76-5432 MW
5678 1S480 SPRING 2017 BLM302 10:30 AM 987-65-4321 MW

included in the list of columns, the result table would have nine rows with no dupli-
cate removal necessary.

This side effect is due to the mathematical nature of relational algebra. In rela-
tional algebra, tables are considered sets. Because sets do not have duplicates, dupli-
cate removal is a possible side effect of the project operator. Commercial languages
such as SQL usually take a more pragmatic view. Because duplicate removal requires
a reasonable level of computing resources, a user must explicitly indicate removal of
duplicates.

3.4.2 Extended Cross Product Operator

The extended cross product operator can combine any two tables. Other table combin-
ing operators have conditions about the tables to combine. Because of its unrestricted
nature, the extended cross product operator can produce tables with excessive data.
The extended cross product operator is important because it is a building block for the
join operator. When you initially learn the join operator, knowledge of the extended
cross product operator can be useful. After you gain experience with the join operator,
you will not need to rely on the extended cross product operator.

The extended cross product’ (product for short) operator shows everything pos-
sible from two tables. The product of two tables is a new table consisting of all possible
combinations of rows from the two input tables. Figure 3.4 depicts a product of two
single column tables. Each result row consists of the columns of the Faculty table (only
FacNo) and the columns of the Student table (only StdNo). The name of the operator
(product) derives from the number of rows in the result. The number of rows in the
resulting table is the product of the number of rows of the two input tables. In contrast,
the number of result columns is the sum of the columns of the two input tables. In
Figure 3.4, the result table has nine rows and two columns.

As another example, consider the product of the sample Student (Table 3-10) and
Enrollment (Table 3-11) tables. The resulting table (Table 3-12) has 9 rows (3 x 3) and
7 columns (4 + 3). Note that most rows in the result are not meaningful as only three
rows have the same value for StdNo.

Faculty Faculty PRODUCT Student
FacNo FacNo StdNo
111 111-11-1111 111-11-1111
222-22-2222 111-11-1111 444-44-4444
333-33-3333 111-11-1111 555.55.5555
222222222 111-11-1111
222-22-2222 444-44-4444
Student 222-22-2222 555-55-5555
StdNo 333-33-3333 111-11-1111
111-11-1111 333-33-3333 444-44-4444
444-44-4444 333-33-3333 555-55-5555
555-55-5555

‘The extended cross product operator is also known as the Cartesian product after the French mathemati-
cian Rene” Descartes.

Chapter 3 The Relational Data Model

TABLE 3-10
Sample Student Table

TABLE 3-11
Sample Enrollment Table

StdNo StdLastName StdMajor StdClass OfferNo StdNo EnrGrade
123-45-6789 WELLS IS FR 1234 123-45-6789 33
124-56-7890 NORBERT FIN JR 1234 234-56-7890 35
234-56-7890 KENDALL ACCT JR 4321 124-56-7890 32
TABLE 3-12
Student.StdNo StdLastName StdMajor StdClass OfferNo Enrollment.StdNo EnrGrade Student PRODUCT
123-45-6789 WELLS IS FR 1234 123-45-6789 33 Enroliment
123-45-6789 WELLS IS FR 1234 234-56-7890 35
123-45-6789 WELLS IS FR 4321 124-56-7890 32
124-56-7890 NORBERT FIN JR 1234 123-45-6789 33
124-56-7890 NORBERT FIN JR 1234 234-56-7890 35
124-56-7890 NORBERT FIN JR 4321 124-56-7890 32
234-56-7890 KENDALL ACCT JR 1234 123-456789 33
234-56-7890 KENDALL ACCT JR 1234 234-56-7890 35
234-56-7890 KENDALL ACCT JR 4321 124-56-7890 3.2
As these examples show, the extended cross product operator often generates
excessive data. Excessive data are as bad as lack of data. For example, the product
of a student table of 30,000 rows and an enrollment table of 300,000 rows is a table of
nine billion rows! Most of these rows would be meaningless combinations. So it is rare
that a cross product operation by itself is needed. Rather, the importance of the cross
product operator is as a building block for other operators such as the join operator.
3.4.3 Join Operator
Join is the most widely used operator for combining tables. Because most databases
have many tables, combining tables is important. Join differs from cross product
because join requires a matching condition on rows of two tables. Most tables are com-
bined in this way. To a large extent, your skill in retrieving useful data will depend on
your ability to use the join operator.
The join operator builds a new table by combining rows from two tables that Join

match on a join condition. Typically, the join condition specifies that two rows have an
identical value in one or more columns. When the join condition involves equality, the
join is known as an equi-join, for equality join. Figure 3.5 shows a join of sample Fac-
ulty and Offering tables where the join condition is that the FacNo columns are equal.
Note that only a few columns are shown to simplify the illustration. The arrows indi-
cate the manner that rows from the input tables combine to form rows in the result
table. For example, the first row of the Faculty table combines with the first and third
rows of the Offering table to yield two rows in the result table.

The natural join operator is the most common join operation. In a natural join
operation, the join condition is equality (equi-join), one of the join columns is removed,
and the join columns have the same unqualified'’ name. In Figure 3.5, the result table
contains only three columns because the natural join removes one of the FacNo columns.
The particular column (Faculty.FacNo or Offering.FacNo) removed does not matter.

' An unqualified name is the column name without the table name. The full name of a column includes
the table name. Thus, the full names of the join columns in Figure 3.5 are Faculty.FacNo and Offering.FacNo.

61

an operator that produces
a table containing rows
that match on a condition
involving a column from
each input table.

Natural Join

a commonly used join
operator where the
matching condition is
equality (equi-join), one of
the matching columns is
discarded in the result table,
and the join columns have
the same unqualified names.

62 Part2 Understanding Relational Databases

FIGURE 3.5
Sample Natural Join
Operation

TABLE 3-13
Sample Student Table

TABLE 3-14
Sample Enrollment Table

TABLE 3-15
Natural Join of Student and
Enrollment

Faculty
FacNo FacName
111-11-1111 joe
222-22-2222 sue

Natural Join of Offering and Faculty

/

333-33-3333 sara FacNo FacName OfferNo
111-11-1111 joe 1111
. 222-22-2222 2222

Offering sue
OfferNo FacNo 111-11-1111 joe 3333

1M1 111111111
2222 222-22-2222
3333 111-11-1111

As another example, consider the natural join of Student (Table 3-13) and Enroll-
ment (Table 3-14) shown in Table 3-15. In each row of the result, Student.StdNo matches
Enrollment.StdNo. Only one of the join columns is included in the result. Arbitrarily,
Student.StdNo is shown although Enrollment.StdNo could be shown instead without
changing the result.

Derivation of the Natural Join The natural join operator is not primitive because it
can be derived from other operators. The natural join operator consists of three steps:

(1) A product operation to combine the rows.
(2) A restrict operation to remove rows not satisfying the join condition.
(3) A project operation to remove one of the join columns.

To depict these steps, the first step to produce the natural join in Table 3-15 is the
product result shown in Table 3-16. The second step is to retain only the matching
rows (rows 1, 6, and 8 of Table 3-16). A restrict operation is used with Student.StdNo =
Enrollment.StdNo as the restriction condition. The final step is to eliminate one of the
join columns (Enrollment.StdNo). The project operation includes all columns except for
Enrollment.StdNo (Table 3.-17).

StdNo StdLastName StdMajor StdClass
123-45-6789 WELLS IS FR

124-56-7890 NORBERT FIN JR

234-56-7890 KENDALL ACCT JR

OfferNo StdNo EnrGrade

1234 123-45-6789 33

1234 234-56-7890 35

4321 124-56-7890 3.2

Student.StdNo StdLastName StdMajor StdClass OfferNo EnrGrade
123-45-6789 WELLS IS FR 1234 33
124-56-7890 NORBERT FIN JR 4321 32
234-56-7890 KENDALL ACCT JR 1234 35

Chapter 3 The Relational Data Model 63

Student.StdNo StdLastName StdMajor StdClass OfferNo Enrollment.StdNo EnrGrade ;:/3:5I3P;6C)DUCT
123-45-6789 WELLS IS FR 1234 123-45-6789 33 Enrollment
123-45-6789 WELLS IS FR 1234 234-56-7890 35
123-45-6789 WELLS IS FR 4321 124-56-7890 32
124-56-7890 NORBERT FIN JR 1234 123-45-6789 33
124-56-7890 NORBERT FIN JR 1234 234-56-7890 35
124-56-7890 NORBERT FIN JR 4321 124-56-7890 32
234-56-7890 KENDALL ACCT JR 1234 123-45-6789 33
234-56-7890 KENDALL ACCT JR 1234 234-56-7890 35
234-56-7890 KENDALL ACCT JR 4321 124-56-7890 32

TABLE 3-17
123-45-6789 WELLS S FR 1234 123-45-6789 33 Rows Matching on StdNo
124-56-7890 NORBERT FIN JR 4321 124-56-7890 32
234-56-7890 KENDALL ACCT JR 1234 234-56-7890 35

Although the join operator is not primitive, it can be conceptualized directly with-
out its primitive operations. When you are initially learning the join operator, it can
be helpful to derive the results using the underlying operations. As an exercise, you
are encouraged to derive the result in Figure 3.5. After learning the join operator, you
should not need to use the underlying operations.

Visual Formulation of Join Operations As a query formulation aid, many DBMSs
provide a visual way to formulate joins. Microsoft Access provides a visual represen-
tation of the join operator using the Query Design window. Figure 3.6 depicts a join
between Student and Enrollment on StdNo using the Query Design window. To form
this join, you need only to select the tables. Access determines that you should join
over the StdNo column. Access assumes that most joins involve a primary key and
foreign key combination. If Access chooses the join condition incorrectly, you can
choose other join columns.

3.4.4 Outer Join Operator

The result of a join operation includes the rows matching on the join condition. Some-
times it is useful to include both matching and nonmatching rows. For example, you
may want to know offerings that have an assigned instructor as well as offerings with-
out an assigned instructor. In these situations, the outer join operator is useful.

The outer join operator provides the ability to preserve nonmatching rows in
the result as well as to include the matching rows. Figure 3.7 depicts an outer join
between sample Faculty and Offering tables. Note that each table has one row that
does not match any row in the other table. The third row of Faculty and the fourth
row of Offering do not have matching rows in the other table. For nonmatching rows,
null values are used to complete the column values in the other table. In Figure 3.7,
blanks (no values) represent null values. The fourth result row is the nonmatched
row of Faculty with a null value for the OfferNo column. Likewise, the fifth result
row contains a null value for the first two columns because it is a nonmatched row

of Offering.

64 Part2 Understanding Relational Databases

FIGURE 3.6

Query Design Window Show-

ing a Join between Student
and Enrollment

FIGURE 3.7
Sample Outer Join Operation

Full Outer Join

an operator that produces
the matching rows (the join
part) as well as the non-
matching rows from both
input tables.

One-Sided Outer Join

an operator that produces
the matching rows (the join
part) as well as the non-
matching rows from the
designated input table.

Faculty
FacNo FacName
111-11-1111 joe Outer Join of Offering and Faculty
222-22-2222 sue
333-33-3333_ sara FacNo FacName OfferNo
111-11-1111 joe 1111

Offering 222-22-2222 sue 2222
Offerno FacNo 111-11-1111 joe 3333
1111 111-11-1111
2222 222-22-2222 333-33-3333 sara
3333 111-11-1111
4444 » 4444

Full versus One-Sided Outer Join Operators The outer join operator has two
variations. The full outer join preserves nonmatching rows from both input tables.
Figure 3.7 shows a full outer join because the nonmatching rows from both tables are
preserved in the result. Because it is sometimes useful to preserve the nonmatching
rows from just one input table, the one-sided outer join operator has been devised.
In Figure 3.7, only the first four rows of the result would appear for a one-sided outer
join that preserves the rows of the Faculty table. The last row would not appear in the
result because it is an unmatched row of the Offering table. Similarly, only the first
three rows and the last row would appear in the result for a one-sided outer join that
preserves the rows of the Offering table.

The outer join is useful in two situations. A full outer join can be used to combine
two tables with some common columns and some unique columns. For example, to
combine the Student and Faculty tables on FacNo and StdNo, a full outer join can be
used to show all columns about university people. In Table 3-20, the first two rows are

Chapter 3 The Relational Data Model 65

only from the sample Student table (Table 3-18), while the last two rows are only from
the sample Faculty table (Table 3-19). Note the use of null values for the columns from
the other table. The third row in Table 3-20 is the row common to the sample Faculty
and Student tables.

A one-sided outer join can be useful when a table has null values in a foreign
key. For example, the Offering table (Table 3-21) can have null values in the FacNo col-
umn representing course offerings without an assigned professor. A one-sided outer
join between Offering and Faculty preserves the rows of Offering that do not have an
assigned Faculty as shown in Table 3-22. With a natural join, the first and third rows
of Table 3-22 would not appear. As you will see in Chapter 10, one-sided joins can be
useful in data entry forms.

TABLE 3-18
StdNo StdLastName StdMajor StdClass Sample Student Table
123-45-6789 WELLS IS FR
124-56-7890 NORBERT FIN JR
876-54-3210 COLAN MS SR
TABLE 3-19
FacNo FacLastName FacDept FacRank Sample Faculty Table
098-76-5432 VINCE MS ASST
543-21-0987 EMMANUEL MS PROF
876-54-3210 COLAN MS ASST
TABLE 3-20
StdNo StdLastName StdMajor StdClass FacNo FacLastName FacDept FacRank Result of Full Outer Join of
123-45-6789 WELLS 1S FR Sample Student and Faculty
124-56-7890 NORBERT FIN JR Tables on FacNo = StdNo
876-54-3210 COLAN MS SR 876-54-3210 COLAN MS ASST
098-76-5432 VINCE MS ASST
543-21-0987 EMMANUEL MS PROF
TABLE 3-21
OfferNo CourseNo OffTerm FacNo Sample Offering Table
m 1S320 SUMMER
1234 1S320 FALL 098-76-5432
2222 1S460 SUMMER
3333 1S320 SPRING 098-76-5432
4444 1S320 SPRING 543-21-0987
TABLE 3-22
m 1S320 SUMMER Join between Offering
1234 15320 FALL 098-76-5432 098-76-5432 VINCE MS ASST (Table 3-21) and Faculty
(Table 3-19)
2222 1S460 SUMMER
3333 1S320 SPRING 098-76-5432 098-76-5432 VINCE MS ASST

4444 1S320 SPRING 543-21-0987 543-21-0987 EMMANUEL MS PROF

66 Part2 Understanding Relational Databases

FIGURE 3.8

Query Design Window
Showing a One-Sided Outer
Join Preserving the Offering
Table

Traditional Set Operators
the union operator produces
a table containing rows

in either input table.

The intersection operator
produces a table
containing rows common
to both input tables. The
difference operator
produces a table containing
rows in the first input table
but not in the second input
table.

Visual Formulation of Quter Join Operations As a query formulation aid, many
DBMSs provide a visual way to formulate outer joins. Microsoft Access provides a
visual representation of the one-sided join operator in the Query Design window.
Figure 3.8 depicts a one-sided outer join that preserves the rows of the Offering. The
arrow from Offering to Faculty means that the nonmatched rows of Offering are pre-
served in the result. When combining the Faculty and Offering tables, Microsoft Access
provides three choices: (1) show only the matched rows (a join); (2) show matched
rows and nonmatched rows of Faculty; and (3) show matched rows and nonmatched
rows of Offering. Choice (3) is shown in Figure 3.8. Choice (1) would appear similar to
Figure 3.6. Choice (2) would have the arrow from Faculty to Offering.

3.4.5 Union, Intersection, and Difference Operators

The union, intersection, and difference table operators are similar to the traditional set
operators. The traditional set operators are used to determine all members of two sets
(union), common members of two sets (intersection), and members unique to only one
set (difference), as depicted in Figure 3.9.

The union, intersection, and difference operators for tables apply to rows of a
table but otherwise operate in the same way as the traditional set operators. A
union operation retrieves all the rows in either table. For example, a union opera-
tor applied to two student tables at different universities can find all student rows.
An intersection operation retrieves just the common rows. For example, an inter-
section operation can determine the students attending both universities. A dif-
ference operation retrieves the rows in the first table but not in the second table.
For example, a difference operation can determine the students attending only one
university.

Chapter 3 The Relational Data Model 67

FIGURE 3.9
Venn Diagrams for
Traditional Set Operators

Intersection Difference

Union Compatibility Compatibility is a new concept for the table operators as
compared to the traditional set operators. With the table operators, both tables must
be union compatible because all columns are compared. Union compatibility means Union Compatibility
that each table must have the same number of columns and each corresponding col- arequirement on the input
umn must have a compatible data type. Union compatibility can be confusing because ~ taPles for the traditional set
it involves positional correspondence of the columns. That is, the first columns of the Egi;attﬁéss':;zhntfntﬂs;USt
two tables must have compatible data types, the second columns must have compat- 4 columns and each
ible data types, and so on. corresponding column must
To depict the union, intersection, and difference operators, let us apply them to the =~ have a compatible data type.
Student1 and Student?2 tables (Tables 3-23 and 3-24). These tables are union compatible
because they have identical columns listed in the same order. The results of union,
intersection, and difference operators are shown in Tables 3-25 through 3-27, respec-
tively. Even though we can determine that two rows are identical from looking only at
StdNo, all columns are compared due to the design of the operators.
Note that the result of Student1l DIFFERENCE Student2 would not be the same as
Student2 DIFFERENCE Student1. The result of the latter (Student2 DIFFERENCE Stu-
dent1) is the second and third rows of Student2 (rows in Student2 but not in Student1).

StdNo StdLastName StdCity StdState StdMajor StdClass StdGPA ;:,3:5:;1,,3
123-45-6789 WELLS SEATTLE WA IS FR 3.00
124-56-7890 NORBERT BOTHELL WA FIN JR 270
234-56-7890 KENDALL TACOMA WA ACCT JR 3.50

TABLE 3-24
StdNo StdLastName StdCity StdState StdMajor StdClass StdGPA Student? Table
123-45-6789 WELLS SEATTLE WA IS FR 3.00
995-56-3490 BAGGINS AUSTIN ™ FIN JR 290
111-56-4490 WILLIAMS SEATTLE WA ACCT JR 3.40

TABLE 3-25
StdNo StdLastName StdCity StdState StdMajor StdClass StdGPA Student! UNION Student2
123-45-6789 WELLS SEATTLE WA IS FR 3.00
124-56-7890 NORBERT BOTHELL WA FIN JR 270
234-56-7890 KENDALL TACOMA WA ACCT JR 3.50
995-56-3490 BAGGINS AUSTIN X FIN JR 2.90

1M-56-4490 WILLIAMS SEATTLE WA ACCT JR 3.40

68 Part2 Understanding Relational Databases

TABLE 3-26
Student? INTERSECT
Student2

TABLE 3-27
Student! DIFFERENCE
Student2

Summarize

an operator that produces

a table with groups of rows
replaced by row summaries.
Aggregate functions are
calculated for each summary
row in the result table.

FIGURE 3.10
Sample Summarize
Operation

StdNo StdLastName StdCity StdState = StdMajor StdClass StdGPA
123-45-6789 WELLS SEATTLE WA IS FR 3.00
StdNo StdLastName StdCity StdState StdMajor StdClass StdGPA
124-56-7890 NORBERT BOTHELL WA FIN JR 270
234-56-7890 KENDALL TACOMA WA ACCT JR 3.50

Because of the union compatibility requirement, the union, intersection, and dif-
ference operators are not as widely used as other operators. However, these operators
have some important, specialized uses. One use is to combine tables distributed over
multiple locations. For example, suppose there are a student table at Big State Univer-
sity (BSUStudent) and a student table at University of Big State (LIBSStudent). Because
these tables have identical columns, the traditional set operators are applicable. To find
students attending either university, you should use UBSStudent UNION BSUStudent.
To find students only attending Big State, you should use BSUStudent DIFFERENCE
UBSStudent. To find students attending both universities, you should use UBSStudent
INTERSECT BSUStudent. Note that the resulting table in each operation has the same
number of columns as the two input tables.

The traditional set operators are also useful if there are tables that are similar but
not union compatible. For example, the Student and Faculty tables have some compat-
ible columns (StdNo with FacNo, StdLastName with FacLastName, and StdCity with Fac-
City), but other columns are different. The union compatible operators can be used if
the Student and Faculty tables are first made union compatible using the project opera-
tor presented in Section 3.4.1.

3.4.6 Summarize Operator

Summarize is a powerful operator for decision making. Because tables can contain
many rows, it is often useful to see statistics about groups of rows rather than indi-
vidual rows. The summarize operator allows groups of rows to be compressed or
summarized by a calculated value. Almost any kind of statistical function can be used
to summarize groups of rows. Because this is not a statistics book, we will use only
simple functions such as count, min, max, average, and sum.

The summarize operator compresses a table by replacing groups of rows with
individual rows containing calculated values. A statistical or aggregate function is
used for the calculated values. Figure 3.10 depicts a summarize operation for a sample
enrollment table. The summarize operation groups input rows on the StdNo column,
resulting in three row groups. Then, the summarize operator replaces each group of
rows with an individual row containing the StdNo value and the average enrollment

SUMMARIZE Enroliment

Enrollment ADD AVG(EnrGrade)
StdNo OfferNo EnrGrade GROUP BY StdNo

111-11-1111 1111 3.8

111-11-1111 2222 3.0 StdNo AVG(EnrGrade)
111-11-1111 3333 3.4 1M1-11-1111 34
222-22-2222 1111 35 222-22-2222 33
222-22-2222 3333 31 333-33-3333 3.0
333-33-3333 1111 3.0

Chapter 3 The Relational Data Model 69

FacNo FacLastName FacDept FacRank FacSalary FacSupervisor FacHireDate
098-76-5432 VINCE MS ASST $35,000 654-32-1098 01-Apr-2004
543-21-0987 EMMANUEL MS PROF $120,000 01-Apr-2005
654-32-1098 FIBON MS ASSC $70,000 543-21-0987 01-Apr-2003
765-43-2109 MACON FIN PROF $65,000 01-Apr-2006
876-54-3210 COLAN MS ASST $40,000 654-32-1098 01-Apr-2008
987-65-4321 MILLS FIN ASSC $75,000 765-43-2109 01-Apr-2009

grade (EnrGrade). For example, the summarize operation replaces three rows with
StdNo value of 111-11-1111 into one row with 5tdNo value 111-11-1111 and the average
EnrGrade value (3.4) of the three input rows.

As another example, Table 3-29 shows the result of a summarize operation on the
sample Faculty table in Table 3-28. Note that the result table contains one row per value
of the grouping column, FacDept.

The summarize operator can include additional calculated values (also showing
the minimum salary, for example) and additional grouping columns (also grouping on
FacRank, for example). When grouping on multiple columns, each result row shows
one combination of values for the grouping columns.

3.4.7 Divide Operator

The divide operator is a more specialized and difficult operator than join because the
matching requirement in divide is more stringent than join. For example, a join opera-
tion retrieves offerings taken by any student. A divide operation retrieves offerings
taken by all (or every) students. Because divide has more stringent matching condi-
tions, it is not as widely used as join, and it is more difficult to understand. When
appropriate, the divide operator provides a powerful way to combine tables.

The divide operator for tables is somewhat analogous to the divide operator for
numbers. In numerical division, the objective is to find the number of times one number
contains another number. In table division, the objective is to find values of one column
that contain every value in another column. Stated another way, the divide operator
finds values of one column that are associated with every value in another column.

To understand the divide operator more concretely, you should consider an exam-
ple with sample Part and SuppPart (supplier-part) tables as depicted in Figure 3.11. The
divide operator uses two input tables. The first table (SuppPart) has two columns (a binary
table) and the second table (Part) has one column'! (a unary table). The result table has
one column where the values come from the first column of the binary table. The result
table in Figure 3.11 shows the suppliers who supply every part. The value s3 appears in
the output because it is associated with every value in the Part table. Stated another way,
the set of values associated with s3 contains the set of values in the Part table.

To understand the divide operator in another way, you can rewrite the SuppPart
table as three rows using the angle brackets <> to surround a row: <s3, {p1, p2, p3}>,
<s0, {p1}>, <sl, {p2}>. Rewrite the Part table as a set: {p1, p2, p3}. The value s3 is in the
result table because its set of second column values {p1, p2, p3} contains the values in
the second table {p1, p2, p3}. The other SuppNo values (s0 and s1) are not in the result
because they are not associated with all values in the Part table.

As an example using the university database tables, Table 3-32 shows the result
of a divide operation involving the sample Enrollment (Table 3-30) and Student tables
(Table 3-31). The result shows offerings in which every student is enrolled. Only
OfferNo 4235 has all three students enrolled.

"'The divide operator can be generalized to work with input tables containing more columns. However, the
details are not important in this book.

TABLE 3-28
Sample Faculty Table

TABLE 3-29

Result Table for SUMMARIZE
Faculty ADD AVG(FacSalary)
GROUP BY FacDept

FacDept FacSalary

MS $66,250
FIN $70,000
Divide

an operator that produces a
table in which the values of a
column from one input table
are associated with all the
values from a column of a
second input table.

70 Part 2 Understanding Relational Databases

FIGURE 3.11
Sample Divide Operation

TABLE 3-30
Sample Enrollment Table

OfferNo StdNo

1234 123-45-6789

1234 234-56-7890

4235 123-45-6789

4235 234-56-7890

4235 124-56-7890

6321 124-56-7890
TABLE 3-31

Sample Student Table

123-45-6789
124-56-7890
234-56-7890

TABLE 3-32
Result of Enroliment
DIVIDEBY Student

4235

SuppPart Part SuppPart DIVIDEBY Part
SuppNo PartNo PartNo SuppNo
s3 p1 p1 s3
s3 p2 p2
zg 213 p3 s3{p1, p2, p3}
» 02 contains {p1, p2, p3}

3.4.8 Summary of Operators

To help you recall the relational algebra operators, Tables 3-33 and 3-34 provide conve-
nient summaries of the meaning and usage of each operator. You might want to refer
to these tables when studying query formulation in later chapters.

TABLE 3-33
Summary of Meanings of the Relational Algebra Operators

Operator Meaning

Restrict (Select) Extracts rows that satisfy a specified condition.

Project Extracts specified columns.

Product Builds a table from two tables consisting of all possible combinations of rows, one
from each of the two tables.

Union Builds a table consisting of all rows appearing in either of two tables.

Intersect Builds a table consisting of all rows appearing in both of two tables.

Difference Builds a table consisting of all rows appearing in the first table but not in the second
table.

Join Extracts rows from a product of two tables such that two input rows contributing to
any output row satisfy some specified condition.

Outer Join Extracts the matching rows (the join part) of two tables and the unmatched rows from
one or both tables.

Divide Builds a table consisting of all values of one column of a binary (two-column) table that
match (in the other column) all values in a unary (one-column) table.

Summarize Organizes a table on specified grouping columns. Specified aggregate computations
are made on each value of the grouping columns.

TABLE 3-34

Summary of Usage of the Relational Algebra Operators

Operator Notes

Union Input tables must be union compatible.

Difference Input tables must be union compatible.

Intersection Input tables must be union compatible.

Product Conceptually underlies join operator.

Restrict (Select) Uses a logical expression.

Project Eliminates duplicate rows if necessary.

Join Only matched rows are in the result. Natural join eliminates one join column.

Outer Join Retains both matched and unmatched rows in the result. Uses null values for some
columns of the unmatched rows.

Divide Stronger operator than join, but less frequently used.

Summarize Specify grouping column(s) if any and aggregate function(s).

Chapter 3 The Relational Data Model

71

CLOSING THOUGHTS

Chapter 3 introduced the Relational Data Model as a prelude to developing queries,
forms, and reports with relational databases. As a first step to work with relational
databases, you should understand the basic terminology and integrity rules. You
should be able to read table definitions in SQL. CREATE TABLE statements and visual
representations. To effectively query a relational database, you must understand the
connections among tables. Most queries involve multiple tables using relationships
defined by referential integrity constraints. A graphical representation such as the
Relationship window in Microsoft Access provides a powerful tool to conceptualize
referential integrity constraints. When developing applications that can change a data-
base, you must respect the rules for referenced rows and understand actions on related
rows.

The final part of this chapter described the operators of relational algebra. At this
point, you should understand the purpose of each operator, the number of input tables,
and other inputs used. You do not need to write complicated formulas that combine
operators. Eventually, you should be comfortable understanding statements such as
“write an SQL SELECT statement to join three tables.” Chapters 4 and 9 present details
of the SQL SELECT statement, but you should understand the basic idea of a join now.
As you learn to extract data using the SQL SELECT statement in Chapter 4, you may
want to review this chapter again. To help you remember the major points about the
operators, the last section of this chapter presented several convenient summaries.

Understanding relational algebra operators will improve your knowledge of SQL
and your query formulation skills. The meaning of SQL queries can be understood
as relational algebra operations. Chapter 4 provides a flowchart demonstrating this
correspondence. For this reason, relational algebra provides a yardstick to measure
commercial languages: the commercial languages should provide at least the same
retrieval ability as the operators of relational algebra.

REVIEW CONCEPTS

e Table with heading (column names) and body (rows)

* Primary keys and entity integrity rule

e Foreign keys, referential integrity rule, and matching values
* Visualizing referential integrity constraints

* Relational Model representation of 1-M relationships, M-N relationships, and
self-referencing relationships

* Actions on referenced rows: cascade, nullify, restrict, default
* Subset operators: restrict (select) and project

* Join operator for combining two tables using a matching condition to compare
join columns

* Natural join using equality for the matching operator, join columns with the
same unqualified name, and elimination of one join column

* Most widely used operator for combining tables: natural join

* Less widely used operators for combining tables: full outer join, one-sided outer
join, and divide

* Outer join operator extending the join operator by preserving nonmatching rows
* One-sided outer join preserving the nonmatching rows of one input table
 Full outer join preserving the nonmatching rows of both input tables

e Traditional set operators: union, intersection, difference, extended cross product

72 Part 2 Understanding Relational Databases

¢ Union compatibility for comparing rows for the union, intersection, and
difference operators

* Complex matching operator: divide operator for matching on a subset of rows

* Summarize operator that replaces groups of rows with summary rows

QUESTIONS

1. How is creating a table similar to writing a chapter of a book?

N

. With what terminology for relational databases are you most comfortable?
Why?

. What is the difference between a primary key and a candidate key?

. What is the difference between a candidate key and a superkey?

. What is a null value?

. What is the motivation for the entity integrity rule?

. What is the motivation for the referential integrity rule?

. What is the relationship between the referential integrity rule and foreign keys?

O 0 NI O U1 &~ W

. How are candidate keys that are not primary keys indicated in the CREATE
TABLE statement?

10. What is the advantage of using constraint names when defining primary
key, candidate key, and referential integrity constraints in CREATE TABLE
statements?

11. When is it not permissible for foreign keys to store null values?

12. What is the purpose of a database diagram such as the Access Relationship
window?

13. How is a 1-M relationship represented in the Relational Model?

14. How is an M-N relationship represented in the Relational Model?

15. What is a self-referencing relationship?

16. How is a self-referencing relationship represented in the Relational Model?

17. What is a referenced row?

18. What two actions on referenced rows can affect related rows in a child table?

19. What are the possible actions on related rows after a referenced row is deleted or
its primary key is updated?

20. Why is the restrict action for referenced rows more common than the cascade
action?

21. When is the nullify action not allowed?

22. Why study the operators of relational algebra?

23. Why are the restrict and the project operators widely used?

24. Explain how the union, intersection, and difference operators for tables differ
from the traditional operators for sets.

25. Why is the join operator so important for retrieving useful information?

26. What is the relationship between the join operator and the extended cross
product operator?

27. Why is the extended cross product operator used sparingly?

28. What happens to unmatched rows with the join operator?

29. What happens to unmatched rows with the full outer join operator?

30. What is the difference between the full outer join and the one-sided outer join?

Chapter 3 The Relational Data Model 73

31. Define a decision-making situation that might require the summarize operator.
32. What is an aggregate function?

33. How are grouping columns used in the summarize operator?

34. Why is the divide operator not as widely used as the join operator?

35. What are the requirements of union compatibility?

36. What are the requirements of the natural join operator?

37. Why is the natural join operator widely used for combining tables?

38. How do visual tools such as the Microsoft Access Query Design tool facilitate
the formulation of join operations?

39. Why are non-minimal superkeys typically ignored?

40. What are two interpretations for null values?

41. What is an important specialized use of the traditional set operators (union,
intersection, and difference)?

42. Provide examples of each traditional set operator for the specialized situation
that you provided in your answer to problem 41.

43. If two tables have some common and some unique columns, what operator can
be used to make the tables union compatible?

PROBLEMS

The problems use the Customer, OrderTbl, and Employee tables of the simplified Order
Entry database. Chapters 4 and 10 extend the database to increase its usefulness.
The Customer table contains clients who have placed orders. The OrderTbhl contains
basic facts about customer orders. The Employee table contains facts about employees
who take orders. The primary keys of the tables are CustNo for Customer, EmpNo for
Employee, and OrdNo for OrderTbl.

Customer
CustFirstName CustLastName CustCity CustState CustZip CustBal
C0954327 Sheri Gordon Littleton CO 80129-5543 $230.00
C1010398 Jim Glussman Denver CcO 80111-0033 $200.00
C2388597 Beth Taylor Seattle WA 98103-1121 $500.00
C3340959 Betty Wise Seattle WA 98178-3311 $200.00
C3499503 Bob Mann Monroe WA 98013-1095 $0.00
C8543321 Ron Thompson Renton WA 98666-1289 $85.00
Employee
EmpNo EmpFirstName EmpLastName EmpPhone EmpEmail
E1329594 Landi Santos (303) 789-1234 LSantos@bigco.com
E8544399 Joe Jenkins (303) 221-9875 JJenkins@bigco.com
E884321 Amy Tang (303) 556-4321 ATang@bigco.com
E9345771 Colin White (303) 221-4453 CWhite@bigco.com
E9884325 Thomas Johnson (
(

)
303) 556-9987 TJohnson@bigco.com
)

E9954302 Mary Hill 303) 556-9871 MHill@bigco.com

74 Part2 Understanding Relational Databases

OrderTbl
OrdNo OrdDate CustNo EmpNo
on16324 01/23/2017 C0954327 E8544399
02334661 01/14/2017 C0954327 E1329594
03331222 01/13/2017 C1010398
02233457 0112/2017 C2388597 E9884325
04714645 01/11/2017 C2388597 E1329594
05511365 01/22/2017 C3340959 E9884325
07989497 01/16/2017 C3499503 E9345771
01656777 02/11/2017 C8543321
07959898 02/19/2017 C8543321 E8544399

10.

11.

12.
13.

14.
15.

16.

. Write a CREATE TABLE statement for the Customer table. Choose data types

appropriate for the DBMS used in your course. Note that the CustBal column
contains numeric data. The currency symbols are not stored in the database. The
CustFirstName and CustLastName columns are required (not null).

. Write a CREATE TABLE statement for the Employee table. Choose data

types appropriate for the DBMS used in your course. The EmpFirstName,
EmpLastName, and EmpEMail columns are required (not null).

. Write a CREATE TABLE statement for the OrderTbl table. Choose data types

appropriate for the DBMS used in your course. The OrdDate column is required
(not null).

. Identify the foreign keys and draw a relationship diagram for the simplified

Order Entry database. The CustNo column references the Customer table and the
EmpNo column references the Employee table. For each relationship, identify the
parent table and the child table.

. Extend your CREATE TABLE statement from problem (3) with referential

integrity constraints. Updates and deletes on related rows are restricted.

. From examination of the sample data and your common understanding of order

entry businesses, are null values allowed for the foreign keys in the OrderTbl
table? Why or why not? Extend the CREATE TABLE statement in problem (5) to
enforce the null value restrictions if any.

. Extend your CREATE TABLE statement for the Employee table (problem 2) with

a unique constraint for EmpEMail. Use a named constraint clause for the unique
constraint.

. Show the result of a restrict operation that lists the orders in February 2017.

. Show the result of a restrict operation that lists the customers residing in Seattle,

WA.

Show the result of a project operation that lists the CustNo, CustFirstName, and
CustLastName columns of the Customer table.

Show the result of a project operation that lists the CustCity and CustState
columns of the Customer table.

Show the result of a natural join that combines the Customer and OrderTbl tables.

Show the steps to derive the natural join for problem (10). How many rows and
columns are in the extended cross product step?

Show the result of a natural join of the Employee and OrderTbl tables.

Show the result of a one-sided outer join between the Employee and OrderTbl
tables. Preserve the rows of the OrderTbl table in the result.

Show the result of a full outer join between the Employee and OrderTbl tables.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

Chapter 3 The Relational Data Model

Show the result of the restrict operation on Customer where the condition is
CustCity equals “Denver” or “Seattle” followed by a project operation to retain
the CustNo, CustFirstName, CustLastName, and CustCity columns.

Show the result of a natural join that combines the Customer and OrderTbl tables
followed by a restrict operation to retain only the Colorado customers (CustState
- IICO//)'

Show the result of a summarize operation on Customer. The grouping column is
CustState and the aggregate calculation is COUNT. COUNT shows the number
of rows with the same value for the grouping column.

Show the result of a summarize operation on Customer. The grouping column
is CustState and the aggregate calculations are the minimum and maximum
CustBal values.

What tables are required to show the CustLastName, EmpLastName, and OrdNo
columns in the result table?

Extend your relationship diagram from problem (4) by adding two tables
(OrdLine and Product). Partial CREATE TABLE statements for the primary keys
and referential integrity constraints are shown below:

CREATE TABLE Product .. PRIMARY KEY (ProdNo)
CREATE TABLE OrdLine .. PRIMARY KEY (OrdNo, ProdNo)
FOREIGN KEY (OrdNo) REFERENCES Order
FOREIGN KEY (ProdNo) REFERENCES Product

Extend your relationship diagram from problem (22) by adding a foreign key
in the Employee table. The foreign key SupEmpNo is the employee number of
the supervising employee. Thus, the SupEmpNo column references the Employee
table.

What relational algebra operator do you use to find products contained in every
order? What relational algebra operator do you use to find products contained in
any order?

Are the Customer and Employee tables union compatible? Why or why not?

Using the database after problem (23), what tables must be combined to list the
product names on order number 011163247

Using the database after problem (23), what tables must be combined to list the
product names ordered by customer number C0954327?

Using the database after problem (23), what tables must be combined to list the
product names ordered by the customer named Sheri Gordon?

Using the database after problem (23), what tables must be combined to list the
number of orders submitted by customers residing in Colorado?

Using the database after problem (23), what tables must be combined to list
the product names appearing on an order taken by an employee named Landi
Santos?

If two tables such as Customer and Employee are not union compatible, what
operations would you use before performing a union operation?

With the Employee table extended with the foreign key SupEmpNo as specified
in problem 23, what tables must be combined to list the supervisor name of the
employee who took a specified order?

In problem 22, what type of relationship does the OrdLine table represent?

In problem 22, can the foreign keys in the OrdLine table accept null values?
Explain your answer.

75

76 Part 2 Understanding Relational Databases

REFERENCES FOR FURTHER STUDY

Codd defined the Relational Model in a seminal paper in 1970. His paper inspired
research projects at the IBM research laboratories and the University of California at
Berkeley that led to commercial relational DBMSs. Date (2003) provides a syntax for
the relational algebra. Elmasri and Navathe (2017) provide a more theoretical treat-
ment of the Relational Model, especially the relational algebra.

chapter

Formulation
with SQL

Learning Objectives

This chapter provides the foundation for developing your query formula-
tion skills using the industry standard Structured Query Language (SQL).
Query formulation involves conversion of a request for data into a state-
ment of a database language such as SQL. After this chapter, the student
should have acquired the following knowledge and skills:

® Write SQL SELECT statements for queries involving the restrict,
project, and join operators

® Understand the meaning of the WHERE and GROUP BY clauses using
the conceptual evaluation process

OVERVIEW

Chapter 3 provided a foundation for using relational
databases. Most importantly, you learned about con-
nections among tables and fundamental operators to
extract useful data. This chapter helps you to apply this
knowledge in using the SQL SELECT statement.

Much of your skill with SQL will derive from imitat-
ing examples. This chapter provides many examples
to facilitate your learning process. Initially you will see
relatively simple examples so that you become com-
fortable with the basics of the SQL SELECT statement.
To prepare for more difficult examples, this chapter

® Use the critical questions to transform a problem statement into a
database representation

® Write SELECT statements for more difficult queries involving joins
of three or more tables, self joins, joins with grouping, and multiple
joins between tables

® Write brief descriptions to document SQL SELECT statements

® Write INSERT, UPDATE, and DELETE statements to change the rows
of a table

presents two problem-solving guidelines (conceptual
evaluation process and critical questions). The concep-
tual evaluation process explains the meaning of the
SELECT statement through the sequence of operations
and intermediate tables that produce a result table. The
critical questions help you transform a problem state-
ment into a relational database representation in a
language such as SQL. These guidelines should help
you to formulate and understand advanced problems
presented in Section 4.5. The last part of this chapter
presents negative examples with formulation errors and
poor coding practices to help you avoid errors and poor
coding practices.

77

78 Part2 Understanding Relational Databases

4.1 BACKGROUND

TABLE 4-1
SQL Timeline

Before using SQL, you should understand its history and scope. The history reveals the
origin of the name and the efforts to standardize the language. The scope puts the vari-
ous parts of SQL into perspective. You have already seen the CREATE TABLE state-
ment in Chapter 3. This chapter presents basics of the SELECT, UPDATE, DELETE,
and INSERT statements, while Chapter 9 provides more details about complex query
formulation problems and associated SELECT statement details. To broaden your
understanding, you should be aware of other parts of SQL and different usage contexts.

414 Brief History of SQL

The Structured Query Language (SQL) has a colorful history. Table 4-1 depicts the
highlights of SQL’s development. SQL began life as the SQUARE language in IBM's
System R project. The System R project was a response to the interest in relational
databases sparked by Dr. Ted Codd, an IBM fellow who wrote a famous paper in 1970
about relational databases. The SQUARE language was somewhat mathematical in
nature. After conducting human factors experiments, the IBM research team revised
the language and renamed it SEQUEL (a follow-up to SQUARE). After another revi-
sion, the language was dubbed SEQUEL 2. Its current name, SQL, resulted from legal
issues surrounding the name SEQUEL. Because of this naming history, a number of
database professionals, particularly those working during the 1970s, pronounce the
name as “sequel” rather than SQL.

SQL is now an international standard' although it was not always so. With the
force of IBM behind SQL, many imitators used some variant of SQL. Such was the old
order of the computer industry when IBM was dominant. It may seem surprising, but
IBM was not the first company to commercialize SQL. Until a standards effort devel-
oped in the 1980s, SQL was in a state of confusion. Many vendors implemented dif-
ferent subsets of SQL with unique extensions. The standards efforts by the American
National Standards Institute (ANSI), the International Organization for Standards
(ISO), and the International Electrotechnical Commission (IEC) have restored some

1972 System R project at IBM Research Labs

1974 SQUARE language developed

1975 Language revision and name change to SEQUEL
1976 Language revision and name change to SEQUEL 2
1977 Name change to SQL

1978 First commercial implementation by Oracle Corporation
1981 IBM product SQL/DS featuring SQL

1986 SQL-86 (SQLT) standard approved

1989 SQL-89 standard approved (revision to SQL-86)
1992 SQL-92 (SQL2) standard approved

1999 SQL:1999 (SQL3) standard approved

2003 SQL:2003 approved

2008 SQL:2008 approved

20M SQL:2011 approved

2016 SQL:2016 approved

' Dr. Michael Stonebraker, an early database pioneer, has even referred to SQL as “intergalactic data speak.”

Chapter 4 Query Formulation with SQL

order. Although SQL was not initially the best database language developed, the stan-
dards efforts have improved the language as well as standardized its specification.

The size and scope of the SQL standard has increased substantially since adop-
tion of the first standard. The original standard (SQL-86) contained about 150 pages,
while the SQL-92 standard contained more than 600 pages with another 500 pages
added after the initial SQL-92 standard was published. The standard grew to about
2,000 pages for SQL:1999 and about 4,000 pages for SQL:2016. The SQL:2016 standard
contains 14 parts although four parts (5 to 8 and 12) were never officially released and
only three parts of the standard (2, 11, and 14) have become widely implemented. Part
2 on the foundation specifies most of SQL with extensions in other parts.

The SQL standard lacks conformance testing, an important weakness. Until 1996,
the U.S. Department of Commerce’s National Institute of Standards and Technology
conducted conformance tests to provide assurance about portability for government
software among conforming DBMSs. Since 1996, however, DBMS vendor claims
have substituted for independent conformance testing. Even for basic parts of the
SQL foundation, the major vendors lack support for some features and provide pro-
prietary support for other features. With the optional parts, conformance has much
greater variance. Writing portable SQL code requires careful study for basic parts of
the foundation but is not possible for extended parts of SQL.

441.2 Scope of SQL

SQL was designed as a language for database definition, manipulation, and con-
trol. Table 4-2 shows a quick summary of important SQL statements. Only data-
base administrators use most of the database definition and control statements. You
have already seen the CREATE TABLE statement in Chapter 3. This chapter and
Chapter 9 cover the database manipulation statements (SELECT, UPDATE, INSERT,
and DELETE). Power users and analysts use the database manipulation statements.
Chapter 10 covers the CREATE VIEW statement. Either database administrators
or analysts can use the CREATE VIEW statement. Chapter 11 covers the CREATE
TRIGGER statement used by both database administrators and analysts. Chapter
15 covers extensions to the SELECT statement and the CREATE MATERIALIZED
VIEW statements, both important in data warehouse usage. Chapter 16 covers the
GRANT, REVOKE, and CREATE ASSERTION statements, used primarily by data-
base administrators. Chapter 17 presents processing details about the transaction
control statements (COMMIT and ROLLBACK), important conceptual background
for database administrators. Chapter 19 covers extensions of the SELECT statement
for object databases.

SQL supports two usage contexts, stand-alone and embedded. In the stand-alone
context, a user submits SQL statements with the use of a specialized editor. The editor
alerts the user to syntax errors and sends the statements to the DBMS for execution.
The presentation in this chapter assumes stand-alone usage. In the embedded con-
text, an executing program submits SQL statements, and the DBMS sends results back

79

Statement Type Statements Purpose
Database definition CREATE SCHEMA, TABLE, VIEW Define a new database, table, and view
ALTER TABLE Modify table definition
Database manipulation SELECT Retrieve contents of tables
UPDATE, DELETE, INSERT Modify, remove, and add rows
Database control COMMIT, ROLLBACK Complete, undo transaction
GRANT, REVOKE Add and remove access rights
CREATE ASSERTION Define integrity constraint

CREATE TRIGGER Define database rule

TABLE 4-2
Selected SQL Statements

80 Part2 Understanding Relational Databases

to the program. The program includes SQL statements along with statements of the
host programming language such as Java or Visual Basic. Additional statements allow
SQL statements (such as SELECT) to be used inside a computer program. Chapter 11
covers embedded SQL with the Oracle database programming language, PL/SQL.

SQL Usage Contexts: The SQL standard supports two usage environments, stand-
alone with statements submitted using a specialized editor, and embedded with
statements inside of a computer program.

4.2 GETTING STARTED WITH THE SELECT STATEMENT

The SELECT statement supports data retrieval from one or more tables. This chap-
ter describes fundamental query formulation problems and a basic syntax of the
SELECT statement. Chapter 9 presents more complex query formulation problems
and extended syntax for the SELECT statement. The SELECT statement described here
has the following format:

SELECT <list of columns and expressions usually involving columns>
FROM <list of tables and join operations>
WHERE <row conditions connected by AND, OR, NOT>
GROUP BY <list of grouping columns>
HAVING <group conditions connected by AND, OR, NOT>
ORDER BY <list of sorting specifications>

In the preceding format, uppercase words are keywords. You replace the angle
brackets <> with details to make a meaningful statement. For example, after the key-
word SELECT, you specify the list of columns in the result, but do not type the angle
brackets. The result list contains columns such as StdFirstName or expressions involv-
ing constants, column names, and functions. Example expressions are Price * Qty
and 1.1 * FacSalary. To make meaningful names for computed columns, you
can rename a column in the result table using the AS keyword. For example, SELECT
Price * Qty AS Amount renames the expression Price * Qty to Amount in the
result table.

Expression: a combination of constants, column names, functions, and operators
that generates a value when executed. In conditions and result columns, expressions
can be used in any place that column names can appear.

To depict this SELECT statement format and show the meaning of statements, this
chapter shows numerous examples. Examples are provided for Microsoft Access, a
popular desktop DBMS, and Oracle, a prominent enterprise DBMS. Most examples
execute on both DBMSs. Unless noted, the examples execute on the 1997 through 2016
versions of Access and the 8i through 12c versions of Oracle. Examples that only exe-
cute on one product are marked. In addition to the examples, Appendix 4.B summa-
rizes syntax differences among major DBMSs.

The examples use the university database tables introduced in Chapter 3. Tables
4-3 through 4-7 list the contents of the tables. Appendix 4.A contains CREATE TABLE
statements for the tables. For your reference, Figure 4.1 repeats (from Chapter 3) the
relationship diagram with primary and foreign keys. Recall that the Faculty_1 table
with relationship to the Faculty table represents a self-referencing relationship with
FacSupervisor as the foreign key.

Chapter 4 Query Formulation with SQL 81

StdNo StdFirstName StdLastName StdCity StdState StdZip StdMajor StdClass StdGPA ;22:;5948.:,/ dent Table
123-45-6789 HOMER WELLS SEATTLE WA 9grRIMm IS FR 3.00
124-56-7890 BOB NORBERT BOTHELL WA 98011-2121 FIN JR 270
234-56-7890 CANDY KENDALL TACOMA WA 99042-3321 ACCT JR 3.50
345-67-8901 WALLY KENDALL SEATTLE WA 981231141 IS SR 2.80
456-78-9012 JOE ESTRADA SEATTLE WA 98121-2333 FIN SR 3.20
567-89-0123 MARIAH DODGE SEATTLE WA 98114-0021 IS JR 360
678-90-1234 TESS DODGE REDMOND WA 98116-2344 ACCT SO 3.30
789-01-2345 ROBERTO MORALES SEATTLE WA 98121-2212 FIN JR 2.50
876-54-3210 CRISTOPHER ~ COLAN SEATTLE WA 981141332 IS SR 4.00
890-12-3456 LUKE BRAZZI SEATTLE WA 98116-0021 IS SR 220
901-23-4567 WILLIAM PILGRIM BOTHELL WA 981131885 IS SO 3.80
TABLE 4-4A
FacNo FacFirstName FacLastName FacCity FacState FacDept FacRank FacSalary Sample Faculty Table
098-76-5432 LEONARD VINCE SEATTLE WA MS ASST $35,000 (first part)
543-21-0987 VICTORIA EMMANUEL BOTHELL WA MS PROF $120,000
654-32-1098 LEONARD FIBON SEATTLE WA MS ASSC $70,000
765-43-2109 NICKI MACON BELLEVUE WA FIN PROF $65,000
876-54-3210 CRISTOPHER COLAN SEATTLE WA MS ASST $40,000
987-65-4321 JULIA MILLS SEATTLE WA FIN ASSC $75,000
TABLE 4-4B
FacNo FacSupervisor FacHireDate FacZipCode Sample Faculty Table
098-76-5432 654-32-1098 10-Apr-2004 98111-9921 (second part)
543-21-0987 15-Apr-2005 98011-2242
654-32-1098 543-21-0987 01-May-2003 98121-0094
765-43-2109 11-Apr-2006 98015-9945
876-54-3210 654-32-1098 01-Mar-2008 981141332
987-65-4321 765-43-2109 15-Mar-2009 98114-9954
TABLE 4-5
OfferNo CourseNo OffTerm OffYear OffLocation OffTime FacNo OffDays Sample Offering Table
m 1S320 SUMMER 2017 BLM302 10:30 AM MW
1234 1S320 FALL 2016 BLM302 10:30 AM 098-76-5432 MW
2222 1S460 SUMMER 2016 BLM412 1:30 PM TTH
3333 IS320 SPRING 2017 BLM214 8:30 AM 098-76-5432 MW
4321 1S320 FALL 2016 BLM214 3:30 PM 098-76-5432 TTH
4444 1S320 WINTER 2017 BLM302 3:30 PM 543-21-0987 TTH
5555 FIN300 WINTER 2017 BLM207 8:30 AM 765-43-2109 MW
5678 1S480 WINTER 2017 BLM302 10:30 AM 987-65-4321 MW
5679 1S480 SPRING 2017 BLM412 3:30 PM 876-54-3210 TTH
6666 FIN450 WINTER 2017 BLM212 10:30 AM 987-65-4321 TTH
7777 FIN480 SPRING 2017 BLM305 1:30 PM 765-43-2109 MW
8888 1S320 SUMMER 2017 BLM405 1:30 PM 654-32-1098 MW

9876 1S460 SPRING 2017 BLM307 1:30 PM 654-32-1098 TTH

82 Part2 Understanding Relational Databases

TABLE 4-6

Sample Course Table CourseNo CrsDesc CrsUnits
FIN300 FUNDAMENTALS OF FINANCE 4
FIN450 PRINCIPLES OF INVESTMENTS 4
FIN480 CORPORATE FINANCE 4
1S320 FUNDAMENTALS OF BUSINESS PROGRAMMING 4
1S460 SYSTEMS ANALYSIS 4
1S470 BUSINESS DATA COMMUNICATIONS 4
1S480 FUNDAMENTALS OF DATABASE MANAGEMENT 4

TABLE 4-7

Sample Enroliment Table OfferNo StdNo EnrGrade
1234 123-45-6789 33
1234 234-56-7890 35
1234 345-67-8901 3.2
1234 456-78-9012 31
1234 567-89-0123 3.8
1234 678-90-1234 34
4321 123-45-6789 Bi5
4321 124-56-7890 3.2
4321 789-01-2345 Bi5
4321 876-54-3210 31
4321 890-12-3456 34
4321 901-23-4567 31
5555 123-45-6789 3.2
5565) 124-56-7890 27
5678 123-45-6789 3.2
5678 234-56-7890 2.8
5678 345-67-8901 33
5678 456-78-9012 34
5678 567-89-0123 2.6
5679 123-45-6789 2
5679 124-56-7890 37
5679 678-90-1234 33
5679 789-01-2345 3.8
5679 890-12-3456 2.9
5679 901-23-4567 31
6666 234-56-7890 31
6666 567-89-0123 36
7777 876-54-3210 34
7777 890-12-3456 37
7777 901-23-4567 34
9876 124-56-7890 35
9876 234-56-7890 3.2
9876 345-67-8901 3.2
9876 456-78-9012 34
9876 567-89-0123 2.6
9876 678-90-1234 33

9876 901-23-4567 4

Chapter 4 Query Formulation with SQL 83

FIGURE 4.1
Relationship Window for the
University Database

4.21 Single Table Problems

This section shows a variety of examples involving single tables. After some simple
initial examples, more complex examples involving mathematical expressions, inexact
matching, date comparisons, null values, and logical expressions are shown.

Let us begin with the simple SELECT statement in Example 4.1. In all examples,
keywords appear in uppercase while information specific to the query appears in mixed
case. In Example 4.1, only the Student table is listed in the FROM clause because the con-
ditions in the WHERE clause and columns after the SELECT keyword involve only the
Student table. In Oracle, a semicolon or / (on a separate line) terminates a statement.

Example 41

Testing Rows Using the WHERE Clause

Retrieve the name, city, and grade point average (GPA) of students with a high GPA (greater than or equal to 3.7). The result
follows the SELECT statement.

SELECT StdFirstName, StdLastName, StdCity, StdGPA
FROM Student
WHERE StdGPA >= 3.7

StdFirstName StdLastName StdCity StdGPA

CRISTOPHER COLAN SEATTLE 4.00
WILLIAM PILGRIM BOTHELL 3.80

Table 4-8 depicts the standard comparison operators. These symbols are used by all
major DBMSs supporting SQL.

TABLE 4-8
Comparison Operator Meaning Standard Comparison

_ equal to Operators
< less than

> greater than

<= less than or equal to

>= greater than or equal to

<> not equal to

84 Part 2 Understanding Relational Databases

Example 4.2 is even simpler than Example 4.1. The result is identical to the original
Faculty table in Table 4-4. Example 4.2 uses a shortcut to list all columns. The asterisk
* in the column list indicates that all columns of the tables in the FROM clause appear
in the result. The asterisk serves as a wildcard character matching all column names.

Example 4.2

Show all Columns

List all columns and rows of the Faculty table. The resulting table is shown in two parts.

SELECT * FROM Faculty

FacNo FacFirstName FacLastName FacCity FacState FacDept FacRank FacSalary
098-76-5432 LEONARD VINCE SEATTLE WA MS ASST $35,000
543-21-0987 VICTORIA EMMANUEL BOTHELL WA MS PROF $120,000
654-32-1098 LEONARD FIBON SEATTLE WA MS ASSC $70,000
765-43-2109 NICKI MACON BELLEVUE WA FIN PROF $65,000
876-54-3210 CRISTOPHER COLAN SEATTLE WA MS ASST $40,000
987-65-4321 JULIA MILLS SEATTLE WA FIN ASSC $75,000
FacNo FacSupervisor FacHireDate FacZipCode

098-76-5432 654-32-1098 10-Apr-2004 98111-9921

543-21-0987 15-Apr-2005 98011-2242

654-32-1098 543-21-0987 01-May-2003 98121-0094

765-43-2109 11-Apr-2006 98015-9945

876-54-3210 654-32-1098 01-Mar-2008 98114-1332

987-65-4321 765-43-2109 15-Mar-2009 98114-9954

Expression Examples Example 4.3 depicts expressions in the SELECT and WHERE
clauses. The expression in the SELECT clause increases the salary by 10 percent.
The AS keyword is used to rename the computed column. Without renaming, most
DBMSs will generate a meaningless name such as Expr001. The expression in the
WHERE clause extracts the year from the hiring date. Since Access and Oracle differ
on functions for date columns, Example 4.3 provides separate statements. To become
proficient with SQL on a particular DBMS, you will need to study the available func-
tions especially with date columns.

Example 4.3 (Access)

Expressions in SELECT and

WHERE Clauses

List the name, city, and increased salary of faculty hired after 2005. The year function extracts the year part of a column with a
date data type.

SELECT FacFirstName, FacLastName, FacCity,
FacSalary*1.1 AS IncreasedSalary, FacHireDate

FROM Faculty

WHERE year(FacHireDate) > 2005

Chapter 4 Query Formulation with SQL 85

FacFirstName FacLastName FacCity IncreasedSalary FacHireDate
NICKI MACON BELLEVUE 71500 11-Apr-2006
CRISTOPHER COLAN SEATTLE 44000 01-Mar-2008
JULIA MILLS SEATTLE 82500 15-Mar-2009

Example 4.3 (Oracle)

Expressions in SELECT and

WHERE Clauses

The to_char function extracts the four-digit year from the FacHireDate column and the to_number function converts the
character representation of the year into a number.

SELECT FacFirstName, FacLastName, FacCity,
FacSalary*1.1 AS IncreasedSalary, FacHireDate

FROM Faculty

WHERE to_number(to_char(FacHireDate, "YYYY"™)) > 2005

Example 4.4 uses a more complex expression in the WHERE clause to retrieve fac-
ulty hired in the last 10 years. In Access, the Now()function retrieves the current date,
while in Oracle, the SysDate function retrieves the current date. Both formulations are
rather imprecise, just using the year component of the date. More precise formulation
using all date components involves proprietary functions for date differences.

Example 4.4 (Access)

Using a function to retrieve today’s date

List the name, city, and hire date of faculty hired in the last 10 years (2017 was the current year when the statement was
executed). The Now() function retrieves the current date.

SELECT FacFirstName, FaclLastName, FacCity, FacHireDate
FROM Faculty
WHERE year(FacHireDate) >= year(Now()) - 10

FacFirstName FaclLastName FacCity FacHireDate

CRISTOPHER COLAN SEATTLE 01-Mar-2008
JULIA MILLS SEATTLE 15-Mar-2009

Example 4.4 (Oracle)

Using a function to retrieve today’s date

List the name, city, and hire date of faculty hired in the last 10 years. The SYSDATE function retrieves the current date.

SELECT FacFirstName, FacLastName, FacCity, FacHireDate

FROM Faculty

WHERE to_number(to_char(FacHireDate, “YYYY")) >=
to_number(to_char(SYSDATE, "YYYY®)) - 10

86 Part 2 Understanding Relational Databases

Example 4.5 uses an expression in the WHERE clause to retrieve students near an
A- (3.7) GPA. The formulations in Access and Oracle are identical.

Example 4.5

Using an expression in the WHERE clause

List the name, city, and GPA of students near an A- (3.7) GPA. The first condition eliminates students above the A- threshold. The
second condition eliminates students far below an A-.

SELECT StdFirstName, StdLastName, StdCity, StdGPA
FROM Student
WHERE StdGPA < 3.7 AND StdGPA * 1.1 >= 3.7

StdFirstName StdLastName StdCity StdGPA

CANDY KENDALL TACOMA 3.50
MARIAH DODGE SEATTLE 3.60

Examples with Exact and Inexact Matching on String Columns Columns using
a character string data type (CHAR or VARCHAR) support both exact and inexact
matching. You can use the equality = comparison operator for exact matching with a
string column. In Example 4.6, the condition, CourseNo = * 154807, matches a single
row in the Course table.

Example 4.6

Exact Matching on a String

Column with the = Operator

List all columns of the course row with 15480 as the course number.

SELECT *
FROM Course
WHERE CourseNo = "1S480"

CourseNo CrsDesc CrsUnits

1S480 FUNDAMENTALS OF DATABASE MANAGEMENT 4

For conditions on string columns, case sensitivity is an important issue. Some
DBMSs such as Microsoft Access are not case sensitive. In Access SQL, the condition
in Example 4.6 matches “is480”, “Is480”, and “i5480” in addition to “IS480”. Other
DBMSs such as Oracle are case sensitive. In Oracle SQL, the condition in Example 4.6
matches only “IS480”, not “is480”, “1s480”, or “i5480”. To alleviate confusion, you can
use the Oracle upper (see Example 4.7) or lower functions to convert strings to upper
or lowercase, respectively.

Chapter 4 Query Formulation with SQL 87

Example 4.7 (Oracle)

Exact Matching using the upper Function

List all columns of the course row with 15480 as the course number.

SELECT *
FROM Course
WHERE upper(CourseNo) = "1S480*

CourseNo CrsDesc CrsUnits

1S480 FUNDAMENTALS OF DATABASE MANAGEMENT 4

Inexact matching supports conditions that match some pattern rather than match-
ing an identical string. One of the most common types of inexact matching is to find
values having a common prefix such as “IS4” (400 level information systems courses).
Example 4.8 uses the LIKE operator along with the pattern-matching character * to
perform prefix matching?. The string constant " 1S4** means match strings beginning
with “IS4” and ending with anything. The wildcard character * matches any string. The
Oracle formulation of Example 4.8 uses the percent symbol %, the SQL standard for the
wildcard character. Note that string constants must be enclosed in quotation marks®.

Example 4.8 (Access)

Inexact Matching with the LIKE Operator

List the senior-level IS courses.

SELECT *
FROM Course
WHERE CourseNo LIKE "I1S4*"

CourseNo CrsDesc CrsUnits
1S460 SYSTEMS ANALYSIS 4
1S470 BUSINESS DATA COMMUNICATIONS 4
1S470 FUNDAMENTALS OF DATABASE MANAGEMENT 4

Example 4.8 (Oracle)

Inexact Matching with the LIKE Operator

List the senior-level IS courses.

SELECT *
FROM Course
WHERE CourseNo LIKE "1S4%"

2Beginning with Access 2002, the standard SQL pattern-matching characters can be used by
specifying ANSI 92 query mode in the Options window. The textbook uses the default * and ?
pattern-matching characters for Access SQL statements.

* Most DBMSs require single quotes, the SQL:2016 standard. Microsoft Access allows either
single or double quotes for string constants.

88 Part2 Understanding Relational Databases

Another common type of inexact matching is to find columns containing a sub-
string. To perform this kind of matching, a wildcard character should be used before
and after the substring. For example, to find courses containing the word DATABASE
anywhere in the course description, write the condition: CrsDesc LIKE "*DATA**
in Access or CrsDesc LIKE "%DATA%" in Oracle as shown in Example 4.9.

Example 4.9 (Access)

Inexact Matching for a Substring

List the courses containing the string “DATA” in the course description.

SELECT *
FROM Course
WHERE CrsDesc LIKE "*DATA*"

CourseNo CrsDesc CrsUnits

1IS470 BUSINESS DATA COMMUNICATIONS 4
1S480 FUNDAMENTALS OF DATABASE MANAGEMENT 4

Example 4.9 (Oracle)

Inexact Matching for a Substring

List the courses containing the string “DATA” in the course description.
SELECT *
FROM Course
WHERE CrsDesc LIKE “%DATA%®

The wildcard character is not the only pattern-matching character. SQL:2016 spec-
ifies the underscore character _ to match any single character. Some DBMSs such as
Access use the question mark (?) to match any single character. Figure 4.10 shows
examples of single character matching in both Access and Oracle. Most DBMSs also
have pattern-matching characters for matching a range of characters (for example, the
digits 0 to 9) and any character from a list of characters. The symbols used for these
other pattern-matching characters are not standard. To become proficient at writing
inexact matching conditions, you should study the pattern-matching characters avail-
able with your DBMS.

Example 4.10 (Access)
Inexact Matching for a Single Character

List the name and rank of faculty with a five letter last name ending in “N”. Each question mark matches any single character.

SELECT FacFirstName, FaclLastName, FacRank
FROM Faculty
WHERE FaclLastName LIKE ®????N*

FacFirstName FacLastName FacRank

LEONARD FIBON ASSC
NICKI MACON PROF
CRISTOPHER COLAN ASST

Chapter 4 Query Formulation with SQL 89

Example 4.10 (Oracle)

Inexact Matching for a Single Character

List the name and rank of faculty with a five letter last name ending in “N”. Each underscore matches any single character.

SELECT FacFirstName, FacLastName, FacRank
FROM Faculty
WHERE FaclLastName LIKE * N*

Date Comparison Examples Example 4.11 depicts range matching on a column
with the date data type. In Access SQL, pound symbols enclose date constants, while
in Oracle SQL, single quotation marks enclose date constants as shown in Example
4.11. Date columns can be compared just like numbers with the usual comparison
operators (=, <, etc.). The BETWEEN-AND operator defines a closed interval (includes
end points). In Access Example 4.11, the BETWEEN-AND condition is a shortcut for
FacHireDate >= #1/1/2008# AND FacHireDate <= #12/31/2009#.

BETWEEN-AND Operator: a shortcut operator to test a numeric or date column
against a range of values. The BETWEEN-AND operator returns true if the column is
greater than or equal to the first value and less than or equal to the second value.

Example 4.11 (Access)

Comparing a Date Column

to Date Constants

List the name and hiring date of faculty hired in 2008 or 2009.

SELECT FacFirstName, FacLastName, FacHireDate

FROM Faculty

WHERE FacHireDate BETWEEN #1/1/2008# AND #12/31/2009#
FacFirstName FacLastName FacHireDate

CRISTOPHER COLAN 01-Mar-2008
JULIA MILLS 15-Mar-2009

Example 4.11 (Oracle)

Comparing a Date Column

to Date Constants

List the name and hiring date of faculty hired in 2008 or 2009. In Oracle SQL, the standard format for dates is DD-Mon-YYYY
where DD is the day number, Mon is the month abbreviation, and YYYY is the four-digit year.
SELECT FacFirstName, FaclLastName, FacHireDate

FROM Faculty
WHERE FacHireDate BETWEEN "1-Jan-2008" AND "31-Dec-2009°

90 Part2 Understanding Relational Databases

You should not use the LIKE operator and pattern matching characters on date
columns. Some DBMSs allow the LIKE operator, but it is not portable across DBMSs
and the results may vary within a DBMS. You should treat date columns as numeric,
not text. You should use standard comparison operators along with proprietary func-
tions to compare dates and components of dates. Example 4.12 shows another example
using proprietary functions to extract the month part of a date column.

Example 4.12 (Access)

Using a Proprietary Function to

Retrieve Month Number

List the name and hiring date of faculty hired in April of any year. The Access Month function retrieves the month number part
of a date column.

SELECT FacFirstName, FacLastName, FacHireDate
FROM Faculty
WHERE Month(FacHireDate) = 4

FacFirstName FacLastName FacHireDate

LEONARD VINCE 10-Apr-2005
VICTORIA EMMANUEL 15-Apr-2005
NICKI MACON N-Apr-2006

Example 412 (Oracle)

Using Proprietary Functions to

Retrieve Month Number

List the name and hiring date of faculty hired in April of any year. The format string “MM” in the Oracle to_char function
retrieves the month number part of a date column.
SELECT FacFirstName, FaclLastName, FacHireDate

FROM Faculty
WHERE to_number(to_char(FacHireDate, *MM®)) = 4

Examples with Null Values and Logical Expressions Besides testing columns for
specified values, you sometimes need to test for the lack of a value. Null values are
used when there is no normal value for a column. A null can mean that the value is
unknown or the value is not applicable to the row. For the Offering table, a null value
for FacNo means that the instructor is unknown at the current time. Testing for null
values is done with the IS NULL comparison operator as shown in Example 4.13. You
can also test for a normal value using IS NOT NULL.

Example 413

Testing for Nulls

List the offering number and course number of summer 2017 offerings without an assigned instructor.

SELECT OfferNo, CourseNo

FROM Offering

WHERE FacNo 1S NULL AND OFffTerm = "SUMMER®
AND OffYear = 2017

Chapter 4 Query Formulation with SQL 91

OfferNo CourseNo

m 1S320

Example 4.14 depicts a complex logical expression involving both logical opera-
tors AND and OR. When mixing AND and OR in a logical expression, you should
use parentheses. Otherwise, the reader of the SELECT statement may not understand
the grouping of the AND and OR conditions. Without parentheses, you must depend
on the default precedence (AND evaluated before OR). The reader of the statement
may not know the default precedence.

Example 414

Mixing AND and OR
always use parentheses to
make the grouping of condi-
tions explicit.

Complex Logical Expression

List the offer number, course number, and faculty number for course offerings scheduled in fall 2016 or winter 2017.

SELECT OfferNo, CourseNo, FacNo
FROM Offering
WHERE (OffTerm = “FALL" AND OffYear = 2016)

OR (OffTerm "WINTER®" AND OffYear = 2017)

OfferNo CourseNo FacNo

1234 1S320 098-76-5432
4321 1S320 098-76-5432
4444 1S320 543-21-0987
5555 FIN30O 765-43-2109
5678 1S480 987-65-4321
6666 FIN450 987-65-4321

4.2.2 Joining Tables

Example 4.15 demonstrates a join of the Course and Offering tables. The join condition
Course.CourseNo = Offering.CourseNo is specified in the WHERE clause.

Example 4.15 (Access)

Join Tables but Show Columns

from One Table Only

List the offering number, course number, days, and time of offerings containing the words database or programming in the
course description and taught in spring 2017. The Oracle version of this example uses the % instead of the * as the wildcard

character.

SELECT OfferNo, Offering.CourseNo, OffDays, OffTime
FROM Offering, Course
WHERE OffTerm = "SPRING®" AND OffYear = 2017
AND (CrsDesc LIKE "*DATABASE™*"
OR CrsDesc LIKE "*PROGRAMMING*")
AND Course.CourseNo = Offering.CourseNo

92 Part2 Understanding Relational Databases

OfferNo CourseNo OffDays OffTime

SEEE 1IS320 MW 8:30 AM
5679 1S480 TTH 3:30 PM

You should note two additional points about Example 4.15. First, the CourseNo
column name must be qualified (prefixed) with a table name (Course or Offering). Oth-
erwise, the SELECT statement is ambiguous because CourseNo can refer to a column
in either the Course or Offering tables. Second, both tables must be listed in the FROM
clause even though the result columns come from only the Offering table. The Course
table is needed in the FROM clause because conditions in the WHERE clause reference
CrsDesc, a column of the Course table.

Example 4.16 demonstrates another join, but this time the result columns come
from both tables. There are conditions on each table in addition to the join conditions.
The Oracle formulation uses the % instead of the * as the wildcard character.

Example 4.16 (Access)

Join Tables and Show Columns

from Both Tables

List the offer number, course number, and name of the instructor of IS course offerings scheduled in fall 2016 taught by assistant
professors.

SELECT OfferNo, CourseNo, FacFirstName, FaclLastName
FROM Offering, Faculty
WHERE OffTerm = “FALL®™ AND OffYear = 2016
AND FacRank = “ASST" AND CourseNo LIKE "1S**
AND Faculty.FacNo = Offering.FacNo

OfferNo CourseNo FacFirstName FaclLastName

1234 1S320 LEONARD VINCE
4321 1S320 LEONARD VINCE

Example 4.16 (Oracle)

Join Tables and Show Columns

from Both Tables

List the offer number, course number, and name of the instructor of IS course offerings scheduled in fall 2016 taught by assistant
professors.

SELECT OfferNo, CourseNo, FacFirstName, FacLastName
FROM Offering, Faculty
WHERE OffTerm = “"FALL®" AND OffYear = 2016
AND FacRank = "ASST" AND CourseNo LIKE "1S%"
AND Faculty.FacNo = Offering.FacNo

In the SQL standard, a join operation can be expressed directly in the FROM clause
rather than being expressed in both the FROM and WHERE clauses as shown in Exam-
ples 4.15 and 4.16. To make a join operation in the FROM clause, use the keywords
INNER JOIN as shown in Example 4.17. The join conditions are indicated by the ON

Chapter 4 Query Formulation with SQL 93

keyword inside the FROM clause. Notice that the join condition no longer appears in
the WHERE clause.

Example 4.17 (Access)

Join Tables Using a Join Operation

in the FROM Clause

List the offer number, course number, and name of the instructor of IS course offerings scheduled in fall 2016 that are taught by
assistant professors (result is identical to Example 4.16). In Oracle, you should use the % instead of *.

SELECT OfferNo, CourseNo, FacFirstName, FaclLastName
FROM Offering INNER JOIN Faculty

ON Faculty.FacNo = Offering.FacNo
WHERE OffTerm = “"FALL®" AND OffYear = 2016

AND FacRank = "ASST" AND CourseNo LIKE "1S**

4.2.3 Summarizing Tables with GROUP BY and HAVING

So far, the results of all examples in this section relate to individual rows. Even Exam-
ple 4.9 relates to a combination of columns from individual Offering and Faculty rows.
As indicated in Chapter 3 with the Summarize operator, it is sometimes important to
show summaries of rows. The GROUP BY and HAVING clauses are used to show
results about groups of rows rather than individual rows.

Example 4.18 depicts the GROUP BY clause to summarize groups of rows. Each
result row contains a value of the grouping column (StdMajor) along with the aggre-
gate calculation summarizing rows with the same value for the grouping column.
The GROUP BY clause must contain every column in the SELECT clause except for
aggregate expressions. For example, adding the StdClass column in the SELECT clause
would make Example 4.18 invalid unless StdClass was also added to the GROUP BY
clause.

Example 418

Grouping on a Single Column

Summarize the averageGPA of students by major.

SELECT StdMajor, AVG(StdGPA) AS AvgGPA
FROM Student
GROUP BY StdMajor

StdMajor AvgGPA

ACCT 3.39999997615814
FIN 2.80000003178914
IS 3.23333330949148

GROUP BY Reminder: the columns in the SELECT clause must either be in the GROUP
BY clause or be part of a summary calculation with an aggregate function.

Table 4-9 shows the standard aggregate functions. If you have a statistical calculation
that cannot be performed with these functions, check your DBMS. Most DBMSs fea-
ture many functions beyond these standard ones.

94 Part2 Understanding Relational Databases

TABLE 4-9
Standard Aggregate Aggregate Function Meaning and Comments

Functions COUNT(") Computes the number of rows.

COUNT(column) Counts the non-null values in column; DISTINCT can be used to count unique
column values.

AVG Computes the average of a numeric column or expression excluding null values;
DISTINCT can be used to compute the average of unique column values.

SUM Computes the sum of a numeric column or expression excluding null values;
DISTINCT can be used to compute the sum of unique column values.

MIN Computes the smallest value. For string columns, the collating sequence is used
to compare strings.

MAX Computes the largest value. For string columns, the collating sequence is used
to compare strings.

The COUNT, AVG, and SUM functions support the DISTINCT keyword to restrict
the computation to unique column values. Example 4.19 demonstrates the DISTINCT
keyword for the COUNT function. This example retrieves the number of offerings in a
year as well as the number of distinct courses taught. Some DBMSs such as Microsoft
Access do not support the DISTINCT keyword inside of aggregate functions. Chapter
9 presents an alternative formulation in Access SQL to compensate for the inability to
use the DISTINCT keyword inside the COUNT function.

COUNT Function Usage: COUNT(*) and COUNT(column) produce identical results
except when “column” contains null values. See Chapter 9 for more details about the
effect of null values on aggregate functions.

Example 4.19 (Oracle)

Counting Rows and Unique

Column Values

Summarize the number of offerings and unique courses by year.

SELECT OffYear, COUNT(*) AS NumOfferings,
COUNT(DISTINCT CourseNo) AS NumCourses

FROM Offering

GROUP BY OffYear

OffYear NumOfferings NumCourses

2016 3 2
2017 10 6

Examples 4.20 and 4.21 contrast the WHERE and HAVING clauses. In Example
4.20, the WHERE clause selects upper-division students (juniors or seniors) before
grouping on major. Because the WHERE clause eliminates students before grouping
occurs, only upper-division students are grouped. In Example 4.21, a HAVING condi-
tion retains groups with an average GPA greater than 3.1. The HAVING clause applies
to groups of rows, whereas the WHERE clause applies to individual rows. To use a
HAVING clause, there must be a GROUP BY clause.

Chapter 4 Query Formulation with SQL 95

WHERE vs. HAVING: use the WHERE clause for conditions that can be tested on
individual rows. Use the HAVING clause for conditions that can be tested only on
groups. Conditions in the HAVING clause should involve aggregate functions, whereas
conditions in the WHERE clause cannot involve aggregate functions.

Example 4.20

Grouping with Row Conditions

Summarize the average GPA of upper division (junior or senior) students by major.

SELECT StdMajor, AVG(StdGPA) AS AvgGpa
FROM Student
WHERE StdClass = "JR" OR StdClass = "SR"
GROUP BY StdMajor

StdMajor AvgGPA

ACCT 35
FIN 2.80000003178914
IS 314999997615814

Example 4.21

Grouping with Row and Group Conditions

Summarize the average GPA of upper-division (junior or senior) students by major. Only list the majors with average GPA greater
than 3.1.

SELECT StdMajor, AVG(StdGPA) AS AvgGpa
FROM Student
WHERE StdClass IN ("JR", "SR")
GROUP BY StdMajor
HAVING AVG(StdGPA) > 3.1

StdMajor AvgGPA

ACCT 35
IS 3.14999997615814

HAVING Reminder: the HAVING clause must be preceded by the GROUP BY clause.

One other point about Examples 4.20 and 4.21 is the use of the OR operator as com-
pared to the IN operator (set element of operator). The WHERE condition in Examples
4.20 and 4.21 retains the same rows. The IN condition is true if StdClass matches any
value in the parenthesized list. Chapter 9 provides additional explanation about the
IN operator for nested queries.

96 Part2 Understanding Relational Databases

To summarize all rows, aggregate functions can be used in SELECT clause with-
out a GROUP BY clause as demonstrated in Example 4.22. The result contains a single
row with just the aggregate calculations for all rows in the result before computing the
aggregate functions.

Example 4.22

Grouping all Rows

List the number of upper-division students and their average GPA.

SELECT COUNT(*) AS StdCnt, AVG(StdGPA) AS AvgGPA
FROM Student
WHERE StdClass IN ("JR","SR")

StdCnt AvgGPA

8 3.0625
Sometimes it is useful to group on more than one column as demonstrated by
Example 4.23. The result shows one row for each combination of StdMajor and Std-
Class. Some rows have the same value for both aggregate calculations because there is
only one associated row in the Student table. For example, there is only one row for the
combination ('ACCT", 'JR").
Example 4.23

Grouping on Two Columns

Summarize the minimum and maximum GPA of students by major and class.

SELECT StdMajor, StdClass, MIN(StdGPA) AS MinGPA,
MAX(StdGPA) AS MaxGPA
FROM Student
GROUP BY StdMajor, StdClass

StdMajor StdClass MiIinGPA MaxGPA

ACCT JR 35 35
ACCT SO 3.3 3.3
FIN JR 25 27
FIN SR 32 32
IS FR 3 3.0
IS JR 36 36
IS SO 3.8 3.8
IS SR 2.2 4.0

A powerful combination is to use grouping with joins. There is no reason to restrict
grouping to just one table. Often, more useful information is obtained by summariz-
ing rows that result from a join. Example 4.24 demonstrates grouping applied to a join
between Course and Offering. You should note that the join is performed before the

Chapter 4 Query Formulation with SQL 97

grouping occurs. For example, after the join, the result contains six rows with a course
description of FUNDAMENTALS OF BUSINESS PROGRAMMING. Because queries
combining joins and grouping can be difficult to understand, Section 4.3 provides a
more detailed explanation.

Example 4.24 (Access)

Combining Grouping and Joins

Summarize the number of IS course offerings by course description.

SELECT CrsDesc, COUNT(*) AS OfferCount

FROM Course, Offering

WHERE Course.CourseNo = Offering.CourseNo
AND Course.CourseNo LIKE ®IS**

GROUP BY CrsDesc

CrsDesc OfferCount
FUNDAMENTALS OF BUSINESS PROGRAMMING 6
FUNDAMENTALS OF DATABASE MANAGEMENT 2
SYSTEMS ANALYSIS 2

Example 4.24 (Oracle)

Combining Grouping and Joins

Summarize the number of IS course offerings by course description.

SELECT CrsDesc, COUNT(*) AS OfferCount

FROM Course, Offering

WHERE Course.CourseNo = Offering.CourseNo
AND Course.CourseNo LIKE ®IS%*"

GROUP BY CrsDesc

4.2.4 Improving the Appearance of Results

We finish this section with two parts of the SELECT statement that can improve the
appearance of results. Examples 4.25 and 4.26 demonstrate sorting using the ORDER
BY clause. The sort sequence depends on the date type of the sorted column (numeric
for numeric data types, ASCII collating sequence for string columns, and calendar
sequence for date columns). By default, sorting occurs in ascending order. The key-
word DESC can be used after a column name to sort in descending order as demon-
strated in Example 4.26.

Example 4.25

Sorting on a Single Column

List the GPA, name, city, and state of juniors. Order the result by GPA in ascending order.

SELECT StdGPA, StdFirstName, StdLastName, StdCity,
StdState
FROM Student
WHERE StdClass = "JR"
ORDER BY StdGPA

98 Part 2 Understanding Relational Databases

StdGPA StdFirstName StdLastName StdCity StdState

2.50 ROBERTO MORALES SEATTLE WA

270 BOB NORBERT BOTHELL WA

3.50 CANDY KENDALL TACOMA WA

360 MARIAH DODGE SEATTLE WA
Example 4.26

Sorting on Two Columns with

Descending Order

List the rank, salary, name, and department of faculty. Order the result by ascending (alphabetic) rank and descending salary.

SELECT FacRank, FacSalary, FacFirstName, FaclLastName,
FacDept
FROM Faculty
ORDER BY FacRank, FacSalary DESC

FacRank FacSalary FacFirstName FacLastName FacDept

ASSC 75000.00 JULIA MILLS FIN
ASSC 70000.00 LEONARD FIBON MS
ASST 40000.00 CRISTOPHER COLAN MS
ASST 35000.00 LEONARD VINCE MS
PROF 120000.00 VICTORIA EMMANUEL MS
PROF 65000.00 NICKI MACON FIN

Some students confuse ORDER BY and GROUP BY. In most DBMSs, GROUP BY
has the side effect of sorting by the grouping columns. You should not depend on this
side effect. If you just want to sort, use ORDER BY rather than GROUP BY. If you want
to sort and group, use both ORDER BY and GROUP BY.

Another way to improve the appearance of the result is to remove duplicate rows.
By default, SQL does not remove duplicate rows. Duplicate rows are not possible when
the primary keys of the result tables are included. There are a number of situations in
which the primary key does not appear in the result. Example 4.28 demonstrates the
DISTINCT keyword to remove duplicates that appear in the result of Example 4.27.

ORDER BY vs. DISTINCT: use the ORDER BY clause to sort a result table on one or
more columns. Use the DISTINCT keyword to remove duplicates in the result.

Example 4.27

Result with Duplicates

List the city and state of faculty members.

SELECT FacCity, FacState
FROM Faculty

Chapter 4 Query Formulation with SQL 99

FacCity FacState

SEATTLE WA
BOTHELL WA
SEATTLE WA
BELLEVUE WA
SEATTLE WA
SEATTLE WA

Example 4.28

Eliminating Duplicates with DISTINCT

List the unique city and state combinations in the Faculty table.

SELECT DISTINCT FacCity, FacState
FROM Faculty

FacCity FacState

BELLEVUE WA
BOTHELL WA
SEATTLE WA

4.3 CONCEPTUAL EVALUATION PROCESS FOR
SELECT STATEMENTS

To clarify the meaning of the SELECT statement, you should understand the
conceptual evaluation process or sequence of steps to produce the desired result. The
conceptual evaluation process describes operations (mostly relational algebra oper-
ations) that produce intermediate tables leading to a result table. You may find it use-
ful to refer to the conceptual evaluation process when first learning to write SELECT
statements. After you gain initial competence with the SELECT statement, you should
not need to refer to the conceptual evaluation process except to gain insight about dif-
ficult problems.

To demonstrate the conceptual evaluation process, Example 4.29 uses many parts
of the SELECT statement. It involves multiple tables (Enrollment and Offering in the
FROM clause), row conditions in the WHERE clause, aggregate functions (COUNT
and AVG) over groups of rows (GROUP BY), a group condition in the HAVING
clause, and sorting of the final result (ORDER BY).

In the ORDER BY clause, you should note number 3 as the second column to sort.
The number 3 means sort by the third column (AvgGrade) in the SELECT clause. Some
DBMSs do not allow aggregate expressions or alias names (AvgGrade) in the ORDER
BY clause.

Tables 4-10 to 4-12 show the input tables and the result. Only small input and
result tables have been used so that you can understand more clearly the process to
derive the result. Small tables can depict the conceptual evaluation process well.

The conceptual evaluation process involves a sequence of operations as indicated
in Figure 4.2. This process is conceptual rather than actual because most SQL compilers
can produce the same output using many shortcuts. Because the shortcuts are DBMS
specific, rather mathematical, and performance oriented, we will not review them. The
conceptual evaluation process provides a foundation for understanding the meaning

Conceptual Evaluation
Process

the sequence of operations
and intermediate tables
used to derive the result of
a SELECT statement. The
conceptual evaluation pro-
cess may help you gain an
initial understanding of the
SELECT statement as well as
help you to understand more
difficult problems.

100 Part 2 Understanding Relational Databases

of SQL statements, independent of SQL compiler and performance issues. The remain-
der of this section applies the conceptual evaluation process to Example 4.29.

1) The first step in the conceptual evaluation process combines the tables in the
FROM clause with the cross product and join operators. Example 4.29 uses
a cross product operation because two tables are listed. A join operation is
not used because the INNER JOIN keyword does not appear in the FROM
statement. Recall that the cross product operator shows all possible rows by
combining two tables. The resulting table contains the product of the number
of rows and the sum of the columns. In this case, the cross product contains
35 rows (5 x 7) and 7 columns (3+4). Table 4-13 shows a partial result. As an
exercise, you are encouraged to derive the entire result. As a notational shortcut
here, the table name (abbreviated as E and O) is prefixed before the column
name for OfferNo.

Example 4.29 (Access)

Depict Many Parts of the SELECT Statement

List the course number, offer number, and average grade of students enrolled in fall 2016, IS course offerings in which
more than one student is enrolled. Sort the result by course number in ascending order and average grade in descend-
ing order. The Oracle version of Example 4.29 is identical except for the % instead of the * as the wildcard character.

SELECT CourseNo, Offering.OfferNo,
AVG(EnrGrade) AS AvgGrade

FROM Enrollment, Offering

WHERE CourseNo LIKE "1S*" AND OffYear = 2016
AND OffTerm = "FALL"
AND Enrollment.OfferNo = Offering.OfferNo

GROUP BY CourseNo, Offering.OfferNo

HAVING COUNT(*) > 1

ORDER BY CourseNo, 3 DESC

TABLE 4-10

Sample Offering Table OfferNo CourseNo OffYear OffTerm
m 15480 2016 FALL
2222 1S480 2016 FALL
3353 IS320 2016 FALL
5555 1S480 2016 WINTER
6666 IS320 2016 SPRING

TABLE 4-11

Sample Enroliment Table StdNo OfferNo EnrGrade
M-11-11 m 31
m-n-mm 2222 35
M-11-111 ESEE 33
m-n-nmm 5555 3.8
222-22-2222 m 32
222-22-2222 2222 E

BESISEISEEE m 3.6

Chapter 4 Query Formulation with SQL 101

FROM Tables: FIGURE 4.2
Cross Product and @ Flowchart of the Conceptual
Join Operations Evaluation Process
A 4
Restriction
on WHERE @
Conditions
Compute
Sort on Aggregates Restriction
GROUP BY » and Reduce p on HAVING
Columns Each Group Conditions
to 1Row
Yes Sort
» Columnsin @
No ORDER BY
A 4
Project @
Columns in <
SELECT
Finish
TABLE 4-12
CourseNo OfferNo AvgGrade Example 4.22 Result
1S480 2222 34
1S480 mm 33

O.OfferNo CourseNo OffYear OffTerm StdNo E.OfferNo EnrGrade ;::Iaf F:::jlt of Step 1 for
M 15480 2016 FALL 1111111 1 31 First Two Offering Rows
M 1S480 2016 FALL M1 2222 35 (1 and 2222)

i 15480 2016 FALL M-11-1111 3333 33

i 15480 2016 FALL 111111 5555 3.8

11 1S480 2016 FALL 222-22-2222 1 3.2

11 1S480 2016 FALL 222-22-2222 2222 33

i 15480 2016 FALL 333-33-3333 1 36

2222 1S480 2016 FALL M-11-1111 M 31

2222 1S480 2016 FALL M-11-111 2222 35

2222 15480 2016 FALL 111111 3333 33

2222 1S480 2016 FALL M-11-111 5555 38

2222 1S480 2016 FALL 222-22-2222 1 3.2

2222 15480 2016 FALL 222-22-2222 2222 33

2222 1IS480 2016 FALL BEEIE8IEEEE m Bl6

102 Part 2 Understanding Relational Databases

N

) The second step uses a restriction operation to eliminate rows that do not satisfy
the conditions in the WHERE clause. The statement contains four conditions: a
join condition on OfferNo, a condition on CourseNo, a condition on OffYear, and
a condition on OffTerm. Note that the condition on CourseNo includes the
wildcard character (*). Course numbers beginning with “IS” match this
condition. Table 4-14 reduces the result to six rows from the 35 rows in
step 1 with the cross product operation.

W

) The third step sorts the result of step 2 by the columns specified in the GROUP
BY clause. The GROUP BY clause indicates that the output should relate to
groups of rows rather than individual rows. If the output relates to individual
rows rather than groups of rows, the GROUP BY clause is omitted. When using
the GROUP BY clause, you must include every column from the SELECT clause
except for expressions that involve an aggregrate function*. Table 4-15 shows the
result of step 2 sorted by CourseNo and O.OfferNo. Note that the columns have
been rearranged to make the result easier to read.

4) The fourth step is only necessary if there is a GROUP BY clause. The fourth
step computes aggregate function(s) for each group of rows and reduces each
group to a single row. All rows in a group have the same values for the GROUP
BY columns. Table 4-16 contains three groups {<15320,3333>, <IS480,1111>,
<15480,2222>} with computed columns added for aggregate functions in the
SELECT and HAVING clauses. Thus, Table 4-16 shows two new columns for the
AVG function in the SELECT clause and the COUNT function in the HAVING
clause. Note that remaining columns are eliminated at this point because they
are not needed in the remaining steps.

;:SBUT o‘:.;?ep 2 0O.OfferNo CourseNo OffYear OffTerm StdNo E.OfferNo EnrGrade
m 1S480 2016 FALL M-1-1m m 31
2222 1S480 2016 FALL M-11-11 2222 35
nm 1S480 2016 FALL 222-22-2222 mm 3.2
2222 1S480 2016 FALL 222-22-2222 2222 33
m 1S480 2016 FALL 333-33-3333 m 36
3333 1S320 2016 FALL M-1-1m 3333 33

TABLE 4-15

Result of Step 3 CourseNo O.OfferNo OffYear OffTerm StdNo E.OfferNo EnrGrade
1S320 3333 2016 FALL m-1-1m 3333 33
1S480 m 2016 FALL M-11-11 mm 31
1S480 m 2016 FALL 222-22-2222 m 3.2
1S480 m 2016 FALL 333-33-3333 m 36
1S480 2222 2016 FALL M-1-1m 2222 35
1S480 2222 2016 FALL 222-22-2222 2222 33

TABLE 4-16

Result of Step 4 CourseNo 0O.OfferNo AvgGrade Count(*)
1S320 3333 33 1
1S480 m 33 3
1S480 2222 34 2

*In other words, when using the GROUP BY clause, every column in the SELECT clause should either be in
the GROUP BY clause or be part of an expression with an aggregate function.

Chapter 4 Query Formulation with SQL 103

5) The fifth step eliminates rows that do not satisfy the HAVING condition.
Table 4-17 shows that the first row in Table 4-16 is removed because it fails
the HAVING condition. Note that the HAVING clause specifies a restriction
operation for groups of rows. The HAVING clause cannot be present without
a preceding GROUP BY clause. The conditions in the HAVING clause always
relate to groups of rows, not to individual rows. Conditions in the HAVING
clause should involve aggregate functions.

6) The sixth step sorts the results according to the ORDER BY clause. Note that
the ORDER BY clause is optional. Table 4-18 shows the result table after
sorting.

7) The seventh step performs a final projection. Columns appearing in the result
of step 6 are eliminated if they do not appear in the SELECT clause. Table 4-19
(identical to Table 4-12) shows the result after the projection of step 6. The
COUNT(*) column is eliminated because it does not appear in the SELECT
list. The seventh step (projection) occurs after the sixth step (sorting) because
the ORDER BY clause can contain columns that do not appear in the SELECT
list.

This section finishes by discussing three major lessons about the conceptual evalu-
ation process. These lessons are more important to remember than the specific details
about the conceptual process.

* GROUP BY conceptually occurs after WHERE. If you have an error in a SELECT
statement involving WHERE or GROUP BY, the problem is most likely in the
WHERE clause. You can check the intermediate results after the WHERE clause
by submitting a SELECT statement without the GROUP BY clause.

* Grouping occurs only one time in the evaluation process. If your problem
involves more than one independent aggregate calculation, you may need
more than one SELECT statement. Query requirements involving multiple
independent aggregate calculations are uncommon so this chapter does not cover
them.

* Using sample tables can help you analyze difficult problems. You should not
need to perform the entire evaluation process. Rather, you can use sample tables
to understand only the difficult part. Section 4.5 and Chapter 9 depict the use of
sample tables to help analyze difficult problems.

TABLE 4-17
CourseNo 0.OfferNo AvgGrade Count(*) Result of Step 5
1S480 m 3.3 3
1S480 2222 34 2

TABLE 4-18
CourseNo 0.OfferNo AvgGrade Count(*) Result of Step 6
1S480 2222 34 3
1S480 m 3.3 2

TABLE 4-19
CourseNo 0.0OfferNo AvgGrade Result of Step 7
1S480 2222 3.4

1S480 m 3.3

104 Part2 Understanding Relational Databases

4.4 CRITICAL QUESTIONS FOR QUERY FORMULATION

FIGURE 4.3
Query Formulation Process

The conceptual evaluation process depicted in Figure 4.2 should help you understand
the meaning of most SELECT statements, but it will probably not help you to formu-
late queries. Query formulation involves a conversion from a problem statement into
a statement of a database language such as SQL as shown in Figure 4.3. In between
the problem statement and the database language statement, you convert the problem
statement into a database representation. Typically, the difficult part is to convert the
problem statement into a database representation. This conversion involves a detailed
knowledge of a database especially tables, relationships, and data types along with
careful attention to possible ambiguities in a problem statement. The critical questions
presented in this section provide a structured process to convert a problem statement
into a database representation.

Critical Questions for Query Formulation: provide a checklist to convert a problem
statement into a database representation consisting of tables, columns, table connec-
tion operations, and row grouping requirements.

In converting from the problem statement into a database representation, you should
answer three critical questions. Table 4-20 summarizes the analysis of the critical
questions.

What tables are needed? For the first question, you should match data require-
ments to columns and tables. You should identify columns for output and conditions
as well as intermediate tables to connect other tables. For example, if you want to join
the Student and Offering tables, the Enrollment table should be included because it pro-
vides a connection to these tables. The Student and Offering tables cannot be combined
directly. All tables needed in the query should be listed in the FROM clause.

How are the tables combined? For the second question, most tables are combined
by a join operation. In Chapter 9, you will use the outer join, difference, and division
operators to combine tables. For now, you should concentrate on combining tables
with joins. You need to identify the matching columns for each join. In most joins, the
primary key of a parent table is matched with a foreign key of a related child table.
Occasionally, the primary key of the parent table contains multiple columns. In this
case, you need to match on all columns. In some situations, the matching columns do
not involve a primary key/foreign key combination. You can perform a join as long
as the matching columns have compatible data types. For example, when joining cus-
tomer tables from different databases, a common primary key may not exist. Joining
on other columns such as name, address, and so on may be necessary.

Does the output involve individual rows or groups of rows? For the third ques-
tion, you should look for computations involving aggregate functions in the problem
statement. For example, the problem “list the name and average grade of students”
contains an aggregate computation. Problems referencing an aggregate function indi-
cate that the output relates to groups of rows. Hence the SELECT statement requires
a GROUP BY clause. If the problem contains conditions with aggregate functions, a
HAVING clause should accompany the GROUP BY clause. For example, the problem

Database
Representation

Problem
Statement

Database Language
Statement

Chapter 4 Query Formulation with SQL 105

Question Analysis Tips

What tables are needed? Match columns to output data requirements and conditions to test. If tables
are not directly related, identify intermediate tables to provide a join path
between tables.

How are the tables com-
bined?

Most tables are combined using a primary key from a parent table to a
foreign key of a child table. More difficult problems may involve other join
conditions as well as other combining operators (outer join, difference, or
division).

Does the output involve
individual rows or groups
of rows?

Identify aggregate functions used in output data requirements and
conditions to test. A SELECT statement requires a GROUP BY clause if
aggregate functions are needed. If conditions involve aggregate functions,
the statement needs a HAVING clause.

“list the offer number of course offerings with more than 30 students” needs a HAV-
ING clause with a condition involving the COUNT function.

After answering these questions, you are ready to convert the database representa-
tion into a database language statement. To help in this process, you should develop a
collection of statements for each kind of relational algebra operator using a database
that you understand well. For example, you should have statements for problems that
involve join operations, joins with grouping, and joins with grouping conditions. As you
increase your understanding of SQL, this conversion will become easy for most prob-
lems. For difficult problems such as those discussed in Section 4.5 and Chapter 9, relying
on similar problems may be necessary because difficult problems are not common.

TABLE 4-20
Summary of Critical
Questions for Query
Formulation

4.5 REFINING QUERY FORMULATION SKILLS WITH EXAMPLES

Let’s apply your query formulation skills and knowledge of the SELECT statement to
more difficult problems. All problems in this section involve the parts of the SELECT
statement discussed in Sections 4.2 and 4.3. The problems involve more difficult
aspects such as joining more than two tables, grouping after joins of several tables,
joining a table to itself, and traditional set operators.

4.51 Joining Multiple Tables with the Cross Product Style

We begin with a number of join problems that are formulated using cross product
operations in the FROM clause. This way to formulate joins is known as the cross
product style because of the implied cross product operations. Query language com-
pilers recognize the join conditions in the WHERE clause so cross product operations
are not actually performed. The next subsection uses join operations in the FROM
clause to contrast the ways that joins can be expressed.

In Example 4.30, some student rows appear more than once in the result. For
example, Roberto Morales appears twice. Because of the 1-M relationship between the
Student and Enrollment tables, a Student row can match multiple Enrollment rows.

Example 4.30

Joining Two Tables

Cross Product Style

lists tables in the FROM
clause and join conditions

in the WHERE clause. The
cross product style is easy
to read but does not support
outer join operations.

List the student name, offering number, and grade of students who have a grade > 3.5 in a course offering.

SELECT StdFirstName, StdLastName, OfferNo, EnrGrade
FROM Student, Enrollment
WHERE EnrGrade >= 3.5

AND Student.StdNo = Enrollment.StdNo

106 Part2 Understanding Relational Databases

StdFirstName StdLastName OfferNo EnrGrade
CANDY KENDALL 1234 35
MARIAH DODGE 1234 3.8
HOMER WELLS 4321 35
ROBERTO MORALES 4321 35
BOB NORBERT 5679 37
ROBERTO MORALES 5679 3.8
MARIAH DODGE 6666 36
LUKE BRAZZI 7777 37
BOB NORBERT 9876 35
WILLIAM PILGRIM 9876 4.0

Examples 4.31 and 4.32 depict duplicate elimination after a join. In Example 4.31, some
students appear more than once. Because only columns from the Student table are used
in the output, duplicate rows appear. When you join a parent table to a child table and
show only columns from the parent table in the result, duplicate rows appear in the
result if a parent row matches with more than one child row. To eliminate duplicate

rows, you should use the DISTINCT keyword as shown in Example 4.32.
Example 4.31

Join with Duplicates

List the names of students who have a grade > 3.5 in a course offering.

SELECT StdFirstName, StdLastName
FROM Student, Enrollment
WHERE EnrGrade >= 3.5
AND Student.StdNo = Enrollment.StdNo

StdFirstName StdLastName

CANDY KENDALL
MARIAH DODGE
HOMER WELLS
ROBERTO MORALES
BOB NORBERT
ROBERTO MORALES
MARIAH DODGE
LUKE BRAZZI
BOB NORBERT
WILLIAM PILGRIM

Example 4.32

Join with Duplicates Removed

List the student names (without duplicates) that have a grade > 3.5 in a course offering.

SELECT DISTINCT StdFirstName, StdLastName
FROM Student, Enrollment
WHERE EnrGrade >= 3.5

AND Student.StdNo = Enrol Iment.StdNo

Chapter 4 Query Formulation with SQL 107

StdFirstName StdLastName

BOB NORBERT
CANDY KENDALL
HOMER WELLS
LUKE BRAZZI
MARIAH DODGE
ROBERTO MORALES
WILLIAM PILGRIM

Examples 4.33 through 4.36 depict problems involving more than two tables. In
these problems, it is important to identify the tables in the FROM clause. You should
examine conditions to test as well as columns in the result. In Example 4.35, the Enroll-
ment table is needed even though it does not supply columns in the result or conditions
to test. The Enrollment table is needed to connect the Student table with the Offering
table. Example 4.36 extends Example 4.35 with details from the Course table. All five
tables are needed to supply outputs, to test conditions, and to connect other tables.

Example 4.33

Joining Three Tables with Columns

from Only Two Tables

List the student name and the offering number in which the grade is greater than 3.7 and the offering is given in fall 2016.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
FROM Student, Enrollment, Offering
WHERE Student.StdNo = Enrollment.StdNo
AND Offering.OfferNo = Enrollment.OfferNo
AND OffYear = 2016 AND OffTerm = “FALL®
AND EnrGrade >= 3.7

StdFirstName StdLastName OfferNo
MARIAH DODGE 1234

Example 4.34

Joining Three Tables with Columns

from Only Two Tables

List Leonard Vince's teaching schedule in fall 2016. For each course, list the offering number, course number, number of units,
days, location, and time.

SELECT OfferNo, Offering.CourseNo, CrsUnits, OffDays,
OffLocation, OffTime

FROM Faculty, Course, Offering

WHERE Faculty.FacNo = Offering.FacNo
AND Offering.CourseNo = Course.CourseNo
AND OffYear = 2016 AND OffTerm = “FALL"
AND FacFirstName = "LEONARD"
AND FacLastName = “VINCE*"

108 Part 2 Understanding Relational Databases

OfferNo CourseNo CrsUnits OffDays OffLocation
1234 1S320 4 MW BLM302
4321 1S320 4 TTH BLM214

OffTime

10:30 AM
3:30 PM

Example 4.35

Joining Four Tables

List Bob Norbert’s course schedule in spring 2017. For each course, list the offering number, course number, days, location, time,

and faculty name.

SELECT Offering.OfferNo, Offering.CourseNo, OffDays,
OffLocation, OFfTime, FacFirstName, FaclLastName
FROM Faculty, Offering, Enrollment, Student

WHERE Offering.OfferNo = Enrollment.OfferNo

AND Student.StdNo = Enrollment.StdNo

AND Faculty.FacNo = Offering.FacNo

AND OffYear = 2017 AND OffTerm = "SPRING"

AND StdFirstName = "BOB"

AND StdLastName = "NORBERT"

CourseNo OffDays OffLocation FacFirstName FacLastName
5679 1S480 TTH BLM412 3:30 PM CRISTOPHER COLAN
9876 1S460 TTH BLM307 1:30 PM LEONARD FIBON
Example 4.36

Joining Five Tables

List Bob Norbert’s course schedule in spring 2017. For each course, list the offering n
course units, and faculty name.

SELECT Offering.OfferNo, Offering.CourseNo, OffDays,
OffLocation, OffTime, CrsUnits, FacFirstName,
FacLastName

FROM Faculty, Offering, Enrollment, Student,
WHERE Faculty.FacNo Offering.FacNo
AND Offering.OfferNo Enrollment.OfferNo
AND Student.StdNo Enrol Iment.StdNo
AND Offering.CourseNo Course.CourseNo
AND “SPRING*
AND
AND

Course

OffYear = 2017 AND OffTerm =
“BOB*
"NORBERT*

StdFirstName =
StdLastName =

umber, course number, days, location, time,

CourseNo OffDays OffLocation OffTime CrsUnits FacFirstName FacLastName
5679 1S480 TTH BLM412 3:30 PM 4 CRISTOPHER COLAN
9876 1S460 TTH BLM307 1:30 PM 4 LEONARD FIBON

Chapter 4 Query Formulation with SQL 109

Example 4.37 demonstrates another way to combine the Student and Faculty tables.
In Example 4.35, you saw it was necessary to combine the Student, Enrollment, Offering,
and Faculty tables to find faculty teaching a specified student. To find students who are
on the faculty (perhaps teaching assistants), the tables can be joined directly. Combin-
ing the Student and Faculty tables in this way is similar to an intersection operation.
However, intersection cannot actually be performed here because the Student and Fac-
ulty tables are not union compatible.

Example 4.37

Joining Two Tables without Matching

on a Primary and Foreign Key

List students who are on the faculty. Include all student columns in the result.

SELECT Student.*
FROM Student, Faculty
WHERE StdNo = FacNo

StdNo

876-54-3210 CRISTOPHER COLAN

StdFirstName StdLastName StdCity StdState StdMajor StdClass StdGPA
SEATTLE WA IS SR 4.00

StdZip
98114-1332

A minor point about Example 4.37 is the use of the * after the SELECT keyword.
Prefixing the * with a table name and period indicates all columns of the specified table

are in the result. Using an * without a table name prefix indicates that all columns from
all FROM tables are in the result.

4.5.2 Joining Multiple Tables with the Join Operator Style

As demonstrated in Section 4.2, join operations can be expressed directly in the FROM
clause using the INNER JOIN and ON keywords. This join operator style can be
used to combine any number of tables. To ensure that you are comfortable using this
style, this subsection presents examples of multiple table joins beginning with a two-
table join in Example 4.38. Note that these examples do not execute in older Oracle
versions (before 9i).

Example 4.38 (Access and Oracle)

Join Two Tables Using the Join

Operator Style

Join Operator Style

lists join operations in

the FROM clause using

the INNER JOIN and ON
keywords. The join operator
style can be somewhat dif-
ficult to read for statements
with many join operations,
but it supports outer join
operations as shown in
Chapter 9.

Retrieve the name, city, and grade of students who have a high grade (greater than or equal to 3.5) in a course offering.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
FROM Student INNER JOIN Enrollment

ON Student.StdNo = Enrollment.StdNo
WHERE EnrGrade >= 3.5

110 Part 2 Understanding Relational Databases

StdFirstName StdLastName StdCity EnrGrade
CANDY KENDALL TACOMA 35
MARIAH DODGE SEATTLE 3.8
HOMER WELLS SEATTLE 35
ROBERTO MORALES SEATTLE 35
BOB NORBERT BOTHELL 37
ROBERTO MORALES SEATTLE 3.8
MARIAH DODGE SEATTLE 36
LUKE BRAZZI SEATTLE 37
BOB NORBERT BOTHELL 35
WILLIAM PILGRIM BOTHELL 4.0

The join operator style can be extended to handle any number of tables. Think of
the join operator style as writing a mathematical formula with lots of parentheses. To
add another part to the formula, you need to add the variable, operator, and another
level of parentheses. For example, with the formula (X + Y) * Z, you can add another
operation as (X +Y) * Z) / W. This same principle can be applied with the join opera-
tor style. Examples 4.39 and 4.40a extend Example 4.38 with additional conditions
that need other tables. In both examples, another INNER JOIN is added to the end of
the previous INNER JOIN operations. The INNER JOIN could also have been added
at the beginning or middle if desired. The ordering of INNER JOIN operations is not
important.

Example 4.39 (Access and Oracle)

Join Three Tables using the

Join Operator Style

Retrieve the name, city, and grade of students who have a high grade (greater than or equal 3.5) in a course offered in fall
2016.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
FROM (Student INNER JOIN Enrollment
ON Student.StdNo = Enrollment.StdNo)
INNER JOIN Offering
ON Offering.OfferNo = EnrolIment.OfferNo
WHERE EnrGrade >= 3.5 AND OffTerm = “FALL"
AND OffYear = 2016

StdFirstName StdLastName StdCity EnrGrade
CANDY KENDALL TACOMA 35
MARIAH DODGE SEATTLE 3.8
HOMER WELLS SEATTLE 35

ROBERTO MORALES SEATTLE Ei5

Chapter 4 Query Formulation with SQL "1

Example 4.40a (Access and Oracle)

Join Four tables Using the

Join Operator Style

Retrieve the name, city, and grade of students who have a high grade (greater than or equal to 3.5) in a course offered in fall
2016 taught by Leonard Vince.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
FROM ((Student INNER JOIN Enrollment
ON Student.StdNo = Enrollment.StdNo)
INNER JOIN Offering
ON Offering.-OfferNo = Enrollment.OfferNo)

INNER JOIN Faculty ON Faculty.FacNo = Offering.FacNo
WHERE EnrGrade >= 3.5 AND OffTerm = “FALL"

AND OffYear = 2016 AND FacFirstName = “LEONARD"

AND FaclLastName = “VINCE®"

StdFirstName StdLastName StdCity EnrGrade
CANDY KENDALL TACOMA 35
MARIAH DODGE SEATTLE 3.8
HOMER WELLS SEATTLE 35
ROBERTO MORALES SEATTLE 35

Parentheses makes the join operator style cumbersome. Because the order of exe-
cuting join operations does not matter, parentheses should not be required. Oracle
does not requ8ire parentheses, consistent with the definition of the join operator. How-
ever, Microsoft Access SQL still requires parentheses, inconsistent with the definition
of the join operator. Example 4.40b is identical to Example 4.40a except for the lack of
parentheses in the FROM clause.

Example 4.40b (Oracle only)

Join Four Tables using the Join Operator

Style without Parentheses. This statement
generates a syntax error in Access.

Retrieve the name, city, and grade of students who have a high grade (greater than or equal to 3.5) in a course offered in fall
2016 taught by Leonard Vince.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
FROM Student INNER JOIN Enrollment
ON Student.StdNo = Enrollment.StdNo
INNER JOIN Offering
ON Offering.OfferNo = Enrollment.OfferNo

INNER JOIN Faculty ON Faculty.FacNo = Offering.FacNo
WHERE EnrGrade >= 3.5 AND OffTerm = "FALL"

AND OffYear = 2016 AND FacFirstName = “LEONARD"

AND FaclLastName = “"VINCE®"

The cross product and join operator styles can be mixed as demonstrated in Exam-
ple 4.41. In most cases, it is preferable to use only one style. Mixing styles can confuse
the reader of the statement. You may also forget the join conditions in the WHERE
clause leading to excessive resource consumption and many extra rows in the result.

112 Part2 Understanding Relational Databases

Example 4.41 (Access and Oracle)

Combine the Cross Product

and Join Operator Styles

Retrieve the name, city, and grade of students who have a high grade (greater than or equal to 3.5) in a course offered in fall
2016 taught by Leonard Vince (same result as Example 4.33).

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
FROM ((Student INNER JOIN Enrollment
ON Student.StdNo = Enrollment.StdNo)
INNER JOIN Offering
ON Offering.OfferNo = Enrollment.OfferNo),
Faculty
WHERE EnrGrade >= 3.5 AND OffTerm = "FALL"
AND OffYear = 2016 AND FacFirstName = "LEONARD"
AND FaclLastName = “VINCE*®
AND Faculty.FacNo = Offering.FacNo

The choice between the cross product and the join operator styles is largely a mat-
ter of preference. In the cross product style, it is easy to see the tables in the SELECT
statement. The cross product style has been criticized because users sometimes forget
a join condition in the WHERE clause leading to a disk intensive cross product opera-
tion. For multiple joins, the join operator style can be difficult to read because of nested
parentheses. The primary advantage of the join operator style is that you can formu-
late queries involving outer joins as described in Chapter 9.

You should be comfortable reading both join styles even if you only write SQL
statements using one style. You may need to maintain statements written with both
styles. In addition, some visual query languages generate code in one of the styles. For
example, Query Design, the visual query language of Microsoft Access, generates code
in the join operator style.

4.5.3 Self-Joins and Multiple Joins between Two Tables

Self-Join Example 4.42 demonstrates a self-join, a join involving a table with itself. A self-join
a join between a table and is necessary to find relationships among rows of the same table. The foreign key, Fac-
itself (two copies of the same Gy perpisor, shows relationships among Faculty rows. To find the supervisor name of
table). Selfjoins are useful a faculty member, match on the FacSupervisor column with the FacNo column. You
for finding relationships
among rows of the same should formulate the statement imagining that you are working with two copies of the
table. Faculty table. One copy plays the role of the subordinate, while the other copy plays
the role of the superior. In SQL, a self-join requires alias names (Subr and Supr) in the

FROM clause to distinguish between the two roles or copies.

Example 4.42
Self-join

List faculty members who have a higher salary than their supervisor. List the faculty number, name, and salary of the faculty and
supervisor.

SELECT Subr.FacNo, Subr.FacLastName, Subr.FacSalary,
Supr.FacNo, Supr.FaclLastName, Supr.FacSalary
FROM Faculty Subr, Faculty Supr
WHERE Subr.FacSupervisor = Supr.FacNo
AND Subr.FacSalary > Supr.FacSalary

Chapter 4 Query Formulation with SQL 13

Subr.FacNo Subr.FacLastName Subr.FacSalary Supr.FacNo Supr.FacLastName Supr.FacSalary

987-65-4321 MILLS 75000.00 765-43-2109 MACON 65000.00

Problems involving selfjoins can be difficult to understand. If you are having
trouble understanding Example 4.42, use the conceptual evaluation process to help.
Start with a small Faculty table. Copy this table and use the names Subr and Supr to
distinguish between the two copies. Join the two tables over Subr.FacSupervisor and
Supr.FacNo. If you need, derive the join using a cross product operation. You should
be able to see that each result row in the join shows a subordinate and supervisor pair.

Problems involving self-referencing (unary) relationships are part of hierarchical
queries. In hierarchical queries, a table can be visualized as a tree structure in which
every row has at most one parent row. For example, the Faculty table has a structure
showing an organization hierarchy. At the top, the college dean resides. At the bottom,
faculty members without subordinates reside. Similar structures apply to the chart of
accounts in accounting systems, part structures in manufacturing systems, and route
networks in transportation systems.

A more difficult problem than a self-join is to find all subordinates (direct or indi-
rect) in an organization hierarchy. This problem can be solved with the SELECT state-
ment shown in this chapter if the number of subordinate levels is known. One join
for each subordinate level is needed. Without knowing the number of subordinate
levels, this problem cannot be done in SQL-92 although it can be solved in SQL:2016
using recursive common table expressions or proprietary SQL extensions. In SQL-92,
tree-structured queries can be solved by using SQL inside a programming language.
Chapter 9 provides details about formulation of hierarchical queries using both recur-
sive common table expressions and proprietary Oracle SQL extensions.

Example 4.43 shows another difficult join problem. This problem involves two joins
between the same two tables (Offering and Faculty). Alias table names (O1 and O2) are
needed to distinguish between the two copies of the Offering table used in the statement.

Example 4.43

More Than One Join between

Tables using Alias Table Names

List the names of faculty members and the course number for which the faculty member teaches the same course number as his
or her supervisor in 2017.
SELECT FacFirstName, FaclLastName, 01.CourseNo
FROM Faculty, Offering 01, Offering 02
WHERE Faculty.FacNo = 01.FacNo
AND Faculty.FacSupervisor = 02.FacNo
AND O1.0ffYear = 2017 AND 02.0ffYear = 2017
AND O1.CourseNo = 02.CourseNo

FacFirstName FacLastName CourseNo

LEONARD VINCE 1S320
LEONARD FIBON 1S320

If this problem is too difficult, you should use the conceptual evaluation process
(Figure 4.2) with sample tables to gain insight. Perform a join between the sample Fac-
ulty and Offering tables, then join this result to another copy of Offering (O2) matching

114 Part2 Understanding Relational Databases

FacSupervisor with O2.FacNo. In the resulting table, select the rows that have matching
course numbers and year equal to 2017.

4.5.4 Combining Joins and Grouping

Example 4.44 demonstrates the reason it is sometimes necessary to group on multiple
columns. After studying Example 4.44, you might be confused about the necessity
to group on both OfferNo and CourseNo. One simple explanation is that any col-
umn appearing in a SELECT list must be either a grouping column or an aggregrate
expression. However, this explanation does not quite tell the entire story. Grouping
on OfferNo alone produces the same values for the computed column (NumStudents)
because OfferNo is the primary key. Including non-unique columns such as CourseNo
adds information to each result row but does not change the aggregate calculations. If
you do not understand this point, use sample tables to demonstrate it. When evaluat-
ing your sample tables, remember that joins occur before grouping as indicated in the
conceptual evaluation process.

Example 4.44

Join with Grouping on Multiple Columns

List the course number, the offering number, and the number of students enrolled. Only include courses offered in spring 2017.

SELECT CourseNo, Enrollment.OfferNo,
Count(*) AS NumStudents
FROM Offering, Enrollment
WHERE Offering.OfferNo = Enrollment.OfferNo
AND OffYear = 2017 AND OffTerm = “SPRING"
GROUP BY Enrollment.OfferNo, CourseNo

CourseNo OfferNo NumStudents

FIN480 7777 3
1S460 9876 7
1S480 5679 6

Example 4.45 demonstrates another problem involving joins and grouping. An
important part of this problem is the need for the Student table and the HAVING con-
dition. They are needed because the problem statement refers to an aggregate function
involving the Student table.

Example 4.45

Joins, grouping, and a grouping condition

List the course number, offer number, and average student GPA for course offerings taught in fall 2016 in which the average
GPA is greater than 3.0.

SELECT CourseNo, Enrollment.OfferNo,
Avg(StdGPA) AS AvgGPA
FROM Student, Offering, Enrollment
WHERE Offering.OfferNo = Enrollment.OfferNo
AND Enrollment.StdNo = Student.StdNo
AND OffYear = 2016 AND OffTerm = “FALL"
GROUP BY CourseNo, Enrollment.OfferNo
HAVING Avg(StdGPA) > 3.0

Chapter 4 Query Formulation with SQL 15

CourseNo OfferNo AvgGPA

1IS320 1234 325
1S320 4321 3.03

Example 4.46 demonstrates a problem involving grouping on a computed col-
umn, the hiring year of the faculty. This problem requires a different formulation in
Access and Oracle because the functions to extract the year component (year func-
tion in Access and to_char function in Oracle) are different. In both formulations, the
grouping column must be the expression, not the result column name (FacHireYear).
You will get a syntax error if the result column name is used instead of the expression.

Example 4.46 (Access)

Joins and grouping on a computed column

List the hiring year, offering year, and number of course offerings taught by faculty hired after 2003. The year function extracts
the year component of a date column.

SELECT year(FacHireDate) AS FacHireYear, OffYear,
COUNT(*) as NumCourses
FROM Offering, Faculty
WHERE Offering.FacNo = Faculty.FacNo
AND year(FacHireDate) > 2003
GROUP BY year(FacHireDate), OffYear

FacHireYear OffYear NumCourses

2004 2016 2
2004 2017 1
2005 2017 1
2006 2017 2
2008 2017 1
2009 2017 2

Example 4.46 (Oracle)

Joins and grouping on a computed column

List the hiring year, offering year, and number of course offerings taught by faculty hired after 2003. The to_char function
extracts the year component of a date column using the “YYYY"” format string.

SELECT to_number(to_char(FacHireDate, "YYYY"))
AS FacHireYear, OffYear, COUNT(*) as NumCourses
FROM Offering, Faculty
WHERE Offering.FacNo = Faculty.FacNo
AND to_number(to_char(FacHireDate, "YYYY®")) > 2003
GROUP BY to_number(to_char(FacHireDate, “YYYY")),
OffYear

4.5.5 Traditional Set Operators in SQL

In SQL, you can directly use the traditional set operators with the UNION, INTER-
SECT, and EXCEPT keywords. Some DBMSs including Microsoft Access do not sup-
port the INTERSECT and EXCEPT keywords. As with relational algebra, you must

116 Part 2 Understanding Relational Databases

ensure that the tables are union compatible. In SQL, you can use a SELECT statement
to make tables compatible by listing only compatible columns. Examples 4.47 through
4.49 demonstrate set operations on column subsets of the Faculty and Student tables.
The columns have been renamed to avoid confusion.

Example 4.47

UNION Query

Show all faculty and students. Only show the common columns in the result.

SELECT FacNo AS PerNo, FacFirstName AS FirstName,
FacLastName AS LastName, FacCity AS City,
FacState AS State

FROM Faculty
UNION

SELECT StdNo AS PerNo, StdFirstName AS FirstName,
StdLastName AS LastName, StdCity AS City,
StdState AS State

FROM Student

PerNo FirstName LastName City State
098765432 LEONARD VINCE SEATTLE WA
123456789 HOMER WELLS SEATTLE WA
124567890 BOB NORBERT BOTHELL WA
234567890 CANDY KENDALL TACOMA WA
345678901 WALLY KENDALL SEATTLE WA
456789012 JOE ESTRADA SEATTLE WA
543210987 VICTORIA EMMANUEL BOTHELL WA
567890123 MARIAH DODGE SEATTLE WA
654321098 LEONARD FIBON SEATTLE WA
678901234 TESS DODGE REDMOND WA
765432109 NICKI MACON BELLEVUE WA
789012345 ROBERTO MORALES SEATTLE WA
876543210 CRISTOPHER COLAN SEATTLE WA
890123456 LUKE BRAZZI SEATTLE WA
901234567 WILLIAM PILGRIM BOTHELL WA
987654321 JULIA MILLS SEATTLE WA

Example 4.48 (Oracle only)

INTERSECT Query

Show teaching assistants, graduate students who also teach courses so they appear in both Student and Faculty tables. Only
show the common columns in the result.

SELECT FacNo AS PerNo, FacFirstName AS FirstName,
FacLastName AS LastName, FacCity AS City,
FacState AS State

FROM Faculty
INTERSECT

SELECT StdNo AS PerNo, StdFirstName AS FirstName,
StdLastName AS LastName, StdCity AS City,
StdState AS State

FROM Student

Chapter 4 Query Formulation with SQL 17

PerNo FirstName LastName City State
876543210 CRISTOPHER COLAN SEATTLE WA

Example 4.49 (Oracle only)

Difference Query

Show faculty who are not students (faculty who are not graduate students). Only show the common columns in the result. Oracle
uses the MINUS keyword instead of the EXCEPT keyword used in SQL:2016.

SELECT FacNo AS PerNo, FacFirstName AS FirstName,
FacLastName AS LastName, FacCity AS City,
FacState AS State

FROM Faculty
MINUS

SELECT StdNo AS PerNo, StdFirstName AS FirstName,
StdLastName AS LastName, StdCity AS City,
StdState AS State

FROM Student

PerNo FirstName LastName City State
098765432 LEONARD VINCE SEATTLE WA
543210987 VICTORIA EMMANUEL BOTHELL WA
654321098 LEONARD FIBON SEATTLE WA
765432109 NICKI MACON BELLEVUE WA
987654321 JULIA MILLS SEATTLE WA

By default, duplicate rows are removed in the results of SQL statements with the
UNION, INTERSECT, and EXCEPT (MINUS) keywords. If you want to retain dupli-
cate rows, use the ALL keyword after the operator. For example, the UNION ALL
keyword performs a union operation but does not remove duplicate rows.

4.6 SQL MODIFICATION STATEMENTS

The modification statements support adding new rows (INSERT), changing columns
in one or more rows (UPDATE), and deleting one or more rows (DELETE). Although
well designed and powerful, they are not as widely used as the SELECT statement
because data entry forms are easier to use for most users.

The INSERT statement has two formats as demonstrated in Examples 4.50 and
4.51. In the first format, one row at a time can be added. You specify values for each
column with the VALUES clause. You must format the constant values appropriately
for each column. Refer to the documentation of your DBMS for details about specify-
ing constants, especially string and date constants. Specifying a null value for a col-
umn is also not standard across DBMSs. In some DBMSs, you simply omit the column
name and the value. In other systems, you use a particular symbol for a null value. Of
course, you must be careful that the table definition permits null values for the column
of interest. Otherwise, the INSERT statement will be rejected.

118 Part 2 Understanding Relational Databases

Example 4.50

Single Row Insert

Insert a row into the Student table supplying values for all columns.

INSERT INTO Student
(StdNo, StdFirstName, StdLastName,
StdCity, StdState, StdZip, StdClass, StdMajor, StdGPA)
VALUES ("999999999", "JOE", "STUDENT®", ®SEATAC",
“"WA", "98042-1121°, "FR", "IS", 0.0)

The second format of the INSERT statement supports addition of a set of records
as shown in Example 4.51. Using the SELECT statement inside the INSERT statement,
you can specify any derived set of rows. You can use the second format when you
want to create temporary tables for specialized processing.

Example 4.51

Multiple Row Insert

Assume a new table /SStudent has been previously created. ISStudent has the same columns as Student. This INSERT statement
copies rows from Student into ISStudent.

INSERT INTO 1SStudent
SELECT * FROM Student WHERE StdMajor = "IS*

The UPDATE statement allows one or more rows to be changed, as shown in
Examples 4.52 and 4.53. Any number of columns can be changed, although typically
only one column at a time is changed. When changing the primary key, update rules
on referenced rows may not allow the operation.

Example 4.52

Single Column Update

Give faculty members in the MS department a 10 percent raise. Four rows are updated.

UPDATE Faculty
SET FacSalary
WHERE FacDept

FacSalary * 1.1
“MS*"

Example 4.53

Update Multiple Columns

Change the major and class of Homer Wells. One row is updated.

UPDATE Student
SET StdMajor = "ACCT", StdClass = "SO*
WHERE StdFirstName = "HOMER®

AND StdLastName = “WELLS*

Chapter 4 Query Formulation with SQL 19

The DELETE statement allows one or more rows to be removed, as shown in
Examples 4.54 and 4.55. DELETE is subject to the rules on referenced rows. For exam-
ple, a Student row cannot be deleted if related Enrollment rows exist and the deletion
action is restrict.

Example 4.54

Delete Selected Rows

Delete all IS majors who are seniors. Three rows are deleted.

DELETE FROM Student
WHERE StdMajor = "1S® AND StdClass = "SR*

Example 4.55

Delete All Rows in a Table.

Delete all rows in the ISStudent table. This example assumes that the /SStudent table has been previously created.

DELETE FROM ISStudent

Sometimes it is useful for the condition inside the WHERE clause of an UPDATE
or DELETE statement to reference rows from another table. Microsoft Access supports
the join operator style to combine tables as shown in Examples 4.56 and 4.57. You can-
not use the cross product style inside an UPDATE or DELETE statement. Chapter 9
shows another way to reference other tables in an UPDATE or DELETE statement that
most DBMSs (including Access and Oracle) support.

Example 4.56 (Access only)

UPDATE Statement Using

the Join Operator Style

Update the location of offerings taught by Leonard Vince in 2016 to BLM412. Two Offering rows are updated.

UPDATE Offering INNER JOIN Faculty
ON Offering.FacNo = Faculty.FacNo
SET OffLocation = "BLM412*
WHERE OffYear = 2016 AND FacFirstName = “LEONARD"
AND FaclLastName = “"VINCE®"

Example 4.57 (Access only)

DELETE Statement Using

the Join Operator Style

Delete offerings taught by Leonard Vince. Three Offering rows are deleted. In addition, this statement deletes related rows in
the Enrollment table because the ON DELETE clause is set to CASCADE.

DELETE Offering.*
FROM Offering INNER JOIN Faculty
ON Offering.FacNo = Faculty.FacNo
WHERE FacFirstName = “LEONARD"
AND FaclLastName = “VINCE*"

120 Part2 Understanding Relational Databases

4.7 QUERY FORMULATION ERRORS AND CODING PRACTICES

To develop query formulation skills, this chapter presented many example statements
and guidelines. You should apply these guidelines and use these example statements
to learn SQL coding patterns. Example statements are useful to help you learn correct
syntax as well as coding patterns for complex query formulation problems especially
problems in section 4.5 and Chapter 9.

In many years of teaching query formulation, the author has found that correct
examples and guidelines are not sufficient. Students also need awareness of incor-
rect examples with various kinds of errors. Awareness of query formulation errors
can help avoid errors as well as diagnose incorrect statements, reducing frustration
and increasing confidence. Since even skilled professionals make errors, you should
remain vigilant about query formulation errors as your skills progress.

Table 4-21 summarizes major types of errors. Syntax errors are the most frustrat-
ing because your statement will not execute. Sometimes error messages from SQL
compilers are difficult to understand especially if a statement contains multiple syntax
errors. Redundancy and semantic errors are subtle because an SQL compiler does not
indicate an error. Errors of redundancy have least severity as the result contains cor-
rect rows but extra resource consumption occurs. Semantic errors are more severe as
the result contains incorrect rows, either too many rows or missing rows. Missing a
join condition is the worst error because of excessive resource consumption. A missing
join condition involves a cross product operation instead of a join. For large tables such
as student and enrollment tables for a major university, a missing join condition can
cause hours of excessive query execution time.

The remainder of this section presents examples of each type of error with identi-
fication of each error. You should try to find errors before seeing error identifications
in Table 4-22. The examples begin with syntax errors and progress to redundancy and
semantic errors.

TBLE 4-21 .
Summary of Major Error Error Type Typical Errors Severity
Types in Query Formulation Syntax Missing table, unqualified column name, misspelled No execution with sometimes
keyword, row condition in HAVING clause, missing confusing error message
column in GROUP BY clause, aggregate function in
a WHERE condition
Redundancy Extra table, unneeded GROUP BY clause Execution with correct rows but
extra resource consumption
Semantic Missing row condition, missing parentheses, incor- Execution but incorrect rows
rect condition, missing join condition in result; Sometimes excessive
resource consumption
Example 4.58

Misspelled Keywords

List the offer number, course number, and faculty number for course offerings scheduled in fall 2016. The Oracle SQL
compiler indicates “FROM keyword not found where expected”. The Access SQL compiler indicates “Syntax error (missing
operator) ...".

SELECT OfferNo, CourseNo, FacNo

FROMM Offering
WHERRE OFfTerm = “"FALL®" AND OffYear = 2016

Chapter 4 Query Formulation with SQL 121

Example 4.59

Unqualified Column Name

List the student name and offering number in which the grade is greater than 3.7 and the offering is given in fall 2016. The

Oracle SQL compiler indicates “column ambiguously defined”. The Access SQL compiler indicates “The specified field ‘OfferNo’
could refer to more than one table ...".

SELECT StdFirstName, StdLastName, OfferNo
FROM Student, Enrollment, Offering
WHERE Student.StdNo = Enrollment.StdNo

AND Offering.OfferNo = Enrollment.OfferNo

AND OffYear = 2016 AND OffTerm = “FALL"
AND EnrGrade >= 3.7

Example 4.60

Missing Table

List the student name and the offering number in which the grade is greater than 3.7 and the offering occurred in fall 2016. The

Oracle SQL compiler indicates “EnrGrade; invalid identifier. The Access SQL compiler generates a window asking for a parameter
value.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
FROM Student, Offering

WHERE Student.StdNo = EnrolIment.StdNo
AND Offering.OfferNo = Enrollment.OfferNo

AND OffYear = 2016 AND OffTerm = “FALL"
AND EnrGrade >= 3.7

Example 4.61

Row Condition in HAVING Clause

List the course number, offer number, and average student GPA for course offerings taught in fall 2016 in which the average
GPA is greater than 3.0. The Oracle SQL compiler generates a syntax error indicating, “not a GROUP BY expression”. The Access

SQL compiler generates a syntax error indicating, “Your query does not include the specified expression as part of an aggregate
function”.

SELECT CourseNo, Enrollment.OfferNo,
Avg(StdGPA) AS AvgGPA

FROM Student, Offering, Enrollment

WHERE Offering.OfferNo = Enrollment.OfferNo

AND Enrollment.StdNo = Student.StdNo
AND OfFfTerm = “"FALL"

GROUP BY CourseNo, Enrollment.OfferNo
HAVING Avg(StdGPA) > 3.0 AND OffYear = 2016

122 Part2 Understanding Relational Databases

Example 4.62

Missing Column in GROUP BY Clause

List the course number, offer number, and average student GPA for course offerings taught in fall 2016 in which the average GPA is
greater than 3.0. The Oracle SQL compiler generates a syntax error indicating, “not a GROUP BY expression”. The Access SQL com-
piler generates a syntax error indicating, “Your query does not include the specified expression as part of an aggregate function”.

SELECT CourseNo, Enrollment.OfferNo,
Avg(StdGPA) AS AvgGPA

FROM Student, Offering, Enrollment

WHERE Offering.OfferNo = EnrollIment.OfferNo
AND Enrollment.StdNo = Student.StdNo
AND OFfTerm = "FALL®" AND OffYear = 2016

GROUP BY CourseNo

HAVING Avg(StdGPA) > 3.0

Example 4.63

Extra Table

List the student name and the offering number in which the grade is greater than 3.7 and the offering is given in fall 2016. The
statement executes with the correct rows in the result.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
FROM Student, Enrollment, Offering, Course
WHERE Student.StdNo = EnrollIment.StdNo
AND Offering.OfferNo = Enrollment.OfferNo
AND Course.CourseNo = Offering.CourseNo
AND OffYear = 2016 AND OffTerm = “FALL"
AND EnrGrade >= 3.7

Example 4.64

Unnecessary GROUP BY Clause

List the student name and the offering number in which the grade is greater than 3.7 and the offering is given in fall 2016. The
GROUP BY clause causes extra resource consumption.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
FROM Student, Enrollment, Offering
WHERE Student.StdNo = Enrollment.StdNo
AND Offering.OfferNo = EnrollIment.OfferNo
AND OffYear = 2016 AND OffTerm = "FALL"
AND EnrGrade >= 3.7
GROUP BY StdFirstName, StdLastName, Enrollment.OfferNo

Example 4.65

Missing Parentheses

List the offer number, course number, and faculty number for course offerings scheduled in spring or summer of 2016. Note that
the AND operator takes precedence over the OR operator.

SELECT OfferNo, CourseNo, FacNo, OffYear, OffTerm

FROM Offering

WHERE OffTerm = "SPRING" OR OffTerm = "SUMMER"
AND OffYear 2016

Chapter 4 Query Formulation with SQL 123

Example 4.66

Missing Join Condition

List the student name and the offering number in which the grade is greater than 3.7 and the offering is given in fall 2016.
The result contains extra Enrollment rows that do not match Offering rows because of the missing join condition. You should
remember that joining three tables typically requires two join conditions.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
FROM Student, Enrollment, Offering
WHERE Student.StdNo = Enrollment.StdNo

AND OffYear = 2016 AND OffTerm = “FALL"

AND EnrGrade >= 3.7

Example 4.67

Missing Condition

List the student name and the offering number in which the grade is greater than 3.7 and the offering is given in fall 2016. The
result only contains the correct set of rows because 2017 offerings do not occur in the fall term. If additional rows in fall term
of another year are added, the result rows will not be correct.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
FROM Student, Enrollment, Offering
WHERE Student.StdNo = Enrollment.StdNo

AND Offering.OfferNo = Enrollment.OfferNo

AND OfFfTerm = “"FALL"

AND EnrGrade >= 3.7

TABLE 4-22
Example Errors Error Identification Identification of Errors in
458 Syntax with misspelled keywords FROMM and WHERRE misspelled Examples
4.59 Syntax with unqualified column name OfferNo column needs table prefix.
4.60 Syntax with missing table name Enrollment table missing in FROM clause
4.61 Syntax with row condition in the OffYear = 2016 should be moved to the WHERE
HAVING clause clause.
462 Syntax with missing column in the OfferNo should be in the GROUP BY clause.
GROUP BY clause
463 Redundancy with extra table Course table is not needed as it does not provide
columns or conditions. Since CourseNo is a required
foreign key, join does not ensure that Course exists.
464 Redundancy with unneeded GROUP GROUP BY clause not needed as statement does not
BY clause contain aggregate functions in result or conditions.
4.65 Semantic with missing parentheses Result contains extra rows. Parentheses should be
placed around (OffTerm ='SPRING' OR OffTerm =
'SUMMER). Always use parentheses when mixing
AND/OR operators.
466 Semantic with missing join condition Result contains incorrect rows. Excessive resource
consumption with cross product operation combining
Offering and Enrollment tables. Add join condition
Offering.OfferNo = Enroliment.OfferNo
467 Semantic with missing condition Add OffYear = 2016. Correct rows because Offering

table has no fall rows in any other year.

124 Part2 Understanding Relational Databases

Beyond awareness of errors, you should strive to write statements with good cod-
ing practices. The examples in sections 4.2 to 4.6 demonstrate good coding practices.
Table 4-23 summarizes poor SQL coding practices, while Example 4.68 demonstrates
poor coding practices in a complete SELECT statement. Some of the practices are sub-
jective (such as clause alignment) with multiple ways to achieve good practice. Most
practices should be avoided such as incompatible constants.

TABLE 4-23
Summary of Poor SQL Practice Definition and impact Example

Coding Practices Mixed join styles Using a combination of the cross product and join Example 4.41

operator style; Difficult to read and prone to missing
join conditions

Incompatible constant ~ Constant in a condition with a data type different StdGPA >'3.2'
than column; May lead to incorrect result or slow
performance
LIKE operator in date LIKE operator applies to columns with character HireDate LIKE "12/%/2017'
comparison data types. May lead to incorrect results; May not be
portable across SQL compilers
Poor clause alignment ~ Clauses mixed together and aligned poorly; Difficult Example 4.68
to read
LIKE operator without LIKE operator without pattern matching characters StdtState LIKE 'WA'
pattern matching is the same as equality (=) comparison. May lead to
characters confusion among statement readers

Example 4.68

Poor SQL Coding Practices

List Bob Norbert’s course schedule in spring 2017. For each course, list the offering number, course number, days, location, time,
course units, and faculty name. The statement contains poor clause alignment, an incompatible constant, and a LIKE operator
without a pattern matching character. Example 4.36 shows the original statement with good coding practices.

SELECT Offering.OfferNo, Offering.CourseNo, OffDays,
OffLocation, OffTime, CrsUnits, FacFirstName,
FacLastName FROM Faculty, Offering, Enrollment, Student, Course WHERE Faculty.FacNo =

Offering.FacNo AND
Offering.OfferNo

= EnrolIment.OfferNo

AND Student.StdNo = Enrollment.StdNo
AND Offering.CourseNo = Course.CourseNo

AND OffYear = "2017° AND OffTerm = “SPRING®
AND StdFirstName LIKE "BOB" AND StdLastName = “"NORBERT"

CLOSING THOUGHTS

Chapter 4 introduced the fundamental statements of the industry standard Structured
Query Language (SQL). SQL has a wide scope covering database definition, manipu-
lation, and control. As a result of careful analysis and compromise, standards groups
have produced a well-designed language. SQL has become the common glue that
binds the database industry even though strict conformance to the standard is lacking.
You will no doubt continually encounter SQL throughout your career.

This chapter has focused on the most widely used parts of the SELECT statement
from the foundation of the SQL:2016 standard. Numerous examples were shown to

Chapter 4 Query Formulation with SQL

demonstrate conditions on different data types, complex logical expressions, multiple
table joins, summarization of tables with GROUP BY and HAVING, sorting of tables,
self joins, and the traditional set operators. To facilitate hands-on usage of SQL, exam-
ples were shown for both Oracle and Access with special attention to deviations from
the SQL:2016 standard. This chapter also briefly described the modification statements
INSERT, UPDATE, and DELETE. These statements are not as complex and widely
used as SELECT.

This chapter emphasized two problem-solving guidelines to help you formulate
queries. The conceptual evaluation process was presented to demonstrate derivation
of result rows for SELECT statements involving joins and grouping. You may find this
evaluation process helps in your initial learning of the SELECT statement as well as
provides insight on more challenging problems. To help formulate queries, three ques-
tions were provided to guide you. You should explicitly or implicitly answer these
questions before writing a SELECT statement to solve a problem. An understanding
of both the critical questions and the conceptual evaluation process will provide you a
solid foundation for using relational databases. Even with these formulation aids, you
need to work many problems to learn query formulation and the SELECT statement.

This chapter covered an important subset of the SELECT statement. Other parts of
the SELECT statement not covered in this chapter are outer joins, nested queries, divi-
sion problems, null value effects, and hierarchical queries. Chapter 9 covers advanced
query formulation and additional parts of the SELECT statement so that you can gain
a competitive advantage in your database skills.

125

REVIEW CONCEPTS

e SQL consists of statements for database definition (CREATE TABLE, ALTER
TABLE, etc.), database manipulation (SELECT, INSERT, UPDATE, and
DELETE), and database control (GRANT, REVOKE, etc.).

* The most recent SQL standard is known as SQL:2016. Major DBMS vendors
support most features in the core part of this standard although the lack of
independent conformance testing hinders strict conformance with the standard.

e SELECT is a complex statement. Chapter 4 covered SELECT statements with the
format:
SELECT «<list of column and column expressions>
FROM <list of tables and join operations>
WHERE <row conditions connected by AND, OR, and NOT>
GROUP BY <list of columns>
HAVING <group conditions connected by AND, OR, and NOT>
ORDER BY <list of sorting specifications>

* Use the standard comparison operators to select rows:
SELECT StdFirstName, StdLastName, StdCity, StdGPA
FROM Student
WHERE StdGPA >= 3.7

* Inexact matching is done with the LIKE operator and pattern-matching
characters:

Oracle and SQL:2016

SELECT CourseNo, CrsDesc
FROM Course

WHERE CourseNo LIKE "1S4%"

Access

SELECT CourseNo, CrsDesc
FROM Course

WHERE CourseNo LIKE "1S4**

126 Part2 Understanding Relational Databases

e Use BETWEEN ... AND to compare dates:
Oracle

SELECT FacFirstName,

FacLastName, FacHireDate
FROM Faculty

WHERE FacHireDate BETWEEN "1-Jan-2008° AND "31-Dec-2009*"
Access

SELECT FacFirstName,

FacLastName, FacHireDate
FROM Faculty

WHERE FacHireDate BETWEEN #1/1/2008# AND #12/31/2009%#

* Use expressions in the SELECT column list and WHERE clause:
Oracle

SELECT FacFirstName, FacLastName, FacCity,
FacSalary*1.1 AS InflatedSalary, FacHireDate
FROM Faculty

WHERE to_number(to_char(FacHireDate,
Access

"YYYY®")) > 2008
SELECT FacFirstName, FacLastName, FacCity,

FacSalary*1.1 AS InflatedSalary, FacHireDate
FROM Faculty

WHERE year(FacHireDate) > 2008
e Test for null values:

SELECT OfferNo,
FROM Offering

WHERE FacNo 1S NULL AND OffTerm

CourseNo

= "SUMMER*

AND OffYear = 2017
* Create complex logical expressions with AND and OR:

SELECT OfferNo, CourseNo, FacNo

FROM Offering

WHERE (OffTerm = "FALL" AND OffYear = 2016)

OR (OffTerm = "WINTER" AND OffYear = 2017)

e Sort results with the ORDER BY clause:

SELECT StdGPA, StdFirstName, StdLastName, StdCity,
StdState

FROM Student
WHERE StdClass = "JR*

ORDER BY StdGPA
¢ Eliminate duplicates with the DISTINCT keyword:

SELECT DISTINCT FacCity, FacState
FROM Faculty

* Qualify column names in join queries:
SELECT Course.CourseNo,
FROM Offering, Course
WHERE OffTerm =

CrsDesc

"SPRING" AND OffYear = 2017
AND Course.CourseNo Offering.CourseNo

e Use the GROUP BY clause to summarize rows:

SELECT StdMajor, AVG(StdGPA) AS AvgGpa
FROM Student

GROUP BY StdMajor

* GROUP BY must precede HAVING:

SELECT StdMajor, AVG(StdGPA) AS AvgGpa
FROM Student

GROUP BY StdMajor
HAVING AVG(StdGPA) > 3.1

Chapter 4 Query Formulation with SQL

Use the WHERE clause to test row conditions and the HAVING clause to test
group conditions:
SELECT StdMajor, AVG(StdGPA) AS AvgGpa

FROM Student

WHERE StdClass IN ("JR", "SR")

GROUP BY StdMajor

HAVING AVG(StdGPA) > 3.1

Difference betwen COUNT(*) and COUNT(DISTINCT column) -- not supported
by Access:
SELECT OffYear, COUNT(*) AS NumOfferings,
COUNT(DISTINCT CourseNo) AS NumCourses
FROM Offering
GROUP BY OffYear

Conceptual evaluation process lessons: use small sample tables, GROUP BY
occurs after WHERE, and only one grouping per SELECT statement.

Query formulation questions: what tables?, how combined?, and row or group
output?

Joining more than two tables with the cross product and join operator
styles:
SELECT OfferNo, Offering.CourseNo, CrsUnits, OffDays,
OffLocation, OffTime
FROM Faculty, Course, Offering
WHERE Faculty.FacNo = Offering.FacNo
AND Offering.CourseNo = Course.CourseNo
AND OffYear = 2016 AND OffTerm = "FALL"
AND FacFirstName = "LEONARD*
AND FaclLastName = "VINCE"

SELECT OfferNo, Offering.CourseNo, CrsUnits, OffDays,
OffLocation, OffTime
FROM (Faculty INNER JOIN Offering
ON Faculty._FacNo = Offering.FacNo)
INNER JOIN Course
ON Offering.CourseNo = Course.CourseNo
WHERE OffYear = 2016 AND OffTerm = "FALL"
AND FacFirstName = "LEONARD*®
AND FaclLastName = "VINCE"
* Self-joins:
SELECT Subr.FacNo, Subr.FacLastName, Subr.FacSalary,
Supr.FacNo, Supr.FacLastName, Supr.FacSalary
FROM Faculty Subr, Faculty Supr
WHERE Subr.FacSupervisor = Supr.FacNo
AND Subr.FacSalary > Supr.FacSalary
* Combine joins and grouping;:
SELECT CourseNo, Enrollment.OfferNo,
COUNT(*) AS NumStudents
FROM Offering, Enrollment
WHERE Offering.OfferNo = Enrollment._OfferNo
AND OffYear = 2017 AND OFffTerm = "SPRING"
GROUP BY Enrollment.OfferNo, CourseNo

e Traditional set operators and union compatibility:
SELECT FacNo AS PerNo, FacLastName AS LastName
FacCity AS City, FacState AS State
FROM Faculty
UNION

127

128 Part 2 Understanding Relational Databases

SELECT StdNo AS PerNo, StdLastName AS LastName,
StdCity AS City, StdState AS State
FROM Student

e Use the INSERT statement to add one or more rows:
INSERT INTO Student
(StdNo, StdFirstName, StdLastName, StdCity, StdState,
StdClass, StdMajor, StdGPA)
VALUES ("999999999", "Joe", "Student”, "Seatac", "WA",
"FR", "IS", 0.0)
* Use the UPDATE statement to change columns in one or more rows:
UPDATE Faculty
SET FacSalary FacSalary * 1.1
WHERE FacDept “MS*

e Use the DELETE statement to remove one or more rows:
DELETE FROM Student
WHERE StdMajor = "IS" AND StdClass = "SR*

* Use a join operation inside an UPDATE statement (Access only):
UPDATE Offering INNER JOIN Faculty
ON Offering.FacNo = Faculty.FacNo
SET OfflLocation = "BLM412"
WHERE OffYear = 2016 AND FacFirstName = "LEONARD"
AND FaclLastName = "VINCE"

* Use a join operation inside a DELETE statement (Access only):
DELETE Offering.*
FROM Offering INNER JOIN Faculty
ON Offering.FacNo = Faculty.FacNo
WHERE FacFirstName = "LEONARD" AND FacLastName = "VINCE"

* Syntax errors with sometimes confusing error messages and no execution:
missing table, unqualified column name, misspelled keyword, row condition in
HAVING clause, missing column in GROUP BY clause, and aggregate function
in a WHERE condition

* Redundancy errors with correct result rows but extra resource consumption:
extra table and unneeded GROUP BY clause

* Semantic errors with incorrect rows in the result and sometimes excessive
resource consumption: missing row condition, missing parentheses, incorrect
condition, and missing join condition

* Poor coding practices involving misalignment of clauses, incompatible constants
in conditions, LIKE operator without pattern matching characters, and LIKE
operator in conditions on date columns

QUESTIONS

1. Why do some information systems professionals pronounce SQL as “sequel”?

2. Why are the manipulation statements of SQL more widely used than the
definition and control statements?

3. Briefly describe the organization and acceptance of SQL:2016.
4. Why is conformance testing important for the SQL standard?

5. In general, what is the state of conformance among major DBMS vendors for the
SQL:2016 standard?

6. What is stand-alone SQL?
7. What is embedded SQL?

10.
11.
12.
13.

14.
15.

16.

17.
18.

19.
20.
21.
22.

23.
24.

25.

26.

27.
28.

29.
30.

31.

32.
33.

34.

35.
36.
37.
38.

39.

Chapter 4 Query Formulation with SQL

. What is an expression in the context of database languages?
. From the examples and the discussion in Chapter 4, what parts of the SELECT

statement are not supported by all DBMSs?

Recite the rule about the GROUP BY and HAVING clauses.

Recite the rule about columns in SELECT when a GROUP BY clause is used.
How does a row condition differ from a group condition?

Why should row conditions be placed in the WHERE clause rather than the
HAVING clause?

Why are most DBMSs not case sensitive when matching on string conditions?

Explain how working with sample tables can provide insight about difficult
problems.

When working with date columns, why is it necessary to refer to documentation
of your DBMS?

How do exact and inexact matching differ in SQL?

How do you know when the output of a query relates to groups of rows as
opposed to individual rows?

What tables belong in the FROM statement?
Explain the cross product style for join operations.
Explain the join operator style for join operations.

Discuss the pros and cons of the cross product versus the join operator styles. Do
you need to know both the cross product and the join operator styles?

What is a self-join? When is a self-join useful?

Provide a SELECT statement example in which a table is needed even though
the table does not provide conditions to test or columns to show in the result.

What is the requirement when using the traditional set operators in a SELECT
statement?

When combining joins and grouping, what conceptually occurs first, join
operations or grouping?
How many times does grouping occur in a SELECT statement?

Why is the SELECT statement more widely used than the modification
statements INSERT, UPDATE, and DELETE?

Provide an example of an INSERT statement that can insert multiple rows.

What is the relationship between the DELETE statement and the rules about
deleting referenced rows?

What is the relationship between the UPDATE statement and the rules about
updating the primary key of referenced rows?

How does COUNT(*) differ from COUNT(ColumnName)?

How does COUNT(DISTINCT ColumnName) differ from
COUNT(ColumnName)?

When mixing AND and OR in a logical expression, why is it a good idea to use
parentheses?

What are the most important lessons about the conceptual evaluation process?
What are the mental steps involved in query formulation?
What kind of join queries often have duplicates in the result?

What mental steps in the query formulation process are addressed by the
conceptual evaluation process and critical questions?

In the SQL SELECT statement, how do you apply the set operators to two tables
with only some compatible columns?

129

130 Part2 Understanding Relational Databases

40. Why should you avoid mixing the join styles in a SELECT statement?
41. What is the SQL:2016 symbol for matching any single character?

42. What symbols are used by Microsoft Access and Oracle for matching any single
character?

43. Provide a brief example to depict the single character pattern matching symbol.
44. Should you use the LIKE operator for conditions involving date columns?
45. What is the default format for date constants in Oracle SQL?

46. In the join operator style, does Oracle require parentheses when multiple join
operations are used?

47. In the join operator style, does Access require parentheses when multiple join
operations are used?

48. What is the impact of a syntax error in a SELECT statement?

49. What is the impact of a redundancy error in a SELECT statement? Provide an
answer using a specific redundancy error.

50. What is the impact of a semantic error in a SELECT statement? Provide an
answer using a specific semantic error.

51. Can a result contain the correct rows if a SELECT statement contains a semantic
error? Please explain with an example.

PROBLEMS

TABLE 4-P1
Tables of the Order Entry
Database

The problems use the tables of the Order Entry database, an extension of the order
entry tables used in the problems of Chapter 3. Table 4-P1 lists the meaning of each
table and Figure 4.P1 shows the Access Relationship window. After the relationship
diagram, row listings and Oracle CREATE TABLE statements are shown for each
table. In addition to the other documentation, here are some notes about the Order
Entry Database:

* The primary key of the OrdLine table is a combination of OrdNo and ProdNo.

* The Employee table has a self-referencing (unary) relationship to itself through
the foreign key, SupEmpNo, the employee number of the supervising employee.
In the relationship diagram, the table Employee_1 is a representation of the self-
referencing relationship, not a real table.

e The relationship from OrderTbl to OrdLine cascades deletions and primary
key updates of referenced rows. All other relationships restrict deletions and
primary key ues of referend rows if related rows exist.

Table Name Description

Customer List of customers who have placed orders

OrderThbl Contains the heading part of an order; Internet orders do not have an employee
Employee List of employees who can take orders

OrdLine Contains the product detail parts of orders

Product List of products that may be ordered

Chapter 4 Query Formulation with SQL 131

FIGURE 4.P1
Relationship Window for the
Order Entry Database

Customer
CustNo CustFirstName CustLastName CustStreet CustCity CustState CustZip CustBal
C0954327 Sheri Gordon 336 Hill St. Littleton CcO 80129-5543 $230.00
C1010398 Jim Glussman 1432 E. Ravenna Denver CO 80111-0033 $200.00
C2388597 Beth Taylor 2396 Rafter Rd Seattle WA 98103-1121 $500.00
C3340959 Betty Wise 4334 153rd NW Seattle WA 98178-3311 $200.00
C3499503 Bob Mann 1190 Lorraine Cir. Monroe WA 98013-1095 $0.00
C8543321 Ron Thompson 789122nd St. Renton WA 98666-1289 $85.00
C8574932 Wally Jones 411 Webber Ave. Seattle WA 98105-1093 $1,500.00
C8654390 Candy Kendall 456 Pine St. Seattle WA 98105-3345 $50.00
C9128574 Jerry Wyatt 16212 123rd Ct. Denver CO 80222-0022 $100.00
C9403348 Mike Boren 642 Crest Ave. Englewood CO 80113-5431 $0.00
C9432910 Larry Styles 9825 S. Crest Lane Bellevue WA 98104-221 $250.00
C9543029 Sharon Johnson 1223 Meyer Way Fife WA 98222-1123 $856.00
C9549302 Todd Hayes 1400 NW 88th Lynnwood WA 98036-2244 $0.00
C9857432 Homer Wells 123 Main St. Seattle WA 98105-4322 $500.00
C9865874 Mary Hill 206 McCaffrey Littleton CcO 80129-5543 $150.00
C9943201 Harry Sanders 1280 S. Hill Rd. Fife WA 98222-2258 $1,000.00

OrderTbl
OrdNo OrdDate CustNo EmpNo OrdName OrdStreet OrdCity OrdState OrdZip
omMmes24 01/23/2017 C0954327 E8544399 Sheri Gordon 336 Hill St. Littleton CcO 80129-5543
01231231 01/23/2017 C9432910 E9954302 Larry Styles 9825 S. Crest Lane Bellevue WA 98104-2211
01241518 02/10/2017 C9549302 Todd Hayes 1400 NW 88th Lynnwood WA 98036-2244
01455122 0109/2017 C8574932 E9345771 Wally Jones 411 Webber Ave. Seattle WA 98105-1093
01579999 01/05/2017 C9543029 E8544399 Tom Johnson 1632 Ocean Dr. Des Moines WA 98222-1123
01615141 01/23/2017 C8654390 E8544399 Candy Kendall 456 Pine St. Seattle WA 98105-3345
01656777 02/11/2017 C8543321 Ron Thompson 789122nd St. Renton WA 98666-1289
02233457 0112/2017 C2388597 E9884325 Beth Taylor 2396 Rafter Rd Seattle WA 98103-1121

02334661 01/14/2017 C0954327 E1329594 Mrs. Ruth Gordon 233 S. 166th Seattle WA 98011

132

Part 2 Understanding Relational Databases

OrdState OrdZip

03252629
03331222
03377543
04714645
05511365
06565656
07847172
07959898
07989497
08979495
09919699

EmpNo
E1329594
E8544399
E8843211
E9345771
E9884325
E9954302
E9973110

ProdNo

P0036