
DATABASE
DESIGN, APPLICATION
DEVELOPMENT, & ADMINISTRATION

7eMICHAEL MANNINO

DATABASE DESIGN,
APPLICATION DEVELOPMENT,

AND ADMINISTRATION

26008_fm_pi-xxx.indd 1 3/3/18 12:34 AM

26008_fm_pi-xxx.indd 2 3/3/18 12:34 AM

DATABASE DESIGN,
APPLICATION

DEVELOPMENT, AND
ADMINISTRATION

SEVENTH EDITION

Michael V. Mannino
University of Colorado, Denver

26008_fm_pi-xxx.indd 3 3/3/18 12:34 AM

© 2019 CHICAGO BUSINESS PRESS

DATABASE DESIGN, APPLICATION DEVELOPMENT, AND ADMINISTRATION
SEVENTH EDITION

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored or used in any form or by any means graphic, electronic, or
mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping,
web distribution, information networks, or information storage and retrieval systems, except
as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the
prior written permission of the publisher.

For product information or assistance visit: www.chicagobusinesspress.com

ISBN-13: 978-1-948426-00-8
ISBN-10: 1-948426-00-5

26008_fm_pi-xxx.indd 4 3/3/18 12:34 AM

v  

BRIEF CONTENTS

Part I	 INTRODUCTION TO DATABASE ENVIRONMENTS  1

1 	 Introduction to Database Management  3
2 	 Introduction to Database Development  25

Part II	 UNDERSTANDING RELATIONAL DATABASES  45

3 	 The Relational Data Model  47
4 	 Query Formulation with SQL  77

Part III	 DATA MODELING  141

5 	 Understanding Entity Relationship Diagrams  143
6 	 Developing Data Models for Business Databases  179

Part IV	 RELATIONAL DATABASE DESIGN  233

7 	 Normalization Concepts and Processes  235
8 	 Physical Database Design  267

Part V	 APPLICATION DEVELOPMENT WITH RELATIONAL DATABASES  319

9 	 Advanced Query Formulation with SQL  321
10 	 Application Development with Views  375
11 	 Stored Procedures and Triggers  415

Part VI	 DATA WAREHOUSE PROCESSING  477

12 	 Data Warehouse Concepts and Management  479
13 	 Conceptual Design of Data Warehouses  509
14 	 Data Integration Concepts and Practices  549
15 	 Query Formulation for Data Warehouses  585

26008_fm_pi-xxx.indd 5 3/3/18 12:34 AM

vi   Brief Contents

Part VII	 MANAGING DATABASE ENVIRONMENTS  641

16 	 Data and Database Administration  643
17 	 Transaction Management  681
18 	 Client-Server Processing, Parallel Database Processing, and Distributed Databases  725
19 	 DBMS Extensions for Object and NoSQL Databases  767

Bibliography  829
Indexes  833

26008_fm_pi-xxx.indd 6 3/3/18 12:34 AM

vii  

CONTENTS

Part I	 INTRODUCTION TO DATABASE ENVIRONMENTS  1

1 	 Introduction to Database Management  3
Learning Objectives  3

Overview  3

1.1  Database Characteristics  4

1.2  Features of Database Management Systems  6
1.2.1  Database Definition  6
1.2.2  Nonprocedural Access  7
1.2.3  Application Development and Procedural Language Interface  8
1.2.4  Features to Support Database Operations  9
1.2.5  Third-Party Features  10

1.3  Development of Database Technology and Market Structure  10
1.3.1  Evolution of Database Technology  11
1.3.2  Current Market for Database Software  12

1.4  Architectures of Database Management Systems  13
1.4.1  Data Independence and the Three Schema Architecture  13
1.4.2  Parallel and Distributed Database Processing  15

1.5  Organizational Impacts of Database Technology  17
1.5.1  Interacting with Databases  18
1.5.2  Managing Data Resources in Organizations  19

Closing Thoughts  20
Review Concepts  21
Questions  21
Problems  23
References for Further Study  23

2 	 Introduction to Database Development  25
Learning Objectives  25

Overview  25

2.1  Information Systems  26
2.1.1  Components of Information Systems  26
2.1.2  Information Systems Development Process  26

2.2  Goals of Database Development  28
2.2.1  Develop a Common Vocabulary  28
2.2.2  Define the Meaning of Data  29
2.2.3  Ensure Data Quality  29
2.2.4  Find an Efficient Implementation  30

2.3  Database Development Process  30
2.3.1  Phases of Database Development  30
2.3.2  Skills in Database Development  34

26008_fm_pi-xxx.indd 7 3/3/18 12:34 AM

viii   Contents

2.4  Tools for Database Development  35
2.4.1  Diagramming  35
2.4.2  Documentation  36
2.4.3  Analysis  36
2.4.4  Prototyping Tools  36
2.4.5  Commercial CASE Tools  37

Closing Thoughts  40
Review Concepts  41
Questions  42
Problems  43
References for Further Study  43

Part II	 UNDERSTANDING RELATIONAL DATABASES  45

3 	 The Relational Data Model  47
Learning Objectives  47

Overview  47

3.1  Basic Elements  48
3.1.1  Tables  48
3.1.2  Connections among Tables  49
3.1.3  Alternative Terminology  51

3.2  Integrity Rules  51
3.2.1  Definition of the Integrity Rules  51
3.2.2  Application of the Integrity Rules  52
3.2.3  Graphical Representation of Referential Integrity  56

3.3  Delete and Update Actions for Referenced Rows  57

3.4  Operators of Relational Algebra  59
3.4.1  Restrict (Select) and Project Operators  59
3.4.2  Extended Cross Product Operator  60
3.4.3  Join Operator  61
3.4.4  Outer Join Operator  63
3.4.5  Union, Intersection, and Difference Operators  66
3.4.6  Summarize Operator  68
3.4.7  Divide Operator  69
3.4.8  Summary of Operators  70

Closing Thoughts  71
Review Concepts  71
Questions  72
Problems  73
References for Further Study  76

Appendix 3.A:  CREATE TABLE Statements for the University Database Tables  ONLINE

Appendix 3.B:  SQL:2016 Syntax Summary  ONLINE

Appendix 3.C:  Generation of Unique Values for Primary Keys  ONLINE

4 	 Query Formulation with SQL  77
Learning Objectives  77

Overview  77

4.1  Background  78
4.1.1  Brief History of SQL  78
4.1.2  Scope of SQL  79

4.2  Getting Started with the SELECT Statement  80
4.2.1  Single Table Problems  83
4.2.2  Joining Tables  91

26008_fm_pi-xxx.indd 8 3/3/18 12:34 AM

Contents   ix

4.2.3  Summarizing Tables with GROUP BY and HAVING  93
4.2.4  Improving the Appearance of Results  97

4.3  Conceptual Evaluation Process for SELECT Statements  99

4.4  Critical Questions for Query Formulation  104

4.5  Refining Query Formulation Skills with Examples  105
4.5.1  Joining Multiple Tables with the Cross Product Style  105
4.5.2  Joining Multiple Tables with the Join Operator Style  109
4.5.3  Self-Joins and Multiple Joins between Two Tables  112
4.5.4  Combining Joins and Grouping  114
4.5.5  Traditional Set Operators in SQL  115

4.6  SQL Modification Statements  117

4.7  Query Formulation Errors and Coding Practices   120

Closing Thoughts  124
Review Concepts  125
Questions  128
Problems  130
References for Further Study  140

Appendix 4.A:  SQL:2016 Syntax Summary  ONLINE

Appendix 4.B:  Syntax Differences among Major DBMS Products  ONLINE

Part III	 DATA MODELING  141

5 	 Understanding Entity Relationship Diagrams  143
Learning Objectives  143

Overview  143

5.1  Introduction to Entity Relationship Diagrams  144
5.1.1  Basic Symbols  144
5.1.2  Relationship Cardinality  145
5.1.3  Comparison to Relational Database Diagrams  147

5.2  Understanding Relationships  147
5.2.1  Identification Dependency (Weak Entity Types and Identifying Relationships)  147
5.2.2  Relationship Patterns  148
5.2.3  Equivalence between 1-M and M-N Relationships  152

5.3  Classification in the Entity Relationship Model  153
5.3.1  Generalization Hierarchies  153
5.3.2  Disjointness and Completeness Constraints  154
5.3.3  Multiple Levels of Generalization  154

5.4  Notation Summary and Diagram Rules  155
5.4.1  Notation Summary  155
5.4.2  Diagram Rules  157

5.5  Comparison to Other Notations  160
5.5.1  Range of ERD Variations in Data Modeling Tools  160
5.5.2  ERD Notation in Aqua Data Studio  161
5.5.3  ERD Notation in Oracle SQL Developer  163
5.5.4  Entity Relationship Stencil in Visio Professional  164
5.5.5  ERD Notation in Visual Paradigm  165
5.5.6  Class Diagram Notation of the Unified Modeling Language  165

Closing Thoughts  168
Review Concepts  169
Questions  169
Problems  171
References for Further Study  177

26008_fm_pi-xxx.indd 9 3/3/18 12:34 AM

x   Contents

6 	 Developing Data Models for Business Databases  179
Learning Objectives  179

Overview  179

6.1  Analyzing Business Data Modeling Problems  180
6.1.1  Guidelines for Analyzing Business Information Needs  180
6.1.2  Analysis of Problem Narrative for the Water Utility Database  182

6.2  Refinements to an ERD  185
6.2.1  Expanding Attributes  185
6.2.2  Splitting Compound Attributes   185
6.2.3  Expanding Entity Types  185
6.2.4  Transforming a Weak Entity Type into a Strong Entity Type  187
6.2.5  Adding History   188
6.2.6  Adding Generalization Hierarchies   190
6.2.7  Summary of Transformations   191

6.3  Finalizing an ERD  192
6.3.1  Documenting an ERD  193
6.3.2  Detecting Common Design Errors   194

6.4  Converting an ERD to a Table Design  197
6.4.1  Basic Conversion Rules  197
6.4.2  Converting Optional 1-M Relationships  200
6.4.3  Converting Generalization Hierarchies  203
6.4.4  Converting 1-1 Relationships  205
6.4.5  Comprehensive Conversion Example  205
6.4.6  Conversion Practices in Commercial CASE Tools  205

Closing Thoughts  209
Review Concepts  210
Questions  210
Problems  212
References for Further Study  232

Part IV	 RELATIONAL DATABASE DESIGN  233

7 	 Normalization Concepts and Processes  235
Learning Objectives  235

Overview  235

7.1  Overview of Relational Database Design  236
7.1.1  Avoidance of Modification Anomalies  236
7.1.2  Functional Dependencies  236
7.1.3  Falsification of FDs using Sample Data  238

7.2  Basic Normal Forms  239
7.2.1  First Normal Form  240
7.2.2  Boyce-Codd Normal Form  240
7.2.3  Simple Synthesis Procedure  243

7.3  Refining M-Way Relationships  246
7.3.1  Relationship Independence  246
7.3.2  Multivalued Dependencies and Fourth Normal Form  249

7.4  Higher Level Normal Forms  249
7.4.1  Fifth Normal Form  249
7.4.2  Domain Key Normal Form  250

7.5  Practical Concerns about Normalization  251
7.5.1  Role of Normalization in the Database Development Process  251
7.5.2  Analyzing the Normalization Objective  253

26008_fm_pi-xxx.indd 10 3/3/18 12:34 AM

Contents   xi

Closing Thoughts  254
Review Concepts  254
Questions  255
Problems  256
References for Further Study  266

Appendix 7.A:  Second and Third Normal Forms  ONLINE

8 	 Physical Database Design  267
Learning Objectives  267

Overview  267

8.1  Overview of Physical Database Design  268
8.1.1  Storage Level of Databases  268
8.1.2  Objectives and Constraints  269
8.1.3  Inputs, Outputs, and Environment  270
8.1.4  Difficulties  270

8.2  Inputs of Physical Database Design  271
8.2.1  Table Profiles  271
8.2.2  Application Profiles  274

8.3  File Structures  275
8.3.1  Sequential Files  275
8.3.2  Hash Files  276
8.3.3  Multiway Tree (Btrees) Files  278
8.3.4  Bitmap Indexes  282
8.3.5  Columnstore Indexes  285
8.3.6  Summary of File Structures  286
8.3.7  Oracle Storage Concepts and File Structures  286

8.4  Query Optimization  288
8.4.1  Translation Tasks  288
8.4.2  Improving Optimization Decisions  292

8.5  Index Selection  295
8.5.1  Problem Definition  295
8.5.2  Trade-offs and Difficulties  296
8.5.3  Selection Rules  298

8.6  Additional Choices in Physical Database Design  301
8.6.1  Denormalization  301
8.6.2  Record Formatting  302
8.6.3  Parallel Processing  303
8.6.4  Other Ways to Improve Performance  305

Closing Thoughts  306
Review Concepts  306
Questions  307
Problems  310
References for Further Study  318

Part V	 APPLICATION DEVELOPMENT WITH RELATIONAL DATABASES  319

9 	 Advanced Query Formulation with SQL  321
Learning Objectives  321

Overview  321

9.1  Outer Join Problems  322
9.1.1  SQL Support for Outer Join Problems  322
9.1.2  Mixing Inner and Outer Joins  324

26008_fm_pi-xxx.indd 11 3/3/18 12:34 AM

xii   Contents

9.2  Understanding Nested Queries  328
9.2.1  Type I Nested Queries  328
9.2.2  Limited SQL Formulations for Difference Problems  331
9.2.3  Using Type II Nested Queries for Difference Problems  334
9.2.4  Nested Queries in the FROM Clause  338

9.3  Formulating Division Problems  340
9.3.1  Review of the Divide Operator  340
9.3.2  Simple Division Problems  341
9.3.3  Advanced Division Problems  342

9.4  Null Value Considerations  345
9.4.1  Effect on Simple Conditions  345
9.4.2  Effect on Compound Conditions  347
9.4.3  Effect on Aggregate Calculations and Grouping  347

9.5  Hierarchical Queries  349
9.5.1  Hierarchical Data Example  349
9.5.2  Proprietary Oracle Extensions for Hierarchical Queries  351
9.5.3  Extensions in the SQL Standard for Hierarchical Queries  359

Closing Thoughts  362
Review Concepts  362
Questions  365
Problems  366
References for Further Study  374

Appendix 9.A:  Usage of Multiple Statements in Microsoft Access  ONLINE

Appendix 9.B:  SQL:2016 Syntax Summary  ONLINE

Appendix 9.C:  Oracle 8i Notation for Outer Joins  ONLINE

10	 Application Development with Views  375
Learning Objectives  375

Overview  375

10.1  Background  376
10.1.1  Motivation  376
10.1.2  View Definition  376

10.2  Using Views for Retrieval  378
10.2.1  Using Views in SELECT Statements  379
10.2.2  Processing Queries with View References  379

10.3  Updating Using Views  382
10.3.1  Single-Table Updatable Views  382
10.3.2  Multiple-Table Updatable Views  386

10.4  Using Views in Hierarchical Forms   391
10.4.1  Hierarchical Forms  391
10.4.2  Relationship between Hierarchical Forms and Tables  392
10.4.3  Data Requirements for Hierarchical Forms  393

10.5  Using Views in Reports  399
10.5.1  Hierarchical Reports  399
10.5.2  Data Requirements for Hierarchical Reports  400

Closing Thoughts  402
Review Concepts  403
Questions  404
Problems  405
References for Further Study  414

Appendix 10.A:  SQL:2016 Syntax Summary  ONLINE

Appendix 10.B:  Rules for Updatable Join Views in Oracle  ONLINE

Appendix 10.C:  Solutions for Query Formulation Errors  ONLINE

26008_fm_pi-xxx.indd 12 3/3/18 12:34 AM

Contents   xiii

11	 Stored Procedures and Triggers  415
Learning Objectives  415

Overview  415

11.1  Database Programming Languages and PL/SQL  416
11.1.1  Motivation for Database Programming Languages  416
11.1.2  Design Issues  418
11.1.3  PL/SQL Statements  420
11.1.4  Executing PL/SQL Statements in Anonymous Blocks  426

11.2  Stored Procedures  428
11.2.1  PL/SQL Procedures  428
11.2.2  PL/SQL Functions  431
11.2.3  Using Cursors  434
11.2.4  PL/SQL Packages  437

11.3  Triggers  441
11.3.1  Motivation and Classification of Triggers  441
11.3.2  Basic Trigger Development using Oracle PL/SQL  442
11.3.3  Specialized Oracle Triggers using the INSTEAD OF Event  454
11.3.4  Understanding Trigger Execution  463

Closing Thoughts  467
Review Concepts  468
Questions  469
Problems  471
References for Further Study  475

Appendix 11.A:  SQL:2016 Syntax Summary  ONLINE

Part VI	 DATA WAREHOUSE PROCESSING  477

12	 Data Warehouse Concepts and Management  479
Learning Objectives  479

Overview  479

12.1  Basic Concepts  480
12.1.1  Transaction Processing versus Business Intelligence  480
12.1.2  Characteristics of Data Warehouses  482
12.1.3  Applications of Data Warehouses  483

12.2  Management of Data Warehouse Development  484
12.2.1  Development Challenges and Learning Effects  485
12.2.2  Architectures for Data Warehouse Deployment  487
12.2.3  Data Warehouse Maturity Concepts  490
12.2.4  Business Strategy Game for Data Warehouse Development  492

12.3  Data Warehouse Examples  497
12.3.1  Data Warehouses in Retail  497
12.3.2  Data Warehouses in Education  498
12.3.3  Data Warehouses in Health Care  501

Closing Thoughts  504
Review Concepts  504
Questions  505
Problems  507
References for Further Study  508

13	 Conceptual Design of Data Warehouses  509
Learning Objectives  509

Overview  509

26008_fm_pi-xxx.indd 13 3/3/18 12:34 AM

xiv   Contents

13.1  Multidimensional Representation of Data  510
13.1.1  Example of a Multidimensional Data Cube  510
13.1.2  Multidimensional Terminology  512
13.1.3  Time-Series Data  513
13.1.4  Data Cube Operators  514

13.2  Relational Data Modeling Patterns for Data Warehouses  516
13.2.1  Schema Patterns  517
13.2.2  Example Table Designs for Data Warehouses  519
13.2.3  Time Representation and Historical Integrity  522
13.2.4  Extensions for Dimension Representation  524

13.3  Summarizability Problems and Patterns  527
13.3.1  Dimension-Fact Summarizability Problems and Patterns  527
13.3.2  Dimension-Fact Summarizability Problems and Patterns  529

13.4  Schema Integration and Design Methodologies  532
13.4.1  Schema Integration Process  533
13.4.2  Data Warehouse Design Methodologies  536

Closing Thoughts  538
Review Concepts  538
Questions  539
Problems  541

Practice Mini Case Study for Schema Integration  544
References for Further Study  548

Appendix 13.A:  Details of the Schema Integration Problem  ONLINE

Appendix 13.B:  Solution for the Schema Integration Problem  ONLINE

14	 Data Integration Concepts and Practices  549
Learning Objectives  549

Overview  549

14.1  Data Integration Concepts  550
14.1.1  Sources of Data  550
14.1.2  Workflow for Maintaining a Data Warehouse  552
14.1.3  Managing the Refresh Process  554

14.2  Data Cleaning Techniques  555
14.2.1  String Parsing with Regular Expressions  555
14.2.2  Correcting and Standardizing Values  559
14.2.3  Entity Matching  560

14.3  Data Integration Tools  562
14.3.1  Architectures and Features of Data Integration Tools  562
14.3.2  Talend Open Studio  565
14.3.3  Pentaho Data Integration  568
14.3.4  Oracle Data Integrator  570
14.3.5  Oracle SQL Statements for Data Integration  573

Closing Thoughts  579
Review Concepts  579
Questions  581
Problems  582
References for Further Study  584

Appendix 14.A:  CREATE TABLE Statements for Examples in Section 14.3.5  ONLINE

Appendix 14.B:  CREATE TABLE Statements for End of Chapter Problems  ONLINE

15	 Query Formulation for Data Warehouses  585
Learning Objectives  585

Overview  585

26008_fm_pi-xxx.indd 14 3/3/18 12:34 AM

Contents   xv

15.1  Online Analytic Processing (OLAP)  586
15.1.1  Microsoft Multidimensional Expressions (MDX)  586
15.1.2  Pivot Table Tools for OLAP Queries  589

15.2  SQL Extensions for Subtotal Calculations  592
15.2.1  CUBE Operator  593
15.2.2  ROLLUP Operator  598
15.2.3  GROUPING SETS Operator  602
15.2.4  Variations of Subtotal Operators  604

15.3  SQL Extensions for Analytic Functions  606
15.3.1  Motivation and Processing Overview  606
15.3.2  Query Formulation for Relative Performance  608
15.3.3  Query Formulation for Trend Analysis  611
15.3.4  Query Formulation for Ratio Comparisons  617

15.4  Summary Data Management and Optimization  621
15.4.1  Materialized Views in Oracle  621
15.4.2  Query Rewriting Principles  623
15.4.3  Storage and Optimization Technologies  628

Closing Thoughts  631
Review Concepts  631
Questions  632
Problems  634
References for Further Study  639

Part VII	 MANAGING DATABASE ENVIRONMENTS  641

16	 Data and Database Administration  643
Learning Objectives  643

Overview  643

16.1  Organizational Context for Managing Databases  644
16.1.1  Database Support for Management Decision Making  644
16.1.2  Approaches for Managing Data Resources  645
16.1.3  Responsibilities of Data Specialists  647
16.1.4  Challenges of Big Data  648

16.2  Tools of Database Administration  649
16.2.1  Security  649
16.2.2  Integrity Constraints  653
16.2.3  Management of Triggers and Stored Procedures  657
16.2.4  Data Dictionary Manipulation  658

16.3  Processes for Database Specialists  660
16.3.1  Data Planning  661
16.3.2  Data Governance Processes and Tools  662
16.3.3  Selection and Evaluation of Database Management Systems  665

16.4  Managing Database Environments  670
16.4.1  Transaction Processing  670
16.4.2  Data Warehouse Processing  670
16.4.3  Distributed Environments  671
16.4.4  Object Databases and NoSQL Databases  672

Closing Thoughts  673
Review Concepts  673
Questions  675
Problems  678
References for Further Study  679

Appendix 16.A:  SQL:2016 Syntax Summary  ONLINE

26008_fm_pi-xxx.indd 15 3/3/18 12:34 AM

xvi   Contents

17	 Transaction Management  681
Learning Objectives  681

Overview  681

17.1  Basics of Database Transactions  682
17.1.1  Transaction Examples  682
17.1.2  Transaction Properties  684

17.2  Concurrency Control  686
17.2.1  Objective of Concurrency Control  686
17.2.2  Interference Problems  686
17.2.3  Concurrency Control Tools  688

17.3  Recovery Management  693
17.3.1  Data Storage Devices and Failure Types  693
17.3.2  Recovery Tools  694
17.3.3  Recovery Processes  696

17.4  Transaction Design Issues   700
17.4.1  Transaction Boundary and Hot Spots  700
17.4.2  Isolation Levels  704
17.4.3  Timing of Integrity Constraint Enforcement  706
17.4.4  Save Points  708
17.4.5  Relaxed Transaction Consistency Model  709

17.5  Workflow Management  709
17.5.1  Characterizing Workflows  710
17.5.2  Enabling Technologies  711

Closing Thoughts  712
Review Concepts  713
Questions  714
Problems  716
References for Further Study  723

Appendix 17.A:  SQL:2016 Syntax Summary  ONLINE

18	 Client-Server Processing, Parallel Database Processing, and Distributed Databases  725
Learning Objectives  725

Overview  725

18.1 � Overview of Distributed Processing and Distributed Data  726
18.1.1  Motivation for Client-Server Processing  726
18.1.2  Motivation for Parallel Database Processing  727
18.1.3  Motivation for Distributed Data  728
18.1.4  Motivation for Cloud Based Computing  728
18.1.5  Summary of Advantages and Disadvantages  729

18.2  Client-Server Database Architectures  730
18.2.1  Design Issues  730
18.2.2  Basic Architectures  732
18.2.3  Specialized Architectures  734

18.3  Parallel Database Processing  737
18.3.1  Architectures and Design Issues  738
18.3.2  Commercial Parallel Database Technology  739
18.3.3  Big Data Parallel Processing Architectures  741

18.4 � Architectures for Distributed Database Management Systems  743
18.4.1  Component Architecture  743
18.4.2  Schema Architectures  745

18.5  Transparency for Distributed Database Processing  746
18.5.1  Motivating Example  747
18.5.2  Fragmentation Transparency  749

26008_fm_pi-xxx.indd 16 3/3/18 12:34 AM

Contents   xvii

18.5.3  Location Transparency  749
18.5.4  Local Mapping Transparency  750
18.5.5  Transparency in Oracle Distributed Databases  752

18.6  Distributed Database Processing  754
18.6.1  Distributed Query Processing  754
18.6.2  Distributed Transaction Processing  756

Closing Thoughts  759
Review Concepts  760
Questions  761
Problems  763
References for Further Study  765

19	 DBMS Extensions for Object and NoSQL Databases  767
Learning Objectives  767

Overview  767

19.1  Motivation for Object Database Management  768
19.1.1  Complex Data  768
19.1.2  Type System Mismatch  768
19.1.3  Application Examples  769

19.2  Object Database Features in SQL:2016  770
19.2.1  User-Defined Types  771
19.2.2  Table Definitions  773
19.2.3  Subtable Families  775
19.4.4  Manipulating Complex Objects and Subtable Families  776

19.3  Object Database Features in Oracle  779
19.3.1  Defining User-Defined Types and Typed Tables in Oracle  779
19.3.2  Using Typed Tables in Oracle  782
19.3.3  Dependencies among Types and Typed Tables  786
19.3.4  Other Object Features in Oracle  787

19.4  Overview of NoSQL Database Management  792
19.4.1  Motivation and Features  792
19.4.2  Data Models in NoSQL DBMSs  794

19.5 � Database Definition and Manipulation with Couchbase N1QL  800
19.5.1  JavaScript Object Notation (JSON)  800
19.5.2  Couchbase N1QL Statements  802

Closing Thoughts  816
Review Concepts  817
Questions  818
Problems  820
References for Further Study  828

Appendix 19.A:  INSERT Statements for N1QL Buckets  ONLINE

Bibliography  829
Indexes  833

26008_fm_pi-xxx.indd 17 3/3/18 12:34 AM

xviii  

PREFACE

MOTIVATING EXAMPLE
Paul Hong, the owner of International Industrial Adhesives, Inc., is excited about
potential opportunities in the growing global economy. He senses major opportuni-
ties in new product development, new sources of demand, and industry consolida-
tion. These opportunities, however, involve substantial risks with major changes in his
business and industry. He senses risk from new mergers and acquisitions, new com-
petitors, increased government regulation and litigation in areas affecting his busi-
ness, and data security threats. New mergers and acquisitions may involve challenges
integrating disparate information technology and sharp increases in data and transac-
tion volumes. The success of his business has attracted new competitors focusing on
his most profitable customers and products. New environmental, financial, and health
regulations impose costly data collection efforts, reporting requirements, and compli-
ance activities. Data security breaches pose a constant threat especially with a large
competitor having a recent, major disclosure of sensitive customer records. Despite
tremendous opportunities for growth, he remains cautious about new directions to
manage risk effectively.

Paul Hong must make timely and appropriate information technology invest-
ments to deal with strategic acquisitions, respond to competitors, control costs of
government mandates, and thwart attacks on data assets. To manage mergers and
acquisitions, he must increase information technology capacity to process large new
volumes of transactions, manage increasing amounts of data for operations, business
intelligence, and long-term archival storage, and integrate disparate systems and data.
To match competitors, he needs more detailed and timely data about industry trends,
competitors’ actions, and intellectual property developments. To comply with new
regulations, he must develop new data collection practices, conduct information tech-
nology audits, and fulfill other government reporting requirements for public compa-
nies. To thwart data attacks, he must review potential risks and invest in monitoring
tools. For all of these concerns, he is unsure about managing risks, choosing informa-
tion technology suppliers, and hiring competent staff.

These concerns involve significant usage of database technology as well as new
data management initiatives to ensure accountability. New developments in NoSQL
database technology, parallel processing architectures, and data lifecycle management
can provide cost effective solutions to meet challenges of big data. These technologies
can be deployed in cloud computing environments that provide economies of scale,
elimination of fixed infrastructure costs, and dynamic scalability. A data governance
organization can mitigate risks associated with the complex regulatory environment
through a system of checks and balances using data rules and policies. Mergers and
acquisitions often trigger data governance initiatives to ensure consistent data defini-
tions and integrate corporate policies involving data privacy and security.

However, the solutions to Paul Hong’s concerns involve more than technology.
Utilization of appropriate information technology requires a vision for an organiza-
tion’s future, a deep understanding of technology, and traditional management skills
to control risk. Paul Hong realizes that his largest challenge is to blend these skills to
develop effective solutions for International Industrial Adhesives, Inc.

26008_fm_pi-xxx.indd 18 3/3/18 12:34 AM

Preface   xix

This textbook provides a foundation to understand database technology supporting enter-
prise computing concerns such as those faced by Paul Hong. As a new student of database
management, you first need to understand fundamental concepts of database manage-
ment and the relational data model. Then you need to master skills in query formulation,
database design, and database application development. This textbook provides tools to
help you understand relational databases and acquire skills to solve basic and advanced
problems in query formulation, data modeling, normalization, data requirements for busi-
ness applications, and customization of database applications.

After establishing these skills, you are ready to study the organizational context,
role of database specialists, and the processing environments in which databases are
used. Students will learn about decision-making needs, accountability requirements,
organization structures, business architectures, and roles of database specialists asso-
ciated with databases and database technology. For environments, this textbook pres-
ents fundamental database technologies in each processing environment and relates
these technologies to new advances in electronic commerce and business intelligence.
You will learn vocabulary, architectures, and design issues of database technology
that provide a background for advanced study of enterprise information systems, elec-
tronic commerce applications, and business intelligence.

INTRODUCTION

WHAT’S NEW IN THE SEVENTH EDITION
The seventh edition makes substantial revisions to the sixth edition while preserving
the proven pedagogy developed in the first sixth editions. Experience gained from
instruction of university students and online learners along with feedback from adopt-
ers of the earlier editions has led to the development of new material and refinements
to existing material. A five-course specialization developed for the Coursera platform
in 2016 provided the impetus for substantial new material in the seventh edition about
data warehouses.

The most significant changes in the seventh edition are a substantial expan-
sion of data warehouse material and new coverage of NoSQL database technology
and features. Many organizations focus on business intelligence to gain competitive
advantage, manage risks, and connect with customers. Data warehouse technology
and practices provide a foundation for business intelligence in many organizations.
The seventh edition expands, updates, and reorganizes data warehouse material from
two to four chapters. The seventh edition contains substantial new material about
management of data warehouse development, data warehouses in major industries,
the schema integration process, a mini case study about data warehouse design, SQL
statements for data integration, data integration tools, SQL extensions for analytic que-
ries, the Microsoft Multidimensional Expressions language, pivot table tools, and a
business strategy game for managing development of data warehouses. Besides new
material, the seventh edition substantially updates existing material in the sixth edi-
tion such as indicating the market decline of data warehouse appliances.

Organizations continue to face challenging demands from big data applications
involving batch processing of large volumes of semi-structured data and online
processing of intense levels of transactions. NoSQL database technology provides a
foundation to deal with these big data applications in a growing number of organi-
zations. The seventh edition contains substantial new material on NoSQL database
technology about column-oriented storage, big data parallel processing architectures,
and in-memory transaction processing. Both NoSQL DBMSs and enterprise relational
DBMSs support these technologies. To understand explosive growth in NoSQL data-
base DBMSs, the seventh edition provides an overview about features and data mod-
els in NoSQL DBMSs as well as detailed coverage of the JavaScript Object Notation
(JSON) and the N1QL query language in Couchbase Server, a leading NoSQL DBMS.

26008_fm_pi-xxx.indd 19 3/3/18 12:34 AM

xx   Preface

Besides the expanded coverage of data warehouses and NoSQL database technol-
ogy, the seventh edition provides numerous refinements to existing material based on
classroom experience. Chapters 4 to 11 contain new examples in response to difficul-
ties students had with textbook gaps. The seventh edition makes substantial revisions
to coverage of data modeling tools, query formulation guidelines, normalization pro-
cesses, and trigger coding guidelines. In addition, refinements and updates to most
chapters have improved the presentation and currency of the material.

For database application development, the seventh edition covers SQL:2016, an
evolutionary change from previous SQL standard versions (SQL:1999 to SQL:2011).
The seventh edition explains the scope of SQL:2016, the difficulty of conformance with
the standard, and new elements of the standard. Numerous refinements of details
about database application development extend the proven coverage of the first sixth
editions: query formulation guidelines, query formulation errors, count method for
division problems, query formulation steps for hierarchal forms and reports, common
errors in queries for forms, trigger formulation guidelines, and transaction design
guidelines.

For database administration and processing environments, the seventh edition
provides expanded coverage of NoSQL technology. The most significant new topics
are columnstore indexes, in-memory transaction processing, and parallel processing
architectures for big data applications.

In addition to new material and refinements to existing material, the seventh edi-
tion extends chapter supplements. The seventh edition contains new end-of-chapter
questions and problems in most chapters. New material in the textbook’s website
includes detailed tutorials about Microsoft Access 2016, Visio Professional 2010, and
Aqua Data Studio, assignments for first and second database courses, and sample
exams. The software tutorials for Microsoft Access, Visio Professional, and Aqua Data
Studio support concepts presented in textbook chapters 4, 5, 6, 9, and 10.

To make room for new material, the seventh edition eliminates two chapters from
the sixth edition. The seventh edition contains two chapters of new material about data
warehouses. New material about NoSQL technology replaces outdated material about
object-oriented databases. To remove bloat, the seventh edition eliminates chapters
covering a form-based approach for database design and a case study about data-
base design. The course website contains these chapters for continuity with the sixth
edition.

COMPETITIVE ADVANTAGES
This textbook provides outstanding features unmatched in competing textbooks. The
unique features include detailed SQL coverage for both Microsoft Access and Oracle,
problem-solving guidelines to aid acquisition of key skills, carefully designed sample
databases and examples, advanced topic coverage, integrated lab material, prominent
data modeling tools, extensive data warehouse details, and substantial NoSQL cover-
age. These features provide a complete package for both introductory and advanced
database courses. The following list describes each feature in more detail while Table
P-1 summarizes competitive advantages by chapter.

•	 SQL Coverage: The breadth and depth of the SQL coverage in this text is
unmatched by competing textbooks. Table P-2 summarizes SQL coverage by
chapter. Parts 2 and 5 provide thorough coverage of the CREATE TABLE,
SELECT, UPDATE, INSERT, DELETE, CREATE VIEW, and CREATE TRIGGER
statements. Part 6 provides extensive coverage of SQL statements for data
warehouses. The chapters in parts 2 to 6 provide numerous examples of basic,
intermediate, and advanced problems. The chapters in Part 7 cover statements
useful for database administrators as well as statements used in specific
processing environments.

26008_fm_pi-xxx.indd 20 3/3/18 12:34 AM

Preface   xxi

•	 Access and Oracle Coverage: The chapters in Parts 2 and 5 provide detailed
coverage of both Microsoft Access and Oracle SQL. Each example for the
SELECT, INSERT, UPDATE, DELETE, and CREATE VIEW statements is shown
for both DBMSs. Significant coverage of advanced Oracle 12c SQL features
appears in Chapters 8, 9, 11, 14, 15, 17, and 19. In addition, the chapters in Parts
2 and 5 cover SQL:2016 syntax to support instruction with other prominent
database management systems.

•	 Problem-Solving Guidelines: Students need more than explanations of concepts
and examples to solve problems. Students need guidelines to help structure
their thinking process to tackle problems in a systematic manner. The guidelines
provide mental models to help students apply the concepts to solve basic
and advanced problems. Table P-3 summarizes the unique problem-solving
guidelines by chapter.

•	 Sample Databases and Examples: To provide consistency and continuity, Parts 2
to 5 use two sample databases in chapter bodies and problems. The University
database is used in the chapter examples, while the Order Entry database is used
in the end-of-chapter problems. Numerous examples and problems with these
databases depict the fundamental skills of query formulation and application
data requirements. Revised versions of the databases provide separation between
basic and advanced examples. The website contains CREATE TABLE statements,
sample data, data manipulation statements, and Access database files for both
databases.

Chapters in Parts 3, 4, 6, and 7 use additional databases to broaden exposure to more
diverse business situations. Students need exposure to a variety of business situations
to acquire database design skills and understand concepts important to database spe-
cialists. The supplementary databases cover water utility operations, patient visits,
academic paper reviews, personal financial tracking, airline reservations, placement
office operations, automobile insurance, store sales tracking, and real estate sales. In
addition, Chapter 12 on data warehouse concepts presents data warehouses in retail,
education, and health care.

•	 Optional Integrated Labs: Database management is best taught when concepts are
closely linked to the practice of designing, implementing, and using databases
with a commercial DBMS. To help students apply the concepts described in
the textbook, optional supplementary lab materials are available on the text’s
website. The website contains labs for five Microsoft Access versions (2003,
2007, 2010, 2013, and 2016) as well as practice databases and exercises. The
Microsoft Access labs integrate a detailed coverage of Access with the application
development concepts covered in Parts 2 and 5.

•	 Data Modeling Tools: The sixth edition expands coverage of commercial data
modeling tools for database development. Students will find details about Aqua
Data Studio, Oracle SQL Developer, and Visual Paradigm.

•	 Data Warehouse Coverage: The four data warehouse chapters (12 to 15) along
with the database administration chapter provide details for an entire
course on data warehouses in a business intelligence curriculum. No other
competing textbook provides the breadth and depth of coverage about data
warehouses. Chapter 12 presents data warehouse concepts and management
with unique details about management of the data warehouse development
process. Chapter 13 contains data warehouse design background with unique
details about the schema integration process. Chapter 14 presents data
integration concepts and tools with extensive coverage of data integration
tools. Chapter 15 presents query formulation for data warehouses with
extensive coverage of pivot table tools and SQL statement extensions. The
course website contains assignments for pivot table tools, query formulation,
data integration, schema integration, and materialized view processing to
augment chapter coverage.

26008_fm_pi-xxx.indd 21 3/3/18 12:34 AM

xxii   Preface

•	 NoSQL Coverage: Major organizations have strong demand for individuals with
background about NoSQL technology and systems. The seventh edition supports
this need with substantial material about features in NoSQL DBMSs as well as
detailed coverage of a major NoSQL DBMS. Numerous examples and problems
provide opportunity for students to obtain a foundation of skills for data
modeling and query formulation using a NoSQL DBMS.

Due to the nature of NoSQL technology, the textbook distributes coverage across sev-
eral chapters. Chapters 8, 17, and 18 present important technologies (column-oriented
storage, in-memory transaction processing, big data parallel processing architectures,
and BASE principle for distributed transaction processing) used in both NoSQL and
enterprise relational DBMSs. Chapter 19 contains extensive details about features and
data models used in NoSQL DBMSs. To provide practice-oriented coverage of NoSQL
technology, Chapter 19 covers the Java Script Object Notation (JSON) and the Couch-
base N1QL query language to manipulate JSON databases.

•	 Current and Cutting-Edge Topics: This textbook covers many topics omitted
in competing textbooks: advanced query formulation, updatable views,
development and management of stored procedures and triggers, hierarchical
query formulation, business strategy game for managing data warehouse

TABLE P-1
Summary of Competitive
Advantages by Chapter

Chapter Unique Features

2 Conceptual introduction to the database development process

3 Visual representation of relational algebra operators

4 Query formulation guidelines; Errors in query formulation, Oracle, Access, and SQL:2016 SQL
coverage

5 Emphasis on ERD notation, business rules, and diagram rules; Overview about data modeling
notation in prominent commercial data modeling tools

6 Strategies for analyzing business information needs; Data modeling transformations;
Detection of common design errors

7 Normalization guidelines and procedures

8 Index selection rules; SQL tuning guidelines, Integrated coverage of query optimization, file
structures, and index selection

9 Query formulation guidelines; Oracle 12c, Access, and SQL:2016 coverage; Advanced topic
coverage of nested queries, division problems, difference problems, null value handling, and
hierarchical queries

10 Rules for updatable views; Data requirement steps for forms and reports; Common query
formulation errors for hierarchical forms

11 Integrated coverage of database programming languages, stored procedures, and triggers;
Trigger formulation guidelines; Common trigger coding errors

12 Management of data warehouse development; Business strategy game for data warehouse
maturity; Examples of data warehouses in major industries

13 Building blocks for conceptual data warehouse design; Schema integration process

14 Data integration concepts, techniques, and tools; Supplementary material for data integration
tool usage

15 Overview of Microsoft MDX and pivot table tools; Detailed coverage of SQL statement
extensions for data warehouse queries

16 Guidelines to control trigger complexity, coding practices, and database dependencies; Data
governance processes; Selection and evaluation process for a DBMS

17 Transaction design guidelines; Mini case study about transaction design

18 Integrated coverage of client-server processing, parallel database processing, and distributed
databases integrated with impact of cloud computing

19 Object-relational features in SQL:2016 and Oracle 12c; NoSQL DBMS features; Query
formulation using JSON documents and Couchbase N1QL

26008_fm_pi-xxx.indd 22 3/3/18 12:34 AM

Preface   xxiii

development, schema integration process, parallel database architectures, data
integration tools, SQL extensions for data warehouses, in-memory transaction
processing, object-relational features in SQL:2016 and Oracle 12c, and transaction

TABLE P-2
SQL Statement Coverage by
Chapter

Chapter SQL Statement Coverage

3 CREATE TABLE

4 SELECT, INSERT, UPDATE, DELETE; Access and Oracle coverage

9 SELECT (nested queries, outer joins, null value handling, hierarchical queries); Access and
Oracle coverage

10 CREATE VIEW; retrieval and manipulation statements using views

11 CREATE PROCEDURE (Oracle), CREATE TRIGGER (Oracle and SQL:2016)

13 CREATE DIMENSION (Oracle)

14 MERGE (SQL:2016 and Oracle); Multiple table INSERT (Oracle)

15 SELECT statement extensions for subtotal computations and analytic functions (Oracle and
SQL:2016); CREATE MATERIALIZED VIEW (Oracle) and query rewriting

16 GRANT, REVOKE, CREATE ROLE, CREATE ASSERTION, CHECK clause of the CREATE TABLE
statement, CREATE DOMAIN

17 COMMIT, ROLLBACK, SET TRANSACTION, SET CONSTRAINTS, SAVEPOINT

19 CREATE TYPE, CREATE TABLE (typed tables and subtables), SELECT extensions (object
identifiers, path expressions, dereference operator); SQL:2016 and Oracle coverage;
Couchbase N1QL INSERT and SELECT statements for JSON databases

TABLE P-3
Problem-Solving Guidelines
by Chapter

Chapter Problem-Solving Guidelines

3 Visual representations of relationships and relational algebra operators

4 Conceptual evaluation process; Query formulation questions; Query formulation errors

5 Diagram rules

6 Guidelines for analyzing business information needs; Design transformations; Detection of
common design errors; Conversion rules

7 Guidelines for identifying functional dependencies; Usage of sample data to falsify functional
dependencies; Simple synthesis procedure

8 Index selection rules; SQL tuning guidelines

9 Difference problem formulation guidelines; Nested query evaluation; Count method for division
problem formulation; Hierarchical query formulation guidelines

10 Rules for updatable queries; Steps for analyzing data requirements in forms and reports

11 Trigger execution procedure; Trigger formulation guidelines

12 Drivers of difficulties in data warehouse projects; Learning curve concepts; Architectures for
data warehouse deployment; Architecture selection guidelines

13 Schema patterns with example data warehouse designs; Summarizability patterns; Steps of the
schema integration process

14 Factors influencing refresh process objective; Features of data integration tools

15 Mapping of GROUPING SETS operator to CUBE and ROLLUP operators; Factors influencing
analytic function extensions; Extension of SELECT statement processing for analytic functions;
Comparison of traditional views and materialized views; Processing for materialized views;
Matching requirements for query rewriting

16 Guidelines to manage stored procedures and triggers; Data planning process; DBMS selection
process; Core processes and risk matrix in the Microsoft Data Governance Framework

17 Transaction timeline; Transaction design guidelines

18 Progression of transparency levels for distributed databases

19 Comparison between relational and object-relational representations; Multiple representations
of JSON documents (fully nested, partially nested, and flat)

26008_fm_pi-xxx.indd 23 3/3/18 12:34 AM

xxiv   Preface

design principles. These topics enable motivated students to obtain a deeper
understanding of database management.

•	 Complete Package for Courses: Depending on the course criteria, some students
may need to purchase as many as four books for an introductory database
course: a textbook covering principles, laboratory books covering details of
a DBMS, a supplemental SQL book, and a casebook with realistic practice
problems. This textbook and supplemental material provide a complete,
integrated, and less expensive resource for students.

TEXT AUDIENCE
This book supports two database courses at the undergraduate or graduate level. At
the undergraduate level, students should have a concentration (major or minor) or
active interest in information systems. For two-year institutions, the instructor may
want to skip advanced topics and place more emphasis on the optional Access lab
book. Undergraduate students should have a first course covering general information
systems concepts, spreadsheets, word processing, and possibly a brief introduction to
databases.

At the graduate level, this book is suitable in either MBA or Master of Science (in
information systems) programs. The advanced material in this book should be espe-
cially suitable for Master of Science students.

Except for Chapter 11, a previous course in computer programming can be use-
ful background but is not mandatory. The other chapters reference some computer
programming concepts, but writing code is not covered. For a complete mastery of
Chapter 11, computer programming background is essential. However, the basic con-
cepts and trigger details in Chapter 11 can be covered even if students do not have a
computer programming background.

ORGANIZATION
As the title suggests, Database Design, Application Development, and Administration
emphasizes three sets of skills. Before acquiring these skills, students need a foun-
dation about basic concepts. Part 1 provides conceptual background for subsequent
detailed study of database design, database application development, and database
administration. The chapters in Part 1 present the principles of database management
and a conceptual overview of the database development process.

Part 2 provides foundational knowledge about the relational data model. Chapter
3 covers table definition, integrity rules, and operators to retrieve useful information
from relational databases. Chapter 4 presents guidelines for query formulation and
numerous examples of SQL statements.

Parts 3 and 4 emphasize practical skills and design guidelines for the database
development process. Students desiring a career as a database specialist should be
able to perform each step of the database development process. Students should learn
skills of data modeling, schema conversion, normalization, and physical database de-
sign. The Part 3 chapters (Chapters 5 and 6) cover data modeling using the Entity
Relationship Model. Chapter 5 covers the structure of entity relationship diagrams,
while Chapter 6 presents usage of entity relationship diagrams to analyze business
information needs. The Part 4 chapters (Chapters 7 and 8) cover table design principles
and practice for logical and physical design. Chapter 7 covers motivation, function-
al dependencies, normal forms, and practical considerations of data normalization.
Chapter 8 contains broad coverage of physical database design including objectives,
inputs, file structures, query optimization principles, and important design choices.

Part 5 provides a foundation for building database applications by helping stu-
dents acquire skills in advanced query formulation, specification of data requirements

26008_fm_pi-xxx.indd 24 3/3/18 12:34 AM

Preface   xxv

for data entry forms and reports, and coding triggers and stored procedures. Chapter
9 presents additional examples of intermediate and advanced SQL, along with cor-
responding query formulation skills. Chapter 10 describes motivation, definition, and
usage of relational views along with specification of view definitions for data entry
forms and reports. Chapter 11 presents concepts and coding practices of database pro-
gramming languages, stored procedures, and triggers for customization of database
applications.

Part 6 provides detailed coverage of data warehouse management, design, data
integration, and query formulation. Chapter 12 presents basic concepts, management
background, and examples of data warehouses in important industries. Chapter 13
describes conceptual design of data warehouses with coverage of multidimensional
representation, schema patterns, summarizability patterns, and the schema integra-
tion process. Chapter 14 provides details about data integration concepts, techniques,
and tools. Chapter 15 covers query formulation for online analytic processing, SQL
SELECT statement extensions for subtotal calculations, SQL SELECT statement exten-
sions for analytic functions, and summary data management. Together, the chapters in
Part 6 provide a strong foundation for students to pursue a career as a data warehouse
or business intelligence professional.

Beyond database design and application development skills, this textbook pre-
pares students for careers as database specialists. Students need to understand the
responsibilities, tools, and processes employed by data administrators and database
administrators as well as the various environments in which databases operate.

The chapters in Part 7 emphasize the role of database specialists and the details of
managing databases in various environments. Chapter 16 provides a context for the
other chapters through coverage of the responsibilities, tools, and processes used by
database administrators and data administrators. The other chapters in Part 7 provide
a foundation for managing databases in important environments: Chapter 17 on trans-
action processing, Chapter 18 on distributed processing and data, and Chapter 19 on
object and NoSQL databases. These chapters emphasize concepts, architectures, and
design choices important for database specialists, while providing some coverage of
advanced application development topics.

TEXT APPROACH AND THEME
To support acquisition of the necessary skills for learning and understanding appli-
cation development, database design, and managing databases, this book adheres to
three guiding principles.

  (1) � Combine concepts and practice. Database management is more easily learned
when concepts are closely linked to the practice of designing and implementing
databases using a commercial DBMS. The textbook and the accompanying
supplements have been designed to provide close integration between concepts
and practice through the following features:

•	 SQL examples for both Access and Oracle as well as SQL:2016 coverage
•	 Emphasis of the relationship between application development and query

formulation
•	 Usage of data modeling notations supported by professional database

development products
•	 Supplemental laboratory practice chapters that combine textbook concepts

with details of commercial DBMSs
  (2) � Emphasize problem-solving skills. This book features problem-solving guidelines

to help students master fundamental skills of data modeling, normalization,
query formulation, and application development. The textbook and associated
supplements provide a wealth of questions, problems, case studies, and
laboratory practices in which students can apply their skills. With mastery of the

26008_fm_pi-xxx.indd 25 3/3/18 12:34 AM

xxvi   Preface

fundamental skills, students will be poised for future learning about databases
and change the way they think about computing in general.

  (3) � Provide introductory and advanced material. Business students who use this book
may have a variety of backgrounds. This book provides enough depth to satisfy
the most eager students. However, the advanced parts are placed so that they
can be skipped by the less inclined.

PEDAGOGICAL FEATURES
This book contains the following pedagogical features to help students navigate
through chapter content in a systematic fashion:

•	 Learning Objectives focus on the knowledge and skills students will acquire
from studying the chapter.

•	 Overviews provide a snapshot or preview of chapter contents.
•	 Key Terms are highlighted and defined in boxed areas as they appear in the

chapter.
•	 Examples are clearly separated from the rest of the chapter material for easier

review and studying purposes.
•	 Running Database Examples — examples using the University database as well

as other databases with clear separation from surrounding text.
•	 Closing Thoughts summarize chapter content in relation to the learning

objectives.
•	 Review Concepts are the important conceptual highlights from the chapter, not

just a list of terminology.
•	 Questions are provided to review the chapter concepts.
•	 Problems help students practice and implement the detailed skills presented in

the chapter.
•	 References for Further Study point students to additional sources on chapter

content.
•	 Chapter Appendixes provide additional details, convenient summaries of

SQL:2016 syntax, and other topics beyond normal chapter coverage.

At the end of the text, students will find the following additional resources:

•	 Glossary: Provides a complete list of terms and definitions used throughout the
text.

•	 Bibliography: A list of helpful industry, academic, and other printed material for
further research or study.

•	 Index: A list of keywords with page references to help readers of the printed
edition.

MICROSOFT ACCESS LABS
Lab books for several versions of Microsoft Access (2003, 2007, 2010, 2013, and 2016)
are available. The lab books provide detailed coverage of features important to be-
ginning database students as well as many advanced features. The lab chapters pro-
vide a mixture of guided practice and reference material organized into the following
chapters:

	 1. 	An Introduction to Microsoft Access
	 2. 	Database Creation Lab
	 3. 	Query Lab
	 4. 	Single Table Form Lab

26008_fm_pi-xxx.indd 26 3/3/18 12:34 AM

Preface   xxvii

	 5. 	Hierarchical Form Lab
	 6. 	Report Lab
	 7. 	Pivot Tables
	 8. 	User Interface Lab

Each lab chapter follows the pedagogy of the textbook with Learning Objectives, Over-
view, Closing Thoughts, Additional Practice exercises, and Appendixes of helpful tips.
Most lab chapters reference concepts from the textbook for close integration with corre-
sponding textbook chapters. Each lab book also includes a glossary of terms and an index.

INSTRUCTOR RESOURCES
A comprehensive set of supplements for the text and lab manuals is available to
adopters.

•	 Powerpoint slides for each chapter
•	 Solutions to end of chapter problems for each chapter
•	 Solutions to end of chapter questions for each chapter
•	 Access databases for the university and order entry textbook databases
•	 Oracle SQL statements to create and populate the university and order entry

textbook databases
•	 Files containing SQL statements used in the textbook chapters
•	 Case studies along with case study solutions
•	 Assignments used in a first database course. The assignments involve database

creation, query formulation, application development with forms, data modeling,
and normalization. In addition, a project assignment integrates material about
database development and application development.

•	 Assignments used in a second database course on database administration and
processing environments. The assignments involve database creation, triggers,
data warehouse design, data integration practices, query formulation for data
warehouses, and object relational databases. In addition, projects are provided
about Oracle advanced features, benchmark development, and management
practices to develop or manage a significant database or data warehouse in an
organization.

•	 Assignments used in a second course on data warehouses. The assignments
involve pivot table tools, data warehouse design, SELECT statement extensions
for subtotal operators, SELECT statement extensions for analytic functions, and
materialized views and query rewriting. A comprehensive case study integrating
other parts of the course can be used in the last part of the course.

•	 Sample exams for a first course in database management
•	 Sample exams for an advanced course in database management
•	 Access databases for each lab chapter
•	 Access databases for end of chapter problems in each lab chapter

TEACHING PATHS
The textbook can be covered in several orders in a one- or a two-semester sequence.
The author has taught a one-semester course with the ordering of relational database
basics, query formulation, application development, database development, and data-
base processing environments. This ordering has the advantage of covering the more
concrete material (query formulation and application development) before the more
conceptual material (database development). Lab chapters and assignments are used
for practice beyond the textbook chapters. To fit into one semester, advanced topics are
skipped in Chapters 8 and 11 to 19.

26008_fm_pi-xxx.indd 27 3/3/18 12:34 AM

xxviii   Preface

A second ordering is to cover database development before application devel-
opment. For this ordering, the author recommends the following textbook chapter
ordering: 1, 2, 5, 6, 3, 7, 4, 9, and 10. The material on schema conversion in Chapter 6
should be covered after Chapter 3. This ordering supports a more thorough coverage
of database development while not neglecting application development. To fit into
one semester, advanced topics are skipped in Chapters 8 and 11 to 19.

A third possible ordering is to use the textbook in a two-course sequence. The first
course covers database management fundamentals from Parts 1 and 2, data modeling
and normalization from Parts 3 and 4, and advanced query formulation, and applica-
tion development with views. The second course emphasizes database administration
skills with physical database design from Part 4, triggers and stored procedures from
Part 5, and the processing environments from Part 7 along with Chapter 12 on data
warehouses. A comprehensive project can be used in the second course to integrate
application development, database development, and database administration.

An alternative second course covers data warehouses and database administra-
tion. This course fits well in a business intelligence track. This course uses the four
chapters in Part 6 about data warehouses and selected parts of Chapter 16 on data
and database administration. A detailed case study can be used to provide integrative
material in the last part of the course.

ACKNOWLEDGMENTS
The seventh edition culminates 40 years of instruction, research, and industry ex-
perience. Before beginning the first edition, I wrote tutorials, laboratory practices,
and case studies. This material was first used to supplement other textbooks. After
encouragement from students, this material was used without a textbook. This mate-
rial, revised many times through student comments, was the foundation for the first
edition. During the development of the first edition, the material was classroom tested
for three years with hundreds of undergraduate and graduate students, along with
careful review through four drafts by many outside reviewers. The second edition
was developed through classroom usage of the first edition for three years, along with
teaching an advanced database course for several years. The third edition was devel-
oped through experience of three years with the second edition in basic and advanced
database courses. The fourth edition was developed through three years of instruction
with the third edition in beginning and advanced database courses. The fifth edition
was developed through two years of instruction with the fourth edition in beginning
and advanced database courses. The sixth edition was developed through two years
of instruction with the fifth edition in beginning and advanced database courses. The
seventh edition was developed through three years of instruction with the sixth edi-
tion as well as development of a Coursera specialization on data warehousing.

I wish to acknowledge the excellent support that I have received in completing
the seventh edition. I thank my publisher, Paul Ducham, for his expertise in pro-
ducing and marketing this textbook. Without his expertise, this textbook would not
reach its intended audience. I thank my many database students, especially those in
ISMG6080 and ISMG6480 at the University of Colorado Denver and more than 50,000
learners in the Coursera specialization, Data Warehousing for Business Intelligence.
Your comments and reaction to my courses and the textbook have been invaluable to
its improvement.

26008_fm_pi-xxx.indd 28 3/3/18 12:34 AM

xxix  

ABOUT THE AUTHOR

Michael V. Mannino has been involved in the database field since 1978 when he began
graduate studies at the University of Arizona. He has taught database management
since 1983 at several major universities (University of Florida, University of Texas at
Austin, University of Washington, and University of Colorado Denver). His audiences
have included undergraduate MIS students, graduate MIS students, MBA students,
and doctoral students as well as thousands of Coursera learners. He has also been
active in database research with publications in major journals of the IEEE (Transac-
tions on Knowledge and Data Engineering and Transactions on Software Engineering), ACM
(Communications, Journal of Data and Information Quality, Transactions on Management
Information Systems, and Computing Surveys), and INFORMS (Informs Journal on Com-
puting and Information Systems Research). His research includes several popular sur-
vey and tutorial articles as well as many papers presenting original research. Practical
results of his research have been incorporated into Chapter 12 on management of the
data warehouse development, especially the design and implementation of the educa-
tional game, Emerge2Maturity, for providing insights about data warehouse maturity
in organizations.

26008_fm_pi-xxx.indd 29 3/3/18 12:34 AM

26008_fm_pi-xxx.indd 30 3/3/18 12:34 AM

1  

part one

Part 1 provides a background for subsequent detailed study of database design, database

application development, and database administration. The chapters in Part 1 present the

principles of database management and the nature of the database development process.

Chapter 1 covers the basic concepts of database management including database character-

istics, features and architectures of database management systems, the market for database

management systems, and organizational impacts of database technology. Chapter 2 intro-

duces the context, objectives, phases, and tools of the database development process.

Introduction
to Database
Environments

26008_ch01_p001-024.indd 1 3/2/18 10:21 PM

26008_ch01_p001-024.indd 2 3/2/18 10:21 PM

OVERVIEW
You may not be aware of it, but database technology
dramatically affects your life. Modern organizations can-
not operate efficiently without databases and associ-
ated database technology. You come into contact with
databases on a daily basis through activities such as
shopping at a supermarket, withdrawing cash using an
automated teller machine, making an airline reserva-
tion, ordering a book online, and registering for classes.
The proliferation of databases and supporting database
technology provides convenience in your daily life.

Database technology is not only improving the daily
operations of organizations but also the quality of deci-
sions that affect our lives. Databases contain a flood of
data about many aspects of our lives such as consumer
preferences, telecommunications usage, credit his-
tory, television viewing habits, and taxation documents.
Database technology helps to summarize this mass of

data into useful information for decision-making. Man-
agement uses information gleaned from databases to
make long-range decisions such as investing in plants
and equipment, locating stores, adding new items
to inventory, and entering new businesses. Govern-
ment uses information mined from databases to target
taxation enforcement, refine pollution control efforts,
target interest groups for election appeals, and develop
new laws.

This first chapter provides a starting point for your
exploration of database technology. It surveys database
characteristics, database management system features,
system architectures, and human roles in managing and
using databases. The other chapter in Part 1 (Chapter 2)
provides a conceptual overview of the database devel-
opment process. Chapter 1 provides a broad picture of
database technology and shares the excitement about
the journey ahead.

Learning Objectives

This chapter provides an introduction to database technology and the
impact of this technology on organizations. After this chapter the student
should have acquired the following knowledge and skills:

•	 Describe the characteristics of business databases and the features
of database management systems

•	 Understand the importance of nonprocedural access for software
productivity

•	 Appreciate the advances in database technology and the
contributions of database technology to modern society

•	 Understand the impact of database management system
architectures on distributed processing and software
maintenance

•	 Perceive career opportunities related to database application devel-
opment and database administration

Introduction
to Database
Management

1
chapter

3  

26008_ch01_p001-024.indd 3 3/2/18 10:21 PM

4   Part 1  Introduction to Database Environments

Every day, businesses collect mountains of facts about persons, things, and events such
as credit card numbers, bank balances, and purchase amounts. Databases contain
these types of simple facts as well as nonconventional facts such as medical images,
fingerprints, product photos, and maps. With the proliferation of the Internet and the
means to capture data in digital format, a vast amount of data is available at the click
of a mouse button. Organizing these data for ease of retrieval and maintenance is para-
mount. Thus, managing databases has become a vital task in most organizations.

Before learning about managing databases, you must first understand some
important properties of databases, as discussed in the following list:

•	 Persistent means that data reside on stable storage such as a magnetic disk. For
example, organizations need to retain data about customers, suppliers, and
inventory on stable storage because these data are repetitively used. A variable
in a computer program is not persistent because it resides in main memory and
disappears after the program terminates. Persistency does not mean that data
lasts forever. When data are no longer relevant (such as a supplier going out of
business), they are removed or archived.

Persistency depends on relevance of intended usage. For example, the mile-
age you drive for work is important to maintain if you are self-employed. Like-
wise, the amount of your medical expenses is important if you can itemize your
deductions or you have a health savings account. Because storing and maintain-
ing data is costly, only data likely to be relevant for actions and decisions should
be stored.

•	 Shared means that a database can have multiple uses and users. A database
provides a common memory for multiple functions in an organization. For
example, a personnel database can support payroll calculations, performance
evaluations, government reporting requirements, and so on. Many users
can access a database at the same time. For example, many customers can
simultaneously make airline reservations. Unless two users are simultaneously
trying to change the same data, they can proceed without waiting on each
other.

•	 Interrelated means that data stored as separate units can be connected to
provide a whole picture. For example, a customer database relates customer
data (name, address, …) to order data (order number, order date, …) to
facilitate order processing. Databases contain both entities and relationships
among entities. An entity is a cluster of data usually about a single subject
that can be accessed together. An entity can denote a person, place, thing, or
event. For example, a personnel database contains entities such as employees,
departments, and skills as well as relationships showing employee assignments
to departments, skills possessed by employees, and salary history of employees.
A typical business database may have hundreds of types of entities and
relationships.

To depict these characteristics, let us consider a number of databases. We begin with a
simple university database (Figure 1.1) since you have some familiarity with the work-
ings of a university. A simplified university database contains data about students,
faculty, courses, course offerings, and enrollments. The database supports procedures
such as registering for classes, assigning faculty to course offerings, recording grades,
and scheduling course offerings. Relationships in the university database support
answers to questions such as

•	 What offerings are available for a course in a given academic period?
•	 Who is the instructor for an offering of a course?
•	 What students are enrolled in an offering of a course?

Database
a collection of persistent
data that can be shared and
interrelated.

1.1  DATABASE CHARACTERISTICS

26008_ch01_p001-024.indd 4 3/2/18 10:21 PM

Chapter 1  Introduction to Database Management   5

Next, let us consider a water utility database as depicted in Figure 1.2. The pri-
mary function of a water utility database is billing customers for water usage. Periodi-
cally, the water utility measures a customer’s water consumption from a meter and
generates a bill. Many aspects can influence the preparation of a bill such as a cus-
tomer’s payment history, meter characteristics, type of customer (low income, renter,
homeowner, small business, large business, etc.), and billing cycle. Relationships in
the water utility database support answers to questions such as

•	 What is the date of the last bill sent to a customer?
•	 How much water usage was recorded when a customer’s meter was last read?
•	 When did a customer make his/her last payment?

Finally, let us consider a hospital database as depicted in Figure 1.3. The hospital
database supports treatment of patients by physicians. Many different health provid-
ers read and contribute to a patient’s medical record. Physicians make diagnoses and
prescribe treatments based on symptoms. Nurses monitor symptoms and provide
medication. Food staff prepares meals according to dietary plans. Relationships in the
database support answers to questions such as

•	 What are the most recent symptoms of a patient?
•	 Who prescribed a given treatment of a patient?
•	 What diagnosis did a doctor make for a patient?

FIGURE 1.1
Depiction of a Simplified
University Database

Note: Words surrounding the
database denote processes
that use the database.

Registration

Grade
recording

Faculty
assignment

Course
scheduling

Entities:

students, faculty, courses,
o�erings, enrollments

Relationships:

University Database

faculty teach o�erings,
students enroll in o�erings,
o�erings made of courses, ...

Water Utility Database

Billing

Meter
reading

Payment
processing

Service start/
stop

Entities:
customers, meters, bills,
payments, meter readings

Relationships:
bills sent to customers,
customers make payments,
customers use meters, ...

FIGURE 1.2
Depiction of a Simplified
Water Utility Database

Treatment

Diagnosis

Symptom
monitoring

Patient
care

Entities:
patients, providers,
treatments, diagnoses,
symptoms

Relationships:

Hospital Database

patients have symptoms,
providers prescribe
treatments, providers make
diagnoses, ...

FIGURE 1.3
Depiction of a Simplified
Hospital Database

26008_ch01_p001-024.indd 5 3/2/18 10:21 PM

6   Part 1  Introduction to Database Environments

These simplified databases lack many kinds of data found in real databases. For
example, the simplified university database does not contain data about course prereq-
uisites and classroom capacities and locations. Real versions of these databases would
have many more entities, relationships, and additional uses. Nevertheless, these sim-
ple databases have the essential characteristics of business databases: persistent data,
multiple users and uses, and multiple types of entities connected by relationships.

TABLE 1-1
Summary of Common
Features of DBMSs

Feature Description

Database definition Language and graphical tools to define entity types, relationships, integrity
constraints, and authorization rights

Nonprocedural access Language and graphical tools to access data without complicated coding

Application development Graphical tools to develop menus, data entry forms, and reports; data
requirements for forms and reports are specified using nonprocedural access

Procedural language
interface

Language that combines nonprocedural access with full capabilities of a
programming language such as Java or Javascript

Transaction processing Control mechanisms to prevent interference from simultaneous users and
recover lost data after a failure

Database tuning Tools to monitor and improve database performance

1.2  FEATURES OF DATABASE MANAGEMENT SYSTEMS
A database management system (DBMS) is a collection of components that supports
the creation, use, and maintenance of databases. Initially, DBMSs provided efficient
storage and retrieval of data. Due to marketplace demands and product innovation,
DBMSs have evolved to provide a broad range of features for data acquisition, storage,
dissemination, maintenance, retrieval, and formatting. The evolution of these features
has made DBMSs rather complex. It can take years of study and use to master a par-
ticular DBMS. Because DBMSs continue to evolve, you must continually update your
knowledge.

To provide insight about features that you will encounter in commercial DBMSs,
Table 1-1 summarizes a common set of features. The remainder of this section presents
examples of these features. Some examples are drawn from Microsoft Access, a popu-
lar desktop DBMS and Oracle, a prominent enterprise DBMS. Later chapters expand
upon the introduction provided here.

1.2.1  Database Definition
To define a database, a database designer specifies entities and relationships. In most
commercial DBMSs, tables store collections of entities. A table (Figure 1.4) has a head-
ing row (first row) showing the column names and a body (other rows) showing the
contents of the table. Relationships indicate connections among tables. For example,
the relationship connecting the student table to the enrollment table shows the course
offerings taken by each student.

Most DBMSs provide several tools to define databases. The Structured Query
Language (SQL) is an industry standard language supported by most DBMSs. SQL
can be used to define tables, relationships among tables, integrity constraints (rules
that define allowable data), and authorization rights (rules that restrict access to data).
Chapter 3 describes SQL statements to define tables and relationships.

In addition to SQL, many DBMSs provide graphical, window-oriented tools.
Figures 1.5 and 1.6 depict graphical tools for defining tables and relationships. Using
the Table Definition window in Figure 1.5, a user can define properties of columns
such as the data type, field size, and format. Using the Relationship Definition window

Database Management
System (DBMS)
a collection of components
that support data acquisition,
dissemination, maintenance,
retrieval, and formatting.

Table
a named, two-dimensional
arrangement of data. A table
consists of a heading part
and a body part.

SQL
an industry standard
database language that
includes statements for
database definition,
database manipulation,
and database control.

26008_ch01_p001-024.indd 6 3/2/18 10:21 PM

Chapter 1  Introduction to Database Management   7

FIGURE 1.4
Display of Student Table in
Microsoft Access

StdFirstName StdLastName StdCity StdState StdZip StdMajor StdClass StdGPA

HOMER WELLS SEATTLE WA 98121-1111 IS FR 3.00

BOB NORBERT BOTHELL WA 98011-2121 FIN JR 2.70

CANDY KENDALL TACOMA WA 99042-3321 ACCT JR 3.50

WALLY KENDALL SEATTLE WA 98123-1141 IS SR 2.80

JOE ESTRADA SEATTLE WA 98121-2333 FIN SR 3.20

MARIAH DODGE SEATTLE WA 98114-0021 IS JR 3.60

TESS DODGE REDMOND WA 98116-2344 ACCT SO 3.30

in Figure 1.6, relationships among tables can be defined. After defining the structure,
a database can be populated. The data in Figure 1.4 should be added after the Table
Definition window and Relationship Definition window are complete.

1.2.2  Nonprocedural Access
The most important feature of a DBMS is the ability to answer queries. A query is
a request for data to answer a question. For example, the user may want to know
customers having large balances or products with strong sales in a particular region.
Nonprocedural access allows users with limited computing skills to submit queries.
The user specifies the parts of a database to retrieve, not implementation details of
how retrieval occurs. Implementation details involve coding complex procedures with

Nonprocedural Database
Language
a language such as SQL
that allows you to specify
the parts of a database to
access rather than to code
a complex procedure. Non-
procedural languages do not
include looping statements.

FIGURE 1.5
Table Definition Window in
Microsoft Access

FIGURE 1.6
Relationship Definition
Window in Microsoft Access

26008_ch01_p001-024.indd 7 3/2/18 10:21 PM

8   Part 1  Introduction to Database Environments

loops. Nonprocedural languages do not have looping statements (for, while, and so
on) because only the parts of a database to retrieve are specified.

Nonprocedural access can reduce the number of lines of code by a factor of 100
as compared to procedural access. Because a large part of business software involves
data access, nonprocedural access can provide a dramatic improvement in software
productivity.

To appreciate the significance of nonprocedural access, consider an analogy to
planning a vacation. You specify the destination, travel budget, length of stay, and
departure date. These facts indicate the “what” of your trip. To specify the “how” of
your trip, you need a detailed plan with details about the best route to your destina-
tion, the most desirable hotel, ground transportation, and so on. A planning profes-
sional can facilitate your planning process by completing these details. Like a planning
professional, a DBMS performs the detailed planning to answer queries expressed in
a nonprocedural language.

Most DBMSs provide more than one tool for nonprocedural access. The SELECT
statement of SQL, presented in Chapter 4, provides a nonprocedural way to access
a database. Most DBMSs also provide graphical tools to access databases. Figure 1.7
depicts a graphical tool available in Microsoft Access. To pose a query using the data-
base, a user only indicates the required tables, relationships, and columns. Access gen-
erates the plan to retrieve the requested data. Figure 1.8 shows the result of executing
the query in Figure 1.7.

1.2.3  Application Development and Procedural Language Interface
Most DBMSs go well beyond simply accessing data. DBMSs provide graphical tools
for building complete applications using forms and reports. Data entry forms sup-
port convenient data entry and display, while reports enhance the appearance of
data that is displayed or printed. The form in Figure 1.9 can be used to add new
course assignments for a professor and to change existing assignments. The report in
Figure 1.10 uses indentation to show courses taught by faculty in various departments.

FIGURE 1.7
Query Design Window in
Microsoft Access

StdFirstName StdLastName StdCity OfferNo EnrGrade

MARIAH DODGE SEATTLE 1234 3.8

BOB NORBERT BOTHELL 5679 3.7

ROBERTO MORALES SEATTLE 5679 3.8

MARIAH DODGE SEATTLE 6666 3.6

LUKE BRAZZI SEATTLE 7777 3.7

WILLIAM PILGRIM BOTHELL 9876 4

FIGURE 1.8
Result of Executing Query in
Figure 1.7

26008_ch01_p001-024.indd 8 3/2/18 10:21 PM

Chapter 1  Introduction to Database Management   9

The indentation style can be easier to view than the tabular style shown in Figure 1.8.
Many forms and reports can be developed with a graphical tool without detailed cod-
ing. For example, Figures 1.9 and 1.10 were developed without coding. Chapter 10
describes concepts underlying form and report development.

Nonprocedural access makes form and report creation possible without extensive
coding. As part of creating a form or report, the user indicates the data requirements
using a nonprocedural language (SQL) or graphical tool. To complete a form or report
definition, the user indicates formatting of data, user interaction, and other details.

In addition to application development tools, a procedural language interface
adds the full capabilities of a computer programming language. Nonprocedural access
and application development tools, though convenient and powerful, are sometimes
not efficient enough or do not provide the level of control necessary for application
development. When these tools are not adequate, DBMSs provide the full capabilities
of a programming language. Most commercial DBMSs have a procedural language
interface. For example, Oracle has the language PL/SQL and Microsoft SQL Server has
the language Transact-SQL. Chapter 11 describes procedural language interfaces and
the PL/SQL language.

1.2.4  Features to Support Database Operations
Transaction processing enables a DBMS to process large volumes of repetitive work.
A transaction is a unit of work that should be processed reliably without interference
from other users and without loss of data due to failures. Examples of transactions
are withdrawing cash at an ATM, making an airline reservation, and registering for
a course. A DBMS ensures that transactions are free of interference from other users,

Procedural Language
Interface
a method to combine a
nonprocedural language
such as SQL with a
programming language
such as Java or Visual Basic.

Transaction Processing
reliable and efficient pro-
cessing of large volumes
of repetitive work. DBMSs
ensure that simultaneous
users do not interfere with
each other and failures do
not cause lost work.

Faculty Work Load Report for the 2016-2017 Academic Year

Summary for term’ = WINTER (1 detail record)

Department Name

FIN

Sum

Avg

Sum

Avg

JULIA MILLS

Summary for
JULIA MILLS

Summary for ‘department’ = FIN (1 detail record)

Sum

Avg

WINTER

Term

5678

O�er
Number

Units

4

4

4

4

20

Limit

1

1

1

1

Enrollment

5.00%

5.00%

5.00%

5.00%

Percent
Full

Low
Enrollment

✓

FIGURE 1.10
Microsoft Access Report of
Faculty Workload

FIGURE 1.9
Microsoft Access Form for
Assigning Courses to Faculty

26008_ch01_p001-024.indd 9 3/2/18 10:21 PM

10   Part 1  Introduction to Database Environments

parts of a transaction are not lost due to a failure, and transactions do not make the
database inconsistent. Transaction processing is largely an unseen, back-office affair.
The user does not know the details about transaction processing other than the assur-
ances about reliability.

Database tuning involves components to monitor and improve performance.
Some DBMSs can monitor database performance and generate events indicating con-
ditions that may warrant investigation. DBMSs provide components to improve per-
formance such as reorganization of a database, selection of physical structures, and
repair of damaged parts of a database.

Transaction processing and database tuning are most prominent on DBMSs that
support large databases with many simultaneous users. These DBMSs are known
as enterprise DBMSs, designed to support databases that are critical to the function-
ing of an organization. Enterprise DBMSs usually run on powerful servers and have
a high cost. In contrast, desktop DBMSs running on personal computers and small
servers support limited transaction processing features but have a much lower cost.
Desktop DBMSs support databases used by work teams and small businesses. Embed-
ded DBMSs are an emerging category of database software. As its name implies, an
embedded DBMS resides in a larger system, either an application or a device such as
a personal digital assistant (PDA) or a smart phone. Embedded DBMSs provide lim-
ited transaction processing features but have low memory, processing, and storage
requirements.

1.2.5  Third-Party Features
In addition to features provided directly by vendors of DBMSs, third-party software
is also available for many DBMSs. In most cases, third-party software extends the fea-
tures available with the database software. For example, many third-party vendors
provide advanced database design tools that extend the database definition and tun-
ing capabilities provided by DBMSs. Figure 1.11 shows a database diagram (an entity
relationship diagram) created with Visio Professional, a tool for database design. The
ERD in Figure 1.11 can be converted into the tables supported by most commercial
DBMSs. In some cases, third-party software competes directly with the database prod-
uct. For example, third-party vendors provide application development tools that can
be used in place of the ones provided with the database product.

StdNo
StdClass
StdMajor
StdGPA

Student
O�erNo
O�Location
O�Time

O�ering

EnrGrade

Enrollment
Registers

Accepts

CourseNo
CrsDesc
CrsUnits

Course

FacNo
FacSalary
FacRank
FacHireDate

Faculty

Has

Teaches

Supervises

FIGURE 1.11
Entity Relationship Diagram
(ERD) for the University
Database

1.3  DEVELOPMENT OF DATABASE TECHNOLOGY AND MARKET
STRUCTURE

The previous section provided a quick tour of the features found in typical DBMSs.
The features in today’s products are a significant improvement over just a few years
ago. Database management, like many other areas of computing, has undergone

26008_ch01_p001-024.indd 10 3/2/18 10:21 PM

Chapter 1  Introduction to Database Management   11

tremendous technological growth. To provide a context to appreciate today’s DBMSs,
this section reviews past changes in technology and suggests future trends. After this
review, the current market for database software is presented.

1.3.1  Evolution of Database Technology
Table 1-2 depicts a brief history of database technology through four generations1 of
systems. The first generation supported sequential and random searching, but the user
was required to write a computer program to obtain access. For example, a program
could be written to retrieve all customer records or to just find the customer record
with a specified customer number. Because first-generation systems did not offer
much support for relating data, they are usually regarded as file processing systems
rather than DBMSs. File processing systems can manage only one entity type rather
than many entity types and relationships managed by a DBMS.

The second-generation products were the first true DBMSs as they could manage
multiple entity types and relationships. However, to obtain access to data, a computer
program still had to be written. Second-generation systems are referred to as “navi-
gational” because the programmer had to write code to navigate among a network of
linked records. Some of the second-generation products adhered to a standard data-
base definition and manipulation language developed by the Committee on Data Sys-
tems Languages (CODASYL), a standards organization. The CODASYL standard had
only limited market acceptance partly because IBM, the dominant computer company
during this time, ignored the standard. IBM supported a different approach known as
the hierarchical data model.

Rather than focusing on the second-generation standard, research labs at IBM and
academic institutions developed the foundations for a new generation of DBMSs. The
most important development involved nonprocedural languages for database access.
Third-generation systems are known as relational DBMSs because of the foundation
based on mathematical relations and associated operators. Optimization technology
was developed so that access using nonprocedural languages would be efficient.
Because nonprocedural access provided such an improvement over navigational
access, third-generation systems supplanted the second generation. Since the technol-
ogy was so different, most of the new systems were founded by start-up companies
rather than by vendors of previous generation products. IBM was the major exception.
It was IBM’s weight that led to the adoption of SQL as a widely accepted standard.

Fourth-generation DBMSs have extended the boundaries of database technology
to unconventional data, new kinds of distributed processing, data warehouse process-
ing, and big data demands especially with semi-structured data. As an early emphasis,
fourth-generation DBMSs provided support for unconventional data types such as
images, videos, maps, sounds, animations, and web pages. Most DBMSs now feature

1The generations of DBMSs should not be confused with the generations of programming languages.
In particular, fourth-generation language refers to programming language features, not DBMS features.

TABLE 1-2
Brief Evolution of Database
Technology

Era Generation Orientation Major Features

1960s 1st generation File File structures and proprietary program interfaces

1970s 2nd generation Network navigation Networks and hierarchies of related records,
standard program interfaces

1980s 3rd generation Relational Nonprocedural languages, optimization,
transaction processing

1990s to 2010s 4th generation Object Multi-media, active, distributed processing,
more powerful operators, data warehouse
processing, XML enabled, cloud computing,
big data demands, semi-structured data

26008_ch01_p001-024.indd 11 3/2/18 10:21 PM

12   Part 1  Introduction to Database Environments

convenient ways to publish static and dynamic web pages using the eXtensible Markup
Language (XML) as a publishing standard. Because these DBMSs view any kind of
data as an object to manage, fourth-generation systems were called object-relational.

In the last 15 years, DBMS vendors have extended their fourth-generation prod-
ucts for data warehouse processing. A data warehouse is a database that supports
mid-range and long-range decision making in organizations. The retrieval of summa-
rized data dominate data warehouse processing, whereas a mixture of updating and
retrieving data occur for databases that support the daily operations of an organiza-
tion. Part 6 provides four chapters about data warehouse concepts and DBMS features
to support data warehouse processing.

Cloud computing is a recent area of product development for both established
DBMS vendors and new vendors. Cloud computing supports on-demand and pay-per
use access for both data and software. Cloud computing usage is web-based without
fixed costs of software ownership. Major DBMS vendors have developed cloud com-
puting models as an alternative to their traditional approach of product licensing and
ownership. In addition, a number of new vendors have created DBMS products tai-
lored to the cloud computing model.

Part of the promise of cloud computing is support for applications with exploding
data growth known as big data. The growth in data comes from a variety of sources
such as sensors in smart phones, energy meters, and automobiles, interaction of indi-
viduals in social media websites, radio frequency identification tags in retail, and digi-
tized media content in medicine, entertainment, and security. Big data exceeds the
limits of commercial database software to support applications with exploding data
growth.

NoSQL (Not only SQL) database technology has been developed to deal with
some of the challenges of big data. As the name implies, NoSQL database technol-
ogy does not use the traditional relational database model and SQL standard. Instead
NoSQL database products use simplified database models, less stringent transaction
processing models, and distributed processing to reduce bottlenecks for dealing with
big data. NoSQL products cover a wide range of data models to support management
of semi-structured data with key-record pairs, documents, and graphs.

The market for fourth generation systems is a battle between vendors of third-
generation systems who are upgrading their products against a new group of systems
often developed as open-source software with subscriptions for premium services.
The existing companies seem to have the upper hand, but the open source DBMS
products have gained important commercial usage.

1.3.2  Current Market for Database Software
The market positions for the enterprise DBMSs have changed a little in the last decade.
According to a 2015 report by the Gartner Group, Oracle continues as the market
leader with 41.6% of revenues. Microsoft SQL Server and IBM DB2 have switched
positions after 2013 with Microsoft at 19.4% and IBM at 16.5%. SAP Sybase and Tera-
data complete the top 5 in 2015 revenues. Amazon Web Services has emerged as a
strong competitor with a market share of 2.3%, just behind the Teradata share. The
top five NoSQL vendors collectively have just above 1% of the market indicating the
growing but still small impact of NoSQL products.

DB-Engines.com ranks DBMS products by popularity using the number of men-
tions on websites, frequency of search in Google Trends, job offers in leading job
websites, and profiles in professional websites. The DB-Engines ranking (top 10) in
June 2017 was Oracle, MySQL, Microsoft SQL Server, PostgreSQL, MongoDB (NoSQL
product), DB2, Microsoft Access, Cassandra (NoSQL product), Redis (NoSQL), and
SQLite.

Open source DBMS products have begun to challenge the commercial DBMS
products at the low end of the enterprise DBMS market. Although source code for
open source DBMS products is available without charge, most organizations purchase

26008_ch01_p001-024.indd 12 3/2/18 10:21 PM

Chapter 1  Introduction to Database Management   13

support contracts so the open source products are not free. Still, many organizations
have reported lower cost of ownership using open source DBMS products. MySQL,
first introduced in 1995, is the leader in the open source DBMS market. Open source
DBMS products feature prominently in the DB-Engines.com ranking with six open
source products (MySQL, PostgreSQL, MongoDB, Cassandra, Redis, and SQLite).

In the market for desktop database software, Microsoft Access dominates at least
in part because of the dominance of Microsoft Office. Desktop database software is
primarily sold as part of office productivity software. With Microsoft Office holding
about 90% of the office productivity market, Access holds a comparable share of the
desktop database software market. Other significant products in the desktop database
market are open source products LibreOffice Base and OpenOffice Base along with
commercial product FileMaker Pro.

To provide coverage of both enterprise and desktop database software, this book
provides significant coverage of Oracle and Microsoft Access. In addition, the empha-
sis on the SQL standard in Parts 2 and 5 provides database language coverage for the
other major products.

Because of the potential growth of personal computing devices, most major
DBMS vendors have now entered the embedded DBMS market. Embedded DBMS
software is sold primarily by value-added software resellers as part of an applica-
tion, such as an accounting package. Thus, embedded DBMSs are hidden from users
and require little or no ongoing maintenance. Some of the leading embedded DBMS
products are Oracle Berkeley DB, Firebird Embedded, MySQL Embedded, SQLite,
UNICOM Global SolidDB, Microsoft SQL Server Compact, and Sybase Advantage
Database Server.

The market for cloud-based DBMSs is rapidly evolving so market shares and
size are difficult to determine. Most major DBMS vendors offer cloud based solutions
with some vendors providing both traditional SQL and emerging NoSQL products.
For example, Amazon offers Relational Data Service (SQL) and Amazon DynamoDB
(NoSQL) while Microsoft offers Azure (SQL) and DocumentDB (NoSQL). The impact
of cloud computing on the DBMS market has begun to mature in 2017.

1.4  ARCHITECTURES OF DATABASE MANAGEMENT SYSTEMS

To provide insight about the internal organization of DBMSs, this section describes
two architectures or organizing frameworks. The first architecture describes an orga-
nization of database definitions to reduce the cost of software maintenance. The sec-
ond architecture describes an organization of data and software to support remote
access. These architectures promote a conceptual understanding rather than indicate
actual DBMS implementation.

1.4.1  Data Independence and the Three Schema Architecture
In early DBMSs, there was a close connection between a database and computer pro-
grams that accessed the database. Essentially, the DBMS was considered part of a pro-
gramming language. As a result, the database definition was part of the computer
programs that accessed the database. In addition, the conceptual meaning of a data-
base was not separate from its physical implementation on magnetic disk. The defini-
tions about the structure of a database and its physical implementation were mixed
inside computer programs.

The close association between a database and related programs led to problems
in software maintenance. Software maintenance encompassing requirement changes,
corrections, and enhancements can consume a large fraction of software development
budgets. In early DBMSs, most changes to the database definition caused changes to
computer programs. In many cases, changes to computer programs involved detailed
inspection of the code, a labor-intensive process. This code inspection work is similar

26008_ch01_p001-024.indd 13 3/2/18 10:21 PM

14   Part 1  Introduction to Database Environments

to year 2000 compliance in which date formats were changed to four digits. Perfor-
mance tuning of a database was difficult because sometimes hundreds of computer
programs had to be recompiled for every change. Because database definition changes
are common, a large fraction of software maintenance resources were devoted to data-
base changes. Some studies have estimated the percentage as high as 50% of software
maintenance resources.

The concept of data independence emerged to alleviate problems with program
maintenance. Data independence means that a database should have an identity
separate from the applications (computer programs, forms, and reports) that use it.
The separate identity allows the database definition to be changed without affecting
related applications. For example, if a new column is added to a table, applications not
using the new column should not be affected. Likewise if a new table is added, only
applications that need the new table should be affected. This separation should be
even more pronounced if a change only affects physical implementation of a database.
Database specialists should be free to experiment with performance tuning without
concern about computer program changes.

In the mid-1970s, the concept of data independence led to the proposal of the
Three Schema Architecture depicted in Figure 1.12. The word schema as applied to
databases means database description. The Three Schema Architecture includes three
levels of database description. The external level is the user level. Each group of users
can have a separate external view (or view for short) of a database tailored to the
group’s specific needs.

In contrast, the conceptual and internal schemas represent the entire database.
The conceptual schema defines the entity types and relationships. For a business data-
base, the conceptual schema can be quite large, perhaps hundreds of entity types and
relationships. Like the conceptual schema, the internal schema represents the entire
database. However, the internal schema represents the storage view of the database
whereas the conceptual schema represents the logical meaning of the database. The
internal schema defines files, collections of data on a storage device such as a hard
disk. A file can store one or more entity types described in the conceptual schema.

To make the three schema levels clearer, Table 1-3 shows differences among data-
base definition at the three schema levels using examples from the features described
in Section 1.2. Even in a simplified university database, the differences among the
schema levels are clear. With a more complex database, the differences would be even

Data Independence
a database should have an
identity separate from the
applications (computer
programs, forms, and
reports) that use it. The
separate identity allows the
database definition to be
changed without affecting
related applications.

Three Schema Architecture
an architecture for
compartmentalizing
database descriptions.
The Three Schema
Architecture was proposed
as a way to achieve data
independence.

View 1 View 2 View n

Conceptual
schema

Internal
schema

External
level

Conceptual
level

Internal
level

External to
conceptual
mappings

Conceptual
to internal
mappings

FIGURE 1.12
Three Schema Architecture

TABLE 1-3
University Database Example
Depicting Differences among
Schema Levels

Schema Level Description

External HighGPAView: data required for the query in Figure 1.7
FacultyAssignmentFormView: data required for the form in Figure 1.9
FacultyWorkLoadReportView: data required for the report in Figure 1.10

Conceptual Student, Enrollment, Course, Faculty, and Enrollment tables and relationships (Figure 1.6)

Internal Files needed to store the tables; extra files (indexed property in Figure 1.5) to improve
performance

26008_ch01_p001-024.indd 14 3/2/18 10:21 PM

Chapter 1  Introduction to Database Management   15

more pronounced with many more views, a much larger conceptual schema, and a
more complex internal schema.

The schema mappings describe how a schema at a higher level is derived from a
schema at a lower level. For example, the external views in Table 1-3 are derived from
the tables in the conceptual schema. The mapping provides the knowledge to convert
a request using an external view (for example, HighGPAView) into a request using the
tables in the conceptual schema. The mapping between conceptual and internal levels
shows how entities are stored in files.

DBMSs, using schemas and mappings, ensure data independence. Typically,
applications access a database using a view. The DBMS converts an application’s
request into a request using the conceptual schema rather than the view. The DBMS
then transforms the conceptual schema request into a request using the internal
schema. Most changes to the conceptual or internal schema do not affect applications
because applications do not use the lower schema levels. The DBMS, not the user,
is responsible for using the mappings to make the transformations. For more details
about mappings and transformations, Chapter 10 describes views and transformations
between the external and conceptual levels. Chapter 8 describes query optimization,
the process of converting a conceptual level query into an internal level representation.

The Three Schema Architecture is an official standard of the American National
Standards Institute (ANSI). However, the specific details of the standard were never
widely adopted. Rather, the standard serves as a guideline about data independence.
The spirit of the Three Schema Architecture is widely implemented in third- and
fourth-generation DBMSs.

1.4.2  Parallel and Distributed Database Processing
With the growing importance of computer networks and electronic commerce, dis-
tributed processing is becoming a crucial function of DBMSs. Distributed processing
allows geographically dispersed computers to cooperate when providing data access.
A large part of electronic commerce on the Web involves accessing and updating
remote databases. Many databases in retail, banking, and security trading are now
available through the Web. DBMSs use available network capacity and local process-
ing capabilities to provide efficient remote database access.

Distributed processing can be applied to databases to distribute tasks among serv-
ers, divide a task among processing resources, and distribute data among network
sites. To distribute tasks among servers, many DBMSs use the client-server archi-
tecture. A client is a program that submits requests to a server. A server processes
requests on behalf of a client. For example, a client may request a server to retrieve
product data. The server locates the data and sends them back to the client. The client
may perform additional processing on the data before displaying the results to the
user. DBMSs may employ one or more levels of servers to distribute different kinds
of database processing. In Figure 1.13(a), the database server and database are located
on a remote computer. In Figure 1.13(b), an additional middleware server is added to
efficiently process messages from a large number of clients.

In the last decade, parallel database technology has gained commercial acceptance
for large organizations. Most enterprise DBMS vendors and some open source DBMSs
support parallel database technology to meet market demand. Organizations are uti-
lizing these products to realize the benefits of improved performance and availability.
Parallel database processing can improve performance through speedup (performing
a task faster) and scaleup (performing more work in the same time). Parallel database
processing can increase availability because a DBMS can dynamically adjust to the
level of available resources. Figure 1.14 depicts two common parallel database archi-
tectures that can provide improved performance and availability. In Figure 1.14(a)
known as the shared disk (SD) architecture, each processor has its own memory but
the processors share the disks. In Figure 1.14(b) known as shared nothing (SN) archi-
tecture, each processor has its own memory and disks.

Client-Server Architecture
an arrangement of
components (clients and
servers) among computers
connected by a network. The
client-server architecture
supports efficient processing
of messages (requests for
service) between clients and
servers.

26008_ch01_p001-024.indd 15 3/2/18 10:21 PM

16   Part 1  Introduction to Database Environments

Database

Database
server

a) Client-server processing with database server

Database

Database
server

Middleware
server

b) Client-server processing with middleware and database servers

FIGURE 1.13
Typical Client-Server
Architectures

M

N

...

P P P...

M M M

N

...

P P P...

M M

(a) SD (b) SN

Legend
P: processor
M: memory
N: high-speed network
SD: shared disk
SN: shared nothing

FIGURE 1.14
Basic Parallel Database
Architectures

Parallel DBMS
a DBMS capable of utilizing
tightly-coupled computing
resources (processors, disks,
and memory). Tight coupling
is achieved by networks with
data exchange time com-
parable to the time of the
data exchange with a disk.
Parallel database technol-
ogy promises performance
improvements and high
availability.

Distributed data provides local control and reduced communication costs. Distrib-
uting a database allows the location of data to match an organization’s structure. Deci-
sions about sharing and maintaining data can be set locally to provide control closer
to the data usage. Data should be located so that 80 percent of the requests are local.
Local requests incur little or no communication costs and delays compared to remote
requests. Figure 1.15 depicts a distributed database with three sites in Denver, Lon-
don, and Tokyo. Each site can control access to its local data and cooperate to provide
data sharing for tasks needing data from more than one site.

26008_ch01_p001-024.indd 16 3/2/18 10:21 PM

Chapter 1  Introduction to Database Management   17

Client-server architectures, parallel database processing, and distributed data-
bases provide flexible ways for DBMSs to interact with computer networks. The dis-
tribution of data and processing among clients and servers and the possible choices to
locate data and software are much more complex than described here. You will learn
more details about these architectures in Chapter 18.

The architectures presented in this section assume a traditional product licens-
ing and hosting approach. Cloud computing provides a new approach without ini-
tial product licensing costs and no hosting requirements. Using web-based interfaces,
organizations can design and deploy databases with dynamic resource allocation pro-
vided by the cloud as depicted in Figure 1.16. The cloud service may restrict the design
flexibility for database design and operations available for database usage. Internally,
the cloud can use any distributed processing approach although the internal details of
the cloud are invisible to organizations using the cloud service.

Client Server Server

DatabaseDatabase

Client

Client

Client

Denver London

Server

Database

Tokyo

Client

Client

FIGURE 1.15
Distributed Database with
Three Sites

Distributed Database
a database in which parts
are located at different
network sites. Distributed
database technology sup-
ports local control of data,
data sharing for requests
involving data from more
than one site, and reduced
communication overhead.

FIGURE 1.16
Cloud-Based Database
Architecture

1.5  ORGANIZATIONAL IMPACTS OF DATABASE TECHNOLOGY
This section completes your introduction to database technology by discussing the
effects of database technology on organizations. The first subsection describes pos-
sible interactions that you may have with a database in an organization. The second

26008_ch01_p001-024.indd 17 3/2/18 10:21 PM

18   Part 1  Introduction to Database Environments

subsection describes approaches to plan and control data produced and used by an
organization. Special attention is given to management roles that you can play as part
of an effort to control data resources. Chapter 16 provides more detail about the tools
and processes used in these management roles.

1.5.1  Interacting with Databases
Because databases are pervasive, there are a variety of ways in which you may inter-
act with databases. The classification in Figure 1.17 distinguishes between functional
users who interact with databases as part of their work and information systems
professionals who participate in designing and implementing databases. Each box
in the hierarchy represents a role that you may play. You may simultaneously play
more than one role. For example, a functional user in a job such as a financial analyst
may play all three roles in different databases. In some organizations, the distinc-
tion between functional users and information systems professionals is blurred. In
these organizations, functional users may participate in designing and implementing
databases.

Functional users can play a passive or an active role when interacting with data-
bases. Indirect usage of a database is a passive role. An indirect user is given a report
or some data extracted from a database. A parametric user is more active than an indi-
rect user. A parametric user requests existing forms or reports using parameters, input
values that change from usage to usage. For example, a parameter may indicate a date
range, sales territory, or department name. The power user is the most active. Because
decision-making needs can be difficult to predict, ad hoc or unplanned usage of a
database is important. A power user is skilled enough to build a form or report when
needed. Power users should have a good understanding of nonprocedural access, a
skill described in Parts 2 and 5 of this book.

Information systems professionals interact with databases as part of developing
an information system. Analyst/programmers are responsible for collecting require-
ments, designing applications, and implementing information systems. They create
and use external views to develop forms, reports, and other parts of an information
system. Management has an oversight role in the development of databases and infor-
mation systems. Information systems professionals in analyst/programmer roles
should have a good knowledge of database development and application develop-
ment in Parts 3 to 5 of this book.

Database administrators assist both information systems professionals and
functional users. Database administrators have a variety of both technical and non-
technical responsibilities (Table 1-4). Technical skills are more detail-oriented; non-
technical responsibilities are more people-oriented. The primary technical responsibility
is database design. On the non-technical side, the database administrator’s time is split
among a number of activities. Database administrators can also have responsibilities
in planning databases and evaluating DBMSs. Chapter 16 provides more details about
responsibilities and tools of database administrators.

Database Administrator
a support position that
specializes in managing
individual databases and
DBMSs.

Indirect Parametric Power

Functional User

Technical Non Technical

DBA Analyst/Programmer Management

Information Systems

Specialization
FIGURE 1.17
Classification of Roles

26008_ch01_p001-024.indd 18 3/2/18 10:21 PM

Chapter 1  Introduction to Database Management   19

1.5.2  Managing Data Resources in Organizations
Organizations have used two approaches to manage data resources. The more estab-
lished approach, information resource management, focuses on information technol-
ogy as a tool for processing, distributing, and integrating information throughout an
organization. Management of information resources has many similarities with man-
aging physical resources such as inventory. Inventory management involves activities
such as safeguarding inventory from theft and deterioration, storing it for efficient
usage, choosing suppliers, handling waste, coordinating movement, and reducing
holding costs. Information resource management involves similar activities: planning
databases, acquiring data, protecting data from unauthorized access, ensuring reli-
ability, coordinating flow among information systems, and eliminating duplication.

Due to the rapid growth of electronic commerce and financial scandals in the
2000s, data governance has emerged as a complementary approach for managing data
resources. According to the Data Governance Institute (www.dgi.com), “data gov-
ernance is the exercise of decision-making and authority for data-related matters.”
Data governance provides a system of checks and balances to develop data rules and
policies, support application of data rules and policies, and evaluate compliance of
data rules and policies. Organizations use the artifacts of data governance to miti-
gate risks associated with the complex regulatory environment, information security,
and information privacy especially for personal identifiable data and related business
transactions.

As part of controlling data resources, new management responsibilities have been
created in many organizations. The data administrator is a management role with
responsibilities to plan the development of new databases and control usage of data
throughout an organization. The data administrator maintains an enterprise data
architecture that describes existing databases and new databases and also evaluates
new information technologies and determines standards for managing databases. The
data administrator supports data governance through participation in the data gov-
ernance organization and consultation on activities managed by the data governance
office.

The data administrator role typically has broader responsibilities than the data-
base administrator role. A data administrator primarily has planning and policy
setting roles, while a database administrator has a more technical role focused on indi-
vidual databases and DBMSs. A data administrator also views data resources in a
broader context and considers all kinds of data, both traditional business data and
non-traditional unstructured data such as images, videos, and social media. A major
effort in many organizations is to develop a data governance program to manage risks
associated with usage of corporate data assets. Data administrators typically assume
in a leadership role in the data governance program while database administrators
serve in support roles by implementing controls for data governance policies.

Because of broader responsibilities, the data administrator typically is higher in an
organization chart. Figure 1.18 depicts two possible placements of data administrators
and database administrators. In a small organization, both roles may be combined in
systems administration.

Data Administrator
a management position
that performs planning and
policy setting for the data
resources of an organization.

TABLE 1-4
Responsibilities of the
Database Administrator

Technical Non-technical

Designing conceptual schemas Setting database standards

Designing internal schemas Devising training materials

Monitoring database performance Promoting benefits of databases

Selecting and evaluating database software Consulting with users

Managing security for database usage Planning new databases

Troubleshooting database problems

26008_ch01_p001-024.indd 19 3/2/18 10:21 PM

20   Part 1  Introduction to Database Environments

Chapter 1 has provided a broad introduction to DBMSs. You should use this back-
ground as a context for the skills and knowledge you will acquire in subsequent chap-
ters. You learned that databases contain interrelated data that can be shared across
multiple parts of an organization. DBMSs support transformation of data for decision
making. To support this transformation, database technology has evolved from simple
file access to powerful systems that support database definition, nonprocedural access,
application development, transaction processing, and performance tuning. Nonproce-
dural access is the most vital element because it allows access without detailed coding.
You learned about two architectures that provide organizing principles for DBMSs.
The Three Schema Architecture supports data independence, an important concept
for reducing the cost of software maintenance. Client-server architectures, parallel
database processing, and distributed databases allow databases to be accessed over
computer networks, a feature vital in today’s networked world.

The skills emphasized in later chapters should enable you to work as an active
functional user or analyst. Both kinds of users need to understand the skills taught
in the second part of this book. The fifth part of the book provides skills for analysts/
programmers. This book also provides the foundation of skills to obtain a specialist
position as a database or data administrator. The skills in the third, fourth, sixth, and
seventh parts of this book are most useful for a position as a database administrator.
However, you will probably need to take additional courses, learn details of popular
DBMSs, and acquire management experience before obtaining a specialist role. A posi-
tion as a database specialist can be an exciting and lucrative career opportunity that
you should consider.

a) Data administrator under MIS director

Database Administration

Technical Support Application Development Operations Data Administration

MIS Director

b) Data administrator parallel to MIS director

Data Administration

Technical Support Application Development Operations Database Administration

MIS Director

FIGURE 1.18
Organizational Placement
of Data and Database
Administration

CLOSING THOUGHTS

26008_ch01_p001-024.indd 20 3/2/18 10:21 PM

Chapter 1  Introduction to Database Management   21

•	 Database characteristics: persistent, interrelated, and shared
•	 Features of database management systems (DBMSs)
•	 Nonprocedural access: a key to software productivity
•	 Transaction: a unit of work that should be processed reliably
•	 Application development using nonprocedural access to specify the data

requirements of forms and reports
•	 Procedural language interface for combining nonprocedural access with a

programming language such as Java or Visual Basic
•	 Evolution of database software over four generations of technological

improvement
•	 Current emphasis on database software for multimedia support, distributed

processing, more powerful operators, data warehouses, and big data
•	 Types of DBMSs: enterprise, desktop, embedded
•	 Impact of big data demands and NoSQL database technology to deal with big

data challenges
•	 Data independence to alleviate problems with maintenance of computer

programs
•	 Three Schema Architecture for reducing the impact of database definition

changes
•	 Client-server processing, parallel database processing, and distributed database

processing for using databases over computer networks
•	 Cloud-based database architecture for scalable, on-demand database services

without ownership costs and risks
•	 Database specialist roles: database administrator and data administrator
•	 Information resource management for utilizing information technology
•	 Data governance for mitigating risks associated with the complex regulatory

environment, information security, and information privacy

REVIEW CONCEPTS

QUESTIONS

  1.	Describe a database that you have used on a job or as a consumer. List the
entities and relationships that the database contains. If you are not sure, imagine
the entities and relationships that are contained in the database.

  2.	For the database in question (1), list different user groups that can use the
database.

  3.	For one of the groups in question (2), describe an application (form or report)
that the group uses.

  4.	Explain the persistent property for databases.
  5.	Explain the interrelated property for databases.
  6.	Explain the shared property for databases.
  7.	What is a DBMS?
  8.	What is SQL?
  9.	Describe the difference between a procedural and a nonprocedural language.

What statements belong in a procedural language but not in a nonprocedural
language?

  10.	Why is nonprocedural access an important feature of DBMSs?

26008_ch01_p001-024.indd 21 3/2/18 10:21 PM

22   Part 1  Introduction to Database Environments

  11.	What is the connection between nonprocedural access and application (form
or report) development? Can nonprocedural access be used in application
development?

  12.	What is the difference between a form and a report?
  13.	What is a procedural language interface?
  14.	What is a transaction?
  15.	What features does a DBMS provide to support transaction processing?
  16.	For the database in question (1), describe a transaction that uses the database.

How often do you think that the transaction is submitted to the database? How
many users submit transactions at the same time? Make guesses for the last two
parts if you are unsure.

  17.	What is an enterprise DBMS?
  18.	What is a desktop DBMS?
  19.	What is an embedded DBMS?
  20.	What were the prominent features of first-generation DBMSs?
  21.	What were the prominent features of second-generation DBMSs?
  22.	What were the prominent features of third-generation DBMSs?
  23.	What are the prominent features of fourth-generation DBMSs?
  24.	For the database you described in question (1), make a table to depict differences

among schema levels. Use Table 1-4 as a guide.
  25.	What is the purpose of the mappings in the Three Schema Architecture? Is the

user or DBMS responsible for using the mappings?
  26.	Explain the ways that the Three Schema Architecture supports data

independence.
  27.	In a client-server architecture, why are processing capabilities divided between a

client and server? In other words, why not have the server do all the processing?
  28.	What benefits can be provided by parallel database processing?
  29.	What benefits can be provided by distributing parts of a database among

different network sites?
  30.	For the database in question (1), describe how functional users may interact

with the database. Try to identify indirect, parametric, and power uses of the
database.

  31.	Explain the differences in responsibilities between an active functional user of a
database and an analyst. What schema level is used by both kinds of users?

  32.	Which role, database administrator or data administrator, is more appealing to
you as a long-term career goal? Briefly explain your preference.

  33.	What advantages are reported by organization using open source DBMS
products?

  34.	What is the state of the cloud computing segment of the DBMS marketplace?
  35.	What is the relationship between the cloud-based database architecture and

other distributed processing architectures for database computing?
  36.	What is information resource management?
  37.	What is data governance?
  38.	What are the responsibilities of data administrators versus database

administrators for data governance programs?
  39.	Identify several sources of data growth that challenge organizations and vendors

of database products.
  40.	What features of NoSQL database products address the challenges of big data?

26008_ch01_p001-024.indd 22 3/2/18 10:21 PM

Chapter 1  Introduction to Database Management   23

The Databases section of InfoWorld (www.infoworld.com/category/database) pro-
vides details about database software, data management practices, and current
industry trends. To learn more about the role of database specialists and information
resource management, you should consult Mullins (2012).

Because of the introductory nature of this chapter, there are no problems in this
chapter. Problems appear at the end of most other chapters.

PROBLEMS

REFERENCES FOR FURTHER STUDY

26008_ch01_p001-024.indd 23 3/2/18 10:21 PM

26008_ch01_p001-024.indd 24 3/2/18 10:21 PM

25  

OVERVIEW
Chapter 1 provided a broad introduction to database
usage in organizations and database technology. You
learned about the characteristics of business databases,
essential features of database managements systems
(DBMSs), architectures for deploying databases, and
organizational roles interacting with databases. This
chapter continues your introduction to database man-
agement with a broad focus on database development.
You will learn about the context, goals, phases, and tools
of database development to facilitate the acquisition of
specific knowledge and skills in Parts 3 and 4.

Before you can learn specific skills, you need to
understand the broad context for database develop-
ment. This chapter presents a context for databases
as part of an information system. You will learn about
components of information systems, the life cycle of
information systems, and the role of database develop-
ment as part of information systems development. This
information systems context provides a background for
database development. You will learn the phases of
database development, the kind of skills used in data-
base development, and software tools that can help you
develop databases.

Learning Objectives

This chapter provides an overview of the database development
process. After this chapter, the student should have acquired the
following knowledge and skills:

•	 Explain the steps in the information systems life cycle

•	 Describe the role of databases in an information system

•	 Explain the goals of database development

•	 Understand the relationships among phases in the database
development process

•	 Describe features typically provided by CASE tools for database
development

Introduction
to Database
Development

2
chapter

26008_ch02_p025-044.indd 25 3/2/18 11:16 PM

26   Part 1  Introduction to Database Environments

2.1  INFORMATION SYSTEMS

FIGURE 2.1
Overview of Student Loan
Processing System

Student Loan
Processing

System

Loan Applications

Payments Statements

Status
Changes

Cash
Disbursements

DATABASE

Delinquency
Notices

INPUTS OUTPUTS

PROCESSES

ENVIRONMENT
ENVIRONMENT

Databases exist as part of an information system. Before you can understand database
development, you must understand the larger environment that surrounds a database.
This section describes the components of an information system and several method-
ologies to develop information systems.

2.1.1  Components of Information Systems
A system is a set of related components that work together to accomplish some objec-
tives. Objectives are accomplished by interacting with the environment and perform-
ing functions. For example, the human circulatory system, consisting of blood, blood
vessels, and the heart, makes blood flow to various parts of the body. The circulatory
system interacts with other systems of the body to ensure that the right quantity and
composition of blood arrives in a timely manner to various body parts.

An information system is similar to a physical system (such as the circulatory sys-
tem) except that an information system manipulates data rather than a physical object
like blood. An information system accepts data from its environment, processes data,
and produces information for decision making. For example, an information system
for processing student loans (Figure 2.1) helps a service provider track loans for lend-
ing institutions. The environment of this system consists of lenders, students, and gov-
ernment agencies. Lenders send approved loan applications and students receive cash
for school expenses. After graduation, students receive monthly statements and remit
payments to retire their loans. If a student defaults, a government agency receives a
delinquency notice.

Databases provide long-term memory for information systems, an essential role.
The long-term memory contains entities and relationships. The database in Figure 2.1
contains data about students, loans, and payments so that the statements, cash dis-
bursements, and delinquency notices can be generated. Information systems without
permanent memory or with only a few variables in permanent memory are typically
embedded in a device to provide a limited range of functions rather than an open
range of functions as business information systems provide.

Databases are not the only components of information systems. Information sys-
tems also contain people, procedures, input data, output data, software, and hardware.
Thus, developing an information system involves more than developing a database, as
discussed in the next subsection.

2.1.2  Information Systems Development Process
Figure 2.2 shows the phases of the traditional systems development life cycle. The
particular phases of the life cycle are not standard. Different authors and organizations

26008_ch02_p025-044.indd 26 3/2/18 11:16 PM

Chapter 2  Introduction to Database Development   27

have proposed from 3 to 20 phases. The traditional life cycle, known as the waterfall
model, contains sequential flow in which the result of each phase flows to the next
phase. The traditional life cycle is mostly a reference framework. For most systems, the
boundary between phases is blurred and there is considerable backtracking between
phases. However, the traditional life cycle is still useful because it describes the kind
of activities and shows addition of detail until an operational system emerges. The
following items describe the activities in each phase:

•	 Preliminary Investigation Phase: Produces a problem statement and feasibility
study. The problem statement contains the objectives, constraints, and scope of
the system. The feasibility study identifies costs and benefits of the system. If the
system is feasible, approval is given to begin systems analysis.

•	 Systems Analysis Phase: Produces requirements describing processes, data,
and environment interactions. This phases uses diagramming techniques
to document processes, data, and environment interactions. To produce
requirements, work in this phase studies the current system and interviews
users of the proposed system.

•	 Systems Design Phase: Produces a plan to efficiently implement the requirements.
Work in this phase produces design specifications for processes, data, and
environment interaction. The design specifications focus on choices to optimize
resources given constraints.

•	 Systems Implementation Phase: Produces executable code, databases, and user
documentation. To implement the system, work in this phase generates code
to implement design specifications. Before making the new system operational,
a transition plan from the old system to the new system is devised. To gain
confidence and experience with the new system, an organization may run the
old system in parallel to the new system for a period of time.

•	 Maintenance Phase: Produces corrections, changes, and enhancements to an
operating information system. The maintenance phase commences when
an information system becomes operational. The maintenance phase is
fundamentally different from other phases because it comprises activities
from all of the other phases. The maintenance phase ends after deploying a
replacement system and retiring the current system. Due to the high fixed costs
of developing new systems, the maintenance phase can last decades.

Preliminary
Investigation

Systems
Analysis

Systems
Design

Systems
Implementation

Operational
System

Feedback

Feedback

Problem Statement,
Feasibility Study

System Requirements

Design Specifications

Maintenance
Feedback

FIGURE 2.2
Traditional Systems
Development Life Cycle

26008_ch02_p025-044.indd 27 3/2/18 11:16 PM

28   Part 1  Introduction to Database Environments

The traditional life cycle has been criticized for several reasons. First, an operating
system is not produced until late in the process. By the time a system is operational,
the requirements may have already changed. Second, there is often a rush to begin
implementation so that a product is visible. In this rush, appropriate time may not be
devoted to analysis and design.

A number of alternative methodologies have been proposed to alleviate these dif-
ficulties. Spiral development methodologies perform life cycle phases for subsets of a
system, progressively producing a larger system until the complete system emerges.
Rapid application development methodologies delay producing design documents
until requirements are clear. Scaled-down versions of a system, known as prototypes,
clarify requirements. Prototypes can be implemented rapidly using graphical devel-
opment tools for generating menus, forms, reports, and other code. Implementing a
prototype allows users to provide meaningful feedback to developers. Often, users
may not understand the requirements unless they can experience a prototype. Thus,
prototyping can reduce the risk of developing an information system because it allows
earlier and more direct feedback about the system.

Agile development methodologies are another variation to traditional informa-
tion systems development. Agile development methodologies promote active user
involvement and team empowerment, viewing software development as an empirical
process. Requirements evolve in agile development but the timescale of development
is fixed. Agile development involves iteration through small incremental releases with
testing integrated throughout the project lifecycle. Extreme programming, a promi-
nent Agile development approach, features a set of primary technical practices and a
set of corollary technical practices.

All development methodologies produce graphical models of the data, processes,
and environment interactions. The data model describes the kinds of data and rela-
tionships. The process model describes relationships among processes. A process can
provide input data used by other processes and use the output data of other processes.
The environment interaction model describes relationships between events and pro-
cesses. An event such as the passage of time or an action from the environment can
trigger a process to start or stop. The systems analysis phase produces an initial ver-
sion of these models. The systems design phase adds more details to efficiently imple-
ment the models.

Even though models of data, processes, and environment interactions are neces-
sary to develop an information system, this book emphasizes data models only. In
many information systems development efforts, the data model is the most important.
For business information systems, development processes usually product the pro-
cess and environment interaction models after the data model. Rather than present
notation for the process and environment interaction models, this book emphasizes
form and report development to depict connections among data, processes, and the
environment.

2.2  GOALS OF DATABASE DEVELOPMENT
Broadly, the goal of database development is to create a database that provides an
important resource for an organization. To fulfill this broad goal, the database should
serve a large community of users, support organizational policies, contain high quality
data, and provide efficient access. The remainder of this section describes the goals of
database development in more detail.

2.2.1  Develop a Common Vocabulary
A database provides a common vocabulary for an organization. Before implement-
ing a common database, different parts of an organization may have different termi-
nology. For example, there may be multiple formats for addresses, multiple ways to
identify customers, and different ways to calculate interest rates. After implementing a

26008_ch02_p025-044.indd 28 3/2/18 11:16 PM

Chapter 2  Introduction to Database Development   29

database, communication can improve among different parts of an organization. Thus,
a database can unify an organization by establishing a common vocabulary.

Achieving a common vocabulary is not easy. Developing a database requires com-
promise to satisfy a large community of users. In some sense, a good database designer
shares some characteristics with a good politician. A good politician often finds solu-
tions with which everyone finds something to agree and disagree. In establishing a
common vocabulary, a good database designer also finds similar imperfect solutions.
Forging compromises can be difficult, but the results can improve productivity, cus-
tomer satisfaction, and other measures of organizational performance.

2.2.2  Define the Meaning of Data
A database contains business rules to support organizational policies. Defining busi-
ness rules is the essence of defining the semantics or meaning of a database. For
example, in an order entry system, an important rule is that an order must precede a
shipment. The database can contain an integrity constraint to support this rule. Defin-
ing business rules enables a database to actively support organizational policies. This
active role contrasts with the more passive role that databases have in establishing a
common vocabulary.

In establishing the meaning of data, a database designer must choose appropriate
constraint levels. Selecting appropriate constraint levels may require compromise to
balance the needs of different groups. Overly strict constraints may force work-around
solutions to handle exceptions. In contrast, loose constraints may allow incorrect data
in a database. For example, in a university database, a designer must decide if a course
offering can be stored without knowing the instructor. Some user groups may want
initial entry of the instructor to ensure that course commitments can be met. Other
user groups may want more flexibility because course catalogs are typically released
well in advance of the beginning of the academic period. Forcing entry of the instruc-
tor at the time a course offering is stored may be too strict. If a database contains this
constraint, users may use workarounds by using a default value such as TBA (to be
announced). The appropriate constraint (forcing entry of the instructor or allowing
later entry) depends on the importance of the needs of the user groups to the goals of
the organization.

2.2.3  Ensure Data Quality
The importance of data quality is analogous to the importance of product quality in man-
ufacturing. Poor product quality can lead to loss of sales, lawsuits, and customer dissat-
isfaction. Because data are the product of an information system, data quality is equally
important. Poor data quality can lead to poor decision making about communicating
with customers, identifying repeat customers, tracking sales, and resolving customer
problems. For example, communicating with customers can be difficult if addresses are
outdated or customer names are inconsistently spelled on different orders.

Data quality has many dimensions or characteristics, as depicted in Table 2-1. The
importance of data quality characteristics can depend on the part of the database in
which they are applied. For example, in the product part of a retail grocery database,
important characteristics of data quality may be the timeliness and consistency of
prices. For other parts of the database, other characteristics may be more important.

A database design should help achieve adequate data quality. When evaluating
alternatives, a database designer should consider data quality characteristics. For
example, in a customer database, a database designer should consider the possibility
that some customers may not have U.S. addresses. Therefore, the database design may
be incomplete if it fails to support non-U.S. addresses.

Achieving adequate data quality may require a cost-benefit trade-off. For example,
in a grocery store database, the benefits of timely price updates are reduced consumer
complaints and less loss in fines from government agencies. Achieving data quality
can be costly both in preventative and monitoring activities. For example, to improve

26008_ch02_p025-044.indd 29 3/2/18 11:16 PM

30   Part 1  Introduction to Database Environments

the timeliness and accuracy of price updates, automated data entry may be used (pre-
ventative activity) as well as sampling the accuracy of the prices charged to consumers
(monitoring activity).

The cost-benefit trade-off for data quality should consider long-term as well as
short-term costs and benefits. Often the benefits of data quality are long-term, espe-
cially data quality issues that cross individual databases. For example, consistency of
customer identification across databases can be a crucial issue for strategic decision
making. The issue may not be important for individual databases. Chapter 14 on data
integration addresses issues of data quality related to strategic decision making.

Organizations increasingly recognize that poor data quality can bring extra risks
to an organization especially related to litigation and government regulations. Many
businesses and government agencies have data governance organizations that deal
with data quality, privacy, and security issues in a broad context. For data quality
improvements, data governance initiatives typically focus on development of data
quality measures, reporting status of data quality, and establishing decision rights and
accountabilities. Chapter 16 provides details about data governance processes and
tools covering data quality issues.

2.2.4  Find an Efficient Implementation
Even if the other design goals are met, a slow-performing database will not be used.
Thus, finding an efficient implementation is paramount. However, an efficient imple-
mentation should respect the other goals as much as possible. An efficient imple-
mentation that compromises the meaning of the database or database quality may be
rejected by database users.

Finding an efficient implementation is an optimization problem with an objec-
tive and constraints. Informally, the objective is to maximize performance subject to
constraints about resource usage, data quality, and data meaning. Finding an efficient
implementation can be difficult because of the number of choices available, the inter-
action among choices, and the difficulty of describing inputs. In addition, finding an
efficient implementation is a continuing effort. Performance should be monitored and
design changes should be made if warranted.

TABLE 2-1
Common Characteristics of
Data Quality

Characteristic Meaning

Completeness Database represents all important parts of the information system.

Lack of ambiguity Each part of the database has only one meaning.

Correctness Database contains values perceived by the user.

Timeliness Business changes are posted to the database without excessive delays.

Reliability Failures or interference do not corrupt database.

Consistency Different parts of the database do not conflict.

2.3  DATABASE DEVELOPMENT PROCESS
This section describes the phases of the database development process and discusses
relationships to the information systems development process. The chapters in Parts 3
and 4 elaborate on the framework provided here.

2.3.1  Phases of Database Development
The goal of the database development process is to produce an operational database
for an information system. To produce an operational database, you need to define

26008_ch02_p025-044.indd 30 3/2/18 11:16 PM

Chapter 2  Introduction to Database Development   31

the three schemas (external, conceptual, and internal) and populate (supply
with data) the database. To create these schemas, you can follow the process
depicted in Figure 2.3. The first two phases are concerned with the information
content of the database while the last two phases are concerned with efficient
implementation. These phases are described in more detail in the remainder of
this section.

Conceptual Data Modeling  The conceptual data modeling phase uses data
requirements and produces entity relationship diagrams (ERDs) for the con-
ceptual schema and each external schema. Data requirements can have many
formats such as interviews with users, documentation of existing systems, and
proposed forms and reports. The conceptual schema should represent all the
requirements and formats. In contrast, the external schemas (or views) repre-
sent the requirements of a particular usage of the database such as a form or
report rather than all requirements. Thus, external schemas are generally much
smaller than the conceptual schema.

The conceptual and external schemas follow the rules of the Entity Rela-
tionship Model, a graphical representation that depicts things of interest (enti-
ties) and relationships among entities. Figure 2.4 depicts an entity relationship
diagram (ERD) for part of a student loan system. The rectangles (Student and
Loan) represent entity types and labeled lines (Receives) represent relationships.
Attributes or properties of entities are listed inside the rectangle. The under-
lined attribute, known as the primary key, provides unique identification for the
entity type. Chapter 3 provides a precise definition of primary keys. Chapters
5 and 6 present more details about the Entity Relationship Model. Because the
Entity Relationship Model is not fully supported by any DBMS, the conceptual
schema is not biased toward any specific DBMS.

Logical Database Design  The logical database design phase transforms the
conceptual data model into a format understandable by a commercial DBMS.
The logical design phase is not concerned with efficient implementation. Rather,
the logical design phase is concerned with refinements to the conceptual data
model. The refinements preserve the information content of the conceptual data
model while enabling implementation on a commercial DBMS. Because most business
databases are implemented on relational DBMSs, the logical design phase usually
produces a table design.

The logical database design phase consists of two refinement activities: conver-
sion and normalization. The conversion activity transforms ERDs into table designs
using conversion rules. As you will learn in Chapter 3, a table design includes tables,
columns, primary keys, foreign keys (links to other related tables), and other con-
straints. For example, the ERD in Figure 2.4 is converted into two tables as depicted in
Figure 2.5. The normalization activity removes redundancies in a table design using
constraints or dependencies among columns. Chapter 6 presents conversion rules
while Chapter 7 presents normalization techniques.

Distributed Database Design  The distributed database design phase marks a
departure from the first two phases. The distributed database design and physical
database design phases are both concerned with an efficient implementation. In con-
trast, the first two phases (conceptual data modeling and logical database design) are
concerned with the information content of the database.

Conceptual Data
Modeling

Logical Database
Design

Physical
Database Design

Distributed
Database Design

Entity Relationship Diagrams
(Conceptual and External)

Relational Database Tables

Distribution Schema

Internal Schema, Populated Database

Data Requirements

FIGURE 2.3
Phases of Database
Development

StdNo
StdName

Student

LoanNo
LoanAmt

Loan

Receives

FIGURE 2.4
Partial ERD for the Student
Loan System

26008_ch02_p025-044.indd 31 3/2/18 11:16 PM

32   Part 1  Introduction to Database Environments

Distributed database design involves choices about the location of data and pro-
cesses to improve performance and provide local control of data. Performance can
be measured in many ways such as reduced response time, improved availability of
data, and improved control. For data location decisions, the database can be split in
many ways to distribute it among computer sites. For example, a loan table can be
distributed according to the location of the bank granting the loan. Another technique
to improve performance is to replicate or make copies of parts of the database. Replica-
tion improves availability of the database but makes updating more difficult because
multiple copies must be kept consistent.

Data location decisions should respect data ownership. An organization that con-
trols some part of a database should control access to its data. For example, a franchise
store should have control over access to its locally generated data. Distributed data-
base technology presented in Chapter 18 enables an organization to align data location
with data control.

For process location decisions, some of the work is typically performed on a server
and some of the work is performed by a client. For example, the server often retrieves
data and sends them to the client. The client displays the results in an appealing man-
ner. There are many other options about the location of data and processing that are
explored in Chapter 18.

Physical Database Design  The physical database design phase, like the distrib-
uted database design phase, is concerned with an efficient implementation. Unlike
distributed database design, physical database design involves performance at one
computer location only. If a database is distributed, physical design decisions must be
made for each location. An efficient implementation minimizes response time without
using excessive resources such as disk space and main memory. Because response
time is difficult to directly measure, other measures such as the amount of disk input-
output activity is often used as a substitute.

In the physical database design phase, two important choices involve indexes and
data placement. An index is an auxiliary file that can improve performance. For each
column of a table, the designer decides whether an index can improve performance.
An index can improve performance on retrievals but reduce performance on updates.
For example, indexes on the primary keys (StdNo and LoanNo in Figure 2.5) can usu-
ally improve performance. For data placement, a designer makes decisions about clus-
tering to locate data close together on a disk. For example, performance might improve
by placing student rows near the rows of associated loans. Chapter 8 describes details
of physical database design including index selection and data placement.

Splitting Conceptual Design for Large Projects  The database development pro-
cess shown in Figure 2.3 works well for moderate-size databases. For large databases,
the conceptual modeling phase is usually modified. Designing large databases is a
time-consuming and labor-intensive process often involving a team of designers. The

FIGURE 2.5
Conversion of Figure 2.4

CREATE TABLE Student
(StdNo INTEGER NOT NULL,

StdName CHAR(50),
…

PRIMARY KEY (StdNo))
CREATE TABLE Loan
(LoanNo INTEGER NOT NULL,

LoanAmt DECIMAL(10,2),
StdNo INTEGER NOT NULL,
…

PRIMARY KEY (LoanNo),
FOREIGN KEY (StdNo) REFERENCES Student)

26008_ch02_p025-044.indd 32 3/2/18 11:16 PM

Chapter 2  Introduction to Database Development   33

development effort can involve requirements from many different groups of users. To
manage complexity, a divide and conquer strategy is used in many areas of comput-
ing. Dividing a large problem into smaller problems allows the smaller problems to be
solved independently. The solutions to the smaller problems are then combined into
a solution for the entire problem.

View design and integration (Figure 2.6) is an approach to managing the complex-
ity of large database development efforts. In view design, an ERD is constructed for
each group of users. A view is typically small enough for a single person to design.
Multiple designers can work on views covering different parts of the database. The
view integration process merges the views into a complete and consistent conceptual
schema. Integration involves recognizing and resolving conflicts. To resolve conflicts,
it is sometimes necessary to revise the conflicting views. Compromise is an important
part of conflict resolution in the view integration process.

Cross-Checking with Application Development  The database development pro-
cess does not exist in isolation. Database development occurs sometimes concurrently
with activities in the systems analysis, systems design, and systems implementation
phases. The conceptual data modeling phase is part of the systems analysis phase. The
logical database design phase is performed during systems design. The distributed
database design and physical database design phases are usually divided between
systems design and systems implementation. Most of the preliminary decisions for
the last two phases can be made in systems design. However, many physical design
and distributed design decisions must be tested on a populated database. Thus, some
activities in the last two phases occur in systems implementation.

To fulfill the goals of database development, the database development process
must be tightly integrated with other parts of information systems development.
To produce data, process, and interaction models that are consistent and complete,
cross-checking can be performed, as depicted in Figure 2.7. The information systems
development process can be split between database development and applications
development. The database development process produces ERDs, table designs, and
so on as described in this section. The applications development process produces pro-
cess models, interaction models, and prototypes. Prototypes are especially important
for cross-checking. A database has no value unless it supports intended applications
such as forms and reports. Prototypes can help reveal mismatches between the data-
base and applications using the database.

View Design

View Integration

Data Requirements

View ERDs

Entity Relationship Diagrams

Conceptual Data Modeling
FIGURE 2.6
Splitting of Conceptual Data
Modeling into View Design
and View Integration

26008_ch02_p025-044.indd 33 3/2/18 11:16 PM

34   Part 1  Introduction to Database Environments

2.3.2  Skills in Database Development
As a database designer, you need two different kinds of skills as depicted in Figure 2.8.
The conceptual data modeling and logical database design phases involve mostly soft
skills. Soft skills are qualitative, subjective, and people-oriented. Qualitative skills
emphasize the generation of feasible alternatives rather than the best alternatives. As
a database designer, you want to generate a range of feasible alternatives. The choice
among feasible alternatives can be subjective. You should note the assumptions in

FIGURE 2.7
Interaction between
Database and Application
Development

Database
Development

ERDs, Table Design,
...

Application
Development
Process Models,

Interaction Models,
Prototypes

System
Requirements

Data Requirements Application Requirements

Operational
System

Operational Database Operational Applications

Cross Checking

Conceptual Data
Modeling

Logical Database
Design

Physical
Database Design

Distributed
Database Design

Entity Relationship Diagrams

Relational Database Tables

Distribution Schema

Internal Schema, Populated Database

Soft

Hard

Design SkillsData Requirements

FIGURE 2.8
Design Skills Used in
Database Development

26008_ch02_p025-044.indd 34 3/2/18 11:16 PM

Chapter 2  Introduction to Database Development   35

which each feasible alternative is preferred. The alternative chosen is often subjective
based on the designer’s assessment of the most reasonable assumptions. Conceptual
data modeling is especially people-oriented. In performing data modeling, you need
to obtain requirements from diverse groups of users. Compromise and effective listen-
ing are essential skills in data modeling.

Distributed database design and physical database design involve mostly hard
skills. Hard skills are quantitative, objective, and data intensive. A background in
quantitative disciplines such as statistics and operations management can be useful to
understand mathematical models used in these phases. Many of the decisions in these
phases can be modeled mathematically using an objective function and constraints.
For example, the objective function for index selection is to minimize disk reads and
writes with constraints about the amount of disk space and response time limitations.
Many decisions cannot be based on objective criteria alone because of uncertainty
about database usage. To resolve uncertainty, intensive data analysis can be useful.
The database designer should collect and analyze data to understand patterns of data-
base usage and database performance.

Because of the diverse skills and background knowledge required in different
phases of database development, role specialization can occur. Large organizations
typically provide specialization in database design roles between data modelers and
database performance experts. Data modelers perform conceptual data modeling and
logical database design phases. Database performance experts mostly perform tasks
in the distributed and physical database design phases. Because the skills are differ-
ent in these roles, the same person will not perform both roles in large organizations.
Small organizations typically lack role diversification with the same person fulfilling
multiple roles.

2.4  TOOLS FOR DATABASE DEVELOPMENT
To improve productivity in developing information systems, computer-aided soft-
ware engineering (CASE) tools have been created. CASE tools can help improve the
productivity of information systems professionals working on large projects as well
as end users working on small projects. A number of studies have provided evidence
that CASE tools facilitate improvements in the early phases of systems development
leading to lower cost, higher quality, and faster implementations.

Most CASE tools support the database development process. Some CASE tools
support database development as a part of information systems development. Other
CASE tools target various phases of database development without supporting other
aspects of information systems development.

CASE tools can be classified as front-end or back-end tools. Front-end CASE
tools help designers diagram, analyze, and document models used in the database
development process. Back-end CASE tools create prototypes and generate code
that can be used to cross-check a database with other components of an information
system. This section presents features of CASE tools for database development and
demonstrates a commercial CASE tool, Aqua Data Studio, with a focus on database
development.

2.4.1  Diagramming
Diagramming is the most important and widely used function in CASE tools. Most
CASE tools provide predefined shapes and connections among the shapes. The con-
nection tools typically allow shapes to be moved while remaining connected as though
glued. This glue feature provides important flexibility because symbols on a diagram
typically are rearranged many times.

For large drawings, CASE tools provide several features. Most CASE tools allow
diagrams to span multiple pages. Multiple-page drawings can be printed so that the

26008_ch02_p025-044.indd 35 3/2/18 11:16 PM

36   Part 1  Introduction to Database Environments

pages can be pasted together to make a wall display. Layout can be difficult for large
drawings. Some CASE tools try to improve the visual appeal of a diagram by per-
forming automatic layout. The automatic layout feature may minimize the number
of crossing connections in a diagram. Although automated layout is not typically suf-
ficient by itself, a designer can use it as a first step to improve the visual appearance of
a large diagram.

2.4.2  Documentation
Documentation is one of the oldest and most valuable functions of CASE tools. CASE
tools store various properties of a data model and link the properties to symbols on
the diagram. Example properties stored in a CASE tool include alias names, integrity
rules, data types, and owners. In addition to properties, CASE tools store text describ-
ing assumptions, alternatives, and notes. Both the properties and text are stored in the
data dictionary, the database of the CASE tool. The data dictionary is also known as
the repository or encyclopedia.

To support system evolution, many CASE tools can document versions. A version
is a group of changes and enhancements to a system that is released together. Because
of the volume of changes, groups of changes rather than individual changes are typi-
cally released together. In the life of an information system, many versions can be
made. To aid in understanding relationships among versions, many CASE tools sup-
port documentation for individual changes and entire versions.

2.4.3  Analysis
CASE tools can provide active assistance to database designers through analysis
functions. In documentation and diagramming, CASE tools help designers become
more proficient. In analysis functions, CASE tools can perform the work of a database
designer. An analysis function is any form of reasoning applied to specifications pro-
duced in the database development process. For example, an important analysis func-
tion is to convert between an ERD and a table design. Converting from an ERD to a
table design is known as forward engineering and converting in the reverse direction
is known as reverse engineering.

Analysis functions can be provided in each phase of database development. In the
conceptual data modeling phase, analysis functions can reveal conflicts in an ERD. In
the logical database design phase, conversion and normalization are common analysis
functions. Conversion produces a table design from an ERD. Normalization removes
redundancy in a table design. In the distributed database design and physical data-
base design phases, analysis functions can suggest decisions about data location and
index selection. In addition, analysis functions for version control can cross database
development phases. Analysis functions can convert between versions and show a list
of differences between versions.

Because analysis functions are advanced features in CASE tools, availability of
analysis functions varies widely. Some CASE tools support little or no analysis func-
tions while others support extensive analysis functions. Because analysis functions
can be useful in each phase of database development, no single CASE tool provides a
complete range of analysis functions. CASE tools tend to specialize by the phases sup-
ported. CASE tools independent of a DBMS typically specialize in analysis functions
in the conceptual data modeling phase. In contrast, CASE tools offered by a DBMS
vendor often specialize in physical database design phases.

2.4.4  Prototyping Tools
Prototyping tools provide a link between database development and application devel-
opment. Prototyping tools can be used to create forms and reports that use a database.
Because prototyping tools may generate code (SQL statements and programming lan-
guage code), they are sometimes known as code generation tools. Prototyping tools

26008_ch02_p025-044.indd 36 3/2/18 11:16 PM

Chapter 2  Introduction to Database Development   37

are often provided as part of a DBMS. The prototyping tools may provide wizards to
aid a developer in quickly creating applications that can be tested by users. Prototyp-
ing tools can also create an initial database design by retrieving existing designs from
a library of designs. This kind of prototyping tool can be very useful to end users and
novice database designers.

2.4.5  Commercial CASE Tools
Table 2-2 summarizes major CASE tools that provide extensive features for database
development. Each product in Table 2-2 supports multiple steps in database devel-
opment although the quality, depth, and breadth of features varies across products.
In addition, most of the products in Table 2-2 provide several versions that vary in
price and features. All of the products are relatively neutral to a particular DBMS even
though two products are offered by organizations with major DBMS products. Besides
the full featured products listed in Table 2-2, other companies offer more drawing
tools for database diagrams.

ER Modeler in Aqua Data Studio  To depict features of commercial CASE tools,
this section concludes with an overview of the ER Modeler component of Aqua
Data Studio. The ER Modeler provides excellent drawing capabilities, forward

TABLE 2-2
Prominent CASE Tools for
Database Development

Tool Vendor Innovative Features

SAP PowerDesigner SAP Forward and reverse engineering for relational databases
and many programming languages; model management
support for comparing and merging models; application code
generation; UML support; business process modeling; XML
code generation; version control; data integration support;
physical design support; support for industry standard
enterprise architecture frameworks

Oracle SQL Developer
Data Modeler

Oracle Forward and reverse engineering for relational databases;
data warehouse modeling; code generation for other DBMSs;
compare and merge models; version control; name
standardization; design rules; impact analysis; wizards for
view creation, view discovery, and foreign key discovery

erwin Data Modeler ERWin Forward and reverse engineering for relational databases;
model reuse tools; bi-directional compare; model change
impact analysis; schema and design analysis; version control;
sub modeling support; workgroup support

ER/Studio Data Archi-
tect

IDERA Forward and reverse engineering for relational databases;
automated diagram layout; visual data lineage; model
management support for comparing and merging models;
UML support; version control; schema patterns for model
reuse; workgroup support; data integration support

Visible Analyst Visible Systems Forward and reverse engineering for relational databases
and XML; model management support for comparing and
merging models; version control; database view design;
data warehouse design diagrams; business requirements
traceability; process integration with data; Enterprise Edition
supports Zachman Framework for enterprise architecture
design

Aqua Data Studio AquaFold Forward and reverse engineering, schema comparison, version
control, DBA tools, query builder, schema object management

Database Engineering Visual Paradigm Forward and reverse engineering, editors for tables and
views, generation of database patch scripts, trigger and
stored procedure support, support for project management,
enterprise architecture, system modeling, business modeling,
user interface requirements, and software requirements in
Visual Paradigm tool

26008_ch02_p025-044.indd 37 3/2/18 11:16 PM

38   Part 1  Introduction to Database Environments

and reverse engineering tools, and schema comparison tools. In addition to the ER
Modeler component, Aqua Data Studio provides DBA tools for managing databases
in a variety of DBMSs, a query builder, and code generation. Thus, Aqua Data Studio
supports traditional CASE tool features as well as features to manage operations of
databases.

The ER Modeler window contains panes for a drawing area, model objects, a pal-
ette of diagram shapes, an overview pane for managing large drawings, and an object
summary as shown in Figure 2.9. The drawing pane contains a number of drawing
sheets, each containing a database diagram. In Figure 2.9, the drawing pane contains
one sheet showing a database diagram for an order entry database. The Palette pane
shows entities (table, view, note, and region) and relationships (One to Many, One to
Many (NI), and Subcategory) that can be placed in a drawing sheet. The Overview
pane compresses the entire diagram with a red rectangle surrounding the visible part
of the diagram. The Model pane displays the objects in a diagram (tables and relation-
ships) with expansion to display details. In Figure 2.9, the Model pane expands tables
and relationships to show the objects in the diagram. The Object Properties pane lists
properties of the object selected in the drawing sheet. In Figure 2.9, the Object Prop-
erties pane lists properties of the entire diagram because no object in the diagram is
selected.

FIGURE 2.9
ER Modeler Window

26008_ch02_p025-044.indd 38 3/2/18 11:16 PM

Chapter 2  Introduction to Database Development   39

The ER Modeler provides multiple levels of detail in the drawing pane. Figure 2.9
shows the attribute level with table and column names. Relationship names can be
added to the attribute level display as shown in Figure 2.9. The ER Modeler supports
less detail with the primary key level (table and primary key names) and the entity
level (just table names) and more detail with the physical schema level (data types
added to the attribute level), nullable columns (attribute level and null constraints),
and the comment level (attribute level and comments).

The ER Modeler provides a data dictionary with details of each object in a dia-
gram. To edit properties in the data dictionary, you use the properties window for
a specified object. Figure 2.10 displays the properties window for the Product table
with tabs separating different collections of properties. The General tab shows the col-
umn names, data types, lengths and nulls allowed values for each column. Figure 2.11
displays properties for the PurchasedIn relationship with tabs for several collection of
properties. The General tab contains the most prominent properties including cardi-
nality, type, and nulls.

FIGURE 2.10
Table Properties Window for
the Product Table

26008_ch02_p025-044.indd 39 3/2/18 11:16 PM

40   Part 1  Introduction to Database Environments

This chapter initially described the role of databases in information systems and the
nature of the database development process. Information systems are collections of
related components that produce data for decision making. A database provides the
permanent memory for an information system. Development of an information sys-
tem involves a repetitive process of analysis, design, and implementation. Database
development occurs in all phases of systems development. Because a database is often
a crucial part of an information system, database development can be the dominant
part of information systems development. Development of the processing and envi-
ronment interaction components are often performed after the database development.
Cross-checking between a database and applications connects the database develop-
ment process to the information systems development process.

After presenting the role of databases and the nature of database development,
this chapter described the goals, phases, and tools of database development. The goals
emphasize both the information content of the database as well as efficient implemen-
tation. The phases of database development first establish the information content of
the database and then find an efficient implementation. The conceptual data model-
ing and logical database design phases involve the information content of the data-
base. The distributed database design and physical database design phases involve

FIGURE 2.11
Relationships Properties
Window for the PurchasedIn
Relationship

CLOSING THOUGHTS

26008_ch02_p025-044.indd 40 3/2/18 11:16 PM

Chapter 2  Introduction to Database Development   41

•	 System: related components that work together to accomplish objectives
•	 Information system: system that accepts, processes, and produces data
•	 Waterfall model of information systems development: reference framework for

activities in the information systems development process
•	 Spiral development methodologies, rapid application development

methodologies, and Agile development methodologies to alleviate the problems
in the traditional waterfall development approach

•	 Role of databases in information systems: provide permanent memory
•	 Define a common vocabulary to unify an organization
•	 Define business rules to support organizational processes
•	 Ensure data quality to improve the quality of decision making
•	 Evaluate investment in data quality using a cost-benefit approach
•	 Find an efficient implementation to ensure adequate performance while not

compromising other design goals
•	 Conceptual data modeling to represent the information content independent of

a target DBMS
•	 View design and view integration to manage the complexity of large data

modeling efforts
•	 Logical database design to refine a conceptual data model to a target DBMS
•	 Distributed database design to determine locations of data and processing to

achieve an efficient and reliable implementation
•	 Physical database design to achieve efficient implementations on each computer

site
•	 Develop prototype forms and reports to cross check among the database and

applications using the database
•	 Soft skills for conceptual data modeling: qualitative, subjective, and people-

oriented
•	 Hard skills for finding an efficient implementation: quantitative, objective, and

data intensive
•	 Computer-aided software engineering (CASE) tools to improve productivity in

the database development process
•	 Fundamental assistance of CASE tools: drawing and documenting
•	 Active assistance of CASE tools: analysis and prototyping

efficient implementation. Because developing databases can be a challenging process,
computer-aided software engineering (CASE) tools have been created to improve
productivity. CASE tools can be essential in helping the database designer to draw,
document, and prototype the database. In addition, some CASE tools provide active
assistance with analyzing a database design.

This chapter provides a context for the chapters in Parts 3 and 4. You might want
to reread this chapter after completing the chapters in Parts 3 and 4. The chapters in
Parts 3 and 4 provide details about the phases of database development. Chapters 5
and 6 present details of the Entity Relationship Model, data modeling practice using
the Entity Relationship Model, and conversion from the Entity Relationship Model
to the Relational Model. Chapter 7 presents normalization techniques for relational
tables. Chapter 8 presents physical database design techniques.

REVIEW CONCEPTS

26008_ch02_p025-044.indd 41 3/2/18 11:16 PM

42   Part 1  Introduction to Database Environments

  1.	What is the relationship between a system and an infomation system?
  2.	Provide an example of a system that is not an information system.
  3.	For an information system of which you are aware, describe some of the

components (input data, output data, people, software, hardware, and
procedures).

  4.	Briefly describe some of the kinds of data in the database for the information
system in question 3.

  5.	Describe the phases of the waterfall model.
  6.	Why is the waterfall model considered only a reference framework?
  7.	What are the shortcomings in the waterfall model?
  8.	What alternative methodologies have been proposed to alleviate the difficulties

of the waterfall model?
  9.	What is the relationship of the database development process to the information

systems development process?
  10.	What is a data model? Process model? Environment interaction model?
  11.	What is the purpose of prototyping in the information systems development

process?
  12.	How is a database designer like a politician in establishing a common

vocabulary?
  13.	Why should a database designer establish the meaning of data?
  14.	What factors should a database designer consider when choosing database

constraints?
  15.	Why is data quality important?
  16.	Provide examples of data quality problems according to two characteristics

mentioned in Section 2.2.3.
  17.	How does a database designer decide on the appropriate level of data quality?
  18.	Why is it important to find an efficient implementation?
  19.	What are the inputs and the outputs of the conceptual data modeling phase?
  20.	What are the inputs and the outputs of the logical database design phase?
  21.	What are the inputs and the outputs of the distributed database design phase?
  22.	What are the inputs and the outputs of the physical database design phase?
  23.	What does it mean to say that the conceptual data modeling phase and the

logical database design phase are concerned with the information content of the
database?

  24.	Why are there two phases (conceptual data modeling and logical database
design) that involve the information content of the database?

  25.	What is the relationship of view design and view integration to conceptual data
modeling?

  26.	What is a soft skill?
  27.	What phases of database development primarily involve soft skills?
  28.	What is a hard skill?
  29.	What phases of database development primarily involve hard skills?
  30.	What kind of background is appropriate for hard skills?
  31.	Why do large organizations sometimes have different people performing design

phases dealing with information content and efficient implementation?

QUESTIONS

26008_ch02_p025-044.indd 42 3/2/18 11:16 PM

Chapter 2  Introduction to Database Development   43

  32.	Why are CASE tools useful in the database development process?
  33.	What is the difference between front-end and back-end CASE tools?
  34.	What kinds of support can a CASE tool provide for drawing a database

diagram?
  35.	What kinds of support can a CASE tool provide for documenting a database

design?
  36.	What kinds of support can a CASE tool provide for analyzing a database design?
  37.	What kinds of support can a CASE tool provide for prototyping?
  38.	Should you expect to find one software vendor providing a full range of

functions (drawing, documenting, analyzing, and prototyping) for the database
development process? Why or why not?

  39.	How has data quality moved beyond an issue just for the design of individual
databases and data integration efforts?

PROBLEMS

Because of the introductory nature of this chapter, there are no problems in this
chapter. Problems appear at the end of chapters in Parts 3 and 4.

REFERENCES FOR FURTHER STUDY

For a more detailed description of the database development process, you can consult
specialized books on database design such as Batini, Ceri, and Navathe (1992) and
Teorey et al. (2005). For more details about data quality, consult specialized books
about data quality including Loshin (2011), Olson (2002), Redman (2001) along with
the International Conference on Information Quality (mitiq.mit.edu/ICIQ/2015).

26008_ch02_p025-044.indd 43 3/2/18 11:16 PM

26008_ch02_p025-044.indd 44 3/2/18 11:16 PM

45  

part two

The chapters in Part 2 provide a detailed introduction to the Relational Data Model to instill
a foundation for database design and application development with relational databases.
Chapter 3 presents data definition concepts and retrieval operators for relational databases.
Chapter 4 demonstrates SQL retrieval and modification statements for problems of basic
and intermediate complexity and emphasizes problem solving guidelines to develop query
formulation skills.

Understanding
Relational
Databases

26008_ch03_p045-076.indd 45 3/2/18 9:00 PM

26008_ch03_p045-076.indd 46 3/2/18 9:00 PM

47  

OVERVIEW
The chapters in Part 1 provided a starting point for your
exploration of database technology and your under-
standing of the database development process. You
broadly learned about database characteristics, DBMS
features, the goals of database development, and the
phases of the database development process. This
chapter narrows your focus to the relational data model.
Relational DBMSs dominate the market for business
DBMSs. You will undoubtedly use relational DBMSs
throughout your career as an information systems pro-
fessional. This chapter provides background so that
you will become proficient in designing databases and
developing applications for relational databases in later
chapters.

To use a relational database effectively, you need
two kinds of knowledge. First, you need to understand

the structure and contents of database tables. Under-
standing the connections among tables is especially
critical because most database retrievals involve mul-
tiple tables. To help you understand relational data-
bases, this chapter presents the basic terminology, the
integrity rules, and a notation to visualize connections
among tables. Second, you need to understand the
operators of relational algebra as they are the building
blocks of most commercial query languages. Under-
standing the operators will improve your knowledge
of the SQL SELECT statement, the most widely used
query language statement. You will learn the details
for the SQL SELECT statement in Chapter 4. To help
you understand the meaning of each operator, this
chapter provides a visual representation of each oper-
ator and several convenient summaries.

Learning Objectives

This chapter provides the foundation for using relational databases. After
this chapter, the student should have acquired the following knowledge
and skills:

•	 Recognize relational database terminology

•	 Understand the meaning of the integrity rules for relational data-
bases

•	 Understand the impact of referenced rows on maintaining relational
databases

•	 Understand the meaning of each relational algebra operator

•	 List tables that must be combined to obtain desired results for simple
retrieval requests

The Relational
Data Model

3
chapter

26008_ch03_p045-076.indd 47 3/2/18 9:00 PM

48   Part 2  Understanding Relational Databases

Relational databases promised familiarity, simplicity, and mathematical rigor to man-
age data. Because many disciplines use tables to communicate complex ideas, the
terminology of tables, rows, and columns is familiar to most users. During the early
years of relational databases (1970s), the simplicity and familiarity of relational data-
bases had strong appeal especially as compared to the procedural orientation of other
data models. In addition to the familiarity and simplicity of relational databases, a
strong mathematical basis also exists. The mathematics of relational databases involve
conceptualizing tables as sets. The combination of familiarity and simplicity with a
mathematical foundation provided a powerful combination enabling commercial
dominance of relational DBMSs.

This section presents the basic terminology of relational databases and introduces
the CREATE TABLE statement of the Structured Query Language (SQL). Sections 3.2
through 3.4 provide more detail about the elements defined in this section.

3.1.1  Tables
A relational database consists of a collection of tables. Each table has a heading or defi-
nition part and a body or content part. The heading part consists of the table name and
the column names. For example, a student table may have columns for student num-
ber, name, street address, city, state, zip, class (freshman, sophomore, etc.), major, and
cumulative grade point average (GPA). The body shows the rows of the table. Each
row in a student table represents a student enrolled at a university. A student table
for a major university may have more than 30,000 rows, too many to view at one time.

To understand a table, it is also useful to view some of its rows. A table listing or
datasheet shows the column names in the first row and the body in the other rows.
Table 3-1 shows a table listing for the Student table. Three sample rows representing
university students are displayed. In this book, the naming convention for column
names uses a table abbreviation (Std) followed by a descriptive name. Because col-
umn names are often used without identifying the associated tables, the abbreviation
supports easy table association. Mixed case highlights the different parts of a column
name.

A CREATE TABLE statement can be used to define the heading part of a table.
CREATE TABLE is a statement in the Structured Query Language (SQL). Because SQL
is an industry standard language, the CREATE TABLE statement can be used to create
tables in most DBMSs. The CREATE TABLE statement that follows1 creates the Stu-
denttable. For each column, the column name and data type are specified. Data types
indicate the kind of data (character, numeric, Yes/No, etc.) and permissible operations
(numeric operations, text operations, etc.) for the column. Each data type has a name
(for example, CHAR for character) and usually a length specification. Table 3-2 lists
common data types2 used in relational DBMSs.

1 The CREATE TABLE statements in this chapter conform to the standard SQL syntax. There are slight syn-
tax differences for most commercial DBMSs.

2 Data types are not standard across relational DBMSs. The data types used in this chapter are specified in
the latest SQL standard. Most DBMSs support these data types although the data type names may differ.

Table
a two dimensional
arrangement of data.
A table consists of a heading
defining the table name and
column names and a body
containing rows of data.

Data Type
defines a set of values and
permissible operations on
the values. Each column of
a table is associated with a
data type.

TABLE 3-1
Sample Table Listing of the
Student Table

StdNo StdFirstName StdLastName StdCity StdState StdZip StdMajor StdClass StdGPA

123-45-6789 HOMER WELLS SEATTLE WA 98121-1111 IS FR 3.00

124-56-7890 BOB NORBERT BOTHELL WA 98011-2121 FIN JR 2.70

234-56-7890 CANDY KENDALL TACOMA WA 99042-3321 ACCT JR 3.50

3.1  BASIC ELEMENTS

26008_ch03_p045-076.indd 48 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   49

CREATE TABLE Student

(StdNo	 CHAR(11),

 StdFirstName	 VARCHAR(50),

 StdLastName	 VARCHAR(50),

 StdCity	 VARCHAR(50),

 StdState	 CHAR(2),

 StdZip	 CHAR(10),

 StdMajor	 CHAR(6),

 StdClass	 CHAR(6),

 StdGPA	 DECIMAL(3,2))

TABLE 3-2
Brief Description of Common
SQL Data Types

Data Type Description

CHAR(L) For fixed length text entries such as state abbreviations and fixed length postal codes.
Each column value using CHAR contains the maximum number of characters (L) even
if the actual length is shorter. Most DBMSs have an upper limit on the length (L) such as
255.

VARCHAR(L) For variable length text such as names and street addresses. Column values using
VARCHAR contain only the actual number of characters, not the maximum length for
CHAR columns. Most DBMSs have an upper limit on the length such as 255.

FLOAT(P) For columns containing numeric data with a floating precision such as interest rate
calculations and scientific calculations. The precision parameter P indicates the number
of significant digits. Most DBMSs have an upper limit on P such as 38. Some DBMSs have
two data types, REAL and DOUBLE PRECISION, for low- and high-precision floating point
numbers instead of the variable precision with the FLOAT data type.

DATE/TIME For columns containing dates and times such as an order date. These data types are
not standard across DBMSs. Some systems support three data types (DATE, TIME, and
TIMESTAMP) while other systems support a combined data type (DATE) storing both the
date and time.

DECIMAL(W,R) For columns containing numeric data with a fixed precision such as monetary amounts.
The W value indicates the total number of digits and the R value indicates the number
of digits to the right of the decimal point. This data type is also called NUMERIC in some
DBMSs.

INTEGER For columns containing whole numbers (numbers without a decimal point). Some DBMSs
have the SMALLINT data type for very small whole numbers and the LONG data type for
very large integers.

BOOLEAN For columns containing data with two values such as true/false or yes/no.

3.1.2  Connections among Tables
It is not enough to understand each table individually. To understand a relational
database, connections or relationships among tables also must be understood. The
rows in a table are usually related to rows in other tables. Matching (identical) values
indicate relationships between tables. Consider the sample Enrollment table (Table 3-3)
in which each row represents a student enrolled in an offering of a course. The values
in the StdNo column of the Enrollment table match the StdNo values in the sample
Student table (Table 3-1). For example, the first and third rows of the Enrollment table
have the same StdNo value (123-45-6789) as the first row of the Student table. Likewise,
the values in the OfferNo column of the Enrollment table match the OfferNo column in
the Offering table (Table 3-4). Figure 3.1 shows a graphical depiction of the matching
values.

Relationship
connection between rows in
two tables. Relationships are
shown by column values in
one table that match column
values in another table.

26008_ch03_p045-076.indd 49 3/2/18 9:00 PM

50   Part 2  Understanding Relational Databases

The concept of matching values is crucial in relational databases. As you will
see, relational databases typically contain many tables. Even a modest-size database
can have 10 to 15 tables. Major databases for business and government organizations
contain hundreds of tables. To extract meaningful information, you must combine
multiple tables using matching values. By matching on Student.StdNo and Enrollment
.StdNo, you could combine the Student and Enrollment tables3. Similarly, by match-
ing on Enrollment.OfferNo and Offering.OfferNo, you could combine the Enrollment and
Offering tables. As you will see later in this chapter, the join operator combines tables
on matching values. Understanding the connections between tables (or columns on
which tables can be combined) is crucial for extracting useful data.

3 When columns have identical names in two tables, it is customary to precede the column name with the
table name and a period as Student.StdNo and Enrollment.StdNo.

TABLE 3-3
Sample Enrollment Table OfferNo StdNo EnrGrade

1234 123-45-6789 3.3

1234 234-56-7890 3.5

4321 123-45-6789 3.5

4321 124-56-7890 3.2

TABLE 3-4
Sample Offering Table OfferNo CourseNo OffTerm OffYear OffLocation OffTime FacNo OffDays

1111 IS320 SUMMER 2017 BLM302 10:30 AM MW

1234 IS320 FALL 2016 BLM302 10:30 AM 098-76-5432 MW

2222 IS460 SUMMER 2016 BLM412 1:30 PM TTH

3333 IS320 SPRING 2017 BLM214 8:30 AM 098-76-5432 MW

4321 IS320 FALL 2016 BLM214 3:30 PM 098-76-5432 TTH

4444 IS320 SPRING 2017 BLM302 3:30 PM 543-21-0987 TTH

5678 IS480 SPRING 2017 BLM302 10:30 AM 987-65-4321 MW

5679 IS480 SPRING 2017 BLM412 3:30 PM 876-54-3210 TTH

9876 IS460 SPRING 2017 BLM307 1:30 PM 654-32-1098 TTH

O�erNo CourseNo
1234 IS320
4321 IS320

O�ering

StdNo O�erNo
123-45-6789 1234

234-56-7890 1234

123-45-6789 4321

124-56-7890 4321

Enrollment

StdNo StdLastName
123-45-6789 WELLS
124-56-7890 KENDALL
234-56-7890 NORBERT

Student
FIGURE 3.1
Matching Values among the
Enrollment, Offering, and
Student Tables

26008_ch03_p045-076.indd 50 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   51

3.1.3  Alternative Terminology
You should be aware about other commonly used terminology
besides table, row, and column. Table 3-5 shows three roughly
equivalent terminologies. The divergence in terminology is
due to different groups that use databases. The table-oriented
terminology appeals to end users; the set-oriented terminol-
ogy appeals to academic researchers; and the record-oriented
terminology appeals to information systems professionals. In
practice, these terms may be mixed. For example, in the same
sentence you might hear both “tables” and “fields.” You should
expect to see a mix of terminology in your career.

TABLE 3-5
Alternative Terminology for Relational Databases

Table-Oriented Set-Oriented Record-Oriented

Table Relation Record type, file

Row Tuple Record

Column Attribute Field

3.2  INTEGRITY RULES
In the previous section, you learned that a relational database consists of a collection of
interrelated tables. To ensure that a database provides meaningful information, integ-
rity rules are necessary. This section describes two important integrity rules (entity
integrity and referential integrity), examples of their usage, and a notation to visualize
referential integrity.

3.2.1  Definition of the Integrity Rules
Entity integrity4 means that each table must have a column or combination of columns
with unique values. Unique means that no two rows of a table have the same value.
For example, StdNo in Student is unique and the combination of StdNo and OfferNo is
unique in Enrollment. Entity integrity ensures unique identification of entities (people,
things, places, and events) in a database. For auditing, security, and communication
reasons, business entities must be easily traceable.

Referential integrity means that the column values in one table must match col-
umn values in a related table. For example, the value of StdNo in each row of the
Enrollment table must match the value of StdNo in some row of the Student table. Ref-
erential integrity ensures that a database contains valid connections. For example, it is
critical that each row of the Enrollment table contains a student number of a valid stu-
dent. Otherwise, some enrollments can be meaningless, possibly resulting in students
denied enrollment because non existing students took their places.

For more precise definitions of entity integrity and referential integrity, some
other definitions are necessary. These prerequisite definitions and the more precise
definitions follow.

Definitions

•	 Superkey: a column or combination of columns containing unique values for
each row. The combination of every column in a table is always a superkey
because rows in a table must be unique5.

•	 Candidate key: a minimal superkey. A superkey is minimal if removing any
column makes it no longer unique. A single column superkey is minimal because
no columns can be removed.

•	 Null value: a special value that represents the absence of an actual value. A null
value can mean that the actual value is unknown or does not apply to a specified
row.

4 Entity integrity is also known as uniqueness integrity.

5 The SQL standard does not require uniqueness of rows although uniqueness is a basic tenet of the
relational model.

26008_ch03_p045-076.indd 51 3/2/18 9:00 PM

52   Part 2  Understanding Relational Databases

•	 Primary key: a specially designated candidate key. The primary key of a table
cannot contain null values. Each table contains one primary key.

•	 Foreign key: a column or combination of columns in which the values must
match those of a candidate key. A foreign key must have the same data type as
its associated candidate key. In the CREATE TABLE statement of SQL, a foreign
key must be associated with a primary key rather than merely a candidate key.

Integrity Rules

•	 Entity integrity rule: No two rows of a table can contain the same value for the
primary key. In addition, no row can contain a null value for any column of a
primary key.

•	 Referential integrity rule: Only two kinds of values can be stored in a foreign key:

– � a value matching a candidate key value in some row of the table containing
the associated candidate key or

– � a null value.

3.2.2  Application of the Integrity Rules
To extend your understanding, let us apply the integrity rules to several tables in the
university database. The primary key of Student is StdNo. You specify a primary key
as part of the CREATE TABLE statement. To designate StdNo as the primary key of
Student, you use a CONSTRAINT clause for the primary key at the end of the CRE-
ATE TABLE statement. The constraint name (PKStudent) following the CONSTRAINT
keyword facilitates identification of the constraint if a violation occurs when a row is
inserted or updated.

CREATE TABLE Student

(StdNo 	 CHAR(11),

 StdFirstName	 VARCHAR(50),

 StdLastName	 VARCHAR(50),

 StdCity	 VARCHAR(50),

 StdState	 CHAR(2),

 StdZip	 CHAR(10),

 StdMajor	 CHAR(6),

 StdClass	 CHAR(2),

 StdGPA	 DECIMAL(3,2),	

CONSTRAINT PKStudent PRIMARY KEY (StdNo))

Many organizations including universities in the U.S.A. previously used Social Secu-
rity numbers as unique identifiers. Because of the increase in identity theft, most orga-
nizations have eliminated the usage of government identifiers such as Social Security
numbers as primary keys. Instead, organizations typically use unique identifiers spe-
cific to an organization. For example, an organization may generate unique customer
numbers, product numbers, and employee numbers. In these cases, automatic gen-
eration of unique values is required. Most DBMSs support automatic generation of
unique values as explained in Appendix 3.C. In some situations, an organization uses
an external identifier already possessed by an individual such as an email address.

26008_ch03_p045-076.indd 52 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   53

Entity Integrity Variations  The UNIQUE keyword designates candidate keys that
are not primary keys. The Course table (see Table 3-6) contains two candidate keys:
CourseNo (primary key) and CrsDesc (course description). The CourseNo column is the
primary key because it is more stable than the CrsDesc column. Course descriptions
may change over time, but course numbers remain the same. In addition, course num-
bers are shorter requiring less space to store in related tables.

TABLE 3-6
Sample Course TableCourseNo CrsDesc CrsUnits

IS320 FUNDAMENTALS OF BUSINESS PROGRAMMING 4

IS460 SYSTEMS ANALYSIS 4

IS470 BUSINESS DATA COMMUNICATIONS 4

IS480 FUNDAMENTALS OF DATABASE MANAGEMENT 4

CREATE TABLE Course

(CourseNo	 CHAR(6),

 CrsDesc	 VARCHAR(250),

 CrsUnits	 SMALLINT,

CONSTRAINT PKCourse PRIMARY KEY(CourseNo),

CONSTRAINT UniqueCrsDesc UNIQUE (CrsDesc))

CREATE TABLE Enrollment

(OfferNo	 INTEGER,

 StdNo	 CHAR(11),

 EnrGrade	 DECIMAL(3,2),

CONSTRAINT PKEnrollment PRIMARY KEY(OfferNo, StdNo))

Some tables need more than one column in the primary key. In the Enrollment table,
the primary key consists of the combination of StdNo and OfferNo. You must provide
values for both columns to identify a row. A composite or combined primary contains
more than one column. In the CREATE TABLE statement for the Enrollment table, you
should note that both OfferNo and StdNo appear inside the parentheses following the
PRIMARY KEY keywords.

Superkeys that are not candidate keys are not important. Recall that a candidate key
is a minimal superkey. Nonminimal superkeys are usually ignored because they are
common and contain columns that do not contribute to the uniqueness property. For
example, the combination of StdNo and StdLastName is unique so it is a superkey.
However, if StdLastName is removed, StdNo is still unique so the combination of StdNo
and StdLastName is not minimal and hence not a candidate key. Thus, the superkey
with StdNo and StdLastName is not important.

Referential Integrity  For referential integrity, the columns StdNo and OfferNo are
foreign keys in the Enrollment table. The StdNo column refers to the Student table and
the OfferNo column refers to the Offering table (Table 3-4). An Offering row represents
a course given in an academic period (summer, winter, etc.), year, time, location, and

26008_ch03_p045-076.indd 53 3/2/18 9:00 PM

54   Part 2  Understanding Relational Databases

days of the week. The primary key of Offering is OfferNo. A course such as IS480 will
have different offer numbers each time it is taught.

You can define referential integrity constraints similarly to the way of defining
primary keys. For example, to define the foreign keys in Enrollment, you should use
CONSTRAINT clauses for foreign keys at the end of the CREATE TABLE statement as
shown in the revised CREATE TABLE statement for the Enrollment table.

CREATE TABLE Enrollment

(OfferNo	 INTEGER,

 StdNo	 CHAR(11),

 EnrGrade	 DECIMAL(3,2),

CONSTRAINT PKEnrollment PRIMARY KEY(OfferNo, StdNo),

CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo) REFERENCES Offering,

CONSTRAINT FKStdNo FOREIGN KEY (StdNo) REFERENCES Student)

Although referential integrity permits foreign keys to have null values, it is not com-
mon for foreign keys to have null values. When a foreign key is part of a primary key,
null values are not permitted because of the entity integrity rule. For example, null val-
ues are not permitted for either Enrollment.StdNo or Enrollment.OfferNo because each
column is part of the primary key.

When a foreign key is not part of a primary key, organizational practice dictates if
null values should be permitted. For example, Offering.CourseNo, a foreign key refer-
ring to Course (Table 3-4), is not part of a primary key, yet null values are not permit-
ted. In most universities, a course cannot be offered before it is approved. Thus, an
offering should not be inserted without a related course.

The NOT NULL keywords indicate that a column cannot have null values as shown
in the CREATE TABLE statement for the Offering table. The NOT NULL constraints
are inline constraints associated with a specific column. In contrast, the primary and
foreign key constraints in the CREATE TABLE statement for the Offering table are
table constraints in which the associated columns must be specified in the constraint.
Constraint names should be used with both table and inline constraints to facilitate
identification when a violation occurs. Without using a meaningful constraint name, it
is difficult to identify the constraint and understand the constraint violation.

CREATE TABLE Offering

(OfferNo 	 INTEGER,

 CourseNo	 CHAR(6)	� CONSTRAINT OffCourseNoRequired NOT

NULL,

 OffLocation	 VARCHAR(50),

 OffDays	 CHAR(6),

 OffTerm	 CHAR(6)	 CONSTRAINT OffTermRequired NOT NULL,

 OffYear	 INTEGER	 CONSTRAINT OffYearRequired NOT NULL,

 FacNo	 CHAR(11),

 OffTime	 DATE,

26008_ch03_p045-076.indd 54 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   55

In contrast, Offering.FacNo referring to the faculty member teaching the offering,
may be null. A null value for Offering.FacNo means that a faculty member is not yet
assigned to teach the offering. For example, an instructor is not assigned in the first
and third rows of Table 3-4. Because offerings must be scheduled perhaps a year in
advance, it is likely that instructors for some offerings will not be known until after
the offering row is initially stored. Therefore, permitting null values in the Offering
table is prudent.

Referential Integrity for Self-Referencing (Unary) Relationships  A refer-
ential integrity constraint involving a single table is known as a self-referencing
relationship or unary relationship. Self-referencing relationships are not common,
but they are important in certain business situations. In the university database, a
faculty member can supervise other faculty members and be supervised by a faculty
member. For example, Victoria Emmanuel (second row) supervises Leonard Fibon
(third row) in the sample Faculty table found in Table 3-7. The FacSupervisor column
shows this relationship: the FacSupervisor value in the third row (543-21-0987) matches
the FacNo value in the second row. Note that null values for FacSupervisor represent
faculty without supervisors. The second row (Victoria Emmanuel) and fourth row
(Nicki Macon) are faculty without supervisors.

A referential integrity constraint involving the FacSupervisor column represents
the self-referencing relationship. In the CREATE TABLE statement, the referential
integrity constraint for a self-referencing relationship uses the same table (Faculty) fol-
lowing the REFERENCES keyword.

Self-Referencing
Relationship
a relationship in which a
foreign key refers to the
same table. Self-referencing
relationships represent asso-
ciations among members of
the same set.

CONSTRAINT PKOffering	 PRIMARY KEY (OfferNo),

CONSTRAINT FKCourseNo	 FOREIGN KEY(CourseNo) REFERENCES Course,

CONSTRAINT FKFacNo	 FOREIGN KEY(FacNo) REFERENCES Faculty)

CREATE TABLE Faculty

(FacNo 	 CHAR(11),

 FacFirstName	 VARCHAR(50)	 CONSTRAINT FacFirstNameRequired NOT NULL,

 FacLastName	 VARCHAR(50)	 CONSTRAINT FacLastNameRequired NOT NULL,

 FacCity	 VARCHAR(50)	 CONSTRAINT FacCityRequired NOT NULL,

 FacState	 CHAR(2)	 CONSTRAINT FacStateRequired NOT NULL,

 FacZipCode	 CHAR(10)	 CONSTRAINT FacZipRequired NOT NULL,

 FacHireDate	 DATE,

 FacDept	 CHAR(6),

 FacRank	 CHAR(4),

 FacSalary	 DECIMAL(10,2),

 FacSupervisor	 CHAR(11),

CONSTRAINT PKFaculty PRIMARY KEY (FacNo),

CONSTRAINT FKFacSupervisor FOREIGN KEY (FacSupervisor) REFERENCES Faculty)

26008_ch03_p045-076.indd 55 3/2/18 9:00 PM

56   Part 2  Understanding Relational Databases

3.2.3  Graphical Representation of Referential Integrity
In recent years, commercial DBMSs have provided graphical representations for ref-
erential integrity constraints. The graphical representation makes referential integrity
easier to define and understand than the text representation in the CREATE TABLE
statement. In addition, a graphical representation supports nonprocedural data access.

To depict a graphical representation, let us study the Relationship window in
Microsoft Access. Access provides the Relationship window to visually define and
display referential integrity constraints. Figure 3.2 shows the Relationship window for
the tables of the university database. Each line represents a referential integrity con-
straint or relationship. In a relationship, the primary key table is known as the parent
or “1” table (for example, Student) and the foreign key table (for example, Enrollment)
is known as the child or “M” (many) table.

The relationship from Student to Enrollment is called “1-M” (one-to-many) because
a student can be related to many enrollments but an enrollment can be related to only
one student. Similarly, the relationship from the Offering table to the Enrollment table
means that an offering can be related to many enrollments but an enrollment can be
related to only one offering. You should practice by writing similar sentences for the
other relationships in Figure 3.2.

M-N (many-to-many) relationships are not directly represented in the Rela-
tional Model. An M-N relationship means that rows from each table can be related
to many rows of the other table. For example, a student enrolls in many course offer-
ings and a course offering contains many students. In the Relational Model, a pair of

TABLE 3-7
Sample Faculty Table

FacNo FacFirstName FacLastName FacCity FacState FacDept FacRank FacSalary FacSupervisor FacHireDate FacZipCode

098-76-5432 LEONARD VINCE SEATTLE WA MS ASST $35,000 654-32-1098 10-Apr-2004 98111-9921

543-21-0987 VICTORIA EMMANUEL BOTHELL WA MS PROF $120,000 15-Apr-2005 98011-2242

654-32-1098 LEONARD FIBON SEATTLE WA MS ASSC $70,000 543-21-0987 01-May-2003 98121-0094

765-43-2109 NICKI MACON BELLEVUE WA FIN PROF $65,000 11-Apr-2006 98015-9945

876-54-3210 CRISTOPHER COLAN SEATTLE WA MS ASST $40,000 654-32-1098 01-Mar-2008 98114-1332

987-65-4321 JULIA MILLS SEATTLE WA FIN ASSC $75,000 765-43-2109 15-Mar-2009 98114-9954

FIGURE 3.2
Relationship Window for the
University Database

26008_ch03_p045-076.indd 56 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   57

1-M relationships and a linking or associative table represents an M-N relation-
ship. In Figure 3.2, the linking table Enrollment and its relationships with Offering and
Student represent an M-N relationship between the Student and Offering tables.

Self-referencing relationships are represented indirectly in the Relationship win-
dow. The self-referencing relationship involving Faculty is represented as a relation-
ship between the Faculty and Faculty_1 tables. Faculty_1 is not a real table as it is
created only inside the Access Relationship window. Access can only indirectly show
self-referencing relationships.

A graphical representation such as the Relationship window makes it easy to iden-
tify tables that should be combined to answer a retrieval request. For example, assume
that you want to find instructors who teach courses with “database” in the course
description. Clearly, you need the Course table to find “database” courses. You also
need the Faculty table to display instructor data. Figure 3.2 shows that you also need
the Offering table because Course and Faculty are not directly connected. Rather, Course
and Faculty are connected through Offering. Thus, visualizing relationships helps to
identify tables needed to fulfill retrieval requests. Before attempting the retrieval prob-
lems in later chapters, you should carefully study a graphical representation of the
relationships. You should construct your own diagram if one is not available.

M-N Relationship
a connection between two
tables in which rows of one
table can be related to many
rows of the other table. M-N
relationships cannot be
directly represented in the
Relational Model. Two 1-M
relationships and a linking or
associative table represent
an M-N relationship.

Actions on referenced rows are important when changing the rows of a database.
When developing data entry forms (discussed in Chapter 10), actions on referenced
rows can be especially important. For example, if a data entry form permits deletion of
rows in the Course table, actions on related rows in the Offering table must be carefully
planned. Otherwise, the database can become inconsistent or difficult to use.

Possible Actions
There are several possible actions in response to the deletion of a referenced row or
the update of the primary key of a referenced row. The appropriate action depends on
organizational practices and tables involved. The following list describes the actions
and provides examples of usage.

•	 Restrict6: Do not allow the action on the referenced row. For example, do not
permit a Student row to be deleted if there are any related Enrollment rows.

6 There is a related action designated by the keywords NO ACTION. The difference between RESTRICT and
NO ACTION involves the concept of deferred integrity constraints, discussed in Chapter 17.

3.3  DELETE AND UPDATE ACTIONS FOR REFERENCED ROWS
For each referential integrity constraint, you should carefully consider actions on refer-
enced rows in parent tables of 1-M relationships. A parent row is referenced if there are
rows in a child table with foreign key values identical to the primary key value of the
parent table row. For example, the first row of the Course table (Table 3-6) with CourseNo
“IS320” is referenced by the first row of the Offering table (Table 3-4). It is natural to con-
sider the impact on related Offering rows when deleting the referenced Course row or
updating the CourseNo value. More generally, these concerns can be stated as

Deleting a referenced row: What happens to related rows (that is, rows in the child
table with the identical foreign key value) when deleting the referenced row in the
parent table?
Updating the primary key of a referenced row: What happens to related rows
when updating the primary key of the referenced row in the parent table?

1-M Relationship
a connection between two
tables in which one row
of a parent table can be
referenced by many rows
of a child table. 1-M
relationships are the most
common kind of relationship.

26008_ch03_p045-076.indd 57 3/2/18 9:00 PM

58   Part 2  Understanding Relational Databases

Similarly, do not allow Student.StdNo to be updated if there are related Enrollment
rows.

•	 Cascade: Perform the same action (cascade the action) on related rows. For
example, if a Student is deleted, then delete the related Enrollment rows. Likewise,
if Student.StdNo is changed in some row, update StdNo in the related Enrollment
rows.

•	 Nullify: Set the foreign key of related rows to null. For example, if a Faculty row
is deleted, then set FacNo to NULL in related Offering rows. Likewise, if Faculty.
FacNo is updated, then set FacNo to NULL in related Offering rows. The nullify
action is valid only if the foreign key allows null values. For example, the nullify
option is not valid when deleting rows of the Student table because Enrollment.
StdNo is part of the primary key of Enrollment.

•	 Default: Set the foreign key of related rows to its default value. For example, if
a Faculty row is deleted, then set FacNo to a default faculty number in related
Offering rows. The default faculty number might have an interpretation such as
“to be announced”. Likewise, if Faculty.FacNo is updated, then set FacNo to its
default value in related Offering rows. The default action is an alternative to the
nullify action as the default action avoids null values.

The delete and update actions can be specified in the CREATE TABLE statement using
the ON DELETE and ON UPDATE clauses. These clauses are part of foreign key con-
straints. For example, the revised CREATE TABLE statement for the Enrollment table
shows ON UPDATE clauses for the Enrollment table. The ON DELETE clause is not
used because the default is to restrict deletions with referenced rows7. The keywords
CASCADE, SET NULL, and SET DEFAULT can be used to specify the second through
fourth options, respectively.

Before finishing this section, you should understand the impact of referenced rows
on insert operations. A referenced row must be inserted before its related rows. For
example, before inserting a row in the Enrollment table, the referenced rows in the Stu-
dent and Offering tables must exist. Referential integrity places an ordering on insertion
of rows from different tables. When designing data entry forms, you should carefully
consider the impact of referential integrity on the order that users complete forms.

7 Note that the ON UPDATE and RESTRICT keywords are not valid syntax in Oracle. Oracle does not pro-
vide syntax for the restrict action as the restrict action is default. The Enrollment table example is not valid
Oracle syntax because of the ON UPDATE clauses, but it is valid SQL:2016 syntax.

CREATE TABLE Enrollment

(OfferNo	 INTEGER,

 StdNo	 CHAR(11),

 EnrGrade	 DECIMAL(3,2),

CONSTRAINT PKEnrollment PRIMARY KEY(OfferNo, StdNo),

CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo) REFERENCES Offering

 ON UPDATE CASCADE,

CONSTRAINT FKStdNo FOREIGN KEY (StdNo) REFERENCES Student

 ON UPDATE CASCADE)

-- ON UPDATE is not valid Oracle SQL syntax but valid SQL:2016 syntax

26008_ch03_p045-076.indd 58 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   59

3.4  OPERATORS OF RELATIONAL ALGEBRA

Restrict
an operator that retrieves
a subset of the rows of the
input table that satisfy a
given condition.

Project
an operator that retrieves
a specified subset of the
columns of the input table.

Restrict Project

FIGURE 3.3
Graphical Representation
of Restrict and Project
Operators

In previous sections of this chapter, you studied the terminology and integrity rules
of relational databases with the goal of understanding existing relational databases. In
particular, understanding connections among tables was emphasized as a prerequisite
to retrieving useful information. This section describes some fundamental operators
that can be used to retrieve useful data from a relational database.

You can think of relational algebra similarly to the algebra of numbers except that
the objects are different: algebra applies to numbers and relational algebra applies to
tables. In algebra, each operator transforms one or more numbers into another num-
ber. Similarly, each operator of relational algebra transforms a table (or two tables) into
a new table.

This section emphasizes the study of each relational algebra operator in isolation.
For each operator, you should understand its purpose and inputs. While it is possible
to combine operators to make complicated formulas, this level of understanding is not
important for developing query formulation skills. Using relational algebra by itself
to write queries can be awkward because of details such as ordering of operations
and parentheses. Therefore, you should seek only to understand the meaning of each
operator, not how to combine operators to write expressions. In Chapter 4, you will
learn the SELECT statement of SQL to perform retrievals that would involve complex
combinations of relational algebra operators.

The coverage of relational algebra groups the operators into three categories.
The most widely used operators (restrict, project, and join) are presented first. The
extended cross product operator is also presented to provide background for the join
operator. Knowledge of these operators will help you to formulate a large percentage
of queries. More specialized operators are covered in latter parts of the section. The
more specialized operators include the traditional set operators (union, intersection,
and difference) and advanced operators (summarize and divide). Knowledge of these
operators will help you formulate more difficult queries.

3.4.1  Restrict (Select) and Project Operators
The restrict8 (also known as select) and project operators produce subsets of a table.
Because users often want to see a subset rather than an entire table, these operators are
widely used. These operators are also popular because they are easy to understand.

The restrict and project operators produce an output table that is a subset of an
input table (Figure 3.3). Restrict produces a subset of the rows, while project produces
a subset of the columns. Restrict uses a condition or logical expression to indicate the
rows to retain in the output. Project uses a list of column names to indicate the columns
to retain in the output. Restrict and project are often used together because tables can
have many rows and columns. It is rare that a user wants to see all rows and columns.

The logical expression used in the restrict operator can include comparisons
involving columns and constants. Complex logical expressions can be formed using
the logical operators AND, OR, and NOT. For example, Table 3-8 shows the result of
a restrict operation on Table 3-4 where the logical expression is: OffDays = 'MW' AND
OffTerm = 'SPRING' AND OffYear = 2017.

A project operation can have a side effect. Sometimes after retrieving a subset
of columns, duplicate rows exist. When this occurs, the project operator removes the
duplicate rows. For example, if Offering.CourseNo is the only column used in a project
operation, only three rows are in the result (Table 3-9) even though the Offering table
(Table 3-4) has nine rows. The column Offering.CourseNo contains only three unique
values in Table 3-4. Note that if the primary key or a candidate key is included in
the list of columns, the resulting table has no duplicates. For example, if OfferNo was

8In this book, the operator name restrict is used to avoid confusion with the SQL SELECT statement. The
operator is more widely known as select.

26008_ch03_p045-076.indd 59 3/2/18 9:00 PM

60   Part 2  Understanding Relational Databases

included in the list of columns, the result table would have nine rows with no dupli-
cate removal necessary.

This side effect is due to the mathematical nature of relational algebra. In rela-
tional algebra, tables are considered sets. Because sets do not have duplicates, dupli-
cate removal is a possible side effect of the project operator. Commercial languages
such as SQL usually take a more pragmatic view. Because duplicate removal requires
a reasonable level of computing resources, a user must explicitly indicate removal of
duplicates.

3.4.2  Extended Cross Product Operator
The extended cross product operator can combine any two tables. Other table combin-
ing operators have conditions about the tables to combine. Because of its unrestricted
nature, the extended cross product operator can produce tables with excessive data.
The extended cross product operator is important because it is a building block for the
join operator. When you initially learn the join operator, knowledge of the extended
cross product operator can be useful. After you gain experience with the join operator,
you will not need to rely on the extended cross product operator.

The extended cross product9 (product for short) operator shows everything pos-
sible from two tables. The product of two tables is a new table consisting of all possible
combinations of rows from the two input tables. Figure 3.4 depicts a product of two
single column tables. Each result row consists of the columns of the Faculty table (only
FacNo) and the columns of the Student table (only StdNo). The name of the operator
(product) derives from the number of rows in the result. The number of rows in the
resulting table is the product of the number of rows of the two input tables. In contrast,
the number of result columns is the sum of the columns of the two input tables. In
Figure 3.4, the result table has nine rows and two columns.

As another example, consider the product of the sample Student (Table 3-10) and
Enrollment (Table 3-11) tables. The resulting table (Table 3-12) has 9 rows (3 × 3) and
7 columns (4 + 3). Note that most rows in the result are not meaningful as only three
rows have the same value for StdNo.

9The extended cross product operator is also known as the Cartesian product after the French mathemati-
cian Rene´ Descartes.

Extended Cross Product
an operator that builds
a table consisting of all
combinations of rows from
each of the two input tables.

TABLE 3-8
Result of Restrict Operation
on the Sample Offering Table
(Table 3-4)

OfferNo CourseNo OffTerm OffYear OffLocation OffTime FacNo OffDays

3333 IS320 SPRING 2017 BLM214 8:30 AM 098-76-5432 MW

5678 IS480 SPRING 2017 BLM302 10:30 AM 987-65-4321 MW

TABLE 3-9
Result of a Project Operation
on Offering.CourseNo

CourseNo

IS320

IS460

IS480

FacNo
1 1 1 - 1 1 - 1 1 1 1
222-22-2222
333 -33-3333

333 -33-3333
333 -33-3333
333 -33-3333

1 1 1 - 1 1 - 1 1 1 1
1 1 1 - 1 1 - 1 1 1 1
1 1 1 - 1 1 - 1 1 1 1

1 1 1 - 1 1 - 1 1 1 1
444-44-4444
555 -55- 55 55

1 1 1 - 1 1 - 1 1 1 1
444-44-4444
555 -55- 55 55
1 1 1 - 1 1 - 1 1 1 1
444-44-4444
555 -55- 55 55
1 1 1 - 1 1 - 1 1 1 1
444-44-4444
555 -55- 55 55

FacNo StdNo

222-22-2222
222-22-2222
222-22-2222

Faculty

Student

Faculty PRODUCT Student

StdNo

FIGURE 3.4
Cross Product Example

26008_ch03_p045-076.indd 60 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   61

As these examples show, the extended cross product operator often generates
excessive data. Excessive data are as bad as lack of data. For example, the product
of a student table of 30,000 rows and an enrollment table of 300,000 rows is a table of
nine billion rows! Most of these rows would be meaningless combinations. So it is rare
that a cross product operation by itself is needed. Rather, the importance of the cross
product operator is as a building block for other operators such as the join operator.

3.4.3  Join Operator
Join is the most widely used operator for combining tables. Because most databases
have many tables, combining tables is important. Join differs from cross product
because join requires a matching condition on rows of two tables. Most tables are com-
bined in this way. To a large extent, your skill in retrieving useful data will depend on
your ability to use the join operator.

The join operator builds a new table by combining rows from two tables that
match on a join condition. Typically, the join condition specifies that two rows have an
identical value in one or more columns. When the join condition involves equality, the
join is known as an equi-join, for equality join. Figure 3.5 shows a join of sample Fac-
ulty and Offering tables where the join condition is that the FacNo columns are equal.
Note that only a few columns are shown to simplify the illustration. The arrows indi-
cate the manner that rows from the input tables combine to form rows in the result
table. For example, the first row of the Faculty table combines with the first and third
rows of the Offering table to yield two rows in the result table.

The natural join operator is the most common join operation. In a natural join
operation, the join condition is equality (equi-join), one of the join columns is removed,
and the join columns have the same unqualified10 name. In Figure 3.5, the result table
contains only three columns because the natural join removes one of the FacNo columns.
The particular column (Faculty.FacNo or Offering.FacNo) removed does not matter.

10 An unqualified name is the column name without the table name. The full name of a column includes
the table name. Thus, the full names of the join columns in Figure 3.5 are Faculty.FacNo and Offering.FacNo.

Join
an operator that produces
a table containing rows
that match on a condition
involving a column from
each input table.

Natural Join
a commonly used join
operator where the
matching condition is
equality (equi-join), one of
the matching columns is
discarded in the result table,
and the join columns have
the same unqualified names.

TABLE 3-10
Sample Student Table

StdNo StdLastName StdMajor StdClass

123-45-6789 WELLS IS FR

124-56-7890 NORBERT FIN JR

234-56-7890 KENDALL ACCT JR

TABLE 3-11
Sample Enrollment Table

OfferNo StdNo EnrGrade

1234 123-45-6789 3.3

1234 234-56-7890 3.5

4321 124-56-7890 3.2

TABLE 3-12
Student PRODUCT
Enrollment

Student.StdNo StdLastName StdMajor StdClass OfferNo Enrollment.StdNo EnrGrade

123-45-6789 WELLS IS FR 1234 123-45-6789 3.3

123-45-6789 WELLS IS FR 1234 234-56-7890 3.5

123-45-6789 WELLS IS FR 4321 124-56-7890 3.2

124-56-7890 NORBERT FIN JR 1234 123-45-6789 3.3

124-56-7890 NORBERT FIN JR 1234 234-56-7890 3.5

124-56-7890 NORBERT FIN JR 4321 124-56-7890 3.2

234-56-7890 KENDALL ACCT JR 1234 123-45-6789 3.3

234-56-7890 KENDALL ACCT JR 1234 234-56-7890 3.5

234-56-7890 KENDALL ACCT JR 4321 124-56-7890 3.2

26008_ch03_p045-076.indd 61 3/2/18 9:00 PM

62   Part 2  Understanding Relational Databases

As another example, consider the natural join of Student (Table 3-13) and Enroll-
ment (Table 3-14) shown in Table 3-15. In each row of the result, Student.StdNo matches
Enrollment.StdNo. Only one of the join columns is included in the result. Arbitrarily,
Student.StdNo is shown although Enrollment.StdNo could be shown instead without
changing the result.

Derivation of the Natural Join  The natural join operator is not primitive because it
can be derived from other operators. The natural join operator consists of three steps:

FacNo FacName
joe
sue
sara

O�erNo FacNo

FacNo FacName O�erNo
joe

sue

joe

Faculty

O�ering

Natural Join of O�ering and Faculty1 1 1 - 1 1 - 1 1 1 1
222-22-2222
333 -33-3333

1 1 1 - 1 1 - 1 1 1 1

1 1 1 - 1 1 - 1 1 1 1
222-22-2222

1 1 1 - 1 1 - 1 1 1 1

1 1 1 - 1 1 - 1 1 1 1

222-22-2222

1 1 1 1
2222
3333

1 1 1 1

2222

3333

FIGURE 3.5
Sample Natural Join
Operation

TABLE 3-13
Sample Student Table StdNo StdLastName StdMajor StdClass

123-45-6789 WELLS IS FR

124-56-7890 NORBERT FIN JR

234-56-7890 KENDALL ACCT JR

TABLE 3-14
Sample Enrollment Table OfferNo StdNo EnrGrade

1234 123-45-6789 3.3

1234 234-56-7890 3.5

4321 124-56-7890 3.2

TABLE 3-15
Natural Join of Student and
Enrollment

Student.StdNo StdLastName StdMajor StdClass OfferNo EnrGrade

123-45-6789 WELLS IS FR 1234 3.3

124-56-7890 NORBERT FIN JR 4321 3.2

234-56-7890 KENDALL ACCT JR 1234 3.5

(1)  A product operation to combine the rows.
(2)  A restrict operation to remove rows not satisfying the join condition.
(3)  A project operation to remove one of the join columns.

To depict these steps, the first step to produce the natural join in Table 3-15 is the
product result shown in Table 3-16. The second step is to retain only the matching
rows (rows 1, 6, and 8 of Table 3-16). A restrict operation is used with Student.StdNo =
Enrollment.StdNo as the restriction condition. The final step is to eliminate one of the
join columns (Enrollment.StdNo). The project operation includes all columns except for
Enrollment.StdNo (Table 3.-17).

26008_ch03_p045-076.indd 62 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   63

Although the join operator is not primitive, it can be conceptualized directly with-
out its primitive operations. When you are initially learning the join operator, it can
be helpful to derive the results using the underlying operations. As an exercise, you
are encouraged to derive the result in Figure 3.5. After learning the join operator, you
should not need to use the underlying operations.

Visual Formulation of Join Operations  As a query formulation aid, many DBMSs
provide a visual way to formulate joins. Microsoft Access provides a visual represen-
tation of the join operator using the Query Design window. Figure 3.6 depicts a join
between Student and Enrollment on StdNo using the Query Design window. To form
this join, you need only to select the tables. Access determines that you should join
over the StdNo column. Access assumes that most joins involve a primary key and
foreign key combination. If Access chooses the join condition incorrectly, you can
choose other join columns.

3.4.4  Outer Join Operator
The result of a join operation includes the rows matching on the join condition. Some-
times it is useful to include both matching and nonmatching rows. For example, you
may want to know offerings that have an assigned instructor as well as offerings with-
out an assigned instructor. In these situations, the outer join operator is useful.

The outer join operator provides the ability to preserve nonmatching rows in
the result as well as to include the matching rows. Figure 3.7 depicts an outer join
between sample Faculty and Offering tables. Note that each table has one row that
does not match any row in the other table. The third row of Faculty and the fourth
row of Offering do not have matching rows in the other table. For nonmatching rows,
null values are used to complete the column values in the other table. In Figure 3.7,
blanks (no values) represent null values. The fourth result row is the nonmatched
row of Faculty with a null value for the OfferNo column. Likewise, the fifth result
row contains a null value for the first two columns because it is a nonmatched row
of Offering.

TABLE 3-16
Student PRODUCT
Enrollment

Student.StdNo StdLastName StdMajor StdClass OfferNo Enrollment.StdNo EnrGrade

123-45-6789 WELLS IS FR 1234 123-45-6789 3.3

123-45-6789 WELLS IS FR 1234 234-56-7890 3.5

123-45-6789 WELLS IS FR 4321 124-56-7890 3.2

124-56-7890 NORBERT FIN JR 1234 123-45-6789 3.3

124-56-7890 NORBERT FIN JR 1234 234-56-7890 3.5

124-56-7890 NORBERT FIN JR 4321 124-56-7890 3.2

234-56-7890 KENDALL ACCT JR 1234 123-45-6789 3.3

234-56-7890 KENDALL ACCT JR 1234 234-56-7890 3.5

234-56-7890 KENDALL ACCT JR 4321 124-56-7890 3.2

TABLE 3-17
Restrict Operation to Retain
Rows Matching on StdNo

Student.StdNo StdLastName StdMajor StdClass OfferNo Enrollment.StdNo EnrGrade

123-45-6789 WELLS IS FR 1234 123-45-6789 3.3

124-56-7890 NORBERT FIN JR 4321 124-56-7890 3.2

234-56-7890 KENDALL ACCT JR 1234 234-56-7890 3.5

26008_ch03_p045-076.indd 63 3/2/18 9:00 PM

64   Part 2  Understanding Relational Databases

FIGURE 3.6
Query Design Window Show-
ing a Join between Student
and Enrollment

Full versus One-Sided Outer Join Operators  The outer join operator has two
variations. The full outer join preserves nonmatching rows from both input tables.
Figure 3.7 shows a full outer join because the nonmatching rows from both tables are
preserved in the result. Because it is sometimes useful to preserve the nonmatching
rows from just one input table, the one-sided outer join operator has been devised.
In Figure 3.7, only the first four rows of the result would appear for a one-sided outer
join that preserves the rows of the Faculty table. The last row would not appear in the
result because it is an unmatched row of the Offering table. Similarly, only the first
three rows and the last row would appear in the result for a one-sided outer join that
preserves the rows of the Offering table.

The outer join is useful in two situations. A full outer join can be used to combine
two tables with some common columns and some unique columns. For example, to
combine the Student and Faculty tables on FacNo and StdNo, a full outer join can be
used to show all columns about university people. In Table 3-20, the first two rows are

Full Outer Join
an operator that produces
the matching rows (the join
part) as well as the non-
matching rows from both
input tables.

One-Sided Outer Join
an operator that produces
the matching rows (the join
part) as well as the non-
matching rows from the
designated input table.

FacNo FacName
joe
sue
sara

O�erno FacNo

FacNo FacName O�erNo
joe

sue

joe

sara

Faculty

O�ering

Outer Join of O�ering and Faculty1 1 1 - 1 1 - 1 1 1 1
222-22-2222
333 -33-3333

333 -33-3333
1 1 1 - 1 1 - 1 1 1 1

1 1 1 - 1 1 - 1 1 1 1

1 1 1 - 1 1 - 1 1 1 1

1 1 1 - 1 1 - 1 1 1 1
222-22-2222

222-22-2222

1 1 1 1

3333

2222

1 1 1 1
2222
3333
4444 4444

FIGURE 3.7
Sample Outer Join Operation

26008_ch03_p045-076.indd 64 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   65

only from the sample Student table (Table 3-18), while the last two rows are only from
the sample Faculty table (Table 3-19). Note the use of null values for the columns from
the other table. The third row in Table 3-20 is the row common to the sample Faculty
and Student tables.

A one-sided outer join can be useful when a table has null values in a foreign
key. For example, the Offering table (Table 3-21) can have null values in the FacNo col-
umn representing course offerings without an assigned professor. A one-sided outer
join between Offering and Faculty preserves the rows of Offering that do not have an
assigned Faculty as shown in Table 3-22. With a natural join, the first and third rows
of Table 3-22 would not appear. As you will see in Chapter 10, one-sided joins can be
useful in data entry forms.

TABLE 3-18
Sample Student TableStdNo StdLastName StdMajor StdClass

123-45-6789 WELLS IS FR

124-56-7890 NORBERT FIN JR

876-54-3210 COLAN MS SR

TABLE 3-19
Sample Faculty TableFacNo FacLastName FacDept FacRank

098-76-5432 VINCE MS ASST

543-21-0987 EMMANUEL MS PROF

876-54-3210 COLAN MS ASST

TABLE 3-20
Result of Full Outer Join of
Sample Student and Faculty
Tables on FacNo = StdNo

StdNo StdLastName StdMajor StdClass FacNo FacLastName FacDept FacRank

123-45-6789 WELLS IS FR

124-56-7890 NORBERT FIN JR

876-54-3210 COLAN MS SR 876-54-3210 COLAN MS ASST

098-76-5432 VINCE MS ASST

543-21-0987 EMMANUEL MS PROF

TABLE 3-21
Sample Offering TableOfferNo CourseNo OffTerm FacNo

1111 IS320 SUMMER

1234 IS320 FALL 098-76-5432

2222 IS460 SUMMER

3333 IS320 SPRING 098-76-5432

4444 IS320 SPRING 543-21-0987

TABLE 3-22
Result of a One-Sided Outer
Join between Offering
(Table 3-21) and Faculty
(Table 3-19)

OfferNo CourseNo OffTerm Offering.FacNo Faculty.FacNo FacLastName FacDept FacRank

1111 IS320 SUMMER

1234 IS320 FALL 098-76-5432 098-76-5432 VINCE MS ASST

2222 IS460 SUMMER

3333 IS320 SPRING 098-76-5432 098-76-5432 VINCE MS ASST

4444 IS320 SPRING 543-21-0987 543-21-0987 EMMANUEL MS PROF

26008_ch03_p045-076.indd 65 3/2/18 9:00 PM

66   Part 2  Understanding Relational Databases

Visual Formulation of Outer Join Operations  As a query formulation aid, many
DBMSs provide a visual way to formulate outer joins. Microsoft Access provides a
visual representation of the one-sided join operator in the Query Design window.
Figure 3.8 depicts a one-sided outer join that preserves the rows of the Offering. The
arrow from Offering to Faculty means that the nonmatched rows of Offering are pre-
served in the result. When combining the Faculty and Offering tables, Microsoft Access
provides three choices: (1) show only the matched rows (a join); (2) show matched
rows and nonmatched rows of Faculty; and (3) show matched rows and nonmatched
rows of Offering. Choice (3) is shown in Figure 3.8. Choice (1) would appear similar to
Figure 3.6. Choice (2) would have the arrow from Faculty to Offering.

3.4.5  Union, Intersection, and Difference Operators
The union, intersection, and difference table operators are similar to the traditional set
operators. The traditional set operators are used to determine all members of two sets
(union), common members of two sets (intersection), and members unique to only one
set (difference), as depicted in Figure 3.9.

The union, intersection, and difference operators for tables apply to rows of a
table but otherwise operate in the same way as the traditional set operators. A
union operation retrieves all the rows in either table. For example, a union opera-
tor applied to two student tables at different universities can find all student rows.
An intersection operation retrieves just the common rows. For example, an inter-
section operation can determine the students attending both universities. A dif-
ference operation retrieves the rows in the first table but not in the second table.
For example, a difference operation can determine the students attending only one
university.

Traditional Set Operators
the union operator produces
a table containing rows
in either input table.
The intersection operator
produces a table
containing rows common
to both input tables. The
difference operator
produces a table containing
rows in the first input table
but not in the second input
table.

FIGURE 3.8
Query Design Window
Showing a One-Sided Outer
Join Preserving the Offering
Table

26008_ch03_p045-076.indd 66 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   67

Union Compatibility  Compatibility is a new concept for the table operators as
compared to the traditional set operators. With the table operators, both tables must
be union compatible because all columns are compared. Union compatibility means
that each table must have the same number of columns and each corresponding col-
umn must have a compatible data type. Union compatibility can be confusing because
it involves positional correspondence of the columns. That is, the first columns of the
two tables must have compatible data types, the second columns must have compat-
ible data types, and so on.

To depict the union, intersection, and difference operators, let us apply them to the
Student1 and Student2 tables (Tables 3-23 and 3-24). These tables are union compatible
because they have identical columns listed in the same order. The results of union,
intersection, and difference operators are shown in Tables 3-25 through 3-27, respec-
tively. Even though we can determine that two rows are identical from looking only at
StdNo, all columns are compared due to the design of the operators.

Note that the result of Student1 DIFFERENCE Student2 would not be the same as
Student2 DIFFERENCE Student1. The result of the latter (Student2 DIFFERENCE Stu-
dent1) is the second and third rows of Student2 (rows in Student2 but not in Student1).

Union Compatibility
a requirement on the input
tables for the traditional set
operators. Each table must
have the same number
of columns and each
corresponding column must
have a compatible data type.

FIGURE 3.9
Venn Diagrams for
Traditional Set Operators

Union Intersection Di�erence

TABLE 3-23
Student1 TableStdNo StdLastName StdCity StdState StdMajor StdClass StdGPA

123-45-6789 WELLS SEATTLE WA IS FR 3.00

124-56-7890 NORBERT BOTHELL WA FIN JR 2.70

234-56-7890 KENDALL TACOMA WA ACCT JR 3.50

TABLE 3-24
Student2 TableStdNo StdLastName StdCity StdState StdMajor StdClass StdGPA

123-45-6789 WELLS SEATTLE WA IS FR 3.00

995-56-3490 BAGGINS AUSTIN TX FIN JR 2.90

111-56-4490 WILLIAMS SEATTLE WA ACCT JR 3.40

TABLE 3-25
Student1 UNION Student2StdNo StdLastName StdCity StdState StdMajor StdClass StdGPA

123-45-6789 WELLS SEATTLE WA IS FR 3.00

124-56-7890 NORBERT BOTHELL WA FIN JR 2.70

234-56-7890 KENDALL TACOMA WA ACCT JR 3.50

995-56-3490 BAGGINS AUSTIN TX FIN JR 2.90

111-56-4490 WILLIAMS SEATTLE WA ACCT JR 3.40

26008_ch03_p045-076.indd 67 3/2/18 9:00 PM

68   Part 2  Understanding Relational Databases

Because of the union compatibility requirement, the union, intersection, and dif-
ference operators are not as widely used as other operators. However, these operators
have some important, specialized uses. One use is to combine tables distributed over
multiple locations. For example, suppose there are a student table at Big State Univer-
sity (BSUStudent) and a student table at University of Big State (UBSStudent). Because
these tables have identical columns, the traditional set operators are applicable. To find
students attending either university, you should use UBSStudent UNION BSUStudent.
To find students only attending Big State, you should use BSUStudent DIFFERENCE
UBSStudent. To find students attending both universities, you should use UBSStudent
INTERSECT BSUStudent. Note that the resulting table in each operation has the same
number of columns as the two input tables.

The traditional set operators are also useful if there are tables that are similar but
not union compatible. For example, the Student and Faculty tables have some compat-
ible columns (StdNo with FacNo, StdLastName with FacLastName, and StdCity with Fac-
City), but other columns are different. The union compatible operators can be used if
the Student and Faculty tables are first made union compatible using the project opera-
tor presented in Section 3.4.1.

3.4.6  Summarize Operator
Summarize is a powerful operator for decision making. Because tables can contain
many rows, it is often useful to see statistics about groups of rows rather than indi-
vidual rows. The summarize operator allows groups of rows to be compressed or
summarized by a calculated value. Almost any kind of statistical function can be used
to summarize groups of rows. Because this is not a statistics book, we will use only
simple functions such as count, min, max, average, and sum.

The summarize operator compresses a table by replacing groups of rows with
individual rows containing calculated values. A statistical or aggregate function is
used for the calculated values. Figure 3.10 depicts a summarize operation for a sample
enrollment table. The summarize operation groups input rows on the StdNo column,
resulting in three row groups. Then, the summarize operator replaces each group of
rows with an individual row containing the StdNo value and the average enrollment

Summarize
an operator that produces
a table with groups of rows
replaced by row summaries.
Aggregate functions are
calculated for each summary
row in the result table.

TABLE 3-26
Student1 INTERSECT
Student2

StdNo StdLastName StdCity StdState StdMajor StdClass StdGPA

123-45-6789 WELLS SEATTLE WA IS FR 3.00

TABLE 3-27
Student1 DIFFERENCE
Student2

StdNo StdLastName StdCity StdState StdMajor StdClass StdGPA

124-56-7890 NORBERT BOTHELL WA FIN JR 2.70

234-56-7890 KENDALL TACOMA WA ACCT JR 3.50

StdNo AVG(EnrGrade)
3.4
3.3
3.0

StdNo O�erNo EnrGrade
3.8
3.0
3.4
3.5
3.1
3.0

Enrollment
SUMMARIZE Enrollment

ADD AVG(EnrGrade)
GROUP BY StdNo

1 1 1 - 1 1 - 1 1 1 1

1 1 1 - 1 1 - 1 1 1 1
1 1 1 - 1 1 - 1 1 1 1
1 1 1 - 1 1 - 1 1 1 1

222-22-2222222-22-2222
222-22-2222 333 -33-3333

1 1 1 1
2222
3333
1 1 1 1
3333
1 1 1 1333 -33-3333

FIGURE 3.10
Sample Summarize
Operation

26008_ch03_p045-076.indd 68 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   69

grade (EnrGrade). For example, the summarize operation replaces three rows with
StdNo value of 111-11-1111 into one row with StdNo value 111-11-1111 and the average
EnrGrade value (3.4) of the three input rows.

As another example, Table 3-29 shows the result of a summarize operation on the
sample Faculty table in Table 3-28. Note that the result table contains one row per value
of the grouping column, FacDept.

The summarize operator can include additional calculated values (also showing
the minimum salary, for example) and additional grouping columns (also grouping on
FacRank, for example). When grouping on multiple columns, each result row shows
one combination of values for the grouping columns.

3.4.7  Divide Operator
The divide operator is a more specialized and difficult operator than join because the
matching requirement in divide is more stringent than join. For example, a join opera-
tion retrieves offerings taken by any student. A divide operation retrieves offerings
taken by all (or every) students. Because divide has more stringent matching condi-
tions, it is not as widely used as join, and it is more difficult to understand. When
appropriate, the divide operator provides a powerful way to combine tables.

The divide operator for tables is somewhat analogous to the divide operator for
numbers. In numerical division, the objective is to find the number of times one number
contains another number. In table division, the objective is to find values of one column
that contain every value in another column. Stated another way, the divide operator
finds values of one column that are associated with every value in another column.

To understand the divide operator more concretely, you should consider an exam-
ple with sample Part and SuppPart (supplier-part) tables as depicted in Figure 3.11. The
divide operator uses two input tables. The first table (SuppPart) has two columns (a binary
table) and the second table (Part) has one column11 (a unary table). The result table has
one column where the values come from the first column of the binary table. The result
table in Figure 3.11 shows the suppliers who supply every part. The value s3 appears in
the output because it is associated with every value in the Part table. Stated another way,
the set of values associated with s3 contains the set of values in the Part table.

To understand the divide operator in another way, you can rewrite the SuppPart
table as three rows using the angle brackets <> to surround a row: <s3, {p1, p2, p3}>,
<s0, {p1}>, <s1, {p2}>. Rewrite the Part table as a set: {p1, p2, p3}. The value s3 is in the
result table because its set of second column values {p1, p2, p3} contains the values in
the second table {p1, p2, p3}. The other SuppNo values (s0 and s1) are not in the result
because they are not associated with all values in the Part table.

As an example using the university database tables, Table 3-32 shows the result
of a divide operation involving the sample Enrollment (Table 3-30) and Student tables
(Table 3-31). The result shows offerings in which every student is enrolled. Only
OfferNo 4235 has all three students enrolled.

11 The divide operator can be generalized to work with input tables containing more columns. However, the
details are not important in this book.

Divide
an operator that produces a
table in which the values of a
column from one input table
are associated with all the
values from a column of a
second input table.

TABLE 3-28
Sample Faculty TableFacNo FacLastName FacDept FacRank FacSalary FacSupervisor FacHireDate

098-76-5432 VINCE MS ASST $35,000 654-32-1098 01-Apr-2004

543-21-0987 EMMANUEL MS PROF $120,000 01-Apr-2005

654-32-1098 FIBON MS ASSC $70,000 543-21-0987 01-Apr-2003

765-43-2109 MACON FIN PROF $65,000 01-Apr-2006

876-54-3210 COLAN MS ASST $40,000 654-32-1098 01-Apr-2008

987-65-4321 MILLS FIN ASSC $75,000 765-43-2109 01-Apr-2009

TABLE 3-29
Result Table for SUMMARIZE
Faculty ADD AVG(FacSalary)
GROUP BY FacDept

FacDept FacSalary

MS $66,250

FIN $70,000

26008_ch03_p045-076.indd 69 3/2/18 9:00 PM

70   Part 2  Understanding Relational Databases

3.4.8  Summary of Operators
To help you recall the relational algebra operators, Tables 3-33 and 3-34 provide conve-
nient summaries of the meaning and usage of each operator. You might want to refer
to these tables when studying query formulation in later chapters.

 SuppNo PartNo
s3 p1
s3 p2
s3 p3
s0 p1
s1 p2

 PartNo
p1
p2
p3

SuppNo
s3

SuppPart Part SuppPart DIVIDEBY Part

s3 {p1, p2, p3}
contains {p1, p2, p3}

FIGURE 3.11
Sample Divide Operation

TABLE 3-30
Sample Enrollment Table

OfferNo StdNo

1234 123-45-6789

1234 234-56-7890

4235 123-45-6789

4235 234-56-7890

4235 124-56-7890

6321 124-56-7890

TABLE 3-31
Sample Student Table

StdNo

123-45-6789

124-56-7890

234-56-7890

TABLE 3-32
Result of Enrollment
DIVIDEBY Student

OfferNo

4235

TABLE 3-33
Summary of Meanings of the Relational Algebra Operators

Operator Meaning

Restrict (Select) Extracts rows that satisfy a specified condition.

Project Extracts specified columns.

Product Builds a table from two tables consisting of all possible combinations of rows, one
from each of the two tables.

Union Builds a table consisting of all rows appearing in either of two tables.

Intersect Builds a table consisting of all rows appearing in both of two tables.

Difference Builds a table consisting of all rows appearing in the first table but not in the second
table.

Join Extracts rows from a product of two tables such that two input rows contributing to
any output row satisfy some specified condition.

Outer Join Extracts the matching rows (the join part) of two tables and the unmatched rows from
one or both tables.

Divide Builds a table consisting of all values of one column of a binary (two-column) table that
match (in the other column) all values in a unary (one-column) table.

Summarize Organizes a table on specified grouping columns. Specified aggregate computations
are made on each value of the grouping columns.

TABLE 3-34
Summary of Usage of the Relational Algebra Operators

Operator Notes

Union Input tables must be union compatible.

Difference Input tables must be union compatible.

Intersection Input tables must be union compatible.

Product Conceptually underlies join operator.

Restrict (Select) Uses a logical expression.

Project Eliminates duplicate rows if necessary.

Join Only matched rows are in the result. Natural join eliminates one join column.

Outer Join Retains both matched and unmatched rows in the result. Uses null values for some
columns of the unmatched rows.

Divide Stronger operator than join, but less frequently used.

Summarize Specify grouping column(s) if any and aggregate function(s).

26008_ch03_p045-076.indd 70 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   71

Chapter 3 introduced the Relational Data Model as a prelude to developing queries,
forms, and reports with relational databases. As a first step to work with relational
databases, you should understand the basic terminology and integrity rules. You
should be able to read table definitions in SQL CREATE TABLE statements and visual
representations. To effectively query a relational database, you must understand the
connections among tables. Most queries involve multiple tables using relationships
defined by referential integrity constraints. A graphical representation such as the
Relationship window in Microsoft Access provides a powerful tool to conceptualize
referential integrity constraints. When developing applications that can change a data-
base, you must respect the rules for referenced rows and understand actions on related
rows.

The final part of this chapter described the operators of relational algebra. At this
point, you should understand the purpose of each operator, the number of input tables,
and other inputs used. You do not need to write complicated formulas that combine
operators. Eventually, you should be comfortable understanding statements such as
“write an SQL SELECT statement to join three tables.” Chapters 4 and 9 present details
of the SQL SELECT statement, but you should understand the basic idea of a join now.
As you learn to extract data using the SQL SELECT statement in Chapter 4, you may
want to review this chapter again. To help you remember the major points about the
operators, the last section of this chapter presented several convenient summaries.

Understanding relational algebra operators will improve your knowledge of SQL
and your query formulation skills. The meaning of SQL queries can be understood
as relational algebra operations. Chapter 4 provides a flowchart demonstrating this
correspondence. For this reason, relational algebra provides a yardstick to measure
commercial languages: the commercial languages should provide at least the same
retrieval ability as the operators of relational algebra.

CLOSING THOUGHTS

REVIEW CONCEPTS

•	 Table with heading (column names) and body (rows)
•	 Primary keys and entity integrity rule
•	 Foreign keys, referential integrity rule, and matching values
•	 Visualizing referential integrity constraints
•	 Relational Model representation of 1-M relationships, M-N relationships, and

self-referencing relationships
•	 Actions on referenced rows: cascade, nullify, restrict, default
•	 Subset operators: restrict (select) and project
•	 Join operator for combining two tables using a matching condition to compare

join columns
•	 Natural join using equality for the matching operator, join columns with the

same unqualified name, and elimination of one join column
•	 Most widely used operator for combining tables: natural join
•	 Less widely used operators for combining tables: full outer join, one-sided outer

join, and divide
•	 Outer join operator extending the join operator by preserving nonmatching rows
•	 One-sided outer join preserving the nonmatching rows of one input table
•	 Full outer join preserving the nonmatching rows of both input tables
•	 Traditional set operators: union, intersection, difference, extended cross product

26008_ch03_p045-076.indd 71 3/2/18 9:00 PM

72   Part 2  Understanding Relational Databases

•	 Union compatibility for comparing rows for the union, intersection, and
difference operators

•	 Complex matching operator: divide operator for matching on a subset of rows
•	 Summarize operator that replaces groups of rows with summary rows

QUESTIONS

  1.	How is creating a table similar to writing a chapter of a book?
  2.	With what terminology for relational databases are you most comfortable?

Why?
  3.	What is the difference between a primary key and a candidate key?
  4.	What is the difference between a candidate key and a superkey?
  5.	What is a null value?
  6.	What is the motivation for the entity integrity rule?
  7.	What is the motivation for the referential integrity rule?
  8.	What is the relationship between the referential integrity rule and foreign keys?
  9.	How are candidate keys that are not primary keys indicated in the CREATE

TABLE statement?
  10.	What is the advantage of using constraint names when defining primary

key, candidate key, and referential integrity constraints in CREATE TABLE
statements?

  11.	When is it not permissible for foreign keys to store null values?
  12.	What is the purpose of a database diagram such as the Access Relationship

window?
  13.	How is a 1-M relationship represented in the Relational Model?
  14.	How is an M-N relationship represented in the Relational Model?
  15.	What is a self-referencing relationship?
  16.	How is a self-referencing relationship represented in the Relational Model?
  17.	What is a referenced row?
  18.	What two actions on referenced rows can affect related rows in a child table?
  19.	What are the possible actions on related rows after a referenced row is deleted or

its primary key is updated?
  20.	Why is the restrict action for referenced rows more common than the cascade

action?
  21.	When is the nullify action not allowed?
  22.	Why study the operators of relational algebra?
  23.	Why are the restrict and the project operators widely used?
  24.	Explain how the union, intersection, and difference operators for tables differ

from the traditional operators for sets.
  25.	Why is the join operator so important for retrieving useful information?
  26.	What is the relationship between the join operator and the extended cross

product operator?
  27.	Why is the extended cross product operator used sparingly?
  28.	What happens to unmatched rows with the join operator?
  29.	What happens to unmatched rows with the full outer join operator?
  30.	What is the difference between the full outer join and the one-sided outer join?

26008_ch03_p045-076.indd 72 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   73

The problems use the Customer, OrderTbl, and Employee tables of the simplified Order
Entry database. Chapters 4 and 10 extend the database to increase its usefulness.
The Customer table contains clients who have placed orders. The OrderTbl contains
basic facts about customer orders. The Employee table contains facts about employees
who take orders. The primary keys of the tables are CustNo for Customer, EmpNo for
Employee, and OrdNo for OrderTbl.

  31.	Define a decision-making situation that might require the summarize operator.
  32.	What is an aggregate function?
  33.	How are grouping columns used in the summarize operator?
  34.	Why is the divide operator not as widely used as the join operator?
  35.	What are the requirements of union compatibility?
  36.	What are the requirements of the natural join operator?
  37.	Why is the natural join operator widely used for combining tables?
  38.	How do visual tools such as the Microsoft Access Query Design tool facilitate

the formulation of join operations?
  39.	Why are non-minimal superkeys typically ignored?
  40.	What are two interpretations for null values?
  41.	What is an important specialized use of the traditional set operators (union,

intersection, and difference)?
  42.	Provide examples of each traditional set operator for the specialized situation

that you provided in your answer to problem 41.
  43.	If two tables have some common and some unique columns, what operator can

be used to make the tables union compatible?

PROBLEMS

Customer

CustNo CustFirstName CustLastName CustCity CustState CustZip CustBal

C0954327 Sheri Gordon Littleton CO 80129-5543 $230.00

C1010398 Jim Glussman Denver CO 80111-0033 $200.00

C2388597 Beth Taylor Seattle WA 98103-1121 $500.00

C3340959 Betty Wise Seattle WA 98178-3311 $200.00

C3499503 Bob Mann Monroe WA 98013-1095   $0.00

C8543321 Ron Thompson Renton WA 98666-1289   $85.00

Employee

EmpNo EmpFirstName EmpLastName EmpPhone EmpEmail

E1329594 Landi Santos (303) 789-1234 LSantos@bigco.com

E8544399 Joe Jenkins (303) 221-9875 JJenkins@bigco.com

E8843211 Amy Tang (303) 556-4321 ATang@bigco.com

E9345771 Colin White (303) 221-4453 CWhite@bigco.com

E9884325 Thomas Johnson (303) 556-9987 TJohnson@bigco.com

E9954302 Mary Hill (303) 556-9871 MHill@bigco.com

26008_ch03_p045-076.indd 73 3/2/18 9:00 PM

74   Part 2  Understanding Relational Databases

  1.	Write a CREATE TABLE statement for the Customer table. Choose data types
appropriate for the DBMS used in your course. Note that the CustBal column
contains numeric data. The currency symbols are not stored in the database. The
CustFirstName and CustLastName columns are required (not null).

  2.	Write a CREATE TABLE statement for the Employee table. Choose data
types appropriate for the DBMS used in your course. The EmpFirstName,
EmpLastName, and EmpEMail columns are required (not null).

  3.	Write a CREATE TABLE statement for the OrderTbl table. Choose data types
appropriate for the DBMS used in your course. The OrdDate column is required
(not null).

  4.	 Identify the foreign keys and draw a relationship diagram for the simplified
Order Entry database. The CustNo column references the Customer table and the
EmpNo column references the Employee table. For each relationship, identify the
parent table and the child table.

  5.	Extend your CREATE TABLE statement from problem (3) with referential
integrity constraints. Updates and deletes on related rows are restricted.

  6.	From examination of the sample data and your common understanding of order
entry businesses, are null values allowed for the foreign keys in the OrderTbl
table? Why or why not? Extend the CREATE TABLE statement in problem (5) to
enforce the null value restrictions if any.

  7.	Extend your CREATE TABLE statement for the Employee table (problem 2) with
a unique constraint for EmpEMail. Use a named constraint clause for the unique
constraint.

  8.	Show the result of a restrict operation that lists the orders in February 2017.
  9.	Show the result of a restrict operation that lists the customers residing in Seattle,

WA.
  10.	Show the result of a project operation that lists the CustNo, CustFirstName, and

CustLastName columns of the Customer table.
  11.	Show the result of a project operation that lists the CustCity and CustState

columns of the Customer table.
  12.	Show the result of a natural join that combines the Customer and OrderTbl tables.
  13.	Show the steps to derive the natural join for problem (10). How many rows and

columns are in the extended cross product step?
  14.	Show the result of a natural join of the Employee and OrderTbl tables.
  15.	Show the result of a one-sided outer join between the Employee and OrderTbl

tables. Preserve the rows of the OrderTbl table in the result.
  16.	Show the result of a full outer join between the Employee and OrderTbl tables.

OrderTbl

OrdNo OrdDate CustNo EmpNo

O1116324 01/23/2017 C0954327 E8544399

O2334661 01/14/2017 C0954327 E1329594

O3331222 01/13/2017 C1010398

O2233457 01/12/2017 C2388597 E9884325

O4714645 01/11/2017 C2388597 E1329594

O5511365 01/22/2017 C3340959 E9884325

O7989497 01/16/2017 C3499503 E9345771

O1656777 02/11/2017 C8543321

O7959898 02/19/2017 C8543321 E8544399

26008_ch03_p045-076.indd 74 3/2/18 9:00 PM

Chapter 3  The Relational Data Model   75

  23.	Extend your relationship diagram from problem (22) by adding a foreign key
in the Employee table. The foreign key SupEmpNo is the employee number of
the supervising employee. Thus, the SupEmpNo column references the Employee
table.

  24.	What relational algebra operator do you use to find products contained in every
order? What relational algebra operator do you use to find products contained in
any order?

  25.	Are the Customer and Employee tables union compatible? Why or why not?
  26.	Using the database after problem (23), what tables must be combined to list the

product names on order number O1116324?
  27.	Using the database after problem (23), what tables must be combined to list the

product names ordered by customer number C0954327?
  28.	Using the database after problem (23), what tables must be combined to list the

product names ordered by the customer named Sheri Gordon?
  29.	Using the database after problem (23), what tables must be combined to list the

number of orders submitted by customers residing in Colorado?
  30.	Using the database after problem (23), what tables must be combined to list

the product names appearing on an order taken by an employee named Landi
Santos?

  31.	If two tables such as Customer and Employee are not union compatible, what
operations would you use before performing a union operation?

  32.	With the Employee table extended with the foreign key SupEmpNo as specified
in problem 23, what tables must be combined to list the supervisor name of the
employee who took a specified order?

  33.	In problem 22, what type of relationship does the OrdLine table represent?
  34.	In problem 22, can the foreign keys in the OrdLine table accept null values?

Explain your answer.

  17.	Show the result of the restrict operation on Customer where the condition is
CustCity equals “Denver” or “Seattle” followed by a project operation to retain
the CustNo, CustFirstName, CustLastName, and CustCity columns.

  18.	Show the result of a natural join that combines the Customer and OrderTbl tables
followed by a restrict operation to retain only the Colorado customers (CustState
= “CO”).

  19.	Show the result of a summarize operation on Customer. The grouping column is
CustState and the aggregate calculation is COUNT. COUNT shows the number
of rows with the same value for the grouping column.

  20.	Show the result of a summarize operation on Customer. The grouping column
is CustState and the aggregate calculations are the minimum and maximum
CustBal values.

  21.	What tables are required to show the CustLastName, EmpLastName, and OrdNo
columns in the result table?

  22.	Extend your relationship diagram from problem (4) by adding two tables
(OrdLine and Product). Partial CREATE TABLE statements for the primary keys
and referential integrity constraints are shown below:

CREATE TABLE Product … PRIMARY KEY (ProdNo)
CREATE TABLE OrdLine … PRIMARY KEY (OrdNo, ProdNo)
 FOREIGN KEY (OrdNo) REFERENCES Order
 FOREIGN KEY (ProdNo) REFERENCES Product

26008_ch03_p045-076.indd 75 3/2/18 9:00 PM

76   Part 2  Understanding Relational Databases

Codd defined the Relational Model in a seminal paper in 1970. His paper inspired
research projects at the IBM research laboratories and the University of California at
Berkeley that led to commercial relational DBMSs. Date (2003) provides a syntax for
the relational algebra. Elmasri and Navathe (2017) provide a more theoretical treat-
ment of the Relational Model, especially the relational algebra.

REFERENCES FOR FURTHER STUDY

26008_ch03_p045-076.indd 76 3/2/18 9:00 PM

77  

OVERVIEW
Chapter 3 provided a foundation for using relational
databases. Most importantly, you learned about con-
nections among tables and fundamental operators to
extract useful data. This chapter helps you to apply this
knowledge in using the SQL SELECT statement.

Much of your skill with SQL will derive from imitat-
ing examples. This chapter provides many examples
to facilitate your learning process. Initially you will see
relatively simple examples so that you become com-
fortable with the basics of the SQL SELECT statement.
To prepare for more difficult examples, this chapter

presents two problem-solving guidelines (conceptual
evaluation process and critical questions). The concep-
tual evaluation process explains the meaning of the
SELECT statement through the sequence of operations
and intermediate tables that produce a result table. The
critical questions help you transform a problem state-
ment into a relational database representation in a
language such as SQL. These guidelines should help
you to formulate and understand advanced problems
presented in Section 4.5. The last part of this chapter
presents negative examples with formulation errors and
poor coding practices to help you avoid errors and poor
coding practices.

Learning Objectives

This chapter provides the foundation for developing your query formula-
tion skills using the industry standard Structured Query Language (SQL).
Query formulation involves conversion of a request for data into a state-
ment of a database language such as SQL. After this chapter, the student
should have acquired the following knowledge and skills:

•	 Write SQL SELECT statements for queries involving the restrict,
project, and join operators

•	 Understand the meaning of the WHERE and GROUP BY clauses using
the conceptual evaluation process

•	 Use the critical questions to transform a problem statement into a
database representation

•	 Write SELECT statements for more difficult queries involving joins
of three or more tables, self joins, joins with grouping, and multiple
joins between tables

•	 Write brief descriptions to document SQL SELECT statements

•	 Write INSERT, UPDATE, and DELETE statements to change the rows
of a table

Query
Formulation
with SQL

4
chapter

26008_ch04_p077-140.indd 77 3/2/18 8:30 PM

78   Part 2  Understanding Relational Databases

Before using SQL, you should understand its history and scope. The history reveals the
origin of the name and the efforts to standardize the language. The scope puts the vari-
ous parts of SQL into perspective. You have already seen the CREATE TABLE state-
ment in Chapter 3. This chapter presents basics of the SELECT, UPDATE, DELETE,
and INSERT statements, while Chapter 9 provides more details about complex query
formulation problems and associated SELECT statement details. To broaden your
understanding, you should be aware of other parts of SQL and different usage contexts.

4.1.1  Brief History of SQL
The Structured Query Language (SQL) has a colorful history. Table 4-1 depicts the
highlights of SQL’s development. SQL began life as the SQUARE language in IBM’s
System R project. The System R project was a response to the interest in relational
databases sparked by Dr. Ted Codd, an IBM fellow who wrote a famous paper in 1970
about relational databases. The SQUARE language was somewhat mathematical in
nature. After conducting human factors experiments, the IBM research team revised
the language and renamed it SEQUEL (a follow-up to SQUARE). After another revi-
sion, the language was dubbed SEQUEL 2. Its current name, SQL, resulted from legal
issues surrounding the name SEQUEL. Because of this naming history, a number of
database professionals, particularly those working during the 1970s, pronounce the
name as “sequel” rather than SQL.

SQL is now an international standard1 although it was not always so. With the
force of IBM behind SQL, many imitators used some variant of SQL. Such was the old
order of the computer industry when IBM was dominant. It may seem surprising, but
IBM was not the first company to commercialize SQL. Until a standards effort devel-
oped in the 1980s, SQL was in a state of confusion. Many vendors implemented dif-
ferent subsets of SQL with unique extensions. The standards efforts by the American
National Standards Institute (ANSI), the International Organization for Standards
(ISO), and the International Electrotechnical Commission (IEC) have restored some

1 Dr. Michael Stonebraker, an early database pioneer, has even referred to SQL as “intergalactic data speak.”

TABLE 4-1
SQL Timeline Year Event

1972 System R project at IBM Research Labs

1974 SQUARE language developed

1975 Language revision and name change to SEQUEL

1976 Language revision and name change to SEQUEL 2

1977 Name change to SQL

1978 First commercial implementation by Oracle Corporation

1981 IBM product SQL/DS featuring SQL

1986 SQL-86 (SQL1) standard approved

1989 SQL-89 standard approved (revision to SQL-86)

1992 SQL-92 (SQL2) standard approved

1999 SQL:1999 (SQL3) standard approved

2003 SQL:2003 approved

2008 SQL:2008 approved

2011 SQL:2011 approved

2016 SQL:2016 approved

4.1  BACKGROUND

26008_ch04_p077-140.indd 78 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   79

order. Although SQL was not initially the best database language developed, the stan-
dards efforts have improved the language as well as standardized its specification.

The size and scope of the SQL standard has increased substantially since adop-
tion of the first standard. The original standard (SQL-86) contained about 150 pages,
while the SQL-92 standard contained more than 600 pages with another 500 pages
added after the initial SQL-92 standard was published. The standard grew to about
2,000 pages for SQL:1999 and about 4,000 pages for SQL:2016. The SQL:2016 standard
contains 14 parts although four parts (5 to 8 and 12) were never officially released and
only three parts of the standard (2, 11, and 14) have become widely implemented. Part
2 on the foundation specifies most of SQL with extensions in other parts.

The SQL standard lacks conformance testing, an important weakness. Until 1996,
the U.S. Department of Commerce’s National Institute of Standards and Technology
conducted conformance tests to provide assurance about portability for government
software among conforming DBMSs. Since 1996, however, DBMS vendor claims
have substituted for independent conformance testing. Even for basic parts of the
SQL foundation, the major vendors lack support for some features and provide pro-
prietary support for other features. With the optional parts, conformance has much
greater variance. Writing portable SQL code requires careful study for basic parts of
the foundation but is not possible for extended parts of SQL.

4.1.2  Scope of SQL
SQL was designed as a language for database definition, manipulation, and con-
trol. Table 4-2 shows a quick summary of important SQL statements. Only data-
base administrators use most of the database definition and control statements. You
have already seen the CREATE TABLE statement in Chapter 3. This chapter and
Chapter 9 cover the database manipulation statements (SELECT, UPDATE, INSERT,
and DELETE). Power users and analysts use the database manipulation statements.
Chapter 10 covers the CREATE VIEW statement. Either database administrators
or analysts can use the CREATE VIEW statement. Chapter 11 covers the CREATE
TRIGGER statement used by both database administrators and analysts. Chapter
15 covers extensions to the SELECT statement and the CREATE MATERIALIZED
VIEW statements, both important in data warehouse usage. Chapter 16 covers the
GRANT, REVOKE, and CREATE ASSERTION statements, used primarily by data-
base administrators. Chapter 17 presents processing details about the transaction
control statements (COMMIT and ROLLBACK), important conceptual background
for database administrators. Chapter 19 covers extensions of the SELECT statement
for object databases.

SQL supports two usage contexts, stand-alone and embedded. In the stand-alone
context, a user submits SQL statements with the use of a specialized editor. The editor
alerts the user to syntax errors and sends the statements to the DBMS for execution.
The presentation in this chapter assumes stand-alone usage. In the embedded con-
text, an executing program submits SQL statements, and the DBMS sends results back

TABLE 4-2
Selected SQL StatementsStatement Type Statements Purpose

Database definition CREATE SCHEMA, TABLE, VIEW Define a new database, table, and view

ALTER TABLE Modify table definition

Database manipulation SELECT Retrieve contents of tables

UPDATE, DELETE, INSERT Modify, remove, and add rows

Database control COMMIT, ROLLBACK Complete, undo transaction

GRANT, REVOKE Add and remove access rights

CREATE ASSERTION Define integrity constraint

CREATE TRIGGER Define database rule

26008_ch04_p077-140.indd 79 3/2/18 8:30 PM

80   Part 2  Understanding Relational Databases

to the program. The program includes SQL statements along with statements of the
host programming language such as Java or Visual Basic. Additional statements allow
SQL statements (such as SELECT) to be used inside a computer program. Chapter 11
covers embedded SQL with the Oracle database programming language, PL/SQL.

SQL Usage Contexts: The SQL standard supports two usage environments, stand-
alone with statements submitted using a specialized editor, and embedded with
statements inside of a computer program.

Expression: a combination of constants, column names, functions, and operators
that generates a value when executed. In conditions and result columns, expressions
can be used in any place that column names can appear.

The SELECT statement supports data retrieval from one or more tables. This chap-
ter describes fundamental query formulation problems and a basic syntax of the
SELECT statement. Chapter 9 presents more complex query formulation problems
and extended syntax for the SELECT statement. The SELECT statement described here
has the following format:

SELECT <list of columns and expressions usually involving columns>
 FROM <list of tables and join operations>
 WHERE <row conditions connected by AND, OR, NOT>
 GROUP BY <list of grouping columns>
 HAVING <group conditions connected by AND, OR, NOT>
 ORDER BY <list of sorting specifications>

In the preceding format, uppercase words are keywords. You replace the angle
brackets <> with details to make a meaningful statement. For example, after the key-
word SELECT, you specify the list of columns in the result, but do not type the angle
brackets. The result list contains columns such as StdFirstName or expressions involv-
ing constants, column names, and functions. Example expressions are Price * Qty
and 1.1 * FacSalary. To make meaningful names for computed columns, you
can rename a column in the result table using the AS keyword. For example, SELECT
Price * Qty AS Amount renames the expression Price * Qty to Amount in the
result table.

To depict this SELECT statement format and show the meaning of statements, this
chapter shows numerous examples. Examples are provided for Microsoft Access, a
popular desktop DBMS, and Oracle, a prominent enterprise DBMS. Most examples
execute on both DBMSs. Unless noted, the examples execute on the 1997 through 2016
versions of Access and the 8i through 12c versions of Oracle. Examples that only exe-
cute on one product are marked. In addition to the examples, Appendix 4.B summa-
rizes syntax differences among major DBMSs.

The examples use the university database tables introduced in Chapter 3. Tables
4-3 through 4-7 list the contents of the tables. Appendix 4.A contains CREATE TABLE
statements for the tables. For your reference, Figure 4.1 repeats (from Chapter 3) the
relationship diagram with primary and foreign keys. Recall that the Faculty_1 table
with relationship to the Faculty table represents a self-referencing relationship with
FacSupervisor as the foreign key.

4.2  GETTING STARTED WITH THE SELECT STATEMENT

26008_ch04_p077-140.indd 80 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   81

TABLE 4-3
Sample Student TableStdNo StdFirstName StdLastName StdCity StdState StdZip StdMajor StdClass StdGPA

123-45-6789 HOMER WELLS SEATTLE WA 98121-1111 IS FR 3.00

124-56-7890 BOB NORBERT BOTHELL WA 98011-2121 FIN JR 2.70

234-56-7890 CANDY KENDALL TACOMA WA 99042-3321 ACCT JR 3.50

345-67-8901 WALLY KENDALL SEATTLE WA 98123-1141 IS SR 2.80

456-78-9012 JOE ESTRADA SEATTLE WA 98121-2333 FIN SR 3.20

567-89-0123 MARIAH DODGE SEATTLE WA 98114-0021 IS JR 3.60

678-90-1234 TESS DODGE REDMOND WA 98116-2344 ACCT SO 3.30

789-01-2345 ROBERTO MORALES SEATTLE WA 98121-2212 FIN JR 2.50

876-54-3210 CRISTOPHER COLAN SEATTLE WA 98114-1332 IS SR 4.00

890-12-3456 LUKE BRAZZI SEATTLE WA 98116-0021 IS SR 2.20

901-23-4567 WILLIAM PILGRIM BOTHELL WA 98113-1885 IS SO 3.80

TABLE 4-4A
Sample Faculty Table
(first part)

FacNo FacFirstName FacLastName FacCity FacState FacDept FacRank FacSalary

098-76-5432 LEONARD VINCE SEATTLE WA MS ASST $35,000

543-21-0987 VICTORIA EMMANUEL BOTHELL WA MS PROF $120,000

654-32-1098 LEONARD FIBON SEATTLE WA MS ASSC $70,000

765-43-2109 NICKI MACON BELLEVUE WA FIN PROF $65,000

876-54-3210 CRISTOPHER COLAN SEATTLE WA MS ASST $40,000

987-65-4321 JULIA MILLS SEATTLE WA FIN ASSC $75,000

TABLE 4-4B
Sample Faculty Table
(second part)

FacNo FacSupervisor FacHireDate FacZipCode

098-76-5432 654-32-1098 10-Apr-2004 98111-9921

543-21-0987 15-Apr-2005 98011-2242

654-32-1098 543-21-0987 01-May-2003 98121-0094

765-43-2109 11-Apr-2006 98015-9945

876-54-3210 654-32-1098 01-Mar-2008 98114-1332

987-65-4321 765-43-2109 15-Mar-2009 98114-9954

TABLE 4-5
Sample Offering TableOfferNo CourseNo OffTerm OffYear OffLocation OffTime FacNo OffDays

1111 IS320 SUMMER 2017 BLM302 10:30 AM MW

1234 IS320 FALL 2016 BLM302 10:30 AM 098-76-5432 MW

2222 IS460 SUMMER 2016 BLM412 1:30 PM TTH

3333 IS320 SPRING 2017 BLM214 8:30 AM 098-76-5432 MW

4321 IS320 FALL 2016 BLM214 3:30 PM 098-76-5432 TTH

4444 IS320 WINTER 2017 BLM302 3:30 PM 543-21-0987 TTH

5555 FIN300 WINTER 2017 BLM207 8:30 AM 765-43-2109 MW

5678 IS480 WINTER 2017 BLM302 10:30 AM 987-65-4321 MW

5679 IS480 SPRING 2017 BLM412 3:30 PM 876-54-3210 TTH

6666 FIN450 WINTER 2017 BLM212 10:30 AM 987-65-4321 TTH

7777 FIN480 SPRING 2017 BLM305 1:30 PM 765-43-2109 MW

8888 IS320 SUMMER 2017 BLM405 1:30 PM 654-32-1098 MW

9876 IS460 SPRING 2017 BLM307 1:30 PM 654-32-1098 TTH

26008_ch04_p077-140.indd 81 3/2/18 8:30 PM

82   Part 2  Understanding Relational Databases

TABLE 4-6
Sample Course Table CourseNo CrsDesc CrsUnits

FIN300 FUNDAMENTALS OF FINANCE 4

FIN450 PRINCIPLES OF INVESTMENTS 4

FIN480 CORPORATE FINANCE 4

IS320 FUNDAMENTALS OF BUSINESS PROGRAMMING 4

IS460 SYSTEMS ANALYSIS 4

IS470 BUSINESS DATA COMMUNICATIONS 4

IS480 FUNDAMENTALS OF DATABASE MANAGEMENT 4

TABLE 4-7
Sample Enrollment Table OfferNo StdNo EnrGrade

1234 123-45-6789 3.3

1234 234-56-7890 3.5

1234 345-67-8901 3.2

1234 456-78-9012 3.1

1234 567-89-0123 3.8

1234 678-90-1234 3.4

4321 123-45-6789 3.5

4321 124-56-7890 3.2

4321 789-01-2345 3.5

4321 876-54-3210 3.1

4321 890-12-3456 3.4

4321 901-23-4567 3.1

5555 123-45-6789 3.2

5555 124-56-7890 2.7

5678 123-45-6789 3.2

5678 234-56-7890 2.8

5678 345-67-8901 3.3

5678 456-78-9012 3.4

5678 567-89-0123 2.6

5679 123-45-6789 2

5679 124-56-7890 3.7

5679 678-90-1234 3.3

5679 789-01-2345 3.8

5679 890-12-3456 2.9

5679 901-23-4567 3.1

6666 234-56-7890 3.1

6666 567-89-0123 3.6

7777 876-54-3210 3.4

7777 890-12-3456 3.7

7777 901-23-4567 3.4

9876 124-56-7890 3.5

9876 234-56-7890 3.2

9876 345-67-8901 3.2

9876 456-78-9012 3.4

9876 567-89-0123 2.6

9876 678-90-1234 3.3

9876 901-23-4567 4

26008_ch04_p077-140.indd 82 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   83

4.2.1  Single Table Problems
This section shows a variety of examples involving single tables. After some simple
initial examples, more complex examples involving mathematical expressions, inexact
matching, date comparisons, null values, and logical expressions are shown.

Let us begin with the simple SELECT statement in Example 4.1. In all examples,
keywords appear in uppercase while information specific to the query appears in mixed
case. In Example 4.1, only the Student table is listed in the FROM clause because the con-
ditions in the WHERE clause and columns after the SELECT keyword involve only the
Student table. In Oracle, a semicolon or / (on a separate line) terminates a statement.

FIGURE 4.1
Relationship Window for the
University Database

Table 4-8 depicts the standard comparison operators. These symbols are used by all
major DBMSs supporting SQL.

TABLE 4-8
Standard Comparison
Operators

Comparison Operator Meaning

= equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

<> not equal to

Example 4.1

Testing Rows Using the WHERE Clause

Retrieve the name, city, and grade point average (GPA) of students with a high GPA (greater than or equal to 3.7). The result

follows the SELECT statement.

SELECT StdFirstName, StdLastName, StdCity, StdGPA
 FROM Student
 WHERE StdGPA >= 3.7

StdFirstName StdLastName StdCity StdGPA

CRISTOPHER COLAN SEATTLE 4.00

WILLIAM PILGRIM BOTHELL 3.80

26008_ch04_p077-140.indd 83 3/2/18 8:30 PM

84   Part 2  Understanding Relational Databases

Example 4.2 is even simpler than Example 4.1. The result is identical to the original
Faculty table in Table 4-4. Example 4.2 uses a shortcut to list all columns. The asterisk
* in the column list indicates that all columns of the tables in the FROM clause appear
in the result. The asterisk serves as a wildcard character matching all column names.

Expression Examples  Example 4.3 depicts expressions in the SELECT and WHERE
clauses. The expression in the SELECT clause increases the salary by 10 percent.
The AS keyword is used to rename the computed column. Without renaming, most
DBMSs will generate a meaningless name such as Expr001. The expression in the
WHERE clause extracts the year from the hiring date. Since Access and Oracle differ
on functions for date columns, Example 4.3 provides separate statements. To become
proficient with SQL on a particular DBMS, you will need to study the available func-
tions especially with date columns.

Example 4.3 (Access)

Expressions in SELECT and
WHERE Clauses
List the name, city, and increased salary of faculty hired after 2005. The year function extracts the year part of a column with a

date data type.

SELECT FacFirstName, FacLastName, FacCity,
 FacSalary*1.1 AS IncreasedSalary, FacHireDate
 FROM Faculty
 WHERE year(FacHireDate) > 2005

Example 4.2

Show all Columns

List all columns and rows of the Faculty table. The resulting table is shown in two parts.

SELECT * FROM Faculty

FacNo FacFirstName FacLastName FacCity FacState FacDept FacRank FacSalary

098-76-5432 LEONARD VINCE SEATTLE WA MS ASST $35,000

543-21-0987 VICTORIA EMMANUEL BOTHELL WA MS PROF $120,000

654-32-1098 LEONARD FIBON SEATTLE WA MS ASSC $70,000

765-43-2109 NICKI MACON BELLEVUE WA FIN PROF $65,000

876-54-3210 CRISTOPHER COLAN SEATTLE WA MS ASST $40,000

987-65-4321 JULIA MILLS SEATTLE WA FIN ASSC $75,000

FacNo FacSupervisor FacHireDate FacZipCode

098-76-5432 654-32-1098 10-Apr-2004 98111-9921

543-21-0987 15-Apr-2005 98011-2242

654-32-1098 543-21-0987 01-May-2003 98121-0094

765-43-2109 11-Apr-2006 98015-9945

876-54-3210 654-32-1098 01-Mar-2008 98114-1332

987-65-4321 765-43-2109 15-Mar-2009 98114-9954

26008_ch04_p077-140.indd 84 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   85

Example 4.4 uses a more complex expression in the WHERE clause to retrieve fac-
ulty hired in the last 10 years. In Access, the Now()function retrieves the current date,
while in Oracle, the SysDate function retrieves the current date. Both formulations are
rather imprecise, just using the year component of the date. More precise formulation
using all date components involves proprietary functions for date differences.

FacFirstName FacLastName FacCity IncreasedSalary FacHireDate

NICKI MACON BELLEVUE 71500 11-Apr-2006

CRISTOPHER COLAN SEATTLE 44000 01-Mar-2008

JULIA MILLS SEATTLE 82500 15-Mar-2009

Example 4.3 (Oracle)

Expressions in SELECT and
WHERE Clauses
The to_char function extracts the four-digit year from the FacHireDate column and the to_number function converts the

character representation of the year into a number.

SELECT FacFirstName, FacLastName, FacCity,
 FacSalary*1.1 AS IncreasedSalary, FacHireDate
 FROM Faculty
 WHERE to_number(to_char(FacHireDate, 'YYYY')) > 2005

FacFirstName FacLastName FacCity FacHireDate

CRISTOPHER COLAN SEATTLE 01-Mar-2008

JULIA MILLS SEATTLE 15-Mar-2009

Example 4.4 (Access)

Using a function to retrieve today’s date

List the name, city, and hire date of faculty hired in the last 10 years (2017 was the current year when the statement was

executed). The Now() function retrieves the current date.

SELECT FacFirstName, FacLastName, FacCity, FacHireDate
 FROM Faculty
 WHERE year(FacHireDate) >= year(Now()) - 10

Example 4.4 (Oracle)

Using a function to retrieve today’s date

List the name, city, and hire date of faculty hired in the last 10 years. The SYSDATE function retrieves the current date.

SELECT FacFirstName, FacLastName, FacCity, FacHireDate
 FROM Faculty
 WHERE to_number(to_char(FacHireDate, 'YYYY')) >=
 to_number(to_char(SYSDATE, 'YYYY')) - 10

26008_ch04_p077-140.indd 85 3/2/18 8:30 PM

86   Part 2  Understanding Relational Databases

Example 4.5 uses an expression in the WHERE clause to retrieve students near an
A- (3.7) GPA. The formulations in Access and Oracle are identical.

Example 4.5

Using an expression in the WHERE clause

List the name, city, and GPA of students near an A- (3.7) GPA. The first condition eliminates students above the A- threshold. The

second condition eliminates students far below an A-.

SELECT StdFirstName, StdLastName, StdCity, StdGPA
 FROM Student
 WHERE StdGPA < 3.7 AND StdGPA * 1.1 >= 3.7

StdFirstName StdLastName StdCity StdGPA

CANDY KENDALL TACOMA 3.50

MARIAH DODGE SEATTLE 3.60

Examples with Exact and Inexact Matching on String Columns  Columns using
a character string data type (CHAR or VARCHAR) support both exact and inexact
matching. You can use the equality = comparison operator for exact matching with a
string column. In Example 4.6, the condition, CourseNo = 'IS480', matches a single
row in the Course table.

Example 4.6

Exact Matching on a String
Column with the = Operator
List all columns of the course row with IS480 as the course number.

SELECT *
 FROM Course
 WHERE CourseNo = 'IS480'

CourseNo CrsDesc CrsUnits

IS480 FUNDAMENTALS OF DATABASE MANAGEMENT 4

For conditions on string columns, case sensitivity is an important issue. Some
DBMSs such as Microsoft Access are not case sensitive. In Access SQL, the condition
in Example 4.6 matches “is480”, “Is480”, and “iS480” in addition to “IS480”. Other
DBMSs such as Oracle are case sensitive. In Oracle SQL, the condition in Example 4.6
matches only “IS480”, not “is480”, “Is480”, or “iS480”. To alleviate confusion, you can
use the Oracle upper (see Example 4.7) or lower functions to convert strings to upper
or lowercase, respectively.

26008_ch04_p077-140.indd 86 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   87

Inexact matching supports conditions that match some pattern rather than match-
ing an identical string. One of the most common types of inexact matching is to find
values having a common prefix such as “IS4” (400 level information systems courses).
Example 4.8 uses the LIKE operator along with the pattern-matching character * to
perform prefix matching2. The string constant 'IS4*' means match strings beginning
with “IS4” and ending with anything. The wildcard character * matches any string. The
Oracle formulation of Example 4.8 uses the percent symbol %, the SQL standard for the
wildcard character. Note that string constants must be enclosed in quotation marks3.

2 Beginning with Access 2002, the standard SQL pattern-matching characters can be used by
specifying ANSI 92 query mode in the Options window. The textbook uses the default * and ?
pattern-matching characters for Access SQL statements.

3 Most DBMSs require single quotes, the SQL:2016 standard. Microsoft Access allows either
single or double quotes for string constants.

Example 4.8 (Oracle)

Inexact Matching with the LIKE Operator

List the senior-level IS courses.

SELECT *
 FROM Course
 WHERE CourseNo LIKE 'IS4%'

Example 4.7 (Oracle)

Exact Matching using the upper Function

List all columns of the course row with IS480 as the course number.

SELECT *
 FROM Course
 WHERE upper(CourseNo) = 'IS480'

CourseNo CrsDesc CrsUnits

IS480 FUNDAMENTALS OF DATABASE MANAGEMENT 4

Example 4.8 (Access)

Inexact Matching with the LIKE Operator

List the senior-level IS courses.

SELECT *
 FROM Course
 WHERE CourseNo LIKE 'IS4*'

CourseNo CrsDesc CrsUnits

IS460 SYSTEMS ANALYSIS 4

IS470 BUSINESS DATA COMMUNICATIONS 4

IS470 FUNDAMENTALS OF DATABASE MANAGEMENT 4

26008_ch04_p077-140.indd 87 3/2/18 8:30 PM

88   Part 2  Understanding Relational Databases

Another common type of inexact matching is to find columns containing a sub-
string. To perform this kind of matching, a wildcard character should be used before
and after the substring. For example, to find courses containing the word DATABASE
anywhere in the course description, write the condition: CrsDesc LIKE '*DATA*'
in Access or CrsDesc LIKE '%DATA%' in Oracle as shown in Example 4.9.

Example 4.9 (Oracle)

Inexact Matching for a Substring

List the courses containing the string “DATA” in the course description.
SELECT *
 FROM Course
 WHERE CrsDesc LIKE '%DATA%'

Example 4.9 (Access)

Inexact Matching for a Substring

List the courses containing the string “DATA” in the course description.

SELECT *
 FROM Course
 WHERE CrsDesc LIKE '*DATA*'

CourseNo CrsDesc CrsUnits

IS470 BUSINESS DATA COMMUNICATIONS 4

IS480 FUNDAMENTALS OF DATABASE MANAGEMENT 4

The wildcard character is not the only pattern-matching character. SQL:2016 spec-
ifies the underscore character _ to match any single character. Some DBMSs such as
Access use the question mark (?) to match any single character. Figure 4.10 shows
examples of single character matching in both Access and Oracle. Most DBMSs also
have pattern-matching characters for matching a range of characters (for example, the
digits 0 to 9) and any character from a list of characters. The symbols used for these
other pattern-matching characters are not standard. To become proficient at writing
inexact matching conditions, you should study the pattern-matching characters avail-
able with your DBMS.

Example 4.10 (Access)

Inexact Matching for a Single Character

List the name and rank of faculty with a five letter last name ending in “N”. Each question mark matches any single character.

SELECT FacFirstName, FacLastName, FacRank
 FROM Faculty
 WHERE FacLastName LIKE '????N'

FacFirstName FacLastName FacRank

LEONARD FIBON ASSC

NICKI MACON PROF

CRISTOPHER COLAN ASST

26008_ch04_p077-140.indd 88 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   89

Date Comparison Examples  Example 4.11 depicts range matching on a column
with the date data type. In Access SQL, pound symbols enclose date constants, while
in Oracle SQL, single quotation marks enclose date constants as shown in Example
4.11. Date columns can be compared just like numbers with the usual comparison
operators (=, <, etc.). The BETWEEN-AND operator defines a closed interval (includes
end points). In Access Example 4.11, the BETWEEN-AND condition is a shortcut for
FacHireDate >= #1/1/2008# AND FacHireDate <= #12/31/2009#.

Example 4.10 (Oracle)

Inexact Matching for a Single Character

List the name and rank of faculty with a five letter last name ending in “N”. Each underscore matches any single character.

SELECT FacFirstName, FacLastName, FacRank
 FROM Faculty
 WHERE FacLastName LIKE '____N'

BETWEEN-AND Operator: a shortcut operator to test a numeric or date column
against a range of values. The BETWEEN-AND operator returns true if the column is
greater than or equal to the first value and less than or equal to the second value.

Example 4.11 (Oracle)

Comparing a Date Column
to Date Constants
List the name and hiring date of faculty hired in 2008 or 2009. In Oracle SQL, the standard format for dates is DD-Mon-YYYY

where DD is the day number, Mon is the month abbreviation, and YYYY is the four-digit year.

SELECT FacFirstName, FacLastName, FacHireDate
 FROM Faculty
 WHERE FacHireDate BETWEEN '1-Jan-2008' AND '31-Dec-2009'

Example 4.11 (Access)

Comparing a Date Column
to Date Constants
List the name and hiring date of faculty hired in 2008 or 2009.

SELECT FacFirstName, FacLastName, FacHireDate
 FROM Faculty
 WHERE FacHireDate BETWEEN #1/1/2008# AND #12/31/2009#

FacFirstName FacLastName FacHireDate

CRISTOPHER COLAN 01-Mar-2008

JULIA MILLS 15-Mar-2009

26008_ch04_p077-140.indd 89 3/2/18 8:30 PM

90   Part 2  Understanding Relational Databases

You should not use the LIKE operator and pattern matching characters on date
columns. Some DBMSs allow the LIKE operator, but it is not portable across DBMSs
and the results may vary within a DBMS. You should treat date columns as numeric,
not text. You should use standard comparison operators along with proprietary func-
tions to compare dates and components of dates. Example 4.12 shows another example
using proprietary functions to extract the month part of a date column.

Example 4.12 (Oracle)

Using Proprietary Functions to
Retrieve Month Number
List the name and hiring date of faculty hired in April of any year. The format string “MM” in the Oracle to_char function

retrieves the month number part of a date column.

SELECT FacFirstName, FacLastName, FacHireDate
 FROM Faculty
 WHERE to_number(to_char(FacHireDate, 'MM')) = 4

Example 4.12 (Access)

Using a Proprietary Function to
Retrieve Month Number
List the name and hiring date of faculty hired in April of any year. The Access Month function retrieves the month number part

of a date column.

SELECT FacFirstName, FacLastName, FacHireDate
 FROM Faculty
 WHERE Month(FacHireDate) = 4

FacFirstName FacLastName FacHireDate

LEONARD VINCE 10-Apr-2005

VICTORIA EMMANUEL 15-Apr-2005

NICKI MACON 11-Apr-2006

Examples with Null Values and Logical Expressions  Besides testing columns for
specified values, you sometimes need to test for the lack of a value. Null values are
used when there is no normal value for a column. A null can mean that the value is
unknown or the value is not applicable to the row. For the Offering table, a null value
for FacNo means that the instructor is unknown at the current time. Testing for null
values is done with the IS NULL comparison operator as shown in Example 4.13. You
can also test for a normal value using IS NOT NULL.

Example 4.13

Testing for Nulls

List the offering number and course number of summer 2017 offerings without an assigned instructor.

SELECT OfferNo, CourseNo
 FROM Offering
 WHERE FacNo IS NULL AND OffTerm = 'SUMMER'
 AND OffYear = 2017

26008_ch04_p077-140.indd 90 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   91

Example 4.14 depicts a complex logical expression involving both logical opera-
tors AND and OR. When mixing AND and OR in a logical expression, you should
use parentheses. Otherwise, the reader of the SELECT statement may not understand
the grouping of the AND and OR conditions. Without parentheses, you must depend
on the default precedence (AND evaluated before OR). The reader of the statement
may not know the default precedence.

Mixing AND and OR
always use parentheses to
make the grouping of condi-
tions explicit.

OfferNo CourseNo

1111 IS320

4.2.2  Joining Tables
Example 4.15 demonstrates a join of the Course and Offering tables. The join condition
Course.CourseNo = Offering.CourseNo is specified in the WHERE clause.

Example 4.14

Complex Logical Expression

List the offer number, course number, and faculty number for course offerings scheduled in fall 2016 or winter 2017.

SELECT OfferNo, CourseNo, FacNo
 FROM Offering
 WHERE (OffTerm = 'FALL' AND OffYear = 2016)
 OR (OffTerm = 'WINTER' AND OffYear = 2017)

OfferNo CourseNo FacNo

1234 IS320 098-76-5432

4321 IS320 098-76-5432

4444 IS320 543-21-0987

5555 FIN300 765-43-2109

5678 IS480 987-65-4321

6666 FIN450 987-65-4321

Example 4.15 (Access)

Join Tables but Show Columns
from One Table Only
List the offering number, course number, days, and time of offerings containing the words database or programming in the

course description and taught in spring 2017. The Oracle version of this example uses the % instead of the * as the wildcard

character.

SELECT OfferNo, Offering.CourseNo, OffDays, OffTime
 FROM Offering, Course
 WHERE OffTerm = 'SPRING' AND OffYear = 2017
 AND (CrsDesc LIKE '*DATABASE*'
 OR CrsDesc LIKE '*PROGRAMMING*')
 AND Course.CourseNo = Offering.CourseNo

26008_ch04_p077-140.indd 91 3/2/18 8:30 PM

92   Part 2  Understanding Relational Databases

You should note two additional points about Example 4.15. First, the CourseNo
column name must be qualified (prefixed) with a table name (Course or Offering). Oth-
erwise, the SELECT statement is ambiguous because CourseNo can refer to a column
in either the Course or Offering tables. Second, both tables must be listed in the FROM
clause even though the result columns come from only the Offering table. The Course
table is needed in the FROM clause because conditions in the WHERE clause reference
CrsDesc, a column of the Course table.

Example 4.16 demonstrates another join, but this time the result columns come
from both tables. There are conditions on each table in addition to the join conditions.
The Oracle formulation uses the % instead of the * as the wildcard character.

Example 4.16 (Oracle)

Join Tables and Show Columns
from Both Tables
List the offer number, course number, and name of the instructor of IS course offerings scheduled in fall 2016 taught by assistant

professors.

SELECT OfferNo, CourseNo, FacFirstName, FacLastName
 FROM Offering, Faculty
 WHERE OffTerm = 'FALL' AND OffYear = 2016
 AND FacRank = 'ASST' AND CourseNo LIKE 'IS%'
 AND Faculty.FacNo = Offering.FacNo

Example 4.16 (Access)

Join Tables and Show Columns
from Both Tables
List the offer number, course number, and name of the instructor of IS course offerings scheduled in fall 2016 taught by assistant

professors.

SELECT OfferNo, CourseNo, FacFirstName, FacLastName
 FROM Offering, Faculty
 WHERE OffTerm = 'FALL' AND OffYear = 2016
 AND FacRank = 'ASST' AND CourseNo LIKE 'IS*'
 AND Faculty.FacNo = Offering.FacNo

OfferNo CourseNo FacFirstName FacLastName

1234 IS320 LEONARD VINCE

4321 IS320 LEONARD VINCE

In the SQL standard, a join operation can be expressed directly in the FROM clause
rather than being expressed in both the FROM and WHERE clauses as shown in Exam-
ples 4.15 and 4.16. To make a join operation in the FROM clause, use the keywords
INNER JOIN as shown in Example 4.17. The join conditions are indicated by the ON

OfferNo CourseNo OffDays OffTime

3333 IS320 MW 8:30 AM

5679 IS480 TTH 3:30 PM

26008_ch04_p077-140.indd 92 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   93

keyword inside the FROM clause. Notice that the join condition no longer appears in
the WHERE clause.

Example 4.17 (Access)

Join Tables Using a Join Operation
in the FROM Clause
List the offer number, course number, and name of the instructor of IS course offerings scheduled in fall 2016 that are taught by

assistant professors (result is identical to Example 4.16). In Oracle, you should use the % instead of *.

SELECT OfferNo, CourseNo, FacFirstName, FacLastName
 FROM Offering INNER JOIN Faculty
 ON Faculty.FacNo = Offering.FacNo
 WHERE OffTerm = 'FALL' AND OffYear = 2016
 AND FacRank = 'ASST' AND CourseNo LIKE 'IS*'

4.2.3  Summarizing Tables with GROUP BY and HAVING
So far, the results of all examples in this section relate to individual rows. Even Exam-
ple 4.9 relates to a combination of columns from individual Offering and Faculty rows.
As indicated in Chapter 3 with the Summarize operator, it is sometimes important to
show summaries of rows. The GROUP BY and HAVING clauses are used to show
results about groups of rows rather than individual rows.

Example 4.18 depicts the GROUP BY clause to summarize groups of rows. Each
result row contains a value of the grouping column (StdMajor) along with the aggre-
gate calculation summarizing rows with the same value for the grouping column.
The GROUP BY clause must contain every column in the SELECT clause except for
aggregate expressions. For example, adding the StdClass column in the SELECT clause
would make Example 4.18 invalid unless StdClass was also added to the GROUP BY
clause.

Example 4.18

Grouping on a Single Column

Summarize the averageGPA of students by major.

SELECT StdMajor, AVG(StdGPA) AS AvgGPA
 FROM Student
 GROUP BY StdMajor

StdMajor AvgGPA

ACCT 3.39999997615814

FIN 2.80000003178914

IS 3.23333330949148

GROUP BY Reminder: the columns in the SELECT clause must either be in the GROUP
BY clause or be part of a summary calculation with an aggregate function.

Table 4-9 shows the standard aggregate functions. If you have a statistical calculation
that cannot be performed with these functions, check your DBMS. Most DBMSs fea-
ture many functions beyond these standard ones.

26008_ch04_p077-140.indd 93 3/2/18 8:30 PM

94   Part 2  Understanding Relational Databases

The COUNT, AVG, and SUM functions support the DISTINCT keyword to restrict
the computation to unique column values. Example 4.19 demonstrates the DISTINCT
keyword for the COUNT function. This example retrieves the number of offerings in a
year as well as the number of distinct courses taught. Some DBMSs such as Microsoft
Access do not support the DISTINCT keyword inside of aggregate functions. Chapter
9 presents an alternative formulation in Access SQL to compensate for the inability to
use the DISTINCT keyword inside the COUNT function.

TABLE 4-9
Standard Aggregate
Functions

Aggregate Function Meaning and Comments

COUNT(*) Computes the number of rows.

COUNT(column) Counts the non-null values in column; DISTINCT can be used to count unique
column values.

AVG Computes the average of a numeric column or expression excluding null values;
DISTINCT can be used to compute the average of unique column values.

SUM Computes the sum of a numeric column or expression excluding null values;
DISTINCT can be used to compute the sum of unique column values.

MIN Computes the smallest value. For string columns, the collating sequence is used
to compare strings.

MAX Computes the largest value. For string columns, the collating sequence is used
to compare strings.

COUNT Function Usage: COUNT(*) and COUNT(column) produce identical results
except when “column” contains null values. See Chapter 9 for more details about the
effect of null values on aggregate functions.

Example 4.19 (Oracle)

Counting Rows and Unique
Column Values
Summarize the number of offerings and unique courses by year.

SELECT OffYear, COUNT(*) AS NumOfferings,
 COUNT(DISTINCT CourseNo) AS NumCourses
 FROM Offering
 GROUP BY OffYear

OffYear NumOfferings NumCourses

2016   3 2

2017 10 6

Examples 4.20 and 4.21 contrast the WHERE and HAVING clauses. In Example
4.20, the WHERE clause selects upper-division students (juniors or seniors) before
grouping on major. Because the WHERE clause eliminates students before grouping
occurs, only upper-division students are grouped. In Example 4.21, a HAVING condi-
tion retains groups with an average GPA greater than 3.1. The HAVING clause applies
to groups of rows, whereas the WHERE clause applies to individual rows. To use a
HAVING clause, there must be a GROUP BY clause.

26008_ch04_p077-140.indd 94 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   95

One other point about Examples 4.20 and 4.21 is the use of the OR operator as com-
pared to the IN operator (set element of operator). The WHERE condition in Examples
4.20 and 4.21 retains the same rows. The IN condition is true if StdClass matches any
value in the parenthesized list. Chapter 9 provides additional explanation about the
IN operator for nested queries.

WHERE vs. HAVING: use the WHERE clause for conditions that can be tested on
individual rows. Use the HAVING clause for conditions that can be tested only on
groups. Conditions in the HAVING clause should involve aggregate functions, whereas
conditions in the WHERE clause cannot involve aggregate functions.

Example 4.20

Grouping with Row Conditions

Summarize the average GPA of upper division (junior or senior) students by major.

SELECT StdMajor, AVG(StdGPA) AS AvgGpa
 FROM Student
 WHERE StdClass = 'JR' OR StdClass = 'SR'
 GROUP BY StdMajor

StdMajor AvgGPA

ACCT 3.5

FIN 2.80000003178914

IS 3.14999997615814

Example 4.21

Grouping with Row and Group Conditions

Summarize the average GPA of upper-division (junior or senior) students by major. Only list the majors with average GPA greater

than 3.1.

SELECT StdMajor, AVG(StdGPA) AS AvgGpa
 FROM Student
 WHERE StdClass IN ('JR', 'SR')
 GROUP BY StdMajor
 HAVING AVG(StdGPA) > 3.1

StdMajor AvgGPA

ACCT 3.5

IS 3.14999997615814

HAVING Reminder: the HAVING clause must be preceded by the GROUP BY clause.

26008_ch04_p077-140.indd 95 3/2/18 8:30 PM

96   Part 2  Understanding Relational Databases

To summarize all rows, aggregate functions can be used in SELECT clause with-
out a GROUP BY clause as demonstrated in Example 4.22. The result contains a single
row with just the aggregate calculations for all rows in the result before computing the
aggregate functions.

Example 4.22

Grouping all Rows

List the number of upper-division students and their average GPA.

SELECT COUNT(*) AS StdCnt, AVG(StdGPA) AS AvgGPA
 FROM Student
 WHERE StdClass IN ('JR','SR')

StdCnt AvgGPA

8 3.0625

Sometimes it is useful to group on more than one column as demonstrated by
Example 4.23. The result shows one row for each combination of StdMajor and Std-
Class. Some rows have the same value for both aggregate calculations because there is
only one associated row in the Student table. For example, there is only one row for the
combination ('ACCT', 'JR').

Example 4.23

Grouping on Two Columns

Summarize the minimum and maximum GPA of students by major and class.

SELECT StdMajor, StdClass, MIN(StdGPA) AS MinGPA,
 MAX(StdGPA) AS MaxGPA
 FROM Student
 GROUP BY StdMajor, StdClass

StdMajor StdClass MinGPA MaxGPA

ACCT JR 3.5 3.5

ACCT SO 3.3 3.3

FIN JR 2.5 2.7

FIN SR 3.2 3.2

IS FR 3 3.0

IS JR 3.6 3.6

IS SO 3.8 3.8

IS SR 2.2 4.0

A powerful combination is to use grouping with joins. There is no reason to restrict
grouping to just one table. Often, more useful information is obtained by summariz-
ing rows that result from a join. Example 4.24 demonstrates grouping applied to a join
between Course and Offering. You should note that the join is performed before the

26008_ch04_p077-140.indd 96 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   97

grouping occurs. For example, after the join, the result contains six rows with a course
description of FUNDAMENTALS OF BUSINESS PROGRAMMING. Because queries
combining joins and grouping can be difficult to understand, Section 4.3 provides a
more detailed explanation.

4.2.4  Improving the Appearance of Results
We finish this section with two parts of the SELECT statement that can improve the
appearance of results. Examples 4.25 and 4.26 demonstrate sorting using the ORDER
BY clause. The sort sequence depends on the date type of the sorted column (numeric
for numeric data types, ASCII collating sequence for string columns, and calendar
sequence for date columns). By default, sorting occurs in ascending order. The key-
word DESC can be used after a column name to sort in descending order as demon-
strated in Example 4.26.

Example 4.24 (Access)

Combining Grouping and Joins

Summarize the number of IS course offerings by course description.

SELECT CrsDesc, COUNT(*) AS OfferCount
 FROM Course, Offering
 WHERE Course.CourseNo = Offering.CourseNo
 AND Course.CourseNo LIKE 'IS*'
 GROUP BY CrsDesc

CrsDesc OfferCount

FUNDAMENTALS OF BUSINESS PROGRAMMING 6

FUNDAMENTALS OF DATABASE MANAGEMENT 2

SYSTEMS ANALYSIS 2

Example 4.24 (Oracle)

Combining Grouping and Joins

Summarize the number of IS course offerings by course description.

SELECT CrsDesc, COUNT(*) AS OfferCount
 FROM Course, Offering
 WHERE Course.CourseNo = Offering.CourseNo
 AND Course.CourseNo LIKE 'IS%'
 GROUP BY CrsDesc

Example 4.25

Sorting on a Single Column

List the GPA, name, city, and state of juniors. Order the result by GPA in ascending order.

SELECT StdGPA, StdFirstName, StdLastName, StdCity,
 StdState
 FROM Student
 WHERE StdClass = 'JR'
 ORDER BY StdGPA

26008_ch04_p077-140.indd 97 3/2/18 8:30 PM

98   Part 2  Understanding Relational Databases

Some students confuse ORDER BY and GROUP BY. In most DBMSs, GROUP BY
has the side effect of sorting by the grouping columns. You should not depend on this
side effect. If you just want to sort, use ORDER BY rather than GROUP BY. If you want
to sort and group, use both ORDER BY and GROUP BY.

Another way to improve the appearance of the result is to remove duplicate rows.
By default, SQL does not remove duplicate rows. Duplicate rows are not possible when
the primary keys of the result tables are included. There are a number of situations in
which the primary key does not appear in the result. Example 4.28 demonstrates the
DISTINCT keyword to remove duplicates that appear in the result of Example 4.27.

Example 4.26

Sorting on Two Columns with
Descending Order
List the rank, salary, name, and department of faculty. Order the result by ascending (alphabetic) rank and descending salary.

SELECT FacRank, FacSalary, FacFirstName, FacLastName,
 FacDept
 FROM Faculty
 ORDER BY FacRank, FacSalary DESC

FacRank FacSalary FacFirstName FacLastName FacDept

ASSC 75000.00 JULIA MILLS FIN

ASSC 70000.00 LEONARD FIBON MS

ASST 40000.00 CRISTOPHER COLAN MS

ASST 35000.00 LEONARD VINCE MS

PROF 120000.00 VICTORIA EMMANUEL MS

PROF 65000.00 NICKI MACON FIN

ORDER BY vs. DISTINCT: use the ORDER BY clause to sort a result table on one or
more columns. Use the DISTINCT keyword to remove duplicates in the result.

Example 4.27

Result with Duplicates

List the city and state of faculty members.

SELECT FacCity, FacState
 FROM Faculty

StdGPA StdFirstName StdLastName StdCity StdState

2.50 ROBERTO MORALES SEATTLE WA

2.70 BOB NORBERT BOTHELL WA

3.50 CANDY KENDALL TACOMA WA

3.60 MARIAH DODGE SEATTLE WA

26008_ch04_p077-140.indd 98 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   99

4.3  CONCEPTUAL EVALUATION PROCESS FOR
SELECT STATEMENTS

FacCity FacState

SEATTLE WA

BOTHELL WA

SEATTLE WA

BELLEVUE WA

SEATTLE WA

SEATTLE WA

Example 4.28

Eliminating Duplicates with DISTINCT

List the unique city and state combinations in the Faculty table.

SELECT DISTINCT FacCity, FacState
 FROM Faculty

FacCity FacState

BELLEVUE WA

BOTHELL WA

SEATTLE WA

To clarify the meaning of the SELECT statement, you should understand the
conceptual evaluation process or sequence of steps to produce the desired result. The
conceptual evaluation process describes operations (mostly relational algebra oper-
ations) that produce intermediate tables leading to a result table. You may find it use-
ful to refer to the conceptual evaluation process when first learning to write SELECT
statements. After you gain initial competence with the SELECT statement, you should
not need to refer to the conceptual evaluation process except to gain insight about dif-
ficult problems.

To demonstrate the conceptual evaluation process, Example 4.29 uses many parts
of the SELECT statement. It involves multiple tables (Enrollment and Offering in the
FROM clause), row conditions in the WHERE clause, aggregate functions (COUNT
and AVG) over groups of rows (GROUP BY), a group condition in the HAVING
clause, and sorting of the final result (ORDER BY).

In the ORDER BY clause, you should note number 3 as the second column to sort.
The number 3 means sort by the third column (AvgGrade) in the SELECT clause. Some
DBMSs do not allow aggregate expressions or alias names (AvgGrade) in the ORDER
BY clause.

Tables 4-10 to 4-12 show the input tables and the result. Only small input and
result tables have been used so that you can understand more clearly the process to
derive the result. Small tables can depict the conceptual evaluation process well.

The conceptual evaluation process involves a sequence of operations as indicated
in Figure 4.2. This process is conceptual rather than actual because most SQL compilers
can produce the same output using many shortcuts. Because the shortcuts are DBMS
specific, rather mathematical, and performance oriented, we will not review them. The
conceptual evaluation process provides a foundation for understanding the meaning

Conceptual Evaluation
Process
the sequence of operations
and intermediate tables
used to derive the result of
a SELECT statement. The
conceptual evaluation pro-
cess may help you gain an
initial understanding of the
SELECT statement as well as
help you to understand more
difficult problems.

26008_ch04_p077-140.indd 99 3/2/18 8:30 PM

100   Part 2  Understanding Relational Databases

of SQL statements, independent of SQL compiler and performance issues. The remain-
der of this section applies the conceptual evaluation process to Example 4.29.

1)		 The first step in the conceptual evaluation process combines the tables in the
FROM clause with the cross product and join operators. Example 4.29 uses
a cross product operation because two tables are listed. A join operation is
not used because the INNER JOIN keyword does not appear in the FROM
statement. Recall that the cross product operator shows all possible rows by
combining two tables. The resulting table contains the product of the number
of rows and the sum of the columns. In this case, the cross product contains
35 rows (5 × 7) and 7 columns (3+4). Table 4-13 shows a partial result. As an
exercise, you are encouraged to derive the entire result. As a notational shortcut
here, the table name (abbreviated as E and O) is prefixed before the column
name for OfferNo.

TABLE 4-10
Sample Offering Table OfferNo CourseNo OffYear OffTerm

1111 IS480 2016 FALL

2222 IS480 2016 FALL

3333 IS320 2016 FALL

5555 IS480 2016 WINTER

6666 IS320 2016 SPRING

TABLE 4-11
Sample Enrollment Table StdNo OfferNo EnrGrade

111-11-1111 1111 3.1

111-11-1111 2222 3.5

111-11-1111 3333 3.3

111-11-1111 5555 3.8

222-22-2222 1111 3.2

222-22-2222 2222 3.3

333-33-3333 1111 3.6

Example 4.29 (Access)

List the course number, offer number, and average grade of students enrolled in fall 2016, IS course offerings in which

more than one student is enrolled. Sort the result by course number in ascending order and average grade in descend-

ing order. The Oracle version of Example 4.29 is identical except for the % instead of the * as the wildcard character.

SELECT CourseNo, Offering.OfferNo,
 AVG(EnrGrade) AS AvgGrade
 FROM Enrollment, Offering
 WHERE CourseNo LIKE 'IS*' AND OffYear = 2016
 AND OffTerm = 'FALL'
 AND Enrollment.OfferNo = Offering.OfferNo
 GROUP BY CourseNo, Offering.OfferNo
 HAVING COUNT(*) > 1
 ORDER BY CourseNo, 3 DESC

Depict Many Parts of the SELECT Statement

26008_ch04_p077-140.indd 100 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   101

TABLE 4-12
Example 4.22 ResultCourseNo OfferNo AvgGrade

IS480 2222 3.4

IS480 1111 3.3

FIGURE 4.2
Flowchart of the Conceptual
Evaluation Process

FROM Tables:
Cross Product and

Join Operations

GROUP
BY?

Restriction
on WHERE
Conditions

Sort on
GROUP BY
Columns

Compute
Aggregates
and Reduce
Each Group

to 1 Row

ORDER
BY?

Sort
Columns in
ORDER BY

1

2

3

4

6

7

Yes

No

Yes

No

Finish

Restriction
on HAVING
Conditions

5

Project
Columns in

SELECT

TABLE 4-13
Partial Result of Step 1 for
First Two Offering Rows
(1111 and 2222)

O.OfferNo CourseNo OffYear OffTerm StdNo E.OfferNo EnrGrade

1111 IS480 2016 FALL 111-11-1111 1111 3.1

1111 IS480 2016 FALL 111-11-1111 2222 3.5

1111 IS480 2016 FALL 111-11-1111 3333 3.3

1111 IS480 2016 FALL 111-11-1111 5555 3.8

1111 IS480 2016 FALL 222-22-2222 1111 3.2

1111 IS480 2016 FALL 222-22-2222 2222 3.3

1111 IS480 2016 FALL 333-33-3333 1111 3.6

2222 IS480 2016 FALL 111-11-1111 1111 3.1

2222 IS480 2016 FALL 111-11-1111 2222 3.5

2222 IS480 2016 FALL 111-11-1111 3333 3.3

2222 IS480 2016 FALL 111-11-1111 5555 3.8

2222 IS480 2016 FALL 222-22-2222 1111 3.2

2222 IS480 2016 FALL 222-22-2222 2222 3.3

2222 IS480 2016 FALL 333-33-3333 1111 3.6

26008_ch04_p077-140.indd 101 3/2/18 8:30 PM

102   Part 2  Understanding Relational Databases

2)		 The second step uses a restriction operation to eliminate rows that do not satisfy
the conditions in the WHERE clause. The statement contains four conditions: a
join condition on OfferNo, a condition on CourseNo, a condition on OffYear, and
a condition on OffTerm. Note that the condition on CourseNo includes the
wildcard character (*). Course numbers beginning with “IS” match this
condition. Table 4-14 reduces the result to six rows from the 35 rows in
step 1 with the cross product operation.

3)		 The third step sorts the result of step 2 by the columns specified in the GROUP
BY clause. The GROUP BY clause indicates that the output should relate to
groups of rows rather than individual rows. If the output relates to individual
rows rather than groups of rows, the GROUP BY clause is omitted. When using
the GROUP BY clause, you must include every column from the SELECT clause
except for expressions that involve an aggregrate function4. Table 4-15 shows the
result of step 2 sorted by CourseNo and O.OfferNo. Note that the columns have
been rearranged to make the result easier to read.

4)		 The fourth step is only necessary if there is a GROUP BY clause. The fourth
step computes aggregate function(s) for each group of rows and reduces each
group to a single row. All rows in a group have the same values for the GROUP
BY columns. Table 4-16 contains three groups {<IS320,3333>, <IS480,1111>,
<IS480,2222>} with computed columns added for aggregate functions in the
SELECT and HAVING clauses. Thus, Table 4-16 shows two new columns for the
AVG function in the SELECT clause and the COUNT function in the HAVING
clause. Note that remaining columns are eliminated at this point because they
are not needed in the remaining steps.

4 In other words, when using the GROUP BY clause, every column in the SELECT clause should either be in
the GROUP BY clause or be part of an expression with an aggregate function.

TABLE 4-14
Result of Step 2 O.OfferNo CourseNo OffYear OffTerm StdNo E.OfferNo EnrGrade

1111 IS480 2016 FALL 111-11-1111 1111 3.1

2222 IS480 2016 FALL 111-11-1111 2222 3.5

1111 IS480 2016 FALL 222-22-2222 1111 3.2

2222 IS480 2016 FALL 222-22-2222 2222 3.3

1111 IS480 2016 FALL 333-33-3333 1111 3.6

3333 IS320 2016 FALL 111-11-1111 3333 3.3

TABLE 4-15
Result of Step 3 CourseNo O.OfferNo OffYear OffTerm StdNo E.OfferNo EnrGrade

IS320 3333 2016 FALL 111-11-1111 3333 3.3

IS480 1111 2016 FALL 111-11-1111 1111 3.1

IS480 1111 2016 FALL 222-22-2222 1111 3.2

IS480 1111 2016 FALL 333-33-3333 1111 3.6

IS480 2222 2016 FALL 111-11-1111 2222 3.5

IS480 2222 2016 FALL 222-22-2222 2222 3.3

TABLE 4-16
Result of Step 4 CourseNo O.OfferNo AvgGrade Count(*)

IS320 3333 3.3 1

IS480 1111 3.3 3

IS480 2222 3.4 2

26008_ch04_p077-140.indd 102 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   103

5)		 The fifth step eliminates rows that do not satisfy the HAVING condition.
Table 4-17 shows that the first row in Table 4-16 is removed because it fails
the HAVING condition. Note that the HAVING clause specifies a restriction
operation for groups of rows. The HAVING clause cannot be present without
a preceding GROUP BY clause. The conditions in the HAVING clause always
relate to groups of rows, not to individual rows. Conditions in the HAVING
clause should involve aggregate functions.

6)		 The sixth step sorts the results according to the ORDER BY clause. Note that
the ORDER BY clause is optional. Table 4-18 shows the result table after
sorting.

7)		 The seventh step performs a final projection. Columns appearing in the result
of step 6 are eliminated if they do not appear in the SELECT clause. Table 4-19
(identical to Table 4-12) shows the result after the projection of step 6. The
COUNT(*) column is eliminated because it does not appear in the SELECT
list. The seventh step (projection) occurs after the sixth step (sorting) because
the ORDER BY clause can contain columns that do not appear in the SELECT
list.

This section finishes by discussing three major lessons about the conceptual evalu-
ation process. These lessons are more important to remember than the specific details
about the conceptual process.

•	 GROUP BY conceptually occurs after WHERE. If you have an error in a SELECT
statement involving WHERE or GROUP BY, the problem is most likely in the
WHERE clause. You can check the intermediate results after the WHERE clause
by submitting a SELECT statement without the GROUP BY clause.

•	 Grouping occurs only one time in the evaluation process. If your problem
involves more than one independent aggregate calculation, you may need
more than one SELECT statement. Query requirements involving multiple
independent aggregate calculations are uncommon so this chapter does not cover
them.

•	 Using sample tables can help you analyze difficult problems. You should not
need to perform the entire evaluation process. Rather, you can use sample tables
to understand only the difficult part. Section 4.5 and Chapter 9 depict the use of
sample tables to help analyze difficult problems.

TABLE 4-17
Result of Step 5CourseNo O.OfferNo AvgGrade Count(*)

IS480 1111 3.3 3

IS480 2222 3.4 2

TABLE 4-18
Result of Step 6CourseNo O.OfferNo AvgGrade Count(*)

IS480 2222 3.4 3

IS480 1111 3.3 2

TABLE 4-19
Result of Step 7CourseNo O.OfferNo AvgGrade

IS480 2222 3.4

IS480 1111 3.3

26008_ch04_p077-140.indd 103 3/2/18 8:30 PM

104   Part 2  Understanding Relational Databases

The conceptual evaluation process depicted in Figure 4.2 should help you understand
the meaning of most SELECT statements, but it will probably not help you to formu-
late queries. Query formulation involves a conversion from a problem statement into
a statement of a database language such as SQL as shown in Figure 4.3. In between
the problem statement and the database language statement, you convert the problem
statement into a database representation. Typically, the difficult part is to convert the
problem statement into a database representation. This conversion involves a detailed
knowledge of a database especially tables, relationships, and data types along with
careful attention to possible ambiguities in a problem statement. The critical questions
presented in this section provide a structured process to convert a problem statement
into a database representation.

4.4  CRITICAL QUESTIONS FOR QUERY FORMULATION

Critical Questions for Query Formulation: provide a checklist to convert a problem
statement into a database representation consisting of tables, columns, table connec-
tion operations, and row grouping requirements.

In converting from the problem statement into a database representation, you should
answer three critical questions. Table 4-20 summarizes the analysis of the critical
questions.

What tables are needed? For the first question, you should match data require-
ments to columns and tables. You should identify columns for output and conditions
as well as intermediate tables to connect other tables. For example, if you want to join
the Student and Offering tables, the Enrollment table should be included because it pro-
vides a connection to these tables. The Student and Offering tables cannot be combined
directly. All tables needed in the query should be listed in the FROM clause.

How are the tables combined? For the second question, most tables are combined
by a join operation. In Chapter 9, you will use the outer join, difference, and division
operators to combine tables. For now, you should concentrate on combining tables
with joins. You need to identify the matching columns for each join. In most joins, the
primary key of a parent table is matched with a foreign key of a related child table.
Occasionally, the primary key of the parent table contains multiple columns. In this
case, you need to match on all columns. In some situations, the matching columns do
not involve a primary key/foreign key combination. You can perform a join as long
as the matching columns have compatible data types. For example, when joining cus-
tomer tables from different databases, a common primary key may not exist. Joining
on other columns such as name, address, and so on may be necessary.

Does the output involve individual rows or groups of rows? For the third ques-
tion, you should look for computations involving aggregate functions in the problem
statement. For example, the problem “list the name and average grade of students”
contains an aggregate computation. Problems referencing an aggregate function indi-
cate that the output relates to groups of rows. Hence the SELECT statement requires
a GROUP BY clause. If the problem contains conditions with aggregate functions, a
HAVING clause should accompany the GROUP BY clause. For example, the problem

FIGURE 4.3
Query Formulation Process

Problem
Statement

Database
Representation

Database Language
Statement

26008_ch04_p077-140.indd 104 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   105

“list the offer number of course offerings with more than 30 students” needs a HAV-
ING clause with a condition involving the COUNT function.

After answering these questions, you are ready to convert the database representa-
tion into a database language statement. To help in this process, you should develop a
collection of statements for each kind of relational algebra operator using a database
that you understand well. For example, you should have statements for problems that
involve join operations, joins with grouping, and joins with grouping conditions. As you
increase your understanding of SQL, this conversion will become easy for most prob-
lems. For difficult problems such as those discussed in Section 4.5 and Chapter 9, relying
on similar problems may be necessary because difficult problems are not common.

TABLE 4-20
Summary of Critical
Questions for Query
Formulation

Question Analysis Tips

What tables are needed? Match columns to output data requirements and conditions to test. If tables
are not directly related, identify intermediate tables to provide a join path
between tables.

How are the tables com-
bined?

Most tables are combined using a primary key from a parent table to a
foreign key of a child table. More difficult problems may involve other join
conditions as well as other combining operators (outer join, difference, or
division).

Does the output involve
individual rows or groups
of rows?

Identify aggregate functions used in output data requirements and
conditions to test. A SELECT statement requires a GROUP BY clause if
aggregate functions are needed. If conditions involve aggregate functions,
the statement needs a HAVING clause.

4.5  REFINING QUERY FORMULATION SKILLS WITH EXAMPLES
Let’s apply your query formulation skills and knowledge of the SELECT statement to
more difficult problems. All problems in this section involve the parts of the SELECT
statement discussed in Sections 4.2 and 4.3. The problems involve more difficult
aspects such as joining more than two tables, grouping after joins of several tables,
joining a table to itself, and traditional set operators.

4.5.1  Joining Multiple Tables with the Cross Product Style
We begin with a number of join problems that are formulated using cross product
operations in the FROM clause. This way to formulate joins is known as the cross
product style because of the implied cross product operations. Query language com-
pilers recognize the join conditions in the WHERE clause so cross product operations
are not actually performed. The next subsection uses join operations in the FROM
clause to contrast the ways that joins can be expressed.

In Example 4.30, some student rows appear more than once in the result. For
example, Roberto Morales appears twice. Because of the 1-M relationship between the
Student and Enrollment tables, a Student row can match multiple Enrollment rows.

Cross Product Style
lists tables in the FROM
clause and join conditions
in the WHERE clause. The
cross product style is easy
to read but does not support
outer join operations.

Example 4.30

List the student name, offering number, and grade of students who have a grade ≥ 3.5 in a course offering.

SELECT StdFirstName, StdLastName, OfferNo, EnrGrade
 FROM Student, Enrollment
 WHERE EnrGrade >= 3.5
 AND Student.StdNo = Enrollment.StdNo

Joining Two Tables

26008_ch04_p077-140.indd 105 3/2/18 8:30 PM

106   Part 2  Understanding Relational Databases

Examples 4.31 and 4.32 depict duplicate elimination after a join. In Example 4.31, some
students appear more than once. Because only columns from the Student table are used
in the output, duplicate rows appear. When you join a parent table to a child table and
show only columns from the parent table in the result, duplicate rows appear in the
result if a parent row matches with more than one child row. To eliminate duplicate
rows, you should use the DISTINCT keyword as shown in Example 4.32.

Example 4.32

List the student names (without duplicates) that have a grade ≥ 3.5 in a course offering.

SELECT DISTINCT StdFirstName, StdLastName
 FROM Student, Enrollment
 WHERE EnrGrade >= 3.5
 AND Student.StdNo = Enrollment.StdNo

Join with Duplicates Removed

Example 4.31

List the names of students who have a grade ≥ 3.5 in a course offering.

SELECT StdFirstName, StdLastName
 FROM Student, Enrollment
 WHERE EnrGrade >= 3.5
 AND Student.StdNo = Enrollment.StdNo

Join with Duplicates

StdFirstName StdLastName

CANDY KENDALL

MARIAH DODGE

HOMER WELLS

ROBERTO MORALES

BOB NORBERT

ROBERTO MORALES

MARIAH DODGE

LUKE BRAZZI

BOB NORBERT

WILLIAM PILGRIM

StdFirstName StdLastName OfferNo EnrGrade

CANDY KENDALL 1234 3.5

MARIAH DODGE 1234 3.8

HOMER WELLS 4321 3.5

ROBERTO MORALES 4321 3.5

BOB NORBERT 5679 3.7

ROBERTO MORALES 5679 3.8

MARIAH DODGE 6666 3.6

LUKE BRAZZI 7777 3.7

BOB NORBERT 9876 3.5

WILLIAM PILGRIM 9876 4.0

26008_ch04_p077-140.indd 106 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   107

Examples 4.33 through 4.36 depict problems involving more than two tables. In
these problems, it is important to identify the tables in the FROM clause. You should
examine conditions to test as well as columns in the result. In Example 4.35, the Enroll-
ment table is needed even though it does not supply columns in the result or conditions
to test. The Enrollment table is needed to connect the Student table with the Offering
table. Example 4.36 extends Example 4.35 with details from the Course table. All five
tables are needed to supply outputs, to test conditions, and to connect other tables.

Example 4.34

Joining Three Tables with Columns
from Only Two Tables
List Leonard Vince’s teaching schedule in fall 2016. For each course, list the offering number, course number, number of units,

days, location, and time.

SELECT OfferNo, Offering.CourseNo, CrsUnits, OffDays,
 OffLocation, OffTime
 FROM Faculty, Course, Offering
 WHERE Faculty.FacNo = Offering.FacNo
 AND Offering.CourseNo = Course.CourseNo
 AND OffYear = 2016 AND OffTerm = 'FALL'
 AND FacFirstName = 'LEONARD'
 AND FacLastName = 'VINCE'

Example 4.33

Joining Three Tables with Columns
from Only Two Tables
List the student name and the offering number in which the grade is greater than 3.7 and the offering is given in fall 2016.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
 FROM Student, Enrollment, Offering
 WHERE Student.StdNo = Enrollment.StdNo
 AND Offering.OfferNo = Enrollment.OfferNo
 AND OffYear = 2016 AND OffTerm = 'FALL'
 AND EnrGrade >= 3.7

StdFirstName StdLastName OfferNo

MARIAH DODGE 1234

StdFirstName StdLastName

BOB NORBERT

CANDY KENDALL

HOMER WELLS

LUKE BRAZZI

MARIAH DODGE

ROBERTO MORALES

WILLIAM PILGRIM

26008_ch04_p077-140.indd 107 3/2/18 8:30 PM

108   Part 2  Understanding Relational Databases

OfferNo CourseNo CrsUnits OffDays OffLocation OffTime

1234 IS320 4 MW BLM302 10:30 AM

4321 IS320 4 TTH BLM214 3:30 PM

Example 4.35

List Bob Norbert’s course schedule in spring 2017. For each course, list the offering number, course number, days, location, time,

and faculty name.

SELECT Offering.OfferNo, Offering.CourseNo, OffDays,
 OffLocation, OffTime, FacFirstName, FacLastName
 FROM Faculty, Offering, Enrollment, Student
 WHERE Offering.OfferNo = Enrollment.OfferNo
 AND Student.StdNo = Enrollment.StdNo
 AND Faculty.FacNo = Offering.FacNo
 AND OffYear = 2017 AND OffTerm = 'SPRING'
 AND StdFirstName = 'BOB'
 AND StdLastName = 'NORBERT'

Joining Four Tables

OfferNo CourseNo OffDays OffLocation OffTime FacFirstName FacLastName

5679 IS480 TTH BLM412 3:30 PM CRISTOPHER COLAN

9876 IS460 TTH BLM307 1:30 PM LEONARD FIBON

Example 4.36

List Bob Norbert’s course schedule in spring 2017. For each course, list the offering number, course number, days, location, time,

course units, and faculty name.

SELECT Offering.OfferNo, Offering.CourseNo, OffDays,
 OffLocation, OffTime, CrsUnits, FacFirstName,
 FacLastName
 FROM Faculty, Offering, Enrollment, Student, Course
 WHERE Faculty.FacNo = Offering.FacNo
 AND Offering.OfferNo = Enrollment.OfferNo
 AND Student.StdNo = Enrollment.StdNo
 AND Offering.CourseNo = Course.CourseNo
 AND OffYear = 2017 AND OffTerm = 'SPRING'
 AND StdFirstName = 'BOB'
 AND StdLastName = 'NORBERT'

Joining Five Tables

OfferNo CourseNo OffDays OffLocation OffTime CrsUnits FacFirstName FacLastName

5679 IS480 TTH BLM412 3:30 PM 4 CRISTOPHER COLAN

9876 IS460 TTH BLM307 1:30 PM 4 LEONARD FIBON

26008_ch04_p077-140.indd 108 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   109

Example 4.37 demonstrates another way to combine the Student and Faculty tables.
In Example 4.35, you saw it was necessary to combine the Student, Enrollment, Offering,
and Faculty tables to find faculty teaching a specified student. To find students who are
on the faculty (perhaps teaching assistants), the tables can be joined directly. Combin-
ing the Student and Faculty tables in this way is similar to an intersection operation.
However, intersection cannot actually be performed here because the Student and Fac-
ulty tables are not union compatible.

Example 4.37

Joining Two Tables without Matching
on a Primary and Foreign Key
List students who are on the faculty. Include all student columns in the result.

SELECT Student.*
 FROM Student, Faculty
 WHERE StdNo = FacNo

StdNo StdFirstName StdLastName StdCity StdState StdMajor StdClass StdGPA StdZip

876-54-3210 CRISTOPHER COLAN SEATTLE WA IS SR 4.00 98114-1332

A minor point about Example 4.37 is the use of the * after the SELECT keyword.
Prefixing the * with a table name and period indicates all columns of the specified table
are in the result. Using an * without a table name prefix indicates that all columns from
all FROM tables are in the result.

4.5.2  Joining Multiple Tables with the Join Operator Style
As demonstrated in Section 4.2, join operations can be expressed directly in the FROM
clause using the INNER JOIN and ON keywords. This join operator style can be
used to combine any number of tables. To ensure that you are comfortable using this
style, this subsection presents examples of multiple table joins beginning with a two-
table join in Example 4.38. Note that these examples do not execute in older Oracle
versions (before 9i).

Join Operator Style
lists join operations in
the FROM clause using
the INNER JOIN and ON
keywords. The join operator
style can be somewhat dif-
ficult to read for statements
with many join operations,
but it supports outer join
operations as shown in
Chapter 9.

Example 4.38 (Access and Oracle)

Join Two Tables Using the Join
Operator Style
Retrieve the name, city, and grade of students who have a high grade (greater than or equal to 3.5) in a course offering.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
 FROM Student INNER JOIN Enrollment
 ON Student.StdNo = Enrollment.StdNo
 WHERE EnrGrade >= 3.5

26008_ch04_p077-140.indd 109 3/2/18 8:30 PM

110   Part 2  Understanding Relational Databases

The join operator style can be extended to handle any number of tables. Think of
the join operator style as writing a mathematical formula with lots of parentheses. To
add another part to the formula, you need to add the variable, operator, and another
level of parentheses. For example, with the formula (X + Y) * Z, you can add another
operation as ((X + Y) * Z) / W. This same principle can be applied with the join opera-
tor style. Examples 4.39 and 4.40a extend Example 4.38 with additional conditions
that need other tables. In both examples, another INNER JOIN is added to the end of
the previous INNER JOIN operations. The INNER JOIN could also have been added
at the beginning or middle if desired. The ordering of INNER JOIN operations is not
important.

StdFirstName StdLastName StdCity EnrGrade

CANDY KENDALL TACOMA 3.5

MARIAH DODGE SEATTLE 3.8

HOMER WELLS SEATTLE 3.5

ROBERTO MORALES SEATTLE 3.5

BOB NORBERT BOTHELL 3.7

ROBERTO MORALES SEATTLE 3.8

MARIAH DODGE SEATTLE 3.6

LUKE BRAZZI SEATTLE 3.7

BOB NORBERT BOTHELL 3.5

WILLIAM PILGRIM BOTHELL 4.0

Example 4.39 (Access and Oracle)

Join Three Tables using the
Join Operator Style
Retrieve the name, city, and grade of students who have a high grade (greater than or equal 3.5) in a course offered in fall

2016.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
 FROM (Student INNER JOIN Enrollment
 ON Student.StdNo = Enrollment.StdNo)
 INNER JOIN Offering
 ON Offering.OfferNo = Enrollment.OfferNo
 WHERE EnrGrade >= 3.5 AND OffTerm = 'FALL'
 AND OffYear = 2016

StdFirstName StdLastName StdCity EnrGrade

CANDY KENDALL TACOMA 3.5

MARIAH DODGE SEATTLE 3.8

HOMER WELLS SEATTLE 3.5

ROBERTO MORALES SEATTLE 3.5

26008_ch04_p077-140.indd 110 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   111

Parentheses makes the join operator style cumbersome. Because the order of exe-
cuting join operations does not matter, parentheses should not be required. Oracle
does not requ8ire parentheses, consistent with the definition of the join operator. How-
ever, Microsoft Access SQL still requires parentheses, inconsistent with the definition
of the join operator. Example 4.40b is identical to Example 4.40a except for the lack of
parentheses in the FROM clause.

Example 4.40a (Access and Oracle)

Join Four tables Using the
Join Operator Style
Retrieve the name, city, and grade of students who have a high grade (greater than or equal to 3.5) in a course offered in fall

2016 taught by Leonard Vince.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
 FROM ((Student INNER JOIN Enrollment
 ON Student.StdNo = Enrollment.StdNo)
 INNER JOIN Offering
 ON Offering.OfferNo = Enrollment.OfferNo)
 INNER JOIN Faculty ON Faculty.FacNo = Offering.FacNo
 WHERE EnrGrade >= 3.5 AND OffTerm = 'FALL'
 AND OffYear = 2016 AND FacFirstName = 'LEONARD'
 AND FacLastName = 'VINCE'

StdFirstName StdLastName StdCity EnrGrade

CANDY KENDALL TACOMA 3.5

MARIAH DODGE SEATTLE 3.8

HOMER WELLS SEATTLE 3.5

ROBERTO MORALES SEATTLE 3.5

Example 4.40b (Oracle only)

Join Four Tables using the Join Operator
Style without Parentheses. This statement
generates a syntax error in Access.
Retrieve the name, city, and grade of students who have a high grade (greater than or equal to 3.5) in a course offered in fall

2016 taught by Leonard Vince.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
 FROM Student INNER JOIN Enrollment
 ON Student.StdNo = Enrollment.StdNo
 INNER JOIN Offering
 ON Offering.OfferNo = Enrollment.OfferNo
 INNER JOIN Faculty ON Faculty.FacNo = Offering.FacNo
 WHERE EnrGrade >= 3.5 AND OffTerm = 'FALL'
 AND OffYear = 2016 AND FacFirstName = 'LEONARD'
 AND FacLastName = 'VINCE'

The cross product and join operator styles can be mixed as demonstrated in Exam-
ple 4.41. In most cases, it is preferable to use only one style. Mixing styles can confuse
the reader of the statement. You may also forget the join conditions in the WHERE
clause leading to excessive resource consumption and many extra rows in the result.

26008_ch04_p077-140.indd 111 3/2/18 8:30 PM

112   Part 2  Understanding Relational Databases

Example 4.41 (Access and Oracle)

Combine the Cross Product
and Join Operator Styles
Retrieve the name, city, and grade of students who have a high grade (greater than or equal to 3.5) in a course offered in fall

2016 taught by Leonard Vince (same result as Example 4.33).

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
 FROM ((Student INNER JOIN Enrollment
 ON Student.StdNo = Enrollment.StdNo)
 INNER JOIN Offering
 ON Offering.OfferNo = Enrollment.OfferNo),
 Faculty
 WHERE EnrGrade >= 3.5 AND OffTerm = 'FALL'
 AND OffYear = 2016 AND FacFirstName = 'LEONARD'
 AND FacLastName = 'VINCE'
 AND Faculty.FacNo = Offering.FacNo

The choice between the cross product and the join operator styles is largely a mat-
ter of preference. In the cross product style, it is easy to see the tables in the SELECT
statement. The cross product style has been criticized because users sometimes forget
a join condition in the WHERE clause leading to a disk intensive cross product opera-
tion. For multiple joins, the join operator style can be difficult to read because of nested
parentheses. The primary advantage of the join operator style is that you can formu-
late queries involving outer joins as described in Chapter 9.

You should be comfortable reading both join styles even if you only write SQL
statements using one style. You may need to maintain statements written with both
styles. In addition, some visual query languages generate code in one of the styles. For
example, Query Design, the visual query language of Microsoft Access, generates code
in the join operator style.

4.5.3  Self-Joins and Multiple Joins between Two Tables
Example 4.42 demonstrates a self-join, a join involving a table with itself. A self-join
is necessary to find relationships among rows of the same table. The foreign key, Fac-
Supervisor, shows relationships among Faculty rows. To find the supervisor name of
a faculty member, match on the FacSupervisor column with the FacNo column. You
should formulate the statement imagining that you are working with two copies of the
Faculty table. One copy plays the role of the subordinate, while the other copy plays
the role of the superior. In SQL, a self-join requires alias names (Subr and Supr) in the
FROM clause to distinguish between the two roles or copies.

Self-Join
a join between a table and
itself (two copies of the same
table). Self-joins are useful
for finding relationships
among rows of the same
table.

Example 4.42

List faculty members who have a higher salary than their supervisor. List the faculty number, name, and salary of the faculty and

supervisor.

SELECT Subr.FacNo, Subr.FacLastName, Subr.FacSalary,
 Supr.FacNo, Supr.FacLastName, Supr.FacSalary
 FROM Faculty Subr, Faculty Supr
 WHERE Subr.FacSupervisor = Supr.FacNo
 AND Subr.FacSalary > Supr.FacSalary

Self-join

26008_ch04_p077-140.indd 112 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   113

Problems involving self-joins can be difficult to understand. If you are having
trouble understanding Example 4.42, use the conceptual evaluation process to help.
Start with a small Faculty table. Copy this table and use the names Subr and Supr to
distinguish between the two copies. Join the two tables over Subr.FacSupervisor and
Supr.FacNo. If you need, derive the join using a cross product operation. You should
be able to see that each result row in the join shows a subordinate and supervisor pair.

Problems involving self-referencing (unary) relationships are part of hierarchical
queries. In hierarchical queries, a table can be visualized as a tree structure in which
every row has at most one parent row. For example, the Faculty table has a structure
showing an organization hierarchy. At the top, the college dean resides. At the bottom,
faculty members without subordinates reside. Similar structures apply to the chart of
accounts in accounting systems, part structures in manufacturing systems, and route
networks in transportation systems.

A more difficult problem than a self-join is to find all subordinates (direct or indi-
rect) in an organization hierarchy. This problem can be solved with the SELECT state-
ment shown in this chapter if the number of subordinate levels is known. One join
for each subordinate level is needed. Without knowing the number of subordinate
levels, this problem cannot be done in SQL-92 although it can be solved in SQL:2016
using recursive common table expressions or proprietary SQL extensions. In SQL-92,
tree-structured queries can be solved by using SQL inside a programming language.
Chapter 9 provides details about formulation of hierarchical queries using both recur-
sive common table expressions and proprietary Oracle SQL extensions.

Example 4.43 shows another difficult join problem. This problem involves two joins
between the same two tables (Offering and Faculty). Alias table names (O1 and O2) are
needed to distinguish between the two copies of the Offering table used in the statement.

Subr.FacNo Subr.FacLastName Subr.FacSalary Supr.FacNo Supr.FacLastName Supr.FacSalary

987-65-4321 MILLS 75000.00 765-43-2109 MACON 65000.00

Example 4.43

More Than One Join between
Tables using Alias Table Names
List the names of faculty members and the course number for which the faculty member teaches the same course number as his

or her supervisor in 2017.

SELECT FacFirstName, FacLastName, O1.CourseNo
 FROM Faculty, Offering O1, Offering O2
 WHERE Faculty.FacNo = O1.FacNo
 AND Faculty.FacSupervisor = O2.FacNo
 AND O1.OffYear = 2017 AND O2.OffYear = 2017
 AND O1.CourseNo = O2.CourseNo

FacFirstName FacLastName CourseNo

LEONARD VINCE IS320

LEONARD FIBON IS320

If this problem is too difficult, you should use the conceptual evaluation process
(Figure 4.2) with sample tables to gain insight. Perform a join between the sample Fac-
ulty and Offering tables, then join this result to another copy of Offering (O2) matching

26008_ch04_p077-140.indd 113 3/2/18 8:30 PM

114   Part 2  Understanding Relational Databases

FacSupervisor with O2.FacNo. In the resulting table, select the rows that have matching
course numbers and year equal to 2017.

4.5.4  Combining Joins and Grouping
Example 4.44 demonstrates the reason it is sometimes necessary to group on multiple
columns. After studying Example 4.44, you might be confused about the necessity
to group on both OfferNo and CourseNo. One simple explanation is that any col-
umn appearing in a SELECT list must be either a grouping column or an aggregrate
expression. However, this explanation does not quite tell the entire story. Grouping
on OfferNo alone produces the same values for the computed column (NumStudents)
because OfferNo is the primary key. Including non-unique columns such as CourseNo
adds information to each result row but does not change the aggregate calculations. If
you do not understand this point, use sample tables to demonstrate it. When evaluat-
ing your sample tables, remember that joins occur before grouping as indicated in the
conceptual evaluation process.

Example 4.44

List the course number, the offering number, and the number of students enrolled. Only include courses offered in spring 2017.

SELECT CourseNo, Enrollment.OfferNo,
 Count(*) AS NumStudents
 FROM Offering, Enrollment
 WHERE Offering.OfferNo = Enrollment.OfferNo
 AND OffYear = 2017 AND OffTerm = 'SPRING'
 GROUP BY Enrollment.OfferNo, CourseNo

Join with Grouping on Multiple Columns

CourseNo OfferNo NumStudents

FIN480 7777 3

IS460 9876 7

IS480 5679 6

Example 4.45 demonstrates another problem involving joins and grouping. An
important part of this problem is the need for the Student table and the HAVING con-
dition. They are needed because the problem statement refers to an aggregate function
involving the Student table.

Example 4.45

List the course number, offer number, and average student GPA for course offerings taught in fall 2016 in which the average

GPA is greater than 3.0.

SELECT CourseNo, Enrollment.OfferNo,
 Avg(StdGPA) AS AvgGPA
 FROM Student, Offering, Enrollment
 WHERE Offering.OfferNo = Enrollment.OfferNo
 AND Enrollment.StdNo = Student.StdNo
 AND OffYear = 2016 AND OffTerm = 'FALL'
 GROUP BY CourseNo, Enrollment.OfferNo
 HAVING Avg(StdGPA) > 3.0

Joins, grouping, and a grouping condition

26008_ch04_p077-140.indd 114 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   115

Example 4.46 demonstrates a problem involving grouping on a computed col-
umn, the hiring year of the faculty. This problem requires a different formulation in
Access and Oracle because the functions to extract the year component (year func-
tion in Access and to_char function in Oracle) are different. In both formulations, the
grouping column must be the expression, not the result column name (FacHireYear).
You will get a syntax error if the result column name is used instead of the expression.

CourseNo OfferNo AvgGPA

IS320 1234 3.23

IS320 4321 3.03

Example 4.46 (Access)

List the hiring year, offering year, and number of course offerings taught by faculty hired after 2003. The year function extracts

the year component of a date column.

SELECT year(FacHireDate) AS FacHireYear, OffYear,
 COUNT(*) as NumCourses
 FROM Offering, Faculty
 WHERE Offering.FacNo = Faculty.FacNo
 AND year(FacHireDate) > 2003
 GROUP BY year(FacHireDate), OffYear

Joins and grouping on a computed column

FacHireYear OffYear NumCourses

2004 2016 2

2004 2017 1

2005 2017 1

2006 2017 2

2008 2017 1

2009 2017 2

Example 4.46 (Oracle)

List the hiring year, offering year, and number of course offerings taught by faculty hired after 2003. The to_char function

extracts the year component of a date column using the “YYYY” format string.

SELECT to_number(to_char(FacHireDate, 'YYYY'))
 AS FacHireYear, OffYear, COUNT(*) as NumCourses
 FROM Offering, Faculty
 WHERE Offering.FacNo = Faculty.FacNo
 AND to_number(to_char(FacHireDate, 'YYYY')) > 2003
 GROUP BY to_number(to_char(FacHireDate, 'YYYY')),
 OffYear

Joins and grouping on a computed column

4.5.5  Traditional Set Operators in SQL
In SQL, you can directly use the traditional set operators with the UNION, INTER-
SECT, and EXCEPT keywords. Some DBMSs including Microsoft Access do not sup-
port the INTERSECT and EXCEPT keywords. As with relational algebra, you must

26008_ch04_p077-140.indd 115 3/2/18 8:30 PM

116   Part 2  Understanding Relational Databases

ensure that the tables are union compatible. In SQL, you can use a SELECT statement
to make tables compatible by listing only compatible columns. Examples 4.47 through
4.49 demonstrate set operations on column subsets of the Faculty and Student tables.
The columns have been renamed to avoid confusion.

Example 4.48 (Oracle only)

Show teaching assistants, graduate students who also teach courses so they appear in both Student and Faculty tables. Only

show the common columns in the result.

SELECT FacNo AS PerNo, FacFirstName AS FirstName,
 FacLastName AS LastName, FacCity AS City,
 FacState AS State
 FROM Faculty
 INTERSECT
SELECT StdNo AS PerNo, StdFirstName AS FirstName,
 StdLastName AS LastName, StdCity AS City,
 StdState AS State
 FROM Student

INTERSECT Query

Example 4.47

Show all faculty and students. Only show the common columns in the result.

SELECT FacNo AS PerNo, FacFirstName AS FirstName,
 FacLastName AS LastName, FacCity AS City,
 FacState AS State
 FROM Faculty
	 UNION
SELECT StdNo AS PerNo, StdFirstName AS FirstName,
 StdLastName AS LastName, StdCity AS City,
 StdState AS State
 FROM Student

UNION Query

PerNo FirstName LastName City State

098765432 LEONARD VINCE SEATTLE WA

123456789 HOMER WELLS SEATTLE WA

124567890 BOB NORBERT BOTHELL WA

234567890 CANDY KENDALL TACOMA WA

345678901 WALLY KENDALL SEATTLE WA

456789012 JOE ESTRADA SEATTLE WA

543210987 VICTORIA EMMANUEL BOTHELL WA

567890123 MARIAH DODGE SEATTLE WA

654321098 LEONARD FIBON SEATTLE WA

678901234 TESS DODGE REDMOND WA

765432109 NICKI MACON BELLEVUE WA

789012345 ROBERTO MORALES SEATTLE WA

876543210 CRISTOPHER COLAN SEATTLE WA

890123456 LUKE BRAZZI SEATTLE WA

901234567 WILLIAM PILGRIM BOTHELL WA

987654321 JULIA MILLS SEATTLE WA

26008_ch04_p077-140.indd 116 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   117

By default, duplicate rows are removed in the results of SQL statements with the
UNION, INTERSECT, and EXCEPT (MINUS) keywords. If you want to retain dupli-
cate rows, use the ALL keyword after the operator. For example, the UNION ALL
keyword performs a union operation but does not remove duplicate rows.

PerNo FirstName LastName City State

876543210 CRISTOPHER COLAN SEATTLE WA

Example 4.49 (Oracle only)

Show faculty who are not students (faculty who are not graduate students). Only show the common columns in the result. Oracle

uses the MINUS keyword instead of the EXCEPT keyword used in SQL:2016.

SELECT FacNo AS PerNo, FacFirstName AS FirstName,
 FacLastName AS LastName, FacCity AS City,
 FacState AS State
 FROM Faculty
 MINUS
SELECT StdNo AS PerNo, StdFirstName AS FirstName,
 StdLastName AS LastName, StdCity AS City,
 StdState AS State
 FROM Student

Difference Query

PerNo FirstName LastName City State

098765432 LEONARD VINCE SEATTLE WA

543210987 VICTORIA EMMANUEL BOTHELL WA

654321098 LEONARD FIBON SEATTLE WA

765432109 NICKI MACON BELLEVUE WA

987654321 JULIA MILLS SEATTLE WA

4.6  SQL MODIFICATION STATEMENTS
The modification statements support adding new rows (INSERT), changing columns
in one or more rows (UPDATE), and deleting one or more rows (DELETE). Although
well designed and powerful, they are not as widely used as the SELECT statement
because data entry forms are easier to use for most users.

The INSERT statement has two formats as demonstrated in Examples 4.50 and
4.51. In the first format, one row at a time can be added. You specify values for each
column with the VALUES clause. You must format the constant values appropriately
for each column. Refer to the documentation of your DBMS for details about specify-
ing constants, especially string and date constants. Specifying a null value for a col-
umn is also not standard across DBMSs. In some DBMSs, you simply omit the column
name and the value. In other systems, you use a particular symbol for a null value. Of
course, you must be careful that the table definition permits null values for the column
of interest. Otherwise, the INSERT statement will be rejected.

26008_ch04_p077-140.indd 117 3/2/18 8:30 PM

118   Part 2  Understanding Relational Databases

The second format of the INSERT statement supports addition of a set of records
as shown in Example 4.51. Using the SELECT statement inside the INSERT statement,
you can specify any derived set of rows. You can use the second format when you
want to create temporary tables for specialized processing.

Example 4.50

Insert a row into the Student table supplying values for all columns.

INSERT INTO Student
 (StdNo, StdFirstName, StdLastName,
 StdCity, StdState, StdZip, StdClass, StdMajor, StdGPA)
 VALUES ('999999999', 'JOE', 'STUDENT', 'SEATAC',
 'WA', '98042-1121', 'FR', 'IS', 0.0)

Single Row Insert

Example 4.51

Assume a new table ISStudent has been previously created. ISStudent has the same columns as Student. This INSERT statement

copies rows from Student into ISStudent.

INSERT INTO ISStudent
 SELECT * FROM Student WHERE StdMajor = 'IS'

Multiple Row Insert

Example 4.52

Give faculty members in the MS department a 10 percent raise. Four rows are updated.

UPDATE Faculty
 SET FacSalary = FacSalary * 1.1
 WHERE FacDept = 'MS'

Single Column Update

Example 4.53

Change the major and class of Homer Wells. One row is updated.

UPDATE Student
 SET StdMajor = 'ACCT', StdClass = 'SO'
 WHERE StdFirstName = 'HOMER'
 AND StdLastName = 'WELLS'

Update Multiple Columns

The UPDATE statement allows one or more rows to be changed, as shown in
Examples 4.52 and 4.53. Any number of columns can be changed, although typically
only one column at a time is changed. When changing the primary key, update rules
on referenced rows may not allow the operation.

26008_ch04_p077-140.indd 118 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   119

The DELETE statement allows one or more rows to be removed, as shown in
Examples 4.54 and 4.55. DELETE is subject to the rules on referenced rows. For exam-
ple, a Student row cannot be deleted if related Enrollment rows exist and the deletion
action is restrict.

Example 4.54

Delete all IS majors who are seniors. Three rows are deleted.

DELETE FROM Student
 WHERE StdMajor = 'IS' AND StdClass = 'SR'

Delete Selected Rows

Example 4.55

Delete all rows in the ISStudent table. This example assumes that the ISStudent table has been previously created.

DELETE FROM ISStudent

Delete All Rows in a Table.

Sometimes it is useful for the condition inside the WHERE clause of an UPDATE
or DELETE statement to reference rows from another table. Microsoft Access supports
the join operator style to combine tables as shown in Examples 4.56 and 4.57. You can-
not use the cross product style inside an UPDATE or DELETE statement. Chapter 9
shows another way to reference other tables in an UPDATE or DELETE statement that
most DBMSs (including Access and Oracle) support.

Example 4.56 (Access only)

UPDATE Statement Using
the Join Operator Style
Update the location of offerings taught by Leonard Vince in 2016 to BLM412. Two Offering rows are updated.

UPDATE Offering INNER JOIN Faculty
 ON Offering.FacNo = Faculty.FacNo
 SET OffLocation = 'BLM412'
 WHERE OffYear = 2016 AND FacFirstName = 'LEONARD'
 AND FacLastName = 'VINCE'

Example 4.57 (Access only)

DELETE Statement Using
the Join Operator Style
Delete offerings taught by Leonard Vince. Three Offering rows are deleted. In addition, this statement deletes related rows in

the Enrollment table because the ON DELETE clause is set to CASCADE.

DELETE Offering.*
 FROM Offering INNER JOIN Faculty
 ON Offering.FacNo = Faculty.FacNo
 WHERE FacFirstName = 'LEONARD'
 AND FacLastName = 'VINCE'

26008_ch04_p077-140.indd 119 3/2/18 8:30 PM

120   Part 2  Understanding Relational Databases

To develop query formulation skills, this chapter presented many example statements
and guidelines. You should apply these guidelines and use these example statements
to learn SQL coding patterns. Example statements are useful to help you learn correct
syntax as well as coding patterns for complex query formulation problems especially
problems in section 4.5 and Chapter 9.

In many years of teaching query formulation, the author has found that correct
examples and guidelines are not sufficient. Students also need awareness of incor-
rect examples with various kinds of errors. Awareness of query formulation errors
can help avoid errors as well as diagnose incorrect statements, reducing frustration
and increasing confidence. Since even skilled professionals make errors, you should
remain vigilant about query formulation errors as your skills progress.

Table 4-21 summarizes major types of errors. Syntax errors are the most frustrat-
ing because your statement will not execute. Sometimes error messages from SQL
compilers are difficult to understand especially if a statement contains multiple syntax
errors. Redundancy and semantic errors are subtle because an SQL compiler does not
indicate an error. Errors of redundancy have least severity as the result contains cor-
rect rows but extra resource consumption occurs. Semantic errors are more severe as
the result contains incorrect rows, either too many rows or missing rows. Missing a
join condition is the worst error because of excessive resource consumption. A missing
join condition involves a cross product operation instead of a join. For large tables such
as student and enrollment tables for a major university, a missing join condition can
cause hours of excessive query execution time.

The remainder of this section presents examples of each type of error with identi-
fication of each error. You should try to find errors before seeing error identifications
in Table 4-22. The examples begin with syntax errors and progress to redundancy and
semantic errors.

4.7  QUERY FORMULATION ERRORS AND CODING PRACTICES

TBLE 4-21
Summary of Major Error
Types in Query Formulation

Error Type Typical Errors Severity

Syntax Missing table, unqualified column name, misspelled
keyword, row condition in HAVING clause, missing
column in GROUP BY clause, aggregate function in
a WHERE condition

No execution with sometimes
confusing error message

Redundancy Extra table, unneeded GROUP BY clause Execution with correct rows but
extra resource consumption

Semantic Missing row condition, missing parentheses, incor-
rect condition, missing join condition

Execution but incorrect rows
in result; Sometimes excessive
resource consumption

Example 4.58

List the offer number, course number, and faculty number for course offerings scheduled in fall 2016. The Oracle SQL

compiler indicates “FROM keyword not found where expected”. The Access SQL compiler indicates “Syntax error (missing

operator) …”.

SELECT OfferNo, CourseNo, FacNo
 FROMM Offering
 WHERRE OffTerm = 'FALL' AND OffYear = 2016

Misspelled Keywords

26008_ch04_p077-140.indd 120 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   121

Example 4.59

List the student name and offering number in which the grade is greater than 3.7 and the offering is given in fall 2016. The

Oracle SQL compiler indicates “column ambiguously defined”. The Access SQL compiler indicates “The specified field ‘OfferNo’

could refer to more than one table …”.

SELECT StdFirstName, StdLastName, OfferNo
 FROM Student, Enrollment, Offering
 WHERE Student.StdNo = Enrollment.StdNo
 AND Offering.OfferNo = Enrollment.OfferNo
 AND OffYear = 2016 AND OffTerm = 'FALL'
 AND EnrGrade >= 3.7

Unqualified Column Name

Example 4.60

List the student name and the offering number in which the grade is greater than 3.7 and the offering occurred in fall 2016. The

Oracle SQL compiler indicates “EnrGrade; invalid identifier. The Access SQL compiler generates a window asking for a parameter

value.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
 FROM Student, Offering
 WHERE Student.StdNo = Enrollment.StdNo
 AND Offering.OfferNo = Enrollment.OfferNo
 AND OffYear = 2016 AND OffTerm = 'FALL'
 AND EnrGrade >= 3.7

Missing Table

Example 4.61

List the course number, offer number, and average student GPA for course offerings taught in fall 2016 in which the average

GPA is greater than 3.0. The Oracle SQL compiler generates a syntax error indicating, “not a GROUP BY expression”. The Access

SQL compiler generates a syntax error indicating, “Your query does not include the specified expression as part of an aggregate

function”.

SELECT CourseNo, Enrollment.OfferNo,
 Avg(StdGPA) AS AvgGPA
 FROM Student, Offering, Enrollment
 WHERE Offering.OfferNo = Enrollment.OfferNo
 AND Enrollment.StdNo = Student.StdNo
 AND OffTerm = 'FALL'
 GROUP BY CourseNo, Enrollment.OfferNo
 HAVING Avg(StdGPA) > 3.0 AND OffYear = 2016

Row Condition in HAVING Clause

26008_ch04_p077-140.indd 121 3/2/18 8:30 PM

122   Part 2  Understanding Relational Databases

Example 4.62

List the course number, offer number, and average student GPA for course offerings taught in fall 2016 in which the average GPA is

greater than 3.0. The Oracle SQL compiler generates a syntax error indicating, “not a GROUP BY expression”. The Access SQL com-

piler generates a syntax error indicating, “Your query does not include the specified expression as part of an aggregate function”.

SELECT CourseNo, Enrollment.OfferNo,
 Avg(StdGPA) AS AvgGPA
 FROM Student, Offering, Enrollment
 WHERE Offering.OfferNo = Enrollment.OfferNo
 AND Enrollment.StdNo = Student.StdNo
 AND OffTerm = 'FALL' AND OffYear = 2016
 GROUP BY CourseNo
 HAVING Avg(StdGPA) > 3.0

Missing Column in GROUP BY Clause

Example 4.63

List the student name and the offering number in which the grade is greater than 3.7 and the offering is given in fall 2016. The

statement executes with the correct rows in the result.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
 FROM Student, Enrollment, Offering, Course
 WHERE Student.StdNo = Enrollment.StdNo
 AND Offering.OfferNo = Enrollment.OfferNo
 AND Course.CourseNo = Offering.CourseNo
 AND OffYear = 2016 AND OffTerm = 'FALL'
 AND EnrGrade >= 3.7

Extra Table

Example 4.64

List the student name and the offering number in which the grade is greater than 3.7 and the offering is given in fall 2016. The

GROUP BY clause causes extra resource consumption.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
 FROM Student, Enrollment, Offering
 WHERE Student.StdNo = Enrollment.StdNo
 AND Offering.OfferNo = Enrollment.OfferNo
 AND OffYear = 2016 AND OffTerm = 'FALL'
 AND EnrGrade >= 3.7
GROUP BY StdFirstName, StdLastName, Enrollment.OfferNo

Unnecessary GROUP BY Clause

Example 4.65

List the offer number, course number, and faculty number for course offerings scheduled in spring or summer of 2016. Note that

the AND operator takes precedence over the OR operator.

SELECT OfferNo, CourseNo, FacNo, OffYear, OffTerm
 FROM Offering
 WHERE OffTerm = 'SPRING' OR OffTerm = 'SUMMER'
 AND OffYear = 2016

Missing Parentheses

26008_ch04_p077-140.indd 122 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   123

Example 4.66

List the student name and the offering number in which the grade is greater than 3.7 and the offering is given in fall 2016.

The result contains extra Enrollment rows that do not match Offering rows because of the missing join condition. You should

remember that joining three tables typically requires two join conditions.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
 FROM Student, Enrollment, Offering
 WHERE Student.StdNo = Enrollment.StdNo
 AND OffYear = 2016 AND OffTerm = 'FALL'
 AND EnrGrade >= 3.7

Missing Join Condition

Example 4.67

List the student name and the offering number in which the grade is greater than 3.7 and the offering is given in fall 2016. The

result only contains the correct set of rows because 2017 offerings do not occur in the fall term. If additional rows in fall term

of another year are added, the result rows will not be correct.

SELECT StdFirstName, StdLastName, Enrollment.OfferNo
 FROM Student, Enrollment, Offering
 WHERE Student.StdNo = Enrollment.StdNo
 AND Offering.OfferNo = Enrollment.OfferNo
 AND OffTerm = 'FALL'
 AND EnrGrade >= 3.7

Missing Condition

TABLE 4-22
Identification of Errors in
Examples

Example Errors Error Identification

4.58 Syntax with misspelled keywords FROMM and WHERRE misspelled

4.59 Syntax with unqualified column name OfferNo column needs table prefix.

4.60 Syntax with missing table name Enrollment table missing in FROM clause

4.61 Syntax with row condition in the
HAVING clause

OffYear = 2016 should be moved to the WHERE
clause.

4.62 Syntax with missing column in the
GROUP BY clause

OfferNo should be in the GROUP BY clause.

4.63 Redundancy with extra table Course table is not needed as it does not provide
columns or conditions. Since CourseNo is a required
foreign key, join does not ensure that Course exists.

4.64 Redundancy with unneeded GROUP
BY clause

GROUP BY clause not needed as statement does not
contain aggregate functions in result or conditions.

4.65 Semantic with missing parentheses Result contains extra rows. Parentheses should be
placed around (OffTerm = 'SPRING' OR OffTerm =
'SUMMER'). Always use parentheses when mixing
AND/OR operators.

4.66 Semantic with missing join condition Result contains incorrect rows. Excessive resource
consumption with cross product operation combining
Offering and Enrollment tables. Add join condition
Offering.OfferNo = Enrollment.OfferNo

4.67 Semantic with missing condition Add OffYear = 2016. Correct rows because Offering
table has no fall rows in any other year.

26008_ch04_p077-140.indd 123 3/2/18 8:30 PM

124   Part 2  Understanding Relational Databases

Beyond awareness of errors, you should strive to write statements with good cod-
ing practices. The examples in sections 4.2 to 4.6 demonstrate good coding practices.
Table 4-23 summarizes poor SQL coding practices, while Example 4.68 demonstrates
poor coding practices in a complete SELECT statement. Some of the practices are sub-
jective (such as clause alignment) with multiple ways to achieve good practice. Most
practices should be avoided such as incompatible constants.

TABLE 4-23
Summary of Poor SQL
Coding Practices

Practice Definition and impact Example

Mixed join styles Using a combination of the cross product and join
operator style; Difficult to read and prone to missing
join conditions

Example 4.41

Incompatible constant Constant in a condition with a data type different
than column; May lead to incorrect result or slow
performance

StdGPA > '3.2'

LIKE operator in date
comparison

LIKE operator applies to columns with character
data types. May lead to incorrect results; May not be
portable across SQL compilers

HireDate LIKE '12/*/2017'

Poor clause alignment Clauses mixed together and aligned poorly; Difficult
to read

Example 4.68

LIKE operator without
pattern matching
characters

LIKE operator without pattern matching characters
is the same as equality (=) comparison. May lead to
confusion among statement readers

StdtState LIKE 'WA'

Example 4.68

List Bob Norbert’s course schedule in spring 2017. For each course, list the offering number, course number, days, location, time,

course units, and faculty name. The statement contains poor clause alignment, an incompatible constant, and a LIKE operator

without a pattern matching character. Example 4.36 shows the original statement with good coding practices.

SELECT Offering.OfferNo, Offering.CourseNo, OffDays,
 OffLocation, OffTime, CrsUnits, FacFirstName,
 FacLastName FROM Faculty, Offering, Enrollment, Student, Course WHERE Faculty.FacNo =
Offering.FacNo AND
Offering.OfferNo
 = Enrollment.OfferNo
 AND Student.StdNo = Enrollment.StdNo
AND Offering.CourseNo = Course.CourseNo
 AND OffYear = '2017' AND OffTerm = 'SPRING'
 AND StdFirstName LIKE 'BOB' AND StdLastName = 'NORBERT'

Poor SQL Coding Practices

Chapter 4 introduced the fundamental statements of the industry standard Structured
Query Language (SQL). SQL has a wide scope covering database definition, manipu-
lation, and control. As a result of careful analysis and compromise, standards groups
have produced a well-designed language. SQL has become the common glue that
binds the database industry even though strict conformance to the standard is lacking.
You will no doubt continually encounter SQL throughout your career.

This chapter has focused on the most widely used parts of the SELECT statement
from the foundation of the SQL:2016 standard. Numerous examples were shown to

CLOSING THOUGHTS

26008_ch04_p077-140.indd 124 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   125

•	 SQL consists of statements for database definition (CREATE TABLE, ALTER
TABLE, etc.), database manipulation (SELECT, INSERT, UPDATE, and
DELETE), and database control (GRANT, REVOKE, etc.).

•	 The most recent SQL standard is known as SQL:2016. Major DBMS vendors
support most features in the core part of this standard although the lack of
independent conformance testing hinders strict conformance with the standard.

•	 SELECT is a complex statement. Chapter 4 covered SELECT statements with the
format:
SELECT <list of column and column expressions>
 FROM <list of tables and join operations>
 WHERE <row conditions connected by AND, OR, and NOT>
 GROUP BY <list of columns>
 HAVING <group conditions connected by AND, OR, and NOT>
 ORDER BY <list of sorting specifications>

•	 Use the standard comparison operators to select rows:
SELECT StdFirstName, StdLastName, StdCity, StdGPA
 FROM Student
 WHERE StdGPA >= 3.7

•	 Inexact matching is done with the LIKE operator and pattern-matching
characters:
Oracle and SQL:2016
SELECT CourseNo, CrsDesc
 FROM Course
 WHERE CourseNo LIKE 'IS4%'

Access
SELECT CourseNo, CrsDesc
 FROM Course
 WHERE CourseNo LIKE 'IS4*'

demonstrate conditions on different data types, complex logical expressions, multiple
table joins, summarization of tables with GROUP BY and HAVING, sorting of tables,
self joins, and the traditional set operators. To facilitate hands-on usage of SQL, exam-
ples were shown for both Oracle and Access with special attention to deviations from
the SQL:2016 standard. This chapter also briefly described the modification statements
INSERT, UPDATE, and DELETE. These statements are not as complex and widely
used as SELECT.

This chapter emphasized two problem-solving guidelines to help you formulate
queries. The conceptual evaluation process was presented to demonstrate derivation
of result rows for SELECT statements involving joins and grouping. You may find this
evaluation process helps in your initial learning of the SELECT statement as well as
provides insight on more challenging problems. To help formulate queries, three ques-
tions were provided to guide you. You should explicitly or implicitly answer these
questions before writing a SELECT statement to solve a problem. An understanding
of both the critical questions and the conceptual evaluation process will provide you a
solid foundation for using relational databases. Even with these formulation aids, you
need to work many problems to learn query formulation and the SELECT statement.

This chapter covered an important subset of the SELECT statement. Other parts of
the SELECT statement not covered in this chapter are outer joins, nested queries, divi-
sion problems, null value effects, and hierarchical queries. Chapter 9 covers advanced
query formulation and additional parts of the SELECT statement so that you can gain
a competitive advantage in your database skills.

REVIEW CONCEPTS

26008_ch04_p077-140.indd 125 3/2/18 8:30 PM

126   Part 2  Understanding Relational Databases

•	 Use BETWEEN … AND to compare dates:
Oracle
SELECT FacFirstName, FacLastName, FacHireDate
 FROM Faculty
 WHERE FacHireDate BETWEEN '1-Jan-2008' AND '31-Dec-2009'

Access:
SELECT FacFirstName, FacLastName, FacHireDate
 FROM Faculty
 �WHERE FacHireDate BETWEEN #1/1/2008# AND #12/31/2009#

•	 Use expressions in the SELECT column list and WHERE clause:
Oracle
SELECT FacFirstName, FacLastName, FacCity,
 FacSalary*1.1 AS InflatedSalary, FacHireDate
 FROM Faculty
 WHERE to_number(to_char(FacHireDate, 'YYYY')) > 2008

Access
SELECT FacFirstName, FacLastName, FacCity,
 FacSalary*1.1 AS InflatedSalary, FacHireDate
 FROM Faculty
 WHERE year(FacHireDate) > 2008

•	 Test for null values:
SELECT OfferNo, CourseNo
 FROM Offering
 WHERE FacNo IS NULL AND OffTerm = 'SUMMER'
 AND OffYear = 2017

•	 Create complex logical expressions with AND and OR:
SELECT OfferNo, CourseNo, FacNo
 FROM Offering
 WHERE (OffTerm = 'FALL' AND OffYear = 2016)
 OR (OffTerm = 'WINTER' AND OffYear = 2017)

•	 Sort results with the ORDER BY clause:
SELECT StdGPA, StdFirstName, StdLastName, StdCity,
 StdState
 FROM Student
 WHERE StdClass = 'JR'
 ORDER BY StdGPA

•	 Eliminate duplicates with the DISTINCT keyword:
SELECT DISTINCT FacCity, FacState
 FROM Faculty

•	 Qualify column names in join queries:
SELECT Course.CourseNo, CrsDesc
 FROM Offering, Course
 WHERE OffTerm = 'SPRING' AND OffYear = 2017
 AND Course.CourseNo = Offering.CourseNo

•	 Use the GROUP BY clause to summarize rows:
SELECT StdMajor, AVG(StdGPA) AS AvgGpa
 FROM Student
 GROUP BY StdMajor

•	 GROUP BY must precede HAVING:
SELECT StdMajor, AVG(StdGPA) AS AvgGpa
 FROM Student
 GROUP BY StdMajor
 HAVING AVG(StdGPA) > 3.1

26008_ch04_p077-140.indd 126 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   127

•	 Use the WHERE clause to test row conditions and the HAVING clause to test
group conditions:
SELECT StdMajor, AVG(StdGPA) AS AvgGpa
 FROM Student
 WHERE StdClass IN ('JR', 'SR')
 GROUP BY StdMajor
 HAVING AVG(StdGPA) > 3.1

•	 Difference betwen COUNT(*) and COUNT(DISTINCT column) -– not supported
by Access:
SELECT OffYear, COUNT(*) AS NumOfferings,
 COUNT(DISTINCT CourseNo) AS NumCourses
 FROM Offering
 GROUP BY OffYear

•	 Conceptual evaluation process lessons: use small sample tables, GROUP BY
occurs after WHERE, and only one grouping per SELECT statement.

•	 Query formulation questions: what tables?, how combined?, and row or group
output?

•	 Joining more than two tables with the cross product and join operator
styles:
SELECT OfferNo, Offering.CourseNo, CrsUnits, OffDays,
 OffLocation, OffTime
 FROM Faculty, Course, Offering
 WHERE Faculty.FacNo = Offering.FacNo
 AND Offering.CourseNo = Course.CourseNo
 AND OffYear = 2016 AND OffTerm = 'FALL'
 AND FacFirstName = 'LEONARD'
 AND FacLastName = 'VINCE'

SELECT OfferNo, Offering.CourseNo, CrsUnits, OffDays,
 OffLocation, OffTime
 FROM (Faculty INNER JOIN Offering
 ON Faculty.FacNo = Offering.FacNo)
 INNER JOIN Course
 ON Offering.CourseNo = Course.CourseNo
 WHERE OffYear = 2016 AND OffTerm = 'FALL'
 AND FacFirstName = 'LEONARD'
 AND FacLastName = 'VINCE'

•	 Self-joins:
SELECT Subr.FacNo, Subr.FacLastName, Subr.FacSalary,
 Supr.FacNo, Supr.FacLastName, Supr.FacSalary
 FROM Faculty Subr, Faculty Supr
 WHERE Subr.FacSupervisor = Supr.FacNo
 AND Subr.FacSalary > Supr.FacSalary

•	 Combine joins and grouping:
SELECT CourseNo, Enrollment.OfferNo,
 COUNT(*) AS NumStudents
 FROM Offering, Enrollment
 WHERE Offering.OfferNo = Enrollment.OfferNo
 AND OffYear = 2017 AND OffTerm = 'SPRING'
 GROUP BY Enrollment.OfferNo, CourseNo

•	 Traditional set operators and union compatibility:
SELECT FacNo AS PerNo, FacLastName AS LastName
 FacCity AS City, FacState AS State
 FROM Faculty
 UNION

26008_ch04_p077-140.indd 127 3/2/18 8:30 PM

128   Part 2  Understanding Relational Databases

SELECT StdNo AS PerNo, StdLastName AS LastName,
 StdCity AS City, StdState AS State
 FROM Student

•	 Use the INSERT statement to add one or more rows:
INSERT INTO Student
 (StdNo, StdFirstName, StdLastName, StdCity, StdState,
 StdClass, StdMajor, StdGPA)
 VALUES ('999999999', 'Joe', 'Student', 'Seatac', 'WA',
 'FR', 'IS', 0.0)

•	 Use the UPDATE statement to change columns in one or more rows:
UPDATE Faculty
 SET FacSalary = FacSalary * 1.1
 WHERE FacDept = 'MS'

•	 Use the DELETE statement to remove one or more rows:
DELETE FROM Student
 WHERE StdMajor = 'IS' AND StdClass = 'SR'

•	 Use a join operation inside an UPDATE statement (Access only):
UPDATE Offering INNER JOIN Faculty
 ON Offering.FacNo = Faculty.FacNo
 SET OffLocation = 'BLM412'
 WHERE OffYear = 2016 AND FacFirstName = 'LEONARD'
 AND FacLastName = 'VINCE'

•	 Use a join operation inside a DELETE statement (Access only):
DELETE Offering.*
 FROM Offering INNER JOIN Faculty
 ON Offering.FacNo = Faculty.FacNo
 WHERE FacFirstName = 'LEONARD' AND FacLastName = 'VINCE'

•	 Syntax errors with sometimes confusing error messages and no execution:
missing table, unqualified column name, misspelled keyword, row condition in
HAVING clause, missing column in GROUP BY clause, and aggregate function
in a WHERE condition

•	 Redundancy errors with correct result rows but extra resource consumption:
extra table and unneeded GROUP BY clause

•	 Semantic errors with incorrect rows in the result and sometimes excessive
resource consumption: missing row condition, missing parentheses, incorrect
condition, and missing join condition

•	 Poor coding practices involving misalignment of clauses, incompatible constants
in conditions, LIKE operator without pattern matching characters, and LIKE
operator in conditions on date columns

QUESTIONS

  1.	Why do some information systems professionals pronounce SQL as “sequel”?
  2.	Why are the manipulation statements of SQL more widely used than the

definition and control statements?
  3.	Briefly describe the organization and acceptance of SQL:2016.
  4.	Why is conformance testing important for the SQL standard?
  5.	 In general, what is the state of conformance among major DBMS vendors for the

SQL:2016 standard?
  6.	What is stand-alone SQL?
  7.	What is embedded SQL?

26008_ch04_p077-140.indd 128 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   129

  8.	What is an expression in the context of database languages?
  9.	From the examples and the discussion in Chapter 4, what parts of the SELECT

statement are not supported by all DBMSs?
  10.	Recite the rule about the GROUP BY and HAVING clauses.
  11.	Recite the rule about columns in SELECT when a GROUP BY clause is used.
  12.	How does a row condition differ from a group condition?
  13.	Why should row conditions be placed in the WHERE clause rather than the

HAVING clause?
  14.	Why are most DBMSs not case sensitive when matching on string conditions?
  15.	Explain how working with sample tables can provide insight about difficult

problems.
  16.	When working with date columns, why is it necessary to refer to documentation

of your DBMS?
  17.	How do exact and inexact matching differ in SQL?
  18.	How do you know when the output of a query relates to groups of rows as

opposed to individual rows?
  19.	What tables belong in the FROM statement?
  20.	Explain the cross product style for join operations.
  21.	Explain the join operator style for join operations.
  22.	Discuss the pros and cons of the cross product versus the join operator styles. Do

you need to know both the cross product and the join operator styles?
  23.	What is a self-join? When is a self-join useful?
  24.	Provide a SELECT statement example in which a table is needed even though

the table does not provide conditions to test or columns to show in the result.
  25.	What is the requirement when using the traditional set operators in a SELECT

statement?
  26.	When combining joins and grouping, what conceptually occurs first, join

operations or grouping?
  27.	How many times does grouping occur in a SELECT statement?
  28.	Why is the SELECT statement more widely used than the modification

statements INSERT, UPDATE, and DELETE?
  29.	Provide an example of an INSERT statement that can insert multiple rows.
  30.	What is the relationship between the DELETE statement and the rules about

deleting referenced rows?
  31.	What is the relationship between the UPDATE statement and the rules about

updating the primary key of referenced rows?
  32.	How does COUNT(*) differ from COUNT(ColumnName)?
  33.	How does COUNT(DISTINCT ColumnName) differ from

COUNT(ColumnName)?
  34.	When mixing AND and OR in a logical expression, why is it a good idea to use

parentheses?
  35.	What are the most important lessons about the conceptual evaluation process?
  36.	What are the mental steps involved in query formulation?
  37.	What kind of join queries often have duplicates in the result?
  38.	What mental steps in the query formulation process are addressed by the

conceptual evaluation process and critical questions?
  39.	In the SQL SELECT statement, how do you apply the set operators to two tables

with only some compatible columns?

26008_ch04_p077-140.indd 129 3/2/18 8:30 PM

130   Part 2  Understanding Relational Databases

The problems use the tables of the Order Entry database, an extension of the order
entry tables used in the problems of Chapter 3. Table 4-P1 lists the meaning of each
table and Figure 4.P1 shows the Access Relationship window. After the relationship
diagram, row listings and Oracle CREATE TABLE statements are shown for each
table. In addition to the other documentation, here are some notes about the Order
Entry Database:

•	 The primary key of the OrdLine table is a combination of OrdNo and ProdNo.
•	 The Employee table has a self-referencing (unary) relationship to itself through

the foreign key, SupEmpNo, the employee number of the supervising employee.
In the relationship diagram, the table Employee_1 is a representation of the self-
referencing relationship, not a real table.

•	 The relationship from OrderTbl to OrdLine cascades deletions and primary
key updates of referenced rows. All other relationships restrict deletions and
primary key ues of referend rows if related rows exist.

  40.	Why should you avoid mixing the join styles in a SELECT statement?
  41.	What is the SQL:2016 symbol for matching any single character?
  42.	What symbols are used by Microsoft Access and Oracle for matching any single

character?
  43.	Provide a brief example to depict the single character pattern matching symbol.
  44.	Should you use the LIKE operator for conditions involving date columns?
  45.	What is the default format for date constants in Oracle SQL?
  46.	In the join operator style, does Oracle require parentheses when multiple join

operations are used?
  47.	 In the join operator style, does Access require parentheses when multiple join

operations are used?
  48.	What is the impact of a syntax error in a SELECT statement?
  49.	What is the impact of a redundancy error in a SELECT statement? Provide an

answer using a specific redundancy error.
  50.	What is the impact of a semantic error in a SELECT statement? Provide an

answer using a specific semantic error.
  51.	Can a result contain the correct rows if a SELECT statement contains a semantic

error? Please explain with an example.

PROBLEMS

TABLE 4-P1
Tables of the Order Entry
Database

Table Name Description

Customer List of customers who have placed orders

OrderTbl Contains the heading part of an order; Internet orders do not have an employee

Employee List of employees who can take orders

OrdLine Contains the product detail parts of orders

Product List of products that may be ordered

26008_ch04_p077-140.indd 130 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   131

FIGURE 4.P1
Relationship Window for the
Order Entry Database

Customer

CustNo CustFirstName CustLastName CustStreet CustCity CustState CustZip CustBal

C0954327 Sheri Gordon 336 Hill St. Littleton CO 80129-5543 $230.00

C1010398 Jim Glussman 1432 E. Ravenna Denver CO 80111-0033 $200.00

C2388597 Beth Taylor 2396 Rafter Rd Seattle WA 98103-1121 $500.00

C3340959 Betty Wise 4334 153rd NW Seattle WA 98178-3311 $200.00

C3499503 Bob Mann 1190 Lorraine Cir. Monroe WA 98013-1095 $0.00

C8543321 Ron Thompson 789 122nd St. Renton WA 98666-1289 $85.00

C8574932 Wally Jones 411 Webber Ave. Seattle WA 98105-1093 $1,500.00

C8654390 Candy Kendall 456 Pine St. Seattle WA 98105-3345 $50.00

C9128574 Jerry Wyatt 16212 123rd Ct. Denver CO 80222-0022 $100.00

C9403348 Mike Boren 642 Crest Ave. Englewood CO 80113-5431 $0.00

C9432910 Larry Styles 9825 S. Crest Lane Bellevue WA 98104-2211 $250.00

C9543029 Sharon Johnson 1223 Meyer Way Fife WA 98222-1123 $856.00

C9549302 Todd Hayes 1400 NW 88th Lynnwood WA 98036-2244 $0.00

C9857432 Homer Wells 123 Main St. Seattle WA 98105-4322 $500.00

C9865874 Mary Hill 206 McCaffrey Littleton CO 80129-5543 $150.00

C9943201 Harry Sanders 1280 S. Hill Rd. Fife WA 98222-2258 $1,000.00

OrderTbl

OrdNo OrdDate CustNo EmpNo OrdName OrdStreet OrdCity OrdState OrdZip

O1116324 01/23/2017 C0954327 E8544399 Sheri Gordon 336 Hill St. Littleton CO 80129-5543

O1231231 01/23/2017 C9432910 E9954302 Larry Styles 9825 S. Crest Lane Bellevue WA 98104-2211

O1241518 02/10/2017 C9549302 Todd Hayes 1400 NW 88th Lynnwood WA 98036-2244

O1455122 01/09/2017 C8574932 E9345771 Wally Jones 411 Webber Ave. Seattle WA 98105-1093

O1579999 01/05/2017 C9543029 E8544399 Tom Johnson 1632 Ocean Dr. Des Moines WA 98222-1123

O1615141 01/23/2017 C8654390 E8544399 Candy Kendall 456 Pine St. Seattle WA 98105-3345

O1656777 02/11/2017 C8543321 Ron Thompson 789 122nd St. Renton WA 98666-1289

O2233457 01/12/2017 C2388597 E9884325 Beth Taylor 2396 Rafter Rd Seattle WA 98103-1121

O2334661 01/14/2017 C0954327 E1329594 Mrs. Ruth Gordon 233 S. 166th Seattle WA 98011

26008_ch04_p077-140.indd 131 3/2/18 8:30 PM

132   Part 2  Understanding Relational Databases

OrdNo OrdDate CustNo EmpNo OrdName OrdStreet OrdCity OrdState OrdZip

O3252629 01/23/2017 C9403348 E9954302 Mike Boren 642 Crest Ave. Englewood CO 80113-5431

O3331222 01/13/2017 C1010398 Jim Glussman 1432 E. Ravenna Denver CO 80111-0033

O3377543 01/15/2017 C9128574 E8843211 Jerry Wyatt 16212 123rd Ct. Denver CO 80222-0022

O4714645 01/11/2017 C2388597 E1329594 Beth Taylor 2396 Rafter Rd Seattle WA 98103-1121

O5511365 01/22/2017 C3340959 E9884325 Betty White 4334 153rd NW Seattle WA 98178-3311

O6565656 01/20/2017 C9865874 E8843211 Mr. Jack Sibley 166 E. 344th Renton WA 98006-5543

O7847172 01/23/2017 C9943201 Harry Sanders 1280 S. Hill Rd. Fife WA 98222-2258

O7959898 02/19/2017 C8543321 E8544399 Ron Thompson 789 122nd St. Renton WA 98666-1289

O7989497 01/16/2017 C3499503 E9345771 Bob Mann 1190 Lorraine Cir. Monroe WA 98013-1095

O8979495 01/23/2017 C9865874 HelenSibley 206 McCaffrey Renton WA 98006-5543

O9919699 02/11/2017 C9857432 E9954302 Homer Wells 123 Main St. Seattle WA 98105-4322

Employee

EmpNo EmpFirstName EmpLastName EmpPhone EmpEMail SupEmpNo EmpCommRate

E1329594 Landi Santos (303) 789-1234 LSantos@bigco.com E8843211 0.02

E8544399 Joe Jenkins (303) 221-9875 JJenkins@bigco.com E8843211 0.02

E8843211 Amy Tang (303) 556-4321 ATang@bigco.com E9884325 0.04

E9345771 Colin White (303) 221-4453 CWhite@bigco.com E9884325 0.04

E9884325 Thomas Johnson (303) 556-9987 TJohnson@bigco.com 0.05

E9954302 Mary Hill (303) 556-9871 MHill@bigco.com E8843211 0.02

E9973110 Theresa Beck (720) 320-2234 TBeck@bigco.com E9884325

Product

ProdNo ProdName ProdMfg ProdQOH ProdPrice ProdNextShipDate

P0036566 17 inch Color Monitor ColorMeg, Inc.   12 $169.00 2/20/2017

P0036577 19 inch Color Monitor ColorMeg, Inc.   10 $319.00 2/20/2017

P1114590 R3000 Color Laser Printer Connex   5 $699.00 1/22/2017

P1412138 10 Foot Printer Cable Ethlite 100 $12.00

P1445671 8-Outlet Surge Protector Intersafe   33 $14.99

P1556678 CVP Ink Jet Color Printer Connex   8 $99.00 1/22/2017

P3455443 Color Ink Jet Cartridge Connex   24 $38.00 1/22/2017

P4200344 36-Bit Color Scanner UV Components   16 $199.99 1/29/2017

P6677900 Black Ink Jet Cartridge Connex   44 $25.69

P9995676 Battery Back-up System Cybercx   12 $89.00 2/1/2017

OrdLine

OrdNo ProdNo Qty

O1116324 P1445671 1

O1231231 P0036566 1

O1231231 P1445671 1

26008_ch04_p077-140.indd 132 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   133

OrdNo ProdNo Qty

O1241518 P0036577 1

O1455122 P4200344 1

O1579999 P1556678 1

O1579999 P6677900 1

O1579999 P9995676 1

O1615141 P0036566 1

O1615141 P1445671 1

O1615141 P4200344 1

O1656777 P1445671 1

O1656777 P1556678 1

O2233457 P0036577 1

O2233457 P1445671 1

O2334661 P0036566 1

O2334661 P1412138 1

O2334661 P1556678 1

O3252629 P4200344 1

O3252629 P9995676 1

O3331222 P1412138 1

O3331222 P1556678 1

O3331222 P3455443 1

O3377543 P1445671 1

O3377543 P9995676 1

O4714645 P0036566 1

O4714645 P9995676 1

O5511365 P1412138 1

O5511365 P1445671 1

O5511365 P1556678 1

O5511365 P3455443 1

O5511365 P6677900 1

O6565656 P0036566 10

O7847172 P1556678 1

O7847172 P6677900 1

O7959898 P1412138 5

O7959898 P1556678 5

O7959898 P3455443 5

O7959898 P6677900 5

O7989497 P1114590 2

O7989497 P1412138 2

O7989497 P1445671 3

O8979495 P1114590 1

O8979495 P1412138 1

O8979495 P1445671 1

O9919699 P0036577 1

O9919699 P1114590 1

O9919699 P4200344 1

26008_ch04_p077-140.indd 133 3/2/18 8:30 PM

134   Part 2  Understanding Relational Databases

CREATE TABLE Customer

(CustNo 	 CHAR(8),

 CustFirstName VARCHAR2(20) CONSTRAINT CustFirstNameRequired NOT NULL,

 CustLastName VARCHAR2(30) CONSTRAINT CustLastNameRequired NOT NULL,

 CustStreet VARCHAR2(50),

 CustCity	 VARCHAR2(30),

 CustState	 CHAR(2),

 CustZip	 CHAR(10),

 CustBal	 DECIMAL(12,2) DEFAULT 0,

 CONSTRAINT PKCustomer PRIMARY KEY (CustNo))

CREATE TABLE OrderTbl

(OrdNo 	 CHAR(8),

 	 OrdDate	 DATE CONSTRAINT OrdDateRequired NOT NULL,

	 CustNo	 CHAR(8) CONSTRAINT CustNoRequired NOT NULL,

 	 EmpNo		 CHAR(8),

	 OrdName	 VARCHAR2(50),

	 OrdStreet	 VARCHAR2(50),

	 OrdCity	 VARCHAR2(30),

	 OrdState	 CHAR(2),

	 OrdZip	 CHAR(10),

CONSTRAINT PKOrderTbl PRIMARY KEY (OrdNo) ,

CONSTRAINT FKCustNo FOREIGN KEY (CustNo) REFERENCES Customer,

CONSTRAINT FKEmpNo FOREIGN KEY (EmpNo) REFERENCES Employee)

CREATE TABLE OrdLine

(OrdNo 	 CHAR(8),

 	 ProdNo	 CHAR(8),

	 Qty		 INTEGER DEFAULT 1,

CONSTRAINT PKOrdLine PRIMARY KEY (OrdNo, ProdNo),

CONSTRAINT FKOrdNo FOREIGN KEY (OrdNo) REFERENCES OrderTbl

 ON DELETE CASCADE,

CONSTRAINT FKProdNo FOREIGN KEY (ProdNo) REFERENCES Product)

26008_ch04_p077-140.indd 134 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   135

CREATE TABLE Employee

(EmpNo CHAR(8),

 	 EmpFirstName VARCHAR2(20) CONSTRAINT EmpFirstNameRequired NOT NULL,

	 EmpLastName VARCHAR2(30) CONSTRAINT EmpLastNameRequired NOT NULL,

	 EmpPhone CHAR(15),

	 EmpEMail VARCHAR(50) CONSTRAINT EmpEMailRequired NOT NULL,

 	 SupEmpNo CHAR(8),

	 EmpCommRate DECIMAL(3,3),

CONSTRAINT PKEmployee PRIMARY KEY (EmpNo),

CONSTRAINT UNIQUEEMail UNIQUE(EmpEMail),

CONSTRAINT FKSupEmpNo FOREIGN KEY (SupEmpNo) REFERENCES Employee)

CREATE TABLE Product

(ProdNo 	 CHAR(8),

 	 ProdName	 VARCHAR2(50) CONSTRAINT ProdNameRequired NOT NULL,

	 ProdMfg	 VARCHAR2(20) CONSTRAINT ProdMfgRequired NOT NULL,

	 ProdQOH	 INTEGER DEFAULT 0,

	 ProdPrice	 DECIMAL(12,2) DEFAULT 0,

 	 ProdNextShipDate	 DATE,

 CONSTRAINT PKProduct PRIMARY KEY (ProdNo))

Part 1: SELECT

  1.	List the customer number, the name (first and last), and the balance of
customers.

  2.	List the customer number, the name (first and last), and the balance of customers
who reside in Colorado (CustState is CO).

  3.	List all columns of the Product table for products costing more than $50. Order
the result by product manufacturer (ProdMfg) and product name.

  4.	List the order number, order date, and shipping name (OrdName) of orders sent
to addresses in Denver or Englewood.

  5.	List the customer number, the name (first and last), the city, and the balance of
customers who reside in Denver with a balance greater than $150 or who reside
in Seattle with a balance greater than $300.

  6.	List the cities and states where orders have been placed. Remove duplicates
from the result.

  7.	List all columns of the OrderTbl table for Internet orders placed in January 2017.
An Internet order does not have an associated employee.

  8.	List all columns of the OrderTbl table for phone orders placed in February 2017.
A phone order has an associated employee.

26008_ch04_p077-140.indd 135 3/2/18 8:30 PM

136   Part 2  Understanding Relational Databases

  9.	List all columns of the Product table that contain the words Ink Jet in the product
name.

  10.	List the order number, order date, and customer number of orders placed after
January 23, 2017, shipped to Washington recipients.

  11.	List the order number, order date, customer number, and customer name (first
and last) of orders placed in January 2017 sent to Colorado recipients.

  12.	List the order number, order date, customer number, and customer name
(first and last) of orders placed in January 2017 placed by Colorado customers
(CustState) but sent to Washington recipients (OrdState).

  13.	List the customer number, name (first and last), and balance of Washington
customers who have placed one or more orders in February 2017. Remove
duplicate rows from the result.

  14.	List the order number, order date, customer number, customer name (first and
last), employee number, and employee name (first and last) of January 2017
orders placed by Colorado customers.

  15.	List the employee number, name (first and last), and phone of employees who
have taken orders in January 2017 from customers with balances greater than
$300. Remove duplicate rows in the result.

  16.	List the product number, name, and price of products ordered by customer
number C0954327 in January 2017. Remove duplicate products in the result.

  17.	List the customer number, name (first and last), order number, order date,
employee number, employee name (first and last), product number, product
name, and order cost (OrdLine.Qty * ProdPrice) for products ordered on
January 23, 2017, in which the order cost exceeds $150.

  18.	List the average balance of customers by city. Include only customers residing in
Washington state (WA).

  19.	List the average balance of customers by city and short zip code (the first five
digits of the zip code). Include only customers residing in Washington State
(WA). In Microsoft Access, the expression left(CustZip, 5) returns the first
five digits of the zip code. In Oracle, the expression substr(CustZip, 1, 5)
returns the first five digits.

  20.	List the average balance and number of customers by city. Only include
customers residing in Washington State (WA). Eliminate cities in the result with
less than two customers.

  21.	List the number of unique short zip codes and average customer balance by city.
Only include customers residing in Washington State (WA). Eliminate cities in
the result in which the average balance is less than $100. In Microsoft Access, the
expression left(CustZip, 5) returns the first five digits of the zip code. In
Oracle, the expression substr(CustZip, 1, 5) returns the first five digits.
(Note: this problem requires two SELECT statements in Access SQL or a nested
query in the FROM clause, see Chapter 9).

  22.	List the order number and total amount for orders placed on January 23, 2017.
The total amount of an order is the sum of the quantity times the product price
of each product on the order.

  23.	List the order number, order date, customer name (first and last), and total
amount for orders placed on January 23, 2017. The total amount of an order
is the sum of the quantity times the product price of each product on the
order.

  24.	List the customer number, customer name (first and last), the sum of the
quantity of products ordered, and the total order amount (sum of the product
price times the quantity) for orders placed in January 2008. Only include
products in which the product name contains the string Ink Jet or Laser. Only

26008_ch04_p077-140.indd 136 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   137

include customers who have ordered more than two Ink Jet or Laser products in
January 2017.

  25.	List the product number, product name, sum of the quantity of products
ordered, and total order amount (sum of the product price times the quantity)
for orders placed in January 2017. Only include products that have more than
five products ordered in January 2017. Sort the result in descending order of the
total amount.

  26.	List the order number, the order date, the customer number, the customer name
(first and last), the customer state, and the shipping state (OrdState) in which the
customer state differs from the shipping state.

  27.	List the employee number, the employee name (first and last), the commission
rate, the supervising employee name (first and last), and the commission rate of
the supervisor.

  28.	List the employee number, the employee name (first and last), and total amount
of commissions on orders taken in January 2017. The amount of a commission is
the sum of the dollar amount of products ordered times the commission rate of
the employee.

  29.	List the union of customers and order recipients. Include the name, street,
city, state, and zip in the result. You need to use the concatenation function
to combine the first and last names so that they can be compared to the order
recipient name. In Access SQL, the & symbol is the concatenation function. In
Oracle SQL, the || symbol is the concatenation function.

  30.	List the first and last name of customers who have the same name (first and last)
as an employee.

  31.	List the employee number and the name (first and last) of second-level
subordinates (subordinates of subordinates) of the employee named Thomas
Johnson.

  32.	List the employee number and the name (first and last) of the first- and second-
level subordinates of the employee named Thomas Johnson. To distinguish the
level of subordinates, include a computed column with the subordinate level (1
or 2).

  33.	Using a mix of the join operator and the cross product styles, list the names (first
and last) of customers who have placed orders taken by Amy Tang. Remove
duplicate rows in the result. Note that the join operator style is supported only
in Oracle versions 9i and beyond.

  34.	Using the join operator style, list the product name and the price of all products
ordered by Beth Taylor in January 2017. Remove duplicate rows from the result.

  35.	For Colorado customers, compute the number of orders placed in January 2017.
The result should include the customer number, last name, and number of
orders placed in January 2017.

  36.	For Colorado customers, compute the number of orders placed in January
2017 in which the orders contain products made by Connex. The result should
include the customer number, last name, and number of orders placed in
January 2017.

  37.	For each employee with a commission rate of less than 0.04, compute the
number of orders taken in January 2017. The result should include the employee
number, employee last name, and number of orders taken.

  38.	For each employee with a commission rate greater than 0.03, compute the total
commission earned from orders taken in January 2017. The total commission
earned is the total order amount times the commission rate. The result should
include the employee number, employee last name, and total commission
earned.

26008_ch04_p077-140.indd 137 3/2/18 8:30 PM

138   Part 2  Understanding Relational Databases

  39.	List the total amount of all orders by month in 2017. The result should include
the month and the total amount of all orders in each month. The total amount
of an individual order is the sum of the quantity times the product price of
each product in the order. In Access, the month number can be extracted by
the Month function with a date as the argument. You can display the month
name using the MonthName function applied to a month number. In Oracle,
the function to_char(OrdDate, 'MON') extracts the three-digit month
abbreviation from OrdDate.

  40.	 List the total commission earned by each employee in each month of 2017.
The result should include the month, employee number, employee last name,
and the total commission amount earned in that month. The amount of a
commission for an individual employee is the sum of the dollar amount of
products ordered times the commission rate of the employee. Sort the result
by the month in ascending month number and the total commission amount in
descending order. In Access, the month number can be extracted by the Month
function with a date as the argument. You can display the month name using
the MonthName function applied to a month number. In Oracle, the function
to_char(OrdDate, 'MON') extracts the three-digit month abbreviation from
OrdDate.

  41.	List the product number, name, price, and total quantity ordered of products
ordered by Colorado customers in January 2017.

  42.	List the product number, name, price, and total order value (sum of price times
quantity) of products ordered by Colorado customers in January 2017 in phone
orders. A phone order has an employee associated with the order.

  43.	List the product number, name, price, and total order value (sum of price times
quantity) of products ordered by Colorado customers in January 2017 in web
orders. A web order does not have an employee associated with the order.

  44.	Combine the results of problems 42 and 43 into one query result. Each row in the
result should indicate if the row involves a phone or web order. (Hint: you need
to use the UNION operator).

  45.	List the order number, order date, customer name (first and last), product
number, product name, and next shipment date of orders with an order date
within 14 days (absolute value of day difference) of the next shipment date of
the product on the order. You should use the datediff function in Access and the
subtraction operator in Oracle to find the difference in days between two dates.
You should use the abs function in Access and Oracle to calculate the absolute
value of a number.

  46.	List the employee number and the name (first and last) of the first-level superior
(direct boss) of the employee named Joe Jenkins.

  47.	List the employee number and the name (first and last) of first-level superior
(direct boss) and second-level superior (boss of direct boss) of the employee
named Joe Jenkins. To distinguish the level of subordinates, include a computed
column with the superior level (1 or 2).

  48.	Can you extend problem 47 to list all superiors (direct and indirect) of the
employee named Joe Jenkins? Explain your reasoning.

  49.	Identify errors in the following SQL statement. For each error, you should
indicate the error type as specified in Table 4-21. Correct the statement and
document its purpose.

SELECT ProdName, ProdPrice, SUM(Qty) AS ProdCount
 FROM OrderTbl, OrdLine, Product, Customer
 WHERE ProdPrice > 50
 AND OrderTbl.OrdNo = OrdLine.OrdNo
 AND OrdLine.ProdNo = Product.ProdNo

26008_ch04_p077-140.indd 138 3/2/18 8:30 PM

Chapter 4  Query Formulation with SQL   139

 AND Customer.CustNo = OrderTbl.CustNo
 ANE CustState = 'CO'
 GROUP BY ProdName

  50.	Identify errors in the following SQL statement. For each error, you should
indicate the error type as specified in Table 4-21. Correct the statement and
document its purpose.

SELECT CustState, AVG(CustBal) AS AvgBal, COUNT(*) AS
NumCustomers
 FROM Customer
 WHERE CustBal > 100

  51.	The following statement should find customers who have a balance greater than
$80 and live in either Denver or Seattle. Correct the statement and explain the
error(s) in the statement.

SELECT CustNo, CustFirstName, CustLastName, CustCity,
CustBal
 FROM Customer
 WHERE CustCity = 'Seattle' OR CustCity = 'Denver'
 AND CustBal > 80

  52.	Identify errors in the following SQL statement. For each error, you should
indicate the error type as specified in Table 4-21 and the impact of the error.
Correct the statement and document its purpose.

SELECT Customer.CustNo, CustFirstName, CustLastName,
OrderTbl.OrdNo, OrdDate,
 Product.ProdNo, ProdName, ProdPrice
 FROM OrderTbl, OrdLine, Product, Customer
 WHERE CustState = 'WA' AND ProdPrice > 100
 AND OrderTbl.OrdNo = OrdLine.OrdNo
 AND OrderTbl.CustNo = Customer.CustNo

  53.	The following statement should retrieve details about employees who took
orders from customers residing in Washington (WA) state with a balance
greater than $300. Identify errors in the following SQL statement. For each error,
you should indicate the error type as specified in Table 4-21 and the impact of
the error. Correct the statement and indicate the impact of the DISTINCT
clause.

SELECT DISTINCT Employee.EmpNo, EmpFirstName, EmpLastName,
EmpPhone
 FROM OrderTbl, Customer, Employee, OrdLine
 WHERE CustBal > 300 AND CustState = 'WA'
 AND OrderTbl.CustNo = Customer.CustNo
 AND OrderTbl.EmpNo = Employee.EmpNo
 AND OrdLine.OrdNo = OrderTbl.OrdNo

  54.	Identify poor coding practices in the following statement and rewrite the
statement with good coding practices. The condition on order date should test
for orders in January 2017.

SELECT DISTINCT Employee.EmpNo, EmpFirstName,
EmpLastName, EmpPhone FROM OrderTbl INNER JOIN Customer ON
OrderTbl.CustNo = Customer.CustNo, Employee
 WHERE CustBal > '300' AND OrdDate LIKE '1/*/2017'
AND OrderTbl.EmpNo
= Employee.EmpNo

26008_ch04_p077-140.indd 139 3/2/18 8:30 PM

140   Part 2  Understanding Relational Databases

SQL tutorials can be found at SQLCourse.com, SQLCourse2.com, W3C’s SQL school
(www.w3schools.com/sql/), and the SQL Zoo (sqlzoo.net). For product-specific
SQL advice, the sqlblog.com site feature forums about a number of DBMSs includ-
ing Microsoft SQL Server and open source products. The Database Journal (www.
databasejournal.com) provides articles, tutorials, and resources about many DBMS
products. Oracle documentation can be found at the Oracle Technet site (www.oracle.
com/technetwork). The Mimer Developer website has validators (developer.mimer.
se/validator) for the SQL standard as aids to writing portable SQL statements.

Part 2: INSERT, UPDATE, and DELETE statements

  1.	 Insert yourself as a new row in the Customer table.
  2.	 Insert your roommate, best friend, or significant other as a new row in the

Employee table.
  3.	 Insert a new OrderTbl row with you as the customer, the person from problem 2

(Part 2) as the employee, and your choice of values for the other columns of the
OrderTbl table.

  4.	 Insert two rows in the OrdLine table corresponding to the OrderTbl row inserted
in problem 3 (Part 2).

  5.	 Increase the price by 10 percent of products containing the words Ink Jet.
  6.	Change the address (street, city, and zip) of the new row inserted in problem 1

(Part 2).
  7.	 Identify an order that respects the rules about deleting referenced rows to delete

the rows inserted in problems 1 to 4 (part 2).
  8.	Delete the new row(s) of the table listed first in the order for problem 7 (Part 2).
  9.	 Delete the new row(s) of the table listed second in the order for problem 7 (Part 2).

  10.	Delete the new row(s) of the remaining tables listed in the order for problem 7
(Part 2).

REFERENCES FOR FURTHER STUDY

26008_ch04_p077-140.indd 140 3/2/18 8:30 PM

141  

The chapters in Part 3 cover data modeling using the entity relationship model to provide skills for
conceptual database design. Chapter 5 presents the Crow’s Foot notation of the entity relationship
model and explains diagram rules to prevent common diagram errors. Chapter 6 emphasizes the
practice of data modeling on narrative problems and presents rules to convert entity relationship
diagrams (ERDs) into relational tables. Chapter 6 explains design transformations and common design
errors to sharpen data modeling skills.

Data Modeling

part three

26008_ch05_p141-178.indd 141 3/2/18 9:31 PM

26008_ch05_p141-178.indd 142 3/2/18 9:31 PM

143  

OVERVIEW
Chapter 2 provided a broad presentation about the
database development process. You learned about the
relationship between database development and infor-
mation systems development, the phases of database
development, and the kinds of skills you need to mas-
ter. This chapter presents the Crow’s Foot notation for
entity relationship diagrams to provide a foundation for
development of your data modeling skills. To extend
your database design skills, Chapter 6 describes the
process of using entity relationship diagrams to develop
data models for business databases.

To become a good data modeler, you need to under-
stand the notation in entity relationship diagrams and
apply the notation on problems of increasing complexity.

To help you master the notation, this chapter presents
the symbols used in entity relationship diagrams and
compares entity relationship diagrams to relational data-
base diagrams that you have seen in previous chapters.
This chapter then probes deeper into relationships, the
most distinguishing part of entity relationship diagrams.
You will learn about identification dependency, relation-
ship patterns, and equivalence between two kinds of
relationships. Finally, you will learn to represent similari-
ties among entity types using generalization hierarchies.

The next part of the chapter presents business
rule representation and diagram rules to deepen your
understanding of the Crow’s Foot notation. To provide
an organizational focus, this chapter presents formal
and informal representation of business rules in an
entity relationship diagram. To help you avoid common

Learning Objectives

This chapter explains the notation of entity relationship diagrams as a
prerequisite to using entity relationship diagrams in the database devel-
opment process. After this chapter, the student should have acquired the
following knowledge and skills:

•	 Know the symbols and vocabulary of the Crow’s Foot notation for
entity relationship diagrams

•	 Use cardinality symbols to represent 1-1, 1-M, and M-N relationships

•	 Compare the Crow’s Foot notation to the representation of relational
tables

•	 Understand important relationship patterns

•	 Use generalization hierarchies to represent similar entity types

•	 Correct notational errors in an entity relationship diagram

•	 Understand the representation of business rules in an entity relation-
ship diagram

•	 Appreciate the diversity of notation for entity relationship diagrams

Understanding
Entity Relationship
Diagrams

5
chapter

26008_ch05_p141-178.indd 143 3/2/18 9:31 PM

5.1  INTRODUCTION TO ENTITY RELATIONSHIP DIAGRAMS

notation errors, this chapter presents consistency and
completeness rules and depicts their usage in examples.

Because of the plethora of entity relationship nota-
tions, you may not have the opportunity to use the
Crow’s Foot notation exactly as shown in Chapters 5
and 6. To prepare you for understanding other nota-
tions, the chapter concludes with a presentation of data-
base diagram variations in commercial CASE tools as
well as the Class Diagram notation of the Unified Model-
ing Notation, one of the popular alternatives to the Entity
Relationship Model.

This chapter provides the basic skills of data model-
ing to enable you to understand the notation of entity
relationship diagrams. To apply data modeling as part
of the database development process, you should study
Chapter 6 on developing data models for business data-
bases. Chapter 6 emphasizes the problem-solving skills
of generating alternative designs, mapping a problem
statement to an entity relationship diagram, and justi-
fying design decisions. With the background provided
in both chapters, you will be prepared to perform data
modeling on case studies and databases for moderate-
size organizations.

144   Part 3  Data Modeling

Gaining an initial understanding of entity relationship diagrams (ERDs) requires care-
ful study. This section introduces the Crow’s Foot notation1 for ERDs, a popular nota-
tion supported by many CASE tools. To get started, this section begins with the basic
symbols of entity types, relationships, and attributes. This section then explains car-
dinalities and their appearance in the Crow’s Foot notation. This section concludes by
comparing the Crow’s Foot notation to relational database diagrams. If you are cover-
ing data modeling before relational databases, you may want to skip the last part of
this section.

5.1.1  Basic Symbols
ERDs have three basic elements: entity types, relationships, and attributes. Entity
types are collections of things of interest (entities) in an application. Entity types
represent collections of physical things such as books, people, and places, as well as
events such as payments. An entity is a member or instance of an entity type. Entities
are uniquely identified to allow tracking across business processes. For example, cus-
tomers have a unique identification to support order processing, shipment, and prod-
uct warranty processes. In the Crow’s Foot notation as well as most other notations,
rectangles denote entity types. In Figure 5.1, the Course entity type represents the set
of courses in the database.

1 Gordon Everest proposed the Crow’s Foot notation in a 1976 paper. Several development methodologies
enhanced the notation in the 1980s. Most CASE tools support some variation of the Crow’s Foot notation.

Entity Type
a collection of entities
(persons, places, events, or
things) of interest repre-
sented by a rectangle in an
entity relationship diagram.

Entity type
symbol Relationship

symbol

Primary Key

Attributes
Relationship

name

Entity type
name

CourseNo
CrsDesc
CrsUnits

Course
O�erNo
O�Location
O�Time

O�ering

Has

FIGURE 5.1
Entity Relationship Diagram
Illustrating Basic Symbols

26008_ch05_p141-178.indd 144 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   145

Attributes are properties of entity types or relationships. An entity type should
have a primary key as well as other descriptive attributes. Attributes are shown inside
an entity type rectangle. If an entity type contains many attributes, the attributes can
be optionally suppressed. Some ERD drawing tools provide alternative views to show
or suppress attributes. Underlining indicates that the attribute(s) serves as the primary
key of the entity type.

Relationships are named associations among entity types. In the Crow’s Foot
notation, relationship names appear on the line connecting the entity types involved in
the relationship. In Figure 5.1, the Has relationship shows that the Course and Offering
entity types are directly related. Relationships store associations in both directions. For
example, the Has relationship shows the offerings for a given course and the associ-
ated course for a given offering. The Has relationship is binary because it involves two
entity types. Section 5.2 presents examples of more complex relationships involving
only one distinct entity type (unary relationships) and more than two entity types
(M-way relationships).

Informally, ERDs have a natural language correspondence. Entity types can cor-
respond to common nouns and relationships to transitive verbs.2 In this sense, one
can read an entity relationship diagram as a collection of sentences. For example, the
ERD in Figure 5.1 can be read as “course has offerings.” Note that there is an implied
direction in each relationship. In the other direction, one could write, “offering is given
for a course.” If practical, it is a good idea to use active rather than passive verbs for
relationships. Therefore, Has is preferred as the relationship name. You should use
the natural language correspondence as a guide rather than as a strict rule. For large
ERDs, you will not always find a good natural language correspondence for all parts
of a diagram.

5.1.2  Relationship Cardinality
Cardinalities constrain the number of objects that participate in a relationship. To
depict the meaning of cardinalities, an instance diagram is useful. Figure 5.2 shows a
set of courses ({Course1, Course2, Course3}), a set of offerings ({Offering1, Offering2,
Offering3, Offering4}), and connections between the two sets. In Figure 5.2, Course1
is related to Offering1, Offering2, and Offering3, Course2 is related to Offering4,
and Course3 is not related to any Offering entities. Likewise, Offering1 is related to
Course1, Offering2 is related to Course1, Offering3 is related to Course1, and Offer-
ing4 is related to Course2. From this instance diagram, we might conclude that each
offering is related to exactly one course. In the other direction, each course is related
to 0 or more offerings.

Crow’s Foot Representation of Cardinalities  The Crow’s Foot notation uses three
symbols to represent cardinalities. The Crow’s Foot symbol (two angled lines and
one straight line) denotes many (zero or more) related entities. In Figure 5.3,
the Crow’s Foot symbol near the Offering entity type means that a course
can be related to many offerings. The circle means a cardinality of zero,
while a line perpendicular to the relationship line denotes a cardinality
of one.

To depict minimum and maximum cardinalities, the cardinality symbols
are placed adjacent to each entity type in a relationship. The minimum car-
dinality symbol appears toward the relationship name while the maximum
cardinality symbol appears toward the entity type. In Figure 5.3, a course is
related to a minimum of zero offerings (circle in the inside position) and a
maximum of many offerings (Crow’s Foot in the outside position). Similarly,
an offering is related to exactly one (one and only one) course as shown by
the single vertical lines in both inside and outside positions.

Relationship
a named association among
entity types. A relationship
represents a two-way or bidi-
rectional association among
entities. Most relationships
involve two distinct entity
types.

Cardinality
a constraint on the number
of entities that participate
in a relationship. In an ERD,
the minimum and maximum
cardinalities are specified
for both directions of a
relationship.

Course O�ering

Course1 O�ering1

Course2

Course3

O�ering2

O�ering3

O�ering4

FIGURE 5.2
Instance Diagram for the Has Relationship

Attribute
a property of an entity
type or relationship. Each
attribute has a data type that
defines the kind of values
and permissible operations
on the attribute.

2 A transitive verb can take a direct object indicating the receiver of the action. Most action verbs can take
direct objects.

26008_ch05_p141-178.indd 145 3/2/18 9:31 PM

146   Part 3  Data Modeling

Classification of Cardinalities  Cardinalities are classified by common values for
minimum and maximum cardinality. Table 5-1 shows two classifications for mini-
mum cardinalities. A minimum cardinality of one or more indicates a mandatory
relationship. For example, participation in the Has relationship is mandatory for
each Offering entity due to the minimum cardinality of one. A mandatory relation-
ship makes the entity type existence dependent on the relationship. The Offering
entity type depends on the Has relationship because an Offering entity cannot be
stored without a related Course entity. In contrast, a minimum cardinality of zero
indicates an optional relationship. For example, the Has relationship is optional to
the Course entity type because a Course entity can be stored without being related to
an Offering entity. Figure 5.4 shows that the Teaches relationship is optional for both
entity types.

Table 5-1 also shows several classifications for maximum cardinalities. A maxi-
mum cardinality of one means the relationship is single-valued or functional. For
example, the Has and Teaches relationships are functional for Offering because an
Offering entity can be related to a maximum of one Course and one Faculty entity.
The word function comes from mathematics where a function gives one value.
A relationship that has a maximum cardinality of one in one direction and more
than one (many) in the other direction is called a 1-M (read one-to-many) relation-
ship. Both the Has and Teaches relationships are 1-M.

Similarly, a relationship that has a maximum cardinality of more than one in
both directions is known as an M-N (many-to-many) relationship. In Figure 5.5, the
TeamTeaches relationship allows multiple professors to jointly teach the same offer-
ing, as shown in the instance diagram of Figure 5.6. M-N relationships are common

Existence Dependency
an entity that cannot exist
unless another related entity
exists. A mandatory relation-
ship creates an existence
dependency.

Inside symbol:
minimum cardinality

CourseNo
CrsDesc
CrsUnits

Course
O�erNo
O�Location
O�Time

O�ering

Has

Perpendicular line:
one cardinality

Outside symbol:
maximum cardinality

Circle: zero
cardinality

Crow's Foot:
many cardinality

FIGURE 5.3
Entity Relationship Diagram
with Cardinalities Noted

FacNo
FacSalary
FacRank
FacHireDate

Faculty

O�erNo
O�Location
O�Time

O�ering

Teaches

FIGURE 5.4
Optional Relationship for
Both Entity Types

TABLE 5-1
Summary of Cardinality
Classifications

Classification Cardinality Restrictions

Mandatory Minimum cardinality ≥ 1

Optional Minimum cardinality = 0

Functional or single-valued Maximum cardinality = 1

1-M Maximum cardinality = 1 in one direction and maximum cardinality > 1
in the other direction.

M-N Maximum cardinality is > 1 in both directions.

1-1 Maximum cardinality = 1 in both directions.

26008_ch05_p141-178.indd 146 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   147

in business databases to represent the connection between parts and sup-
pliers, authors and books, and skills and employees. For example, a part
can be supplied by many suppliers and a supplier can supply many parts.

Less common are 1-1 relationships in which the maximum cardinal-
ity equals one in both directions. For example, the WorksIn relationship in
Figure 5.5 allows a faculty to be assigned to one office and an office to be
occupied by at most one faculty.

5.1.3  Comparison to Relational Database Diagrams
To finish this section, let us compare the notation in Figure 5.3 with the rela-
tional database diagrams (from Microsoft Access) which you seen in previ-
ous chapters. It is easy to become confused between the two notations. Some of the
major differences are listed below.3 To help you visualize these differences, Figure 5.7
shows a relational database diagram for the Course-Offering example.

	 1.	Relational database diagrams do not use names for relationships. Instead foreign
keys represent relationships. The ERD notation does not use foreign keys. For
example, Offering.CourseNo is a column in Figure 5.7 but not an attribute in
Figure 5.3.

	 2.	Relational database diagrams show only maximum cardinalities.
	 3.	Some ERD notations (including the Crow’s Foot notation) allow both entity

types and relationships to have attributes. Relational database diagrams only
allow tables to have columns.

	 4.	Relational database diagrams allow a relationship between two tables.
Some ERD notations (although not the Crow’s Foot notation) allow M-way
relationships involving more than two entity types. The next section shows how
to represent M-way relationships in the Crow’s Foot notation.

	 5.	 In some ERD notations (although not the Crow’s Foot notation), the position of
the cardinalities is reversed.

FacNo
FacSalary
FacRank
FacHireDate

Faculty

O�erNo
O�Location
O�Time

O�ering
Team

Teaches
O�ceNo
O�Phone
O�Type

O�ce

WorksIn

FIGURE 5.5
M-N and 1-1 Relationship
Examples

Course
Courseno
CrsDesc
CrsUnits

1 8

O�ering
O�erNo

CourseNo
O�Location

O�Time
...

FIGURE 5.7
Relational Database Diagram for the Course-
Offering Example

FIGURE 5.6
Instance Diagram for the M-N
TeamTeaches Relationship

Faculty O�ering

Faculty1 O�ering1

Faculty2

Faculty3

O�ering2

O�ering3

3 Chapter 6 presents conversion rules that describe the differences more precisely.

5.2  UNDERSTANDING RELATIONSHIPS
This section explores the entity relationship notation in more depth by examining
important aspects of relationships. The first subsection describes identification depen-
dency, a specialized kind of existence dependency. The second subsection describes
three important relationship patterns: (1) relationships with attributes, (2)
self-referencing relationships, and (3) associative entity types representing
multiway (M-way) relationships. The final subsection describes an impor-
tant equivalence between M-N and 1-M relationships.

5.2.1  Identification Dependency (Weak Entity Types and
Identifying Relationships)
In an ERD, some entity types may not have their own primary key.
Entity types without their own primary key must borrow part (or all)

26008_ch05_p141-178.indd 147 3/2/18 9:31 PM

148   Part 3  Data Modeling

of their primary key from other entity types. Entity types that borrow part or their
entire primary key are known as weak entity types. A relationship that provides
a component of the primary key is known as an identifying relationship. Thus, an
identification dependency involves a weak entity type and one or more identifying
relationships.

Identification dependency occurs because some entities are closely associated
with other entities. For example, a room does not have a separate identity from its
building because a room is physically contained in a building. You can reference a
room only by providing its associated building identifier. In the ERD for buildings
and rooms (Figure 5.8), the Room entity type is identification dependent on the Build-
ing entity type in the Contains relationship. A solid relationship line indicates an iden-
tifying relationship. For weak entity types, the underlined attribute (if present) is part
of the primary key, but not the entire primary key. Thus, the primary key of Room
is a combination of BldgID and RoomNo. As another example, Figure 5.9 depicts an
identification dependency involving the weak entity type State and the identifying
relationship Holds.

Identification dependency is a specialized kind of existence dependency. Recall
that an existent-dependent entity type has a mandatory relationship (minimum car-
dinality of one). Weak entity types are existent dependent on the identifying relation-
ships. In addition to the existence dependency, a weak entity type borrows at least
part of its entire primary key. Because of the existence dependency and the primary
key borrowing, the minimum and maximum cardinalities of a weak entity type are
always 1.

The next section shows several additional examples of identification dependency
in the discussion of associative entity types and M-way relationships. The use of iden-
tification dependency is necessary for associative entity types.

5.2.2  Relationship Patterns
This section discusses three patterns for relationships that you may encounter in data-
base development efforts: (1) M-N relationships with attributes, (2) self-referencing
(unary) relationships, and (3) associative entity types representing M-way relation-
ships. Although these relationship patterns are not common, they are important when

Weak Entity Type
an entity type that borrows
all or part of its primary key
from another entity type.
Identifying relationships
indicate the entity types that
supply components of a bor-
rowed primary key.

BldgID
BldgName
BldgLocation

Building

RoomNo
RoomCapacity

Room
Contains

Identification dependency symbols:
• Solid relationship line for identifying

relationships
• Diagonal lines in the corners of rectangles

for weak entity types

FIGURE 5.8
Identification Dependency
Example

CountryID
CountryName
CountryPopulation

Country

StateID
StateName

State

Holds

Note: The weak entity type’s cardinality is
always (1,1) in each identifying relationship.

FIGURE 5.9
Another Identification
Dependency Example

26008_ch05_p141-178.indd 148 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   149

they occur. You need to study these patterns carefully to apply them correctly in data-
base development efforts.

M-N Relationships with Attributes  As briefly mentioned in Section 5.1, relation-
ships can have attributes. This situation typically occurs with M-N relationships. In
an M-N relationship, attributes are associated with the combination of entity types,
not just one of the entity types. If an attribute is associated with only one entity type,
then it should be part of that entity type, not the relationship. Figures 5.10 and 5.11
depict M-N relationships with attributes. In Figure 5.10, the attribute EnrGrade is
associated with the combination of a student and offering, not either one alone. For
example, the EnrollsIn relationship records the fact that the student with StdNo 123-
77-9993 has a grade of 3.5 in the offering with offer number 1256. In Figure 5.11(a),
the attribute Qty represents the quantity of a part supplied by a given supplier. In
Figure 5.11(b), the attribute AuthOrder represents the order in which the author’s
name appears in the title of a book. To reduce clutter on a large diagram, relationship
attributes may not be shown.

1-M relationships also can have attributes, but 1-M relationships with attributes
are much less common than M-N relationships with attributes. In Figure 5.12, the Com-
mission attribute is associated with the Lists relationship, not with either the Agent or
the Home entity type. A home will only have a commission if an agent lists it. Typi-
cally, 1-M relationships with attributes are optional for the child entity type. The Lists
relationship is optional for the Home entity type.

Self-Referencing (Unary) Relationships  A self-referencing relationship
involves connections among members of the same set. Self-referencing relationships
are sometimes called reflexive relationships because they turn back on themselves,

Self-Referencing
Relationship
a relationship involving the
same entity type. Self-
referencing relationships
represent associations
among members of the
same set.

StdNo
StdName

Student
O�erNo
O�Location
O�Time

O�ering

EnrollsIn

EnrGrade

Attribute of relationship

FIGURE 5.10
M-N Relationship with an
Attribute

PartNo
PartName

Part
SuppNo
SuppName

Supplier

Qty

Provides

a) Provides relationship

AuthNo
AuthName

Author
ISBN
Title

Book

b) Writes relationship

AuthOrder

Writes

FIGURE 5.11
Additional M-N Relationships
with Attributes

HomeNo
Address

Home
AgentID
AgentName

Agent

Commission

Lists

FIGURE 5.12
1-M Relationship with an
Attribute

26008_ch05_p141-178.indd 149 3/2/18 9:31 PM

150   Part 3  Data Modeling

similar to the concept of a reflexive verb in English. Figure 5.13 displays two self-
referencing relationships involving the Faculty and Course entity types. Both relation-
ships involve two entity types that are the same (Faculty for Supervises and Course for
PreReqTo). These relationships depict important concepts in a university database. The
Supervises relationship depicts an organizational chart, while the PreReqTo relation-
ship depicts course dependencies that can affect a student’s course planning.

For self-referencing relationships, you should distinguish between 1-M and M-N
relationships. An instance diagram can help you understand the difference. Figure
5.14(a) shows an instance diagram for the Supervises relationship. Notice that each fac-
ulty can have at most one superior. For example, Faculty2 and Faculty3 have Faculty1
as a superior. Therefore, Supervises is a 1-M relationship because each faculty can have
at most one supervisor. In contrast, there is no such restriction in the instance diagram
for the PreReqTo relationship (Figure 5.14(b)). For example, IS461 has two prerequisites
(IS480 and IS460), while IS320 is a prerequisite to both IS480 and IS460. Therefore, Pre-
ReqTo is an M-N relationship because a course can be a prerequisite to many courses,
and a course can have many prerequisites.

Self-referencing relationships occur in a variety of business situations. Any data
that can be visualized like Figure 5.14 can be represented as a self-referencing relation-
ship. Typical examples include hierarchical charts of accounts, genealogical charts,
part designs, and transportation routes. In these examples, self-referencing relation-
ships are an important part of the database.

There is one other noteworthy aspect of self-referencing relationships. Sometimes
a self-referencing relationship is not needed. For example, if you only want to know
whether an employee is a supervisor, a self-referencing relationship is not needed.
Rather, an attribute can be used to indicate whether an employee is a supervisor.

Associative Entity Types Representing Multi-Way (M-Way) Relationships  Some
ERD notations support relationships involving more than two entity types known as
M-way (multiway) relationships where the M means more than two. For example,
the Chen4 ERD notation (with diamonds for relationships) allows relationships to

FacNo
FacName

Faculty

(a) Manager-subordinate

Supervises

(b) Course prerequisites

CourseNo
CrsDesc

Course PrereqTo

FIGURE 5.13
Examples of Self-Referencing
(Unary) Relationships

Faculty1

Faculty2 Faculty3

Faculty4 Faculty5

IS300

IS320

IS480 IS460

IS461

(a) Supervises (b) PreReqTo

FIGURE 5.14
Instance Diagrams for Self-
Referencing Relationships

4 The Chen notation is named after Dr. Peter Chen, who published the paper defining the Entity Relationship
Model in 1976.

26008_ch05_p141-178.indd 150 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   151

connect more than two entity types, as depicted in Figure 5.15. The Uses relationship
lists suppliers and parts used on projects. For example, a relationship instance involv-
ing Supplier1, Part1, and Project1 indicates that Supplier1 Supplies Part1 on Project1.
An M-way relationship involving three entity types is called a ternary relationship.
The letters in the Chen ERD indicate maximum cardinalities.

Although you cannot directly represent M-way relationships in the Crow’s
Foot notation, you should understand how to indirectly represent them. You use an
associative entity type and a collection of identifying 1-M relationships to repre-
sent an M-way relationship. In Figure 5.16, three 1-M relationships link the associative
entity type, Uses, to the Part, the Supplier, and the Project entity types. The Uses entity
type is associative because its role is to connect other entity types. Because associative
entity types provide a connecting role, they are sometimes given names using active
verbs. In addition, associative entity types are always weak as they must borrow the
entire primary key. For example, the Uses entity type obtains its primary key through
the three identifying relationships.

As another example, Figure 5.17 shows the associative entity type Provides that
connects the Employee, Skill, and Project entity types. An example instance of the Pro-
vides entity type contains Employee1 providing Skill1 on Project1.

The issue of when to use an M-way associative entity type (i.e., an associative
entity type representing an M-way relationship) can be difficult to understand. If

Associative Entity Type
a weak entity that depends
on two or more entity types
for its primary key. An asso-
ciative entity type with more
than two identifying relation-
ships is known as an M-way
associative entity type.

Part
PartNo

PartName

Uses

Supplier
SuppNo

SuppName

Project
ProjNo

ProjName

M N P

FIGURE 5.15
M-Way (Ternary) Relationship
Using the Chen Notation

PartNo
PartName

Part
SuppNo
SuppName

Supplier

Associative
entity type

UsesPart-Uses

Supp-Uses

Proj-Uses

ProjNo
ProjName

Project
FIGURE 5.16
Associative Entity Type
to Represent a Ternary
Relationship

EmpNo
EmpName

Employee
SkillNo
SkillName

Skill

ProjNo
ProjName

Project

ProvidesEmp-Uses

Skill-Uses

Proj-Uses

FIGURE 5.17
Associative Entity Type
Connecting Employee, Skill,
and Project

26008_ch05_p141-178.indd 151 3/2/18 9:31 PM

152   Part 3  Data Modeling

a database only needs to record pairs of facts, an M-way associative entity type is
not needed. For example, if a database only needs to record who supplies a part
and what projects use a part, then an M-way associative entity type should not be
used. In this case, there should be binary relationships between Supplier and Part
and between Project and Part. You should use an M-way associative entity type
when the database should record combinations of three (or more) entities rather
than just combinations of two entities. For example, if a database needs to record
which supplier provides parts on specific projects, an M-way associative entity type
is needed. Because of the complexity of M-way relationships, Chapter 6 provides a
guideline about using them, while Chapter 7 provides a way to reason about them
using constraints.

5.2.3  Equivalence between 1-M and M-N Relationships
To improve your understanding of M-N relationships, you should know an impor-
tant equivalence for M-N relationships. An M-N relationship can be replaced by
an associative entity type and two identifying 1-M relationships. Figure 5.18 shows
the EnrollsIn (Figure 5.10) relationship converted to this 1-M style. In Figure 5.18, two
identifying relationships and an associative entity type replace the EnrollsIn relation-
ship. The relationship name (EnrollsIn) has been changed to a noun (Enrollment) to
follow the convention of nouns for entity type names. The 1-M style is similar to the
representation in a relational database diagram. If you feel more comfortable with
the 1-M style, then use it. In terms of the ERD, the M-N and 1-M styles have the same
meaning.

The transformation of an M-N relationship into 1-M relationships is similar to
representing an M-way relationship using 1-M relationships. Whenever an M-N rela-
tionship is represented as an associative entity type and two 1-M relationships, the
new entity type is identification dependent on both 1-M relationships, as shown in
Figure 5.18. Similarly, when representing M-way relationships, the associative entity
type is identification dependent on all 1-M relationships as shown in Figures 5.16
and 5.17.

There is one situation when the 1-M style is preferred to the M-N style. When an
M-N relationship must be related to other entity types in relationships, you should use
the 1-M style. For example, assume that in addition to enrollment in a course offer-
ing, attendance in each class session should be recorded. In this situation, the 1-M
style is necessary to link an enrollment with attendance records. Figure 5.19 shows the
Attendance entity type added to the ERD of Figure 5.18. Note that an M-N relationship
between the Student and Offering entity types would not have allowed another rela-
tionship with Attendance.

Figure 5.19 provides other examples of identification dependencies. Attendance is
identification dependent on Enrollment in the RecordedFor relationship. The primary
key of Attendance consists of AttDate along with the primary key of Enrollment. Simi-
larly, Enrollment is identification dependent on both Student and Offering. The primary
key of Enrollment is a combination of StdNo and OfferNo.

Relationship Equivalence
an M-N relationship can be
replaced by an associative
entity type and two identify-
ing 1-M relationships. In most
cases, the choice between
a M-N relationship and the
associative entity type is
personal preference.

StdNo
StdName

Student
O�erNo
O�Location

O�ering

EnrGrade

Enrollment

Registers Grants

FIGURE 5.18
EnrollsIn M-N Relationship
(Figure 5.10) Transformed
into 1-M Relationships

26008_ch05_p141-178.indd 152 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   153

StdNo
StdName

Student
O�erNo
O�Location
O�Time

O�ering

EnrGrade

Enrollment
Registers

Grants
AttDate
Present

Attendance

RecordedFor

FIGURE 5.19
Attendance Entity Type
Added to the ERD of
Figure 18

Employee
EmpNo

EmpName
EmpHireDate

...

Generalization
hierarchy symbol

Supertype

SalaryEmp
EmpSalary

HourlyEmp
EmpRateSubtypes

FIGURE 5.20
Generalization Hierarchy for
Employees

5.3  CLASSIFICATION IN THE ENTITY RELATIONSHIP MODEL

People classify entities to better understand their environment. For example, animals
are classified into mammals, reptiles, and other categories to understand the similari-
ties and differences among different species. In business, classification is also perva-
sive. Classification can be applied to investments, employees, customers, loans, parts,
and so on. For example, when applying for a home mortgage, an important distinction
is between fixed- and adjustable-rate mortgages. Within each kind of mortgage, there
are many variations distinguished by features such as the repayment period, prepay-
ment penalties, and loan amount.

This section describes ERD notation to support classification. You will learn
to use generalization hierarchies, specify cardinality constraints for generaliza-
tion hierarchies, and use multiple-level generalization hierarchies for complex
classifications.

5.3.1  Generalization Hierarchies
Generalization hierarchies allow entity types to be related by the level of specializa-
tion. Figure 5.20 depicts a generalization hierarchy to classify employees as salaried
versus hourly. Both salaried and hourly employees are specialized kinds of employ-
ees. The Employee entity type is known as the supertype (or parent). The entity types
SalaryEmp and HourlyEmp are known as the subtypes (or children). Because each sub-
type entity is a supertype entity, the relationship between a subtype and supertype is
known as ISA. For example, a salaried employee is an employee. Because the relation-
ship name (ISA) is always the same, it is not shown on the diagram.

Inheritance supports sharing between a supertype and its subtypes. Because
every subtype entity is also a supertype entity, the attributes of the supertype also
apply to all subtypes. For example, every entity of SalaryEmp has an employee number,
name, and hiring date because it is also an entity of Employee. Inheritance means that

Generalization Hierarchy
a collection of entity types
arranged in a hierarchical
structure to show similarity
in attributes. Each subtype
or child entity type contains
a subset of entities of its
supertype or parent entity
type.

Inheritance
a data modeling feature that
supports sharing of attri-
butes between a supertype
and a subtype. Subtypes
inherit attributes from their
supertypes.

26008_ch05_p141-178.indd 153 3/2/18 9:31 PM

154   Part 3  Data Modeling

the attributes of a supertype are automatically part of its subtypes. That is, each sub-
type inherits the attributes of its supertype. For example, the attributes of the SalaryEmp
entity type are its direct attribute (EmpSalary) and its inherited attributes from Employee
(EmpNo, EmpName, EmpHireDate, etc.). Inherited attributes are not shown in an ERD.
Whenever you have a subtype, assume that it inherits the attributes from its supertype.

5.3.2  Disjointness and Completeness Constraints
Generalization hierarchies do not show cardinalities because they are always the same.
Rather disjointness and completeness constraints can be shown. Disjointness means
that subtypes in a generalization hierarchy do not have any entities in common. In
Figure 5.21, the generalization hierarchy is disjoint because a security cannot be both a
stock and a bond. In contrast, the generalization hierarchy in Figure 5.22 is not disjoint
because teaching assistants can be considered both students and faculty. Thus, the set
of students overlaps with the set of faculty. Completeness means that every entity of
a supertype must be an entity in one of the subtypes in the generalization hierarchy.
The completeness constraint in Figure 5.21 means that every security must be either a
stock or a bond.

Some generalization hierarchies lack both disjointness and completeness con-
straints. In Figure 5.20, the lack of a disjointness constraint means that some employees
can be both salaried and hourly. The lack of a completeness constraint indicates that
some employees are not paid by salary or the hour (perhaps by commission).

5.3.3  Multiple Levels of Generalization
Generalization hierarchies can be extended to more than one level. This practice can
be useful in disciplines such as investments where knowledge is highly structured. In
Figure 5.23, there are two levels of subtypes beneath securities. Inheritance extends
to all subtypes, direct and indirect. Thus, both the Common and Preferred entity types
inherit the attributes of Stock (the immediate parent) and Security (the indirect parent).
Note that disjointness and completeness constraints can be made for each group of
subtypes.

Bond

Rate
FaceValue

Stock

OutShares
IssuedShares

Security

Symbol
SecName
LastClose

D,C

Disjointness
constraint

Completeness
constraint

FIGURE 5.21
Generalization Hierarchy for
Securities

Student
StdMajor
StdClass

Faculty
FacSalary
FacDept

C

UnivPeople
PerNo
Name
City

State

FIGURE 5.22
Generalization Hierarchy for
University People

26008_ch05_p141-178.indd 154 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   155

Security
Symbol

SecName
LastClose

Stock
OutShares

IssuedShares

Bond
Rate

FaceValue

D,C

Common
PERatio
Dividend

Preferred
CallPrice
Arrears

D,C

FIGURE 5.23
Multiple Levels of Generaliza-
tion Hierarchies

5.4  NOTATION SUMMARY AND DIAGRAM RULES

You have seen a lot of ERD notation in the previous sections of this chapter. So that
you do not become overwhelmed, this section provides a convenient summary as well
as rules to help you avoid common diagramming errors.

5.4.1  Notation Summary
To help you recall the notation introduced in previous sections, Table 5-2 presents a
summary while Figure 5.24 demonstrates the notation for the university database of
Chapter 4. Figure 5.24 differs in some ways from the university database in Chapter
4 to depict most of the Crow’s Foot notation. Figure 5.24 contains a generalization
hierarchy to depict the similarities among students and faculty. You should note that

TABLE 5-2
Summary of Crow’s Foot
Notation

Symbol Meaning

Student
StdNo

StdName
...

Entity type with attributes (primary key underlined)

Enrolls_In

EnrGrade

M-N relationship with attributes: attributes appear if room permits; other-
wise attributes are listed separately.

Contains

Identification dependency: identifying relationship(s) (solid relationship
lines) and weak entity (diagonal lines in the corners of the rectangle).
Associative entity types also are weak because they are (by definition)
identification dependent.

D,C

Generalization hierarchy with disjointness and completeness constraints.

Contains

Existence dependent cardinality (minimum cardinality of 1): inner symbol is
a line perpendicular to the relationship line.

Teaches

Optional cardinality (minimum cardinality of 0): inner symbol is a circle.

Has

Single-valued cardinality (maximum cardinality of 1): outer symbol is a
perpendicular line.

26008_ch05_p141-178.indd 155 3/2/18 9:31 PM

156   Part 3  Data Modeling

the primary key of the Student and the Faculty entity types is PerNo, an attribute inher-
ited from the UnivPerson entity type. The Enrollment entity type (associative) and the
identifying relationships (Registers and Grants) could appear as an M-N relationship
as previously shown in Figure 5.10. In addition to these issues, Figure 5.24 omits some
attributes for breviy.

Representation of Business Rules in an ERD  As you develop an ERD, you should
remember that an ERD contains business rules that enforce organizational policies and
promote efficient communication among business stakeholders. An ERD contains
important business rules represented as primary keys, relationships, cardinalities, and
generalization hierarchies. Primary keys support entity identification, an important
requirement in business communication. Identification dependency involves an entity
that depends on other entities for identification, a requirement in some business com-
munication. Relationships indicate direct connections among units of business com-
munication. Cardinalities restrict the number of related entities in relationships sup-
porting organizational policies and consistent business communication. Generalization
hierarchies with disjointness and completeness constraints support classification of
business entities and organizational policies. Thus, the elements of an ERD are crucial
for enforcement of organizational policies and efficient business communication.

For additional kinds of business constraints, you can enhance an ERD with infor-
mal documentation or a formal rules language. Since the SQL standard supports integ-
rity constraints in the CREATE TABLE statement (see Chapter 3) for simple rules and
a formal rules language (see Chapters 11 and 16) for complex constraints, this chapter
does not present a language or notation for ERDs. In the absence of a formal rules lan-
guage, business rules can be stored as informal documentation associated with entity
types, attributes, and relationships. Typical kinds of business rules to specify as infor-
mal documentation are candidate key constraints, attribute comparison constraints,
null value constraints, and default values. Candidate keys provide alternative ways
to identify business entities. Attribute comparison constraints restrict the values of
attributes either to a fixed collection of values or to values of other attributes. Null
value constraints and default values support policies about completeness of data col-
lection activities. Table 5-3 summarizes the common kinds of business rules that you
can specify either formally or informally in an ERD.

O�ering
O�erNo
O�Location
O�Time

EnrGrade

EnrollmentRegisters
Grants

CourseNo
CrsDesc
CrsUnits

Course

Faculty
FacSalary
FacRank
FacHireHate

PerNo
PerName
PerCity
PerState
PerZip

UnivPerson

Has

Teaches

Supervises

C
Student
StdClass
StdMajor
StdGPA

FIGURE 5.24
ERD for the University
Database

26008_ch05_p141-178.indd 156 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   157

5.4.2  Diagram Rules
To provide guidance about correct usage of the notation, Table 5-4 presents complete-
ness and consistency rules. You should apply these rules when completing an ERD
to ensure that no notation errors exist in your ERD. Thus, the diagram rules serve a
purpose similar to syntax rules for a computer language. The absence of syntax errors
does not mean that a computer program performs its tasks correctly. Likewise, the
absence of notation errors does not mean that an ERD provides an adequate data
representation. The diagram rules do not ensure that you have considered multiple
alternatives, correctly represented user requirements, and properly documented your
design. Chapter 6 discusses these issues to enhance your data modeling skills.

TABLE 5-3
Summary of Business Rules
in an ERD

Business Rule ERD Representation

Entity identification Primary keys for entity types, identification dependency (weak
entities and identifying relationships), informal documentation
about other unique attributes

Connections among business entities Relationships

Number of related entities Minimum and maximum cardinalities

Inclusion among entity sets Generalization hierarchies

Reasonable values Informal documentation about attribute constraints (comparison to
constant values or other attributes)

Data collection completeness Informal documentation about null values and default values

TABLE 5-4
Completeness and
Consistency Rules

Type of Rule Description

Completeness 1.	 Primary key rule: All entity types have a primary key (direct, borrowed, or inherited).

2.	 Naming rule: All entity types, relationships, and attributes are named.

3.	 Cardinality rule: Cardinality is given for both entity types in a relationship.

4.	 Entity participation rule: All entity types except those in a generalization hierarchy

participate in at least one relationship.

5.	 Generalization hierarchy participation rule: Each generalization hierarchy

participates in at least one relationship with an entity type not in the generalization

hierarchy.

Consistency 1.	 Entity name rule: Entity type names are unique.

2.	 Attribute name rule: Attribute names are unique within entity types and

relationships.

3.	 Inherited attribute name rule: Attribute names in a subtype do not match inherited

(direct or indirect) attribute names.

4.	 Relationship/entity type connection rule: All relationships connect two entity types

(not necessarily distinct).

5.	 Relationship/relationship connection rule: Relationships are not connected to other

relationships.

6.	 Weak entity type rule: Weak entity types have at least one identifying relationship.

7.	 Identifying relationship rule: For each identifying relationship, at least one

participating entity type must be weak.

8.	 Identification dependency cardinality rule: For each identifying relationship, the

minimum and maximum cardinality must be 1 in the direction from the child (weak

entity) to the parent entity type.

9.	 Redundant foreign key rule: Redundant foreign keys are not used.

26008_ch05_p141-178.indd 157 3/2/18 9:31 PM

158   Part 3  Data Modeling

Most of the rules in Table 5-4 do not require much elaboration. The first three
completeness rules and the first five consistency rules are simple to understand. Even
though the rules are simple, you should still check your ERDs for compliance as it is
easy to overlook a violation in a moderate-size ERD.

The consistency rules do not require unique relationship names because partici-
pating entity types provide a context for relationship names. However, it is good prac-
tice to use unique relationship names as much as possible to make relationships easy
to distinguish. In addition, two or more relationships involving the same entity types
must be unique because the entity types no longer provide a context to distinguish the
relationships. Since it is uncommon to have more than one relationship between the
same entity types, the consistency rules do not include this provision.

Completeness rules 4 (entity participation rule) and 5 (generalization hierarchy
participation rule) require elaboration. Violating these rules is a warning, not neces-
sarily an error. In most ERDs, all entity types not in a generalization hierarchy and all
generalization hierarchies are connected to at least one other entity type. In uncom-
mon situations, an ERD contains an unconnected entity type just to store a list of enti-
ties. Rule 5 applies to an entire generalization hierarchy, not to each entity type in a
generalization hierarchy. In other words, at least one entity type in a generalization
hierarchy should be connected to at least one entity type not in the generalization hier-
archy. In many generalization hierarchies, multiple entity types participate in relation-
ships. Generalization hierarchies permit subtypes to participate in relationships thus
constraining relationship participation. For example in Figure 5.24, Student and Faculty
participate in relationships.

Consistency rules 6 through 9 involve common errors in ERDs of novice data mod-
elers. Novice data modelers violate consistency rules 6 to 8 because of the complexity
of identification dependency. Identification dependency, involving a weak entity type
and identifying relationships, provides more sources of errors than other parts of the
Crow’s Foot notation. In addition, each identifying relationship also requires a mini-
mum and maximum cardinality of 1 in the direction from the child (weak entity type)
to the parent entity type. Novice data modelers violate consistency rule 9 (redundant
foreign key rule) because of confusion between an ERD and the relational data model.
The conversion process transforms 1-M relationships into foreign keys.

Example of Rule Violations and Resolutions  Because the identification depen-
dency rules and the redundant foreign key rule are a frequent source of errors to
novice designers, this section provides an example to depict rule violations and
resolutions. Figure 5.25 demonstrates violations of the identification dependency rules
(consistency rules 6 to 9) and the redundant foreign key rule (consistency rule 9) for
the university database ERD. The following list explains the violations.

•	 Consistency rule 6 (weak entity type rule) violation: Faculty cannot be a weak
entity type without at least one identifying relationship.

•	 Consistency rule 7 (identifying relationship rule) violation: The Has relationship
is identifying but Offering is not a weak entity type.

•	 Consistency rule 8 (identification dependency cardinality rule) violation: The
cardinality of the Registers relationship from Enrollment to Student should be (1, 1)
not (0, Many).

•	 Consistency rule 9 (redundant foreign key rule) violation: The CourseNo attribute
in the Offering entity type is redundant with the Has relationship. Because
CourseNo is the primary key of Course, it should not be an attribute of Offering to
link an Offering to a Course. The Has relationship provides the linkage to Course.

For most rules, you can easily resolve violations. The major task is recognition of the
violation. For the identification dependency rules, resolution depends on problem
details. The following list suggests possible corrective actions for diagram errors:

•	 Consistency rule 6 (weak entity type rule) resolution: You can resolve this
problem by adding one or more identifying relationships or by changing the

26008_ch05_p141-178.indd 158 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   159

weak entity type into a regular entity type. In Figure 5.25, the resolution involves
Faculty from a weak to regular entity type. The more common resolution
involves adding one or more identifying relationships.

•	 Consistency rule 7 (identifying relationship rule) resolution: You can resolve
this problem by adding a weak entity type or making the relationship non-
identifying. In Figure 5.25, the resolution involves changing the Has relationship
from identifying into regular (non-identifying). If more than one identifying
relationship exists among the same entity type, the typical resolution involves
designating the common entity type as a weak entity type.

•	 Consistency rule 8 (identification dependency cardinality rule) resolution: You
can resolve this problem by changing the weak entity type’s cardinality to (1,1).
Typically, the cardinality of the identifying relationship is reversed. In Figure
5.25, the resolution involves reversing the cardinality of the Registers relationship
((1,1) near Student and (0, Many) near Enrollment).

•	 Consistency rule 9 (redundant foreign key rule) resolution: Normally you can
resolve this problem by removing the redundant foreign key. In Figure 5.25, the
resolution involves removing CourseNo as an attribute of Offering. In some cases,
an attribute may not represent a foreign key. If the attribute does not represent a
foreign key, the resolution involves renaming instead of removing the attribute.

Alternative Organization of Rules  The organization of rules in Table 5-4 may be
difficult to remember. Table 5-5 provides an alternative grouping by rule purpose. If
you find this organization more intuitive, you should use it. However you choose to
remember the rules, the important point is to apply them after you have completed
an ERD. To help you apply diagram rules, most CASE tools perform checks specific
to the notations supported by the tools.

These rules can be supported in CASE tools with data modeling features although
support for structural rules is uneven in commercial products. Consistency rules 4 and
5 can be supported through diagram construction. Relationships must be connected to
two entity types (not necessarily distinct) prohibiting violations of consistency rules 4
and 5. For the other completeness and consistency rules, an analysis tool can generate
a report of rule violations. However, the analysis tool would not require fixing rule

O�ering
O�erNo
O�Location
O�Time
CourseNo

EnrGrade

EnrollmentRegisters Grants
CourseNo
CrsDesc
CrsUnits

Course

Faculty
FacSalary
FacRank
FacHireHate

PerNo
PerName
PerCity
PerState
PerZip

UnivPerson

Has

Teaches

Supervises

C
Student
StdClass
StdMajor
StdGPA

Rule 6 violation
(weak entity)

Rule 7 violation
(identifying relationship)Rule 8 violation

(Id dependency cardinality)

Rule 9 violation
(redundant FK)

FIGURE 5.25
ERD with Violations of Con-
sistency Rules 6 to 9

26008_ch05_p141-178.indd 159 3/2/18 9:31 PM

160   Part 3  Data Modeling

violations in an ERD because some rules are soft and the rules may be applied before
an ERD is complete.

For the redundant foreign key rule (consistency rule 9), an analysis tool may use
a simple implementation to determine if an ERD contains a redundant foreign key.
The analysis tool can check the child entity type (entity type on the many side of the
relationship) for an attribute with the same name and data type as the primary key in
the parent entity type (entity type on the one side of the relationship). If the tool finds
an attribute with the same name and data type, a violation is listed in a rule violation
report. In practice, most CASE tools provide an option to show redundant foreign keys
to reinforce ERD representation in a table design.

TABLE 5-5
Alternative Rule Organization Category Rules

Names All entity types, relationships, and attributes are named. (Completeness rule 2)
Entity type names are unique. (Consistency rule 1)
Attribute names are unique within entity types and relationships. (Consistency rule 2)
Attribute names in a subtype do not match inherited (direct or indirect) attribute names.
(Consistency rule 3)

Content All entity types have a primary key (direct, borrowed, or inherited). (Completeness rule 1)
Cardinality is given for both entity types in a relationship. (Completeness rule 3)

Connection All entity types except those in a generalization hierarchy participate in at least one
relationship. (Completeness rule 4)
Each generalization hierarchy participates in at least one relationship with an entity type
not in the generalization hierarchy. (Completeness rule 5)
All relationships connect two entity types. (Consistency rule 4)
Relationships are not connected to other relationships. (Consistency rule 5)
Redundant foreign keys are not used. (Consistency rule 9)

Identification
Dependency

Weak entity types have at least one identifying relationship. (Consistency rule 6)
For each identifying relationship, at least one participating entity type must be weak.
(Consistency rule 7)
For each weak entity type, the minimum and maximum cardinality must equal 1 for each
identifying relationship. (Consistency rule 8)

The ERD notation presented in this chapter is similar to but not identical to what you
may encounter in practice. With no standard notation for ERDs, the marketplace has
created a number of reasonably popular ERD notations, each having its own small
variations that appear in practice. The notation in this chapter comes from the Crow’s
Foot stencil in Visio Professional 2010 with the addition of the generalization notation.
The notations that you encounter in practice depend on factors such as data model-
ing tool used in your organization and industry. One thing is certain: you should be
prepared to adapt to the notation in use. This section describes ERD variations that
you may encounter in several CASE tools, along with the Class Diagram notation of
the Unified Modeling Language (UML), an emerging standard for data modeling for
software development.

5.5.1  Range of ERD Variations in Data Modeling Tools
Because no ERD standard exists, a variety of representations has emerged. These ERD
variations differ on symbols on the diagram and diagram rules. The original ERD
notation, known as the Chen notation5, uses diamonds for relationships, ovals for

5.5  COMPARISON TO OTHER NOTATIONS

5 Dr. Peter Chen invented the Entity Relationship Model and ERD notation in a 1976 paper although variants
of the notation previously existed.

26008_ch05_p141-178.indd 160 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   161

attributes, and maximum cardinality symbols (1 and M) as shown in Figure 5.26. In
addition, the Chen notation deploys different notation for weak entity types (double
rectangle), identifying relationships (double diamonds), and M-N relationships with
attributes (rectangle with a diamond inside denoting dual qualities of an entity type
and relationship). Some ERD drawing tools have modified the original Chen notation
so that crow’s foot symbols appear for cardinality instead of maximum cardinality
symbols.

The Crow’s Foot notation has much wider support in ERD drawing tools than the
original Chen notation. The Crow’s Foot notation replaces the cumbersome symbols
for attributes (ovals) and relationships (diamonds) with relationship lines and attri-
bute names inside entity type rectangles. In addition to symbol variations, notation
restrictions have made an ERD more similar to a diagram for a table design. Here are
common notation restrictions in ERD drawing tools.

•	 Most notations do not support M-way relationships.
•	 Some notations do not support M-N relationships.
•	 Most notations do not support relationships with attributes.
•	 Some notations do not support self-referencing (unary) relationships.
•	 Most notations do not permit connections among relationships.
•	 Most notations show foreign keys as attributes at least as a diagram option.

Restrictions in an ERD notation do not necessarily make the notation less expressive
than other notations without the restrictions. Additional symbols in a diagram may
be necessary, but the same concepts can still be represented. For example, the Crow’s
Foot notation does not support M-way relationships. However, M-way relationships
can be represented using M-way associative entity types. M-way associative entity
types require additional symbols than M-way relationships, but the same concepts are
represented.

Data modeling tools support a variety of ERD notations. Many tools support con-
version to commercial DBMSs so the representations typically align to relational data-
bases with foreign keys shown and no support for M-N relationships. The next four
subsections depict tools (Aqua Data Studio, Oracle SQL Developer, Microsoft Visio
Professional, and Visual Paradigm) with these types of restrictions.

5.5.2  ERD Notation in Aqua Data Studio
The data modeling tool in the Aqua Data Studio (www.aquafold.com) uses an
ERD notation somewhat aligned to relational database representation. Figure 5.27
depicts the university database developed in the data modeling tool of Aqua Data
Studio. The notation is similar to the Crow’s Foot notation used in this chapter
with solid lines for identifying relationships, dashed lines for regular (non-
identifying) relationships, and crow’s foot symbols for cardinalities. However,
the data modeling tool does not use the weak entity type symbol. In addition, the
data modeling tool shows foreign keys with asterisks and does not support M-N
relationships.

The data modeling tool in Aqua Data Studio supports generalization hierarchy
relationships although in a different representation than presented in this chapter.

Course

CourseNo CrsDesc CrsUnits

1

N
Has O�ering

O�er No O�erLocation O�erTime

FIGURE 5.26
Chen Notation for the
Course-Offering ERD

26008_ch05_p141-178.indd 161 3/2/18 9:31 PM

162   Part 3  Data Modeling

Figure 5.28 shows the university database extended with generalization hierarchy
relationships for university people. The data modeling tool does not support full gen-
eralization hierarchies as shown in Figure 5.24. Instead, generalization relationships
are shown separately for each pair (supertype, subtype) of entity types. The data mod-
eling tool supports inheritance as the attributes with asterisks in the Student and Fac-
ulty entity types are inherited from UnivPerson. For constraints, the data modeling tool
supports only one constraint (inclusive or exclusive) for a generalization relationship
instead of the two constraints (disjoint and completeness) presented in this chapter.

The data modeling tool in Aqua Data Studio supports other diagramming features
besides diagram construction. The Aqua Data Studio supports several levels of detail

FIGURE 5.27
University Database in the
Data Modeling Tool of Aqua
Data Studio

FIGURE 5.28
Extended University
Database in the Data
Modeling Tool of Aqua
Data Studio

26008_ch05_p141-178.indd 162 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   163

in diagrams (attribute level with optional display of data types and null value con-
straints), entity level, primary key level, comment level, and relationship name level.
ERDs can be printed, enlarged, distributed on multiple pages, and laminated for use
as posters and quick reference. Regions permit grouping of diagram elements into
colored areas that can be manipulated as a unit.

5.5.3  ERD Notation in Oracle SQL Developer
In contrast to Aqua Data Studio, the data modeling tool in Oracle SQL Developer
uses a less standard ERD notation as shown in Figure 5.29. The Oracle data modeling
tool does not provide relationship names and uses arrows for child to parent rela-
tionships. Dashed lines represent optional relationships, while solid lines represent
mandatory relationships. Other restrictions in the data modeling tool are no identify-
ing relationships, no M-N relationships, and redundant display of foreign keys. The
Oracle data modeling tool also has fewer display and printing options than Aqua
Data Studio.

The Oracle data modeling tool supports design rules although not the complete
set presented in this chapter. For entity types, the Oracle data modeling tool can detect
entity types without relationships, attributes, and a primary key as well as inconsisten-
cies with naming standards. For attributes, the Oracle data modeling tool can detect
attributes without a data type and inconsistent naming standards.

FIGURE 5.29
University Database in the
Data Modeling Tool of Oracle
SQL Developer

26008_ch05_p141-178.indd 163 3/2/18 9:31 PM

164   Part 3  Data Modeling

5.5.4  Entity Relationship Stencil in Visio Professional
This section provides details about the Entity Relationship stencil (collection of
shapes) available in the Visio 2010 Professional Edition. Using display options
for the IDEF1X6 symbol set and crow’s foot cardinality symbols, the Entity Rela-
tionship stencil supports most of the chapter notation for Crow’s Foot ERDs.
The Entity Relationship stencil does not support M-N relationships, uses differ-
ent symbols for weak entity types, and uses categories instead of generalization
hierarchies.

Figure 5.30 depicts the ERD for the extended university database (Figure 5.24)
using the Entity Relationship stencil along with options for the IDEF1X symbol set
and crow’s foot relationship symbols. Some foreign keys are not shown in Figure
5.30 although all foreign keys can be shown by setting a display option. Foreign
keys that are part of primary keys are shown when the primary keys are shown.
Thus, the Student, Faculty, and Enrollment entity types show foreign keys because
they are part of the primary keys. The rounded corner shape denotes a weak
entity type and subtypes. The Student and Faculty entity types are weak because
they inherit the primary key from the Person entity type. The associative entity
type (Enrollment) is necessary because Visio Professional does not support M-N
relationships.

The Entity Relationship stencil of Visio Professional supports generalization hier-
archies using symbols for categories, parent to category connections, and child to cat-
egory connections. A category contains a collection of subtype entities. Categories in

Student

PerNo (FK)

StdClass
StdMajor
StdGPA

O�ering

O�erNo

O�Location
O�Time
CourseNo

Course

CourseNo

CrsDesc
CrsUnits

Has

Faculty

PerNo (FK)

FacSalary
FacRank
FacHireDate

Teaches

Enrollment

O�erNo (FK)
PerNo (FK)

EnrGrade

Grants

Person

PerNo

PerName
PerCity
PerState
PerZip

Registers

Supervises

FIGURE 5.30
Extended University
Database in Visio 2010
Professional Edition

6 The IDEF1X notation was developed in the 1980s to support data modeling needs in U.S. Air Force software
projects. IDEF1X uses different symbols than the Crow’s Foot notation.

26008_ch05_p141-178.indd 164 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   165

Visio Professional and generalization hierarchies in this chapter differ in several ways
as shown in the following list.

•	 The Visio notation uses a circle with one or two lines below to represent
categories.

•	 The Visio notation allows a parent entity type to have multiple categories. In
contrast, the notation in this chapter allows only a single generalization hierarchy
for a parent entity type.

•	 The Visio notation allows a parent entity type to contain a discriminating
attribute. A discriminating attribute contains one value for each subtype in
the category. The discriminating attribute can be checked in a condition to
determine class membership of a parent entity occurrence. This chapter does
not use discriminating attributes although such an attribute can be defined.
In Visio Professional, a discriminating attribute is an alternative to a disjoint
constraint.

•	 The Visio notation supports completeness constraints, but the symbol (double
lines below the circle) is different than shown in this chapter.

•	 Visio Professional does not support inheritance as the attributes of Person are not
part of its child entity types (Student and Faculty).

Visio Professional supports most of the diagram rules in Table 5-4 (Section 5.4.2).
Visio Professional does not force entity types to participate in a relationship so com-
pleteness rules 4 and 5 are not enforced. Visio Professional allows attribute names in
a subtype to have the same names as attributes in a parent entity type of a category so
consistency rule 3 requiring unique attribute names is not enforced. For consistency
rule 9, forbidding redundant foreign keys, Visio Professional requires that a foreign
key attribute be defined in an entity type to specify a participating relationship. Visio
Professional optionally displays foreign keys.

5.5.5  ERD Notation in Visual Paradigm
Visual Paradigm (www.visual-paradigm.com) supports entity relationship diagrams
in addition to diagrams for project management, enterprise architecture, system mod-
eling, business modeling, user interface design, and Agile requirements. For database
design, Visual Paradigm supports forward and reverse engineering for a range of
DBMSs.

The ERD notation in Visual Paradigm provides a variation of the Crow’s Foot
notation along with support for generalization hierarchies. Visual Paradigm supports
M-N relationships but does not allow attributes so Figure 5.31 shows an associative
entity type (Enrollment) instead of an M-N relationship. For other notation differ-
ences, Visual Paradigm does not have a symbol for weak entity types, always displays
foreign keys, and displays only a single cardinality symbol when identical. Visual
Paradigm does not support inheritance, but it supports names and participation con-
straints (completeness and disjointness) for generalization hierarchies. In Figure 5.31,
the generalization hierarchy (UnivPersonHierarchy) shows complete and overlapping
participation for the Student and Faculty entity types.

5.5.6  Class Diagram Notation of the Unified Modeling Language
The Unified Modeling Language has become the standard notation for object-oriented
modeling. Object-oriented modeling emphasizes objects rather than processes, as
emphasized in traditional systems development approaches. In object-oriented mod-
eling, one defines the objects first, followed by the features (attributes and operations)
of the objects, and then the dynamic interaction among objects. The UML contains
class diagrams, interface diagrams, and interaction diagrams to support object-
oriented modeling. The class diagram notation provides an alternative to the ERD
notations presented in this chapter.

26008_ch05_p141-178.indd 165 3/2/18 9:31 PM

166   Part 3  Data Modeling

Class diagrams contain classes (collections of objects), associations (binary rela-
tionships) among classes, and object features (attributes and operations). Figure 5.32
shows a simple class diagram containing the Offering and Faculty classes. The associa-
tion in Figure 5.32 represents a 1-M relationship. The UML supports role names and
cardinalities (minimum and maximum) for each direction in an association. The 0..1
cardinality means that an offering object can be related to a minimum of zero faculty
objects and a maximum of one faculty object. Operations are listed below the attri-
butes. Each operation contains a parenthesized list of parameters along with the data
type returned by the operation.

Associations in the UML are similar to relationships in the Crow’s Foot notation.
Associations can represent binary or unary relationships. To represent an M-way rela-
tionship, a class and a collection of associations are required. To represent an M-N
relationship with attributes, the UML provides the association class to allow associa-
tions to have attributes and operations. Figure 5.33 shows an association class that
represents an M-N relationship between the Student and the Offering classes. The asso-
ciation class contains the relationship attributes.

Unlike most ERD notations, the UML supported generalization from its inception.
Most ERD notations added generalization support as an additional feature after a nota-
tion was well established. In Figure 5.34, the large empty arrow denotes a classification

FIGURE 5.31
Extended University
Database ERD in Visual
Paradigm

26008_ch05_p141-178.indd 166 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   167

of the Student class into Undergraduate and Graduate classes. The UML supports gener-
alization names and constraints. In Figure 5.34, the Status generalization is complete,
meaning that every student must be an undergraduate or a graduate student.

The UML also provides a special symbol for composition relationships, similar
to identification dependencies in ERD notations. In a composition relationship, the
objects in a child class belong only to objects in the parent class. In Figure 5.35, each
OrdLine object belongs to one Order object. Deletion of a parent object causes deletion
of the related child objects. Therefore, child objects usually borrow part of their pri-
mary key from the parent object. However, the UML does not require this identifica-
tion dependency.

Object name

Association
Faculty

FacNo: Long
FacFirstName: String
FacLastName: String

FacDOB: Date

FacAge(): Integer

O�ering

O�erNo: Long
O�Term: String

O�Year: Integer
O�Location: String

EnrollmentCount(): Integer
O�eringFull(): Boolean

Teaches

TaughtBy

0..1

0..n

Attributes

Operations

Role nameCardinality

FIGURE 5.32
Simple Class Diagram

Association
Class

Student

StdNo: Long
StdFirstName: String
StdLastName: String

StdDOB: Date

StdAge(): Integer

O�ering

O�erNo: Long
O�Term: String
O�Year: Integer

O�Location: String

EnrollmentCount(): Integer
O�eringFull(): Boolean

Takes

Enrolls

0..n

0..n

Enrollment

EnrGrade: Decimal

FIGURE 5.33
Association Class Represent-
ing an M-N Relationship with
Attributes

Status
{complete}Undergraduate

Major: String
Minor: String

Generalization name

Student

StdNo: Long
StdFirstName: String
StdLastName: String

StdDOB: Date

StdAge(): IntegerGeneralization
constraint

Graduate

ThesisTitle: String
ThesisAdvisor: String

FIGURE 5.34
Class Diagram with a
Generalization Relationship

26008_ch05_p141-178.indd 167 3/2/18 9:31 PM

168   Part 3  Data Modeling

UML class diagrams provide many other features not presented in this brief over-
view. The UML supports different kinds of classes to integrate programming language
concerns with data modeling concerns. Other kinds of classes include value classes,
stereotype classes, parameterized classes, and abstract classes. For generalization, the
UML supports additional constraints such as static and dynamic classification and dif-
ferent interpretations of generalization relationships (subtype and subclass). For data
integrity, the UML supports the specification of constraints in a class diagram.

You should note that class diagrams are just one part of the UML. To some extent,
class diagrams must be understood in the context of object-oriented modeling and the
entire UML. You should expect to devote an entire academic term to understanding
object-oriented modeling and the UML.

OrdLine

LineNo : Integer
Qty : Integer

Composition symbol
(dark diamond)

Order

OrdNo : Long
OrdDate : Date
OrdAmt : Currency

1..n

1..1

FIGURE 5.35
Class Diagram with a
Composition Relationship

This chapter has explained the notation of entity relationship diagrams as a prereq-
uisite to applying entity relationship diagrams in the database development process.
Using the Crow’s Foot notation, this chapter described the symbols, important rela-
tionship patterns, and generalization hierarchies. The basic symbols are entity types,
relationships, and attributes along with cardinalities to depict the number of entities
participating in a relationship. Four important relationship patterns were described:
many-to-many (M-N) relationships with attributes, associative entity types represent-
ing M-way relationships, identifying relationships providing primary keys to weak
entity types, and self-referencing (unary) relationships. Generalization hierarchies
allow classification of entities to depict similarities among entity types.

To help improve your usage of the Crow’s Foot notation, business rule repre-
sentations, diagram rules, and comparisons to other notations were presented. This
chapter presented formal and informal representation of business rules in an entity
relationship diagram to provide an organizational context for entity relationship dia-
grams. The diagram rules involve completeness and consistency requirements. The
diagram rules ensure that an ERD does not contain obvious errors. To broaden your
background of ERD notations, this chapter presented common diagram variations in
several CASE tools as well as the Class Diagram notation of the Unified Modeling
Language, the standard notation for object-oriented modeling.

This chapter emphasized the notation of ERDs to provide a solid foundation for
the more difficult study of applying the notation on business problems. To master
data modeling, you need to understand the ERD notation and obtain ample practice
building ERDs. Chapter 6 emphasizes the practice of building ERDs for business prob-
lems. Applying the notation involves consistent and complete representation of user
requirements, generation of alternative designs, and documentation of design deci-
sions. In addition to these skills, Chapter 6 presents rules to convert an ERD into a
table design. With careful study, Chapters 5 and 6 provide a solid foundation to per-
form data modeling on business databases.

CLOSING THOUGHTS

26008_ch05_p141-178.indd 168 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   169

•	 Basic concepts: entity types, relationships, and attributes
•	 Minimum and maximum cardinalities to constrain relationship participation
•	 Classification of cardinalities as optional, mandatory, and functional
•	 Existence dependency for entities that cannot be stored without storage of

related entities
•	 Informal natural language correspondence for entity types (common nouns) and

relationships (transitive verbs with direct objects)
•	 Identification dependency involving weak entity types and identifying

relationships to support entity types that borrow at least part of their primary
keys

•	 M-N relationships with attributes: attributes are associated with the combination
of entity types, not just with one of the entity types

•	 Equivalence between an M-N relationship and an associative entity type with
identifying 1-M relationships

•	 M-way associative entity types to represent M-way relationships among more
than two entity types

•	 Self-referencing (unary) relationships to represent associations among entities of
the same entity type

•	 Instance diagrams to help distinguish between 1-M and M-N self-referencing
relationships

•	 Generalization hierarchies to show similarities among entity types
•	 Representation of business rules in an ERD: entity identification, connections

among business entities, number of related entities, inclusion among entity sets,
reasonable values, and data collection completeness

•	 Diagram rules to prevent obvious data modeling errors
•	 Common sources of diagram errors: identification dependency and redundant

foreign keys
•	 Support for the diagram rules in data modeling tools through diagram

construction and analysis tools
•	 ERD variations: symbols and diagram rules
•	 Modified Crow’s Foot notation in the data modeling tools of Aqua Data Studio,

Oracle SQL Developer, Visio 2010 Professional Edition, and Visual Paradigm
•	 Class Diagram notation of the Unified Modeling Language as an alternative to

the Entity Relationship Model

REVIEW CONCEPTS

QUESTIONS

  1.	What is an entity type?
  2.	What is an attribute?
  3.	What is a relationship?
  4.	What is the natural language correspondence for entity types and relationships?
  5.	What is the difference between an ERD and an instance diagram?
  6.	What symbols are the ERD counterparts of foreign keys in the Relational Model?
  7.	What cardinalities indicate functional, optional, and mandatory relationships?
  8.	When is it important to convert an M-N relationship into 1-M relationships?

26008_ch05_p141-178.indd 169 3/2/18 9:31 PM

170   Part 3  Data Modeling

  9.	How can an instance diagram help to determine whether a self-referencing
relationship is a 1-M or an M-N relationship?

  10.	When should an ERD contain weak entity types?
  11.	What is the difference between an existence-dependent and a weak entity type?
  12.	Why is classification important in business?
  13.	What is inheritance in generalization hierarchies?
  14.	What is the purpose of disjointness and completeness constraints for a

generalization hierarchy?
  15.	What symbols are used for cardinality in the Crow’s Foot notation?
  16.	What are the two components of identification dependency?
  17.	How are M-way relationships represented in the Crow’s Foot notation?
  18.	What is an associative entity type?
  19.	What is the equivalence between an M-N relationship and 1-M relationships?
  20.	What does it mean to say that part of a primary key is borrowed?
  21.	What is the purpose of the diagram rules?
  22.	What are the limitations of the diagram rules?
  23.	What consistency rules are commonly violated by novice data modelers?
  24.	Why do novice data modelers violate the identification dependency rules

(consistency rules 6 through 8)?
  25.	Why do novice data modelers violate consistency rule 9 about redundant foreign

keys?
  26.	Why should a CASE tool support diagram rules?
  27.	How does a data modeling tool typically support consistency rules 4 and 5?
  28.	How can a data modeling tool support all rules except consistency rules 4 and 5?
  29.	Why should an analysis tool not require resolution of all diagram errors found

in an ERD?
  30.	How can an analysis tool implement consistency rule 9 about redundant foreign

keys?
  31.	List some symbol differences in ERD notation that you may experience in your

career.
  32.	List some diagram rule differences in ERD notation that you may experience in

your career.
  33.	What is the Unified Modeling Language (UML)?
  34.	What are the modeling elements in a UML class diagram?
  35.	What kinds of business rules are formally represented in the Crow’s Foot ERD

notation?
  36.	What kinds of business rules are defined through informal documentation in the

absence of a rules language for an ERD?
  37.	How are M-way relationships represented in the Crow’s Foot notation?
  38.	What is a self-referencing relationship?
  39.	What tool can be useful to distinguish between a 1-M and M-N self-referencing

relationship?
  40.	Please explain the importance of specialized modeling elements including

M-way relationships and self-referencing relationships.
  41.	What is the difference between a weak entity type and an associative entity type?
  42.	What are the differences between the basic Crow’s Foot notation (without

generalization support) and the notation supported in the data modeling tool of
Aqua Data Studio?

26008_ch05_p141-178.indd 170 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   171

The problems emphasize correct usage of the Crow’s Foot notation and application
of the diagram rules. This emphasis is consistent with the pedagogy of the chapter.
The more challenging problems in Chapter 6 emphasize user requirements, diagram
transformations, design documentation, and schema conversion. To develop a good
understanding of data modeling, you should complete the problems in both chapters.

  1.	Draw an ERD containing the Order and Customer entity types connected by a
1-M relationship from Customer to Order. Choose an appropriate relationship
name using your common knowledge of interactions between customers and
orders. Define minimum cardinalities so that an order is optional for a customer
and a customer is mandatory for an order. For the Customer entity type, add
attributes CustNo (primary key), CustFirstName, CustLastName, CustStreet,
CustCity, CustState, CustZip, and CustBal (balance). For the Order entity type, add
attributes for the OrdNo (primary key), OrdDate, OrdName, OrdStreet, OrdCity,
OrdState, and OrdZip. If you are using a data modeling tool that supports data
type specification, choose appropriate data types for the attributes based on
your common knowledge.

  2.	Extend the ERD from problem 1 with the Employee entity type and a 1-M
relationship from Employee to Order. Choose an appropriate relationship name
using your common knowledge of interactions between employees and orders.
Define minimum cardinalities so that an employee is optional to an order and
an order is optional to an employee. For the Employee entity type, add attributes
EmpNo (primary key), EmpFirstName, EmpLastName, EmpPhone, EmpEmail,
EmpCommRate (commission rate), and EmpDeptName. If you are using a data
modeling tool that supports data type specification, choose appropriate data
types for the attributes based on your common knowledge.

  3.	Extend the ERD from problem 2 with a self-referencing 1-M relationship
involving the Employee entity type. Choose an appropriate relationship
name using your common knowledge of organizational relationships among
employees. Define minimum cardinalities so that the relationship is optional in
both directions.

  4.	Extend the ERD from problem 3 with the Product entity type and an M-N
relationship between Product and Order. Choose an appropriate relationship

  43.	What are the differences between the basic Crow’s Foot notation (without
generalization support) and the notation supported in the data modeling tool of
Oracle SQL Developer?

  44.	What diagram rules presented in Section 5.4.2 are supported by the data
modeling tool of the Oracle SQL Developer?

  45.	What are the differences between the basic Crow’s Foot notation and the
notation supported in the Entity Relationship stencil of Visio Professional?

  46.	What diagram rules presented in Section 5.4.2 are supported by the Entity
Relationship stencil in Visio Professional?

  47.	What are the differences between the basic Crow’s Foot notation and the ERD
notation supported in Visual Paradigm?

  48.	Which ERD notation in Section 5.5 is closest to the Crow’s Foot notation used in
Chapter 5? Justify your answer.

  49.	Which ERD notations in Section 5.5 support inheritance?
  50.	Which ERD notations in Section 5.5 support participation constraints (complete,

disjoint) for generalization hierarchies?

PROBLEMS

26008_ch05_p141-178.indd 171 3/2/18 9:31 PM

172   Part 3  Data Modeling

name using your common knowledge of connections between products
and orders. Define minimum cardinalities so that an order is optional to
a product, and a product is mandatory to an order. For the Product entity
type, add attributes ProdNo (primary key), ProdName, ProdQOH, ProdPrice,
and ProdNextShipDate. For the M-N relationship, add an attribute for the
order quantity. If you are using a data modeling tool that supports data type
specification, choose appropriate data types for the attributes based on your
common knowledge.

  5.	Revise the ERD from problem 4 by transforming the M-N relationship into an
associative entity type and two identifying, 1-M relationships.

  6.	Check your ERDs from problems 4 and 5 for violations of the diagram rules. If
you followed the problem directions, your diagrams should not have any errors.

  7.	Using your corrected ERD from problem 6, add violations of consistency rules 6
to 9.

  8.	Design an ERD for the Task entity type and an M-N self-referencing relationship.
For the Task entity type, add attributes TaskNo (primary key), TaskDesc,
TaskEstDuration, TaskStatus, TaskStartTime, and TaskEndTime. Choose an
appropriate relationship name using your common knowledge of precedence
connections among tasks. Define minimum cardinalities so that the relationship
is optional in both directions.

  9.	Revise the ERD from problem 8 by transforming the M-N relationship into an
associative entity type and two identifying, 1-M relationships.

  10.	Define a generalization hierarchy containing the Student entity type, the
UndStudent entity type, and the GradStudent entity type. The Student entity type
is the supertype and UndStudent and GradStudent are subtypes. The Student
entity type has attributes StdNo (primary key), StdName, StdGender, StdDOB
(date of birth), StdEmail, and StdAdmitDate. The UndStudent entity type has
attributes UndMajor, UndMinor, and UndClass. The GradStudent entity type has
attributes GradAdvisor, GradThesisTitle, and GradAsstStatus (assistantship status).
The generalization hierarchy should be complete and disjoint.

  11.	Define a generalization hierarchy containing the Employee entity type, the Faculty
entity type, and the Administrator entity type. The Employee entity type is the
supertype and Faculty and Administrator are subtypes. The Employee entity type
has attributes EmpNo (primary key), EmpName, EmpGender, EmpDOB (date
of birth), EmpPhone, EmpEmail, and EmpHireDate. The Faculty entity type has
attributes FacRank, FacPayPeriods, and FacTenure. The Administrator entity type
has attributes AdmTitle, AdmContractLength, and AdmAppointmentDate. The
generalization hierarchy should be complete and overlapping.

  12.	Combine the generalization hierarchies from problems 10 and 11. The root of
the generalization hierarchy is the UnivPerson entity type. The primary key
of UnivPerson is UnvPerNo. The other attributes in the UnivPerson entity type
should be the attributes common to Employee and Student. You should rename
the attributes to be consistent with inclusion in the UnivPerson entity type. The
generalization hierarchy should be complete and disjoint.

  13.	Draw an ERD containing the Patient, Physician, and Visit entity types connected
by 1-M relationships from Patient to Visit and Physician to Visit. Choose
appropriate names for the relationships. Define minimum cardinalities so
that patients and physicians are mandatory for a visit, but visits are optional
for patients and physicians. For the Patient entity type, add attributes PatNo
(primary key), PatFirstName, PatLastName, PatStreet, PatCity, PatState, PatZip, and
PatHealthPlan. For the Physician entity type, add attributes PhyNo (primary key),
PhyFirstName, PhyLastName, PhySpecialty, PhyPhone, PhyEmail, PhyHospital, and
PhyCertification. For the Visit entity type, add attributes for the VisitNo (primary
key), VisitDate, VisitPayMethod (cash, check, or credit card), and VisitCharge. If

26008_ch05_p141-178.indd 172 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   173

you are using a data modeling tool that supports data type specification, choose
appropriate data types for the attributes based on your common knowledge.

  14.	Extend the ERD in problem 13 with the Nurse, the Item, and the VisitDetail
entity types connected by 1-M relationships from Visit to VisitDetail, Nurse
to VisitDetail, and Item to VisitDetail. VisitDetail is a weak entity with the
1-M relationship from Visit to VisitDetail an identifying relationship. Choose
appropriate names for the relationships. Define minimum cardinalities so that
a nurse is optional for a visit detail, an item is mandatory for a visit detail,
and visit details are optional for nurses and items. For the Item entity type,
add attributes ItemNo (primary key), ItemDesc, ItemPrice, and ItemType. For
the Nurse entity type, add attributes NurseNo (primary key), NurseFirstName,
NurseLastName, NurseTitle, NursePhone, NurseSpecialty, and NursePayGrade.
For the VisitDetail entity type, add attributes for the DetailNo (part of the
primary key) and DetailCharge. If you are a design tool that supports data type
specification, choose appropriate data types for the attributes based on your
common knowledge.

  15.	Refine the ERD from problem 14 with a generalization hierarchy consisting
of Provider, Physician, and Nurse. The root of the generalization hierarchy is
the Provider entity type. The primary key of Provider is ProvNo replacing the
attributes PhyNo and NurseNo. The other attributes in the Provider entity type
should be the attributes common to Nurse and Physician. You should rename
the attributes to be consistent with inclusion in the Provider entity type. The
generalization hierarchy should be complete and disjoint.

  16.	Check your ERD from problem 15 for violations of the diagram rules. If you
followed the problem directions, your diagram should not have any errors.
Apply the consistency and completeness rules to ensure that your diagram does
not have errors.

  17.	Using your corrected ERD from problem 16, add violations of consistency rules
3 and 6 to 9.

  18.	For each consistency error in Figure 5.P1, identify the consistency rule violated
and suggest possible resolutions of the error. The ERD has generic names so
that you will concentrate on finding diagram errors rather than focusing on the
meaning of the diagram.

  19.	For each consistency error in Figure 5.P2, identify the consistency rule violated
and suggest possible resolutions of the error. The ERD has generic names to help
you concentrate on finding diagram errors rather than focusing on the meaning
of the diagram.

  20.	For each consistency error in Figure 5.P3, identify the consistency rule violated
and suggest possible resolutions of the error. The ERD has generic names to help
will concentrate on finding diagram errors rather than focusing on the meaning
of the diagram.

  21.	Draw an ERD containing the Employee and Appointment entity types connected
by an M-N relationship. Choose an appropriate relationship name using your
common knowledge of interactions between employees and appointments.
Define minimum cardinalities so that an appointment is optional for an
employee and an employee is mandatory for an appointment. For the Employee
entity type, add attributes EmpNo (primary key), EmpFirstName, EmpLastName,
EmpPosition, EmpPhone, and EmpEmail. For the Appointment entity type, add
attributes for AppNo (primary key), AppSubject, AppStartTime, AppEndTime,
and AppNotes. For the M-N relationship, add an attribute Attendance indicating
whether the employee attended the appointment.

  22.	Extend the ERD from problem 21 with the Location entity type and a 1-M
relationship from Location to Appointment. Choose an appropriate relationship
name using your common knowledge of interactions between locations and

26008_ch05_p141-178.indd 173 3/2/18 9:31 PM

174   Part 3  Data Modeling

appointments. Define minimum cardinalities so that a location is optional for
an appointment and an appointment is optional for a location. For the Location
entity type, add attributes LocNo (primary key), LocBuilding, LocRoomNo, and
LocCapacity.

  23.	Extend the ERD in problem 22 with the Calendar entity type and an M-N
relationship from Appointment to Calendar. Choose an appropriate relationship
name using your common knowledge of interactions between appointments
and calendars. Define minimum cardinalities so that an appointment is optional
for a calendar and a calendar is mandatory for an appointment. For the Calendar
entity type, add attributes CalNo (primary key), CalDate, and CalHour.

  24.	Revise the ERD from problem 23 by transforming the M-N relationship between
Employee and Appointment into an associative entity type along with two
identifying 1-M relationships.

  25.	Draw an ERD containing Student and Paper entity types connected by 1-M
relationships. The Student entity type should have attributes for StdNo

Entity4

Attribute4-1
Attribute4-2
Attribute4-3
Attribute4-4
Attribute4-5
Attribute4-6
Attribute4-7

Entity5

Attribute5-1
Attribute5-2
Attribute5-3
Attribute5-4
Attribute4-1
Attribute4-7

Rel1

Entity2

Attrbute2-1
Attribute2-2
Attribute2-3
Attribute2-4

Rel2

Entity3

Attribute2-1
Attribute1-3

Entity7

Attribute7-1
Attribute7-2
Attribute7-3
Attribute7-4

Entity6

Attribute6-1
Attribute6-2
Attribute7-1

Rel4

Rel3

Rel5

Entity1

Attribute1-1
Attribute1-2
Attribute1-3
Attribute1-4
Attribute1-5

D,C

FIGURE 5.P1
ERD for Problem 18

26008_ch05_p141-178.indd 174 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   175

Entity3

Attribute3-1
Attribute3-2
Attribute3-3
Attribute3-4
Attribute6-1

Entity4

Attribute4-1
Attribute4-2
Attribute4-3
Attribute2-1

Rel3

Entity6

Attribute6-1
Attribute6-2
Attribute6-3
Attribute7-1

Rel4

Entity7

Attribute7-1
Attribute7-2
Attribute7-3
Attribute7-4

Rel6

Entity5

Attribute5-1
Attribute5-2
Attribute5-3
Attribute5-4
Attribute5-5

Rel4

Entity2

Attribute2-1
Attribute2-2
Attribute2-3

D,C

Entity1

Attribute1-1
Attribute1-2
Attribute1-3
Attribute1-4
Attribute1-5Rel1

Rel2

FIGURE 5.P2
ERD for Problem 19

Entity1
Attribute1-1
Attribute1-2
Attribute1-3
Attribute1-4

Entity2
Attribute2-1
Attribute2-1
Attribute2-3
Attribute1-1
Attribute4-1

Rel2

Entity4
Attribute4-1
Attribute4-2
Attribute4-3
Attribute4-4

Entity7
Attribute7-1
Attribute7-2

Entity5
Attribute5-1
Attribute5-2
Attribute5-3
Attribute5-4

Entity6
Attribute6-1
Attribute6-2
Attribute6-3
Attribute6-4

Rel5

Rel6

Rel7

Entity3
Attribute3-1
Attribute3-2
Attribute3-3

Rel1

Rel4

Rel3

Rel6

FIGURE 5.P3
ERD for Problem 20

26008_ch05_p141-178.indd 175 3/2/18 9:31 PM

176   Part 3  Data Modeling

(primary key), StdFirstName, StdLastName, StdAdmitSemester, StdAdmitYear, and
StdEnrollStatus (full or part-time). The Paper entity type should have attributes
for PaperNo (primary key), PaperTitle, PaperSubmitDate, PaperAccepted (yes or no),
and PaperType (first, second, proposal, or dissertation). Add a 1-M relationship
from Student to Paper.

  26.	Extend the ERD with an Evaluator entity type and an M-N relationship between
Paper and Evaluator. The Evaluator entity type should have attributes for EvalNo
(primary key), EvalFirstName, EvalLastName, EvalEmail, and EvalOffice. The
M-N relationship should have attributes for EvalDate, EvalLitReview (1 to 5
rating), EvalProbId (1 to 5 rating), EvalTechWriting (1 to 5 rating), EvalModelDev
(1 to 5 rating), EvalOverall (1 to 5 rating), and EvalComments.

  27.	Transform the M-N relationship from problem 26 into an associative entity type
and identifying relationships.

  28.	Transform the M-N relationship from problem 26 into three 1-M relationships
from Evaluator to Paper. Each paper can have up to three evaluations. Each
relationship should be optional to both evaluators and papers. The five
evaluation attributes should be associated with each 1-M relationship.

  29.	Consider data modeling choices to represent student classifications by program
year (freshman, sophomore, junior, and senior) and degree type (undergraduate,
masters, and doctorate). Identify data modeling alternatives to support
classification of students by program year and degree type. What additional
information would you need to decide on the appropriate representation?

  30.	Construct an ERD to represent employees and positions. For employees,
the ERD should record the unique employee number, first name, last name,
department name, office number, hire date, and date of birth. For position,
the ERD should record the unique position number, position name, and
step number. Positions can be classified as management, associate, or other.
Management positions have a salary range (minimum and maximum) and a
car allowance amount. Associate positions have an hourly rate range. There are
no attributes to record for other position types. An employee must hold one
position. A position can be held by many employees.

  31.	Draw an ERD containing the Lab, LabVisit, and Patient entity types connected
by 1-M relationships from Lab to LabVisit and Patient to LabVisit. Choose
appropriate relationship names using your common knowledge of interactions
between labs, lab visits, and patients. Define minimum cardinalities so that a
lab is required for a lab visit and a patient is required for a lab visit. For the Lab
entity type, add attributes LabNo (primary key), LabName, LabStreet, LabCity,
LabState, and LabZip. For the Patient entity type, add attributes PatNo (primary
key), PatLastName, PatFirstName, PatDOB (date of birth). For the LabVisit entity
type, add attributes for the LVNo (primary key), LVDate, LVProvNo, and optional
LVOrdNo (for orders from physicians). If you are using a data modeling tool that
supports data type specification, choose appropriate data types for the attributes
based on your common knowledge.

  32.	Augment your ERD from problem 31 with the Specimen entity type. For each
specimen collected, the database should record a unique SpecNo, SpecArea
(vaginal, cervical, or endocervical), and SpecCollMethod (thin prep or sure path).
A 1-M relationship from LabVisit to Specimen. A lab visit must produce at least
one specimen. A specimen is associated with exactly one lab visit.

  33.	Augment your ERD from problem 32 with the TestOrder entity type and a
relationship between TestOrder and Specimen. Multiple test orders can be created
for a specimen, but a specimen does not have a test order until a delay, from
hours to days. A test order is created for exactly one specimen. A test order
contains a TONo (primary key), TOTestName, TOTestType (HPV, CT/GC, CT, or
GC), and TOTestResult (positive, negative, equivocal, or failure). If a test order

26008_ch05_p141-178.indd 176 3/2/18 9:31 PM

Chapter 5  Understanding Entity Relationship Diagrams   177

produces a failure, the specimen is given a new test order and tested again until
a non-failure result is obtained.

  34.	Augment your ERD from problem with the Supply entity type and a relationship
between TestOrder and Supply. A test can use a collection of supplies (0 or more)
and a supply can be used on a collection of tests (0 or more). The Supply entity
type contains SuppNo (primary key), SuppName, SuppLotNo, and SuppQOH.

  35.	Draw an ERD containing the Student, DegreePlan, and Faculty entity types
connected by 1-M relationships from Student to DegreePlan and Faculty to
DegreePlan. A student submits a degree plan for approval to a faculty adviser.
Choose appropriate relationship names using your common knowledge of
interactions among students, degree plans, and faculty. Define minimum
cardinalities so that both a student and faculty are required for a degree plan.
For the Student entity type, add attributes StdNo (primary key), StdFirstName,
StdLastName, StdStreet, StdCity, StdState, StdZip, and StdAdmitSems. For
the Faculty entity type, add attributes FacNo (primary key), FacLastName,
FacFirstName, and FacRank. For the DegreePlan entity type, add attributes DPNo
(primary key), DPRevDate, and DPComments. If you are using a data modeling
tool that supports data type specification, choose appropriate data types for the
attributes based on your common knowledge.

  36.	Add a Course entity type and an M-N relationship (Enrolls) connecting Course
and DegreePlan. A degree plan must have at least one associated course. For the
Course entity type, add attributes for CrsNo (primary key), CrsTitle, and CrsUnits.
For the Enrolls relationship, add attributes EnrSems, EnrYear, and EnrGrade.
Check your diagram for errors and correct errors before completing your
solution.

  37.	Add a Milestone entity type and an M-N relationship (Achieves) connecting
Milestone and DegreePlan. A degree plan must have at least one milestone.
For the Milestone entity type, add attributes MSNo, MSName, MSDeadline, and
MSDesc. For the Achieves relationship, you should record AchDateSubmitted,
AchDateApproved, and AchResult. Check your diagram for errors and correct
errors before completing your solution.

  38.	Convert the Achieves relationship in problem 37 to an associative entity type
(Achievement) with an M-N relationship (Evaluates) from Faculty to Achievement.
An achievement must be associated with at least one faculty member. In the
Evaluates relationship, add EvalRole (advisor, chair, or committee member) as an
attribute. Check your diagram for errors and correct errors before completing
your solution.

Four specialized books on database design are Batini, Ceri, and Navathe (1992), Nijs-
sen and Halpin (1989), Teorey et al. (2005), and Carlis and Maguire (2001). The DevX
Database Development Zone (www.devx.com) has practical advice about database
development and data modeling. If you would like more details about the UML, con-
sult the UML Resource Page of the Object Management Group (www.uml.org).

REFERENCES FOR FURTHER STUDY

26008_ch05_p141-178.indd 177 3/2/18 9:31 PM

26008_ch05_p141-178.indd 178 3/2/18 9:31 PM

179  

OVERVIEW
Chapter 5 explained the Crow’s Foot notation for entity
relationship diagrams. You learned about diagram sym-
bols, relationship patterns, generalization hierarchies,
and rules for consistency and completeness. Under-
standing the notation is a prerequisite for applying it to
represent business databases. This chapter explains
the development of data models for business databases
using the Crow’s Foot notation and rules to convert
ERDs to table designs.

To become a good data modeler, you need to under-
stand the notation in entity relationship diagrams and get
plenty of practice building diagrams. This chapter pro-
vides practice with applying the notation. You will learn

to analyze a narrative problem, refine a design through
transformations, document important design decisions,
and analyze a data model for common design errors.
After finalizing an ERD, the diagram should be converted
to a table design so that it can be implemented with a
commercial DBMS. This chapter presents rules to convert
an entity relationship diagram to a table design. You will
learn about the basic rules to convert common parts of
a diagram along with specialized rules for less common
parts of an ERD.

With this background, you are ready to build ERDs
for moderate-size business situations. You should have
confidence in your knowledge of the Crow’s Foot nota-
tion, ready to apply the notation to narrative problems
and convert ERDs to table designs.

Learning Objectives

This chapter extends your knowledge of data modeling from the notation
of entity relationship diagrams (ERDs) to the development of data models
for business databases along with rules to convert entity relationship
diagrams to relational tables. After this chapter, the student should have
acquired the following knowledge and skills:

•	 Develop ERDs that are consistent with narrative problems

•	 Use transformations to generate alternative ERDs

•	 Document design decisions implicit in an ERD

•	 Analyze an ERD for common design errors

•	 Convert an ERD to a table design using conversion rules

Developing Data
Models for Business
Databases

6
chapter

26008_ch06_p179-232.indd 179 3/2/18 9:06 PM

180   Part 3  Data Modeling

After studying the Crow’s Foot notation, you are now ready to apply your knowledge.
This section presents guidelines to analyze information needs of business environ-
ments. The guidelines involve analysis of narrative problem descriptions as well as
challenges of determining information requirements in unstructured business situa-
tions. After presenting the guidelines, this chapter applies them to develop an ERD for
an example business data modeling problem.

6.1.1  Guidelines for Analyzing Business Information Needs
Data modeling involves the collection and analysis of business requirements result-
ing in an ERD to represent the requirements. Business requirements are rarely well
structured. Rather, as an analyst you will often face an ill-defined business situation in
which you need to add structure. You will need to interact with a variety of stakehold-
ers who sometimes provide competing statements about the database requirements.
In collecting requirements, you will conduct interviews, review documents and sys-
tem documentation, and examine existing data. To determine the scope of the data-
base, you will need to eliminate irrelevant details and add missing details. On large
projects, you may work on a subset of the requirements and then collaborate with a
team of designers to determine the complete data model.

These challenges make data modeling a stimulating and rewarding intellectual
activity. A data model provides an essential element to standardize organizational
vocabulary, enforce business rules, and ensure adequate data quality. Many users will
experience the results of your efforts as they use a database on a daily basis. Because
electronic data has become a vital corporate resource, your data modeling efforts can
make a significant contribution to an organization’s future success.

A textbook cannot provide the experience of designing real databases. The more
difficult chapter problems and associated case studies on the textbook’s website can
provide insights into the difficulties of designing real databases but will not provide
you with practice with the actual experience. To acquire this experience, you must
interact with organizations through class projects, internships, and job experience.
Thus, this chapter emphasizes the more limited goal of analyzing narrative prob-
lems as a step to developing data modeling skills for real business situations. Ana-
lyzing narrative problems will help you gain confidence in translating a problem
statement into an ERD and identifying ambiguous and incomplete parts of problem
statements.

The main goal when analyzing narrative problem statements is to create an
ERD that is consistent with the narrative. The ERD should not contradict the
implied ERD elements in the problem narrative. For example, if the problem state-
ment indicates that entities are related by words indicating more than one, the ERD
should have a cardinality of many to match that part of the problem statement. The
remainder of this section and Section 6.3.2 provide more details about achieving a
consistent ERD.

In addition to the goal of consistency, you should have a bias toward simpler
designs at least initially. For example, an ERD with one entity type is less complex
than an ERD with two entity types and a relationship. In general, when a choice exists
between two ERDs, you should choose the simpler design especially in the initial
stages of the design process. As the design process progresses, you can add details
and refinements to the original design. Section 6.2 provides a list of transformations
that can help you to consider alternative designs.

Identifying Entity Types  In a narrative, you should look for nouns representing
people, things, places, and events as potential entity types. The nouns may appear as
subjects or objects in sentences. For example, the sentence “Students take courses at
the university,” indicates that student and course may be entity types. You also should

Goals of Narrative Problem
Analysis
strive for a simple design
that is consistent with the
narrative. Be prepared to
follow up with additional
requirements collection and
consideration of alternative
designs.

6.1  ANALYZING BUSINESS DATA MODELING PROBLEMS

26008_ch06_p179-232.indd 180 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   181

look for nouns that have additional sentences describing their properties. The prop-
erties often indicate attributes of entity types. For example, the sentence “Students
choose their major and minor in their first year,” indicates that major and minor may
be attributes of student. The sentence “Courses have a course number, semester, year,
and room listed in the catalog,” indicates that course number, semester, year, and
room are attributes of the course entity type.

You should apply the simplicity principle during the search for entity types in
the initial ERD, especially involving choices between attributes and entity types.
Unless the problem description contains additional sentences or details about a
noun, you should consider it initially as an attribute. For example, if courses have
an instructor name listed in the catalog, you should consider instructor name as an
attribute of the course entity type rather than as an entity type unless additional
details are provided about instructors in the problem statement. If there is con-
fusion between considering a concept as an attribute or entity type, you should
follow-up with more requirements collection later.

Determining Primary Keys  Determination of primary keys is an important
part of entity type identification. Ideally, primary keys should be stable and single
purpose. Stable means that a primary key should never change after it has been
assigned to an entity. For example, phone numbers, email addresses, and names
are not good choices for primary keys because they are not stable. Single purpose
means that a primary key should have no purpose other than entity identification.
For example, phone numbers and bank routing numbers are not good choices
because they contain location information. Typically, good choices for primary keys
are integer values automatically generated by a DBMS. For example, Access has
the AutoNumber data type for primary keys and Oracle has Identity columns for
primary keys.

You should evaluate proposed primary keys using stability and single purpose
as guidelines. If a proposed primary key does not meet either criterion, you should
probably reject it as a primary key. If a proposed primary key only meets one criterion,
you should explore other attributes for the primary key. Sometimes, industry or orga-
nizational practices dictate the choice of a primary key even if the choice is not ideal.
For example, email addresses and phone numbers, although not ideal, are sometimes
used as primary keys because customers can provide them.

Due to privacy concerns, government created identifiers should be avoided as
primary keys. In the U.S., Social Security numbers (SSNs) are widely used for tax
purposes and government benefits. Thus, SSNs should be avoided as primary keys.
Many organizations prohibit usage of SSNs as primary keys. However, storage of gov-
ernment identifiers such as SSNs may be necessary for compliance with government
reporting requirements especially in financial service databases. In addition to privacy
concerns, SSNs violate the single-purpose tenet as the first three digits in an SSN iden-
tify a geographic region.1 Another problem with SSNs is fraudulent sharing of num-
bers as well as creating false numbers. Thus, in a large database, duplicate SSNs and
invalid SSNs typically exist.

Besides primary keys, you should also identify other unique attributes (candidate
keys). For example, an employee’s email address is often unique. The integrity of can-
didate keys may be important for searching and integration with external databases.
Depending on the features of the ERD drawing tool that you are using, you should
note that an attribute is unique either in the attribute specification or in free-format
documentation. Uniqueness constraints can be enforced after an ERD is converted to
a table design.

1 Prior to 1972, the first three digits (area number) of an SSN indicated the US state of the local office issuing
the number. Since 1972, the area number indicates the US residence state on the original application for the
SSN.

26008_ch06_p179-232.indd 181 3/2/18 9:06 PM

182   Part 3  Data Modeling

Adding Relationships  Relationships often appear as transitive verbs connecting
nouns previously identified as entity types. For example, the sentence, “Students enroll
in courses each semester,” indicates a relationship between students and courses. For
relationship cardinality, you should look at the number (singular or plural) of nouns
along with other words that indicate cardinality. For example, the sentence, “A course
offering is taught by an instructor,” indicates that there is one instructor per course
offering. You should also look for words such as “collection” and “set” that indicate
a maximum cardinality of more than one. For example, the sentence, “An order
contains a collection of items,” indicates that an order is related to multiple items.
Minimum cardinality can be indicated by words such as “optional” and “required.”
In the absence of indication of minimum cardinality, the default should be mandatory.
Additional requirements collection should be conducted to confirm default choices.

You should be aware that indications of relationships in problem statements may
lead to direct or indirect connections in an ERD. A direct connection involves a rela-
tionship between entity types. An indirect connection involves a connection through
other entity types and relationships. For example, the sentence, “An advisor counsels
students about the choice of a major,” may indicate direct or indirect relationships
between advisor, student, and major.

To help with difficult choices between direct and indirect connections, you should
look for entity types that are involved in multiple relationships. These entity types can
reduce the number of relationships in an ERD by being placed in the center as a hub
connected directly to other entity types as spokes of a wheel. Entity types derived from
important documents (orders, registrations, purchase orders, etc.) are often hubs in an
ERD. For example, an order entity type can be directly related to customer, employee,
and product removing the need for direct connections among all entity types. These
choices will be highlighted in the analysis of the water utility information require-
ments in the following section.

Summary of Analysis Guidelines  When analyzing a narrative problem statement,
you should develop an ERD that consistently represents the complete narrative. Given
a choice among consistent ERDs, you should favor simpler rather than more complex
designs, at least initially. You also should note ambiguities and incompleteness in the
problem statement. The guidelines discussed in this section can help in your initial
analysis of data modeling problems. Sections 6.2 and 6.3 present additional analysis
methods to revise and finalize ERDs. To help you recall the guidelines discussed in
this section, Table 6-1 presents a summary.

6.1.2  Analysis of Problem Narrative for the Water Utility Database
This section presents requirements for a customer database for a municipal water util-
ity. You can assume that this description is the result of an initial investigation with
appropriate personnel at the water utility. After the description, the guidelines pre-
sented in Section 6.1.1 are used to analyze the narrative description and develop an
ERD.

Problem Narrative  The water utility database supports recording of water usage
and billing for water consumption. To support these functions, the database should
contain data about customers, rates, water usage, and bills. Other functions such as
payment processing and customer service are omitted in this description for brevity.
The following list describes the data requirements in more detail.

•	 Customer data include a unique customer number, a name, a billing address,
a type (commercial or residential), an applicable rate, and a collection (one or
more) of meters.

26008_ch06_p179-232.indd 182 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   183

•	 Meter data include a unique meter number, an address, a size, and a model. The
meter number is engraved on a meter before it is placed in service. A meter is
associated with one customer at a time.

•	 An employee periodically reads each meter on a scheduled date. When a meter
is read, a meter-reading document is created containing a unique meter reading
number, an employee number, a meter number, a timestamp (includes date and
time), and a consumption level. When a meter is first placed in service, there are
no associated readings for it.

•	 A rate includes a unique rate number, a description, a fixed dollar amount,
a consumption threshold, and a variable amount (dollars per cubic foot).
Consumption up to the threshold is billed at the fixed amount. Consumption
greater than the threshold is billed at the variable amount. Customers are
assigned rates using a number of factors such as customer type, address, and
adjustment factors. Many customers can be assigned the same rate. Rates are
typically proposed months before approved and associated with customers.

•	 Water utility bills are based on customers’ most recent meter readings and
applicable rates. A bill consists of a heading part and a list of detail lines. The
heading part contains a unique bill number, a customer number, a preparation
date, a payment due date, and a date range for the consumption period. Each
detail line contains a meter number, a water consumption level, and an amount.
The water consumption level is computed by subtracting the consumption levels
in the two most recent meter readings. The amount is computed by multiplying
the consumption level by the customer’s rate.

Identifying Entity Types and Primary Keys  Prominent nouns in the narrative are
customer, meter, bill, reading (for meter reading), and rate. For each of these nouns,
the narrative describes associated attributes. Figure 6.1 shows a preliminary ERD
with entity types for nouns and associated attributes. Note that collections of things
are not attributes. For example, the fact that a customer has a collection of meters will
be shown as a relationship, rather than as an attribute of the Customer entity type. In
addition, references between these entity types will be shown as relationships rather

TABLE 6-1
Summary of Analysis
Guidelines for Narrative
Problems

Diagram Element Analysis Guidelines ERD Effect

Entity type
identification

Look for nouns used as subjects or
objects along with additional details
in other sentences.

Add entity types to the ERD. If a noun does
not have supporting details, consider it as
an attribute.

Primary key
determination

Strive for stable and single-purpose
attributes for primary keys. Narrative
should indicate uniqueness. Avoid
government issued identifiers as
primary keys.

Specify primary and candidate keys.

Relationship (direct
or indirect) detection

Look for transitive verbs that connect
nouns identified as entity types.

Add a direct relationship between entity
types or note that an indirect connection
must exist between entity types.

Cardinality
determination
(maximum)

Look for singular or plural designation
of nouns in sentences indicating
relationships.

Specify cardinalities of 1 and M (many).

Cardinality
determination
(minimum)

Look for optional or required language
in sentences. Set required as the
default if problem statement does
not indicate minimum cardinality.

Specify cardinalities of 0 (optional) and 1
(mandatory).

Relationship
simplification

Look for hub entity types as nouns
used in multiple sentences linked to
other nouns identified as entity types.

An entity type hub has direct relationships
with other entity types. Eliminate other
relationships if an indirect connection
exists through a hub entity type.

26008_ch06_p179-232.indd 183 3/2/18 9:06 PM

184   Part 3  Data Modeling

than as attributes. For example, the fact that a reading contains a meter number will
be recorded as a relationship.

The narrative specifically mentions uniqueness of customer number, meter num-
ber, reading number, bill number, and rate number. The bill number, reading number,
and meter number seem stable and single purpose as they are imprinted on physi-
cal objects. Additional investigation should be conducted to determine if customer
number and rate number are stable and single purpose. Since the narrative does not
describe additional uses of these attributes, the initial assumption in the ERD is that
these attributes are suitable as primary keys.

Adding Relationships  After identifying entity types and attributes, the analysis
continues by connecting entity types with relationships as shown in Figure 6.2. To
reduce the drawing space of the ERD, Figure 6.2 only shows primary keys. The follow-
ing list explains the derivation of relationships with a focus on parts of the narrative
that indicate relationships among entity types.

•	 For the Assigned relationship, the narrative states that a customer has a rate, and
many customers can be assigned the same rate. These two statements indicate
a 1-M relationship from Rate to Customer. For the minimum cardinalities, the
narrative indicates that a rate is required for a customer, and that rates are
proposed before being associated with customers.

•	 For the Uses relationship, the narrative states that a customer includes a
collection of meters and a meter is associated with one customer at a time.
These two statements indicate a 1-M relationship from Customer to Meter. For
the minimum cardinalities, the narrative indicates that a customer must have
at least one meter. The narrative does not indicate the minimum cardinality
for a meter so either 0 or 1 can be chosen. The documentation should note this
incompleteness in the specifications.

•	 For the ReadBy relationship, the narrative states that a meter reading contains a
meter number, and meters are periodically read. These two statements indicate

Bill
BillNo

BillDate

BillStartDate

BillEndDate

BillDueDate

Customer
CustNo

CustName

CustAddr

CustType

Meter
MeterNo

MtrAddr

MtrSize

MtrModel

Reading
ReadNo

ReadTime

ReadLevel

EmpNo

Rate
RateNo

RateDesc

RateFixedAmt

RateThresh

RateVarAmt

FIGURE 6.1
Preliminary Entity Types and
Attributes for the Water Utility
Database

RateNo

Rate
CustNo
Customer

BillNo
Bill

ReadNo
Reading

MeterNo
Meter

Assigned Uses

ReadBy

Includes

SentTo

FIGURE 6.2
Entity Types Connected by
Relationships

26008_ch06_p179-232.indd 184 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   185

a 1-M relationship from Meter to Reading. For the minimum cardinalities, the
narrative indicates that a meter is required for a reading, and a new meter does
not have any associated readings.

•	 For the SentTo relationship, the narrative indicates that the heading part of a
bill contains a customer number and bills are periodically sent to customers.
These two statements indicate a 1-M relationship from Customer to Bill. For the
minimum cardinalities, the narrative indicates that a customer is required for a
bill, and a customer does not have an associated bill until the customer’s meters
are read.

The Includes relationship between the Bill and the Reading entity types is subtle. The
Includes relationship is 1-M because a bill may involve a collection of readings (one on
each detail line), and a reading relates to one bill. The consumption level and amount
on a detail line are calculated values. The Includes relationship connects a bill to its
most recent meter readings, thus supporting the consumption and amount calcula-
tions. These values can be stored if it is more efficient to store them rather than com-
pute them when needed. If the values are stored, attributes can be added to the Includes
relationship or the Reading entity type.

6.2  REFINEMENTS TO AN ERD
Data modeling is usually an iterative or repetitive process. You construct a preliminary
data model and then refine it many times. In refining a data model, you should gener-
ate feasible alternatives and evaluate them according to user requirements. You typi-
cally need to gather additional information from users to evaluate alternatives. This
process of refinement and evaluation may continue many times for large databases. To
depict the iterative nature of data modeling, this section describes some refinements to
the initial ERD design of Figure 6.2.

6.2.1  Expanding Attributes
Attribute expansion, a common transformation, adds detail for an attribute. When an
entity type should contain more than just the identifier of an entity, this transforma-
tion is useful. This transformation involves the replacement of an attribute with an
entity type and a 1-M relationship. In the water utility ERD, the Reading entity type
contains the EmpNo attribute. If other data about an employee are needed, EmpNo
can be expanded into an entity type and 1-M relationship as shown in Figure 6.3a.
Figure 6.3b shows transformation of ProvNo into an entity type and 1-M relationship.
The minimum cardinalities require additional requirements collection as the transfor-
mation permits either 0 or 1 as minimum cardinalities.

6.2.2  Splitting Compound Attributes
Compound attribute split, another common refinement, decomposes compound attri-
butes into smaller attributes. A compound attribute embeds multiple attributes. For
example, the CustAddr attribute in Figure 6.4a embeds components for street, city,
state, and postal code. In Figure 6.4b, the EmpPhone attribute embeds components for
area code, prefix, and line number. Splitting compound attributes can facilitate search
of the embedded data. Splitting the address attribute supports searches by street, city,
state, and postal code, while splitting the phone attribute supports convenient search
by country code, area code, prefix, and line number.

6.2.3  Expanding Entity Types
Entity type expansion provides a finer level of detail about an entity, typically add-
ing another level of detail. This transformation expands an entity type into two entity

26008_ch06_p179-232.indd 185 3/2/18 9:06 PM

186   Part 3  Data Modeling

types and a relationship. Figure 6.5a shows a transformation to the Rate entity type
to support a more detailed rate structure. The RateSet entity type represents a set of
rates approved by the utility’s governing commission. The primary key of the Rate
entity type borrows from the RateSet entity type. Identification dependency is not
required when transforming an entity type into two entity types and a relationship.

CustNo
CustName
CustAddr
CustType

Customer

CustNo
CustName
CustStreet
CustCity

CustState
CustPostal
CustType

EmpNo
EmpName
EmpPhone

Employee

EmpNo
EmpName

EmpCountryCode
EmpAreaCode

EmpPrefix
EmpLineNo

a) Splitting CustAddr

b) Splitting EmpPhone

Customer

Employee

FIGURE 6.4
Examples of Compound
Attribute Splits

ReadNo
ReadTime
ReadLevel

Reading

EmpNo
EmpName
EmpTitle

Employee

Performs

ReadNo
ReadTime
ReadLevel
EmpNo

Reading

Visit
VisitNo
VisitDate
VisitPayMethod

Provider
ProvNo
ProvName
ProvSpec

Treats

Visit
VisitNo
VisitDate
VisitPayMethod
ProvNo

a) Reading transformation

b) Visit transformation

FIGURE 6.3
Attribute Expansion
Examples

26008_ch06_p179-232.indd 186 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   187

In this situation, identification dependency is useful, but in other situations, it may
not be appropriate.

A similar transformation can be applied to employment positions. A single level
of positions can be expanded to a two level structure with job classes and positions
as shown in Figure 6.5b. The entity type expansion in Figure 6.5b does not involve
identification dependency in contrast to the identification dependency in Figure 6.5a.

6.2.4  Transforming a Weak Entity Type into a Strong Entity Type
The weak-strong entity type transformation makes it easier to reference an entity type
after conversion to a table design. After conversion, a reference to a weak entity type
involves a combined foreign key with more than one column. This transformation
changes a weak entity type into a regular entity type and converts associated identify-
ing relationships into regular (non-identifying) relationships. This transformation is
most useful for associative entity types, especially associative entity types represent-
ing M-way relationships.

Figure 6.6 depicts two weak-strong entity type transformations. In Figure 6a, Rate
is transformed into a strong entity type. The transformation involves changing the
weak entity type to a strong entity type and changing each identifying relationship to
a non-identifying relationship. In addition, it may be necessary to add a new attribute
to serve as the primary key. In Figure 6.6a, the new attribute RateNo is the primary key
as MinUsage does not uniquely identify rates. The designer should note that the com-
bination of RateSetNo and MinUsage is unique in design documentation so that a can-
didate key constraint can be specified after conversion to a table design. In Figure 6.6b,
RoomId is added as the primary key of the strong entity type Room. The designer should
note that the combination of BldgId and RoomNo is also unique for Room.

RateSetNo
RSApprDate
RSE�Date
RSDesc

RateSet

MinUsage
MaxUsage
FixedAmt
VarAmt

Rate

Contains

RateNo
RateDesc
RateFixedAmt
RateVarAmt
RateThresh

Rate

a) Rate expansion

JCNo
JCName
JCMinSal
JCMaxSal

JobClass

PosNo
PosStepNo
PosDesc

Position

Contains

PosNo
PosName
PosMinSal
PosMaxSal

Position

b) Position expansion

FIGURE 6.5
Entity Type Expansions for
Rates (a) and Positions (b)

26008_ch06_p179-232.indd 187 3/2/18 9:06 PM

188   Part 3  Data Modeling

6.2.5  Adding History
History transformations add historical details to a data model. Historical details may
be necessary for legal requirements as well as strategic reporting requirements. His-
tory transformations can be applied to attributes and relationships. The attribute his-
tory transformation is similar to the attribute expansion. For example, to maintain a
history of employee titles, the EmpTitle attribute is replaced with an entity type and
a 1-M relationship. The new entity type typically contains a version number as part
of its primary key and borrows from the original entity type for the remaining part of
its primary key, as shown in Figure 6.7a. The beginning and ending dates indicate the
effective dates for a change. A similar transformation is shown for student majors in
Figure 6.7b.

When applied to a relationship, the history transformation typically involves
changing a 1-M relationship into an associative entity type and a pair of identifying
1-M relationships. Figure 6.8a depicts the transformation of the 1-M Uses relationship
into an associative entity type with attributes for the version number and effective
dates. The associative entity type is necessary because the combination of customer
and meter may not be unique without a version number. Figure 6.8b depicts a similar
transformation for office assignments. The minimum cardinalities of 0 are necessary
because offices and employees may exist without assignments.

When applied to an M-N relationship, the history transformation can be more
complex. The appropriate transformation depends on the ability of the associated

RateSetNo
RSApprDate
RSE�Date
RSDesc

RateSet

Rate

RateNo
MinUsage
MaxUsage
FixedAmt
VarAmt

Contains

RateSetNo
RSApprDate
RSE�Date
RSDesc

RateSet

MinUsage
MaxUsage
FixedAmt
VarAmt

Rate

Contains

a) RateSet-Rate transformation

BldgID
BldgName
BldgLocation

Building

RoomNo
RoomCapacity

Room

Contains

b) Building-Room transformation

BldgID
BldgName
BldgLocation

Building

Room
RoomId
RoomNo
RoomCapacity

Contains

FIGURE 6.6
Examples of Weak-Strong
Entity Type Transformations

26008_ch06_p179-232.indd 188 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   189

TitleHistory
VersionNo
BegE�Date
EndE�Date
EmpTitle

TitleChanges
EmpNo
EmpName
EmpTitle

Employee

Employee
EmpNo
EmpName

a) Adding history for
employee titles

MajorHistory
VersionNo
BegE�Date
EndE�Date
StdMajor

MajorChanges

Student
StdNo
StdName
StdMajor

Student
StdNo
StdName

b) Adding history for
student majors

FIGURE 6.7
Examples of Attribute History
Transformations

Customer
CustNo
...

Meter
MeterNo
...

Uses

Customer
CustNo
...

Meter
MeterNo
...

MeterUsage
VersionNo
BegE�Date
EndE�Date

UsesAt

UsedBy

a) Adding meter usage history

O�ceNo
...

O�ce

Employee
EmpNo
...

AssignedTo

O�ceNo
...

O�ce

Employee
EmpNo
...

O�ceAssignment
VersionNo
BegE�Date
EndE�Date

AssignedOf

AssignedTo

b) Adding o�ce assignment history

FIGURE 6.8
Examples of History
Transformations for 1-M
Relationships

26008_ch06_p179-232.indd 189 3/2/18 9:06 PM

190   Part 3  Data Modeling

entities to change independently. In Figure 6.9, the transformation allows the entities
to change independently connected by the effective date attributes. For example, if
customer C1 resides at residence R1 from 2015 to 2017 and C2 resides at R1 from 2016
to 2017, there will be two Resides entities with different version numbers but overlap
among the effective date attributes for the two entities. In Figure 6.10, the transforma-
tion does not allow the entities to change independently. The ResidesPeriod entity type
connects all customers that share a residence during the same time period using the
LivesAt M-N relationship. The transformation in Figure 6.9 is appropriate for property
rental in which roommates can change independently. The transformation in Figure
6.10 is appropriate for home ownership in which home owners change as a unit.

The transformations in Figures 6.7 to 6.10 support an unlimited history. For a lim-
ited history, a fixed number of attributes can be added to the same entity type. For
example to maintain a history of the current and the last employee titles, two attributes
(EmpCurrTitle and EmpPrevTitle) can be used as depicted in Figure 6.11. To record the
change dates for employee titles, two effective date attributes per title attribute can be
added.

6.2.6  Adding Generalization Hierarchies
A sixth transformation is to make an entity type into a generalization hierarchy. This
transformation should be used sparingly because the generalization hierarchy is a spe-
cialized modeling tool. If there are multiple attributes that do not apply to all entities
and there is an accepted classification of entities, a generalization hierarchy may be
useful. For example, water utility customers can be classified as commercial or residen-
tial. The attributes specific to commercial customers (TaxPayerID and EnterpriseZone)

Customer
CustNo
...

Residence
ResNo
...

ResidesAt

Customer
CustNo
...

Residence
ResNo
...

Resides
VersionNo
BegE�Date
EndE�Date

LivesAt

Houses

FIGURE 6.9
Adding History to a
M-N Relationship with
Independent Change

Customer
CustNo
...

Residence
ResNo
...

ResidesAt

Customer
CustNo
...

Residence
ResNo
...

ResidesPeriod
VersionNo
BegE�Date
EndE�Date

LivesAt

Houses

FIGURE 6.10
Adding History to a M-N
Relationship with Dependent
Change

EmpNo
EmpName
EmpCurrTitle
EmpCurrTitleBegE�Date
EmpCurrTitleEndE�Date
EmpPrevTitle
EmpPrevTitleBegE�Date
EmpPrevTitleEndE�Date

Employee

FIGURE 6.11
Adding Limited History to the
Employee Entity Type

26008_ch06_p179-232.indd 190 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   191

CustNo
CustName
CustAddr
TaxPayerId
EnterpriseZone
Subsidized
DwellingType

Customer
CustNo
CustName
CustAddr

Customer

TaxPayerId
EnterpriseZone

Commercial

Subsidized
DwellingType

Residential

D,C

FIGURE 6.12
Generalization Hierarchy
Transformation for Water
Utility Customers

CustNo
CustName
CustAddr
TaxPayerId
EnterpriseZone

Commercial

CustNo
CustName
CustAddr

Customer

TaxPayerId
EnterpriseZone

Commercial

Subsidized
DwellingType

Residential

D,C

CustNo
CustName
CustAddr
Subsidized
DwellingType

Residential
FIGURE 6.13
Generalization Hierarchy
Transformation for Similar
Entity Types

do not apply to residential customers and vice-versa. In Figure 6.12, the attributes
specific to commercial and residential customers have been moved to the subtypes. An
additional benefit of this transformation is the avoidance of null values. For example,
entities in the Commercial and the Residential entity types will not have null values. In
the original Customer entity type, residential customers would have had null values
for TaxPayerID and EnterpriseZone, while commercial customers would have had null
values for Subsidized and DwellingType.

The generalization transformation can also be applied to a collection of entity
types. In this situation, the transformation involves the addition of a supertype and a
generalization hierarchy as shown in Figure 6.13. In addition, the common attributes
in the collection of entity types are moved to the supertype.

6.2.7  Summary of Transformations
When designing a database, you should carefully explore alternative designs. The
transformations discussed in this section can help you consider alternative designs. To
help you recall the transformations shown in this section, Table 6-2 presents a conve-
nient summary.

The possible transformations are not limited to those discussed in this section. You
can reverse the transformations as shown in Table 6-3 although the reversed trans-
formations are less frequently used. The reversed transformations mostly simplify a
data model rather than expand it with more details. The reversed transformations are
more useful when a data model has been refined several times. Sometimes refinements
make a data model too complex so removal of some detail is useful.

26008_ch06_p179-232.indd 191 3/2/18 9:06 PM

192   Part 3  Data Modeling

TABLE 6-3
Summary of Common
Reversed Transformations

Transformation Details When to Use

Contract entity type Replace an entity type and 1-M
relationship with an attribute. Opposite
of attribute expansion.

Simplify design when no attributes for
an entity type are needed.

Group attributes Combine a collection of attributes into
a compound attribute. Opposite of
attribute split.

Reduce number of attributes when
data collection process cannot parse a
compound attribute.

Contract entity type
collection

Remove an entity type and a 1-M
relationship. Opposite of entity type
expansion.

Eliminate details about an entity
when more complex structure is not
necessary.

Strong entity type to
weak entity type

Add identification dependency symbols
and possibly a part of primary key.
Opposite of weak entity type to strong
entity type transformation.

Entity is physically contained in another
entity such as building-rooms or
order-detail lines.

Remove history Eliminate all history or reduce from
unlimited to fixed history. Opposite of
add history expansion.

Legal and practical requirements may
allow less history.

Remove generaliza-
tion hierarchy

Combine a generalization hierarchy into
a single entity type. Opposite of add
generalization hierarchy expansion.

Not enough specialized attributes to
justify a generalization hierarchy.

TABLE 6-2
Summary of Transformations Transformation Details When to Use

Expand attribute Replace an attribute with an entity type and a 1-M
relationship.

Additional details about an
attribute are needed.

Split a compound
attribute

Replace an attribute with a collection of attributes. Standardize the components in
an attribute.

Expand entity type Add a new entity type and a 1-M relationship. Add a finer level of detail
about an entity, usually a
two-level structure.

Weak entity type to
strong entity type

Remove identification dependency symbols and
possibly add a primary key.

Remove combined foreign
keys after conversion to tables.

Add history For attribute history, replace an attribute with a
weak entity type and an identifying 1-M relationship.
For 1-M relationship history, change the relationship
into an associative entity type along with identifying
relationships. For a limited history, you should add
attributes to the entity type.

Add detail for legal
requirements or strategic
reporting.

Add generalization
hierarchy

Starting from a supertype: add subtypes, a
generalization hierarchy, and redistribute
attributes to subtypes. Starting from subtypes: add
a supertype, a generalization hierarchy, and redis-
tribute common attributes and relationships
to the supertype.

Accepted classification of
entities; specialized attributes
and relationships for the
subtypes; avoid excessive
null values.

6.3  FINALIZING AN ERD
After iteratively evaluating alternative ERDs using transformations presented in
Section 6.2, you are ready to finalize your data model. Your data model is not com-
plete without adequate design documentation and careful consideration of design
errors. You should strive to write documentation and perform design error checking
throughout the design process. Even with due diligence during the design process,
you will still need to conduct final reviews to ensure adequate design documentation

26008_ch06_p179-232.indd 192 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   193

and lack of design errors. Often these reviews are conducted with a team of design-
ers to ensure completeness. This section presents guidelines to aid you when writing
design documentation and checking design errors.

6.3.1  Documenting an ERD
Chapter 5 (Section 5.4.1) prescribed informal documentation for business rules involv-
ing uniqueness of attributes, attribute value restrictions, null values, and default
values. It is important to document these kinds of business rules because they can be
converted to a formal specification in SQL as described in Chapters 11 and 16. You
should use informal documentation associated with entity types, attributes, and rela-
tionships to record these kinds of business rules.

Resolving Specification Problems  Beyond informal representation of business
rules, documentation plays an important role in resolving questions about a specifi-
cation and in communicating a design to others. In the process of revising an ERD,
you should carefully document inconsistency and incompleteness in a specification.
A large specification typically contains many points of inconsistency and incom-
pleteness. Recording each point allows systematic resolution through additional
requirements-gathering activities.

As an example of inconsistency, the water utility requirements would be inconsis-
tent if one part indicated that a meter is associated with one customer, but another part
stated that a meter can be associated with multiple customers. In resolving an incon-
sistency, a user can indicate that an inconsistency is an exception. In this example, a
user may indicate the circumstances in which a meter can be associated with multiple
customers. The designer must decide on the resolution in the ERD such as permitting
multiple customers for a meter, allowing a second responsible customer, or prohibit-
ing more than one customer. The designer should carefully document the resolution of
each inconsistency, including a justification for the chosen solution.

As an incompleteness example, the narrative does not specify the minimum car-
dinality for a meter in the Uses relationship of Figure 6.2. The designer should gather
additional requirements to resolve the incomplete specification. Incomplete parts of
a specification are common for relationships as complete specification involves two
sets of cardinalities. It is easy to omit one part of a cardinality specification in an initial
requirements effort.

Improving Communication  Besides identifying problems in a specification, docu-
mentation should be used to communicate a design to others. Databases can have a
long lifetime owing to the economics of information systems. An information system
can undergo a long cycle of repair and enhancement before there is sufficient justifica-
tion to redesign the system. Good documentation enhances an ERD by communicat-
ing the justification for important design decisions. Your documentation should not
repeat the constraints in an ERD. For example, you do not need to document that a
customer can use many meters as the ERD contains this information.

You should document decisions in which there is more than one feasible choice.
For example, you should carefully document alternative designs for rates (a single
consumption level versus multiple consumption levels) as depicted in Figure 6.5.
You should document your decision by recording the recommender and justification
for the alternative. Although all transformations presented in the previous section
can lead to feasible choices, you should focus on transformations most relevant to a
specification.

You also should document decisions that might be unclear to others even if there
are no feasible alternatives. For example, the minimum cardinality of 0 from the Read-
ing entity type to the Bill entity type might be unclear. You should document the need
for this cardinality because of the time difference between the creation of a bill and
its associated readings. A meter may be read days before an associated bill is created.

26008_ch06_p179-232.indd 193 3/2/18 9:06 PM

194   Part 3  Data Modeling

RateSetNo

RateSet
CustNo

Customer

BillNo

Bill
ReadNo

Reading

MeterNo

Meter
Assigned Uses

ReadBy

IncludesMinUsage

Rate

EmpNo

Employee

Performs

Contains

1

2

3

4

SentTo

FIGURE 6.14
Revised Water Utility ERD
with Annotations

Design Documentation: include justification for design decisions involving multiple
feasible choices and explanations of subtle design choices. Do not use documentation
just to repeat the information already contained in an ERD. You also should provide a
description for each attribute especially where an attribute’s name does not indicate
its purpose. As an ERD is developed, you should document incompleteness and incon-
sistency in the requirements.

Example Design Documentation  Design documentation should be incorporated
into your ERD. If you are using a drawing tool that has a data dictionary, you should
include design justifications in the data dictionary. Most data modeling tools support
design justifications as well as comments associated with each item on a diagram.
You can use the comments to describe the meaning of attributes. If you are not using
a tool that supports documentation, you can list the justifications on a separate page
and annotate your ERD as shown in Figure 6.14. The circled numbers in Figure 6.14
refer to explanations in Table 6-4. Note that some of the refinements shown previously
were not used in the revised ERD.

6.3.2  Detecting Common Design Errors
As indicated in Chapter 5, you should use the diagram rules to ensure that there are no
obvious errors in your ERD. You also should use the guidelines in this section to check
for design errors. Design errors are more difficult to detect and resolve than diagram
errors because design errors involve the meaning of elements on a diagram, not just

TABLE 6-4
List of Design Justifications
for the Revised ERD

1.     A rate set is a collection of rates approved by the governing commission of the utility.

2. � Rates are similar to lines on a tax table. An individual rate is identified by the rate set identifier along

with the minimum consumption level of the rate.

3. � The minimum cardinality indicates that a meter must always be associated with a customer. For new

property, the developer is initially responsible for the meter. If a customer forecloses on a property, the

financial institution holding the deed will be responsible.

4. � A reading is not associated with a bill until the bill is prepared. A reading may be created several days

before the associated bill.

26008_ch06_p179-232.indd 194 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   195

a diagram’s structure. The following subsections explain common design problems,
while Table 6-5 summarizes them.

Misplaced and Missing Relationships  In a large ERD, it is easy to connect the
wrong entity types or omit a necessary relationship. You can connect the wrong entity
types if you do not consider all of the queries that a database should support. For
example in Figure 6.14, if Customer is connected directly to Reading instead of being
connected to Meter, the control of a meter cannot be established unless the meter has
been read for the customer. Queries that involve meter control cannot be answered
except through consideration of meter readings.

If the requirements do not directly indicate a relationship, you should consider
indirect implications to detect whether a relationship is required. For example, the
requirements for the water utility database do not directly indicate the need for a rela-
tionship from Bill to Reading. However, careful consideration of the consumption cal-
culation reveals the need for a relationship. The Includes relationship connects a bill to
its most recent meter readings, thus supporting the consumption calculation.

Incorrect Cardinalities  The typical error involves the usage of a 1-M relationship
instead of an M-N relationship. This error can be caused by an omission in the require-
ments. For example, if requirements just indicate that work assignments involve a
collection of employees, you should not assume that an employee can be related to
just one work assignment. You should gather additional requirements to determine if
an employee can be associated with multiple work assignments.

Other incorrect cardinality errors that you should consider are reversed cardinali-
ties (1-M relationship should be in the opposite direction) and errors on a minimum
cardinality. The error of reversed cardinality is typically an oversight. You may over-
look incorrect cardinalities indicated in a relationship specification after the ERD is
displayed. You should carefully check all relationships after specification to ensure
consistency with your intent. Errors on minimum cardinality are typically the result
of overlooking key words in problem narratives such as “optional” and “required.”

Overuse of Specialized Data Modeling Constructs  Generalization hierarchies
and M-way associative entity types are specialized data modeling constructs. A typi-

TABLE 6-5
Summary of Design ErrorsDesign Error Description Resolution

Misplaced
relationship

Wrong entity types connected. Consider all queries that the database should
support.

Missing relationship Entity types should be
connected directly.

Examine implications of requirements.

Incorrect cardinality 1-M relationship instead of an
M-N relationship; Reversed
cardinality for 1-M relationship.

For 1-M relationship instead of M-N relationship,
you should not make inferences beyond
incomplete requirements; For reversed 1-M rela-
tionships, ensure that specification window
is consistent with intended direction.

Overuse of
generalization
hierarchies

Generalization hierarchies
are uncommon. A typical
novice mistake is to use them
inappropriately.

Ensure that subtypes have specialized attributes
and relationships. Generalization indicates the
essence of an entity whereas attributes indicate
the functions performed by an entity or state of an
entity.

Overuse of M-way
associative entity
types

M-way relationships are
uncommon. A typical novice
mistake is to use them
inappropriately.

Ensure that a database records combinations of
three or more entities.

Redundant
relationship

Relationship derived from
other relationships

Examine each relationship cycle to see if a
relationship can be derived from other relationships.

26008_ch06_p179-232.indd 195 3/2/18 9:06 PM

196   Part 3  Data Modeling

cal novice mistake is to use them inappropriately. You should not use generalization
hierarchies just because an entity can exist in multiple states or roles. For example,
the requirement that a project task can be started, in progress, or complete, does not
indicate the need for a generalization hierarchy. If there is an established classification
and specialized attributes and relationships for subtypes, a generalization hierarchy
is an appropriate tool.

A rough guideline is that generalization indicates the essence of an entity whereas
attributes indicate the functions performed by an entity or state of an entity. Thus, gen-
eralization implies relative stability while attributes imply planned changes in state.
For example, generalization seems appropriate to represent distinctions between stu-
dents and faculty, commercial and residential customers, and stocks and bonds. Since
these distinctions are relatively permanent, attributes specific to each subtype are use-
ful. In contrast, attributes are appropriate to represent the completion of an order,
academic progress of a student, and pay grade of an employee.

An M-way associative entity type (an associative entity type representing an
M-way relationship) should be used when the database is to record combinations of
three (or more) objects rather than just combinations of two objects. In most cases, only
combinations of two objects should be recorded. For example, if a database needs to
record the skills provided by an employee and the skills required by a project, binary
relationships should be used. If a database needs to record the skills provided by
employees for specific projects, an M-way associative entity type is needed. Note that
the former situation with binary relationships is much more common than the latter
situation represented by an M-way associative entity type.

Redundant Relationships  Cycles in an ERD may indicate redundant relationships.
A cycle involves a collection of relationships arranged in a loop starting and ending
with the same entity type. For example in Figure 6.14, there is a cycle of relationships
connecting Customer, Bill, Reading, and Meter. In a cycle, a relationship is redundant if
it can be derived from other relationships. For the SentTo relationship, the bills associ-
ated with a customer can be derived from the relationships Uses, ReadBy, and Includes.
In the opposite direction, the customer associated with a bill can be derived from

RateSet
RateSetNo
RSAapprDate
RSE�Date
RateDesc

Customer
CustNo
CustName
CustAddr
CustType

Bill
BillNo
BillDate
BillStartDate
BillEndDate
BillDueDate

ReadNo
ReadTime
ReadLevel

Reading

Meter
MeterNo
MtrSize
MtrAddr
MtrModel

Assigned Uses

ReadBy

Includes
MinUsage
MaxUsage
FixedAmt
VarAmt

Rate

EmpNo
EmpName
EmpTitle

Employee
Performs

Contains

FIGURE 6.15
Final Water Utility ERD

2 Although the relationship is redundant, deriving it will require 3 joins after table conversion. The possible
problem with redundancy may be outweighed by the difficulty of finding the customer for a bill without
the relationship. Bills are constructed by starting with a customer, then finding all readings for a meter so all
readings on a bill will relate to the same customer by the process of constructing the bill.

26008_ch06_p179-232.indd 196 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   197

the Includes, ReadBy, and Uses relationships. Although a bill can be associated with
a collection of readings, each associated reading must be associated with the same
customer. Because the SentTo relationship can be derived,2 it is removed in the final
ERD (see Figure 6.15).

Another example of a redundant relationship would be a relationship between
Meter and Bill. The meters associated with a bill can be derived using the Includes and
the ReadBy relationships. Note that using clusters of entity types such as Reading in the
center connected to Meter, Employee, and Bill avoids redundant relationships.

You should take care when removing redundant relationships, as removing a nec-
essary relationship is a more serious error than retaining a redundant relationship.
When in doubt, you should retain the relationship.

6.4  CONVERTING AN ERD TO A TABLE DESIGN
Conversion from the ERD notation to table design is important because of industry
practice. Computer-aided software engineering (CASE) tools support varying nota-
tions for ERDs. It is common practice to use a CASE tool as an aid in developing an
ERD. Because most commercial DBMSs use the Relational Model, you must convert an
ERD to a table design to implement your database design.

Even if you use a CASE tool to perform conversion, you should still have a
basic understanding of the conversion process. Understanding the conversion rules
improves your understanding of the ER model, particularly the difference between
the Entity Relationship Model and the Relational Model. Some typical errors by novice
data modelers are due to confusion between the models. For example, usage of for-
eign keys in an ERD is due to confusion about relationship representation in the two
models.

This section describes the conversion process in two parts. First, the basic rules
to convert entity types, relationships, and attributes are described. Second, special-
ized rules to convert optional 1-M relationships, generalization hierarchies, and 1-1
relationships are shown. The CREATE TABLE statements in this section conform to
SQL:2016 syntax.

6.4.1  Basic Conversion Rules
The basic rules convert everything on an ERD except generalization hierarchies. You
should apply these rules until everything in your ERD is converted except for gen-
eralization hierarchies. You should use the first two rules before the other rules. As
you apply these rules, you can use a check mark to indicate the converted parts of
an ERD.

	 1.	Entity Type Rule: Each entity type (except a subtype) becomes a table. The
primary key of the entity type (if not weak) becomes the primary key of the
table. The attributes of the entity type become columns in the table. This rule
should be used first before the relationship rules.

	 2.	1-M Relationship Rule: Each 1-M relationship becomes a foreign key in the
table corresponding to the child entity type (the entity type near the Crow’s Foot
symbol). If the minimum cardinality on the parent side of the relationship is one,
the foreign key cannot accept null values.

	 3.	M-N Relationship Rule: Each M-N relationship becomes a separate table. The
primary key of the table is a combined key consisting of the primary keys of the
entity types participating in the M-N relationship.

	 4.	Identifying Relationship Rule: Each identifying relationship (denoted by a
solid relationship line) adds a component to a primary key. The primary key
of the table corresponding to the weak entity type consists of (i) the underlined
local key (if any) in the weak entity type and (ii) the primary key(s) of the entity
type(s) connected by identifying relationship(s).

26008_ch06_p179-232.indd 197 3/2/18 9:06 PM

198   Part 3  Data Modeling

CourseNo
CrsDesc
CrsUnits

Course

O�erNo
O�Location
O�Time

O�ering

Has

FIGURE 6.16
ERD with 1-M Relationship

StdNo
StdName

Student
O�erNo
O�Location
O�Time

O�ering

Enrolls_In

EnrGrade

FIGURE 6.18
M-N Relationship with an
Attribute

CREATE TABLE Course
(CourseNo CHAR(6),
 CrsDesc	 VARCHAR(30),
 CrsUnits	 SMALLINT,
CONSTRAINT PKCourse PRIMARY KEY (CourseNo))

CREATE TABLE Offering
(OfferNo INTEGER,
 OffLocation CHAR(20),
 CourseNo CHAR(6) NOT NULL,
 OffTime TIMESTAMP,
 …
CONSTRAINT PKOffering PRIMARY KEY (OfferNo),
CONSTRAINT FKCourseNo FOREIGN KEY (CourseNo) REFERENCES Course)

FIGURE 6.17
Conversion of Figure 6.15
(SQL:2016 Syntax)

To understand these rules, you can apply them to some of the ERDs used in Chapter
5. Using Rules 1 and 2, you can convert Figure 6.16 into the CREATE TABLE state-
ments shown in Figure 6.17. Rule 1 is applied to convert the Course and Offering entity
types to tables. Then, Rule 2 is applied to convert the Has relationship to a foreign key
(Offering.CourseNo). The Offering table contains the foreign key because the Offering
entity type is the child entity type in the Has relationship.

Next, you can apply the M-N relationship rule (Rule 3) to convert the ERD in
Figure 6.18. Following this rule leads to the Enrolls_In table in Figure 6.19. The primary
key of Enrolls_In is a combination of the primary keys of the Student and Offering entity
types.

To gain practice with the identification dependency rule (Rule 4), you can use it
to convert the ERD in Figure 6.20. The result of converting Figure 6.20 is identical to
Figure 6.19 except that the Enrolls_In table is renamed Enrollment. The ERD in Figure
6.20 requires two applications of the identification dependency rule. Each application
of the identification dependency rule adds a component to the primary key of the
Enrollment table.

You can also apply the rules to convert self-referencing relationships. For exam-
ple, you can apply the 1-M and M-N relationship rules to convert the self-referencing
relationships in Figure 6.21. Using the 1-M relationship rule, the Supervises relation-
ship converts to a foreign key in the Faculty table, as shown in Figure 6.22. Using the
M-N relationship rule, the Prereq_To relationship converts to the Prereq_To table with a
combined primary key of the course number of the prerequisite course and the course
number of the dependent course.

26008_ch06_p179-232.indd 198 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   199

CREATE TABLE Student
(StdNo		 CHAR(11),
 	 StdName	 VARCHAR(30),
 	 …
CONSTRAINT PKStudent PRIMARY KEY (StdNo))

CREATE TABLE Offering
(OfferNo 	 INTEGER,
	 OffLocation	 VARCHAR(30),
 	 OffTime	 TIMESTAMP,
	 …
CONSTRAINT PKOffering PRIMARY KEY (OfferNo))

CREATE TABLE Enrolls_In
(OfferNo 	 INTEGER,
 	 StdNo		 CHAR(11),
 	 EnrGrade	 DECIMAL(2,1),
CONSTRAINT PKEnrolls_In PRIMARY KEY (OfferNo, StdNo),
CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo) REFERENCES Offering,
CONSTRAINT FKStdNo FOREIGN KEY (StdNo) REFERENCES Student)

FIGURE 6.19
Conversion of Figure 6.18
(SQL:2016 Syntax)

StdNo
StdName

Student
O�erNo
O�Location

O�ering

EnrGrade

EnrollmentRegisters Grants

FIGURE 6.20
Enrolls_in M-N Relationship
Transformed into 1-M
Relationships

You also can apply conversion rules to more complex identification dependencies
as depicted in Figure 6.23. The first part of the conversion is identical to the conver-
sion of Figure 6.20. Application of the 1-M rule makes the combination of StdNo and
OfferNo foreign keys in the Attendance table (Figure 6.24). Note that the foreign keys
in Attendance refer to Enrollment, not to Student and Offering. Finally, one application
of the identification dependency rule makes the combination of StdNo, OfferNo, and
AttDate the primary key of the Attendance table.

The conversion in Figure 6.24 depicts a situation in which the transformation of
a weak to a strong entity may apply (Section 6.2.3). In the conversion, the Attendance
table contains a combined foreign key (OfferNo, StdNo). Changing Enrollment into a
strong entity will eliminate the combined foreign key in the Attendance table.

FacNo
FacName

Faculty

(a) Manager-subordinate

Supervises

(b) Course prerequisites

Course
CourseNo
CrsDesc
CrsUnits

Prereq_To

FIGURE 6.21
Examples of 1-M and
M-N Self-Referencing
Relationships

26008_ch06_p179-232.indd 199 3/2/18 9:06 PM

200   Part 3  Data Modeling

FIGURE 6.22
Conversion of
Figure 6.20
(SQL:2016 Syntax)

Summary of Basic Conversion Rules  Figure 6.25 shows a convenient summary
of the basic conversion rules. You should apply the rules shown in Figure 6.25 start-
ing with the entity type rule. The 1-M relationship rule embodies the basic differ-
ence between the entity relationship model with named relationships and relational
model with foreign keys. The M-N relationship rule generates an associative table,
foreign keys, and combined primary key for each relationships. The identifying
relationship rule generates a component of a primary key for each identifying rela-
tionship.

6.4.2  Converting Optional 1-M Relationships
When you use the 1-M relationship rule for optional relationships, the resulting for-
eign key contains null values. Recall that a relationship with a minimum cardinality
of 0 is optional. For example, the Teaches relationship (Figure 6.26) is optional to
Offering because an Offering entity can be stored without being related to a Faculty
entity. Converting Figure 6.26 results in two tables (Faculty and Offering) as well as
a foreign key (FacNo) in the Offering table. The foreign key should allow null values

StdNo
StdName

Student
O�erNo
O�Location
O�Time

O�ering

EnrGrade

EnrollmentRegisters Grants
AttDate
Present

Attendance

Recorded_For

FIGURE 6.23
ERD with Two Weak Entity
Types

CREATE TABLE Faculty
(FacNo 	 CHAR(11),
 	 FacName	 VARCHAR(30),
 	 FacSupervisor	 CHAR(11),
 	 …
CONSTRAINT PKFaculty PRIMARY KEY (FacNo),
CONSTRAINT FKSupervisor FOREIGN KEY (FacSupervisor) REFERENCES
Faculty)

CREATE TABLE Course
(Courseno 	 CHAR(6),
	 CrsDesc	 VARCHAR(30),
 	 CrsUnits	 SMALLINT,
CONSTRAINT PKCourse PRIMARY KEY (CourseNo))

CREATE TABLE Prereq_To
(PrereqCNo 	 CHAR(6),
 	 DependCNo	 CHAR(6),
CONSTRAINT PKPrereq_To PRIMARY KEY (PrereqCNo, DependCNo),
CONSTRAINT FKPrereqCNo FOREIGN KEY (PrereqCNo) REFERENCES Course,
CONSTRAINT FKDependCNo FOREIGN KEY (DependCNo) REFERENCES Course)

26008_ch06_p179-232.indd 200 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   201

Entity type
rule

•Tables

1-M
relationship

rule
•FKs in child table

M-N
relationship

rule

•Associative tables plus FKs
•Combined PKs

Identifying
relationship

rule
•PK components

FIGURE 6.25
Application of Basic
Conversion Rules

CREATE TABLE Attendance
(OfferNo 	 INTEGER,
 	 StdNo		 CHAR(11),
 	 AttDate	 DATE,
 	 Present	 BOOLEAN,
CONSTRAINT PKAttendance PRIMARY KEY (OfferNo, StdNo, AttDate),
CONSTRAINT FKOfferNoStdNo FOREIGN KEY (OfferNo, StdNo)
 REFERENCES Enrollment)

FIGURE 6.24
Conversion of the
Attendance Entity Type
in Figure 6.23 (SQL:2016
Syntax)

because the minimum cardinality of the Offering entity type in the relationship is
optional (0). However, null values can lead to complications in evaluating the query
results.

To avoid null values when converting an optional 1-M relationship, you can apply
Rule 5 to convert an optional 1-M relationship into a table instead of a foreign key.
Figure 6.27 shows an application of Rule 5 to the ERD in Figure 6.26. The Teaches table
contains the foreign keys OfferNo and FacNo with null values not allowed for both col-
umns. In addition, the Offering table no longer has a foreign key referring to the Faculty
table. Figures 6.28 and 6.29 depict an example of converting an optional 1-M relation-
ship with an attribute. Note that the Lists table contains the Commission column.

	 5.	Optional 1-M Relationship Rule: Each 1-M relationship with 0 for the
minimum cardinality on the parent side becomes a new table. The primary key
of the new table is the primary key of the entity type on the child (many) side
of the relationship. The new table contains foreign keys for the primary keys of
both entity types participating in the relationship. Both foreign keys in the new
table do not permit null values. The new table also contains the attributes of the
optional 1-M relationship.

Rule 5 is controversial. Using Rule 5 in place of Rule 2 (1-M Relationship Rule)
avoids null values in foreign keys. However, the use of Rule 5 results in more tables.
Query formulation can be more difficult with additional tables. In addition, query
execution can be slower due to extra joins. The choice of using Rule 5 in place of Rule

FacNo
FacName

Faculty
O�erNo
O�Location
O�Time

O�ering

Teaches

FIGURE 6.26
Optional 1-M Relationship

26008_ch06_p179-232.indd 201 3/2/18 9:06 PM

202   Part 3  Data Modeling

Home
HomeNo
HomeAddress

AgentID
AgentName

Agent

Commission

Lists

FIGURE 6.28
Optional 1-M Relationship
with an Attribute

CREATE TABLE Faculty
(FacNo 	 CHAR(11),
 	 FacName	 VARCHAR(30),
 	 …
CONSTRAINT PKFaculty PRIMARY KEY (FacNo))

CREATE TABLE Offering
(OfferNo 	 INTEGER,
	 OffLocation	 VARCHAR(30),
 	 OffTime	 TIMESTAMP,
	 …
CONSTRAINT PKOffering PRIMARY KEY (OfferNo))

CREATE TABLE Teaches
(OfferNo 	 INTEGER,
 	 FacNo		 CHAR(11)	 NOT NULL,
CONSTRAINT PKTeaches PRIMARY KEY (OfferNo),
CONSTRAINT FKFacNo FOREIGN KEY (FacNo) REFERENCES Faculty,
CONSTRAINT FKOfferNo FOREIGN KEY (OfferNo) REFERENCES Offering)

FIGURE 6.27
Conversion of
Figure 6.25
(SQL:2016 Syntax)

CREATE TABLE Agent
(AgentId 	 CHAR(10),
 	 AgentName	 VARCHAR(30),
 	 …
CONSTRAINT PKAgent PRIMARY KEY (AgentId))

CREATE TABLE Home
(HomeNo 	 INTEGER,
	 HomeAddress	 VARCHAR(50),
	 …
CONSTRAINT PKHome PRIMARY KEY (HomeNo))

CREATE TABLE Lists
(HomeNo 	 INTEGER,
 	 AgentId	 CHAR(10)	 NOT NULL,
	 Commission	 DECIMAL(10,2),
CONSTRAINT PKLists PRIMARY KEY (HomeNo),
CONSTRAINT FKAgentId FOREIGN KEY (AgentId) REFERENCES Agent,
CONSTRAINT FKHomeNo FOREIGN KEY (HomeNo) REFERENCES Home)

FIGURE 6.29
Conversion of Figure 6.28
(SQL:2016 Syntax)

2 depends on the importance of avoiding null values versus avoiding extra tables.
In many situations, avoiding extra tables may be more important than avoiding null
values.

26008_ch06_p179-232.indd 202 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   203

6.4.3  Converting Generalization Hierarchies
The approach to convert generalization hierarchies mimics the entity rela-
tionship notation as much as possible. Rule 6 converts each entity type of
a generalization hierarchy into a table. The only columns that are different
from attributes in the associated ERD are the inherited primary key attributes.
In Figure 6.30, EmpNo is a column in the SalaryEmp and HourlyEmp tables
because it is the primary key of the parent entity type (Employee). In addition,
the SalaryEmp and HourlyEmp tables have a foreign key constraint referring
to the Employee table. The CASCADE delete option is set in both foreign key
constraints (see Figure 6.31).

	 6.	Generalization Hierarchy Rule: Each entity type of a generalization
hierarchy becomes a table. The columns of a table are the attributes of the
corresponding entity type plus the primary key of the parent entity type. For
each table representing a subtype, define a foreign key constraint that references
the table corresponding to the parent entity type. Use the CASCADE option for
deletions of referenced rows.

Rule 6 also applies to generalization hierarchies of more than one level. To convert
the generalization hierarchy of Figure 6.32, five tables are produced (see Figure 6.33).

Employee
EmpNo

EmpName
EmpHireDate

SalaryEmp
EmpSalary

HourlyEmp
EmpRate

FIGURE 6.30
Generalization Hierarchy for Employees

CREATE TABLE Employee
(EmpNo 	 INTEGER,
 	 EmpName	 VARCHAR(30),
 	 EmpHireDate 	 DATE,
CONSTRAINT PKEmployee PRIMARY KEY (EmpNo))

CREATE TABLE SalaryEmp
(EmpNo		 INTEGER,
	 EmpSalary	 DECIMAL(10,2),
CONSTRAINT PKSalaryEmp PRIMARY KEY (EmpNo),
CONSTRAINT FKSalaryEmp FOREIGN KEY (EmpNo) REFERENCES Employee
 ON DELETE CASCADE)

CREATE TABLE HourlyEmp
(EmpNo		 INTEGER,
 	 EmpRate	 DECIMAL(10,2),
CONSTRAINT PKHourlyEmp PRIMARY KEY (EmpNo),
CONSTRAINT FKHourlyEmp FOREIGN KEY (EmpNo) REFERENCES Employee
 ON DELETE CASCADE)

FIGURE 6.31
Conversion of the
Generalization Hierarchy
in Figure 6.30 (SQL:2016
Syntax)

Security
Symbol

SecName
LastClose

D,C

D,C

Bond
Rate

FaceValue

Stock
OutShares

IssuedShares

Common
PERatio

Dividend

Preferred
CallPrice
Arrears

FIGURE 6.32
Multiple Levels of Generaliza-
tion Hierarchies

26008_ch06_p179-232.indd 203 3/2/18 9:06 PM

204   Part 3  Data Modeling

In each table, the primary key of the parent (Security) is included. In addition, foreign
key constraints are added in each table corresponding to a subtype.

Because the Relational Model does not directly support generalization hierar-
chies, there are several other ways to convert generalization hierarchies. The other
approaches vary depending on the number of tables and the placement of inherited
columns. Rule 6 may result in extra joins to gather all data about an entity, but there
are no null values and only small amounts of duplicate data. For example, to collect
all data about a common stock, you should join the Common, Stock, and Security tables.
Other conversion approaches may require fewer joins, but result in more redundant
data and null values. The references at the end of this chapter discuss the pros and
cons of several approaches to convert generalization hierarchies.

You should note that generalization hierarchies for tables are directly supported
in SQL:2016, the standard for object relational databases presented in Chapter 19. In
the SQL:2016 standard, subtable families provide a direct conversion from general-
ization hierarchies avoiding the loss of semantic information when converting to the
traditional Relational Model. However, few commercial DBMS products fully support

CREATE TABLE Security
(Symbol 	 CHAR(6),
 	 SecName	 VARCHAR(30),
 	 LastClose	 DECIMAL(10,2),
CONSTRAINT PKSecurity PRIMARY KEY (Symbol))

CREATE TABLE Stock
(Symbol	 CHAR(6),
	 OutShares	 INTEGER,
	 IssuedShares	 INTEGER,
CONSTRAINT PKStock PRIMARY KEY (Symbol),
CONSTRAINT FKStock FOREIGN KEY (Symbol) REFERENCES Security
 ON DELETE CASCADE)

CREATE TABLE Bond
(Symbol	 CHAR(6),
	 Rate		 DECIMAL(12,4),
	 FaceValue	 DECIMAL(10,2),
CONSTRAINT PKBond PRIMARY KEY (Symbol),
CONSTRAINT FKBond FOREIGN KEY (Symbol) REFERENCES Security
 ON DELETE CASCADE)
CREATE TABLE Common
(Symbol	 CHAR(6),
	 PERatio	 DECIMAL(12,4),
	 Dividend	 DECIMAL(10,2),
CONSTRAINT PKCommon PRIMARY KEY (Symbol),
CONSTRAINT FKCommon FOREIGN KEY (Symbol) REFERENCES Stock
 ON DELETE CASCADE)

CREATE TABLE Preferred
(Symbol	 CHAR(6),
	 CallPrice	 DECIMAL(12,2),
	 Arrears	 DECIMAL(10,2),
CONSTRAINT PKPreferred PRIMARY KEY (Symbol),
CONSTRAINT FKPreferred FOREIGN KEY (Symbol) REFERENCES Stock
 ON DELETE CASCADE)

FIGURE 6.33
Conversion of the
Generalization Hierarchy
in Figure 6.32 (SQL:2016
Syntax)

26008_ch06_p179-232.indd 204 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   205

the object relational features in SQL:2016. Thus, usage of the generalization hierarchy
conversion rule will likely be necessary.

To support usage of the Generalization Hierarchy Rule, Chapter 11 presents trig-
gers to support operations on tables in a generalization hierarchy. The triggers sup-
port propagation among tables when inserting and updating rows in a generalization
hierarchy as well as enforcement of generalization hierarchy constraints.

6.4.4  Converting 1-1 Relationships
Outside of generalization hierarchies, 1-1 relationships are not common. They can
occur when entities with separate identifiers are closely related. For example, Figure
6.34 shows the Employee and Office entity types connected by a 1-1 relationship. Sepa-
rate entity types seem intuitive, but a 1-1 relationship connects the entity types. Rule
7 converts 1-1 relationships into two foreign keys unless many null values will result.
In Figure 6.34, most employees will not manage offices. Thus, the conversion in
Figure 6.35 eliminates the foreign key (OfficeNo) in the employee table.

	 7.	1-1 Relationship Rule: Each 1-1 relationship is converted into two foreign
keys. If the relationship is optional with respect to one of the entity types, the
corresponding foreign key may be dropped to eliminate null values.

6.4.5  Comprehensive Conversion Example
This section presents a larger example to integrate your knowledge of the conversion
rules. Figure 6.36 shows an ERD similar to the final ERD for the water utility problem
discussed in Section 6.1. For brevity, some attributes have been omitted. Figure 6.37
shows the relational tables derived through the conversion rules. Table 6-6 lists the
conversion rules used along with brief explanations.

6.4.6  Conversion Practices in Commercial CASE Tools
Commercial CASE tools convert ERDs so that a table design closely matches its asso-
ciated ERD. This philosophy dictates the dominant usage of the basic rules in the

EmpNo
EmpName

Employee
O�ceNo
O�Address
O�Phone

O�ce

Manages

FIGURE 6.34
1-1 Relationship

CREATE TABLE Employee
(EmpNo 	 INTEGER,
 	 EmpName	 VARCHAR(30),
CONSTRAINT PKEmployee PRIMARY KEY (EmpNo))

CREATE TABLE Office
(OfficeNo	 INTEGER,
 	 OffAddress	 VARCHAR(30),
 	 OffPhone	 CHAR(10),
 	 EmpNo		 INTEGER,
CONSTRAINT PKOffice PRIMARY KEY (OfficeNo),
CONSTRAINT FKEmpNo FOREIGN KEY (EmpNo) REFERENCES Employee,
CONSTRAINT EmpNoUnique UNIQUE (EmpNo))

FIGURE 6.35
Conversion of the 1-1
Relationship in Figure 6.34
(SQL:2016 Syntax)

26008_ch06_p179-232.indd 205 3/2/18 9:06 PM

206   Part 3  Data Modeling

RateSet
RateSetNo
RSApprDate
RSE�Date

CustNo
CustName
CustType

Customer

BillNo
BillDate
BillStartDate

Bill
ReadNo
ReadTime
ReadLevel

Reading

MeterNo
MtrSize
MtrModel

Meter

Assigned Uses

ReadBy

Includes
MinUsage
MaxUsage
FixedAmt

Rate

EmpNo
EmpName
EmpTitle

Employee
Performs

Contains

TaxPayerID
EnterpriseZone

Commercial Residential
Subsidized
DwellingType

D,C

FIGURE 6.36
Water Utility ERD with a
Generalization Hierarchy

CREATE TABLE Customer
(CustNo 	 INTEGER,
 	 CustName	 VARCHAR(30),
	 CustType	 CHAR(6),
 	 RateSetNo	 INTEGER	 NOT NULL,
CONSTRAINT PKCustomer PRIMARY KEY (CustNo),
CONSTRAINT FKRateSetNo FOREIGN KEY (RateSetNo)
 REFERENCES RateSet)

CREATE TABLE Commercial
(CustNo	 INTEGER,
	 TaxPayerID	 CHAR(20)	 NOT NULL,
	 EnterpiseZone 	 BOOLEAN,
CONSTRAINT PKCommercial PRIMARY KEY (CustNo),
CONSTRAINT FKCommercial FOREIGN KEY (CustNo)
 REFERENCES Customer ON DELETE CASCADE)

CREATE TABLE Residential
(CustNo	 INTEGER,
	 Subsidized	 BOOLEAN,
	 DwellingType	 CHAR(6),
CONSTRAINT PKResidential PRIMARY KEY (CustNo),
CONSTRAINT FKResidential FOREIGN KEY (CustNo)
 REFERENCES Customer ON DELETE CASCADE)

CREATE TABLE RateSet
(RateSetNo	 INTEGER,

FIGURE 6.37
Conversion of the ERD in
Figure 6.36 (SQL:2016
Syntax)

26008_ch06_p179-232.indd 206 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   207

	 RSApprDate	 DATE,
	 RSEffDate	 DATE,
CONSTRAINT PKRateSet PRIMARY KEY (RateSetNo))

CREATE TABLE Rate
(RateSetNo	 INTEGER,
	 MinUsage	 INTEGER,
	 MaxUsage	 INTEGER,
	 FixedAmt	 DECIMAL(10,2),
CONSTRAINT PKRate PRIMARY KEY (RateSetNo, MinUsage),
CONSTRAINT FKRateSetNo2 FOREIGN KEY(RateSetNo)
 REFERENCES RateSet)

CREATE TABLE Meter
(MeterNo	 INTEGER,
	 MtrSize	 INTEGER,
	 MtrModel	 CHAR(6),
	 CustNo	 INTEGER		 NOT NULL,
CONSTRAINT PKMeter PRIMARY KEY (MeterNo),
CONSTRAINT FKCustNo FOREIGN KEY (CustNo)
 REFERENCES Customer)

CREATE TABLE Reading
(ReadNo	 INTEGER,
	 ReadTime	 TIMESTAMP,
	 ReadLevel	 INTEGER,
	 MeterNo	 INTEGER		 NOT NULL,
	 EmpNo		 INTEGER		 NOT NULL,
	 BillNo	 INTEGER,
CONSTRAINT PKReading PRIMARY KEY (ReadNo),
CONSTRAINT FKEmpNo FOREIGN KEY (EmpNo) REFERENCES Employee,
CONSTRAINT FKMeterNo FOREIGN KEY (MeterNo) REFERENCES Meter,
CONSTRAINT FKBillNo FOREIGN KEY (BillNo) RERERENCES Bill)

CREATE TABLE Bill
(BillNo	 INTEGER,
	 BillDate	 DATE,
	 BillStartDate	 DATE,
CONSTRAINT PKBill PRIMARY KEY (BillNo))

CREATE TABLE Employee
(EmpNo		 INTEGER,
	 EmpName	 VARCHAR(50),
	 EmpTitle	 VARCHAR(20),
CONSTRAINT PKEmployee PRIMARY KEY (EmpNo))

FIGURE 6.37
(Continued)

conversion process. The optional 1-M relationship rule is not used although a table
design can be manually changed after the conversion to apply the optional 1-M rela-
tionship rule. Since representation of generalization hierarchies varies widely among
commercial CASE tools, it is not possible to make a general statement about conver-
sion practices. Typically, the conversion would result in the same number of tables as
entity types. However, since the basic relational model does not support generaliza-
tion hierarchies, the attributes in converted subtype tables may be just the direct attri-
butes or all attributes (direct and inherited).

26008_ch06_p179-232.indd 207 3/2/18 9:06 PM

208   Part 3  Data Modeling

TABLE 6-6
Conversion Rules Used for
Figure 6.36

Rule Usage

1 All entity types except subtypes converted to tables with primary keys.

2 1-M relationships converted to foreign keys: Contains relationship to Rate.RateSetNo; Uses
relationship to Meter.CustNo; ReadBy relationship to Reading.MeterNo; Includes relationship to
Reading.BillNo; Performs relationship to Reading.EmpNo; Assigned relationship to Customer.
RateSetNo

3 Not used because there are no M-N relationships.

4 Primary key of Rate table is a combination of RateSetNo and MinUsage.

5 Not used although it could have been used for the Includes relationship.

6 Subtypes (Commercial and Residential) converted to tables. Primary key of Customer is added to
the Commercial and Residential tables. Foreign key constraints with CASCADE DELETE options
added to tables corresponding to the subtypes.

FIGURE 6.38
Extended University
Database in the Data
Modeling Tool of Aqua
Data Studio

To depict a commercial conversion tool, Figure 6.38 shows the extended univer-
sity database in the ERD notation of Aqua Data Studio. The ERD has six entity types
with generalization relationships from UnivPerson to Student and UnivPerson to Fac-
ulty. The Student and Faculty entity types show direct and inherited attributes (PerNo,
PerName, PerCity, PerState, and PerZip). The conversion feature in Aqua Data Studio
(known as Generate Scripts) creates one table per entity type. The Student and Faculty
tables resulting from the conversion have all attributes shown in the ERD, both direct
and inherited. Foreign key constraints are created as part of the conversion of general-
ization relationships. Thus, the Faculty and Student tables have foreign key constraints
referencing the UnivPerson table.

As another example, Figure 6.39 shows the extended university database in the
Entity Relationship stencil of Visio 2010 Professional Edition. Like the conversion in
Aqua Data Studio, each entity type in an ERD corresponds to a table. However, Visio
has an implicit conversion feature in contrast to the explicit feature in Aqua Data Stu-
dio. In Visio Professional 2010, you set display options to see the conversion in the
ERD. In Figure 6.39, Visio displays foreign keys in the ERD because the foreign key
display option is set. The table properties window shows additional properties includ-
ing triggers (see Chapter 11) and check constraints (see Chapter 16). Visio’s implicit
conversion feature does not support generalization hierarchies in the relational model.
In the conversion result, child entity types (Student and Faculty) only have the direct
attributes, not the inherited attributes.

26008_ch06_p179-232.indd 208 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   209

Student

PerNo(FK)

StdClass
StdMajor
StdGPA

O�ering

O�erNo

O�Location
O�Time
CourseNo
PerNo (FK)

Course

CourseNo

CrsDesc
CrsUnits

Has

Faculty

PerNo (FK)

FacSalary
FacRank
FacHireDate
FacPerNo (FK)

Teaches

Enrollment

O�erNo (FK)
PerNo (FK)

EnrGrade

Grants

Person

PerNo

PerName
PerCity
PerState
PerZip

Registers

Supervises

FIGURE 6.39
Extended University
Database in Visio 2010
Professional Edition

This chapter has described the practice of data modeling, building on your under-
standing of the Crow’s Foot notation presented in Chapter 5. To master data modeling,
you need to understand the notation used in entity relationship diagrams (ERDs) and
get plenty of practice building ERDs. This chapter described techniques to derive an
initial ERD from a narrative problem, refine the ERD through transformations, docu-
ment important design decisions, and check the ERD for design errors. To apply these
techniques, a practice problem for a water utility database was presented. You are
encouraged to apply these techniques using the problems at the end of the chapter.

The remainder of this chapter presented rules to convert an ERD into relational
tables and alternative ERD notations. The rules will help you convert modest-size
ERDs into tables. For large problems, you should use a good CASE tool. Even if you
use a CASE tool, understanding the conversion rules provides insight into the differ-
ences between the Entity Relationship Model and the Relational Model.

This chapter emphasized data modeling skills for constructing ERDs using narrative
problems, refining ERDs, and converting ERDs into relational tables. The next chapter
presents normalization, a technique to remove redundancy from a table design. Together,
data modeling and normalization are fundamental skills for database development.

After you master these database development skills, you are ready to apply them
to database design projects. An additional challenge of applying your skills is require-
ments definition. It is a lot of work to collect requirements from users with diverse
interests and backgrounds. You may spend more time gathering requirements than
performing data modeling and normalization. With careful study and practice, you
will find database development to be a challenging and highly rewarding activity.

CLOSING THOUGHTS

26008_ch06_p179-232.indd 209 3/2/18 9:06 PM

210   Part 3  Data Modeling

•	 Identifying entity types and attributes in a narrative
•	 Criteria for primary keys: stable and single purpose
•	 Avoidance of government issued identification attributes as primary keys due to

privacy concerns
•	 Identifying relationships in a narrative
•	 Transformations to add detail to an ERD: expanding an attribute, expanding an

entity type, adding history
•	 Splitting an attribute to standardize information content and improve query

results
•	 Changing a weak entity type to a strong entity type to remove combined foreign

keys after conversion
•	 Adding a generalization hierarchy to avoid null values
•	 Reversed transformations to simplify a design with excessive detail
•	 Documentation practices for important design decisions: justification for design

decisions involving multiple feasible choices and explanations of subtle design
choices.

•	 Poor documentation practices: repeating the information already contained in
an ERD

•	 Common design errors: misplaced relationships, missing relationships, incorrect
cardinalities, overuse of generalization hierarchies, overuse of associative entity
types representing M-way relationships, and redundant relationships

•	 Basic rules to convert entity types and relationships
•	 Specialized conversion rules to convert optional 1-M relationships,

generalization hierarchies, and 1-1 relationships
•	 Simplified conversion practices in Aqua Data Studio and Visio Professional, one

table per entity type with little or no support for generalization hierarchies

REVIEW CONCEPTS

QUESTIONS

  1.	What does it mean to say that constructing an ERD is an iterative process?
  2.	Why decompose a compound attribute into smaller attributes?
  3.	When is it appropriate to expand an attribute?
  4.	Why transform an entity type into two entity types and a relationship?
  5.	Why transform a weak entity type to a strong entity type?
  6.	Why transform an entity type into a generalization hierarchy?
  7.	Why add history to an attribute or relationship?
  8.	What changes to an ERD are necessary when expanding an attribute?
  9.	What changes to an ERD are necessary when splitting a compound attribute?

  10.	What changes to an ERD are necessary when expanding an entity type?
  11.	What changes to an ERD are necessary when transforming a weak entity type to

a strong entity type?
  12.	What changes to an ERD are necessary when adding unlimited history to an

attribute or a relationship?

26008_ch06_p179-232.indd 210 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   211

  13.	What changes to an ERD are necessary when replacing an entity type with a
generalization hierarchy?

  14.	What should you document about an ERD?
  15.	What should you omit in ERD documentation?
  16.	Why are design errors more difficult to detect and resolve than diagram errors?
  17.	What is a misplaced relationship and how is it resolved?
  18.	What is an incorrect cardinality and how is it resolved?
  19.	What is a missing relationship and how is it resolved?
  20.	What is overuse of a generalization hierarchy and how is it resolved?
  21.	What is a relationship cycle?
  22.	What is a redundant relationship and how is it resolved?
  23.	How is an M-N relationship converted to a table design?
  24.	How is a 1-M relationship converted to a table design?
  25.	What is the difference between the 1-M relationship rule and the optional 1-M

relationship rule?
  26.	How is a weak entity type converted to a table design?
  27.	How is a generalization hierarchy converted to a table design?
  28.	How is a 1-1 relationship converted to a table design?
  29.	What are the criteria for choosing a primary key?
  30.	What should you do if a proposed primary key does not meet selection criteria?
  31.	Why should you understand the conversion process even if you use a CASE tool

to perform the conversion?
  32.	What are the goals of narrative problem analysis?
  33.	What are some difficulties with collecting information requirements to develop a

business data model?
  34.	How are entity types identified in a problem narrative?
  35.	How should the simplicity principle be applied during the search for entity

types in a problem narrative?
  36.	How are relationships and cardinalities identified in a problem narrative?
  37.	How can you reduce the number of relationships in an initial ERD?
  38.	What changes to an ERD are necessary when adding limited history to an

attribute?
  39.	How can design documentation help in resolving specification problems?
  40.	How can design documentation help in improving communication?
  41.	Why should you not use government identifiers as primary keys?
  42.	Why are government identifiers sometimes important to store in a database?
  43.	How does stability help as a guideline for the appropriateness of using

generalization?
  44.	What changes to an ERD are necessary when adding limited history to an

attribute?
  45.	What changes to an ERD are necessary when replacing a collection of entity

types with a generalization hierarchy?
  46.	When should you consider reversed transformations? Are the reversed

transformations less frequently used than the normal transformations?
  47.	What is a hub entity type? How can a hub entity type be used to simplify an ERD?
  48.	Compare and contrast attribute expansion and entity type expansion?

26008_ch06_p179-232.indd 211 3/2/18 9:06 PM

212   Part 3  Data Modeling

The problems are divided between data modeling problems and conversion problems.
Additional conversion problems are found in Chapter 7, where conversion is followed
by normalization.

Data Modeling Problems

  1.	Define an ERD for the following narrative. The database should track homes and
owners. A home has a unique home identifier, a street address, a city, a state, a
zip, a number of bedrooms, a number of bathrooms, and square feet. A home
is either owner occupied or rented. An owner has a unique owner number, a
Social Security number (used for government reporting requirements), a name,
an optional spouse name, a profession, an optional spouse profession, and an
optional spouse Social Security number. An owner can possess one or more
homes. Each home has only one owner.

  2.	Refine the ERD from problem 1 by adding an agent entity type. Agents
represent owners in the sale of a home. An agent can list many homes, but
only one agent can list a home. An agent has a unique agent identifier, a name,
an office identifier, a Social Security number (for government reporting only)
and a phone number. When an owner agrees to list a home with an agent, a
commission (percentage of the sales price) and a selling price are determined.

  3.	 In the ERD from problem 2, transform the attribute, office identifier, into an
entity type. Data about an office include the phone number, the manager name,
and the address.

  4.	 In the ERD from problem 3, add a buyer entity type. A buyer entity type has
a unique buyer identifier, a Social Security number (used for government
reporting only), a name, an address, a phone number, optional spouse
attributes (name and Social Security number), and preferences for the number
of bedrooms and bathrooms, and a price range. An agent can work with many
buyers, but a buyer works with only one agent.

  5.	Refine the ERD from problem 4 with a generalization hierarchy to depict
similarities between buyers and owners.

  6.	Revise the ERD from problem 5 by adding an offer entity type. A buyer makes
an offer on a home for a specified sales price. The offer starts on the submission
date and time and expires on the specified date and time. A unique offer number
identifies an offer. A buyer can submit multiple offers for the same home.

  7.	Construct an ERD to represent accounts in a database for personal financial
software. The software supports checking accounts, credit cards, and two
kinds of investments (mutual funds and stocks). No other kinds of accounts are
supported, and every account must fall into one of these account types. For each
kind of account, the software provides a separate data entry screen. The following
list describes the fields on the data entry screens for each kind of account:

•	 For all accounts, the software requires the unique account identifier, the
account name, date established, and the balance.

•	 For checking accounts, the software supports attributes for the bank name, the
bank address, the checking account number, and the routing number.

•	 For credit cards, the software supports attributes for the credit card number,
the expiration date, and the credit card limit.

•	 For stocks, the software supports attributes for the stock symbol, the stock
type (common or preferred), the last dividend amount, the last dividend

PROBLEMS

26008_ch06_p179-232.indd 212 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   213

date, the exchange, the last closing price, and the number of shares (a whole
number).

•	 For mutual funds, the software supports attributes for the mutual fund
symbol, the share balance (a real number), the fund type (stock, bond, or
mixed), the last closing price, the region (domestic, international, or global),
and the tax-exempt status (yes or no).

  8.	Construct an ERD to represent categories in a database for personal financial
software. A category has a unique category identifier, a name, a type (expense,
asset, liability, or revenue), and a balance. Categories are organized hierarchically
so that a category can have a parent category and one or more subcategories. For
example, the category “household” can have subcategories for “cleaning” and
“maintenance.” A category can have any number of levels of subcategories. Make
an instance diagram to depict the relationships among categories.

  9.	Design an ERD for parts and relationships among parts. A part has a unique
identifier, a name, and a color. A part can have multiple subparts and multiple
parts that use it. The quantity of each subpart should be recorded. Make an
instance diagram to depict relationships among parts.

  10.	Design an ERD to represent a credit card statement. The statement has two
parts: a heading containing the unique statement number, the account number
of the credit card holder, and the statement date; and a detail section containing
a list of zero or more transactions for which the balance is due. Each detail line
contains a line number, a transaction date, a merchant name, and the amount of
the transaction. The line number is unique within a statement.

  11.	Modify your ERD from problem 10. Everything is the same except that each
detail line contains a unique transaction number in place of the line number.
Transaction numbers are unique across statements.

  12.	Using the ERD in Figure 6.P1, transform the ProvNo attribute into an entity type
(Provider) and a 1-M relationship (Treats). A provider has a unique provider
number, a first name, a last name, a phone, a specialty, a hospital name in which
the provider practices, an e-mail address, a certification, a pay grade, and a title.
A provider is required for a visit. New providers do not have associated visits.

  13.	In the result for problem 12, expand the Visit entity type to record details about
a visit. A visit detail includes a detail number, a detail charge, an optional
provider number, and an associated item. The combination of the visit number
and visit detail number is unique for a visit detail. An item includes a unique
item number, an item description, an item price, and an item type. An item can
be related to multiple visit details. New items may not be related to any visit
details. A provider can be related to multiple visit details. Some providers may
not be associated to any visit details. In addition, a provider can be related to
multiple visits as indicated in problem 12. The provider for a visit detail (usually
a nurse or a lab technician) is typically different than the provider for the visit
(usually a physician).

  14.	In the result for problem 13, add a generalization hierarchy to distinguish
between nurse and physician providers. A nurse has a pay grade and a title. A
physician has a residence hospital, e-mail address, and a certification. The other
attributes of provider apply to both physicians and nurses. A visit involves a
physician provider while a visit detail may involve a nurse provider.

  15.	In the result for problem 14, transform VisitDetail into a strong entity type with
VisitDetailNo as the primary key.

  16.	In the result for problem 15, add a history of item prices. Your solution should
support the current price along with the two most recent prices. Include change
dates for each item price.

26008_ch06_p179-232.indd 213 3/2/18 9:06 PM

214   Part 3  Data Modeling

  17.	In the result for problem 15, add a history of item prices. Your solution should
support an unlimited number of prices and change dates.

  18.	Design an ERD with entity types for projects, specialties, and contractors. Add
relationships and/or entity types as indicated in the following description. Each
contractor has exactly one specialty, but many contractors can provide the same
specialty. A contractor can provide the same specialty on multiple projects. A
project can use many specialties, and a specialty can be used on many projects.
Each combination of project and specialty should have at least two contractors.

  19.	For the following problem, define an ERD for the initial requirements and then
revise the ERD for the new requirements. Your solution should have an initial
ERD, a revised ERD, and a list of design decisions for each ERD. In performing
your analysis, you may want to follow the approach presented in Section 6.1.

The database supports the placement office of a leading graduate school of
business. The primary purpose of the database is to schedule interviews and
facilitate searches by students and companies. Consider the following require-
ments in your initial ERD:

•	 Student data include a unique student identifier, a name, a phone number,
an e-mail address, a web address, a major, a minor, and a GPA.

•	 The placement office maintains a standard list of positions based on the
Labor Department’s list of occupations. Position data include a unique
position identifier and a position description.

•	 Company data include a unique company identifier, a company name, and
a list of positions and interviewers. Each company must map its positions
into the position list maintained by the placement office. For each available
position, the company lists the cities in which positions are available.

•	 Interviewer data include a unique interviewer identifier, a name, a phone,
an e-mail address, and a web address. Each interviewer works for one
company and conducts interviews at the placement office.

•	 An interview includes a unique interview identifier, a date, a time, a
location (building and room), an interviewer, and a student. A student
may have multiple interviews.

After reviewing your initial design, the placement office decides to revise the
requirements. Make a separate ERD to show your refinements. Refine your
original ERD to support the following new requirements:
•	 Allow companies to use their own language to describe positions. The

placement office will not maintain a list of standard positions.
•	 Allow companies to indicate availability dates and number of openings for

positions.
•	 Allow companies to reserve blocks of interview time. The interview

blocks will not specify times for individual interviews. Rather a company
will request a block of X hours during a specified week. Companies
reserve interview blocks before the placement office schedules individual

FIRE 6.P1
ERD for Problem 12 Patient

PatNo
PatFirstName
PatLastName
PatCity
PatState
PatZip
PatHealthPlan

Visit

VisitNo
VisitDate
VisitPayMethod
VisitCharge
ProvNo

Attends

26008_ch06_p179-232.indd 214 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   215

interviews. Thus, the placement office needs to store interviews as well as
interview blocks.

•	 Allow students to submit bids for interview blocks. Students receive a set
amount of bid dollars that they can allocate among bids. The bid mechanism
is a pseudo-market approach to allocating interviews, a scarce resource. A
bid contains a unique bid identifier, a bid amount, and a company. A student
can submit many bids and an interview block can receive many bids.

  20.	For the following problem, define an ERD for the initial requirements and
then revise the ERD for the new requirements. Your solution should have
an initial ERD, a revised ERD, and a list of design decisions for each ERD. In
performing your analysis, you may want to follow the approach presented in
Section 6.1.

Design a database for managing the task assignments on a work order. A work
order records the set of tasks requested by a customer at a specified location.

•	 A customer has a unique customer identifier, a name, a billing address
(street, city, state, and zip), and a collection of submitted work orders.

•	 A work order has a unique work order number, a creation date, a
date required, a completion date, a customer, an optional supervising
employee, a work address (street, city, state, zip), and a set of tasks.

•	 Each task has a unique task identifier, a task name, an hourly rate, and
estimated hours. Tasks are standardized across work orders so that the
same task can be performed on many work orders.

•	 Each task on a work order has a status (not started, in progress, or
completed), actual hours, and a completion date. The completion date is
not entered until the status changes to complete.

After reviewing your initial design, the company decides to revise the require-
ments. Make a separate ERD to show your refinements. Refine your original
ERD to support the following new requirements:
•	 The company wants to maintain a list of materials. The data about

materials include a unique material identifier, a name, and an estimated
cost. A material can appear on multiple work orders.

•	 Each work order uses a collection of materials. A material used on a
work order includes the estimated quantity of the material and the actual
quantity of the material used.

•	 The estimated number of hours for a task depends on the work order and
task, not on the task alone. Each task of a work order includes an estimated
number of hours.

  21.	For the following problem, define an ERD for the initial requirements and then
revise the ERD for the new requirements. Your solution should have an initial
ERD, a revised ERD, and a list of design decisions for each ERD. In performing
your analysis, you may want to follow the approach presented in Section 6.1.

Design a database to assist physical plant personnel in managing assignments
of keys to employees. The primary purpose of the database is to ensure proper
accounting for all keys.

•	 An employee has a unique employee number, a name, a position, and an
optional office number.

•	 A building has a unique building number, a name, and a location within
the campus.

•	 A room has a room number, a size (physical dimensions), a capacity, a
number of entrances, and a description of equipment in the room. Because

26008_ch06_p179-232.indd 215 3/2/18 9:06 PM

216   Part 3  Data Modeling

each room is located in exactly one building, the identification of a room
depends on the identification of a building.

•	 Key types (also known as master keys) are designed to open one or more
rooms. A room may have one or more key types that open it. A key
type has a unique key type number, a date designed, and the employee
authorizing the key type. A key type must be authorized before it is
created.

•	 A copy of a key type is known as a key. Keys are assigned to employees.
Each key is assigned to exactly one employee, but an employee can hold
multiple keys. The key type number plus a copy number uniquely identify
a key. The date the copy was made should be recorded in the database.

After reviewing your initial design, the physical plant supervisor decides
to revise the requirements. Make a separate ERD to show your refinements.
Refine your original ERD to support the following new requirements:
•	 The physical plant supervisor needs to know not only the current holder

of a key but the past holders of a key. For past key holders, the date range
that a key was held should be recorded.

•	 The physical plant supervisor needs to know the current status of each key:
in use by an employee, in storage, or reported lost. If lost, the date reported
lost should be stored.

  22.	Define an ERD that supports the generation of product explosion diagrams,
assembly instructions, and parts lists. These documents are typically included
in hardware products sold to the public. Your ERD should represent the final
products as well as the parts comprising final products. The following points
provide more details about the documents.

•	 Your ERD should support the generation of product explosion diagrams
as shown in Figure 6.P2 for a wheelbarrow with a hardwood handle. Your
ERD should store the containment relationships along with the quantities
required for each subpart. For line drawings and geometric position
specifications, you can assume that image and position data types are
available to store attribute values.

•	 Your ERD should support the generation of assembly instructions. Each
product can have a set of ordered steps for instruction. Table 6-P1 shows
some of the assembly instructions for a wheelbarrow. The numbers in the
instructions refer to the parts diagram.

•	 Your ERD should support the generation of a parts list for each product.
Table 6-P2 shows the parts list for the wheelbarrow.

  23.	For the Expense Report ERD shown in Figure 6.P3, identify and resolve errors
and note incompleteness in the specifications. Your solution should include
a list of errors and a revised ERD. For each error, identify the type of error
(diagram or design) and the specific error within each error type. Note that
the ERD may have both diagram and design errors. Specifications for the ERD
appear below:
•	 The Expense Reporting database tracks expense reports and expense report

items along with users, expense categories, status codes, and limits on
expense category spending.

•	 For each user, the database records the unique user number, the first name,
the last name, the phone number, the e-mail address, the spending limit, the
organizational relationships among users, the submitted expense reports (0
or more), and the expense categories (at least one) available to the user. A
user can manage other users but have at most one manager. For each expense
category available to a user, there is a limit amount.

26008_ch06_p179-232.indd 216 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   217

•	 For each expense category, the database records the unique category number,
the category description, the spending limit, and the users permitted to use
the expense category. When an expense category is initially created, there
may not be related users.

•	 For each status code, the database records the unique status number, the
status description, and the expense reports using the status code.

•	 For each expense report, the database records the unique expense report
number, the description, the submitted date, the status date, the status code
(required), the user number (required), and the related expense items.

•	 For each expense item, the database records the unique item number, the
description, the expense date, the amount, the expense category (required),
and the expense report number (required).

FIGURE 6.P2
Product Explosion Diagram

TABLE 6-P1
Sample Assembly
Instructions for the
Wheelbarrow

Step Instructions

1 Assembly requires a few hand tools, screw driver, box, or open wrench to fit the nuts.

2 Do NOT wrench-tighten nuts until entire wheelbarrow has been assembled.

3 Set the handles (1) on two boxes or two saw horses (one at either end).

4 Place a wedge (2) on top of each handle and align the bolt holes in the wedge with
corresponding bolt holes in the handle.

TABLE 6-P2
Partial Parts List for the
Wheelbarrow

Quantity Part
Description

1 Tray

2 Hardwood
handle

2 Hardwood
wedge

2 Leg

26008_ch06_p179-232.indd 217 3/2/18 9:06 PM

218   Part 3  Data Modeling

  24.	For the Intercollegiate Athletic ERD shown in Figure 6.P4, identify and resolve
errors and note incompleteness in the specifications. Your solution should
include a list of errors and a revised ERD. For each error, identify the type of
error (diagram or design) and the specific error within each error type. Note that
the ERD may have both diagram and design errors. Specifications for the ERD
are as follows:
•	 The Intercollegiate Athletic database supports the scheduling and the

operation of events along with tracking customers, facilities, locations

FIGURE 6.P3
ERD for the Expense
Reporting Database

ExpenseCategory

CatNo
CatDesc
CatLimitAmount

ExpenseReport

ERNo
ERDesc
ERSubmitDate
ERStatusDate

StatusOf

User

UserNo
UserFirstName
UserLastName
UserPhone
UserEMail
UserLimit

Expenses

Manages

ExpenseItem

ExpItemNo
ExpItemDesc
ExpItemDate
ExpItemAmount

Contains

StatusType

StatusNo
StatusDesc

Categorizes

Limits

EventPlanLine

LineNo
EPLTimeStart
EPLTimeEnd
EPLQty

EventRequest

ERNo
ERDateHeld
ERRequestDate
ERAuthDate
ERStatus
EREstCost
EREstAudience

Customer

CustNo
CustName
CustContactName
CustPhone
CustEMail
CustAddr

Submits

EventPlan

EPNo
EPDate
EPNotes
EPActivity

Requires

Resource

ResNo
ResName
ResRate

PartOf

Facility

FacNo
FacName

Location

LocNo
LocName

Employee

EmpNo
EmpName
EmpPhone
EmpEMail
EmpDept

Supervises

Requires

Contains

Supports

FIGURE 6.P4
ERD for the Intercollegiate
Athletic Database

26008_ch06_p179-232.indd 218 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   219

within facilities, employees, and resources to support events. To schedule
an event, a customer initiates an event request with the Intercollegiate
Athletic Department. If an event request is approved, one or more
event plans are made. Typically, event plans are made for the setup, the
operation, and the cleanup of an event. An event plan consists of one or
more event plan lines.

•	 For each event request, the database records the unique event number, the
date held, the date requested, the date authorized, the status, an estimated
cost, the estimated audience, the facility number (required), and the customer
number (required).

•	 For each event plan, the database records the unique plan number, notes
about the plan, the work date, the activity (setup, operation, or cleanup), the
employee number (optional), and the event number (required).

•	 For each event plan line, the database records the line number (unique within
a plan number), the plan number (required), the starting time, the ending
time, the resource number (required), the location number (required), and the
quantity of resources required.

•	 For each customer, the database records the unique customer number, the
name, the address, the contact name, the phone, the e-mail address, and
the list of events requested by the customer. A customer is not stored in the
database until submitting an event request.

•	 For each facility, the database records the unique facility number, the facility
name, and the list of events in which the facility is requested.

•	 For each employee, the database records the unique employee number, the
name, the department name, the email address, the phone number, and the
list of event plans supervised by the employee.

•	 For each location, the database records the related facility number, the
location number (unique within a facility), the name, and the list of event plan
lines in which the location is used.

•	 For each resource, the database records the unique resource number, the
name, the rental rate, and the list of event plan lines in which the resource is
needed.

  25.	For the Volunteer Information System ERD shown in Figure 6.P5, identify and
resolve errors and note incompleteness in the specifications. Your solution
should include a list of errors and a revised ERD. For each error, identify the
type of error (diagram or design) and the specific error within each error type.
Note that the ERD may have both diagram and design errors. Specifications for
the ERD are as follows:
•	 The Volunteer Information System supports organizations that need to

track volunteers, volunteer areas, events, and hours worked at events. The
system will be initially developed for charter schools that have mandatory
parent participation as volunteers. Volunteers register as a dual or single-
parent family. Volunteer coordinators recruit volunteers for volunteer areas.
Event organizers recruit volunteers to work at events. Some events require a
schedule of volunteers while other events do not use a schedule. Volunteers
work at events and record the time worked.

•	 For each family, the database records the unique family number, the first and
last name of each parent, the home and business phones, the mailing address
(street, city, state, and zip), and an optional e-mail address. For single parent
households, information about only one parent is recorded.

•	 For each volunteer area, the database records the unique volunteer area,
the volunteer area name, the group (faculty senate or parent teacher
association) controlling the volunteer area, the family coordinating

26008_ch06_p179-232.indd 219 3/2/18 9:06 PM

220   Part 3  Data Modeling

the volunteer area. In some cases, a family coordinates more than one
volunteer area.

•	 For events, the database records the unique event number, the event
description, the event date, the beginning and ending time of the event, the
number of required volunteers, the event period and expiration date if the
event is a recurring event, and the list of family volunteers for the event.
Families can volunteer in advance for a collection of events.

•	 After completing a work assignment, hours worked are recorded. The
database contains the first and last name of the volunteer, the family in
which the volunteer represents, the number of hours worked, the optional
event, the date worked, the location of the work, and optional comments.
The event is optional to allow volunteer hours for activities not considered
as events.

  26.	Define an ERD that supports the generation of television viewing guides, movie
listings, sports listings, public access listings, and cable conversion charts. These
documents are typically included in television magazines bundled with Sunday
newspapers. In addition, these documents are available online. The following
points provide more details about the documents.
•	 A television viewing guide lists the programs available during each time

slot of a day as depicted in Figure 6.P6. For each program in a channel/time
slot, a viewing guide may include some or all of these attributes: a program
title, a television content rating, a description, a rerun status (yes or no), a
duration, a closed caption status (yes or no), and a starting time if a program
does not begin on a half-hour increment. For each movie, a guide also may
include some or all of these attributes: an evaluative rating (number of stars
from 1 to 4, with half-star increments), a list of major actors, an optional
brief description, a motion picture content rating, and a release year. Public
access programs are shown in a public access guide, not in a television
viewing guide.

•	 A movie listing contains all movies shown in a television guide as depicted
in Figure 6.P7. For each movie, a listing may include some or all of these

FIGURE 6.P5
ERD for the Volunteer
Information System

VolunteerWork

VWNo
VWDate
VWNotes
VWHours
VWLocation
VWFirstName
VWLastName
VWDateEntered
FamNo

Event

EventNo
EventDesc
EventEstHrs
EventBegTime
EventEndTime
EventRecurPeriod
EventExpDate
EventNumVols
EventDateNeeded
EventDateReq

Family

FamNo
FamLastName 1
FamFirstName 1
FamLastName 2
FamFirstName 2
FamHomePhone
FamBusPhone
FamEmail
FamStreet
FamCity
FamState
FamZip

VolunteerArea

VANo
VAName
VAControl

WorksOn

Coordinates

VolunteersFor

Supports

WorkDone

26008_ch06_p179-232.indd 220 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   221

FIGURE 6.P6
Sample Television Viewing
Guide

FIGURE 6.P7
Sample Movie Listing

attributes: a title, a release year, an evaluative rating, a content rating, a
channel abbreviation, a list of days of the week/time combinations, a list
of major actors, and a brief description. A movie listing is organized in
ascending order by movie titles.

•	 A sports listing contains all sports programming in a television guide as
depicted in Figure 6.P8. A sports listing is organized by sport and day
within a sport. Each item in a sports listing may include some or all of these

26008_ch06_p179-232.indd 221 3/2/18 9:06 PM

222   Part 3  Data Modeling

attributes: an event title, a time, a duration, a channel, an indicator for closed-
captioning, an indicator if live, and an indicator if a rerun.

•	 A public access listing shows public access programming that does not appear
elsewhere in a television guide as depicted in Figure 6.P9. A public access
listing contains a list of community organizations (title, area, street address,
city, state, zip code, and phone number). After the listing of community
organizations, a public access listing contains programming for each day/
time slot. Because public access shows do not occupy all time slots and are
available on one channel only, there is a list of time slots for each day, not a
grid as for a complete television guide. Each public access program has a title
and an optional sponsoring community organization.

FIGURE 6.P8
Sample Sports Listing

26008_ch06_p179-232.indd 222 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   223

FIGURE 6.P9
Sample Public Access Listing

FIGURE 6.P10
Sample Conversion Chart

•	 A cable/conversion chart shows the mapping of channels across cable
systems as depicted in Figure 6.P10. For each channel, a conversion chart
shows a number on each cable system in the local geographic area.

26008_ch06_p179-232.indd 223 3/2/18 9:06 PM

224   Part 3  Data Modeling

ProdNo
ProdName
ProdSupplier
ProdPrice

Product

FIGURE 6.P11
Product Entity Type without
Price History

AgentID
Name
Phone

Agent
O�ceID
MgrName
Phone
Address

O�ce

WorksAt

FIGURE 6.P12
WorksAt Relationship without
History

OwnId
OwnName
OwnPhone

Owner
PropId
BldgName
UnitNo
Bdrms

Property

Shares

StartWeek EndWeek

FIGURE 6.P13
WorksAt Relationship without
History

  27.	Transform the ERD in Figure 6.P11 by adding unlimited history for the ProdPrice
attribute.

  28.	Transform the ERD in Figure 6.P11 by adding limited history for the ProdPrice
attribute. The transformed ERD should support the current price and the two
most recent prices.

  29.	Transform the ERD in Figure 6.P12 by adding unlimited history for the WorksAt
1-M relationship.

  30.	Transform the ERD in Figure 6.P13 by adding unlimited history for the Shares
M-N relationship. The Shares relationship represents a timesharing situation in
which owners have fractional ownership for a number of consecutive weeks of a
property per year.

  31.	This problem involves relationships among bookings, vehicles, and customers
for auto maintenance. Customers own a collection of vehicles but a vehicle is
owned by exactly one customer. A booking involves a vehicle brought to an auto
shop by a customer. A vehicle may have a collection of bookings over time. The
customer that makes a booking is always the owner of the vehicle. Draw an ERD
to represent the relationships among vehicles, customers, and bookings. You can
assume that each entity type has its own primary key.

  32.	Draw an ERD for the situation in problem 31 except that the customer who makes
the booking may be different than the owner of the vehicle for the booking.

  33.	Draw an ERD to track lab tests performed by a medical laboratory on clients.
The database should track basic client details including a unique client identifier,
client name, client insurance provider (if any), client address, client date of birth,
and client sex. The database should track the unique identifier for the lab test,
the test type identifier, the date and time when the lab test was administered,
and the identifier of the lab employee performing the lab test. A client can
request multiple tests in a visit to the lab. The database only contains clients who
have had lab tests performed. Each lab test is administered to one client.

  34.	Revise the ERD from problem 33 with more details about test types. A test type
includes a unique test type identifier, a test type name, a test cost, and a test type
code. A test for a client is associated with one test type. A test type can be used
in multiple tests given to clients. A test type can exist in the database without
ever being used in a test given to a client.

  35.	Revise the ERD from problem 34 with test type items. A test type item includes a
unique test item identifier, a test item name, test item unit of measure, and a test
item description. A test type includes one or more test items. A test item can be
part of one or more test types.

  36.	Revise the ERD from problem 35 to include lab test results. Each lab test given
to a client has a result for each item on the test type. A test item result includes
a unique test item result identifier, the analysis date, the employee identifier of

26008_ch06_p179-232.indd 224 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   225

the lab technician measuring the result, the measured value of the test item, and
an optional description of the test item’s appearance. An lab test has one or more
associated test item results although there are no associated results until lab
analysis is complete. A test item can have many associated test item results. Test
items never administered will not have any associated test item results.

  37.	Analyze the ERD from problem 36 for cycles among entity types. Identify any
cycles in the ERD. Does the cycle contain redundant relationships? Explain your
answer.

  38.	For the Entertainment Viewing ERD shown in Figure 6.P14, identify and resolve
errors and note incompleteness in the specifications. Your solution should include
a list of errors and a revised ERD. For each error, identify the type of error (diagram
or design) and the specific error within each error type. Note that the ERD may
have both diagram and design errors. Specifications for the ERD are as follows:
•	 The Entertainment Viewing database supports entry of the viewing habits of

users and queries about movies, television shows, actors, and user preferences
for actors.

•	 For movies, the database should record the unique movie identifier, unique
title, genre, list of noteworthy actors, director, format, studio, duration, date
released to theaters, and list of subtitle languages.

•	 For shows, the database should record the unique show identifier, unique
title, duration, list of noteworthy actors, network, optional scheduled time
(day and start time), date of first viewing, and number of seasons of shows.

•	 For actors, the database should record the unique actor identifier, first name,
last name, age, sex, and list of awards. An actor can appear in many shows
and movies.

•	 For users, the database records the unique user identifier, unique email
address, first name, last name, postal code, sex, country, and age group.

•	 For viewing habits, the database should record the user, show or movie viewed,
date/time viewed, and method of viewing (broadcast time or recorded).

  39.	For the Auto Dealership ERD shown in Figure 6.P15, identify and resolve errors
and note incompleteness in the specifications. Your solution should include a list

FIGURE 6.P14
ERD for the Entertainment
Viewing Database

ViewEvent

ShowId
UserId
MovieId
ActorId
ViewDateTime
ViewMethod

Actor

ActorId
ActFirstName
ActLastName
ActAge
ActSex
ActAwards

Movie

MovieId
MovName
MovDuration
MovStudio
MovRelDate
MovDirector
MovSubtitles
MovGenre

Show

ShowId
ShowName
ShowTitle
ShowDuration
ShowNetwork
ShowNumSeasons
ShowDay
ShowStartTime

ActsIn

ViewedShow

ViewedMovie

User

UserId
UsrFirstName
UsrLastName
UsrAgeGroup
UsrSex
UsrPostalCode
UsrCountry

Views

26008_ch06_p179-232.indd 225 3/2/18 9:06 PM

226   Part 3  Data Modeling

of errors and a revised ERD. For each error, identify the type of error (diagram
or design) and the specific error within each error type. Note that the ERD may
have both diagram and design errors. Specifications for the ERD are presented in
the following narrative.

Mountain High Quality Vehicles serves a metropolitan market with a medium
size inventory of pre-owned cars and trucks. The vehicle inventory includes a
variety of makes and models such as Acura, Chrysler, BMW, Cadillac, Ford,
Chevrolet, Toyota, Honda, Mercedes-Benz, and more. A small staff manages the
major functions of the business, purchasing, transporting, marketing, cleaning,
maintaining, and selling the vehicles. They carefully inspect and certify the vehi-
cles before they are available to the public for sale.

The dealership would like to develop an inventory management database to
improve its tracking of vehicles, sales, and expenses. The dealership also would
like to track information about its customers and car(s) sold to its customers.

•	 Vehicle Acquisitions: Periodically the owners attend auctions and purchase
pre owned cars seeking reasonable prices and quality vehicles. They also
purchase pre-owned vehicles from the wholesale market. The purchased
vehicles are transported to the dealership and inspected for mechanical
problems. Each vehicle is fixed and cleaned before being placed for sale.

•	 Vehicle Improvements: Apart from purchases, the dealership has
additional expenses to prepare vehicles for market. The expenses typically
involve transporting the purchased vehicle to the dealership, checking the
vehicle for any potential problem, repairs and maintenance if necessary,
marketing and cleaning.

Vehicle

VehId
VinNo
VehMake
VehModel
VehYear
VehMileage
VehIntColor
VehExtColor
VehNumCyl
VehStatus

Expense

ExpId
ExpType
ExpDesc
ExpAmount
ExpDate
ExpPaidDate

Payment

InvoiceNo
PayMethod
PayCreditCardNo
PayExpDate
PayCardName
PayAmount
PayDesc

Customer

CustId
CustFirstName
CustLastName
CustStreet
CustCity
CustState
CustZipCode
CustPhone
CustEmail

Purchases

IncomeOf

Employee

EmpId
EmpFirstName
EmpLastName
EmpPhone
EmpEmail

MakesSale
Account

AcctId
AcctName
AcctDesc

Process

Sold

Has

ExpenseOf

FIGURE 6.P15
ERD for the Auto Dealership
Database

26008_ch06_p179-232.indd 226 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   227

•	 Sales Details: Customers purchase vehicles at the dealership. Each sale
involves one customer even for married couples. Although customers can
purchase more than one vehicle, each vehicle is recorded as a separate
sale. When a sale is completed, the employee associated with the sale and
payments are recorded. Typically, vehicles remain on the lot for a period of
time before sales occur.

•	 Vehicle Details: The database tracks the unique vehicle identifier and
vehicle identification number (VIN) to complete a sales transaction. The
database also tracks vehicle characteristics such as make, model, year,
mileage, exterior and interior colors, transmission type (automatic or
manual), and number of cylinders (4 or 6).

•	 Customer Details: The database records the unique customer number, first
and last names, address, city, state, postal code, primary phone number,
and cellphone number.

•	 Expense Details: Each vehicle expense has a unique expense identifier,
expense type, expense description, expense amount, expense paid date,
account, and associated vehicle.

•	 Account Details: The database tracks account details such as a unique account
identifier, account description, related expenses, and related payments.

•	 Payment Details: The database also tracks the vehicle sale (payment
process). Each payment has a unique invoice number and payment method.
The payment options are cash, credit card, or external line of credit as no
financing is available at the dealership. Typically one payment is made
per sale although multiple payments are sometimes made if a customer
provides cash for part of the sale. If a customer is paying with a credit card,
the payment includes the credit card number, expiration date, name on the
credit card, and payment description. The employee that completed the
sales transaction and vehicle should be recorded. The same employee works
as sales associate and processes the payment to complete the sale. Each
payment is associated with one account for company accounting purposes.

  40.	The ERD in Figure 6.P16 was used in a banking transaction benchmark (TPC-B)
developed by the Transaction Processing Council (TPC) in the 1990s. You should
analyze the specifications for the benchmark database to determine if there are
any design errors. Your solution should include a list of design errors and a
revised ERD. Specifications for the ERD are presented in the following narrative.

FIGURE 6.P16
ERD for the Bank Transaction
Benchmark

Branch
BranchId
BranchName
BranchBal

Teller
TellerId
TellerName
TellerBal

WorksAt

Account
AccountId
AccountName
AccountBal

AccountAt

TranHist
TranHistNo
THDate
THAmount

TellerFor AccountFor

BranchFor

26008_ch06_p179-232.indd 227 3/2/18 9:06 PM

228   Part 3  Data Modeling

•	 Each branch employs a collection of tellers. A teller is assigned to exactly one
branch.

•	 Each account is opened at exactly one branch. A branch may be the home for
many accounts.

•	 The bank keeps an historical record of each transaction. A transaction record
identifies the teller, account, and branch. The branch associated with a
transaction always matches the teller’s branch. In a home transaction, the
branch of the account and teller match. In a remote transaction, the branch of
a teller and account are different. Historical transaction records contain both
home and remote transactions.

Conversion Problems

  1.	Convert the ERD shown in Figure 6.CP1 into tables. List the conversion rules
used and the resulting changes to the tables.

  2.	Convert the ERD shown in Figure 6.CP2 into tables. List the conversion rules
used and the resulting changes to the tables.

  3.	Convert the ERD shown in Figure 6.CP3 into tables. List the conversion rules
used and the resulting changes to the tables.

  4.	Convert the ERD shown in Figure 6.CP4 into tables. List the conversion rules
used and the resulting changes to the tables.

  5.	Convert the ERD shown in Figure 6.CP5 into tables. List the conversion rules
used and the resulting changes to the tables.

  6.	Convert the ERD shown in Figure 6.CP6 into tables. List the conversion rules
used and the resulting changes to the tables.

  7.	Convert the ERD shown in Figure 6.CP7 into tables. List the conversion rules
used and the resulting changes to the tables.

  8.	Convert the ERD shown in Figure 6.CP8 into tables. List the conversion rules
used and the resulting changes to the tables.

  9.	Convert the ERD shown in Figure 6.CP9 into tables. List the conversion rules
used and the resulting changes to the tables.

HomeID
Street
City
State
Zip
NoBedrms
NoBaths
SqFt
OwnOccupied
Commission
SalesPrice

Home

AgentID
Name
Phone

Agent

Lists

O�ceID
MgrName
Phone
Address

O�ce

SSN
Name
SpouseName
Profession
SpouseProfession

Owner

Owns

WorksAt

FIGURE 6.CP1
ERD for Conversion
Problem 1

26008_ch06_p179-232.indd 228 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   229

StmtNo
Date
AcctNo

Statement
LineNo
MerName
Amt
TransDate

StmtLine

Contains

FIGURE 6.CP2
ERD for Conversion
Problem 2

PartNo
PartName

Part
SuppNo
SuppName

Supplier
ProjNo
ProjName

Project

 UsesPart-Uses

Supp-Uses

Proj-Uses

FIGURE 6.CP3
ERD for Conversion
Problem 3

FIGURE 6.CP4
ERD for Conversion
Problem 4EmpNo

EmpName

Employee
SkilNno
SkillName

Skill
ProjNo
ProjName

Project

Hrs

ProvidesEmp-Uses

Skill-Uses

Proj-Uses

FIGURE 6.CP5
ERD for Conversion
Problem 5

Acctid
AcctName
Balance

Account Decomposed
PartNo
PartDesc
Color

Part Contains

FIGURE 6.CP6
ERD for Conversion
Problem 6

Student

StdID
Name

Gender
DOB

AdmitDate

UndStudent
Major
Minor
Class

GradStudent
Advisor

ThesisTitle
AsstStatus

D,C

26008_ch06_p179-232.indd 229 3/2/18 9:06 PM

230   Part 3  Data Modeling

ContrNo
ContrName

Contractor

SpecNo
SpecName

Specialty
ProjNo
ProjName

Project ProjectNeeds
FulFillsHas

ProvidedBy

Supplies

FIGURE 6.CP8
ERD for Conversion
Problem 8

HomeNo
Address

Home
AgentID
Name

Agent

Commission

Lists

FIGURE 6.CP7
ERD for Conversion
Problem 8

Customer

CustNo
CustFirstName
CustLastName
CustCity
CustState
CustZip
CustBal

Order

OrdNo
OrdDate
OrdName
OrdCity
OrdState
OrdZip

Places

Employee

EmpNo
EmpFirstName
EmpLastName
EmpPhone
EmpEMail
EmpDeptName
EmpCommRate

Takes

Manages

Product

ProdNo
ProdName
ProdQOH
ProdPrice
ProdNextShipDate

Contains

Qty

FIGURE 6.CP9
ERD for Conversion
Problem 9

  10.	Convert the ERD shown in Figure 6.CP10 into tables. List the conversion rules
used and the resulting changes to the tables.

  11.	Convert the ERD shown in Figure 6.CP11 into tables. List the conversion rules
used and the resulting changes to the tables.

26008_ch06_p179-232.indd 230 3/2/18 9:06 PM

Chapter 6  Developing Data Models for Business Databases   231

FIGURE 6.C10
ERD for Conversion
Problem 10

Patient

PatNo
PatFirstName
PatLastName
PatCity
PatState
PatZip
PatHealthPlan

Visit

VisitNo
VisitDate
VisitPayMethod
VisitCharge

Attends

Physician

PhyEMail
PhyHospital
PhyCertification

Treats

Nurse

NursePayGrade
NurseTitle

Item

ItemNo
ItemDesc
ItemType
ItemPrice

VisitDetail

VisitDetailNo
DetailChargeContains

Provides

UsedIn

Provider

ProvNo
ProvFirstName
ProvLastName
ProvPhone
ProvSpecialty

D,C

VolunteerWork

VWNo
VWDate
VWNotes
VWHours
VWLocation
VWFirstName
VWLastName
VWDateEntered

Event

EventNo
EventDesc
EventEstHrs
EventBegTime
EventEndTime
EventRecurPeriod
EventExpDate
EventNumVols
EventDateNeeded
EventDateReq

Family

FamNo
FamLastName 1
FamFirstName 1
FamLastName 2
FamFirstName 2
FamHomePhone
FamBusPhone
FamEmail
FamStreet
FamCity
FamState
FamZip

VolunteerArea

VANo
VAName
VAControl

WorksOn

Coordinates

VolunteersForSupports

WorkDone

FIGURE 6.CP11
ERD for Conversion
Problem 11

26008_ch06_p179-232.indd 231 3/2/18 9:06 PM

232   Part 3  Data Modeling

REFERENCES FOR FURTHER STUDY

Chapter 3 of Batini, Ceri, and Navathe (1992) and Chapter 10 of Nijssen and Halpin
(1989) provide more details on transformations to refine an ERD. For more details
about conversion of generalization hierarchies, consult Chapter 11 of Batini, Ceri, and
Navathe (1992). The DevX Database Zone (www.devx.com) has practical advice about
database development and data modeling.

26008_ch06_p179-232.indd 232 3/2/18 9:06 PM

233  

part four

The chapters in Part 4 stress practical skills and design processes for relational databases to
enable you to implement a conceptual design using a relational DBMS. Chapter 7 covers the
motivation for data normalization and provides detailed coverage of functional dependencies,
normal forms, and practical considerations to apply data normalization. Chapter 8 contains
broad coverage of physical database design including objectives, inputs, and file structure and
query optimization background, along with detailed guidelines for important design choices.

Relational
Database
Design

26008_ch07_p233-266.indd 233 3/2/18 10:00 PM

26008_ch07_p233-266.indd 234 3/2/18 10:00 PM

235  

OVERVIEW
Chapters 5 and 6 presented tools for data modeling, a
fundamental skill for database development. You learned
about the notation used in entity relationship diagrams,
important data modeling patterns and transformations,
guidelines to avoid common modeling errors, and
conversion of entity relationship diagrams (ERDs) into
table designs. You applied this knowledge to construct
ERDs for small, narrative problems. This chapter extends
your database design skills by presenting normalization
techniques to remove redundancy in a table design.

Redundancies can cause insert, update, and delete
operations to produce unexpected side effects known
as modification anomalies. This chapter prescribes nor-
malization techniques to remove modification anomalies
caused by redundancies. You will learn about functional
dependencies, several normal forms, and a procedure to
generate tables without redundancies. In addition, you
will learn how to analyze M-way relationships for redun-
dancies. This chapter concludes by briefly presenting
additional normal forms and discussing the usefulness
and limitations of normalization techniques in the data-
base development process.

Learning Objectives

This chapter describes normalization, a technique to eliminate unwanted
redundancy in a table design. After this chapter, the student should have
acquired the following knowledge and skills:

•	 Identify modification anomalies in tables with excessive
redundancies

•	 Define functional dependencies among columns of a table

•	 Normalize tables by detecting violations of normal forms and
applying normalization rules

•	 Analyze M-way relationships using the concept of independence

•	 Appreciate the usefulness and limitations of normalization

Normalization
Concepts and
Processes

7
chapter

26008_ch07_p233-266.indd 235 3/2/18 10:00 PM

236   Part 4  Relational Database Design

After converting an ERD to a table design, your work is not yet finished. You need
to analyze the tables for redundancies that can make the tables difficult to use. This
section describes negative impacts of redundancies on using tables and presents an
important kind of constraint to analyze redundancies.

7.1.1  Avoidance of Modification Anomalies
A good database design ensures that users can change the contents of a database with-
out unexpected side effects. For example in a university database, a user should be
able to insert a new course without having to simultaneously insert a new offering
of the course and a new student enrolled in the course. Likewise, when a student
is deleted from the database due to graduation, course data should not be inadver-
tently lost. These problems are examples of modification anomalies, unexpected
side effects that occur when changing the contents of a table with excessive redundan-
cies. A good database design avoids modification anomalies by eliminating excessive
redundancies.

To understand more precisely the impact of modification anomalies, let us con-
sider a poorly designed database. Imagine that a university database consists of the
single table shown in Table 7-1. Such a poor design1 makes it easy to identify anoma-
lies. The following list describes some of the problems with this design.

•	 This table has insertion anomalies. An insertion anomaly occurs when extra
column values beyond the target values must be added to a table. For example,
to insert a course, it is necessary to know a student and an offering because the
combination of StdNo and OfferNo is the primary key. Remember that a row
cannot exist with null values for any part of its primary key.

•	 This table has update anomalies. An update anomaly occurs when it is necessary
to change multiple rows to modify only a single fact. For example, if we change
the StdClass of student S1, two rows must be changed. If S1 was enrolled in 10
classes, 10 rows must be changed.

•	 This table has deletion anomalies. A deletion anomaly occurs whenever deleting
a row inadvertently causes other data to be deleted. For example, if we delete
the enrollment of S2 in O3 (third row), we lose the information about offering O3
and course C3.

To deal with these anomalies, users may circumvent them (such as using a default
primary key to insert a new course) or database programmers may write code to pre-
vent inadvertent loss of data. A better solution is to modify the table design to remove
redundancies that cause anomalies.

7.1.2  Functional Dependencies
Functional dependencies are important tools when analyzing a table for excessive
redundancies. A functional dependency is a constraint about columns in a table.

1 This single-table design is not as extreme as it may seem. Users without proper database training often
design a database using a single table.

Modification Anomaly
an unexpected side effect
that occurs when changing
data in a table with exces-
sive redundancies.

7.1  OVERVIEW OF RELATIONAL DATABASE DESIGN

TABLE 7-1
Sample Data for the Big
University Database Table

StdNo StdCity StdClass OfferNo OffTerm OffYear EnrGrade CourseNo CrsDesc

S1 SEATTLE JUN O1 FALL 2017 3.5 C1 DB

S1 SEATTLE JUN O2 FALL 2017 3.3 C2 VB

S2 BOTHELL JUN O3 SPRING 2018 3.1 C3 OO

S2 BOTHELL JUN O2 FALL 2017 3.4 C2 VB

26008_ch07_p233-266.indd 236 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   237

Constraints can be characterized as value-based versus value-neutral (Figure 7.1). A
value-based constraint involves a comparison of a column to a constant using a com-
parison operator such as <, =, or >. For example, age ≥ 21 is an important value-based
constraint in a database used to restrict sales of alcohol to minors. A value-neutral
constraint involves a comparison of columns. For example, a value-neutral constraint
is that retirement age should be greater than current age in a database for retirement
planning.

Primary key (PK) and foreign key (FK) constraints are important value-neutral
constraints. A primary key can take any value as long as it does not match the primary
key value in an existing row. A foreign key constraint requires that the value of a col-
umn in one table matches the value of a primary key in another table.

A functional dependency is another important value-neutral constraint. A
functional dependency (FD) is a constraint about two or more columns of a table.
X determines Y (X → Y) if there exists at most one value of Y for every value of X.
The word function comes from mathematics where a function gives one value. For
example, student number determines city (StdNo → StdCity) in the university database
table if there is at most one city value for every student number. The columns appear-
ing on the left-hand side of an FD are called the determinant or, alternatively, an LHS
for left-hand side. In this example, StdNo is a determinant.

You can also think about functional dependencies as identifying potential can-
didate keys. By stating that X → Y, if X and Y are placed together in a table without
other columns, X is a candidate key. Every determinant (LHS) is a candidate key if it
is placed in a table with the other columns that it determines. For example, if StdNo,
StdCity, and StdClass are placed in a table together and StdNo → StdCity and StdNo →
StdClass then StdNo is a candidate key. If there are no other candidate keys, a determi-
nant will become the primary key if it does not allow null values.

Functional Dependency Lists and Diagrams  A simple organization of FDs is to
list them, grouped by LHS as shown in Table 7-2. As you will see, this arrangement
facilitates the normalization process.

As an alternative organization, a functional dependency diagram compactly dis-
plays the functional dependencies of a particular table. You should arrange FDs to
visually group columns sharing the same determinant. In Figure 7.2, it is easy to spot
the dependencies where StdNo is the determinant. By examining the position and
height of lines, you can see that the combination of StdNo and OfferNo determines
EnrGrade whereas OfferNo alone determines OffTerm, OffYear, and CourseNo. With a
large number of FDs, functional dependency diagrams can be difficult to draw and
understand. Thus, FD lists are preferred to FD diagrams even though FD lists can be
long for a large collection of FDs.

Identifying Functional Dependencies  Besides understanding the
functional dependency definition and notation, database designers
must be able to identify functional dependencies when collecting data-
base requirements. In problem narratives, some functional dependen-
cies can be identified by statements about uniqueness. For example, a
user may state that each course offering has a unique offering number
along with the year and term of the offering. From this statement, the

Functional Dependency
a constraint about two or
more columns of a table.
X determines Y (X → Y)
if there exists at most one
value of Y for every value
of X.

Constraint

Value-based Value-neutral

PK FK FD< = >

FIGURE 7.1
Classification of Database
Constraints

StdNo → StdCity, StdClass

OfferNo → OffTerm, OffYear, CourseNo

CourseNo → CrsDesc

StdNo, OfferNo → EnrGrade

TABLE 7-2
List of FDs for the Big University Database Table

26008_ch07_p233-266.indd 237 3/2/18 10:00 PM

238   Part 4  Relational Database Design

designer should assert that OfferNo → OffYear and OfferNo → OffTerm. You can also
identify functional dependencies in a table design resulting from the conversion of an
ERD. Functional dependencies would be asserted for each unique column (primary
key or other candidate key) with the unique column as the LHS and other columns in
the table on the right-hand side (RHS).

Although functional dependencies derived from statements about unique-
ness are easy to identify, functional dependencies derived from statements about
1-M relationships can be confusing to identify. When you see a statement about a
1-M relationship, the functional dependency is derived from the child-to-parent
direction, not the parent-to-child direction. For example, the statement “A faculty
teaches many offerings but an offering is taught by one faculty,” defines a func-
tional dependency from a unique column of offering to a unique column of faculty
such as OfferNo → FacNo. Novice designers sometimes incorrectly assert that FacNo
determines a collection of OfferNo values. This statement is not correct because a
functional dependency must allow at most one associated value, not a collection of
values.

Functional dependencies in which the LHS is not a primary or candidate key can
also be difficult to identify. These FDs are especially important to identify after con-
verting an ERD to a table design. You should carefully look for FDs in which the LHS
is not a candidate key or primary key. You should also consider FDs in tables with
a combined primary or candidate key in which the LHS is part of a key, but not the
entire key. The presentation of normal forms in Section 7.2 explains that these kinds of
FDs can lead to modification anomalies.

Another important consideration in asserting functional dependencies is minimal-
ism of the LHS. It is important to distinguish when one column alone is the determi-
nant versus a combination of columns. An FD in which the LHS contains more than
one column usually represents an M-N relationship. For example, the statement “The
order quantity is collected for each product purchased in an order,” translates to the
FD OrdNo, ProdNo → OrdQty. Order quantity depends on the combination of order
number and product number, not just one of these columns.

Part of the confusion about minimalism of the LHS is due to the meaning of col-
umns in the left-hand versus right-hand side of a dependency. To record that student
number determines city and class, you can write either StdNo → StdCity, StdClass (more
compact) or StdNo → StdCity and StdNo → StdClass (less compact). If you assume that
the e-mail address is also unique for each student, then you can write Email → StdCity,
StdClass. You should not write StdNo, Email → StdCity, StdClass because these FDs
imply that the combination of StdNo and Email is the determinant. Thus, you should
write FDs so that the LHS does not contain unneeded columns.2 The prohibition
against unneeded columns for determinants is the same as the prohibition against
unneeded columns in candidate keys. Both determinants and candidate keys must
be minimal.

7.1.3  Falsification of FDs using Sample Data
A functional dependency cannot be proven to exist by examining the rows of a table.
However, you can eliminate or falsify a functional dependency (i.e., prove that a

Minimal Determinant
the determinant (column(s)
appearing on the LHS of a
functional dependency) must
not contain extra columns.
This minimalism requirement
is similar to the minimalism
requirement for candidate
keys.

StdNo StdCity StdClass O�erNo O�Term O�Year EnrGradeCourseNo CrsDesc

FIGURE 7.2
Dependency Diagram for
the Big University Database
Table

2 This concept is more properly known as “full functional dependence.” Full functional dependence means
that the LHS is minimal.

FDs for 1-M relationships
assert an FD in the child-
to-parent direction of a
1-M relationship. Do not
assert an FD for the parent-
to-child direction because
each LHS value can be
associated with at most one
RHS value.

26008_ch07_p233-266.indd 238 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   239

functional dependency does not exist) by examining the rows of a table. For exam-
ple, in the university database table (Table 7-1) you can conclude that StdClass does
not determine StdCity because there are two rows with the same value for StdClass
(“JUN”) but different values for StdCity (“SEATTLE” and “BOTHELL”). Thus, it is
sometimes helpful to examine sample rows in a table to eliminate potential functional
dependencies. Ultimately, the database designer must make the final decision about
the functional dependencies that exist in a table.

To demonstrate usage of sample data to falsify potential FDs, the following list
explains falsification of FDs with OffTerm as the LHS using the sample data in Table
7-1. Note that falsification of an FD requires two rows with the same LHS value
but different RHS value. For example, two pairs of rows (<1,4> and <2,4>) falsify
OffTerm → StdNo. Although one would not normally consider FDs with OffTerm as
a LHS, the elimination technique may be useful for plausible LHS columns such as
OfferNo and StdNo.

•	 OffTerm → StdNo is falsified by two pairs of rows: <1,4> and <2,4>.
•	 OffTerm → StdCity is falsified by two pairs of rows: <1,4> and <2,4>.
•	 OffTerm → StdClass is not falsified by any pair of rows.
•	 OffTerm → OfferNo is falsified by two pairs of rows: <1,2> and <1,4>.
•	 OffTerm → OffYear is not falsified by any pair of rows.
•	 OffTerm → EnrGrade is falsified by the three pairs of rows: <1,2>, <1,4>, and <2,4>.
•	 OffTerm → CourseNo is falsified by two pairs of rows: <1,2> and <1,4>.
•	 OffTerm → CrsDesc is falsified by two pairs of rows: <1,2> and <1,4>.

Since OffTerm is not a determinant in any FD, you should add an additional row (row 5)
in Table 7-3 to falsify FDs not eliminated by rows in Table 7-1. The following list shows
FDs eliminated with the additional row in Table 7-3.

•	 OffTerm → StdClass is falsified by three pairs of rows: <1,5>, <2,5>, and <4,5>.
•	 OffTerm → OffYear is falsified by three pairs of rows: <1,5>, <2,5>, and <4,5>.

Falsifying Potential FDs
using sample data to elimi-
nate potential FDs. If two
rows have the same value
for the LHS but different
values for the RHS, an FD
cannot exist. In subtle situ-
ations, a database designer
can use sample rows with
user feedback to determine
FDs.

TABLE 7-3
Additional Row in the Sample
Data for the Big University
Database Table

StdNo StdCity StdClass OfferNo OffTerm OffYear EnrGrade CourseNo CrsDesc

S1 SEATTLE JUN O1 FALL 2017 3.5 C1 DB

S1 SEATTLE JUN O2 FALL 2017 3.3 C2 VB

S2 BOTHELL JUN O3 SPRING 2018 3.1 C3 OO

S2 BOTHELL JUN O2 FALL 2017 3.4 C2 VB

S3 DENVER SEN O4 FALL 2016 3.0 C3 OO

Normalization is the process of removing redundancy in a table so that the table
does not have modification anomalies. A number of normal forms have been devel-
oped to remove redundancies. A normal form is a rule about allowable depen-
dencies. Each normal form removes certain kinds of redundancies. As shown in
Figure 7.3, first normal form (1NF) is the starting point. All tables without repeating
groups are in 1NF. 2NF is stronger than 1NF. Only a subset of the 1NF tables is
in 2NF. Each successive normal form refines the previous normal form to remove
additional kinds of redundancies. Because BCNF (Boyce-Codd Normal Form) is a
revised (and stronger) definition for 3NF, 3NF and BCNF are shown in the same
part of Figure 7.3.

2NF and 3NF/BCNF are rules about functional dependencies. If the functional
dependencies for a table match a specified pattern, the table is in the specified normal

7.2  BASIC NORMAL FORMS

26008_ch07_p233-266.indd 239 3/2/18 10:00 PM

240   Part 4  Relational Database Design

3 Appendix 7.A presents 2NF and 3NF for additional background about normalization.

1NF

2NF

3NF/BCNF

4NF

5NF

DKNF

FIGURE 7.3
Relationship of Normal Forms

form. 3NF/BCNF is the most important rule in practice because higher normal forms
involve other kinds of dependencies that are less common and more difficult to apply.
Because BCNF is a revised and simpler definition of 3NF, Section 7.2 presents BCNF
without presentation of 2NF and 3NF.3 You can understand BCNF without details
about 2NF and 3NF.

Later sections present details of higher normal forms. Section 7.3 presents 4NF
as a way to reason about M-way relationships. Section 7.4 presents 5NF and DKNF
(domain key normal form) to show that higher normal forms have been proposed.
DKNF is the ultimate normal form, but it remains an ideal rather than a practical nor-
mal form. Thus, your study should emphasize BCNF with some background on higher
level normal forms.

7.2.1  First Normal Form
1NF prohibits nesting or repeating groups in tables. A table not in 1NF is unnormal-
ized or nonnormalized. In Table 7-4, the university table is unnormalized because
the two rows contain repeating groups or nested tables. To convert an unnormalized
table into 1NF, you replace each value of a repeating group with a row. In a new
row, you copy the nonrepeating columns. You can see the conversion by comparing
Table 7-4 with Table 7-1 (two rows with repeating groups versus four rows without
repeating groups).

Because most commercial DBMSs require 1NF tables,4 you normally do not need to
convert tables into 1NF. However, you often need to perform the reverse process (1NF
tables to unnormalized tables) for report generation and document representation. As
discussed in Chapter 10, reports use nesting to show relationships. As discussed in
Chapter 19, the SQL standard supports nested tables, but nested tables remain a niche
practice for relational databases.

7.2.2  Boyce-Codd Normal Form
The revised 3NF definition, known as Boyce-Codd normal form (BCNF), is a better
definition because it is simpler and covers two special cases omitted by the original
3NF definition. The BCNF definition is simpler because it does not refer to 2NF. The
special cases are uncommon so they are not covered in this chapter.

BCNF Definition
a table is in BCNF if every
determinant is a candidate
key.

26008_ch07_p233-266.indd 240 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   241

BCNF involves two concepts, determinant and candidate key. Recall that a deter-
minant is a LHS in an FD. A candidate key has the uniqueness property in a table. No
two rows have the same value for a candidate key except when a candidate key allows
null values. BCNF requires all determinants to be candidate keys.

Violations of BCNF involve FDs in which the determinant (LHS) is not a candidate
key. In a poor table design such as the big university database table (sample data in
Table 7-1 and FD list in Table 7-2), you can easily detect violations of BCNF. For ease
of reference, the following list repeats the FDs in Table 7-2. The combination of (StdNo,
OfferNo) is the only candidate key. The determinants are StdNo, OfferNo, CourseNo, and
the combination of (StdNo, OfferNo). As a violation of BCNF, StdNo is a determinant
but not a candidate key (it is part of a candidate key but not a candidate key by itself).
The only FD that satisfies BCNF is StdNo, OfferNo → EnrGrade.

•	 StdNo → StdCity, StdClass
•	 OfferNo → OffTerm, OffYear, CourseNo
•	 CourseNo → CrsDesc
•	 StdNo, OfferNo → EnrGrade

For another example, let us apply the BCNF definition to the big patient table with sam-
ple rows in Table 7-5 and FDs in Table 7-6. The combination of (VisitNo, ProvNo) is the
only candidate key. All of the FDs in Table 7-6 violate the BCNF definition except the last
FD (VisitNo, ProvNo → Diagnosis). All of the other FDs have determinants that are not
candidate keys (part of a candidate key in some cases but not an entire candidate key).

To resolve BCNF violations, you should split the big patient table into smaller
tables. Each determinant should be placed into a separate table along with the columns
that it determines. The result contains five tables, one table for each group of FDs with
the same determinant.

PatDBTable1 (PatNo, PatAge, PatZip)
	 FOREIGN KEY (PatZip) REFERENCES PatientTable2
PatDBTable2 (PatZip, PatCity,)
PatDBTable3 (ProvNo, ProvSpecialty)
PatDBTable4 (VisitNo, VisitDate, PatNo)

TABLE7-4
Unnormalized University
Database Table

StdNo StdCity StdClass OfferNo OffTerm OffYear EnrGrade CourseNo CrsDesc

S1 SEATTLE JUN O1 FALL 2017 3.5 C1 DB

O2 FALL 2017 3.3 C2 VB

S2 BOTHELL JUN O3 SPRING 2018 3.1 C3 OO

O2 FALL 2017 3.4 C2 VB

TABLE 7-5
Sample Data for the Big
Patient Table

VisitNo VisitDate PatNo PatAge PatCity PatZip ProvNo ProvSpecialty Diagnosis

V10020 1/13/2018 P1 35 DENVER 80217 D1 INTERNIST EAR INFECTION

V10020 1/13/2018 P1 35 DENVER 80217 D2 NURSE
PRACTITIONER

INFLUENZA

V93030 1/20/2018 P3 17 ENGLEWOOD 80113 D2 NURSE
PRACTITIONER

PREGNANCY

V82110 1/18/2018 P2 60 BOULDER 85932 D3 CARDIOLOGIST MURMUR

4 Although nested tables have been supported since the SQL:1999 standard with commercial support in
Oracle, this feature does not appear important in most business applications. Thus, this chapter does not
consider the complications of nested tables on normalization.

26008_ch07_p233-266.indd 241 3/2/18 10:00 PM

242   Part 4  Relational Database Design

	 FOREIGN KEY (PatNo) REFERENCES PatientTable1
PatDBTable5 (VisitNo, ProvNo, Diagnosis)
	 FOREIGN KEY (VisitNo) REFERENCES PatientTable4
	 FOREIGN KEY (ProvNo) REFERENCES PatientTable3

BCNF for Tables with Multiple, Composite Candidate Keys  Tables with mul-
tiple composite candidate keys can be subtle to analyze especially if another column
is also a determinant. UnivTable2 (Figure 7.4) has two candidate keys: the combination
of StdNo and OfferNo (the primary key) and the combination of StdEmail and OfferNo.
In the FDs for UnivTable2 (Figure 7.4), you should note that StdNo and StdEmail deter-
mine each other. Because of the FDs between StdNo and StdEmail, UnivTable2 contains
a redundancy as Email is repeated for each StdNo. For example, the first two rows
contain the same e-mail address because the StdNo value is the same. The following
points explain why UnivTable2 is not in BCNF.

•	 The dependencies between StdNo and StdEmail violate BCNF. Both StdNo and
StdEmail are determinants, but neither is an entire candidate key although each
column is part of a candidate key.

•	 To eliminate the redundancy, you should split UnivTable2 into two tables, as
shown in Figure 7.4. The UNIQUE constraint supports the FD StdNo → StdEmail.

UnivTable3 (Figure 7.5) depicts another example of a table with multiple, composite
candidate keys. UnivTable3 has two candidate keys: the combination of StdNo and
AdvisorNo (the primary key) and the combination of StdNo and Major. UnivTable3 has
a redundancy as Major is repeated for each row with the same AdvisorNo value. The
following points explain why UnivTable3 is not in BCNF.

•	 The dependency diagram (Figure 7.5) shows that AdvisorNo is a determinant but
not a candidate key by itself. Thus, UnivTable3 is not in BCNF.

•	 To eliminate the redundancy, you should split UnivTable3 into two tables as
shown in Figure 7.5.

These examples demonstrate two points about normalization. First, tables with
multiple, composite candidate keys are difficult to analyze. You need to study the
dependencies carefully in each example to understand the conclusions about BCNF

TABLE 7-6
 List of FDs for the Big Patient
Table

PatNo → PatAge, PatZip

PatZip → PatCity

ProvNo → ProvSpecialty

VisitNo → PatNo, VisitDate

VisitNo, ProvNo → Diagnosis

UnivTable2

StdNo OfferNo StdEmail EnrGrade

S1 O1 joe@bigu 3.5

S1 O2 joe@bigu 3.6

S2 O1 mary@bigu 3.8

S2 O3 mary@bigu 3.5

FIGURE 7.4
Sample Rows, FDs, and
Normalized Tables for
UnivTable2

StdNo, OfferNo → EnrGrade
OfferNo, StdEmail → EnrGrade
StdNo → StdEmail
StdEmail → StdNo

UnivTable2-1 (OfferNo, StdNo, EnrGrade)
	 FOREIGN KEY (StdNo) REFERENCES UnivTable2-2
UnivTable2-2 (StdNo, StdEmail)
	 UNIQUE (StdEmail)

26008_ch07_p233-266.indd 242 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   243

violations. Second, tables with multiple, composite candidate keys are not common.
The examples in Figures 7.4 and 7.5 were purposely constructed to depict subtleties of
multiple, composite candidate keys.

7.2.3  Simple Synthesis Procedure
Although BCNF has a simple definition, applying the definition is not always as easy
as shown in the previous section. To apply BCNF, the list of FDs must be carefully
analyzed. An FD list with derived FDs can lead to a poor table design.

The simple synthesis procedure can be used to generate tables satisfying BCNF
starting with a list of FDs. The word synthesis means that the individual functional
dependencies are combined to construct tables. This usage is similar to other disci-
plines such as music where synthesis involves combining individual sounds to con-
struct larger units such as melodies, scores, and so on.

Figure 7.6 depicts the steps of the simple synthesis procedure. The first two steps
eliminate redundancy by removing extraneous columns and derived FDs. The last
three steps produce tables for collections of FDs. The tables produced in the last three
steps may not be correct if redundant FDs are not eliminated in the first two steps.

Applying the Simple Synthesis Procedure  To understand this procedure, you
can apply it to the FDs of the big university database table shown in Table 7-7. Two
FDs have been added to the FD list from Table 7-2 to depict the steps of the simple
synthesis procedure. In the first step, the last FD group contains an extraneous column
(OfferNo) in the LHS because StdNo → StdCity without OfferNo in the LHS. Since the

StdNo, AdvisorNo → Status
StdNo, Major → Status
AdvisorNo → Major

UnivTable3-1 (AdvisorNo, StdNo, Status)
	 FOREIGN KEY (AdvisorNo) REFERENCES UnivTable3-2
UnivTable3-2 (AdvisorNo, Major)

FIGURE 7.5
Sample Rows, FDs, and
Normalized Tables for
UnivTable3

UnivTable3

StdNo AdvisorNo Major Status

S1 A1 IS COMPLETED

S1 A2 FIN PENDING

S2 A1 IS PENDING

S2 A3 FIN COMPLETED

FIGURE 7.6
Steps of the Simple
Synthesis Procedure

1.  Eliminate extraneous columns from the LHS of FDs.

2.  Remove derived FDs from the FD list.

3.  Arrange the FDs into groups with each group having the same determinant.

4. � For each FD group, make a table with the determinant as the primary key. Add referential integrity
constraints to connect the tables.

5.  Merge tables in which one table contains all columns of the other table.
5.1.  Choose the primary key of one of the separate tables as the primary of the new, merged table.
5.2. � Define a unique constraint for each former primary key that was not designated as the primary key

of the new table.

26008_ch07_p233-266.indd 243 3/2/18 10:00 PM

244   Part 4  Relational Database Design

first group of FDs contains StdNo → StdCity, the revised list of FDs (Table 7-8) removes
StdCity in the RHS of the last FD group.

To apply the second step, you need to know mathematical laws that derive FDs
from other FDs. Although there are a number of laws to derive FDs,5 the most promi-
nent law is the law of transitivity. A transitive dependency is a functional depen-
dency derived by the law of transitivity. The law of transitivity indicates that if an
object A is related to B and B is related to C, then you can conclude that A is related to C.
For example, the < operator obeys the transitive law for real numbers: A < B and
B < C implies that A < C. Functional dependencies, like the < operator, obey the law of
transitivity: A → B, B → C, then A → C. For example, OrdNo → CustBal is a transitive
dependency derived from OrdrNo → CustNo and CustNo → CustBal.

In this chapter, the simple synthesis procedure eliminates only transitively derived
FDs in step 2. For details about the other laws to derive FDs, you should consult refer-
ences listed at the end of the chapter.

In the second step, the FD OfferNo → CrsDesc is a transitive dependency because
OfferNo → CourseNo and CourseNo → CrsDesc implies OfferNo → CrsDesc. Therefore,
you should delete this dependency (OfferNo → CrsDesc) from the list of FDs.

In the third step, you group FDs by determinant. From Table 7-8, you can make
the following FD groups. Note that the FD OfferNo → CrsDesc has been removed from
this list as a result of step 2.

•	 StdNo → StdCity, StdClass
•	 OfferNo → OffTerm, OffYear, CourseNo
•	 CourseNo → CrsDesc
•	 StdNo, OfferNo → EnrGrade

In the fourth step, you replace each FD group with a table having the determinant in a
group as the primary key. Thus, you have four resulting BCNF tables as shown below.
You should add table names for completeness.

Student(StdNo, StdCity, StdClass)
Offering(OfferNo, OffTerm, OffYear, CourseNo)
Course(CourseNo, CrsDesc)
Enrollment(StdNo, OfferNo, EnrGrade)

After defining the tables, you should add referential integrity constraints to connect
the tables. To detect the need for a referential integrity constraint, you should look
for a primary key in one table appearing in other tables. For example, CourseNo is the
primary key of Course but it also appears in Offering. Therefore, you should define

Transitive Dependency
an FD derived by the law of
transitivity. Transitive FDs
should not be recorded as
input to the normalization
process.

TABLE 7-7
List of FDs for the Big
University Database Table

StdNo → StdCity, StdClass

OfferNo → OffTerm, OffYear, CourseNo, CrsDesc

CourseNo → CrsDesc

StdNo, OfferNo → EnrGrade, StdCity

StdNo → StdCity, StdClass

OfferNo → OffTerm, OffYear, CourseNo, CrsDesc

CourseNo → CrsDesc

StdNo, OfferNo → EnrGrade

TABLE 7-8
Revised List of FDs after
Step 1

5 The laws to derive FDs are known as Armstrong’s Axioms, published in a 1974 paper by William
Armstrong.

26008_ch07_p233-266.indd 244 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   245

a referential integrity constraint indicating that Offering.CourseNo refers to Course.
CourseNo. The tables are repeated below with the addition of referential integrity
constraints.

Student(StdNo, StdCity, StdClass)
Offering(OfferNo, OffTerm, OffYear, CourseNo)
	 FOREIGN KEY (CourseNo) REFERENCES Course
Course(CourseNo, CrsDesc)
Enrollment(StdNo, OfferNo, EnrGrade)
	 FOREIGN KEY (StdNo) REFERENCES Student
	 FOREIGN KEY (OfferNo) REFERENCES Offering

The fifth step is not necessary because the FDs for this problem are simple. When
there are multiple candidate keys for a table, the fifth step is necessary. For example, if
StdEmail is added as a column, then the FDs StdEmail → StdNo and StdNo → StdEmail
should be added to the list. Note that the FDs StdEmail → StdCity, StdClass should not
be added to the list because these FDs can be transitively derived from other FDs. As
a result of step 3, another group of FDs is added. In step 4, a new table (Student2) is
added with StdEmail as the primary key. Because the Student table contains the col-
umns of the Student2 table, the tables (Student and Student2) are merged in step 5. One
of the candidate keys (StdNo or StdEmail) is chosen as the primary key. Since StdNo is
chosen as the primary key, a unique constraint is defined for StdEmail.

StdEmail → StdNo
StdNo → StdEmail
Student2(StdEmail, StdNo)
	 UNIQUE(StdNo)

As this additional example demonstrates, multiple candidate keys do not violate
BCNF. The fifth step of the simple synthesis procedure creates tables with multiple
candidate keys because it merges tables. Multiple candidate keys do not violate 3NF
either. There is no reason to split a table just because it has multiple candidate keys.
Splitting a table with multiple candidate keys can slow query performance due to
extra joins.

You can use the simple synthesis procedure to analyze simple dependency struc-
tures. Most tables resulting from a conversion of an ERD should have simple depen-
dency structures because the data modeling process has already done much of the
normalization process. Most tables should be nearly normalized after the conversion
process.

To make the synthesis procedure easy to use, some of the details have been omit-
ted. In particular, step 2 can be rather involved because there are more ways to derive
dependencies than transitivity. Even checking for transitivity can be difficult with
many columns. The full details of step 2 can be found in references cited at the end of
the chapter. Even if you understand the complex details, step 2 cannot be done manu-
ally for complex dependency structures. Fortunately, complex dependency structures
seem rare in practice. Commercial software for normalization does not exist because
of the lack of demand due to mostly simple dependency structures encountered in
practice.

Another Example Using the Simple Synthesis Procedure  To gain more experi-
ence with the Simple Synthesis Procedure, you should understand another example.
This example describes a database to track reviews of papers submitted to an academ-
ic conference. Prospective authors submit papers for review and possible acceptance
in the published conference proceedings. Here are more details about authors, papers,
reviews, and reviewers:

•	 Author information includes the unique author number, author name, mailing
address, and the unique but optional electronic address.

Multiple Candidate Keys
a common misconception by
novice database designers
is that a table with multiple
candidate keys violates
BCNF. Multiple candidate
keys do not violate BCNF.
Thus, you should not split
a table just because it has
multiple candidate keys.

26008_ch07_p233-266.indd 245 3/2/18 10:00 PM

246   Part 4  Relational Database Design

•	 Paper information includes the primary author, the unique paper number, the
title, the abstract, and the review status (pending, accepted, rejected).

•	 Reviewer information includes the unique reviewer number, the name, the
mailing address, and the unique but optional electronic address.

•	 A completed review includes the reviewer number, the date, the paper number,
comments to the authors, comments to the program chairperson, and ratings
(overall, originality, correctness, style, and relevance). The combination of
reviewer number and paper number identifies a review.

Before beginning the procedure, you must identify the FDs in the problem. The follow-
ing is a list of FDs for the problem:

AuthNo → AuthName, AuthEmail, AuthAddress
AuthEmail → AuthNo
PaperNo → Primary-AuthNo, Title, Abstract, Status
RevNo → RevName, RevEmail, RevAddress
RevEmail → RevNo
RevNo, PaperNo → �Auth-Comm, Prog-Comm, Date, Rating1, Rating2, Rating3, Rating4,

Rating5

Because the LHS is minimal in each FD, the first step is finished. The second step is not
necessary because there are no transitive dependencies. Note that the FDs AuthEmail
→ AuthName, AuthAddress, and RevEmail → RevName, RevAddress can be transitively
derived. If any of these FDs was part of the original list, they should be removed. For
each of the six FD groups, you should define a table. In the last step, you combine
the FD groups with AuthNo and AuthEmail and RevNo and RevEmail as determinants.
In addition, you should add unique constraints for AuthEmail and RevEmail because
these columns were not selected as the primary keys of the new tables.

Author(AuthNo, AuthName, AuthEmail, AuthAddress)
	 UNIQUE (AuthEmail)
Paper(PaperNo, Primary-AuthNo, Title, Abstract, Status)
	 FOREIGN KEY (Primary-AuthNo) REFERENCES Author
Reviewer(RevNo, RevName, RevEmail, RevAddress)
	 UNIQUE (RevEmail)
Review�(PaperNo, RevNo, Auth-Comm, Prog-Comm, Date, Rating1, Rating2,

Rating3, Rating4, Rating5)
	 FOREIGN KEY (PaperNo) REFERENCES Paper
	 FOREIGN KEY (RevNo) REFERENCES Reviewer

7.3  REFINING M-WAY RELATIONSHIPS
Beyond BCNF, a remaining concern is the analysis of M-way relationships. Recall that
M-way relationships are represented by associative entity types in the Crow’s Foot
ERD notation. In the conversion process, an associative entity type converts into a
table with a combined primary key consisting of three or more components. The con-
cept of relationship independence, underlying 4NF, is an important tool used to ana-
lyze M-way relationships. Using the concept of relationship independence, you may
find that an M-way relationship should be split into two or more binary relationships
to avoid redundancy. The following sections describe the concept of relationship inde-
pendence and 4NF.

7.3.1  Relationship Independence
Before you study relationship independence in database design, let us discuss the
meaning of independence in statistics. Two variables are statistically independent if
knowing something about one variable tells you nothing about another variable. More

26008_ch07_p233-266.indd 246 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   247

precisely, two variables are independent if the probability of both variables (the joint
probability) can be derived from the probability of each variable alone. For example,
one variable may be the age of a rock and another variable may be the age of the per-
son holding the rock. Because the age of a rock, and the age of a person holding the
rock are unrelated, these variables are considered independent. However, the age of a
person and a person’s marital status are related. The value of a person’s age influences
the probability of being single, married, or divorced. If two variables are independent,
it is redundant to store data about how they are related. You can use probabilities
about individual variables to derive joint probabilities.

The concept of relationship independence is similar to statistical independence.
If two relationships are independent (that is, not related), it is redundant to store data
about a third relationship. You can derive the third relationship by combining the two
essential relationships through a join operation. If you store a derived relationship,
modification anomalies can result. Thus, the essential idea of relationship indepen-
dence is not to store relationships that can be derived by joining other (independent)
relationships.

Relationship Independence Example  To clarify relationship independence, con-
sider the associative entity type Enroll (Figure 7.7) representing a three-way relation-
ship among students, offerings, and textbooks. The Enroll entity type converts to the
Enroll table (Table 7-9) that consists only of a combined primary key: StdNo, OfferNo,
and TextNo.

The design question is whether the Enroll table has redundancies. If there is redun-
dancy, modification anomalies may result. The Enroll table is in BCNF, so there are
no anomalies due to functional dependencies. However, the concept of independence
leads to the discovery of redundancies. The Enroll table can be divided into three com-
binations of columns representing three binary relationships: StdNo-OfferNo repre-
senting the relationship between students and offerings, OfferNo-TextNo representing
the relationship between offerings and textbooks, and StdNo-TextNo representing the
relationship between students and textbooks. If any of the binary relationships can be
derived from the other two, there is a redundancy.

•	 The relationship between students and offerings (StdNo-OfferNo) cannot be
derived from the other two relationships. For example, suppose that textbook T1
is used in two offerings, O1 and O2 and by two students, S1 and S2. Knowledge

Relationship Independence
a relationship that can
be derived from two
independent relationships.

StdNo
StdName

Student
O�erNo
O�Location

O�ering

TextNo
TextTitle

Textbook

EnrollStd-Enroll

O�er-Enroll

Text-Enroll

FIGURE 7.7
M-way Relationship Example

TABLE 7-9
Sample Rows of the Enroll
Table

StdNo OfferNo TextNo

S1 O1 T1

S1 O2 T1

S1 O1 T2

S1 O2 T3

26008_ch07_p233-266.indd 247 3/2/18 10:00 PM

248   Part 4  Relational Database Design

about these two facts does not determine the relationship between students and
offerings. For example, S1 could be enrolled in O1 or perhaps O2.

•	 Likewise, the relationship between offerings and textbooks (OfferNo-TextNo)
cannot be derived. A professor’s choice for a collection of textbooks cannot be
derived by knowing who enrolls in an offering and what textbooks a student
uses.

•	 However, the relationship between students and textbooks (StdNo-TextNo) can
be derived by the other two relationships. For example, if student S1 is enrolled
in offering O1 and offering O1 uses textbook T1, then you can conclude that
student S1 uses textbook T1 in offering O1. Because the Student-Offering and the
Offering-Textbook relationships are independent, you know the textbooks used by
a student without storing the relationship instances.

Because of this independence, the Enroll table and the related associative entity type
Enroll have redundancy. To remove the redundancy, replace the Enroll entity type with
two binary relationships (Figure 7.8). Each binary relationship converts to a table as
shown in Tables 7-10 and 7-11. The Enroll and Orders tables have no redundancies. For
example, to delete a student’s enrollment in an offering (say S1 in O1), only one row
must be deleted from Table 7-10. In contrast, two rows must be deleted from Table 7-9.

If the assumptions change slightly, an argument can be made for an associative
entity type representing a three-way relationship. Suppose that the bookstore wants to
record textbook purchases by offering and student to estimate textbook demand. Then
the relationship between students and textbooks is no longer independent of the other
two relationships. Even though a student is enrolled in an offering and the offering
uses a textbook, the student may not purchase the textbook (perhaps borrow it) for
the offering. In this situation, there is no independence and a three-way relationship is
needed. In addition to the M-N relationships in Figure 7.8, there should be a new asso-
ciative entity type and three 1-M relationships, as shown in Figure 7.9. You need the
Enroll relationship to record student selections of offerings and the Orders relationship
to record professor selections of textbooks. The Purchase entity type records purchases
of textbooks by students in a course offering. However, a purchase cannot be known
from the other relationships.

FIGURE 7.8
Decomposed Relationships
Example StdNo

StdName

Student

O�erNo
O�Location

O�ering

TextNo
TextTitle

Textbook

Enroll Orders

TABLE 7-10
Sample Rows of the Binary
Enroll Table

StdNo OfferNo

S1 O1

S1 O2

TABLE 7-11
Sample Rows of the Binary
Orders Table

OfferNo TextNo

O1 T1

O1 T2

O2 T1

O2 T3

StdNo
StdName

Student
O�erNo
O�Location

O�ering

TextNo
TextTitle

Textbook

Enroll Orders

PurchaseStd-Purch

O�er-Purch

Text-Purch

FIGURE 7.9
M-Way and Binary
Relationships Example

26008_ch07_p233-266.indd 248 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   249

7.3.2  Multivalued Dependencies and Fourth Normal Form
In relational database terminology, a relationship that can be derived from other rela-
tionships is known as a multivalued dependency (MVD). An MVD involves three col-
umns as described in the following definition. Like in the discussion of relationship
independence, the three columns comprise a combined primary key of an associative
table. The nonessential or derived relationship involves the columns B and C. The
definition states that the nonessential relationship (involving the columns B and C)
can be derived from the relationships A-B and A-C. The word multivalued means that
A can be associated with a collection of B and C values, not just single values as in a
functional dependency.

MVD Definition: The multivalued dependency (MVD) A →→ B | C (read A multi-
determines B or C) means that

•	 A given A value is associated with a collection of B and C values, and
•	 B and C are independent given the relationships between A and B and A and C.

MVDs can lead to redundancies because of independence among columns. You can
see the redundancy by using a table to depict an MVD as shown in Figure 7.10. If the
two rows above the line exist and the MVD A →→ B | C is true, then the two rows
below the line will exist. The two rows below the line will exist because the relation-
ship between B and C can be derived from the relationships A-B and A-C. In Figure
7.10, value A1 is associated with two B values (B1 and B2) and two C values (C1 and
C2). Because of independence, value A1 will be associated with every combination of
its related B and C values. The two rows below the line are redundant because they
can be derived.

To apply this concept to the Enroll table, consider the possible MVD OfferNo →→
StdNo | TextNo. In the first two rows of Figure 7.11, offering O1 is associated with stu-
dents S1 and S2 and textbooks T1 and T2. If the MVD is true, then the two rows below
the line will exist. The last two rows do not need to be stored if you know the first two
rows and the MVD exists.

MVDs are generalizations of functional dependencies (FDs). Every FD is an MVD
but not every MVD is an FD. An MVD in which a value of A is associated with only
one value of B and one value of C is also an FD. In this section, we are interested only in
MVDs that are not also FDs. An MVD that is not an FD is known as a nontrivial MVD.

Fourth Normal Form (4NF)  Fourth normal form (4NF) prohibits redundancies
caused by multivalued dependencies. As an example, the table Enroll(StdNo, OfferNo,
TextNo) (Table 7-8) is not in 4NF if the MVD OfferNo →→ StdNo | TextNo exists. To
eliminate the MVD, split the M-way table Enroll into the binary tables Enroll (Table 7-9)
and Orders (Table 7-10).

The ideas of MVDs and 4NF are somewhat difficult to understand. The ideas are
somewhat easier to understand if you think of an MVD as a relationship that can be
derived by other relationships because of independence.

4NF Definition
a table is in 4NF if it does not
contain any nontrivial MVDs
(MVDs that are not also FDs).

FIGURE 7.10
Table Representation of an
MVD

A B C

A1 B1 C1

A1 B2 C2

A1 B2 C1

A1 B1 C2

FIGURE 7.11
Representation of the MVD in
the Enroll Table

OfferNo StdNo TextNo

O1 S1 T1

O1 S2 T2

O1 S2 T1

O1 S1 T2

7.4  HIGHER LEVEL NORMAL FORMS
The normalization story does not end with 4NF. Other normal forms have been pro-
posed, but their practicality has not been demonstrated. This section briefly describes
two higher normal forms to complete your normalization background.

7.4.1  Fifth Normal Form
Fifth normal form (5NF) applies to M-way relationships like 4NF. Unlike 4NF, 5NF
involves situations in which a three-way relationship should be replaced with three

26008_ch07_p233-266.indd 249 3/2/18 10:00 PM

250   Part 4  Relational Database Design

binary relationships, not two binary relationships as for 4NF. Because situations in
which 5NF applies (as opposed to 4NF) are rare, 5NF is generally not considered a
practical normal form. Understanding the details of 5NF requires a lot of intellectual
investment, but the return on your study time is rarely applicable.

The example in Figure 7.12 demonstrates a situation in which 5NF could apply.
The Authorization entity type represents authorized combinations of employees, work-
stations, and software. This associative entity type has redundancy because it can be
divided into three binary relationships as shown in Figure 7.13. If you know employ-
ees authorized to use workstations, software licensed for workstations, and employees
trained to use software, then you know the valid combinations of employees, work-
stations, and software. Thus, it is necessary to record the three binary combinations
(employee-workstation, software-workstation, and employee-software), not the three-
way combination of employee, workstation, and software.

Whether the situation depicted in Figure 7.13 is realistic is debatable. For example,
if software is licensed for servers rather than workstations, the Software-Auth relation-
ship may not be necessary. Even though it is possible to depict situations in which 5NF
applies, these situations may not exist in practice.

7.4.2  Domain Key Normal Form
After reading about so many normal forms, you may be asking questions such as
“Where does it stop?” and “Is there an ultimate normal form?” Fortunately, the answer
to the last question is yes. In a 1981 paper, Dr. Ronald Fagin proposed domain key
normal form (DKNF) as the ultimate normal form. In DKNF, domain refers to a data
type: a set of values with allowable operations. A set of values is defined by the kind
of values (e.g., whole numbers versus floating-point numbers) and the integrity rules
about the values (e.g., values greater than 21). Key refers to the uniqueness property of
candidate keys. A table is in DKNF if every constraint on a table can be derived from
keys and domains. A table in DKNF cannot have modification anomalies.

EmpNo

EmpName

Employee

WorkStationNo

WSLocation

WorkStation

SoftwareNo

SoftTitle

Software

Authorization
Emp-Auth

WorkStation-Auth

Software-Auth

FIGURE 7.12
Associative Entity Type

EmpNo
EmpName

Employee

WorkStationNo
WSLocation

WorkStation

SoftwareNo
SoftTitle

Software

Emp-Auth Software-Auth

Emp-Training

FIGURE 7.13
Replacement of Associative
Entity Type with Three Binary
Relationships

26008_ch07_p233-266.indd 250 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   251

Unfortunately, DKNF remains an ideal rather than a practical normal form. There
is no known procedure that converts a table into DKNF. In addition, it is not even
known what tables can be converted to DKNF. As an ideal, you should try to define
tables in which most constraints result from keys and domains. These kinds of con-
straints are easy to test and understand.

7.5  PRACTICAL CONCERNS ABOUT NORMALIZATION
After reading this far, you should be well acquainted with the tools of relational data-
base design. Before you are ready to use these tools, some practical advice is useful.
This section discusses the role of normalization in the database development process
and the importance of thinking carefully about the objective of eliminating modifica-
tion anomalis.

7.5.1  Role of Normalization in the Database Development Process
Normalization can be used as either a refinement tool or initial design tool in the
database development process. In the refinement approach, you perform conceptual
data modeling using the Entity Relationship Model and transform the ERD into tables
using the conversion rules. Then, you apply normalization techniques to analyze each
table: identify FDs, use the simple synthesis procedure to remove redundancies, and
analyze a table for independence if the table represents an M-way relationship. Since
the primary key determines the other columns in a table, you only need identify FDs
in which the primary key is not the LHS.

In the initial design approach, you use normalization techniques in conceptual
data modeling. Instead of drawing an ERD, you identify functional dependencies and
apply a normalization procedure like the simple synthesis procedure. After defining
the tables, you identify the referential integrity constraints and construct a relational
model diagram such as that available in Microsoft Access. If needed, an ERD can be
generated from the relational database diagram.

This book clearly favors using normalization as a refinement tool, not as an initial
design tool. Through development of an ERD, you intuitively group related attributes.
Much normalization is accomplished in an informal manner without the tedious pro-
cess of recording functional dependencies. As a refinement tool, there are fewer FDs
to specify and less normalization to perform. Applying normalization ensures that
candidate keys and redundancies have not been overlooked.

Another reason for favoring the refinement approach is that relationships can be
overlooked when using normalization as the initial design approach. 1-M relation-
ships must be identified in the child-to-parent direction. For novice data modelers,
identifying relationships is easier when considering both sides of a relationship. For
an M-N relationship without attributes, there will not be any functional dependencies
that show the need for a table. For example, in a design about textbooks and course
offerings, if the relationship between them has no attributes, there are no functional

Advantages of Normalization as a Refinement Tool: use normalization to remove
redundancies after conversion from an ERD to a table design rather than as an initial
design tool.

•	 Easier to translate requirements into an ERD than into lists of FDs.
•	 Fewer FDs to specify because most FDs are derived from primary keys.
•	 Fewer tables to split because normalization performed intuitively during ERD

development.
•	 Easier to identify relationships especially M-N relationships without attributes.

26008_ch07_p233-266.indd 251 3/2/18 10:00 PM

252   Part 4  Relational Database Design

dependencies that relate textbooks and coure offerings.6 In drawing an ERD, however,
the need for an M-N relationship becomes clear.

Refinement Example  To demonstrate the refinement process, this subsection uses
the university database ERD in Figure 7.14. To make the normalization process more
interesting, the university database ERD from Chapter 5 has been embellished with
the DeptNo and DeptName attributes in the Faculty entity type and the StdEmail attri-
bute in the Student entity type.

The conversion process generates five tables as shown in the following table
design. The conversion process involves five applications of the entity type rule to
add tables, five applications of the 1-M relationship rule to add foreign keys, and two
applications of the identifying relationship rule to add primary key components for
the Enrollment table. In the table design, primary keys are underlined and foreign keys
are italicized.

Student�(StdNo, StdFirstName, StdLastName, StdCity, StdState, StdZip, StdClass,
StdMajor, StdGPA, StdEmail)

Faculty�(FacNo, FacFirstName, FacLastName, FacSalary, FacHireDate, FacRank,
FacSupNo, DeptNo, DeptName)

	 FOREIGN KEY (FacSupNo) REFERENCES Faculty
Offering(OfferNo, OffTerm, OffYear, CourseNo, FacNo)
	 FOREIGN KEY (CourseNo) REFERENCES Course
	 FOREIGN KEY (FacNo) REFERENCES Faculty
Course(CourseNo, CrsUnits, CrsDesc)
Enrollment(StdNo, OfferNo, EnrGrade)
	 FOREIGN KEY (StdNo) REFERENCES Student
	 FOREIGN KEY (OfferNo) REFERENCES Offering

After converting an ERD to a table design, you should record FDs for each table and
analyze FDs for compliance with BCNF. For each table, the primary key determines
other columns. You do not need to explicitly record these FDs as they directly follow
from the primary keys. With a good ERD design, you should have relatively few FDs
in which the LHS is not a primary key. You should focus on two types of FDs in which
the LHS is not the primary key of a table.

O�ering
O�erNo
O�Location
O�Time

EnrGrade

Enrollment
Registers

Grants
CourseNo
CrsDesc
CrsUnits

Course

Faculty
FacNo
FacFirstName
FacLastName
FacSalary
FacRank
FacHireHate
DeptNo
DeptName

Student
StdNo
StdFirstName
StdLastName
StdCity
StdState
StdZip
StdClass
StdMajor
StdGPA
StdEmail

Has

Teaches

Supervises

FIGURE 7.14
ERD for the University
Database

6 An FD can be written with a null right-hand side to represent M-N relationships. The FD for the offering-
textbook relationship can be expressed as TextId, OfferNo → ∅. However, this kind of FD is awkward to
state. It is much easier to define an M-N relationship.

26008_ch07_p233-266.indd 252 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   253

•	 Candidate Key FD: If a column determines the primary key of a table, this
column is a candidate key in the table. A candidate key FD does not violate
BCNF. It involves a UNIQUE constraint.

•	 Nonkey FD: If a nonkey column determines another nonkey column, the table
violates BCNF.

The table design for the university database contains FDs of each type. In the Student
table, StdEmail → StdNo based on assignment of a unique email address for each stu-
dent. In the revised table design, a UNIQUE constraint is added for StdEmail. In the
Faculty table, DeptNo → DeptName violates BCNF as DeptNo is not a candidate key.
To resolve the BCNF violation, you should decompose the Faculty table by adding a
Department table with DeptNo as the primary key. If DeptName is unique in Department,
you should record another FD (DeptName → DeptNo) and add a UNIQUE constraint.
The revised table design shows a foreign key constraint for DeptNo, a new Department
table, and a UNIQUE constraint for DeptName.

Student�(StdNo, StdFirstName, StdLastName, StdCity, StdState, StdZip, StdClass,
StdMajor, StdGPA, StdEmail)

	 UNIQUE (StdEmail)
Faculty�(FacNo, FacFirstName, FacLastName, FacSalary, FacHireDate, FacRank,

FacSupNo, DeptNo)
	 FOREIGN KEY (FacSupNo) REFERENCES Faculty
	 FOREIGN KEY (DeptNo) REFERENCES Department
Department(DeptNo, DeptName)
	 UNIQUE (DeptName)
Offering(OfferNo, OffTerm, OffYear, CourseNo, FacNo)
	 FOREIGN KEY (CourseNo) REFERENCES Course
	 FOREIGN KEY (FacNo) REFERENCES Faculty
Course(CourseNo, CrsUnits, CrsDesc)
Enrollment(StdNo, OfferNo, EnrGrade)
	 FOREIGN KEY (StdNo) REFERENCES Student
	 FOREIGN KEY (OfferNo) REFERENCES Offering

Because of the small number of FDs added, you may not need to use the entire simple
synthesis procedure. In the full simple synthesis procedure, you would add another
table for StdEmail and DeptName in step 4 and then merge tables in step 5. Because
StdEmail and DeptName are already part of other tables, you can simply add UNIQUE
constraints.

7.5.2  Analyzing the Normalization Objective
As a design criterion, avoidance of modification anomalies is biased toward database
changes. As you have seen, removing anomalies usually results in a database with
many tables. A design with many tables makes a database easier to change but more
difficult to query. If a database is used predominantly for queries, avoiding modifi-
cation anomalies may not be an appropriate design goal. Chapters 12 to 15 describe
databases for business intelligence in which the primary use is query rather than mod-
ification. In this situation, a design that is not fully normalized may be appropriate.
Denormalization is the process of combining tables so that they are easier to query.
In addition, physical design goals may conflict with logical design goals. Chapter 8
describes physical database design goals and the use of denormalization as a tech-
nique to improve query performance.

Another time to consider denormalization is when an FD is not important. The
classic example contains the FDs Zip → POCity, POState in a customer table where
POState and POCity refer to the location of the post office for the zip code. Note that
in the US postal system, a postal (zip) code can cross city and state boundaries so that
zip code does not determine city of residence. In some databases, the dependencies
on post office city and state may not be important to maintain. If there is not a need

26008_ch07_p233-266.indd 253 3/2/18 10:00 PM

254   Part 4  Relational Database Design

to manipulate zip codes independent of customers, the FDs can be safely ignored.
However, there are databases in which it is important to maintain a table of zip codes
independent of customer information. For example, if a retailer does business in many
states and countries, a zip code table is useful to record sales tax rates.7 If you ignore
an FD in the normalization process, you should note that it exists but will not lead to
any significant anomalies. Proceed with caution: most FDs will lead to anomalies if
ignored.

This chapter described the impact of redundancy on the ability to change rows in a
table. Redundancy in a table design causes modification anomalies leading to difficul-
ties to insert, delete, and update rows of a table. Avoiding modification anomalies is
the goal of normalization techniques. As a prerequisite to normalizing a table, you
should list functional dependencies (FDs) for the table. This chapter provided guide-
lines about asserting FDs and using sample data to falsify FDs. After generating FDs
for a table design, you should ensure that a table design satisfies rules about allowable
FDs. This chapter described Boyce-Codd Normal Form (BCNF), a revised definition
of third normal form, as a fundamental rule about FDs to ensure that a table is free
of modification anomalies. The simple synthesis procedure was presented to analyze
FDs and generate tables in BCNF. Providing a complete list of FDs is the most impor-
tant part of the normalization process.

This chapter also described an approach to analyze M-way relationships (repre-
sented by associative entity types) using the concept of independence. If two relation-
ships are independent, a third relationship can be derived obviating the need to store
the third relationship. The independence concept is equivalent to multivalued depen-
dency. 4NF prohibits redundancy caused by multivalued dependencies.

This chapter and the data modeling chapters (Chapters 5 and 6) emphasized fun-
damental skills for database development. After data modeling and normalization are
complete, you are ready to implement the design, usually with a relational DBMS.
Chapter 8 describes physical database design concepts and practices to facilitate your
implementation work on relational DBMSs.

•	 Redundancies in a table cause modification anomalies.
•	 Modification anomalies: unexpected side effects when inserting, updating, or

deleting
•	 Functional dependency: a value neutral constraint similar to a candidate key
•	 Usage of sample data to eliminate (falsify) possible functional dependencies
•	 1NF: no repeating columns in a table

Usage of Denormalization: consider violating BCNF as a design objective for a table
when:

•	 An FD is not important to enforce as a candidate key constraint.
•	 A database is used predominantly for queries.
•	 Query performance requires fewer tables to reduce the number of join operations.

CLOSING THOUGHTS

REVIEW CONCEPTS

7 A former student made this comment about the database of a large electronics retailer.

26008_ch07_p233-266.indd 254 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   255

•	 BCNF: revised and simplified definition combining older definitions for 2NF
and 3NF

•	 BCNF definition: every determinant is a candidate key.
•	 Simple synthesis procedure: analyze FDs and produce tables in BCNF
•	 Use the simple synthesis procedure to analyze simple dependency structures
•	 Use relationship independence as a criterion to split M-way relationships into

smaller relationships
•	 MVD: association with collections of values and independence among columns
•	 MVDs cause redundancy because rows can be derived using independence
•	 4NF: no redundancies due to MVDs
•	 Use normalization techniques as a refinement tool rather than as an initial

design tool
•	 Refinement involving conversion of ERD into a table design and identifying FDs

and applying BCNF for each table
•	 Denormalize a table if FDs do not cause modification anomalies

QUESTIONS

  1.	What is an insertion anomaly?
  2.	What is an update anomaly?
  3.	What is a deletion anomaly?
  4.	What is the cause of modification anomalies?
  5.	What is a functional dependency?
  6.	How is a functional dependency like a candidate key?
  7.	Can a software design tool identify functional dependencies? Briefly explain

your answer.
  8.	What is the meaning of an FD with multiple columns on the right-hand side?
  9.	Why should you be careful when writing FDs with multiple columns on the left-

hand side?
  10.	What is a normal form?
  11.	What does 1NF prohibit?
  12.	What is a key column? This question pertains to material in Appendix 7.A.
  13.	What is a nonkey column? This question pertains to material in Appendix 7.A.
  14.	What kinds of FDs are not allowed in 2NF? This question pertains to material in

Appendix 7.A.
  15.	What kinds of FDs are not allowed in 3NF? This question pertains to material in

Appendix 7.A.
  16.	What is the combined definition of 2NF and 3NF? This question pertains to

material in Appendix 7.A.
  17.	What kinds of FDs are not allowed in BCNF?
  18.	What two concepts are in the BCNF definition?
  19.	Why is the BCNF definition preferred to the original 3NF definition?
  20.	When are situations with multiple composite keys difficult to analyze?
  21.	Are situations with multiple composite candidate keys common?
  22.	What is the goal of the simple synthesis procedure?
  23.	What is a limitation of the simple synthesis procedure?

26008_ch07_p233-266.indd 255 3/2/18 10:00 PM

256   Part 4  Relational Database Design

  24.	What is a transitive dependency?
  25.	Are transitive dependencies permitted in BCNF tables? Explain why or why not.
  26.	Why eliminate transitive dependencies in the FDs used as input to the simple

synthesis procedure?
  27.	When is it necessary to perform the fifth step of the simple synthesis procedure?
  28.	How is relationship independence similar to statistical independence?
  29.	What kind of redundancy is caused by relationship independence?
  30.	How many columns does an MVD involve?
  31.	What is a multivalued dependency (MVD)?
  32.	What is the relationship between MVDs and FDs?
  33.	What is a nontrivial MVD?
  34.	What is the goal of 4NF?
  35.	What are the advantages of using normalization as a refinement tool rather than

as an initial design tool?
  36.	Why is 5NF not considered a practical normal form?
  37.	Why is DKNF not considered a practical normal form?
  38.	When is denormalization useful? Provide an example to depict when it may be

beneficial for a table to violate 3NF.
  39.	What are the two ways to use normalization in the database development

process?
  40.	Why does this book recommend using normalization as a refinement tool, not as

an initial design tool?
  41.	How many sample rows are necessary to falsify a possible FD?
  42.	Explain the pattern in sample data to falsify the FD X → Y.
  43.	For a large collection of functional dependencies, should you list the functional

dependencies or draw a functional dependency diagram?
  44.	What is a value neutral constraint? Is a functional dependency a value neutral

constraint? Explain your answer.
  45.	Why are functional dependencies about 1-M relationships confusing to identify?
  46.	Can you define a functional dependency for an M-N relationship without

attributes?
  47.	What kind of FDs should you focus when using normalization as a refinement tool?
  48.	Do you need to perform the all steps of the simple synthesis procedure when

using normalization as a refinement tool?

PROBLEMS

Besides the problems presented here, the textbook’s website contains a case study for
additional practice. To supplement the examples in this chapter, the case study pro-
vides a complete database design case including conceptual data modeling, schema
conversion, and normalization.
  1.	For the big university database table, list FDs with the column StdCity as the

determinant that are falsified by rows in Table 7-P1. For each FD, identify the
sample rows that falsify it. Remember that it takes two rows to falsify an FD.
The sample rows are repeated in Table 7-P1 for your reference.

  2.	Following on problem 1, list FDs with the column StdCity as the determinant
that the sample rows do not falsify. For each FD, add one or more sample rows
and then identify the sample rows that falsify the FD. Remember that it takes
two rows to falsify an FD.

26008_ch07_p233-266.indd 256 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   257

  3.	For the big patient table, list FDs with the column PatZip as the determinant that
are falsified by sample rows in Table 7-P2. For the other FDs, identify sample
rows that falsify it. Remember that it takes two rows to falsify an FD. The
sample rows are repeated in Table 7-P2 for your reference.

  4.	Following on problem 3, list FDs with the column PatZip as the determinant that
are not falsified by sample rows. Exclude the FD PatZip → PatCity because it
is a valid FD. For each FD, add one or more sample rows and then identify the
sample rows that falsify the FD. Remember that it takes two rows to falsify
an FD.

  5.	Add sample rows to Table 7-P2 to falsify the following FDs. Remember that it
takes two rows to falsify an FD.

•	 PatNo → VisitNo
•	 PatNo → ProvNo
•	 PatAge → PatZip
•	 PatAge → PatCity
•	 PatAge → PatNo

  6.	Apply the simple synthesis procedure to the FDs of the big patient table. The
FDs are repeated in Table 7-P3 for your reference. Show the result of each step in
the procedure. Include the primary keys, foreign keys, and other candidate keys
in the final list of tables.

  7.	The FD diagram in Figure 7.P1 depicts FDs among columns in an order entry
database. Figure 7.P1 shows FDs with determinants CustNo, OrderNo, ItemNo,
the combination of OrderNo and ItemNo, the combination of ItemNo and PlantNo,
and the combination of OrderNo and LineNo. The combination of OrderNo and

TABLE 7-P1
Sample Data for the Big
University Database Table

StdNo StdCity StdClass OfferNo OffTerm OffYear EnrGrade CourseNo CrsDesc

S1 SEATTLE JUN O1 FALL 2017 3.5 C1 DB

S1 SEATTLE JUN O2 FALL 2017 3.3 C2 VB

S2 BOTHELL JUN O3 SPRING 2018 3.1 C3 OO

S2 BOTHELL JUN O2 FALL 2017 3.4 C2 VB

TABLE 7-P2
Sample Data for the Big
Patient Table

VisitNo VisitDate PatNo PatAge PatCity PatZip ProvNo ProvSpecialty Diagnosis

V10020 1/13/2018 P1 35 DENVER 80217 D1 INTERNIST EAR INFECTION

V10020 1/13/2018 P1 35 DENVER 80217 D2 NURSE
PRACTITIONER

INFLUENZA

V93030 1/20/2018 P3 17 ENGLEWOOD 80113 D2 NURSE
PRACTITIONER

PREGNANCY

V82110 1/18/2018 P2 60 BOULDER 85932 D3 CARDIOLOGIST MURMUR

TABLE 7-P3
List of FDs for the Big Patient
Table

PatNo → PatAge, PatCity, PatZip

PatZip → PatCity

ProvNo → ProvSpecialty

VisitNo → PatNo, VisitDate, PatAge, PatCity, PatZip

VisitNo, ProvNo → Diagnosis

26008_ch07_p233-266.indd 257 3/2/18 10:00 PM

258   Part 4  Relational Database Design

ItemNo determines LineNo, QtyOrdered, and QtyOutstanding. In the bottom FDs,
the combination of LineNo and OrderNo determines ItemNo, QtyOrdered, and
QtyOutstanding. To test your understanding of dependency diagrams, convert
the dependency diagram into a list of dependencies organized by the LHSs.

  8.	Using the FD diagram (Figure 7.P1) and the FD list (solution to problem 7) as
guidelines, make a table with sample data. There are two candidate keys for
the underlying table: the combination of OrderNo, ItemNo, and PlantNo and the
combination of OrderNo, LineNo, and PlantNo. Using the sample data, identify
insertion, update, and deletion anomalies in the table.

  9.	Derive 2NF tables starting with the FD list from problem 7 and the table from
problem 8. This problem applies to Appendix 7.A.

  10.	Derive 3NF tables starting with the FD list from problem 7 and the 2NF tables
from problem 9. This problem applies to Appendix 7.A.

  11.	Following on problems 7 and 8, apply the simple synthesis procedure to produce
BCNF tables.

  12.	Modify your table design in problem 11 if the shipping address (ShipAddr)
column determines customer number (CustNo). Do you think that this additional
FD is reasonable? Briefly explain your answer.

  13.	Go back to the original FD diagram in which ShipAddr does not determine
CustNo. How does your table design change if you want to keep track of a
master list of shipping addresses for each customer? Assume that you do not
want to lose a shipping address when an order is deleted.

  14.	Using the following FD list for a simplified expense report database, identify
insertion, update, and deletion anomalies if all columns are in one table (big
expense report table). There are two candidate keys for the big expense report
table: ExpItemNo (expense item number) and the combination of CatNo (category
number) and ERNo (expense report number). ExpItemNo is the primary key of
the table.

•	 ERNo → UserNo, ERSubmitDate, ERStatusDate
•	 ExpItemNo → ExpItemDesc, ExpItemDate, ExpItemAmt, CatNo, ERNo
•	 UserNo → UserFirstName, UserLastName, UserPhone, UserEmail
•	 CatNo → CatName, CatLimit
•	 ERNo, CatNo → ExpItemNo
•	 UserEmail → UserNo
•	 CatName → CatNo

CustNo

ShipAddr

ItemDescOrderNo ItemNo

CustBal

OrderDate

PlantNo

QtyOnHand

CustDiscount

ReorderPoint

QtyOrdered QtyOutstanding

LineNo OrderNo ItemNo

LineNo

QtyOrdered QtyOutstanding

FIGURE 7.P1
Dependency Diagram for the
Big Order Entry Table

26008_ch07_p233-266.indd 258 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   259

  15.	Using the FD list in problem 14, identify the FDs that violate 2NF. Using
knowledge of the FDs that violate 2NF, design a collection of tables that satisfies
2NF but not 3NF. This problem applies to Appendix 7.A.

  16.	Using the FD list in problem 14, identify the FDs that violate 3NF. Using
knowledge of the FDs that violate 2NF, design a collection of tables that satisfies
3NF. This problem applies to Appendix 7.A.

  17.	Apply the simple synthesis procedure to produce BCNF tables using the FD list
given in problem 14. Show the results of each step in your analysis.

  18.	Using the following FD list for a simplified graduate student advising database,
identify insertion, update, and deletion anomalies if all columns are in one table
(big graduate student advising table). There is only one candidate key for the
big graduate student advising table: the combination of PlanNo, CourseNo, and
PaperNo.

•	 StdNo → StdName, StdAdmitSems, StdAdmitYear, StdStatus, StdEmail
•	 StdEmail → StdNo, StdStatus
•	 CourseNo → CrsDesc, CrsUnits, CrsDeptName, CrsCollName
•	 PlanNo → PlanDate, PlanAdvName, StdNo, PlanApproval, StdName
•	 PlanNo, CourseNo → Semester, Year, CreditType, Grade
•	 PlanNo, PaperNo → DateSubmit, DateDecided, Decision, PaperTitle, StdNo

  19.	Using the FD list in problem 18, identify the FDs that violate 2NF. Using
knowledge of the FDs that violate 2NF, design a collection of tables that satisfies
2NF but not 3NF. This problem applies to Appendix 7.A.

  20.	Using the FD list in problem 18, identify the FDs that violate 3NF. Using
knowledge of the FDs that violate 2NF, design a collection of tables that satisfies
3NF. This problem applies to Appendix 7.A.

  21.	Apply the simple synthesis procedure to produce BCNF tables using the FD list
given in problem 18. Show the results of each step in your analysis.

  22.	Convert the ERD in Figure 7.P2 into tables and perform further normalization
as needed. After converting the ERD to tables, specify FDs for each table. Since
the primary key of each table determines the other columns, you should only
identify FDs in which the LHS is not the primary key. If a table is not in BCNF,
explain why and split it into two or more tables that are in BCNF.

StdID
Name
Phone
Email
Web
Major
Minor
GPA
AdviserNo
AdviserName

Student

InterviewID
Date
Time
BldgName
RoomNo
RoomType

Interview

Attends

InterviewerID
Name
Phone
Email

Interviewer

CompID
CompName

Company

PosID
Name

Position

City
State

CompPos

Conducts

WorksFor

O�ers

Available

FIGURE 7.P2
ERD for Problem 22

26008_ch07_p233-266.indd 259 3/2/18 10:00 PM

260   Part 4  Relational Database Design

  23.	Convert the ERD in Figure 7.P3 into tables and perform further normalization
as needed. After the conversion, specify FDs for each table. Since the primary
key of each table determines the other columns, you should only identify FDs in
which the LHS is not the primary key. If a table is not in BCNF, explain why and
split it into two or more tables that are in BCNF.

  24.	Convert the ERD in Figure 7.P4 into tables and perform further normalization as
needed. After the conversion, write down FDs for each table. Since the primary
key of each table determines the other columns, you should only identify FDs
in which the LHS is not the primary key. If a table is not in BCNF, explain why
and split it into two or more tables that are in BCNF. In the User entity type,
UserEmail is unique. In the ExpenseCategory entity type, CatDesc is unique. In the
StatusType entity type, StatusDesc is unique. For the ExpenseItem entity type, the
combination of the Categorizes and Contains relationships are unique.

  25.	Convert the ERD in Figure 7.P5 into tables and perform further normalization as
needed. After the conversion, write down FDs for each table. Since the primary
key of each table determines the other columns, you should only identify FDs in
which the LHS is not the primary key. If a table is not in BCNF, explain why and
split it into two or more tables that are in BCNF. In the Employee entity type, each
department has one manager. All employees in a department are supervised
by the same manager. For the other entity types, FacName is unique in Facility,
ResName is unique in Resource, and CustName and CustEmail are unique in
Customer.

  26.	Extend the solution to the problem described in Section 7.2.4 about a database
to track submitted conference papers. In the description, underlined parts are
new. Write down the new FDs. Using the simple synthesis procedure, design
a collection of tables in BCNF. Note dependencies that are not important to
the problem and relax your design from BCNF as appropriate. Justify your
reasoning.

FIGURE 7.P3
ERD for Problem 23

HomeID
Street
City
State
Zip
NoBedrms
NoBaths
SqFt
OwnOccupied
Commission
SalesPrice

Home

AgentID
Name
Phone

Agent

Lists

O�ceID
MgrName
Phone
Address

O�ce

SpouseName
Profession
SpouseProfession

Owner

Owns

WorksAt

PerNo
Name
Phone

Person

Address
Bthrms
Bdrms
Minprice
Maxprice

Buyer

MakesO�er

WorksWith

ExpDate PriceCounter O�er D,C

26008_ch07_p233-266.indd 260 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   261

ExpenseCategory

CatNo
CatDesc
CatLimitAmount

ExpenseReport

ERNo
ERDesc
ERSubmitDate
ERStatusDate

StatusOf

User

UserNo
UserFirstName
UserLastName
UserPhone
UserEMail
UserLimit

Submits

Manages

ExpenseItem

ExpItemNo
ExpItemDesc
ExpItemDate
ExpItemAmount

Contains

Amount

StatusType

StatusNo
StatusDesc

Categorizes

Limits

FIGUE 7.P4
ERD for Problem 24

FIGURE 7.P5
ERD for Problem 25

EventPlanLine

LineNo
EPLTimeStart
EPLTimeEnd
EPLQty

EventRequest

ERNo
ERDateHeld
ERRequestDate
ERAuthDate
ERStatus
EREstCost
EREstAudience

Customer

CustNo
CustName
CustContactName
CustPhone
CustEMail
CustAddr

Submits

EventPlan

EPNo
EPDate
EPNotes
EPActivity

Requires

Resource

ResNo
ResName
ResRate

PartOf

Facility

FacNo
FacName

Location

LocNo
LocName

Employee

EmpNo
EmpName
EmpPhone
EmpEMail
EmpDeptNo
EmpMgrNo

Supervises

Requires

Contains

Supports

HeldAt

•	 Author information includes a unique author number, a name, a mailing
address, and a unique but optional electronic address.

•	 Paper information includes the list of authors, the primary author, the paper
number, the title, the abstract, the review status (pending, accepted, rejected),
and a list of subject categories.

26008_ch07_p233-266.indd 261 3/2/18 10:00 PM

262   Part 4  Relational Database Design

•	 Reviewer information includes the reviewer number, the name, the mailing
address, a unique but optional electronic address, and a list of expertise
categories.

•	 A completed review includes the reviewer number, the date, the paper
number, comments to the authors, comments to the program chairperson, and
ratings (overall, originality, correctness, style, and relevance).

•	 The conference organizer should maintain master lists of expertise categories
and subject categories. Each category includes a category number and name.

•	 Accepted papers are assigned to sessions. Each session has a unique session
identifier, a list of papers, a presentation order for each paper, a session title,
a session chairperson, a room, a date, a start time, and a duration. Note that
each accepted paper can be assigned to only one session.

  27.	For the following description of an airline reservation database, identify
functional dependencies and construct normalized tables. Using the simple
synthesis procedure, design a collection of tables in BCNF. Note dependencies
that are not important to the problem and relax your design from BCNF as
appropriate. Justify your reasoning.

The Fly by Night Operation is a newly formed airline aimed at the burgeoning
market of clandestine travelers (fugitives, spies, con artists, scoundrels, dead-
beats, cheating spouses, politicians, etc.). The Fly by Night Operation needs a
database to track flights, customers, fares, airplane performance, and person-
nel assignment. Since the Fly by Night Operation is touted as a “fast way out
of town,” individual seats are not assigned, and flights of other carriers are
not tracked. More specific notes about different parts of the database are listed
below:

•	 Information about a flight includes its unique flight number, its origin,
its (supposed) destination, and (roughly) estimated departure and arrival
times. To reduce costs, the Fly by Night Operation only has nonstop flights
with a single origin and destination.

•	 Flights are scheduled for one or more dates with an airplane and a crew
assigned to each scheduled flight, and the remaining capacity (seats
remaining) noted. In a crew assignment, the employee number and the role
(e.g., captain, flight attendant) are noted.

•	 Airplanes have a unique serial number, a model, a capacity, and a next
scheduled maintenance date.

•	 The maintenance record of an airplane includes a unique maintenance
number, a date, a description, the serial number of the plane, and the
employee responsible for the repairs.

•	 Employees have a unique employee number, a name, a phone, and a job
title.

•	 Customers have a unique customer number, a phone number, and a name
(typically an alias).

•	 Records are maintained for reservations of scheduled flights including
a unique reservation number, a flight number, a flight date, a customer
number, a reservation date, a fare, and the payment method (usually cash
but occasionally someone else’s check or credit card). If the payment is
by credit card, a credit card number and an expiration date are part of the
reservation record.

  28.	For the following description of an accounting database, identify functional
dependencies and construct normalized tables. Using the simple synthesis
procedure, design a collection of tables in BCNF. Note dependencies that are

26008_ch07_p233-266.indd 262 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   263

not important to the problem and relax your design from BCNF as appropriate.
Justify your reasoning.

•	 The primary function of the database is to record entries into a register. A user
can have multiple accounts and there is a register for each account.

•	 Information about users includes a unique user number, a name, a street
address, a city, a state, a zip, and a unique but optional e-mail address.

•	 Accounts have attributes including a unique number, a unique name, a start
date, a last check number, a type (checking, investment, etc.), a user number,
and a current balance (computed). For checking accounts, the bank number
(unique), the bank name, and the bank address are also recorded.

•	 An entry contains a unique number, a type, an optional check number, a
payee, a date, an amount, a description, an account number, and a list of entry
lines. The type can have various values including ATM, next check number,
deposit, and debit card.

•	 In the list of entry lines, the user allocates the total amount of the entry to
categories. An entry line includes a category name, a description of the entry
line, and an amount.

•	 Categories have other attributes not shown in an entry line: a unique category
number (name is also unique), a description, a type (asset, expense, revenue,
or liability), and a tax-related status (yes or no).

•	 Categories are organized in hierarchies. For example, there is a category Auto
with subcategorizes Auto:fuel and Auto:repair. Categories can have multiple
levels of subcategories.

  29.	For the ERDs in Figure 7.P6, describe assumptions under which the ERDs
correctly depict the relationships among operators, machines, and tasks. In each
case, choose appropriate names for the relationships and describe the meaning
of the relationships. In part (b) you should also choose the name for the new
entity type.

a)

OperatorNo
OperName

Operator

MachNo
MachName

Machine

TaskNo
TaskName

Task

R1 R2

b)

OperatorNo
OperName

Operator

MachNo
MachName

Machine

TaskNo
TaskName

Task

New Entity Type
R1

R2

R3

FIGURE 7.P6
ERDs for Problem 29

26008_ch07_p233-266.indd 263 3/2/18 10:00 PM

264   Part 4  Relational Database Design

  30.	For the following description of a database to support physical plant operations,
identify functional dependencies and construct normalized tables. Using
the simple synthesis procedure, design a collection of tables in BCNF. Note
dependencies that are not important to the problem and relax your design from
BCNF as appropriate. Justify your reasoning.

Design a database to assist physical plant personnel in managing key cards
for access to buildings and rooms. The primary purpose of the database is to
ensure proper accounting for all key cards.

•	 A building has a unique building number, a unique name, and a location
within the campus.

•	 A room has a unique room number, a size (physical dimensions), a
capacity, a number of entrances, and a description of equipment in the
room. Each room is located in exactly one building. The room number
includes a building identification and followed by an integer number. For
example, room number KC100 identifies room 100 in the King Center (KC)
building.

•	 An employee has a unique employee number, a name, a position, a unique
e-mail address, a phone, and an optional room number in which the
employee works.

•	 Magnetically encoded key cards are designed to open one or more
rooms. A key card has a unique card number, a date encoded, a list of
room numbers that the key card opens, and the number of the employee
authorizing the key card. A room may have one or more key cards that
open it. A key type must be authorized before it is created.

  31.	For the ERDs in Figure 7.P7, describe assumptions under which the ERDs
correctly depict the relationships among work assignments, tasks, and materials.
A work assignment contains the scheduled work for a construction job at a
specific location. Scheduled work includes the tasks and materials needed for
the construction job. In each case, choose appropriate names for the relationships
and describe the meaning of the relationships. In part (b) you should also choose
the name for the new entity type.

  32.	For the following description of a database to support volunteer tracking,
identify functional dependencies and construct normalized tables. Using
the simple synthesis procedure, design a collection of tables in BCNF. Note
dependencies that are not important to the problem and relax your design from
BCNF as appropriate. Justify your reasoning.

Design a database to support organizations that need to track volunteers, vol-
unteer areas, events, and hours worked at events. The system will be initially
deployed for charter schools that have mandatory parent participation as
volunteers. Volunteers register as a dual- or single-parent family. Volunteer
coordinators recruit volunteers for volunteer areas. Event organizers recruit
volunteers to work at events. Some events require a schedule of volunteers
while other events do not use a schedule. Volunteers work at events and record
the time worked.

•	 For each family, the database records the unique family number, the first
and last name of each parent, the home and business phones, the mailing
address (street, city, state, and zip), and an optional e-mail address. For
single-parent households, information about only one parent is recorded.

•	 For each volunteer area, the database records the unique volunteer area,
the volunteer area name, the group (faculty senate or parent teacher
association) controlling the volunteer area, and the family coordinating
the volunteer area. In some cases, a family coordinates more than one
volunteer area.

26008_ch07_p233-266.indd 264 3/2/18 10:00 PM

Chapter 7  Normalization Concepts and Processes   265

•	 For events, the database records the unique event number, the event
description, the event date, the beginning and ending time of the event,
the number of required volunteers, the event period and expiration date
if the event is a recurring event, the volunteer area, and the list of family
volunteers for the event. Families can volunteer in advance for a collection
of events.

•	 After completing a work assignment, hours worked are recorded. The
database contains the first and last name of the volunteer, the family the
volunteer represents, the number of hours worked, the optional event, the
date worked, the location of the work, and optional comments. Usually the
volunteer is one of the parents of the family, but occasionally the volunteer
is a friend or relative of the family. The event is optional to allow volunteer
hours for activities not considered as events.

  33.	For the big order database table, list FDs with the column CustNo as the
determinant that are falsified by sample rows. For each FD, identify the sample
rows that falsify it. Remember that it takes two rows to falsify an FD. The sample
rows are repeated in Table 7-P4 for your reference.

a) WorkAssignment
WANo
WADate
WALocation
WADesc

Material
MatNo
MatName

TaskNo
TaskName

Task

R1

R2

b) WorkAssign

WANo
WADate
WALocation
WADesc

Material

MatNo
MatName

TaskNo
TaskName

Task

New Entity Type
R1

R2

R3

FIGURE 7.P7
ERDs for Problem 31

TABLE 7-P4
Sample Data for the Big
Order Database Table

OrdNo ItemNo QtyOrd PlantNo CustNo CustBal CustDisc ReordPt OrdDate

O1 I1 10 P1 C1 100 0.10 10 1/15/2018

O1 I2 10 P1 C1 100 0.10 10 1/15/2018

O2 I3 5 P1 C2 200 0.05 20 1/16/2018

O2 I4 5 P1 C2 200 0.05 10 1/16/2018

O3 I1 10 P2 C1 100 0.10 10 1/17/2018

26008_ch07_p233-266.indd 265 3/2/18 10:00 PM

266   Part 4  Relational Database Design

  34.	Following on problem 33, list FDs with the column CustNo as the determinant
that the sample rows do not falsify. Do not show falsifications for CustNo →
CustBal, CustDisc because these FDs are true. For each FD, add one or more
sample rows and then identify sample rows that falsify the FD. Remember that it
takes two rows to falsify an FD.

  35.	Add sample rows to Table 7-P4 to demonstrate falsifications of the following
FDs. Remember that it takes two rows to falsify an FD.

•	 ItemNo, PlantNo → CustNo
•	 ItemNo, PlantNo → CustBal
•	 ItemNo, PlantNo → CustDisc
•	 ItemNo, PlantNo → OrdNo
•	 ItemNo, PlantNo → OrdDate

  36.	Table 7-P5 shows sample rows with basic customer details along with a listing of
a customer’s stock portfolio. For brevity, some basic columns have been omitted.
Each row of the table allows two stocks to be listed. For customers with more
than two stocks in their portfolio, additional rows are created. For example,
customer with CustId 4 has two rows with three stocks. Redesign the table so
that it has only one stock per row.

  37.	In the revised table with one stock per row, identify the functional dependencies.
Each stock appears at most one time in a customer’s portfolio. A customer may
have many stocks in a portfolio. What is the primary key of the table?

  38.	Revise the table design so that it is in BCNF using the FDs identified in problem 37.
Identify the primary key, candidate keys, and foreign keys in your design.

  39.	The EmpSkill table has the following FDs. The EmpSkill table has two candidate
keys, <EmpNo, SkillNo> and <EmpEmail, SkillNo>. Is EmpSkill table in BCNF?
Explain your reasoning.

	 EmpSkill(EmpNo, SkillNo, EmpEmail, PayRate)
	 EmpNo, SkillNo → PayRate
	 EmpEmail, SkillNo → PayRate
	 EmpNo → EmpEmail
	 EmpEmail → EmpNo

  40.	If the EmpSkill table in problem 39 is not in BCNF, apply the simple synthesis
procedure to achieve a table design satisfying BCNF.

TABLE 7-P5
Sample Rows for the Big
Customer Portfolio Table

CustId CName CZip Stock1 Price1 Shares1 Stock2 Price2 Shares2

3 Sanchez 80217 IBM 100 20

4 Smith 80113 ATT 40 25 IBM 100 10

4 Smith 80113 GM 50 20

REFERENCES FOR FURTHER STUDY

The subject of normalization can be much more detailed than described in this chapter.
For a more mathematical presentation of normalization, consult computer science
books such as Elmasri and Navathe (2017). The simple synthesis procedure was
adapted from Hawryszkiewycz (1984). For a classic tutorial on normalization, con-
sult Kent (1983). Fagin (1981) describes domain key normal form, the ultimate nor-
mal form. Armstrong (1974) presented axioms for deriving functional dependencies of
which transitivity is the most prominent. The DevX Database Zone (www.devx.com)
has practical advice about database development and data modeling.

26008_ch07_p233-266.indd 266 3/2/18 10:00 PM

267  

OVERVIEW
Chapters 5 to 7 covered the conceptual and logical design
phases of database development. You learned about entity
relationship diagrams, data modeling practice, schema
conversion, and normalization. This chapter extends your
database design skills by explaining the process to achieve
an efficient implementation of a table design.

To become proficient in physical database design,
you need to understand the process and environment.
This chapter describes the process of physical data-
base design including the inputs, outputs, and objec-
tives along with two critical parts of the environment,
file structures and query optimization. Most choices in
physical database design relate to characteristics of file
structures and query optimization decisions.

After understanding the process and environment,
you are ready to perform physical database design.
In performing physical database design, you should
provide detailed inputs and make choices to balance
needs of retrieval and update applications. This chapter
describes the complexity of table profiles and applica-
tion profiles and their importance for physical design
decisions. Index selection is the most important choice
of physical database design. This chapter describes
trade-offs in index selection and provides index selection
rules that you can apply to moderate-size databases. In
addition to index selection, this chapter presents denor-
malization, record formatting, and parallel processing as
techniques to improve database performance.

Learning Objectives

This chapter describes physical database design, the final phase of the
database development process. Physical database design transforms a
table design from the logical design phase into an efficient implementation
that supports all applications using the database. After this chapter, the
student should have acquired the following knowledge and skills:

•	 Describe the inputs, outputs, and objectives of physical database
design

•	 Appreciate difficulties of performing physical database design and
the need for periodic review of physical database design choices

•	 Explain characteristics of sequential, Btree, hash, bitmap, and
columnstore file structures

•	 Understand choices made by a query optimizer and areas in which
optimization decisions can be improved

•	 Understand trade-offs in index selection and denormalization
decisions

•	 Understand the need for computer-aided tools to assist with physical
database design decisions

Physical
Database Design

8
chapter

26008_ch08_p267-318.indd 267 3/2/18 10:10 PM

268   Part 4  Relational Database Design

Decisions in the physical database design phase involve the storage level of a database.
Collectively, the storage level decisions are known as the internal schema. This section
describes the storage level as well as the objectives, inputs, and outputs of physical
database design.

8.1.1  Storage Level of Databases
The storage level is closest to the hardware and operating system. At the storage level,
a database consists of physical records (also known as blocks or pages) organized into
files. A physical record is a collection of bytes that are transferred between volatile
storage in main memory and stable storage on a disk (magnetic hard drive or solid
state device). Main memory is considered volatile storage because the contents of
main memory may be lost if a failure occurs. A file is a collection of physical records
organized for efficient access. Figure 8.1 depicts relationships between logical records
(rows of a table) and physical records stored in a file. Typically, a physical record con-
tains multiple logical records. The size of a physical record is a power of two such as
1,024 (210) or 4,096 (212) bytes. A large logical record may be split over multiple physical
records. Another possibility is that logical records from more than one table are stored
in the same physical record.

The DBMS and the operating system work together to satisfy requests for logical
records made by applications. Figure 8.2 depicts the process of transferring physical
and logical records between a disk, DBMS buffers, and application buffers. Normally,
the DBMS and the application have separate memory areas known as buffers. When
an application makes a request for a logical record, the DBMS locates the physical
record containing it. In the case of a read operation, the operating system transfers the
physical record from disk to the memory area of the DBMS. The DBMS then transfers

Physical Record
collection of bytes that are
transferred between volatile
storage in main memory and
stable storage on a disk. The
number of physical record
accesses is an important
measure of database
performance.

8.1  OVERVIEW OF PHYSICAL DATABASE DESIGN

FIGURE 8.1
Relationships between
Logical Records (LR) and
Physical Records (PR) LR

LR

LR

PR

PR

LRT1

(a) Multiple LRs per PR (b) LR split across PRs (c) PR containing LRs from
 di�erent tables

PR LR
PR

LRT2

LRT2

LR1

LR2

LR3

Application bu�ers:
Logical records (LRs)

DBMS bu�ers:
Logical records (LRs) inside
physical records (PRs)

LR1

LR2

LR3

LR4

LR4

Operating system:
Physical records
(PRs) on disk

read read

writewrite

PR1

PR2

PR1

PR2

FIGURE 8.2
Transferring Physical Records

26008_ch08_p267-318.indd 268 3/2/18 10:10 PM

Chapter 8  Physical Database Design   269

the logical record to the application’s buffer. In the case of a write operation, the trans-
fer process is reversed.

A logical record request may not result in a physical record transfer because of
buffering. The DBMS tries to anticipate the needs of applications so that correspond-
ing physical records already reside in the DBMS buffers. A significant difficulty about
predicting database performance is the uncertainty about the contents of DBMS buf-
fers. If a DBMS buffer contains a requested logical record, a physical record transfer
is not necessary. For example, if multiple applications are accessing the same logical
records, the corresponding physical records may reside in the DBMS buffers. Conse-
quently, the uncertainty about the contents of DBMS buffers can make physical data-
base design difficult.

8.1.2  Objectives and Constraints
The goal of physical database design is to minimize response time to access and
change a database. Because response time is difficult to estimate directly, minimizing
computing resources is used as a substitute measure. The resources that are consumed
by database processing are physical record transfers, central processing unit (CPU)
operations, main memory, and disk space. The latter two resources (main memory and
disk space) are considered as constraints rather than resources to minimize. Minimiz-
ing main memory and disk space can lead to high response times.

The number of physical record accesses limits the performance of most database
applications. A physical record access may involve mechanical movement of a disk
including rotation and magnetic head movement. Mechanical movement is generally
much slower than electronic switching of main memory. The speed of a disk access is
measured in milliseconds (thousandths of a second) whereas a memory access is mea-
sured in nanoseconds (billionths of a second). Thus, a physical record access may be
several orders of magnitude slower than a main memory access. Reducing the number
of physical record accesses will usually improve response time.

The recent movement to incorporate solid state devices changes limitations on
database performance in some applications. Solid state devices use electronic switch-
ing to sharply reduce latency or delay involved with electromechanical disks. Solid
state storage can be used in place of hard drives for moderate-size databases. For larger
databases, solid state drives complement hard drives providing a faster intermediate
level of storage for frequently accessed data.

CPU usage also can be a factor in some database applications. For example, sort-
ing requires a large number of comparisons and assignments. These operations, per-
formed by the CPU, are many times faster than a physical record access, however. To
accommodate both physical record accesses and CPU usage, a weight can be used to
combine them into one measure. The weight is usually close to 0 to reflect that many
CPU operations can be performed in the time to perform one physical record transfer
with a hard disk. For solid state devices, the weight is larger to reflect much faster elec-
tronic switching to read data. Random access times for solid state devices are about
50 times faster than hard drives (0.1 milliseconds versus 5 milliseconds). Transfer rates
can be as much as 5 times faster for solid state storage than hard drives.

Combined Measure of Database Performance: PRA + W * CPU-OP where

PRA is the number of physical record accesses,
CPU-OP is the number of CPU operations such as comparisons and assignments,
and
W is a weight, a real number between 0 and 1.

The objective of physical database design is to minimize the combined measure for
all applications using the database. Generally, improving performance on retrieval
applications comes at the expense of update applications and vice versa. Therefore, an

26008_ch08_p267-318.indd 269 3/2/18 10:10 PM

270   Part 4  Relational Database Design

important theme of physical database design is to balance the needs of retrieval and
update applications.

The measures of performance are too detailed to estimate manually except for
simple situations. Complex optimization software calculates estimates using detailed
cost formulas. The optimization software is usually part of an SQL compiler. Under-
standing the nature of the performance measure helps one to interpret choices made
by the optimization software.

For most choices in physical database design, the amounts of main memory and
disk space are usually fixed. In other words, main memory and disk space are con-
straints of the physical database design process. As with constraints in other optimi-
zation problems, you should consider the effects of changing the given amounts of
main memory and disk space. Increasing the amounts of these resources can improve
performance. The amount of performance improvement may depend on many factors
such as the DBMS, table design, and applications using the database.

8.1.3  Inputs, Outputs, and Environment
Physical database design consists of a number of different inputs and outputs as
depicted in Figure 8.3 and summarized in Table 8-1. The starting point is the table
design from the logical database design phase. The table and application profiles are
used specifically for physical database design. Because these inputs are so critical to
the physical database design process, they are discussed in more detail in Section 8.2.
The most important outputs are decisions about file structures and data placement.
Section 8.5 discusses these decisions in more detail. For simplicity, decisions about
other outputs are made separately even though the outputs can be related. For exam-
ple, file structures are usually selected separately from denormalization decisions
even though denormalization decisions can affect file structure decisions. Thus, physi-
cal database design is better characterized as a sequence of decision-making processes
rather than one large process.

Knowledge about file structures and query optimization are in the environment of
physical database design rather than being inputs. The knowledge can be embedded
in database design tools. If database design tools are not available, a designer infor-
mally uses knowledge about the environment to make physical database decisions.
Acquiring the knowledge can be difficult because much of it is specific to each DBMS.
Because knowledge of the environment is so crucial in the physical database design
process, Sections 8.3 and 8.4 discuss it in more detail.

8.1.4  Difficulties
Before learning more details about physical database design, you should understand
difficulties of physical database design. Difficulties involve the number of decisions,

FIGURE 8.3
Inputs, Outputs, and
Environment of Physical
Database Design

Physical
database

design

Table design
(from logical database design)

Table
profiles

Application
profiles

File structures

Data placement

Data formatting

Denormalization

Knowledge about file structures and
query optimization

26008_ch08_p267-318.indd 270 3/2/18 10:10 PM

Chapter 8  Physical Database Design   271

8.2  INPUTS OF PHYSICAL DATABASE DESIGN

relationships among decisions, detailed inputs, complex environment, and uncertainty
in predicting physical record accesses. These difficulties are briefly discussed below. In
the remainder of this chapter, you should remember these difficulties.

•	 The number of possible choices available to a designer can be large. For
databases with many columns, the number of possible choices can be too large to
evaluate even on large computers.

•	 Some decisions cannot be made in isolation. For example, file structure decisions
for one table can influence the decisions for other tables.

•	 The quality of decisions is limited by the precision of table and application
profiles. However, these inputs can be large and difficult to collect. In addition,
the inputs change over time so that periodic revision is necessary.

•	 The environment knowledge is specific to each DBMS. Much of the knowledge is
either a trade secret or too complex to apply without software assistance.

•	 The number of physical record accesses is difficult to predict because of
uncertainty about the contents of DBMS buffers. The uncertainty arises because
the mix of applications accessing the database is constantly changing.

•	 The usage of two types of permanent storage (magnetic and solid state)
complicates physical record access cost estimation. Physical record accesses
should be divided between hard disk and solid state accesses due to their speed
differences. However, predicting the number of physical records on the two
types of storage can be as difficult as predicting the contents of DBMS buffers.

TABLE 8-1
Summary of Inputs, Outputs,
and Environment of Physical
Database Design

Item Description

Inputs

  Table profiles Statistics about each table such as the number of physical records, number of
rows, unique column values, and distribution of column values

  Application profiles Statistics for each form, report, and query such as the tables accessed/updated,
the frequency of access/update, and values used in search requests

Outputs

  File structures Method of organizing physical records for each table

  Data placement Criteria for arranging physical records in close proximity

  Data formatting Usage of compression and derived data

  Denormalization Combining separate tables into a single table

Environment knowledge

  File structures Characteristics such as operations supported and cost formulas

  Query optimization Access decisions made by the optimization component for each query

Physical database design requires inputs specified in sufficient detail. Inputs speci-
fied without enough detail can lead to poor decisions in physical database design and
query optimization. This section describes the level of detail recommended for both
table profiles and application profiles.

8.2.1  Table Profiles
A table profile summarizes a table as a whole, the columns within a table, and rela-
tionships between tables as shown in Table 8-2. Because table profiles are tedious to
construct manually, most DBMSs provide tools to construct them automatically. The
designer may need to periodically execute the tools so that profiles do not become

26008_ch08_p267-318.indd 271 3/2/18 10:10 PM

272   Part 4  Relational Database Design

obsolete. For large databases, table profiles may be estimated on samples of a data-
base. Using the entire database can be too time-consuming and disruptive.

For column and relationship summaries, the distribution conveys the number of
rows and related rows for column values. The distribution of values can be specified
in a number of ways. A simple way is to assume that the column values are uniformly
distributed. Uniform distribution means that each value has an equal number of rows.
If the uniform value assumption is made, only the minimum and maximum values
must be stored.

A more detailed way to specify a distribution is to use a histogram. A histogram is
a two-dimensional graph in which the x-axis represents column ranges and the y-axis
represents the number of rows. For example, the first bar in Figure 8.4 means that 9,000
rows have a salary between $10,000 and $50,000. Traditional equal-width histograms
do not work well with skewed data because a large number of ranges are necessary to
control estimation errors. In Figure 8.4, estimating the number of employee rows using
the first two ranges leads to large estimation errors because more than 97% of employ-
ees have salaries less than $80,000. For example, you would calculate about 1,125 rows
(12.5% of 9,000) to estimate the number of employees earning between $10,000 and
$15,000 using Figure 8.4. However, the actual number of rows is much smaller because
few employees earn less than $15,000.

Because skewed data can lead to poor estimates using traditional (equal-width)
histograms, most DBMSs use equal-height histograms as shown in Figure 8.5. In an
equal-height histogram, each range contains about the same number of rows. Thus
the width of ranges varies, but the height remains about the same. Most DBMSs use
equal-height histograms because the maximum and expected estimation errors can be
controlled with a small number of ranges, typically 20 to 50.

Oracle 12c provides hybrid histograms, a variation of equal-height histograms to
improve row count estimates involving popular values. A hybrid histogram stores
row frequencies for all popular column values in addition to the normal information
for equal-height histograms. A column value is popular if its row frequency is larger
than the number of rows divided by the number of buckets in the histogram. A hybrid
histogram provides improved row count estimates for conditions involving popular
column values.

TABLE 8-2
Typical Components of a
Table Profile

Component Statistics

Table Number of rows and physical records

Column Number of unique values, distribution of values, correlation among columns

Relationship Distribution of the number of related rows

FIGURE 8.4
Example Equal-Width
Histogram for the Salary
Column

Salary Histogram (Equal Width)

0
1000

2000
3000
4000
5000
6000
7000
8000
9000

10000 –
50000

50001 –
90000

90001 –
130000

130001 –
170000

170001 –
210000

210001 –
250000

250001 –
290000

290001 –
330000

330001 –
370000

370001 –
410000

Salary

N
um

be
r

of
 R

ow
s

26008_ch08_p267-318.indd 272 3/2/18 10:10 PM

Chapter 8  Physical Database Design   273

An optimizing SQL compiler uses table profiles to estimate the combined mea-
sure of performance presented in Section 8.1.2. For example, the number of physical
records is used to calculate the physical record accesses to retrieve all rows of a table.
The distribution of column values is needed to estimate the fraction of rows that sat-
isfy a condition in a query. For example, to estimate the fraction of rows that satisfy
the condition, Salary > 45000, you would sum the number of rows in the last three
bars of Figure 8.5 and use linear interpolation in the seventh bar.

It is sometimes useful to store more detailed data about columns. If columns are
related, errors can be made when estimating the fraction of rows that satisfy condi-
tions connected by logical operators. For example, if the salary and age columns are
related, the fraction of rows satisfying the logical expression, Salary > 45000
AND Age < 25, cannot be accurately estimated by knowing the distribution of
salary and age alone. Data about the statistical relationship between salary and age
are also necessary. Because summaries about column relationships are important for
determination of efficient retrieval plans, some enterprise DBMSs provide tools to
determine important groups of related columns and efficiently store relationships
among them.

Another Histogram Example  The histograms shown in Figures 8.4 and 8.5 dem-
onstrate skewed salary data for a typical moderate-sized business or government
agency. The existence of a few large salaries (such as CEO and agency director) makes
traditional histograms a poor fit. Most enterprise DBMSs do not provide traditional
(equal-width) histograms because of estimation errors caused by extreme values.
Instead, most enterprise DBMSs provide a choice between an equal-height histogram
and the uniform value assumption. In most cases, the uniform value assumption
using minimum and maximum values provides even worse estimates than an equal-
width histogram as the uniform value assumption is a traditional histogram with only
one range.

Equal-height histograms work well on symmetric data as shown in Figures 8.6
and 8.7. The histograms were created using the Microsoft Excel histogram tool using
a data set of the highest average salaries of retirees in the Denver (Colorado) Pub-
lic Schools from 2001 to 2006. Highest average salaries (over the last three years of
employment in the Denver Public Schools) are important determinants for pension
benefits. The equal-width histogram in Figure 8.6 is reasonably symmetric because
very high paid employees do not participate in the pension plan. Because of the lack
of skew, the equal-width histogram would provide better row fraction estimates for
some queries than the equal-height histogram shown in Figure 8.7. The ranges in the
equal-height histogram were determined by the GATHER_TABLE_STATS procedure
in the Oracle DBMS_STATS package. However, the performance of the equal-height
histogram can be easily improved by doubling the ranges with no noticeable perfor-
mance overhead.

0
500

1000
1500

2000
2500
3000
3500
4000
4500
5000

12000 –
21400

21401 –
27054

27055 –
32350

32351 –
35600

35601 –
39032

39033 –
42500

42501 –
49010

49011 –
58100

58101 –
67044

68045 –
410000

N
um

be
r

of
 R

ow
s

Salary

Salary Histogram (Equal Height) FIGURE 8.5
Example Equal-Height
Histogram for the Salary
Column

26008_ch08_p267-318.indd 273 3/2/18 10:10 PM

274   Part 4  Relational Database Design

8.2.2  Application Profiles
Application profiles summarize the queries, forms, reports, and web pages that access
a database as shown in Table 8-3. For forms, the frequency of using the form for each
kind of operation (insert, update, delete, and retrieval) should be specified. For queries,
reports and web pages, the distribution of parameter values encodes the number of
times the query/report is executed with various parameter values. For all application
objects, execution statistics indicate the computing resources consumed by executing
SQL statements associated with applications. Execution statistics cover disk access,
CPU usage, communication system usage, rows impacted, and elapsed time. Enter-
prise DBMSs typically provide tools to collect data about SQL statements executed
by applications. For example, Oracle provides the Automatic Workload Repository to
store data about SQL statements. The major limitation of application profile tools pro-
vided by enterprise DBMSs is the lack of connection between applications and associ-
ated SQL statements.

Table 8-4 depicts profiles for several applications of the university database. The
frequency data are specified as an average per unit time period such as per day. Some-
times it is useful to summarize frequencies in more detail. Specifying peak frequencies
and variance in frequencies can help avoid problems with peak usage. In addition,
importance of applications can be specified as response time limits so that physical
designs are biased towards critical applications.

0
100

10
000

20000

30
000

40
000

50000

60000

70
000

80000

90000

10
0000

More

200
300
400
500
600
700

N
um

be
r

of
 R

ow
s

Highest Average Salary

Equal-Width HistogramFIGURE 8.6
Equal-Width Histogram for
the Highest Average Salary
Column

2931
8

40
12

0

47
48

6
5175

1

548
46

5631
0

58866

62507

70
48

2

12
244

4
More

0
20
40
60
80

100
120
140
160
180

N
um

be
r

of
 R

ow
s

Highest Average Salary

Equal-Height HistogramFIGURE 8.7
Equal-Height Histogram for
the Highest Average Salary
Column

TABLE 8-3
Typical Components of an
Application Profile

Application Type Statistics

Query Frequency, distribution of parameter values, execution statistics

Form Frequency of insert, update, delete, and retrieval operations, execution statistics

Report Frequency, distribution of parameter values, execution statistics

Web page Frequency, distribution of parameter values, execution statistics

26008_ch08_p267-318.indd 274 3/2/18 10:10 PM

Chapter 8  Physical Database Design   275

As mentioned in Section 8.1, selecting among alternative file structures is one of the
most important choices in physical database design. In order to choose intelligently,
you must understand characteristics of available file structures. This section describes
the characteristics of common file structures available in most DBMSs.

8.3.1  Sequential Files
The simplest kind of file structure stores logical records in insertion order. New logi-
cal records are appended to the last physical record in the file, as shown in Figure 8.8.
Unless logical records are inserted in a particular order and no deletions are made, the
file becomes unordered. Unordered files are sometimes known as heap files because
of the lack of order.

The primary advantage of unordered sequential files is fast insertion. However,
when logical records are deleted, insertion becomes more complicated. For example, if
the second logical record in PR1 is deleted, space is available in PR1. A list of free space
must be maintained to tell if a new record can be inserted into the empty space instead
of into the last physical record. Alternately, new logical records can always be inserted
in the last physical record. However, periodic reorganization to reclaim lost space due
to deletions is necessary.

Because ordered retrieval is sometimes needed, ordered sequential files can be
preferable to unordered sequential files. Logical records are arranged in key order
where the key can be any column, although it is often the primary key. Ordered
sequential files are faster when retrieving in key order, either the entire file or a sub-
set of records. The primary disadvantage to ordered sequential files is slow insertion
speed. Figure 8.9 demonstrates that records must sometimes be rearranged during the
insertion process. The rearrangement process can involve movement of logical records
between blocks and maintenance of an ordered list of physical records.

Sequential File
a simple file organization in
which records are stored
in insertion order or by key
value. Sequential files are
simple to maintain and pro-
vide good performance for
processing large numbers of
records.

TABLE 8-4
Example Application Profiles

Application Name Tables Operation Frequency

Enrollment Query Course, Offering,
Enrollment

Retrieval 100 per day during the registration
period; 50 per day during the drop/add
period

Registration Form Registration Insert 1,000 per day during the registration
period

Registration Form Enrollment Insert 5,000 per day during the registration
period; 1,000 per day during drop/add
period

Registration Form Registration Delete 100 per day during the registration
period; 10 per day during the drop/add
period

Registration Form Enrollment Delete 1,000 per day during the registration
period; 500 per day during the drop/add
period

Registration Form Registration,
Student

Retrieval 6,000 per day during the registration
period; 1,500 per day during the drop/add
period

Registration Form Enrollment, Course,
Offering, Faculty

Retrieval 6,000 per day during the registration
period; 1,500 per day during the drop/add
period

Faculty Workload Report Faculty, Course,
Offering, Enrollment

Retrieval 50 per day during the last week of the
academic period; 10 per day otherwise;
typical parameters: current year and
academic period

8.3  FILE STRUCTURES

26008_ch08_p267-318.indd 275 3/2/18 10:10 PM

276   Part 4  Relational Database Design

8.3.2  Hash Files
Hash files, in contrast to sequential files, support fast access of records by primary
key value. The basic idea behind hash files is a function that converts a key value into
a physical record address. The mod function (remainder division) is a simple hash
function. Table 8-5 applies the mod function to the StdNo column values in Figure 8.8.
For simplicity, assume that the file capacity is 100 physical records. The divisor for the
mod function is 97, a large prime number close to the file capacity. The physical record
number is the result of the hash function result plus the starting physical record num-
ber, assumed to be 150. Figure 8.10 shows selected physical records of the hash file.

Hash functions may assign more than one key to the same physical record address.
A collision occurs when two keys hash to the same physical record address. As long as
the physical record has free space, a collision is no problem. However, if the original or
home physical record is full, a collision-handling procedure locates a physical record
with free space. Figure 8.11 demonstrates the linear probe procedure for collision

Hash File
a specialized file structure
that supports search by key.
Hash files transform a key
value into an address to
provide fast access.

123-45-6789 Joe Abbot ...

788-45-1235 Sue Peters ...

122-44-8655 Pat Heldon ...

466-55-3299 Bill Harper ...

323-97-3787 Mary Grant ...

PR 1

PR n

543-01-9593 Tom Adkins

Insert a new logical
record in the last
physical record.

StdNo Name ...

...

FIGURE 8.8
Inserting a New Logical
Record into an Unordered
Sequential File

FIGURE 8.9
Inserting a New Logical
Record into an Ordered
Sequential File 123-45-6789 Joe Abbot ...

122-44-8655 Pat Heldon ...

788-45-1235 Sue Peters ...

466-55-3299 Bill Harper ...

323-97-3787 Mary Grant ...

PR 1

PR n

543-01-9593 Tom Adkins

Rearrange physical record
to insert new logical record.

StdNo Name ...

...

TABLE 8-5
Hash Function Calculations
for StdNo Values

StdNo StdNo Mod 97 PR Number

122448655 26 176

123456789 39 189

323973787 92 242

466553299 80 230

788451235 24 174

543019593 13 163

26008_ch08_p267-318.indd 276 3/2/18 10:10 PM

Chapter 8  Physical Database Design   277

handling. In the linear probe procedure, a logical record is placed in the next avail-
able physical record if its home address is occupied. To retrieve a record by its key,
the home address is initially searched. If the record is not found in its home address, a
linear probe is initiated.

The existence of collisions highlights a potential problem with hash files. If colli-
sions do not occur often, insertions and retrievals are very fast. If collisions occur often,
insertions and retrievals can be slow. The likelihood of a collision depends on the
remaining capacity in the hash file. Generally, if a file is less than 70 percent full, colli-
sions do not occur often. Using a hash file that grows beyond 70 percent full can seri-
ously degrade performance for both retrievals and insertions. If the hash file becomes
too full, reorganization is necessary. Reorganization can be time-consuming and dis-
ruptive because a larger hash file is allocated and all logical records are inserted into
the new file.

To eliminate periodic reorganizations, dynamic hash files have been proposed.
In a dynamic hash file, periodic reorganization is never necessary and search perfor-
mance does not degrade after many insert operations. However, the average number
of physical record accesses to retrieve a record may be slightly higher as compared to
a static hash file that is not too full. The basic idea in dynamic hashing is that the size

FIGURE 8.10
Hash File after Insertions

122-44-8655 Pat Heldon ...

123-45-6789 Joe Abbot ...

PR 176

...

PR189PR163 543-01-9593 Tom Adkins

788-45-1235 Sue Peters ...PR174

...
...

466-55-3299 Bill Harper ...

PR230

...

323-97-3787 Mary Grant ...

PR242

122-44-8752 Joe Bishop ...

122-44-8655 Pat Heldon ...

122-44-8753 Bill Hayes ...

122-44-8849 Mary Wyatt ...

PR176

122-44-8946 Tom Adkins

Home address (176) is full.

...

PR177

...

Linear probe to find a
physical record with space

Home address = Hash function value + Base address

(122448946 mod 97 = 26) + 150

FIGURE 8.11
Linear Probe Collision
Handling during an Insert
Operation

26008_ch08_p267-318.indd 277 3/2/18 10:10 PM

278   Part 4  Relational Database Design

of the hash file grows as records are inserted. For details of the various approaches,
consult the references at the end of this chapter.

Another problem with hash files is sequential search. Good hash functions tend
to spread logical records uniformly among physical records. Because of gaps between
physical records, sequential search may examine empty physical records. For exam-
ple, to search the hash file depicted in Figure 8.10, 100 physical records must be exam-
ined even though only six contain data. Even if a hash file is reasonably full, logical
records are spread among more physical records than in a sequential file. Thus, when
performing a sequential search, the number of physical record accesses may be higher
in a hash file than in a sequential file.

8.3.3  Multiway Tree (Btrees) Files
Sequential files and hash files provide good performance on some operations but poor
performance on other operations. Sequential files perform well on sequential search
but poorly on key search. Hash files perform well on key search but poorly on sequen-
tial search. The multiway tree or Btree as it is popularly known, is a compromise and
widely used file structure. The Btree provides good performance on both sequential
search and key search. This section describes characteristics of the Btree, shows exam-
ples of Btree operations, and discusses the cost of operations.

Btree Characteristics: What’s in a Name?  A Btree is a special kind of tree as
depicted in Figure 8.12. A tree is a structure in which each node has at most one parent
except for the root or top node. The Btree structure possesses a number of character-
istics, discussed in the following list, that make it a useful file structure. Some of the
characteristics are possible meanings for the letter B1 in the name.

•	 Balanced: all leaf nodes (nodes without children) reside on the same level of the
tree. In Figure 8.12, all leaf nodes are two levels beneath the root. A balanced tree
ensures that all leaf nodes can be retrieved with the same access cost.

•	 Bushy: the number of branches from a node is large, perhaps 50 to 200 branches.
Multiway, meaning more than two, is a synonym for bushy. The width (number
of arrows from a node) and height (number of nodes between root and leaf
nodes) are inversely related: increase width, decrease height. The ideal Btree is
wide (bushy) but short (few levels).

•	 Block-Oriented: each node in a Btree is a block. To search a Btree, you start in the
root node and follow a path to a leaf node containing data of interest. The height
of a Btree is important because it determines the number of physical record
accesses for searching.

•	 Dynamic: the shape of a Btree changes as logical records are inserted and
deleted. Periodic reorganization is never necessary for a Btree. The next

1 Another possible meaning for the letter B is Bayer, for the inventor of the Btree, Professor Rudolph Bayer.
In a private conversation, Professor Bayer denied naming the Btree after himself or for his employer at the
time, Boeing. When pressed, Professor Bayer only said that the B represents the B.

Btree File
a popular file structure
supported by most DBMSs
because it performs well
on key search as well as
sequential search. A Btree
file is a balanced, multiway
tree.

FIGURE 8.12
Structure of a Btree of
Height 3

...

...

...

Level
0

Level
1

Level
2

Root
node

Leaf nodes

26008_ch08_p267-318.indd 278 3/2/18 10:10 PM

Chapter 8  Physical Database Design   279

subsection describes node splitting and concatenation, changes to a Btree as
records are inserted and deleted.

•	 Ubiquitous: the Btree is a widely implemented and used file structure.

Before studying the dynamic nature, let us look more carefully at the contents of a
node as depicted in Figure 8.13. Each node consists of pairs with a key value and
a pointer (physical record address), sorted by key value. The pointer identifies the
physical record that contains the logical record with the key value. Other data in a
logical record, besides the key, do not usually reside in the nodes. The other data may
be stored in separate physical records or in the leaf nodes.

An important property of a Btree is that each node, except the root, must be
at least half full. The physical record size, the key size, and the pointer size deter-
mine node capacity. For example, if the physical record size is 4,096 bytes, the key
size is 8 bytes, and the pointer size is 8 bytes, the maximum capacity of a node is
256 <key, pointer> pairs. Thus, each node must contain at least 128 pairs. Because
the designer usually does not have control over the physical record size and the
pointer size, the key size determines the number of branches. Btrees are usually
not good for large key sizes due to less branching per node and, hence, taller and
less-efficient Btrees.

Node Splitting and Concatenation  Insertions are handled by placing a new
key in a nonfull node or by splitting nodes, as depicted in Figure 8.14. In the partial
Btree in Figure 8.14(a), each node contains a maximum of four keys. Inserting the
key value 55 in Figure 8.14(b) requires rearrangement in the right-most leaf node.
Inserting the key value 58 in Figure 8.14(c) requires more work because the right-
most leaf node is full. To accommodate the new value, the node is split into two
nodes and a key value is moved to the root node. In Figure 8.14(d), a split occurs at
two levels because both nodes are full. When a split occurs at the root, the tree grows
another level.

Deletions are handled by removing the deleted key from a node and repairing the
structure if needed, as demonstrated in Figure 8.15. If the node is still at least half full,
no additional action is necessary as shown in Figure 8.15(b). However, if the node is
less than half full, the structure must be changed. If a neighboring node contains more
than half capacity, a key can be borrowed, as shown in Figure 8.15(c). If a key cannot
be borrowed, nodes must be concatenated, as shown in Figure 8.15(d).

Cost of Operations  The height of a Btree is small even for a large table when the
branching factor is large. An upper bound or limit on the height (h) of a Btree is

h ≤ ceil(logd (n+1)/2) where
ceil is the ceiling function (ceil(x) is the smallest integer ≥ x).
d is the minimum number of keys in a node.
n is the number of keys to store in the index.
logd is the log function with base d. The log function returns the exponent, logd(x) = y
meaning that dy = x. For example, log10 (100) = 2 meaning that 102 = 100.
Example: h ≤ 4 for n = 1,000,000 and d = 42.

FIGURE 8.13
Btree Node Containing Keys
and Pointers

 Key1 Key2 ... Keyd ... Key2d

Pointer 1 Pointer 2 Pointer 3 Pointer d+1 Pointer 2d+1

Each nonroot node contains at least half capacity
(d keys and d +1 pointers).

Each nonroot node contains at most full capacity
(2d keys and 2d+1 pointers).

...

26008_ch08_p267-318.indd 279 3/2/18 10:10 PM

280   Part 4  Relational Database Design

The height dominates the number of physical record accesses in Btree operations. The
cost in terms of physical record accesses to find a key is less than or equal to the height.
If the row data are not stored in the tree, another physical record access is necessary to
retrieve the row data after finding the key. Btrees have logarithmic search cost because
the log function dominates the formula for height. Bushy Btrees with a large number
of keys in a node can be efficiently searched.

The cost to insert a key includes the cost to locate the nearest key plus the cost to
change nodes. In the best case as demonstrated in Figure 8.14(b), the additional cost is
one physical record access to change the index record and one physical record access
to write the row data. The worst case occurs when a new level is added to the tree, as
depicted in Figure 8.14(d). Even in the worst case, the height of the tree still dominates.
Another 2h write operations are necessary to split a tree at each level.

FIGURE 8.14
Btree Insertion Examples 20 45 70

 22 28 35 40 50 60 65

 20 45 70

 22 28 35 40 50 55 60 65

(a) Initial Btree

(b) After inserting 55

 20 45 58 70

 22 28 35 40 50 55

(c) After inserting 58

 60 65

Node split

Middle key value

(58) moved up

 20 35

 22 28 50 55

(d) After inserting 38

 60 65

 45

 58 70

 38 40

New level

Node split

Node Split

26008_ch08_p267-318.indd 280 3/2/18 10:10 PM

Chapter 8  Physical Database Design   281

B+tree  Sequential range searches can be a problem with Btrees. To perform a
range search, the search procedure must travel up and down a tree. For example,
to retrieve keys in the range 28 to 60 in Figure 8.15(a), the search process starts in
the root, descends to the left leaf node, returns to the root, and then descends to the
right leaf node. This procedure has problems with retention of physical records in
memory. Operating systems may replace physical records if there have not been
recent accesses. Because some time may elapse before a parent node is accessed again,
the operating system may replace it with another physical record if main memory
becomes full. Thus, another physical record access may be necessary when the parent
node is accessed again.

To ensure that physical records are not replaced, the B+tree variation is usually
implemented. Figure 8.16 shows the two parts of a B+tree. The triangle (index set) rep-
resents a normal Btree index. The lower part (sequence set) contains the leaf nodes. All
keys reside in the leaf nodes even if a key appears in the index set. The leaf nodes are
connected together so that sequential searches do not need to move up the tree. After
the initial key is found, the search process accesses only nodes in the sequence set.

Index Matching  A Btree can be used to store all data in the nodes (primary file
structure) or just pointers to the data records (secondary file structure or index).

B+tree File
the most popular variation
of the Btree. In a B+tree,
all keys are redundantly
stored in the leaf nodes.
 The B+tree provides
improved performance
on sequential and range
searches.

FIGURE 8.15
Btree Deletion Examples 20 45 70

 22 28 35 50 60 65

 20 45 70

 22 28 35 50 65

(a) Initial Btree

(b) After deleting 60

(c) After deleting 65

(d) After deleting 28

 20 35 70

 22 28 45 50

Borrowing a key

 20 70

 22 35 45 50
Concatenating nodes

26008_ch08_p267-318.indd 281 3/2/18 10:10 PM

282   Part 4  Relational Database Design

A Btree is especially versatile as an index because it can be used for a variety of
queries. Determining whether an index can be used in a query is known as index
matching. When a condition in a WHERE clause references an indexed column, the
DBMS must determine if the index can be used. The complexity of a condition deter-
mines whether an index can be used. For single-column indexes, an index matches a
condition if the column appears alone without functions or operators and the com-
parison operator matches one of the following items:

•	 =, >, <, >=, <= (but not <>)
•	 BETWEEN
•	 IS NULL
•	 IN <list of constant values>
•	 LIKE ‘Pattern’ in which pattern does not contain a meta character (%, _) as the

first part of the pattern

For composite indexes involving more than one column, the matching rules are more
complex and restrictive. Composite indexes are ordered by the most significant (first
column in the index) to the least significant (last column in the index) column. A com-
posite index matches conditions according to the following rules:

•	 The first column of the index must have a matching condition.
•	 Columns match from left (most significant) to right (least significant). Matching

stops when the next column in the index is not matched.
•	 Only the first BETWEEN condition matches.
•	 At most, one IN condition matches an index column. Matching stops after

the next matching condition. The second matching condition cannot be IN or
BETWEEN.

To depict index matching, Table 8-6 shows examples of matching between indexes
and conditions. When matching a composite index, the conditions can be in any order.
Because of the restrictive matching rules, composite indexes should be used with cau-
tion. It is usually a better idea to create indexes on the individual columns as most
DBMSs can combine the results of multiple indexes when answering a query.

8.3.4  Bitmap Indexes
Btree and hash files work best for columns with unique values. For nonunique col-
umns, Btrees index nodes can store a list of row identifiers instead of an individual
row identifier for unique columns. However, if a column has few values, the list of row
identifiers can be very long.

Index Matching
determining if an index
can be used on a search
condition in a query. The
determination uses matching
rules that depend on the
comparison operation and
column(s) in an index.
Composite indexes with
multiple columns are more
restrictive for index usage.

...

...

Index set

Sequence set

Link to first leaf

FIGURE 8.16
B+tree Structure

26008_ch08_p267-318.indd 282 3/2/18 10:10 PM

Chapter 8  Physical Database Design   283

As an alternative structure for columns with few values, many DBMSs support
bitmap indexes. Figure 8.17 depicts a bitmap column index for a sample Faculty table.
A bitmap contains a string of bits (0 or 1 values) with one bit for each row of a table.
In Figure 8.17, the length of the bitmap is 12 positions because there are 12 rows in the

TABLE 8-6
Index Matching ExamplesCondition Index Matching Notes

C1 = 10 C1 Matches index on C1

C2 BETWEEN 10 AND 20 C2 Matches index on C2

C3 IN (10, 20) C3 Matches index on C3

C1 <> 10 C1 Does not match index on C1

C4 LIKE 'A%' C4 Matches index on C4

C4 LIKE '%A' C4 Does not match index on C4

C1 = 10 AND C2 = 5 AND C3 = 20 AND C4 = 25 (C1,C2,C3,C4) Matches all columns of the index

C2 = 5 AND C3 = 20 AND C1 = 10 (C1,C2,C3,C4) Matches the first three columns of
the index

C2 = 5 AND C4 = 22 AND C1 = 10 AND C6 = 35 (C1,C2,C3,C4) Matches the first two columns of the
index

C2 = 5 AND C3 = 20 AND C4 = 25 (C1,C2,C3,C4) Does not match any columns of the
index: missing condition on C1

C1 IN (6, 8, 10) AND C2 = 5 AND C3 IN (20, 30, 40) (C1,C2,C3,C4) Matches the first two columns of
the index: at most one matching IN
condition

C2 = 5 AND C1 BETWEEN 6 AND 10 (C1,C2,C3,C4) Matches the first column of the index:
matching stops after the BETWEEN
condition

Faculty Table

RowId FacNo … FacRank

 1 098-55-1234 Asst

 2 123-45-6789 Asst

 3 456-89-1243 Assc

 4 111-09-0245 Prof

 5 931-99-2034 Asst

 6 998-00-1245 Prof

 7 287-44-3341 Assc

 8 230-21-9432 Asst

 9 321-44-5588 Prof

10 443-22-3356 Assc

11 559-87-3211 Prof

12 220-44-5688 Asst

FIGURE 8.17
Sample Faculty Table and
Bitmap Column Index on
FacRank

Bitmap Column Index on FacRank

FacRank Bitmap

Asst 110010010001

Assc 001000100100

Prof 000101001010

26008_ch08_p267-318.indd 283 3/2/18 10:10 PM

284   Part 4  Relational Database Design

sample Faculty table. A record of a bitmap column index contains a column value and
a bitmap. A 0 value in a bitmap indicates that the associated row does not have the
column value. A 1 value indicates that the associated row has the column value. The
DBMS provides an efficient way to convert a position in a bitmap to a row identifier.

A variation of the bitmap column index is the bitmap join index. In a bitmap join
index, the bitmap identifies rows of a related table, not the table containing the indexed
column. Thus, a bitmap join index represents a precomputed join from a column in a
parent table to the rows of a child table that join with rows of the parent table.

A join bitmap index can be defined for a join column such as FacNo or a nonjoin
column such as FacRank. Figure 8.18 depicts a bitmap join index for the FacRank col-
umn in the Faculty table to the rows in the sample Offering table. The length of the
bitmap is 24 bits because there are 24 rows in the sample Offering table. A 1 value in
a bitmap indicates that a parent row containing the column value joins with the child
table in the specified bit position. For example, a 1 in the first bit position of the “Asst”

Offering Table

RowId OfferNo … FacNo

 1 1111 098-55-1234

 2 1234 123-45-6789

 3 1345 456-89-1243

 4 1599 111-09-0245

 5 1807 931-99-2034

 6 1944 998-00-1245

 7 2100 287-44-3341

 8 2200 230-21-9432

 9 2301 321-44-5588

10 2487 443-22-3356

11 2500 559-87-3211

12 2600 220-44-5688

13 2703 098-55-1234

14 2801 123-45-6789

15 2944 456-89-1243

16 3100 111-09-0245

17 3200 931-99-2034

18 3258 998-00-1245

19 3302 287-44-3341

20 3901 230-21-9432

21 4001 321-44-5588

22 4205 443-22-3356

23 4301 559-87-3211

24 4455 220-44-5688

FIGURE 8.18
Sample Offering Table
and Bitmap Join Index on
FacRank

Bitmap Join Index on FacRank

FacRank Bitmap

Asst 110010010001110010010001

Assc 001000100100001000100100

Prof 000101001010000101001010

26008_ch08_p267-318.indd 284 3/2/18 10:10 PM

Chapter 8  Physical Database Design   285

row of the join index means that a Faculty row with the “Asst” value joins with the first
row of the Offering table.

Bitmap indexes work well for stable columns with few values. The FacRank col-
umn would be attractive for a bitmap column index because it contains few values and
faculty members do not change rank often. The size of a bitmap is not an important
issue because compression techniques can reduce the size significantly. Due to the
requirement for stable columns, bitmap indexes are most common for data warehouse
tables especially as join indexes. A data warehouse is a business intelligence database
that is mostly used for retrievals and periodic insertion of new data. Chapter 15 dis-
cusses the use of bitmap indexes for data warehouse tables.

8.3.5  Columnstore Indexes
Storage structures presented in section 8.3 (hash, btree, and bitmap) focus on specific
types of queries. A hash structure supports queries by key value. A btree supports
queries by key value and range of key values. A bitmap index supports queries on a
column with relatively few values as well as star join queries combining a child table
with multiple parent tables. Queries that involve grouping and aggregate calculations
do not have a specialized storage structure. These type of queries support business
intelligence applications for medium and long-term decision making in an organi-
zation. Part 6 describes data warehouse processing to support business intelligence
requirements with Chapter 15 focusing on extended query support.

Columnstore indexes support queries for business intelligence often involving
tables with millions of rows. Without columnstore capabilities, full table scans using
sequential file structures are often necessary. The columnstore index provides a spe-
cialized storage structure with sharply reduced computing resources, leading to much
faster response times.

The columnstore approach reverses the basic method of storing data. The tradi-
tional storage approach, known as a row store, places entire rows in physical records as
described in Section 8.1. In contrast, a columnstore places columns in physical records
as depicted in Figure 8.19. The values of each column for a group of rows (typically
more than a hundred thousand rows) are stored together with each column in a sepa-
rate file. Figure 8.19 shows k column files for row group i. Each column file contains
physical records (separated by dashed lines) storing column values. Each column may
have a different number of values with varying space requirements.

To reduce space requirements, a columnstore index stores all or a subset of col-
umns of a table in a compressed manner. To support grouping queries, column values
can be optionally sorted. Figure 8.20 depicts compression and sorting of column val-
ues in a columnstore index for a sample row group of the Faculty table. Figure 8.20a
shows a traditional row store for a subset of Faculty rows. Figures 8.20b to 8.20d depict
a columnstore index for the Faculty row group. Compression occurs for duplicate col-
umn values, indicated with the multiplication symbol. Values in each columnstore file
are sorted in ascending order.

Columnstore
a file organization reversing
the traditional row store
approach. A columnstore
places column values in
physical records. The values
of each column for a large
group of rows are stored
together with each column
in a separate file. A column-
store index stores all or a
subset of columns of a table
in a compressed manner,
optionally with sorting of
column values.

Bitmap Index
a secondary file structure
consisting of a column value
and a bitmap. A bitmap
contains one bit position for
each row of a referenced
table. A bitmap column index
references the rows contain-
ing the column value. A
bitmap join index references
the rows of a child table that
join with rows of the parent
table containing the column
value. Bitmap indexes work
well for stable columns with
few values, typical of tables
in a data warehouse.

FIGURE 8.19
Columnstore Files for
Columns in a Row Group of
a Table

Row Group i

Col1 value 1
Col1 value 2
…

Col1 value m

Col1 File Col2 File Colk File...

Col2 value 1
Col2 value 2
…

Col2 value n

Colk value 1
Colk value 2
…

Colk value p

26008_ch08_p267-318.indd 285 3/2/18 10:10 PM

286   Part 4  Relational Database Design

Columnstore indexes provide substantial performance improvements over traditional
row storage for grouping queries performing calculations on relatively few columns
on large tables. A columnstore index maximizes main memory usage with retrieval
of only necessary columns in a highly compressed format. Performance experiments
have demonstrated 10 times performance improvements for columnstore indexes
over sequential files. Due to high potential performance improvements, columnstore
indexes have been widely implemented in relational DBMSs (both commercial and
open source) as well as NoSQL DBMSs. However, columnstore indexes are highly
specialized, appropriate only for grouping queries accessing large tables.

8.3.6  Summary of File Structures
To help recall file structures, Table 8-7 summarizes major characteristics of each struc-
ture. In the first row, hash files can be used for sequential access, but there may be
extra physical records because keys are evenly spread among physical records. In the
second row, unordered and ordered sequential files must examine on average half the
physical records (linear). Hash files examine a constant number (usually close to 1) of
physical records, assuming that the file is not too full. Btrees have logarithmic search
costs because of the relationship between the height, the log function, and search cost
formulas. File structures can store all the data of a table (primary file structure) or
store only key data along with pointers to the data records (secondary file structure).
A secondary file structure or index provides an alternative path to the data. A bitmap
index supports range searches by performing union operations on the bitmaps for
each column value in a range. Although a columnstore supports sequential search, its
only practical usage is grouping queries on large tables.

8.3.7  Oracle Storage Concepts and File Structures
To supplement conceptual presentation of storage concepts, the last part of this section
presents selected details about Oracle storage concepts and file structures. Oracle sup-
ports a rich collection of file structures to achieve performance objectives.

d) FacSalary
Columnstore for
Sample Group of
the Faculty Table

FacSalary

85000

90000

85000

115000

140000 × 2

FIGURE 8.20
Columnstore Index for
Sample Row Group

a) Sample Row Group of the Faculty Table

FacNo FacRank FacSalary

1111 Assc 120000

1122 Asst 90000

1133 Asst 85000

1144 Prof 140000

1155 Assc 115000

1166 Prof 140000

b) FacNo
Columnstore for
Sample Group of
the Faculty Table

FacNo

1111

1122

1133

1144

1155

1166

c) FacRank
Columnstore for
Sample Group of
the Faculty Table

FacRank

Assc × 2

Asst × 2

Prof × 2

26008_ch08_p267-318.indd 286 3/2/18 10:10 PM

Chapter 8  Physical Database Design   287

In Oracle, a database consists of a collection of tablespaces. In the simplest arrange-
ment, a database contains a single tablespace stored in one file. For large databases,
a database may contain multiple tablespaces with each tablespace stored on multiple
files. A file is a collection of physical records managed by the operating system. Objects
such as tables and indexes are stored in files as shown in Figure 8.21. A file is allocated
in extents that are collections of contiguous disk blocks. Oracle recommends using
uniform extent sizes in a file such as 1 MB.

Oracle has two important parameters to control free space in a data block. As
depicted in Figure 8.22, the PCTFREE parameter indicates the minimum percentage of
a data block preserved as free space for updates to rows. The PCTFREE parameter pro-
vides a high water mark as a block is marked as full for insertions when the PCTFREE
limit is reached. After reaching the PCTFREE limit, the PCTUSED parameter indi-
cates the minimum percentage of a block that must be available before new rows
are added to the block. Thus, the PCTUSED parameter acts as a low water mark
in that a block is marked full until it falls to its PCTUSED limit. The PCTFREE
and PCTUSED parameters must sum to less than 100%. For example, PCTFREE
of 20% indicates that new rows can be added until a block reaches 80% full. After
this point, new rows cannot be added again until the remaining space falls to the
PCTUSED value (40%) through deletions.

Oracle provides a variety of file structures to organize disk blocks. For pri-
mary storage, Oracle provides unordered, index-organized, and clustered files. An
index-organized file is a Btree in which index nodes contain complete rows (key
values and nonkey values). To ensure that an index-organized file is sufficiently
bushy, Oracle uses overflow areas to store long rows separate from associated

TABLE 8-7
Summary of File StructuresUnordered Ordered Hash B+tree Bitmap Columnstore

Sequential search Y Y Extra PRs Y N Y

Key search Linear Linear Constant
time

Logarithmic Linear N

Range search N Y N Y Y N

Grouping queries Y Y N Y N Y (best)

Usage Primary
only

Primary
only

Primary or
secondary

Primary or
secondary

Secondary
only

Primary or
secondary

FIGURE 8.21
Oracle Tablespace, Files, and Data-
base Objects

Tablespace

Data File 1 Data File 2

Table Table

Index Index

Table Table

Index Index

PCTFREE
20%

PCTUSED
40%

Insert until free
space falls to limit
(20%).

Resume inserts
when used space
falls to limit (40%).

FIGURE 8.22
Relationship between
PCTFREE and PCTUSED
Parameters

26008_ch08_p267-318.indd 287 3/2/18 10:10 PM

288   Part 4  Relational Database Design

In most relational DBMSs, you do not have the ability to choose the implementation
of queries on a physical database. The query optimization component assumes this
responsibility. Your productivity increases because you do not need to make these
tedious decisions. However, you can sometimes improve optimization decisions if
you understand principles of the optimization process. To provide you with an under-
standing of the optimization process, this section describes the tasks performed and
discusses tips to improve optimization decisions.

8.4.1  Translation Tasks
When you submit an SQL statement for execution, the query optimization com-
ponent translates your query in four phases as shown in Figure 8.23. The first and
fourth phases are common to any computer language translation process. The second

index nodes. A clustered file contains rows from two or more tables. Clustering is a
specialized structure for closely related tables such as order and order line in which
parent and child rows are almost always accessed together. For secondary storage,
Oracle provides B+tree, hash, bitmap, and function indexes. A function index uses a
function to precompute a column value and store it in the index. A function index is
useful for conditions involving a function on a column rather than the column alone.

To augment traditional row storage, Oracle supports an in-memory column store
architecture. The architecture supports columnstore indexes along with dual-format
memory management for both row and column data.

For large databases, Oracle provides a variety of partitioning options to improve
performance and reliability. Partitioning can improve query performance by accessing
a subset of partitions, rather than an entire table. Partitioning increases database avail-
ability if critical tables and indexes are divided into partitions to reduce maintenance
windows, recovery times, and impact of failures. Partitioning should be done in con-
junction with parallel database processing as discussed in Chapter 18. As listed below,
Oracle supports various combinations of partitioning for tables and indexes.

•	 A non partitioned table can have partitioned or non-partitioned indexes.
•	 A partitioned table can have partitioned or non-partitioned indexes.
•	 A table can be partitioned by lists of values, range of values, or hash functions.

8.4  QUERY OPTIMIZATION

Syntax and semantic
analysis

Query transformation

Access plan
evaluation

Access plan
interpretation

Code generation

Parsed query

Relational algebra query

Access
Plan

Access
Plan

Query

Query results Machine code

FIGURE 8.23
Tasks in Database Language
Translation

26008_ch08_p267-318.indd 288 3/2/18 10:10 PM

Chapter 8  Physical Database Design   289

Query Transformation  The second phase transforms a query into a simplified and
standardized format. As with optimizing programming language compilers, database
language translators can eliminate redundant parts of a logical expression. For exam-
ple, the logical expression (OffYear = 2017 AND OffTerm = 'WINTER') OR
(OffYear = 2017 AND OffTerm = 'SPRING') can be simplified to OffYear
= 2017 AND (OffTerm = 'WINTER' OR OffTerm = 'SPRING'). Join sim-
plification is unique to database languages. For example, if Example 8.1 contained a
join with the Student table, this table could be eliminated if no columns or conditions
involving the Student table are used in the query.

The standardized format is usually based on relational algebra. The relational
algebra operations are rearranged so that the query can be executed faster. Typical
rearrangement operations are described below. Because the query optimization com-
ponent performs this rearrangement, you do not have to be careful about writing your
query in an efficient way.

•	 Restriction operations are combined so that they can be tested togethr.
•	 Projection and restriction operations are moved before join operations to

eliminate unneeded columns and rows before resource-intensive join operations.
•	 Cross product operations are transformed into join operations if a join condition

exists in the WHERE clause.

Access Plan Evaluation  The third phase generates an access plan to implement the
rearranged relational algebra query. An access plan indicates the implementation of
a query as operations on files, as depicted in Figures 8.24 and 8.25. In an access plan,
the leaf nodes are individual tables in the query, and the arrows point upward to indi-
cate the flow of data. The nodes above the leaf nodes indicate decisions about access-
ing individual tables. In Figure 8.24, Btree indexes are used to access individual tables.
The first join combines the Enrollment and the Offering tables. The Btree file structures
provide the sorting needed for the merge join algorithm. The second join combines the
result of the first join with the Faculty table. The intermediate result must be sorted on

Access Plan
a tree that encodes
decisions about file
structures to access
individual tables, the order
of joining tables, and the
algorithm to join tables.

phase has some unique aspects. The third phase is unique to translation of database
languages.

Syntax and Semantic Analysis  The first phase analyzes a query for syntax and
simple semantic errors. Syntax errors involve misuse of keywords such as if the
FROM keyword was misspelled in Example 8.1. Semantic errors involve misuse of
columns and tables. A data language compiler can detect only simple semantic errors
involving incompatible data types. For example, a WHERE condition that compares
the CourseNo column with the FacSalary column results in a semantic error because
these columns have incompatible data types. To find semantic errors, the database
language translator uses table, column, and relationship definitions as stored in the
data dictionary.

Example 8.1

SELECT FacName, CourseNo, Enrollment.OfferNo, EnrGrade
 FROM Enrollment, Offering, Faculty
 WHERE CourseNo LIKE 'IS%' AND OffYear = 2018
 AND OffTerm = 'FALL'
 AND Enrollment.OfferNo = Offering.OfferNo
 AND Faculty.FacNo = Offering.FacNo

Joining three tables (Oracle)

26008_ch08_p267-318.indd 289 3/2/18 10:10 PM

290   Part 4  Relational Database Design

FacNo before the merge join algorithm can be used. Figure 8.25 shows a variation of
the access plan in Figure 8.24 in which the join order is changed.

Access plans vary by join orders, file structures, and join algorithms. For join
order, the optimization component only considers feasible join orders in which the
next join shares at least one table with the previous joins in a join order. For example,
if a query involves four tables (T1 to T4) with three joins (T1-T2, T2-T3, and T3-T4),
some feasible join orders are <T1-T2, T2-T3, T3-T4> and <T3-T4, T2-T3, T1-T2>. The
join order < T1-T2, T3-T4, T2-T3> is not feasible because the first two joins do not share
a common table2. For file structures, the optimization component considers primary
and secondary file structures. For secondary file structures, a WHERE condition must
match an index. Some optimization components can consider set operations (intersec-
tion for conditions connected by AND and union for conditions connected by OR) to
combine the results of multiple indexes on the same table.

Most optimization components use a small set of join algorithms. Table 8-8 sum-
marizes common join algorithms employed by optimization components. For each join
operation in a query, the optimization component considers each supported join algo-
rithm. For the nested loops and the hybrid algorithms, the optimization component
must also choose the outer table and the inner table. All algorithms except the star join
involve two tables at a time. The star join can combine any number of tables match-
ing the star pattern (a child table surrounded by parent tables in 1-M relationships).

2 This join order is feasible if joins are performed in parallel rather than pipelining. If an optimizer performs
parallel joins at the table level, this join order is feasible. Parallelism is usually done at the partition level,
not table level.

Enrollment O�ering

BTree(O�erNo) BTree(O�erNo)

Sort Merge Join Faculty

BTree(FacNo)

Sort Merge Join

Sort(FacNo)

FIGURE 8.24
Access Plan for Example 8.1

Faculty O�ering

BTree(FacNo) BTree(FacNo)

Sort Merge Join Enrollment

BTree(O�erNo)

Sort Merge Join

Sort(O�erNo)

FIGURE 8.25
Alternative Access Plan for
Example 8.1

26008_ch08_p267-318.indd 290 3/2/18 10:10 PM

Chapter 8  Physical Database Design   291

The nested loops algorithm can be used with any join operation, not just an equi-join
operation.

The query optimization component uses cost formulas to evaluate access plans.
Each operation in an access plan has a corresponding cost formula that estimates the
physical record accesses and CPU operations. The cost formulas use table profiles to
estimate the number of rows in a result. For example, the number of rows resulting
from a WHERE condition can be estimated using distribution data such as a histo-
gram. The query optimization component chooses the access plan with the lowest cost.

The query optimization component evaluates a large number of access plans. The
number of join orders is the dominant element in determining the number of access
plans. In most queries, the number of joins is one less than the number of tables in the
query. In this situation, an upper bound on the number of join orders with N tables
is (N – 1)! where ! indicates the factorial function. The factorial function has explosive
growth as it grows faster than exponential functions. The factorial function overstates
the number of join orders because it includes infeasible join orders. As the number of
joins increases, the number of feasible join orders approaches the total number of join
orders. Figure 8.26 shows the number of access plans as a function of the number of
tables using the factorial function as an upper limit for the number of join orders. Note
that the scale of the y-axis is a power of 10. So for a query with 10 tables, the number
of access plans is more than 106.

TABLE 8-8
Summary of Common Join
Algorithms

Algorithm Requirements When to Use

Nested loops Choose outer table and inner table; can be
used for all joins

Appropriate when restrictive conditions on
the outer table with an index on the join
column of the inner table or when all pages
of the inner table fit into memory

Sort merge Both tables must be sorted (or use an
index) on the join columns; only used for
equi-joins

Appropriate if sort cost is small or if a
clustered join index exists on the join
columns of both tables

Hybrid join Combination of sort merge and nested
loops; outer table must be sorted (or use a
join column index); inner table must have
an index on the join column; only used for
equi-joins

Performs better than sort merge when
there is a nonclustering index (see the
next section) on the join column of the inner
table

Hash join Internal hash file built for both tables; only
used for equi-joins

Hash join performs better than sort merge
when the tables are not sorted or clustered
indexes do not exist

Star join Join multiple tables in which there is one
child table related to multiple parent tables
in 1-M relationships; bitmap join index
required on each parent table; only used
for equi-joins

Useful for tables matching the star pattern
with bitmap join indexes especially when
the query has highly selective conditions on
the parent tables; widely used to optimize
data warehouse queries (see Chapter 15)

1.E+00
1.E+02
1.E+04
1.E+06
1.E+08
1.E+10
1.E+12
1.E+14
1.E+16
1.E+18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

A
cc

es
s

P
la

ns

Tables

Access Plan Growth FIGURE 8.26
Access Plan Growth by
Number of Tables

26008_ch08_p267-318.indd 291 3/2/18 10:10 PM

292   Part 4  Relational Database Design

The number of access plans indicates that query optimization can consume con-
siderable resources. Query optimization components use many heuristics to reduce
the number of plans evaluated. Still, evaluating access plans can involve substantial
computing resources and elapsed time when a query contains more than eight tables.

Access Plan Execution  The last phase executes the selected access plan. The query
optimization component either generates machine code or interprets the access plan.
Execution of machine code results in faster response than interpreting an access plan.
However, most DBMSs interpret access plans because of the variety of hardware sup-
ported. The performance difference between interpretation and machine code execu-
tion is usually not significant in most situations.

8.4.2  Improving Optimization Decisions
Even though the query optimization component performs its role automatically, the
database administrator also has a role to play. The database administrator should
review access plans of poorly performing queries and updates. Enterprise DBMSs typi-
cally provide graphical displays of access plans to facilitate review. Graphical displays
are essential because text displays of hierarchical relationships are difficult to read.

To improve poor decisions in access plan selection, some enterprise DBMSs allow
hints that influence the choice of access plans. For example, Oracle provides hints to
choose the optimization goal, the file structures to access individual tables, the join
algorithm, and the join order. Hints should be used with caution because they over-
ride the judgment of the optimizer. Hints with join algorithms and join orders are
especially problematic because of the subtlety of these decisions. Overriding the judg-
ment of the optimizer should only be done as a last resort after determining the cause
of poor performance. In many cases, a database administrator can fix problems with
table profile deficiencies and query coding style to improve performance rather than
override the judgment of the optimizer.

Table Profile Deficiencies  The query optimization component needs detailed and
current statistics to evaluate access plans. Statistics that are not detailed enough or
outdated can lead to the choice of poor access plans. Most DBMSs provide control
over the level of detail of statistics and the currency of the statistics. Some DBMSs
even allow dynamic database sampling at optimization time, but normally this level
of data currency is not needed.

If statistics are not collected for a column, most DBMSs use the uniform value
assumption to estimate the number of rows. Using the uniform value assumption
often leads to sequential file access rather than Btree access if the column has signifi-
cant skew in its values. For example, consider a query to list employees with salaries
greater than $100,000. If the salary range is $10,000 to $2,000,000, about 95 percent
of the employee table should satisfy this condition using the uniform value assump-
tion. For most companies, however, few employees would have a salary greater than
$100,000. Using the estimate from the uniform value assumption, the optimizer will
choose a sequential file instead of a Btree to access the employee table. The estimate
would not improve much using an equal-width histogram because of the extreme
skew in salary values.

An equal-height histogram will provide much better estimates. To improve esti-
mates using an equal-height histogram, the number of ranges should be increased.
For example with 10 ranges, the maximum error is about 10% and the expected error
is about 5%. To decrease the maximum and expected estimation errors by 50%, the
number of ranges should be doubled. A database administrator should increase the
number of ranges if estimation errors for the number of rows cause poor choices for
accessing individual tables.

A hint can be useful for conditions involving parameter values. If a database
administrator knows that the typical parameter values result in the selection of few
rows, a hint can be used to force the optimization component to use an index.

26008_ch08_p267-318.indd 292 3/2/18 10:10 PM

Chapter 8  Physical Database Design   293

In addition to detailed statistics about individual columns, an optimization com-
ponent sometimes needs detailed statistics on combinations of columns. If a combi-
nation of columns appears in the WHERE clause of a query, statistics on the column
combination are important if the columns are not independent. For example, employee
salaries and positions are typically related. A WHERE clause with both columns such
as EmpPosition = 'Janitor' AND Salary > 50000 would likely have few
rows that satisfy both conditions. An optimization component with no knowledge of
the relationship among these columns would be likely to significantly overestimate
the number of rows in the result. The poor estimate about the number of rows would
likely lead to an erroneous decision by the optimizer causing slow query execution.
The optimizer would probably choose a sequential table scan instead of combining
indexes on each column.

Most optimization components assume that combinations of columns are statis-
tically independent to simplify the estimation of the number of rows. Because opti-
mizer errors involving conditions on combination of columns are reasonably common,
DBMS vendors have begun providing tools to improve row estimates. For example
Oracle provides a hint to force the optimizer to use an index join, an access method
that combines indexes on individual columns.

Oracle Tools to Improve Optimization Choices  Since hints override the judg-
ment of the optimizer, Oracle provides several tools that extend the judgment of the
optimizer. Extended statistics in Oracle support statistics collection on combinations
of columns, not just individual columns. In the example from the previous paragraph,
extended statistics could be collected on the column combination <EmpPosition,
Salary>. The optimizer estimates the number of rows using the extended statistics
instead of relying on individual column statistics and the independence assumption.
To reduce the effort to calculate extended statistics, Oracle can use random sampling
instead of scanning entire tables. The major drawback with extended statistics is iden-
tification of column combinations needing extended statistics. For a table with many
columns such as a customer table, a DBA can be overwhelmed with the number of col-
umn combinations to consider. In response to this difficulty, Oracle provides a tool to
suggest column combinations for extended statistics by analyzing a query workload.

Oracle provides adaptive access plans to deal with parameterized queries. The
Oracle optimizer analyzes the values used as parameters to determine if the access
plan for a query should be recompiled based on row estimates for common parameter
values. The Oracle optimizer can choose the correct access plan based on a parameter
value in a query.

Dynamic sampling is another tool to improve row estimates. With dynamic
sampling, Oracle samples tables involved in a query during the compilation process
instead of using prebuilt statistics. Dynamic sampling increases query compilation
time but can improve query execution times with improved row estimates. In Oracle
11, the optimizer can decide to use dynamic sampling depending on the number of
tables in an SQL statement, the complexity of the WHERE clause, and the collection
of prebuilt statistics available. Alternatively, a DBA can limit the usage of dynamic
sampling with the OPTIMIZER_DYNAMIC_SAMPLING parameter.

Oracle 12c extends the optimizer with more adaptive capabilities. Alternative
access plans can be stored to substantially reduce the need to determine a new access
plan for a query as a database changes. If statistics collected during compilation of a
plan appear deficient during query execution, the plan might be changed dynamically
such as switching join algorithms. Dynamic sampling has been extended to joins and
group-by conditions, beyond just single table statistics in earlier Oracle versions. The
Oracle 12c optimizer considers dynamic statistics based on the complexity of query
conditions, the existing base statistics, and the expected execution time for the SQL
statement.

Query Coding Practices  Poorly written queries can lead to slow query execution.
The database administrator should review poorly performing queries looking for

26008_ch08_p267-318.indd 293 3/2/18 10:10 PM

294   Part 4  Relational Database Design

coding practices that lead to slow performance. The remainder of this subsection
explains the coding practices that can lead to poorly performing queries. Table 8-9
provides a convenient summary of the coding practices.

•	 You should avoid functions on indexable columns as functions eliminate the
opportunity to use an index unless a function index exists. You should be
especially aware of implicit type conversions even if a function is not used. An
implicit type conversion occurs if the data type of a column and the associated
constant value do not match. For example the condition, OffYear = '2018'
causes an implicit conversion of the OffYear column to a character data type. The
conversion eliminates the possibility of using an index on OffYear.

•	 If a column expression is typically required in a query, some DBMSs such as
Oracle support function indexes on column expressions. For example, Oracle
supports an index on the column expression upper(EmpFirstName). If an
index is created for a column expression, extended statistics should be collected
for the column expression.

•	 Queries with extra join operations will slow performance. The execution speed of
a query is primarily determined by the number of join operations so eliminating
unnecessary join operations may significantly decrease execution time.

•	 For queries involving 1-M relationships in which there is a condition on the join
column, you should make the condition on the parent table rather than the child
table. The condition on the parent table can significantly reduce the effort in
joining the tables.

•	 For queries involving the HAVING clause, eliminate conditions that do not
involve aggregate functions. Conditions involving simple comparisons of
columns in the GROUP BY clause belong in the WHERE clause, not the HAVING
clause. Moving these conditions to the WHERE clause will eliminate rows
sooner, thus providing faster execution.

•	 You should avoid Type II nested queries (see Chapter 9), especially when the
nested query performs grouping with aggregate calculations. Many DBMSs
perform poorly as query optimization components often do not consider efficient

TABLE 8-9
Summary of Coding Practices Coding Practice Recommendation Performance Issue

Functions on columns in
conditions

Avoid functions on columns
unless a function index exists

Eliminates possible usage of index

Implicit type conversions Use constants with data types
matching the corresponding columns

Eliminates possible usage of index

Extra join operations Eliminate unnecessary join operations
by looking for tables that do not
involve conditions or result columns

Execution time is primarily
determined by the number of
join operations.

Conditions on join columns Conditions on join columns should
use the parent table not the child
table.

Reducing the number of rows in the
parent table will decrease execution
time of join operations.

Row conditions in the
HAVING clause

Move row conditions in the HAVING
clause to the WHERE clause

Row conditions in the WHERE clause
allow reduction in the intermediate
result size.

Type II nested queries with
grouping (Chapter 9)

Convert Type II nested queries into
separate queries.

Query optimization components often
do not consider efficient ways to
implement Type II nested queries.

Queries using complex
views (Chapter 10)

Rewrite queries using complex views
to eliminate view references

An extra query may be executed.

Rebinding of queries
(Chapter 11)

Ensure that queries in a stored
procedure are bound once

Repetitive binding involves
considerable overhead for complex
queries.

26008_ch08_p267-318.indd 294 3/2/18 10:10 PM

Chapter 8  Physical Database Design   295

ways to implement Type II nested queries. You can improve query execution
speed by replacing a Type II nested query with a separate query.

•	 Queries with complex views can lead to poor performance because an extra
query may be executed. Chapter 10 describes view processing with some
guidelines for limiting the complexity of views.

•	 The optimization process can be time-consuming, especially for queries
containing more than seven or eight tables. To reduce optimization time, most
DBMSs save access plans to avoid the time-consuming phases of the translation
process. Query binding is the process of associating a query with an access plan.
Most DBMSs rebind automatically if a query changes or the database changes
(file structures, table profiles, data types, etc.). Chapter 11 discusses query
binding for dynamic SQL statements inside of a stored procedure.

Oracle SQL Tuning Advisor  Oracle provides the SQL Tuning Advisor to help
a database designer improve performance of high-load SQL statements. The SQL
Tuning Advisor executes as an option of the Oracle query optimizer. In normal
mode, the optimizer determines the best access plan for a SQL statement under time
restrictions. In tuning mode, the optimizer makes recommendations to improve per-
formance of a specified SQL statement. Since tuning mode can take extensive time,
it should only be used periodically when problems occur. The SQL Tuning Advisor
makes the following types of recommendations.

•	 Gathers statistics on objects with missing or stale statistics. Statistic
recommendations require comparison of stored statistics for a query with
statistics obtained from sampling the associated tables.

•	 Determines if new indexes can significantly enhance the performance of a query.
If index changes are identified, the tuning advisor suggests the use of the SQL
Access Advisor (see Section 8.5.2) to check the impact of these indexes on a
representative SQL workload.

•	 Suggests alternative coding practices such as changing nested query coding style.

To provide support for SQL statement monitoring, the Automatic Database Diagnostic
Monitor (ADDM) identifies high load SQL statements. By default, the ADDM executes
every hour although a DBA can change this frequency. The ADDM recommends tun-
ing analysis for high-load SQL statements.

Query Binding
associating an access plan
with an SQL statement.
Binding can reduce
execution time for complex
queries because the
time-consuming phases of
the translation process are
not performed after the initial
binding occurs.

8.5  INDEX SELECTION
Index selection is the most important decision available to the physical database
designer. However, it also can be one of the most difficult decisions. As a designer, you
need to understand the difficulty of index selection and the limitations of performing
index selection without an automated tool. This section helps you gain this knowledge
by defining the index selection problem, discussing trade-offs in selecting indexes, and
presenting index selection rules for moderate-size databases.

8.5.1  Problem Definition
Index selection involves two kinds of indexes, clustering and nonclustering. In a clus-
tering index, the order of the rows is close to the index order. Close means that physi-
cal records will not have to be accessed more than one time if the index is accessed
sequentially. Figure 8.27 shows the sequence set of a B+tree index pointing to associ-
ated rows inside physical records. Note that for a given node in the sequence set, most
associated rows are clustered inside the same physical record. Ordering the row data
by the index column is a simple way to make a clustering index.

In contrast, a nonclustering index does not have this closeness property. In
a nonclustering index, the order of the rows is not related to the index order.

Index
a secondary file structure
that provides an alternative
path to the data. In a
clustering index, the order
of the data records is close
to the index order. In a
nonclustering index, the
order of the data records is
unrelated to the index order.

26008_ch08_p267-318.indd 295 3/2/18 10:10 PM

296   Part 4  Relational Database Design

Figure 8.28 shows that the same physical record may be repeatedly accessed when
using the sequence set. The pointers from the sequence set nodes to the rows cross
many times, indicating that the index order is different from the row order.

Index selection involves choices about clustering and nonclustering indexes, as
shown in Figure 8.29. It is usually assumed that each table is stored in one file. The SQL
statements indicate the database work to be performed by applications. The weights
should combine the frequency of a statement with its importance. The table profiles
must be specified in the same level of detail as required for query optimization.

Usually, the index selection problem is restricted to Btree indexes and separate
files for each table. The references at the end of the chapter provide details about using
other kinds of indexes (such as hash indexes) and placing data from multiple tables
in the same file. However, these extensions make the problem more difficult without
adding much performance improvement. The extensions are useful only in specialized
situations.

8.5.2  Trade-offs and Difficulties
The best selection of indexes balances faster retrieval with slower updates. A nonclus-
tering index can improve retrievals by providing fast access to selected records. In
Example 8.2, a nonclustering index on the OffYear, OffTerm, or CourseNo columns may
be useful if relatively few rows satisfy the associated condition in the query. Usually,
less than 5 percent of the rows must satisfy a condition for a nonclustering index to be
useful. It is unlikely that any of the conditions in Example 8.2 will yield such a small
fraction of the rows.

Index Selection Problem
for each table, select at most
one clustering index and
zero or more nonclustering
indexes.

FIGURE 8.27
Clustering Index Example

Index set

<Abe, 1> <Adam, 2> <Bill, 4> <Bob, 3> <Carl, 5> <Carol, 6>

1. Abe, Denver, ...
2. Adam, Boulder, ...

3. Bob, Denver, ...
4. Bill, Aspen, ...

5. Carl, Denver, ...
6. Carol, Golden, ...

...

Physical records
containing rows

Sequence set

FIGURE 8.28
Nonclustering Index Example

Index set

<Abe, 6> <Adam, 2> <Bill, 4> <Bob, 5> <Carl, 1> <Carol, 3>

1. Carl,Denver, ...
2. Adam, Boulder, ...

3. Carol, Golden, ...
4. Bill, Aspen, ...

5. Bob, Denver, ...
6. Abe, Denver, ...

...

Physical
records
containing rows

Sequence set

26008_ch08_p267-318.indd 296 3/2/18 10:10 PM

Chapter 8  Physical Database Design   297

For optimizers that support multiple index access for the same table, noncluster-
ing indexes can be useful even if a single index by itself does not provide high enough
selectivity of rows. For example, the number of rows after applying the conditions on
CourseNo, OffYear, and OffTerm should be small, perhaps 20 to 30 rows. If an optimizer
can accurately estimate the number of rows, indexes on the three columns can be com-
bined to access the Offering rows. Thus, the ability to use multiple indexes on the same
table increases the usefulness of nonclustering indexes.

A nonclustering index can also be useful in a join if one table in the join has a small
number of rows in the result. For example, if only a few Offering rows meet all three
conditions in Example 8.2, a nonclustering index on the Faculty.FacNo column may be
useful when joining the Faculty and Offering tables.

FIGURE 8.29
Inputs and Outputs of Index
SelectionIndex

Selection

SQL statements
and weights

Table profiles

Clustered index
choices

Nonclustered
index choices

Example 8.2

SELECT FacName, CourseNo, OfferNo
 FROM Offering, Faculty
 WHERE CourseNo LIKE 'IS%' AND OffYear = 2018
 AND OffTerm = 'FALL'
 AND Faculty.FacNo = Offering.FacNo

Join of the Faculty and Offering Tables

A clustering index can improve retrievals under more situations than a nonclus-
tering index. A clustering index is useful in the same situations as a nonclustering
index except that the number of resulting rows can be larger. For example, a clustering
index on the CourseNo, OffYear, or OffTerm columns may be useful if perhaps 20 per-
cent of the rows satisfy the associated condition in the query.

A clustering index can also be useful on joins because it avoids the need to sort. For
example, using clustering indexes on the Offering.FacNo and Faculty.FacNo columns,
the Offering and Faculty tables can be joined by merging the rows from each table.
Merging rows is often a fast way to join tables if the tables do not need to be sorted
(clustering indexes exist).

The cost to maintain indexes as a result of INSERT, UPDATE, and DELETE state-
ments balances retrieval improvements. INSERT and DELETE statements affect all
indexes of a table. Thus, many indexes on a table are not preferred if the table has fre-
quent insert and delete operations. UPDATE statements affect only the columns listed
in the SET clause. If UPDATE statements on a column are frequent, the benefit of an
index is usually los.

Clustering index choices are more sensitive to maintenance than nonclustering
index choices. Clustering indexes are more expensive to maintain than nonclustering
indexes because the data file must be changed similar to an ordered sequential file. For
nonclustering indexes, the data file can be maintained as an unordered sequential file.

Difficulties of Index Selection  Index selection is difficult to perform well for a
variety of reasons as explained in this subsection. If you understand the reasons that
index selection is difficult, you should gain insights into the computer-aided tools to
help in the selection process for large databases. Enterprise DBMSs and some outside
vendors provide computer-aided tools to assist with index selection.

26008_ch08_p267-318.indd 297 3/2/18 10:10 PM

298   Part 4  Relational Database Design

•	 Application weights are difficult to specify. Judgments that combine frequency
and importance can make the result subjective.

•	 Distribution of parameter values is sometimes needed. Many SQL statements
in reports and forms use parameter values. If parameter values vary from being
highly selective to not very selective, selecting indexes is difficult.

•	 The behavior of the query optimization component must be known. Even if an
index appears useful for a query, the query optimization component must use
it. There may be subtle reasons why the query optimization component does not
use an index, especially a nonclustering index.

•	 The number of choices is large. Even if indexes on combinations of columns
are ignored, the theoretical number of choices is exponential in the number of
columns (2NC where NC is the number of columns). Although many of these
choices can be easily eliminated, the number of practical choices is still quite
large.

•	 Index choices can be interrelated. The interrelationships can be subtle, especially
when choosing indexes to improve join performance. The selection of a clustering
index on a parent table can influence the selection on a related child table.

An index selection tool can help with the last three problems. A good tool should use
the query optimization component to derive cost estimates for each query under a
given choice of indexes. However, a good tool cannot help alleviate the difficulty of
specifying application profiles and parameter value distributions. Other tools may be
provided to specify and capture application profiles.

Oracle SQL Access Advisor  The Oracle SQL Access Advisor performs a variety of
physical design tasks including index selection. The SQL Access Advisor makes recom-
mendations for indexes (B+tree, bitmap, hash, and function) using a workload specifi-
cation. To ensure realistic recommendations, the SQL Access Advisor uses the Oracle
optimization component to determine the impact of index choices on a workload.
Workloads can be directly provided or collected from database operations. A work-
load specification involves a collection of SQL statements with properties for each SQL
statement including the priority and execution statistics such as optimizer cost, rows
retrieved, frequency, memory usage, CPU time, and disk reads. Each query in a work-
load must be ranked by one or more query properties such as priority and frequency.

To support workload collection, Oracle provides a workload database known as
the Automatic Workload Repository (AWR). The AWR contains execution history of
SQL statements including the statement text, CPU time, elapsed time, disk read, rows
retrieved, and frequency. The AWR is populated by periodic snapshots of database
operations. By default, Oracle automatically generates snapshots of database opera-
tions once every hour and retains the statistics in the workload repository for eight
days. A database designer can modify the default snapshot interval as well as create
snapshots manually.

The SQL Access Advisor is often used in tandem with the SQL Tuning Advisor.
Recall from Section 8.4.2 that the SQL Tuning Advisor makes recommendations about
improving the performance of high-load SQL statements. If the SQL Tuning Advisor
recommends creation of additional indexes for a high-load SQL statement, the data-
base designer should use the SQL Access Advisor to evaluate the impact of the addi-
tional indexes on other statements in the workload. If the additional indexes adversely
impact important SQL manipulation statements, the database designer may want to
ignore the recommendations of the SQL Tuning Advisor.

8.5.3  Selection Rules
Despite the difficulties previously discussed, you usually can avoid poor index choices
by following some simple rules. You also can use the rules as a starting point for a
more careful selection process.

26008_ch08_p267-318.indd 298 3/2/18 10:10 PM

Chapter 8  Physical Database Design   299

Rule 1: �A primary key is a good candidate for a clustering index.
Rule 2: �To support joins, consider indexes on foreign keys. A nonclustering index

on a foreign key is a good idea when there are important queries with highly
selective conditions on the related primary key table. A clustering index is
a good choice when most joins use a parent table with a clustering index on
its primary key, and the queries do not have highly selective conditions on
the parent table.

Rule 3: �A column with almost unique values may be a good choice for a noncluster-
ing index if it is used in equality conditions. Almost unique means that the
number of column values is close to the number of rows containing non-
null values for the column.

Rule 4: �A column used in highly selective range conditions is a good candidate for
a nonclustering index.

Rule 5: �A combination of columns used together in query conditions may be good
candidates for nonclustering indexes if the combined conditions return few
rows, the DBMS optimizer supports multiple index access, and the columns
are stable. Individual indexes should be created on each column.

Rule 6: �A frequently updated column is not a good index candidate.
Rule 7: �Volatile tables (lots of insertions and deletions) should not have many

indexes.
Rule 8: �Stable columns with few values are good candidates for bitmap indexes if

the columns appear in WHERE conditions.
Rule 9: �Avoid indexes on combinations of columns. Most optimization components

can use multiple indexes on the same table. An index on a combination of col-
umns is not as flexible as multiple indexes on individual columns of the table.

Applying the Selection Rules  Let us apply these rules to the Student, Enrollment,
and Offering tables of the university database. Table 8-10 lists summaries of the table
profiles. More detail about column and relationship distributions can be encoded
in histograms. Table 8-11 lists SQL statements and frequencies for these tables. The
names beginning with $ represent parameters supplied by a user. The frequencies
assume a student population of 30,000, in which students enroll in an average of four
offerings per term. After a student graduates or leaves the university, the Student and
Enrollment rows are archived.

Table 8-12 lists index choices according to the index selection rules. Only a few
indexes are recommended because of the frequency of maintenance statements and
the absence of highly selective conditions on columns other than the primary key. In
queries 9 and 10, although the individual conditions on OffTerm and OffYear are not
highly selective, the combined condition may be reasonably selective to recommend
bitmap indexes, especially in query 9 with the additional condition on CourseNo. There
is an index on StdGPA because parameter values should be very high or low, provid-
ing high selectivity with few rows in the result. A more detailed study of the StdGPA
index may be necessary because it has a considerable amount of update activity. Even

TABLE 8-10
Table ProfilesTable Number of Rows Column (Number of Unique Values)

Student 30,000 StdNo (PK), StdLastName (29,000), StdAddress (20,000), StdCity
(500), StdZip (1,000), StdState (50), StdMajor (100), StdGPA (400)

Enrollment 300,000 StdNo (30,000), OfferNo (2,000), EnrGrade (400)

Offering 10,000 OfferNo (PK), CourseNo (900), OffTime (20), OffLocation (500),
FacNo (1,500), OffTerm (4), OffYear (10), OffDays (10)

Course 1,000 CourseNo (PK), CrsDesc (1,000), CrsUnits (6)

Faculty 2,000 FacNo (PK), FacLastName (1,900), FacAddress (1,950), FacCity (50),
FacZip (200), FacState (3), FacHireDate (300), FacSalary (1,500),
FacRank (10), FacDept (100)

26008_ch08_p267-318.indd 299 3/2/18 10:10 PM

300   Part 4  Relational Database Design

TABLE 8-11
SQL Statements and
Frequencies for Several
University Database Tables

SQL Statement Frequency Comments

 1. INSERT INTO Student … 7,500/year Beginning of year

 2. INSERT INTO Enrollment … 120,000/term During registration

 3. INSERT INTO Offering … 1,000/year Before scheduling
deadline

 4. DELETE Student WHERE StdNo = $X 8,000/year After separation

 5. DELETE Offering WHERE OfferNo = $X 1,000/year End of year

 6. DELETE Enrollment
 WHERE OfferNo = $X AND StdNo = $Y

64,000/year End of year

 7. SELECT * FROM Student
 WHERE StdGPA > $X AND StdMajor = $Y

1,200/year $X is usually very
large or small

 8. SELECT * FROM Student
 WHERE StdNo = $X

30,000/term

 9. SELECT * FROM Offering
 WHERE OffTerm = $X AND OffYear = $Y
 AND CourseNo LIKE $Z

60,000/term Few rows in result

10. SELECT * FROM Offering, Enrollment
 WHERE StdNo = $X AND OffTerm = $Y
 AND OffYear = $Z
 AND Offering.OfferNo = Enrollment.OfferNo

30,000/term Few rows in result

11. UPDATE Student SET StdGPA = $X
 WHERE StdNo = $Y

30,000/term Updated at end of
reporting form

12. UPDATE Enrollment SET EnrGrade = $X
 WHERE StdNo = $Y AND OfferNo = $Z

120,000/term Part of grade
reporting form

13. UPDATE Offering SET FacNo = $X
 WHERE OfferNo = $Y

500/year

14. SELECT FacNo, FacFirstName, FacLastName
 FROM Faculty
 WHERE FacRank = $X AND FacDept = $Y

1,000/term Most occurring
during registration

15. SELECT * FROM Student, Enrollment, Offering
 WHERE Offering.OfferNo = $X
 AND Student.StdNo = Enrollment.StdNo
 AND Offering.OfferNo = Enrollment.OfferNo

4,000/year Most occurring
beginning of
semester

though not suggested by the SQL statements, the StdLastName and FacLastName col-
umns also may be good index choices because they are almost unique (a few dupli-
cates) and reasonably stable. If there are additional SQL statements that use these
columns in conditions, nonclustered indexes should be considered.

Although SQL:2016 does not support statements for indexes, most DBMSs sup-
port index statements. In Example 8.3, the word following the INDEX keyword is the

TABLE 8-12
Index Selections for the
University Database Tables

Column Index Kind Rule

Student.StdNo Clustering 1

Faculty.FacNo Clustering 1

Student.StdGPA Nonclustering 4

Offering.OfferNo Clustering 1

Enrollment.OfferNo Clustering 2

Faculty.FacRank Bitmap 8

Faculty.Dept Bitmap 8

Offering.OffTerm Bitmap 8

Offering.OffYear Bitmap 8

26008_ch08_p267-318.indd 300 3/2/18 10:10 PM

Chapter 8  Physical Database Design   301

Although index selection is the most important decision of physical database design,
there are other decisions that can significantly improve performance. This section dis-
cusses two decisions, denormalization and record formatting, that can improve perfor-
mance in selected situations. Next, this section presents parallel processing to improve
database performance, an increasingly popular alternative. Finally, several ways to
improve performance related to specific kinds of processing are briefly discussed.

8.6.1  Denormalization
Denormalization combines tables so that they are easier to query. After combining
tables, the new table may violate a normal form such as BCNF. Although some of the
denormalization techniques do not lead to violations in a normal form, they still make
a design easier to query and more difficult to update. Denormalization should always
be done with extreme care because a normalized design has important advantages.
Chapter 7 described one situation for denormalization: ignoring a functional depen-
dency if it does not lead to significant modification anomalies. This section describes
additional situations under which denormalization may be justified.

name of the index. The CREATE index statement also can be used to create an index on
a combination of columns by listing multiple columns in the parentheses. The Oracle
CREATE INDEX statement cannot be used to create a clustered index. To create a
clustered index, Oracle provides the ORGANIZATION INDEX clause as part of the
CREATE TABLE statement.

Example 8.3

CREATE UNIQUE INDEX StdNoIndex ON Student (StdNo)
CREATE UNIQUE INDEX FacNoIndex ON Faculty (FacNo)
CREATE INDEX StdGPAIndex ON Student (StdGPA)
CREATE UNIQUE INDEX OfferNoIndex ON Offering (OfferNo)
CREATE INDEX EnrollOfferNoIndex ON Enrollment (OfferNo)
CREATE BITMAP INDEX OffYearIndex ON Offering (OffYear)
CREATE BITMAP INDEX OffTermIndex ON Offering (OffTerm)
CREATE BITMAP INDEX FacRankIndex ON Faculty (FacRank)
CREATE BITMAP INDEX FacDeptIndex ON Faculty (FacDept)

Oracle CREATE INDEX statements

8.6  ADDITIONAL CHOICES IN PHYSICAL DATABASE DESIGN

Normalized Designs

•	 Have better update performance.
•	 Require less coding to enforce integrity constraints.
•	 Support more indexes to improve query performance.

Repeating Groups  A repeating group is a collection of associated values such as sales
history, lines of an order, or payment history. The rules of normalization force repeating
groups to be stored in a child table separate from the associated parent table. For example,
the lines of an order are stored in an order line table, separate from a related order table.
If a repeating group is always accessed with its associated parent table, denormalization
may be a reasonable alternative.

Figure 8.30 shows a denormalization example of quarterly sales data. Although
the denormalized design does not violate BCNF, it is less flexible for updating than the

26008_ch08_p267-318.indd 301 3/2/18 10:10 PM

302   Part 4  Relational Database Design

normalized design. The normalized design supports an unlimited number of quar-
terly sales as compared to only four quarters of sales results for the denormalized
design. However, the denormalized design does not require a join to combine territory
and sales data.

Generalization Hierarchies  Following the conversion rule for generalization
hierarchies in Chapter 6 can result in many tables. If queries often need to combine
these separate tables, it may be reasonable to store the separate tables as one table.
Figure 8.31 demonstrates denormalization of the Emp, HourlyEmp, and SalaryEmp
tables. They have 1-1 relationships because they represent a generalization hierarchy.
Although the denormalized design does not violate BCNF, the combined table may
waste space because of null values. However, the denormalized design avoids the
outer join operator to combine the tables.

Codes and Meanings  Normalization rules require that foreign keys be stored
alone to represent 1-M relationships. If a foreign key represents a code, the user often
requests an associated name or description in addition to the foreign key value. For
example, the user may want to see the state name in addition to the state code. Storing
the name or description column along with the code violates BCNF, but it eliminates
some join operations. If the name or description column is not changed often, denor-
malization may be a reasonable choice. Figure 8.32 demonstrates denormalization for
the Dept and Emp tables. In the denormalized design, the DeptName column has been
added to the Emp table.

8.6.2  Record Formatting
Record formatting decisions involve compression and derived data. With an increas-
ing emphasis on storing complex data types such as audio, video, and images,

FIGURE 8.31
Denormalizing a
Generalization Hierarchy

EmpNo
EmpName
EmpHireDate

Emp

EmpNo
EmpSalary

SalaryEmp

1

1

Normalized Denormalized

EmpNo
EmpRate

HourlyEmp

EmpNo
EmpName
EmpHireDate
EmpSalary
EmpRate

Emp

1

FIGURE 8.30
Denormalizing a Repeating
Group

TerrNo
TerrName
TerrLoc

Territory

TerrNo
TerrQtr
TerrSales

TerritorySales

1

M

TerrNo
TerrName
TerrLoc
Qtr1Sales
Qtr2Sales
Qtr3Sales
Qtr4Sales

Territory

Normalized Denormalized

26008_ch08_p267-318.indd 302 3/2/18 10:10 PM

Chapter 8  Physical Database Design   303

compression is an important issue. In some situations, there are multiple compression
alternatives available. Compression is a trade-off between input-output and process-
ing effort. Compression reduces the number of physical records transferred but may
require considerable processing effort to compress and decompress the data.

Decisions about derived data involve trade-offs between query and update oper-
ations. For query purposes, storing derived data reduces the need to retrieve data
needed to calculate the derived data. However, updates to the underlying data require
additional updates to the derived data. Storing derived data to reduce join operations
may be reasonable. Figure 8.33 demonstrates derived data in the Order table. If the
total amount of an order is frequently requested, storing the derived column OrdAmt
may be reasonable. Calculating order amount requires a summary or aggregate cal-
culation of related OrdLine and Product rows to obtain the Qty and ProdPrice columns.
Storing the OrdAmt column avoids two join operations.

8.6.3  Parallel Processing
Retrieval and modification performance can be improved significantly through paral-
lel processing. Retrievals involving many records can be improved by reading physi-
cal records in parallel. For example, a report to summarize daily sales activity may
read thousands of records from several tables. Parallel reading of physical records can
reduce significantly the execution time of the report. In addition, performance can be
improved significantly for batch applications with many write operations and read/
write of large logical records such as images.

As a response to the potential performance improvements, many DBMSs provide
parallel processing capabilities. Chapter 18 describes architectures for parallel data-
base processing. The presentation here is limited to an important part of any parallel

FIGURE 8.32
Denormalizing to Combine
Code and Meaning Columns

DeptNo
DeptName
DeptLoc

Dept

EmpNo
EmpName
DeptNo

Emp

1

M

Normalized Denormalized

DeptNo
DeptName
DeptLoc

Dept

EmpNo
EmpName
DeptNo
DeptName

Emp

1

M

FIGURE 8.33
Storing Derived Data to
Improve Query PerformanceOrdNo

OrdDate
OrdAmt

Order

OrdNo
ProdNo
Qty

OrdLine

1

M

ProdNo
ProdName
ProdPrice

Product

1

M

derived
data

26008_ch08_p267-318.indd 303 3/2/18 10:10 PM

304   Part 4  Relational Database Design

database processing architecture, Redundant Arrays of Independent Disks (RAID)3.
The RAID controller (Figure 8.34) enables an array of disks to appear as one large disk
to the DBMS. For very high performance, a RAID controller can control as many as 90
disks. Because of the controller, RAID storage requires no changes in applications and
queries. However, the query optimization component may be changed to account for
the effect of parallel processing on access plan evaluation.

Striping is an important concept for RAID storage. Striping involves the allocation
of physical records to different disks. A stripe is the set of physical records that can
be read or written in parallel. Normally, a stripe contains a set of adjacent physical
records. Figure 8.35 depicts an array of four disks that allows the reading or writing of
four physical records in parallel.

To utilize RAID storage, a number of architectures have emerged. The architec-
tures, known as RAID-X, support parallel processing with varying amounts of perfor-
mance and reliability. Reliability is an important issue because the mean time between
failures (a measure of disk drive reliability) decreases as the number of disk drives
increases. To combat reliability concerns, RAID architectures incorporate redundancy
using mirrored disks, error-correcting codes, and spare disks. Here are RAID architec-
tures that provide varying amounts of performance and reliability.

•	 RAID-1: involves a full mirror or redundant array of disks to improve reliability.
Each physical record is written to both disk arrays in parallel. Read operations
from separate queries can access a disk array in parallel to improve performance
across queries. RAID-1 involves the most storage overhead as compared to other
RAID architectures.

3 RAID originally was an acronym for Redundant Arrays of Inexpensive Disks. Because prices of disk drives
have fallen dramatically since the invention of the RAID idea (1988), inexpensive has been replaced by
independent.

RAID
a collection of disks (a disk
array) that operates as a
single disk. RAID storage
supports parallel read and
write operations with high
reliability.

RAID
controller

Disk array

Host computer

FIGURE 8.34
Components of a RAID
Storage System

Each stripe consists of four adjacent physical records. Three stripes are
shown separated by dotted lines.

PR1 PR2 PR3 PR4

PR5 PR6 PR7 PR8

PR9 PR10 PR11 PR12

FIGURE 8.35
Striping in RAID Storage
Systems

26008_ch08_p267-318.indd 304 3/2/18 10:10 PM

Chapter 8  Physical Database Design   305

•	 RAID-5: uses both data and error-correcting pages (known as parity pages) to
improve reliability. Read operations can be performed in parallel on stripes.
Write operations involve a data page and an error-correcting page on another
disk. To reduce disk contention, the error-correcting pages are randomly located
across disks. RAID-5 uses storage space more efficiently than RAID-1 but can
involve slower write times because of the error-correcting pages. Thus, RAID-1 is
often preferred for highly volatile parts of a database.

•	 Advanced architectures use a two-dimensional arrangement of mirroring and
striping. A mirror of striped volumes tolerates failure to one volume because a
volume is chosen and then used like striped RAID. At a higher cost, striping of
mirrored volumes provides even higher reliability because it does not fail until
one disk in each stripe fails.

Beyond these basic architectures, the RAID naming convention incorporates the num-
ber of data disks, parity disks, and spares. For example, 5+1+1 involves 5 data disks, 1
parity disk, and 1 hot spare disk.

To increase capacity beyond RAID and remove the reliance on storage devices
attached to a server, Storage Area Networks (SANs) have been developed. A SAN
provides a specialized high-speed network that connects storage devices and servers.
The goal of SAN technology is to integrate different types of storage subsystems into
a single system and to eliminate the potential bottleneck of a single server control-
ling storage devices. Many large organizations use SANs to integrate storage systems
for operational databases, data warehouses, archival storage of documents, and tradi-
tional file systems.

An emerging trend for SANs is the usage of two types of permanent storage, tradi-
tional hard drives and solid state drives. Solid state drives provide substantial advan-
tages with faster random data access and transfer times, lower power consumption,
and improved reliability although cost per bit is substantially larger. Major SAN ven-
dors support both types of drives allowing customers to make trade-offs between the
usages of each type of drive in a storage network. Most SAN vendors provide a data
movement feature (also known as tiering) in which inactive data percolates to lower
cost but higher capacity storage (hard drives), thus releasing space on faster access but
higher cost storage (solid state drives) for business-critical applications.

The usage two types of permanent storage can be generalized into the concept of
Information Lifecycle Management (ILM), an important tool to manage big data. ILM
uses multiple levels of storage and compression based on organization policies. For
example, very active data is stored on solid state drives, active data on hard drives,
less active data on optical drives, and historical data on archival storage. Each level
of storage can have its own level of compression to balance data access costs against
storage costs.

ILM products offered by storage providers and DBMS vendors provide tools to
manage the migration of data between storage and compression levels. The Oracle
ILM product automatically moves and compresses data according to organization
policies. Oracle 12c provides two new features, the Heat Map and Automatic Data
Optimization to support automatic migration and compression. The Heat Map tracks
fine-grained usage to the row and segment levels, providing a detailed view of data
access patterns over time. Automatic Data Optimization supports policy creation for
data compression and movement. Using the Heat Map access patterns and lifecycle
policies, Oracle ILM automatically compresses and moves data among storage and
compression tiers.

8.6.4  Other Ways to Improve Performance
There are a number of other ways to improve database performance that are related
to a specific kind of processing. For transaction processing (Chapter 17), you can add
computing capacity (faster and more processors, memory, hard disks, and solid state
disks) and make trade-offs in transaction design. For data warehouses (Chapters 12

26008_ch08_p267-318.indd 305 3/2/18 10:10 PM

306   Part 4  Relational Database Design

This chapter described the nature of the physical database design process and details
about the inputs, environment, and design decisions. Physical database design
involves details closest to the operating system such as movement of physical records.
The objective of physical database design is to minimize computing resources (physi-
cal record accesses and central processing effort) without compromising the meaning
of the database. Physical database design is a difficult process because the inputs can
be difficult to specify, the environment is complex, and the number of choices can be
overwhelming.

To improve your proficiency in performing physical database design, this chapter
described details about the inputs and the environment of physical database design.
This chapter described table profiles and application profiles as inputs that must be
specified in sufficient detail to achieve an efficient design. The environment consists of
file structures and the query optimization component of the DBMS. For file structures,
this chapter described characteristics of sequential, hash, Btree, and bitmap structures
used by many DBMSs. For query optimization, this chapter described the tasks of
query optimization and tips to produce better optimization results.

After establishing the background for the physical database design process, the
inputs, and the environment, this chapter described decisions about index selection,
denormalization, and record formatting. For index selection, this chapter described
trade-offs between retrieval and update applications and presented rules for selecting
indexes. For denormalization and data formatting, this chapter presented a number of
situations when they are useful.

This chapter concludes the database development process. After completing these
steps, you should have an efficient table design that represents the needs of an orga-
nization. To complete your understanding of the database development process, the
textbook’s website provides a detailed case study in which to apply the ideas in pre-
ceding parts of this book.

to 15), you can add computing capacity, utilize specialized architectures, and design
new tables with derived data. For distributed database processing (Chapter 18), you
can allocate processing and data to various computing locations, partition data, and
utilize parallel database processing. Data can be allocated by partitioning a table ver-
tically (column subset) and horizontally (row subset) to improve performance and
reliability. These design choices are discussed in the respective chapters in later parts
of the textbook.

In addition to tuning performance for specific processing requirements, you also
can improve performance by utilizing options specific to a DBMS. Fragmentation is
an important concern in database storage as it is with any disk storage. Most DBMSs
provide guidelines and tools to monitor and control fragmentation. In addition, most
DBMSs have options for file structures that can improve performance. You must care-
fully study the specific DBMS to understand these options. It may take several years
of experience and specialized education to understand options of a particular DBMS.
However, the payoff of increased salary and demand for your knowledge can be
worth the study.

CLOSING THOUGHTS

REVIEW CONCEPTS

•	 Relationship between physical records and logical records
•	 Objective of physical database design
•	 Difficulties of physical database design
•	 Level of detail in table and application profiles

26008_ch08_p267-318.indd 306 3/2/18 10:10 PM

Chapter 8  Physical Database Design   307

  1.	What is the difference between a physical record access and a logical record
access?

  2.	Why is it difficult to know when a logical record access results in a physical
record access?

  3.	What is the objective of physical database design?
  4.	What computing resources are constraints rather than being part of the objective

of physical database design?
  5.	What are the contents of table profiles?
  6.	What are the contents of application profiles?
  7.	Describe two ways to specify distributions of columns used in table and

application profiles.

•	 Equal-height histograms to specify distribution of column values
•	 Characteristics of sequential, hash, Btree, and column store file structures
•	 Possible meanings of the letter B in the name Btree: balanced, bushy, block-

oriented
•	 Index matching rules for determination if an index can be used for a search

condition in a query
•	 Bitmap indexes for stable columns with few values
•	 Bitmap join indexes for frequent join operations using conditions on stable

nonjoin columns
•	 Columnstore indexes for grouping queries on large tables
•	 Oracle storage terminology: tablespace, file, and extent
•	 Oracle storage parameters to control free space in a block: PCTFREE and

PCTUSED
•	 Tasks of data language translation
•	 The usage of cost formulas and table profiles to evaluate access plans
•	 The importance of table profiles with sufficient detail for access plan evaluation
•	 Oracle tools (hints, extended statistics, and dynamic sampling) to overcome

poor estimates about the number of rows in a query result
•	 Coding practices to avoid poorly executing queries
•	 Difference between clustering and nonclustering indexes
•	 Trade-offs in selecting indexes
•	 Index selection rules to avoid poor index choices
•	 Denormalization to improve join performance
•	 Record formatting to reduce physical record accesses and improve query

performance
•	 RAID storage to provide parallel processing for retrievals and updates
•	 RAID architectures to provide parallel processing with high reliability
•	 Storage Area Networks (SANs) to integrate storage subsystems and to eliminate

reliance upon server-attached storage devices
•	 Usage of solid state drives with faster access times, lower power consumption,

and higher reliability to complement traditional hard drives in SANs
•	 Information Lifecycle Management (ILM), an important tool to manage big data,

using multiple levels of storage and compression along with data movement
among levels

QUESTIONS

26008_ch08_p267-318.indd 307 3/2/18 10:10 PM

308   Part 4  Relational Database Design

  8.	Why do most enterprise DBMSs use equal-height histograms to represent
column distributions instead of equal-width histograms?

  9.	What is a file structure?
  10.	What is the difference between a primary and a secondary file structure?
  11.	Describe the uses of sequential files for sequential search, range search, and key

search.
  12.	What is the purpose of a hash function?
  13.	Describe the uses of hash files for sequential search, range search, and key

search.
  14.	What is the difference between a static hash file and a dynamic hash file?
  15.	Define the terms balanced, bushy, and block-oriented as they relate to Btree files.
  16.	Briefly explain the use of node splits and concatenations in the maintenance of

Btree files.
  17.	What does it mean to say that Btrees have logarithmic search cost?
  18.	What is the difference between a Btree and a B+tree?
  19.	What is a bitmap?
  20.	How does a DBMS use a bitmap?
  21.	What are the components of a bitmap index record?
  22.	What is the difference between a bitmap column index and a bitmap join

index?
  23.	When should bitmap indexes be used?
  24.	What is the difference between a primary and secondary file structure?
  25.	What does it mean to say that an index matches a column?
  26.	Why should composite indexes be used sparingly?
  27.	What happens in the query transformation phase of database language

translation?
  28.	What is an access plan?
  29.	What is a multiple index scan?
  30.	How are access plans evaluated in query optimization?
  31.	Why does the uniform value assumption sometimes lead to poor access plans?
  32.	What does it mean to bind a query?
  33.	What join algorithm can be used for all joins operations?
  34.	For what join algorithms must the optimization component choose the outer and

inner tables?
  35.	What join algorithm can combine more than two tables at a time?
  36.	When is the sort merge algorithm a good choice for combining tables?
  37.	When is the hash join algorithm a good choice for combining tables?
  38.	What is an optimizer hint? Why should hints be used cautiously?
  39.	Identify a situation in which an optimizer hint should not be used.
  40.	Identify a situation in which an optimizer hint may be appropriate.
  41.	What is the difference between a clustering and a nonclustering index?
  42.	When is a nonclustering index useful?
  43.	When is a clustering index useful?
  44.	What is the relationship of index selection to query optimization?
  45.	What are the trade-offs in index selection?
  46.	Why is index selection difficult?

26008_ch08_p267-318.indd 308 3/2/18 10:10 PM

Chapter 8  Physical Database Design   309

  47.	When should you use the index selection rules?
  48.	Why should you be careful about denormalization?
  49.	Identify two situations when denormalization may be useful.
  50.	What is RAID storage?
  51.	For what kinds of applications can RAID storage improve performance?
  52.	What is striping in relation to RAID storage?
  53.	What techniques are used in RAID storage to improve reliability?
  54.	What are the advantages and disadvantages of RAID-1 versus RAID-5?
  55.	What is a Storage Area Network (SAN)?
  56.	What is the relationship of a SAN to RAID storage?
  57.	What are the trade-offs in storing derived data?
  58.	What processing environments also involve physical database design

decisions?
  59.	What are some DBMS-specific concerns for performance improvement?
  60.	What is an implicit type conversion? Why may implicit type conversions cause

poor query performance?
  61.	Why do unnecessary joins cause poor query performance?
  62.	Why should row conditions in the HAVING clause be moved to the WHERE

clause?
  63.	How are the Oracle PCTFREE and PCTUSED parameters used to control free

space in a data block?
  64.	What is the relationship among the Oracle storage terminology tablespace, file,

and extent?
  65.	In Oracle, can a database object such as a table be stored in more than one file?

(Hint: you can find the answer in the Oracle Database Concepts document.)
  66.	In Oracle, what is an indexed-organized file structure?
  67.	What tasks are performed by the Oracle SQL Tuning Advisor?
  68.	How does the Automatic Database Diagnostic Monitor support a DBA when

using the SQL Tuning Advisor?
  69.	What tasks are performed by the Oracle SQL Access Advisor?
  70.	How does the Automatic Workload Repository support a DBA when using the

SQL Access Advisor?
  71.	If the SQL Tuning Advisor recommends creating additional indexes to support a

high-load SQL statement, should a DBA accept the recommendation or perform
additional analysis?

  72.	Compare traditional hard drives and solid state drives on random access times,
transfer times, power consumption, reliability, and cost per bit.

  73.	What feature is provided by Storage Area Networks (SANs) to support usage of
both traditional hard drives and solid state drives?

  74.	What tools does Oracle provide to overcome poor estimates about the number of
rows in a query result?

  75.	How does Information Lifecycle Management address problems of big data?
  76.	How is a columnstore different that traditional row storage?
  77.	What is a columnstore index?
  78.	What kind of queries does a columnstore index support?
  79.	What advantages does a columnstore provide for the kind of queries that it

supports?

26008_ch08_p267-318.indd 309 3/2/18 10:10 PM

310   Part 4  Relational Database Design

Besides the problems presented here, the case study in the textbook’s website provides
additional practice with a complete database design case including physical database
design.
  1.	Use the following data to perform the indicated calculations. Show formulas

that you used to perform the calculations.

Row size = 100 bytes
Number of rows = 100,000
Primary key size = 6 bytes
Physical record size = 4,096 bytes
Pointer size = 4 bytes
Floor(X) is the largest integer less than or equal to X.
Ceil(X) is the smallest integer greater than or equal to X.
1.1. �Calculate the number of rows that can fit in a physical record. Assume that

only complete rows can be stored (use the Floor function).
1.2. �Calculate the number of physical records necessary for a sequential file.

Assume that physical records are filled to capacity except for the last
physical record (use the Ceil function).

1.3. �If an unordered sequential file is used, calculate the number of physical
record accesses on the average to retrieve a row with a specified key value.

1.4. �If an ordered sequential file is used, calculate the number of physical record
accesses on the average to retrieve a row with a specified key value. Assume
that the key exists in the file.

1.5. �Calculate the average number of physical record accesses to find a key
that does not exist in an unordered sequential file and an ordered
sequential file.

1.6. �Calculate the number of physical records for a static hash file. Assume that
each physical record of the hash file is 70 percent full.

1.7. �Calculate the maximum branching factor on a node in a Btree. Assume that
each record in a Btree consists of <key value, pointer> pairs.

1.8. �Using your calculation from problem 1.7, calculate the maximum height of a
Btree index.

1.9. �Calculate the maximum number of physical record accesses to find a node
in the Btree with a specific key value.

  2.	Answer query optimization questions for the following SQL statement:

SELECT * FROM Customer
 WHERE CustCity = 'DENVER' AND CustBal > 5000
 AND CustState = 'CO'

2.1. �Show four access plans for this query assuming that nonclustered indexes
exist on the columns CustCity, CustBal (new column storing customer
balances), and CustState. There is also a clustered index on the primary key
column, CustNo.

2.2. �Using the uniform value assumption, estimate the fraction of rows that
satisfy the condition on CustBal. The smallest balance is 0 and the largest
balance is $10,000.

2.3. �Using the following histogram, estimate the fraction of rows that satisfy the
condition on CustBal.

PROBLEMS

26008_ch08_p267-318.indd 310 3/2/18 10:10 PM

Chapter 8  Physical Database Design   311

  3.	Answer query optimization questions for the following SQL statement

SELECT OrdNo, OrdDate, Vehicle.ModelNo
 FROM Customer, Order, Vehicle
 WHERE CustBal > 5000
 AND Customer.CustNo = Vehicle.CustNo
 AND Vehicle.SerialNo = Order.SerialNo

3.1. List the possible orders to join the Customer, Order, and Vehicle tables.
3.2. �For one of these join orders, make an access plan. Assume that Btree indexes

only exist for the primary keys, Customer.CustNo, Order.OrdNo, and Vehicle.
SerialNo.

  4.	For the following tables and SQL statements, select indexes that balance retrieval
and update requirements. For each table, justify your choice using the rules
discussed in Section 8.5.3.

Customer(CustNo, CustName, CustCity, CustState, CustZip, CustBal)
Order(OrdNo, OrdDate, CustNo)
	 FOREIGN KEY CustNo REFERENCES Customer

Histogram for CustBal

Range Rows

0 – 100 1,000

101 – 250 950

251 – 500 1,050

501 – 1,000 1,030

1,001 – 2,000 975

2,001 – 4,500 1,035

4,501 – 1,200

SQL Statement Frequency

 1. INSERT INTO Customer … 100/day

 2. INSERT INTO Product … 100/month

 3. INSERT INTO Order … 3,000/day

 4. INSERT INTO OrdLine … 9,000/day

 5. DELETE Product WHERE ProdNo = $X 100/year

 6. DELETE Customer WHERE CustNo = $X 1,000/year

 7. SELECT * FROM Order, Customer
 WHERE OrdNo = $X AND Order.CustNo = Customer.CustNo

300/day

 8. SELECT * FROM OrdLine, Product
 WHERE OrdNo = $X AND OrdLine.ProdNo = Product.ProdNo

300/day

 9. SELECT * FROM Customer, Order, OrdLine, Product
 WHERE CustName = $X AND OrdDate = $Y
 AND Customer.CustNo = Order.CustNo
 AND Order.OrdNo = OrdLine.OrdNo
 AND Product.ProdNo = OrdLine.ProdNo

500/day

10. UPDATE OrdLine SET OrdQty = $X
 WHERE OrdNo = $Y

300/day

11. UPDATE Product SET ProdPrice = $X
 WHERE ProdNo = $Y

300/month

26008_ch08_p267-318.indd 311 3/2/18 10:10 PM

312   Part 4  Relational Database Design

OrdLine(OrdNo, ProdNo, OrdQty)
	 FOREIGN KEY OrdNo REFERENCES Order
	 FOREIGN KEY ProdNo REFERENCES Product
Product(ProdNo, ProdName, ProdColor, ProdPrice)

4.1. �For the Customer table, what columns are good choices for the clustered
index? Nonclustered indexes?

4.2. �For the Product table, what columns are good choices for the clustered
index? Nonclustered indexes?

4.3. �For the Order table, what columns are good choices for the clustered index?
Nonclustered indexes?

4.4. �For the OrdLine table, what columns are good choices for the clustered
index? Nonclustered indexes?

  5.	 Indexes on combinations of columns are not as useful as indexes on individual
columns. Consider a combination index on two columns, CustState and
CustCity, where CustState is the primary ordering and CustCity is the secondary
ordering. For what kinds of conditions can the index be used? For what kinds of
conditions is the index not useful?

  6.	For query 9 in problem 4, list the possible join orders considered by the query
optimization component.

  7.	For the following tables of a financial planning database, identify possible
uses of denormalization and derived data to improve performance. In addition,
identify denormalization and derived data already appearing in the
tables.
The tables track financial assets held and trades made by customers. A trade
involves a purchase or sale of a specified quantity of an asset by a customer.
Assets include stocks and bonds. The Holding table contains the net quantity of
each asset held by a customer. For example, if a customer has purchased 10,000
shares of IBM and sold 4,000, the Holding table shows a net quantity of 6,000.
A frequent query is to list the most recent valuation for each asset held by a
customer. The most recent valuation is the net quantity of the asset times the
most recent price.

Customer(CustNo, CustName, CustAddress, CustCity, CustState, CustZip,
CustPhone)
Asset(AssetNo, SecName, LastClose)
Stock(AssetNo, OutShares, IssShares)
Bond(AssetNo, BondRating, FacValue)
PriceHistory(AssetNo, PHistDate, PHistPrice)
	 FOREIGN KEY AssetNo REFERENCES Asset
Holding(CustNo, AssetNo, NetQty)
	 FOREIGN KEY CustNo REFERENCES Customer
	 FOREIGN KEY AssetNo REFERENCES Asset
Trade�(TradeNo, CustNo, AssetNo, TrdQty, TrdPrice, TrdDate, TrdType,

TrdStatus)
	 FOREIGN KEY CustNo REFERENCES Customer
	 FOREIGN KEY AssetNo REFERENCES Asset

  8.	Rewrite the following SQL statement to improve its performance on most
DBMSs. Use the tips in Section 8.4.2 to rewrite the statement. The Oracle SQL
statement uses the financial trading database shown in problem 7. The purpose
of the statement is to list the customer number and the name of customers

26008_ch08_p267-318.indd 312 3/2/18 10:10 PM

Chapter 8  Physical Database Design   313

and the sum of the amount of their completed October 2017 buy trades. The
amount of a trade is the quantity (number of shares) times the price per share. A
customer should be in the result if the sum of the amount of his/her completed
October 2017 buy trades exceeds by 25 percent the sum of the amount of his/her
completed September 2017 buy trades.

SELECT Customer.Custno, CustName,
 SUM(TrdQty * TrdPrice) AS SumTradeAmt
 FROM Customer, Trade
 WHERE Customer.CustNo = Trade.CustNo
 AND TrdDate BETWEEN '1-Oct-2017' AND '31-Oct-2017'
 GROUP BY Customer.CustNo, CustName
 HAVING TrdType = 'BUY' AND SUM(TrdQty * TrdPrice) >
 (SELECT 1.25 * SUM(TrdQty * TrdPrice) FROM Trade
 WHERE TrdDate BETWEEN '1-Sep-2017' AND '30-Sep-2017'
 AND TrdType = 'BUY'
 AND Trade.CustNo = Customer.CustNo)

  9.	Rewrite the following SELECT statement to improve its performance on most
DBMSs. Use the tips in Section 8.4.2 to rewrite the statement. The Oracle SQL
statement uses the financial trading database shown in problem 7. Note that the
CustNo column uses the integer data type. The foreign keys in the Trade table
(CustNo and AssetNo) are required.

SELECT Customer.CustNo, CustName,
 TrdQty * TrdPrice, TrdDate, Asset.AssetNo
 FROM Customer, Trade, Asset
 WHERE Customer.CustNo = Trade.CustNo
 AND Trade.AssetNo = Asset.AssetNo
 AND TrdType = 'BUY' AND Trade.CustNo = '10001'
 AND TrdDate BETWEEN '1-Oct-2017' AND '31-Oct-2017'

  10.	For the following conditions and indexes, indicate if the index matches the
condition.

•	 Index on TrdDate: TrdDate BETWEEN '1-Oct-2017' AND '31-Oct-2017'
•	 Index on CustPhone: CustPhone LIKE '(303)%'
•	 Index on TrdType: TrdType <> 'BUY'
•	 Bitmap column index on BondRating: BondRating IN ('AAA', 'AA', 'A')
•	 Index on <CustState, CustCity, CustZip>:

– � CustState = 'CO' AND CustCity = 'Denver'
– � CustState IN ('CO', 'CA') AND CustCity LIKE '%er'
– � CustState IN ('CO', 'CA') AND CustZip LIKE '8%'
– � CustState = 'CO' AND CustCity IN ('Denver', 'Boulder') AND CustZip

LIKE '8%'

  11.	For the sample Customer and Trade tables below, construct bitmap indexes as
indicated.

•	 Bitmap column index on Customer.CustState
•	 Join bitmap index on Customer.CustNo to the Trade table
•	 Bitmap join index on Customer.CustState to the Trade table

  12.	For the following tables and SQL statements, select indexes (clustering and
nonclustering) that balance retrieval and update requirements. For each table,
justify your choice using the rules discussed in Section 8.5.3.

Customer(CustNo, CustName, CustAddress, CustCity, CustState, CustZip,
CustPhone)

26008_ch08_p267-318.indd 313 3/2/18 10:10 PM

314   Part 4  Relational Database Design

Asset(AssetNo, AssetName, AssetType)
PriceHistory(AssetNo, PHistDate, PHistPrice)
	 FOREIGN KEY AssetNo REFERENCES Asset

RowID CustNo … CustState

 1 113344 CO

 2 123789 CA

 3 145789 UT

 4 111245 NM

 5 931034 CO

 6 998245 CA

 7 287341 UT

 8 230432 CO

 9 321588 CA

10 443356 CA

11 559211 UT

12 220688 NM

Customer Table

Trade Table

RowID TradeNo … CustNo

1 1111 113344

2 1234 123789

3 1345 123789

4 1599 145789

5 1807 145789

6 1944 931034

7 2100 111245

8 2200 287341

9 2301 287341

10 2487 230432

11 2500 443356

12 2600 559211

13 2703 220688

14 2801 220688

15 2944 220688

16 3100 230432

17 3200 230432

18 3258 321588

19 3302 321588

20 3901 559211

21 4001 998245

22 4205 998245

23 4301 931034

24 4455 443356

26008_ch08_p267-318.indd 314 3/2/18 10:10 PM

Chapter 8  Physical Database Design   315

Holding(CustNo, AssetNo, NetQty)
	 FOREIGN KEY CustNo REFERENCES Customer
	 FOREIGN KEY AssetNo REFERENCES Asset
Trade�(TradeNo, CustNo, AssetNo, TrdQty, TrdPrice, TrdDate, TrdType,

TrdStatus)
	 FOREIGN KEY CustNo REFERENCES Customer
	 FOREIGN KEY AssetNo REFERENCES Asset

  13.	For the workload of problem 12, are there any SELECT statements in which a
DBA might want to use optimizer hints? Please explain the kind of hint that
could be used and your reasoning for using it.

  14.	Investigate tools for managing access plans of an enterprise DBMS. You should
investigate tools for textual display of access plans, graphical display of access
plans, and hints to influence the judgment of the optimizer.

  15.	Investigate the database design tools of an enterprise DBMS or CASE tool. You
should investigate command-level tools and graphical tools for index selection,
table profiles, and application profiles.

  16.	Investigate the query optimization component of an enterprise DBMS or CASE
tool. You should investigate the access methods for single table access, join
algorithms, and usage of optimizer statistics.

  17.	Show the state of the Btree in Figure 8P.1 after insertion of the following keys:
115, 142, 111, 134, 170, 175, 127, 137, 108, and 140. The Btree has a maximum key
capacity of 4. Show the node splits that occur while inserting the keys. You may
use the interactive Btree tool on the website http://slady.net/java/bt/view.php
for help with this problem.

SQL Statement Frequency

 1. INSERT INTO Customer … 100/day

 2. INSERT INTO Asset … 100/quarter

 3. INSERT INTO Trade … 10,000/day

 4. INSERT INTO Holding … 200/day

 5. INSERT INTO PriceHistory … 5,000/day

 6. DELETE Asset WHERE AssetNo = $X 300/year

 7. DELETE Customer WHERE CustNo = $X 3,000/year

 8. SELECT * FROM Holding, Customer, Asset, PriceHistory
 WHERE CustNo = $X AND Holding.CustNo = Customer.CustNo
 AND Holding.AssetNo = Asset.AssetNo
 AND Asset.AssetNo = PriceHistory.AssetNo
 AND PHistDate = $Y

15,000/month

 9. SELECT * FROM Trade
 WHERE TradeNo = $X

1,000/day

10. SELECT * FROM Customer, Trade, Asset
 WHERE Customer.CustNo = $X AND TrdDate BETWEEN $Y AND $Z
 AND Customer.CustNo = Trade.CustNo
 AND Trade.AssetNo = Asset.AssetNo

10,000/month

11. UPDATE Trade SET TrdStatus = $X
 WHERE TradeNo = $Y

1,000/day

12. UPDATE Holding SET NetQty = $X
 WHERE CustNo = $Y AND AssetNo = $Z

10,000/day

13. SELECT * FROM Customer WHERE CustZip = $X
 AND CustPhone LIKE $Y%

500/day

14. SELECT * FROM Trade WHERE TrdStatus = $X AND TrdDate = $Y 10/day

15. SELECT * FROM Asset WHERE AssetName LIKE $X% 500/day

26008_ch08_p267-318.indd 315 3/2/18 10:10 PM

316   Part 4  Relational Database Design

  18.	Following on problem 17, show the state of the Btree after deleting the following
keys: 108, 111, and 137. Show the node concatenations and key borrowings after
deleting the keys. You may use the interactive Btree tool on the website http://
slady.net/java/bt/view.php for help with this problem.

  19.	List the feasible join orders for joining tables T1, T2, T3, T4, and T5 on join
conditions T1.T1No = T2.T1No, T2.T2No = T3.T2No, T3.T3No = T4.T3No, and
T4.T4No = T5.T4No. How many infeasible join orders exist?

  20.	Use the following data to perform the indicated calculations. Show formulas that
you used to perform the calculations.

Row size = 180 bytes
Number of rows = 2,000,000
Primary key size = 8 bytes
Physical record size = 4,096 bytes
Pointer size = 8 bytes
Floor(X) is the largest integer less than or equal to X.
Ceil(X) is the smallest integer greater than or equal to X.

20.1. �Calculate the number of rows that can fit in a physical record. Assume that
only complete rows can be stored (use the Floor function).

20.2. �Calculate the number of physical records necessary for a sequential file.
Assume that physical records are filled to capacity except for the last
physical record (use the Ceil function).

20.3. �If an unordered sequential file is used, calculate the number of physical
record accesses on the average to retrieve a row with a specified key value.

20.4. �If an ordered sequential file is used, calculate the number of physical
record accesses on the average to retrieve a row with a specified key value.
Assume that the key exists in the file.

20.5. �Calculate the average number of physical record accesses to find a key that
does not exist in an unordered sequential file and an ordered sequential file.

20.6. �Calculate the number of physical records for a static hash file. Assume that
each physical record of the hash file is 70 percent full.

20.7. �Calculate the maximum branching factor on a node in a Btree. Assume that
each record in a Btree consists of <key value, pointer> pairs.

20.8. �Using your calculation from problem 20.7, calculate the maximum height
of a Btree index.

20.9. �Calculate the maximum number of physical record accesses to find a node
in the Btree with a specific key value.

  21.	Use the following data to perform the indicated calculations. Show formulas that
you used to perform the calculations.

Row size = 520 bytes
Number of rows = 3,000,000
Primary key size = 16 bytes

FIGURE 8P.1
Initial Btree Before Insertions
and Deletions

 135 155

100 122 143 146 187 192 195

26008_ch08_p267-318.indd 316 3/2/18 10:10 PM

Chapter 8  Physical Database Design   317

Physical record size = 2,048 bytes
Pointer size = 8 bytes
Floor(X) is the largest integer less than or equal to X.
Ceil(X) is the smallest integer greater than or equal to X.

21.1. �Calculate the number of rows that can fit in a physical record. Assume that
only complete rows can be stored (use the Floor function).

21.2. �Calculate the number of physical records necessary for a sequential file.
Assume that physical records are filled to capacity except for the last
physical record (use the Ceil function).

21.3. �If an unordered sequential file is used, calculate the number of physical
record accesses on the average to retrieve a row with a specified key value.

21.4. �If an ordered sequential file is used, calculate the number of physical
record accesses on the average to retrieve a row with a specified key value.
Assume that the key exists in the file.

21.5. �Calculate the average number of physical record accesses to find a key that
does not exist in an unordered sequential file and an ordered sequential file.

21.6. �Calculate the number of physical records for a static hash file. Assume that
each physical record of the hash file is 70 percent full.

21.7. �Calculate the maximum branching factor on a node in a Btree. Assume that
each record in a Btree consists of <key value, pointer> pairs.

21.8. �Using your calculation from problem 21.7, calculate the maximum height
of a Btree index.

21.9. �Calculate the maximum number of physical record accesses to find a node
in the Btree with a specific key value.

  22.	List the feasible join orders for joining tables T2, T3, T4, and T5 on join
conditions T2.T2No = T3.T2No, T3.T3No = T4.T3No, and T4.T4No = T5.T4No.
How many infeasible join orders exist?

  23.	The following questions involve a SELECT statement and database with the
following facts.

•	 Individual, non-clustering indexes exist on the WageIncome and HighestDegree
columns in the Census table.

•	 The selectivity (fraction of rows) estimate of the condition, HighestDegree
= 'HS Graduate', is 0.30.

•	 The selectivity estimate of the condition, WageIncome > 60000, is 0.30.
•	 The actual selectivity of the condition, WageIncome > 60000 AND

HighestDegree = 'HS Graduate', is 0.015.
23.1. �What would the Oracle optimizer estimate as the selectivity (fraction of

rows) of the joint condition on WageIncome and HighestDegree when only
using statistics on individual columns?

23.2. �What access method would Oracle likely choose for the Census table if no
other conditions in the query involve the Census table?

23.3. �What access method should Oracle choose for the Census table if no other
conditions in the query involve the Census table?

23.4. �What Oracle hint should be used to force Oracle to combine indexes on
WageIncome and HighestDegree?

23.5. �What other methods (besides hints) can be used in Oracle to overcome the
poor row estimates for conditions on combinations of columns?

23.6. �Approximately how much estimation error would you expect for the
condition on WageIncome assuming that the optimizer used a recently
constructed equal height histogram with 10 bins?

26008_ch08_p267-318.indd 317 3/2/18 10:10 PM

318   Part 4  Relational Database Design

The subject of physical database design can be much more detailed and mathematical
than described in this chapter. For a more detailed description of file structures and
physical database design, consult computer science books such as Elmasri and Navathe
(2017) and Teorey (2005). Abadi, Madden, and Hachem (2008) describe performance
advantages of columnstores. For detailed tutorials about query optimization, consult
Chaudhuri (1998), Jarke and Koch (1984) and Mannino, Chu, and Sager (1988).
Finkelstein, Schkolnick, and Tiberio (1988) describe DBDSGN, an index selection tool
for SQL/DS, an IBM relational DBMS. Chaudhuri. and Narasayya (1997, 2001) describe
tools for index selection and statistics management for Microsoft SQL Server. Shasha
and Bonnet (2003) provide more details about physical database design decisions. For
details about the Oracle SQL Access Advisor and SQL Tuning Advisor, you should
consult the Oracle online documentation.

  24.	The following questions involve a SELECT statement and database with the
following facts.

•	 Individual, non-clustering indexes exist on the Age and HighestDegree columns
in the Census table.

•	 The selectivity estimate of the condition, HighestDegree = 'HS Graduate',
is 0.30.

•	 The selectivity estimate of the condition, Age > 60, is 0.20.
•	 The actual selectivity of the condition, Age > 60 AND HighestDegree =

'HS Graduate', is 0.10.

24.1. �What would the Oracle optimizer estimate as the selectivity of the
joint condition on Age and HighestDegree when only using statistics on
individual columns?

24.2. �What access method would Oracle likely choose for the Census table if no
other conditions in the query involve the Census table?

24.3. �What access method should Oracle choose for the Census table if no other
conditions in the query involve the Census table

24.4. �Should you use a hint to force Oracle to combine indexes on Age and
HighestDegree?

24.5. �Approximately how much estimation error would you expect for the
condition on Age assuming that the optimizer used a recently constructed
equal height histogram with 20 bins?

  25.	Create a columnstore index for the following row group of the Student table.
Show compression and sorting using Figure 8.20 as a guide.

StdNo StdMajor StdGPA

5511 ISMG 3.2

5522 FIN 2.7

5533 FIN 3.2

5544 MKTG 4.0

5555 ISMG 3.5

5566 ISMG 3.2

Sample Row Group of Student Table

REFERENCES FOR FURTHER STUDY

26008_ch08_p267-318.indd 318 3/2/18 10:10 PM

319  

Part 5 provides a foundation for building database applications through conceptual back­

ground and skills for advanced query formulation, specification of data requirements for data

entry forms and reports, and coding triggers and stored procedures. Chapter 9 extends query

formulation skills by explaining advanced table matching problems using additional parts of

the SQL SELECT statement. Chapter 10 describes motivation, definition, and usage of rela­

tional views along with specification of data requirements for data entry forms and reports.

Chapter 11 presents concepts of database programming languages and coding practices

for stored procedures and triggers in Oracle PL/SQL to support customization of database

applications.

Application
Development
with Relational
Databases

part five

26008_ch09_p319-374.indd 319 3/2/18 11:51 PM

26008_ch09_p319-374.indd 320 3/2/18 11:51 PM

OVERVIEW
As the first chapter in Part 5 of the textbook, this chapter
builds on the query formulation foundation provided
in Chapter 4. Most importantly, you learned an impor-
tant subset of the SELECT statement and usage of the
SELECT statement for problems involving joins and
grouping. This chapter extends your knowledge of
query formulation to advanced matching problems. To
solve these advanced matching problems, additional
parts of the SELECT statement are introduced.

This chapter continues with the learning approaches
of Chapter 4: provide many examples to imitate and
problem-solving guidelines to help you reason through
difficult problems. You first will learn to formulate
problems involving the outer join operator using new
keywords in the FROM clause. Next you will learn to

recognize nested queries and apply them to formulate
problems involving the join and difference operators.
Then you will learn to recognize problems involving the
division operator and formulate them using the GROUP
BY clause, nested queries in the HAVING clause, and
the COUNT function. You will then learn the effect of null
values on simple conditions, compound conditions with
logical operators, aggregate calculations, and grouping.
Finally, you will learn about problems involving hierar-
chically structured data and SQL extensions (both stan-
dard and proprietary) to formulate queries.

The presentation in this chapter covers additional
features in SQL:2016, especially features not part of
SQL-92. All examples execute in recent versions of
Microsoft Access (2002 and beyond) and Oracle (9i and
beyond) except where noted.

Learning Objectives
This chapter extends your query formulation skills by explaining advan­
ced table matching problems involving the outer join, difference, and
division operators. To explain advanced matching problems, this chapter
provides problem-solving guidelines and demonstrates additional parts
of the SELECT statement. To help interpret query results involving null
values, this chapter explains subtle effects of null values. To support
problems involving hierarchically structured data, this chapter depicts
extensions to the SELECT statement for hierarchical queries. After this
chapter, you should have acquired the following knowledge and skills:

•	 Recognize Type I nested queries for joins and understand the associ­
ated conceptual evaluation process

•	 Recognize Type II nested queries and understand the associated
conceptual evaluation process

•	 Recognize problems involving the outer join, difference, and division
operators

•	 Adapt example SQL statements to matching problems involving the
outer join, difference, and division operators

•	 Understand the effect of null values on conditions, aggregate calcula­
tions, and grouping

•	 Formulate problems involving hierarchically structured data using the
Oracle proprietary notation and the SQL standard notation

Advanced Query
Formulation
with SQL

9
chapter

321  

26008_ch09_p319-374.indd 321 3/2/18 11:51 PM

322   Part 5  Application Development with Relational Databases

One of the powerful but sometimes confusing aspects of the SELECT statement is the
number of ways to express a join. In Chapter 4, you formulated joins using the cross
product style and the join operator style. In the cross product style, you list the tables
in the FROM clause and the join conditions in the WHERE clause. In the join operator
style, you write join operations directly in the FROM clause using the INNER JOIN
and ON keywords.

The major advantage of the join operator style is that problems involving the
outer join operator can be formulated. Outer join problems cannot be formulated
with the cross product style except with proprietary SQL extensions. This section
demonstrates the join operator style for outer join problems and combinations of
inner and outer joins. In addition, the proprietary outer join extension of older Oracle
versions (8i and previous versions) is shown in Appendix 9C. For your reference,
the relationship diagram of the university database is repeated from Chapter 4 (see
Figure 9.1).

9.1.1  SQL Support for Outer Join Problems
A join between two tables generates a table with the rows that match on the join
column(s). The outer join operator generates the join result (the matching rows) plus
the non-matching rows. A one-sided outer join generates a new table with the
matching rows plus the non-matching rows from one of the tables. For example, it can
be useful to see all offerings listed in the output even if an offering does not have an
assigned faculty.

SQL uses the LEFT JOIN and RIGHT JOIN keywords1 to specify a one-sided outer
join. The LEFT JOIN keyword creates a result table containing the matching rows and
the non-matching rows of the left table. The RIGHT JOIN keyword creates a result
table containing the matching rows and the non-matching rows of the right table.
Thus, the result of a one-sided outer join depends on the direction (RIGHT or LEFT)
and the position of the table names. Examples 9.1 and 9.2 demonstrate one-sided outer
joins using both the LEFT and RIGHT keywords. The result rows with blank values for
certain columns are non-matched rows.

A full outer join generates a table with the matching rows plus the nonmatching
rows from both input tables. Typically, a full outer join is used to combine two similar
but not union compatible tables. For example, the Student and Faculty tables are simi-
lar because they contain information about university people. However, they are not
union compatible. They have common columns such as first name, last name, and city
but also unique columns such as GPA and salary. Occasionally, you will need to write

1 The full SQL keywords are LEFT OUTER JOIN and RIGHT OUTER JOIN. The SQL:2016 standard and
most DBMSs allow omission of the OUTER keyword.

One-Sided Outer Join
an operator that generates
the join result (the matching
rows) plus the non-matching
rows from one of the input
tables. SQL supports the
one-sided outer join opera-
tor through the LEFT JOIN
and RIGHT JOIN keywords.

Full Outer Join
an operator that generates
the join result (the matching
rows) plus the nonmatching
rows from both input tables.
SQL supports the full outer
join operator through the
FULL JOIN keyword.

9.1  OUTER JOIN PROBLEMS

FIGURE 9.1
Relationship Window for the
University Database

26008_ch09_p319-374.indd 322 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   323

a query that combines both tables. For example, a full outer join should be used to find
all details about university people within a certain city.

SQL:2016 provides the FULL JOIN keyword as demonstrated in Example 9.3. Note
the null values in both halves (Student and Faculty) of the result.

Some DBMSs (such as Microsoft Access) do not directly support the full outer
join operator. In these systems, a full outer join is formulated by taking the union of

2 Appendix 9C shows the proprietary notation used in Oracle 8i for outer joins. Although the proprietary
notation still works in the latest Oracle version, the SQL standard notation is preferred.

Example 9.1 (Access)

One-Sided Outer Join using LEFT JOIN

For offerings beginning with “IS” in the associated course number, retrieve the offer number, the course number, the faculty

number, and the faculty name. Include an offering in the result even if the faculty is not yet assigned. The Oracle2 counterpart

of this example uses % instead of * as the wild card character.

SELECT OfferNo, CourseNo, Offering.FacNo, Faculty.FacNo,
 FacFirstName, FacLastName
 FROM Offering LEFT JOIN Faculty
 ON Offering.FacNo = Faculty.FacNo
 WHERE CourseNo LIKE 'IS*'

OfferNo CourseNo Offering.FacNo Faculty.FacNo FacFirstName FacLastName

1111 IS320

2222 IS460

1234 IS320 098-76-5432 098-76-5432 LEONARD VINCE

3333 IS320 098-76-5432 098-76-5432 LEONARD VINCE

4321 IS320 098-76-5432 098-76-5432 LEONARD VINCE

4444 IS320 543-21-0987 543-21-0987 VICTORIA EMMANUEL

8888 IS320 654-32-1098 654-32-1098 LEONARD FIBON

9876 IS460 654-32-1098 654-32-1098 LEONARD FIBON

5679 IS480 876-54-3210 876-54-3210 CRISTOPHER COLAN

5678 IS480 987-65-4321 987-65-4321 JULIA MILLS

Example 9.2 (Access)

One-Sided Outer Join using RIGHT JOIN

For offerings beginning with “IS” in the associated course number, retrieve the offer number, the course number, the faculty

number, and the faculty name. Include an offering in the result even if the faculty is not yet assigned. The result is identical to

Example 9.1. The Oracle counterpart of this example uses % instead of * as the wild card character.

SELECT OfferNo, CourseNo, Offering.FacNo, Faculty.FacNo,
 FacFirstName, FacLastName
 FROM Faculty RIGHT JOIN Offering
 ON Offering.FacNo = Faculty.FacNo
 WHERE CourseNo LIKE 'IS*'

26008_ch09_p319-374.indd 323 3/2/18 11:51 PM

324   Part 5  Application Development with Relational Databases

two one-sided outer joins using the steps shown below. The SELECT statement imple-
menting these steps is shown in Example 9.4.

	 1.	Construct a right join of Faculty and Student (non-matched rows of Student).
	 2.	Construct a left join of Faculty and Student (non-matched rows of Faculty).
	 3.	Construct a union of these two temporary tables. Remember when using the

UNION operator, the two table arguments must be “union compatible”: each
corresponding column from both tables must have compatible data types.
Otherwise, the UNION operator will not work as expected.

9.1.2  Mixing Inner and Outer Joins
Inner and outer joins can be mixed as demonstrated in Examples 9.5 and 9.6. For read-
ability, it is generally preferred to use the join operator style rather than to mix the join
operator and cross product styles.

In most queries, you can change the order of inner and outer joins without any
problem. The inner join operator is associative meaning that the order of inner join
operations does not matter. The same result always occurs when changing the order
of inner join operations. Although the one-sided outer join is not associative, the order

Example 9.3 (SQL:2016 and Oracle 9i and beyond)

Full Outer Join

Combine the Faculty and Student tables using a full outer join. List the person number (faculty or student number), the name

(first and last), the salary (faculty only), and the GPA (students only) in the result. This SQL statement does not execute in

Microsoft Access.

SELECT FacNo, FacFirstName, FacLastName, FacSalary,
 StdNo, StdFirstName, StdLastName, StdGPA
 FROM Faculty FULL JOIN Student
 ON Student.StdNo = Faculty.FacNo

FacNo FacFirstName FacLastName FacSalary StdNo StdFirstName StdLastName StdGPA

123456789 HOMER WELLS 3.0

124567890 BOB NORBERT 2.7

234567890 CANDY KENDALL 3.5

345678901 WALLY KENDALL 2.8

456789012 JOE ESTRADA 3.2

567890123 MARIAH DODGE 3.6

678901234 TESS DODGE 3.3

789012345 ROBERTO MORALES 2.5

890123456 LUKE BRAZZI 2.2

901234567 WILLIAM PILGRIM 3.8

098765432 LEONARD VINCE 35000

543210987 VICTORIA EMMANUEL 120000

654321098 LEONARD FIBON 70000

765432109 NICKI MACON 65000

876543210 CRISTOPHER COLAN 40000 876543210 CRISTOPHER COLAN 4.0

987654321 JULIA MILLS 75000

26008_ch09_p319-374.indd 324 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   325

Example 9.4 (Access)

Full Outer Join Using a Union of
Two One-Sided Outer Joins
Combine the Faculty and Student tables using a full outer join. List the person number (faculty or student number), the name

(first and last), the salary (faculty only), and the GPA (students only) in the result. The result is identical to Example 9.3. This state-

ment executes in Oracle although the FULL JOIN syntax as demonstrated in Example 9.3 is preferred for Oracle.

SELECT FacNo, FacFirstName, FacLastName, FacSalary,
 StdNo, StdFirstName, StdLastName, StdGPA
 FROM Faculty RIGHT JOIN Student
 ON Student.StdNo = Faculty.FacNo
	 UNION
SELECT FacNo, FacFirstName, FacLastName, FacSalary,
 StdNo, StdFirstName, StdLastName, StdGPA
 FROM Faculty LEFT JOIN Student
 ON Student.StdNo = Faculty.FacNo

Example 9.5 (Access)

Mixing a One-Sided Outer
Join and an Inner Join
Combine columns from the Faculty, Offering, and Course tables for information systems courses (IS in the beginning of the course

number) offered in 2017. Include a row in the result even if there is not an assigned instructor. The Oracle counterpart of this

example uses % instead of * as the wild card character.

SELECT OfferNo, Offering.CourseNo, OffTerm, CrsDesc,
 Faculty.FacNo, FacFirstName, FacLastName
 FROM (Faculty RIGHT JOIN Offering
 ON Offering.FacNo = Faculty.FacNo)
 INNER JOIN Course
 ON Course.CourseNo = Offering.CourseNo
 WHERE Course.CourseNo LIKE 'IS*' AND OffYear = 2017

OfferNo CourseNo OffTerm CrsDesc FacNo FacFirstName FacLastName

1111 IS320 SUMMER FUNDAMENTALS OF BUSINESS PROGRAMMING

3333 IS320 SPRING FUNDAMENTALS OF BUSINESS PROGRAMMING 098-76-5432 LEONARD VINCE

4444 IS320 WINTER FUNDAMENTALS OF BUSINESS PROGRAMMING 543-21-0987 VICTORIA EMMANUEL

5678 IS480 WINTER FUNDAMENTALS OF DATABASE MANAGEMENT 987-65-4321 JULIA MILLS

5679 IS480 SPRING FUNDAMENTALS OF DATABASE MANAGEMENT 876-54-3210 CRISTOPHER COLAN

8888 IS320 SUMMER FUNDAMENTALS OF BUSINESS PROGRAMMING 654-32-1098 LEONARD FIBON

9876 IS460 SPRING SYSTEMS ANALYSIS 654-32-1098 LEONARD FIBON

of operations does not matter in most queries. For example, Example 9.6a returns the
same results as Example 9.6.

Queries with Ambiguous Combinations of Joins and Outer Joins  Some que-
ries combining inner and outer joins are ambiguous. In ambiguous queries, different
orders of operations may produce different results. A query is ambiguous if a non-
preserved table (table with only matching rows in the result) in a one-sided outer

26008_ch09_p319-374.indd 325 3/2/18 11:51 PM

326   Part 5  Application Development with Relational Databases

Example 9.6 (Access)

Mixing a One-Sided Outer Join
and Two Inner Joins
List the rows of the Offering table where there is at least one student enrolled, in addition to the requirements of Example 9.5.

Remove duplicate rows when there is more than one student enrolled in an offering. The Oracle counterpart of this example

uses % instead of * as the wild card character.

SELECT DISTINCT Offering.OfferNo, Offering.CourseNo,
 OffTerm, CrsDesc, Faculty.FacNo, FacFirstName,
 FacLastName
 FROM ((Faculty RIGHT JOIN Offering
 ON Offering.FacNo = Faculty.FacNo)
	 INNER JOIN Course
 ON Course.CourseNo = Offering.CourseNo)
	 INNER JOIN Enrollment
 ON Offering.OfferNo = Enrollment.OfferNo
 WHERE Offering.CourseNo LIKE 'IS*' AND OffYear = 2017

OfferNo CourseNo OffTerm CrsDesc FacNo FacFirstName FacLastName

5678 IS480 WINTER FUNDAMENTALS OF DATABASE MANAGEMENT 987-65-4321 JULIA MILLS

5679 IS480 SPRING FUNDAMENTALS OF DATABASE MANAGEMENT 876-54-3210 CRISTOPHER COLAN

9876 IS460 SPRING SYSTEMS ANALYSIS 654-32-1098 LEONARD FIBON

Example 9.6a (Access)

Mixing a One-Sided Outer Join
and Two Inner Joins with the
Outer Join Performed Last
List the rows of the Offering table where there is at least one student enrolled, in addition to the requirements of Example 9.5.

Remove duplicate rows when there is more than one student enrolled in an offering. The Oracle counterpart of this example

uses % instead of * as the wild card character. The result is identical to Example 9.6.

SELECT DISTINCT Offering.OfferNo, Offering.CourseNo,
 OffTerm, CrsDesc, Faculty.FacNo, FacFirstName,
 FacLastName
 FROM Faculty RIGHT JOIN
 ((Offering INNER JOIN Course
 ON Course.CourseNo = Offering.CourseNo)
	 INNER JOIN Enrollment
 ON Offering.OfferNo = Enrollment.OfferNo)
 ON Offering.FacNo = Faculty.FacNo
 WHERE Offering.CourseNo LIKE 'IS*' AND OffYear = 2017

join is involved in another join or outer join operation. In Examples 9.6 and 9.6a, the
Offering table is preserved (both matching and non-matching rows) so no ambiguity
exists. The Offering table can participate in other join and outer join operations without
causing ambiguity.

Ambiguity occurs if the direction of the one-sided outer join is reversed to pre-
serve the Faculty table rather than the Offering table. In Example 9.6b, the result is

26008_ch09_p319-374.indd 326 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   327

Ambiguous Query: A query is ambiguous if a non-preserved table (table with only
matching rows in the result) in a one-sided outer join is involved in another join or
outer join operation. The result of an ambiguous query may depend on the order of
joins and one-sided join operations in the FROM clause.

Despite the possibility for ambiguous queries, they are not common because the non-
preserved table is typically not involved in other operations. The parent table is typi-
cally the non-preserved table. The child table is usually preserved and involved in
other operations. An ambiguous query may indicate an error in query formulation
rather than a valid formulation to address a legitimate business request.

Example 9.6b

Ambiguous Query Mixing a One-Sided
Outer Join and Two Inner Joins with the
Outer Join Performed First (Oracle)
This query eliminates the non-matching Faculty rows because the outer join is performed first. This statement cannot be saved

nor executed in Microsoft Access because of the ambiguity rule.

SELECT Offering.OfferNo, Offering.CourseNo,
 OffTerm, CrsDesc, Faculty.FacNo, FacFirstName,
 FacLastName
 FROM (Faculty LEFT JOIN Offering
 ON Offering.FacNo = Faculty.FacNo)
 INNER JOIN Course ON Course.CourseNo = Offering.CourseNo

Example 9.6c

Ambiguous Query Mixing a One-Sided
Outer Join and Two Inner Joins with the
Outer Join Performed Last (Oracle)
This query preserves the non-matching Faculty rows because the outer join is performed last. This query cannot be saved nor

executed in Microsoft Access because of the ambiguity rule.

SELECT Offering.OfferNo, Offering.CourseNo,
 OffTerm, CrsDesc, Faculty.FacNo, FacFirstName,
 FacLastName
 FROM (Offering INNER JOIN Course
 ON Course.CourseNo = Offering.CourseNo)
 RIGHT JOIN Faculty ON Offering.FacNo = Faculty.FacNo

different than Example 9.6c if the Faculty table has unmatched rows. Example 9.6b
eliminates the unmatched rows because the outer join is performed before the inner
join. Example 9.6c preserves the unmatched Faculty rows because the outer join is
performed after the inner join. Microsoft Access will not execute either query. Ora-
cle executes both examples but returns different results if the Faculty table contains
unmatched rows.

26008_ch09_p319-374.indd 327 3/2/18 11:51 PM

328   Part 5  Application Development with Relational Databases

A nested query or subquery is a query (SELECT statement) inside a query. A nested
query typically appears as part of a condition in the WHERE or HAVING clauses.
Nested queries also can be used in the FROM clause. Nested queries can be used like a
procedure (Type I nested query) in which the nested query is executed one time or like
a loop (Type II nested query) in which the nested query is executed repeatedly. This
section demonstrates examples of both kinds of nested queries and explains problems
in which they can be applied.

9.2.1  Type I Nested Queries
Type I nested queries are like procedures in a programming language. A Type I
nested query evaluates one time and produces a table. The nested (or inner) query
does not reference the outer query. Using the IN comparison operator, a Type I
nested query can be used to express a join. In Example 9.7, the nested query on
the Enrollment table generates a list of qualifying student number values. A row is
selected in the outer query on Student if the student number is an element of the
nested query result.

Type I nested queries should be used only when the result does not contain any
columns from the tables in the nested query. In Example 9.7, no columns from the
Enrollment table are used in the result. In Example 9.8, the join between the Student and
Enrollment tables cannot be performed with a Type I nested query because EnrGrade
appears in the result.

It is possible to have multiple levels of nested queries although this practice is not
encouraged because the statements can be difficult to read. In a nested query, you can
have another nested query using the IN comparison operator in the WHERE clause.
In Example 9.9, the nested query on the Offering table has a nested query on the Fac-
ulty table. No Faculty columns are needed in the main query or in the nested query on
Offering.

Type I Nested Query
a nested query in which the
inner query does not refer-
ence any tables used in the
outer query. A Type I nested
query executes one time.
Type I nested queries can be
used for some join prob-
lems and some difference
problems.

9.2  UNDERSTANDING NESTED QUERIES

Example 9.7

Using a Type I Nested Query
to Perform a Join
List the student number, name, and major of students who have a high grade (≥ 3.5) in a course offering.

SELECT StdNo, StdFirstName, StdLastName, StdMajor
 FROM Student
 WHERE Student.StdNo IN
 (SELECT StdNo FROM Enrollment
 WHERE EnrGrade >= 3.5)

StdNo StdFirstName StdLastName StdMajor

123-45-6789 HOMER WELLS IS

124-56-7890 BOB NORBERT FIN

234-56-7890 CANDY KENDALL ACCT

567-89-0123 MARIAH DODGE IS

789-01-2345 ROBERTO MORALES FIN

890-12-3456 LUKE BRAZZI IS

901-23-4567 WILLIAM PILGRIM IS

26008_ch09_p319-374.indd 328 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   329

The Type I style gives a visual feel to a query. You can visualize a Type I subquery
as navigating between tables. Visit the table in the subquery to collect join values
that can be used to select rows from the table in the outer query. The use of Type I
nested queries is largely a matter of preference. Even if you do not prefer this join
style, you should be prepared to interpret queries written by others with Type I
nested queries.

Example 9.8

Combining a Type I Nested Query
and the Join Operator Style
Retrieve the name, city, and grade of students who have a high grade (≥ 3.5) in a course offered in fall 2016.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
 FROM Student INNER JOIN Enrollment
 ON Student.StdNo = Enrollment.StdNo
 WHERE EnrGrade >= 3.5 AND Enrollment.OfferNo IN
 (SELECT OfferNo FROM Offering
 WHERE OffTerm = 'Fall' AND OffYear = 2016)

StdFirstName StdLastName StdCity EnrGrade

CANDY KENDALL TACOMA 3.5

MARIAH DODGE SEATTLE 3.8

HOMER WELLS SEATTLE 3.5

ROBERTO MORALES SEATTLE 3.5

Example 9.9

Using a Type I Nested Query inside
Another Type I Nested Query
Retrieve the name, city, and grade of students who have a high grade (≥ 3.5) in a course offered in fall 2016 taught by Leonard

Vince.

SELECT StdFirstName, StdLastName, StdCity, EnrGrade
 FROM Student, Enrollment
 WHERE Student.StdNo = Enrollment.StdNo
 AND EnrGrade >= 3.5 AND Enrollment.OfferNo IN
 (SELECT OfferNo FROM Offering
	 WHERE OffTerm = 'Fall' AND OffYear = 2016
 AND FacNo IN
	 (SELECT FacNo FROM Faculty
 WHERE FacFirstName = 'Leonard'
 AND FacLastName = 'Vince'))

StdFirstName StdLastName StdCity EnrGrade

CANDY KENDALL TACOMA 3.5

MARIAH DODGE SEATTLE 3.8

HOMER WELLS SEATTLE 3.5

ROBERTO MORALES SEATTLE 3.5

26008_ch09_p319-374.indd 329 3/2/18 11:51 PM

330   Part 5  Application Development with Relational Databases

DELETE and UPDATE statements provide another use of a Type I nested query.
A Type I nested query is useful in a DELETE statement with conditions referencing
related tables, as demonstrated in Example 9.10a. Using a Type I nested query is the
standard way to reference related tables in DELETE statements. Similarly, a Type I
nested query is useful in an UPDATE statement with conditions referencing related
tables as shown in Example 9.11a. Chapter 4 demonstrated the join operator style
inside DELETE and UPDATE statements, a proprietary extension of Microsoft Access.
For your reference, Examples 9.10b and 9.11b show equivalent DELETE and UPDATE
statements using the join operator style.

Example 9.10a

DELETE Statement Using a
Type I Nested Query
Delete offerings taught by Leonard Vince. Three Offering rows are deleted. In addition, this statement deletes related rows in

the Enrollment table because the ON DELETE clause is set to CASCADE.

DELETE FROM Offering
 WHERE Offering.FacNo IN
 (SELECT FacNo FROM Faculty
 WHERE FacFirstName = 'Leonard'
 AND FacLastName = 'Vince')

Example 9.10b (Access only)

DELETE Statement Using an
INNER JOIN Operation
Delete offerings taught by Leonard Vince. Three Offering rows are deleted. In addition, this statement deletes related rows in

the Enrollment table because the ON DELETE clause is set to CASCADE.

DELETE Offering.*
 FROM Offering INNER JOIN Faculty
 ON Offering.FacNo = Faculty.FacNo
 WHERE FacFirstName = 'Leonard'
 AND FacLastName = 'Vince'

Example 9.11a

UPDATE Statement Using a
Type I Nested Query
Update the location of offerings taught by Leonard Fibon in 2017 to BLM412. Two Offering rows are updated.

UPDATE Offering SET OffLocation = 'BLM412'
 WHERE OffYear = 2017 AND FacNo IN
 (SELECT FacNo FROM Faculty
 WHERE FacFirstName = 'LEONARD'
 AND FacLastName = 'FIBON')

26008_ch09_p319-374.indd 330 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   331

9.2.2  Limited SQL Formulations for Difference Problems
You should recall from Chapter 3 that the difference operator combines tables by
finding the rows of a first table not in a second table. A typical usage of the differ-
ence operator is to combine two tables with some similar columns but not entirely
union compatible. For example, you may want to find faculty who are not students.
Although the Faculty and Student tables contain some compatible columns, the tables
are not union compatible. The placement of the word not in the problem statement
indicates that the result contains rows only in the Faculty table, not in the Student table.
This requirement involves a difference operation.

Some difference problems can be formulated using a Type I nested query with
the NOT IN operator. As long as the comparison among tables involves a single col-
umn, a Type I nested query can be used. In Example 9.12, a Type I nested query can
be used because the comparison only involves a single column from the Faculty table
(FacNo).

Difference Problems
problem statements involv-
ing the difference operator
often have a not relating two
nouns in a sentence. For
example, “students who are
not faculty” and “employees
who are not customers” are
problem statements involv-
ing a difference operation.

Example 9.11b (Access)

UPDATE Statement Using an
INNER JOIN Operation
Update the location of offerings taught by Leonard Fibon in 2017 to BLM412. Two Offering rows are updated.

UPDATE Offering INNER JOIN Faculty
 ON Offering.FacNo = Faculty.FacNo
 SET OffLocation = 'BLM412'
 WHERE OffYear = 2017 AND FacFirstName = 'LEONARD'
 AND FacLastName = 'FIBON'

Example 9.12

Using a Type I Nested Query
for a Difference Problem
Retrieve the faculty number, name (first and last), department, and salary of faculty who are not students.

SELECT FacNo, FacFirstName, FacLastName, FacDept, FacSalary
 FROM Faculty
 WHERE FacNo NOT IN
 (SELECT StdNo FROM Student)

FacNo FacFirstName FacLastName FacDept FacSalary

098-76-5432 LEONARD VINCE MS $35,000.00

543-21-0987 VICTORIA EMMANUEL MS $120,000.00

654-32-1098 LEONARD FIBON MS $70,000.00

765-43-2109 NICKI MACON FIN $65,000.00

987-65-4321 JULIA MILLS FIN $75,000.00

Another formulation approach for some difference problems involves a one-sided
outer join operation to generate a table with only non-matching rows. The IS NULL
comparison operator can remove rows that match, as demonstrated in Example 9.13.

26008_ch09_p319-374.indd 331 3/2/18 11:51 PM

332   Part 5  Application Development with Relational Databases

However, this formulation cannot be used with conditions to test on the non-preserved
table (Student in Example 9.13) other than the IS NULL condition on the primary key
column. If there are conditions to test on the Student table (such as on student class),
another SQL formulation approach must be used.

Example 9.13

One-Sided Outer Join with
Only Non-matching Rows
Retrieve the faculty number, name, department, and salary of faculty who are not students. The result is identical to

Example 9.12.

SELECT FacNo, FacFirstName, FacLastName, FacSalary
 FROM Faculty LEFT JOIN Student
 ON Faculty.FacNo = Student.StdNo
 WHERE Student.StdNo IS NULL

Example 9.14 (Oracle)

Difference Query

Show faculty who are not students (pure faculty). Only show the common columns in the result. Note that Microsoft Access does

not support the EXCEPT keyword. Oracle uses the MINUS keyword instead of EXCEPT. The result is identical to Example 9.12

except for FacCity and FacState instead of FacDept and FacSalary.

SELECT FacNo AS PerNo, FacFirstName AS FirstName,
 FacLastName AS LastName, FacCity AS City,
 FacState AS State
 FROM Faculty
 MINUS
SELECT StdNo AS PerNo, StdFirstName AS FirstName,
 StdLastName AS LastName, StdCity AS City,
 StdState AS State
 FROM Student

Although SQL:2016 does have a difference operator (the EXCEPT keyword), it
is sometimes not convenient because only the common columns can be shown in
the result. Example 9.14 does not provide the same result as Example 9.12 because
the columns unique to the Faculty table (FacDept and FacSalary) are not in the result.
Another query that uses the first result must be formulated to retrieve the unique
Faculty columns.

Difference Problems Cannot Be Solved with Inequality Joins  It is important
to note that difference problems such as Example 9.12 cannot be solved with a join
alone. Example 9.12 requires that every row of the Student table be searched to select
a faculty row. In contrast, a join selects a faculty row when the first matching student
row is found. To contrast difference and join problems, you should examine Example
9.15. Although it looks correct, it does not provide the desired result. Every faculty
row will be in the result because there is at least one student row that does not match
every faculty row.

26008_ch09_p319-374.indd 332 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   333

To understand Example 9.15, you can use the conceptual evaluation pro-
cess discussed in Chapter 4 (Section 4.3). The result tables show the cross product
(Table 9-3) of Tables 9-1 and 9-2 followed by the rows that satisfy the WHERE condi-
tion (Table 9-4). Notice that only one row of the cross product is deleted. The final
result (Table 9-5) contains all rows of Table 9-2.

Example 9.15

Inequality Join

Erroneous formulation for the problem “Retrieve the faculty number, name (first and last), and rank of faculty who are not

students.” The result contains all faculty rows.

SELECT DISTINCT FacNo, FacFirstName, FacLastName, FacRank
 FROM Faculty, Student
 WHERE Student.StdNo <> Faculty.FacNo

TABLE 9-2
Sample Faculty Table

FacNo FacFirstName FacLastName FacRank

098-76-5432 LEONARD VINCE ASST

543-21-0987 VICTORIA EMMANUEL PROF

876-54-3210 CRISTOPHER COLAN ASST

FacNo FacFirstName FacLastName FacRank StdNo StdFirstName StdLastName StdMajor

098-76-5432 LEONARD VINCE ASST 123-45-6789 HOMER WELLS IS

098-76-5432 LEONARD VINCE ASST 124-56-7890 BOB NORBERT FIN

098-76-5432 LEONARD VINCE ASST 876-54-3210 CRISTOPHER COLAN IS

543-21-0987 VICTORIA EMMANUEL PROF 123-45-6789 HOMER WELLS IS

543-21-0987 VICTORIA EMMANUEL PROF 124-56-7890 BOB NORBERT FIN

543-21-0987 VICTORIA EMMANUEL PROF 876-54-3210 CRISTOPHER COLAN IS

876-54-3210 CRISTOPHER COLAN ASST 123-45-6789 HOMER WELLS IS

876-54-3210 CRISTOPHER COLAN ASST 124-56-7890 BOB NORBERT FIN

876-54-3210 CRISTOPHER COLAN ASST 876-54-3210 CRISTOPHER COLAN IS

TABLE 9-3
Cross Product of the
Sample Student and
Faculty Tables

TABLE 9-4
Restriction of
Table 9-3 to Eliminate
Matching Rows

FacNo FacFirstName FacLastName FacRank StdNo StdFirstName StdLastName StdMajor

098-76-5432 LEONARD VINCE ASST 123-45-6789 HOMER WELLS IS

098-76-5432 LEONARD VINCE ASST 124-56-7890 BOB NORBERT FIN

098-76-5432 LEONARD VINCE ASST 876-54-3210 CRISTOPHER COLAN IS

543-21-0987 VICTORIA EMMANUEL PROF 123-45-6789 HOMER WELLS IS

543-21-0987 VICTORIA EMMANUEL PROF 124-56-7890 BOB NORBERT FIN

543-21-0987 VICTORIA EMMANUEL PROF 876-54-3210 CRISTOPHER COLAN IS

876-54-3210 CRISTOPHER COLAN ASST 123-45-6789 HOMER WELLS IS

876-54-3210 CRISTOPHER COLAN ASST 124-56-7890 BOB NORBERT FIN

StdNo StdFirstName StdLastName StdMajor

123-45-6789 HOMER WELLS IS

124-56-7890 BOB NORBERT FIN

876-54-3210 CHRISTOPHERR COLAN IS

TABLE 9-1
Sample Student Table

26008_ch09_p319-374.indd 333 3/2/18 11:51 PM

334   Part 5  Application Development with Relational Databases

SQL Formulation Limitations

Type I nested query with the NOT IN operator Only one column for comparing rows of the two tables

One-sided outer join with an IS NULL condition No conditions (except the IS NULL condition) on the
non-preserved table

Difference operation using the EXCEPT or MINUS
keywords

Result must contain only union-compatible columns

TABLE 9-6
Limitations of SQL Formula-
tions for Difference Problems

Summary of Limited Formulations for Difference Problems  This section has
discussed three SQL formulations for difference problems. Each formulation has
limitations as noted in Table 9-6. In practice, the one-sided outer join approach is the
most restrictive as many problems involve conditions on the excluded table. Section
9.2.3 presents a more general formulation without the restrictions noted in Table 9-6.

9.2.3  Using Type II Nested Queries for Difference Problems
Although Type II nested queries provide a more general solution for difference prob-
lems, they are conceptually more complex than Type I nested queries. Type II nested
queries have two distinguishing features. First, Type II nested queries reference one
or more columns from an outer query. Type II nested queries are sometimes known
as correlated subqueries because they reference columns used in outer queries. In con-
trast, Type I nested queries are not correlated with outer queries. In Example 9.16, the
nested query references the Faculty table used in the outer query in the comparison
Student.StdNo = Faculty.FacNo.

FacNo FacFirstName FacLastName FacRank

098-76-5432 LEONARD VINCE ASST

543-21-0987 VICTORIA EMMANUEL PROF

876-54-3210 CRISTOPHER COLAN ASST

TABLE 9-5
Projection of Table 9-4 to
Eliminate Student Columns

Example 9.16

Using a Type II Nested Query
for a Difference Problem
Retrieve the faculty number, the name (first and last), the department, and the salary of faculty who are not students.

SELECT FacNo, FacFirstName, FacLastName, FacDept, FacSalary
 FROM Faculty
 WHERE NOT EXISTS
 (SELECT * FROM Student
	 WHERE Student.StdNo = Faculty.FacNo)

FacNo FacFirstName FacLastName FacDept FacSalary

098-76-5432 LEONARD VINCE MS $35,000.00

543-21-0987 VICTORIA EMMANUEL MS $120,000.00

654-32-1098 LEONARD FIBON MS $70,000.00

765-43-2109 NICKI MACON FIN $65,000.00

987-65-4321 JULIA MILLS FIN $75,000.00

26008_ch09_p319-374.indd 334 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   335

The second distinguishing feature of Type II nested queries involves execution.
A Type II nested query executes one time for each row in the outer query. In this
sense, a Type II nested query is similar to a nested loop that executes one time for each
execution of the outer loop. In each execution of the inner loop, variables used in the
outer loop are used in the inner loop. In other words, the inner query uses one or more
values from the outer query in each execution.

To help you understand Example 9.16, Table 9-9 traces the execution of the nested
query using Tables 9-7 and 9-8. The EXISTS operator is true if the nested query returns
one or more rows. In contrast, the NOT EXISTS operator is true if the nested query
returns 0 rows. Thus, a faculty row in the outer query is selected only if there are no
matching student rows in the nested query. For example, the first two rows in Table
9-7 are selected because there are no matching rows in Table 9-8. The third row is not
selected because the nested query returns one row (the third row of Table 9-7).

Example 9.17 shows another formulation that clarifies the meaning of the NOT
EXISTS operator. Here, a faculty row is selected if the number of rows in the nested
query is 0. Using the sample tables (Tables 9-7 and 9-8), the nested query result is 0 for
the first two faculty rows.

More Difficult Difference Problems  More difficult difference problems combine
a difference operation with join operations.

For example, consider the query to list students who took all of their informa-
tion systems (IS) offerings in winter 2017 from the same instructor. The query results
should include students who took only one offering as well as students who took more
than one offering.

•	 Construct a list of students who have taken IS courses in winter 2017 (a join
operation).

•	 Construct another list of students who have taken IS courses in winter 2017 from
more than one instructor (a join operation).

•	 Use a difference operation (first student list minus the second student list) to
produce the result.

Type II Nested Query
a nested query in which
the inner query references
a table used in the outer
query. Because a Type II
nested query executes for
each row of its outer query,
Type II nested queries are
more difficult to understand
and execute than Type I
nested queries.

NOT EXISTS operator
a table comparison opera-
tor often used with Type II
nested queries. NOT EXISTS
is true for a row in an outer
query if the inner query
returns no rows and false if
the inner query returns one
or more rows.

TABLE 9-7
Sample Faculty TableFacNo FacFirstName FacLastName FacRank

098-76-5432 LEONARD VINCE ASST

543-21-0987 VICTORIA EMMANUEL PROF

876-54-3210 CRISTOPHER COLAN ASST

TABLE 9-8
Sample Student TableStdNo StdFirstName StdLastName StdMajor

123-45-6789 HOMER WELLS IS

124-56-7890 BOB NORBERT FIN

876-54-3210 CRISTOPHER COLAN IS

TABLE 9-9
Execution Trace of Nested
Query in Example 9.16

FacNo Result of subquery execution NOT EXISTS

098-76-5432 0 rows retrieved true

543-21-0987 0 rows retrieved true

876-54-3210 1 row retrieved false

26008_ch09_p319-374.indd 335 3/2/18 11:51 PM

336   Part 5  Application Development with Relational Databases

Conceptualizing a problem in this manner forces you to recognize that it involves a
difference operation. If you recognize the difference operation, you can make a formu-
lation in SQL involving a nested query (Type II with NOT EXISTS or Type I with NOT
IN) or the EXCEPT keyword. Example 9.18 shows a NOT EXISTS solution in which
the outer query retrieves a student row if the student does not have an offering from a
different instructor in the inner query.

Example 9.17

Using a Type II Nested Query
with the COUNT Function
Retrieve the faculty number, the name, the department, and the salary of faculty who are not students. The result is the same

as Example 9.16.

SELECT FacNo, FacFirstName, FacLastName, FacDept, FacSalary
 FROM Faculty
 WHERE 0 =
 (SELECT COUNT(*) FROM Student
	 WHERE Student.StdNo = Faculty.FacNo)

Example 9.18 (Access)

More Difficult Difference Problem
Using a Type II Nested Query
List the student number and the name of students who took all of their information systems offerings in winter 2017 from the

same instructor. Include students who took one or more offerings. Note that in the nested query, the columns Enrollment.StdNo

and Offering.FacNo refer to the outer query.

SELECT DISTINCT Enrollment.StdNo, StdFirstName, StdLastName
 FROM Student, Enrollment, Offering
 WHERE Student.StdNo = Enrollment.StdNo
 AND Enrollment.OfferNo = Offering.OfferNo
 AND CourseNo LIKE 'IS*' AND OffTerm = 'Winter'
 AND OffYear = 2017 AND NOT EXISTS
 (SELECT * FROM Enrollment E1, Offering O1
	 WHERE E1.OfferNo = O1.OfferNo
 AND Enrollment.StdNo = E1.StdNo
 AND O1.CourseNo LIKE 'IS*'
 AND O1.OffYear = 2017
 AND O1.OffTerm = 'Winter'
 AND Offering.FacNo <> O1.FacNo)

StdNo StdFirstName StdLastName

123-45-6789 HOMER WELLS

234-56-7890 CANDY KENDALL

345-67-8901 WALLY KENDALL

456-78-9012 JOE ESTRADA

567-89-0123 MARIAH DODGE

26008_ch09_p319-374.indd 336 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   337

Example 9.19 shows a second example using the NOT EXISTS operator to solve a
complex difference problem. Conceptually this problem involves a difference opera-
tion between two sets: the set of all faculty members and the set of faculty members
teaching in the specified term. The difference operation can be implemented by select-
ing a faculty in the outer query list if the faculty does not teach an offering during the
specified term in the inner query result.

Example 9.18 (Oracle)

More Difficult Difference Problem
Using a Type II Nested Query
List the student number and name of the students who took all of their information systems offerings in winter 2017 from the

same instructor. Include students who took one or more offerings.

SELECT DISTINCT Enrollment.StdNo, StdFirstName, StdLastName
 FROM Student, Enrollment, Offering
 WHERE Student.StdNo = Enrollment.StdNo
 AND Enrollment.OfferNo = Offering.OfferNo
 AND CourseNo LIKE 'IS%' AND OffTerm = 'Winter'
 AND OffYear = 2017 AND NOT EXISTS
 (SELECT * FROM Enrollment E1, Offering O1
 WHERE E1.OfferNo = O1.OfferNo
 AND Enrollment.StdNo = E1.StdNo
 AND O1.CourseNo LIKE 'IS%'
 AND O1.OffYear = 2017
 AND O1.OffTerm = 'Winter'
 AND Offering.FacNo <> O1.FacNo)

Example 9.19

Another Difference Problem
Using a Type II Nested Query
List the name (first and last) and department of faculty who are not teaching in winter term 2017.

SELECT DISTINCT FacFirstName, FacLastName, FacDept
 FROM Faculty
 WHERE NOT EXISTS
 (SELECT * FROM Offering
 WHERE Offering.FacNo = Faculty.FacNo
 AND OffTerm = 'WINTER' AND OffYear = 2017)

FacFirstName FacLastName FacDept

CRISTOPHER COLAN MS

LEONARD FIBON MS

LEONARD VINCE MS

Example 9.20 shows a third example using the NOT EXISTS operator to solve a com-
plex difference problem. In this problem, the word only connecting different parts
of the sentence indicates a difference operation. Conceptually this problem involves
a difference operation between two sets: the set of all faculty members teaching in

26008_ch09_p319-374.indd 337 3/2/18 11:51 PM

338   Part 5  Application Development with Relational Databases

winter 2017 and the set of faculty members teaching in winter 2017 in addition to
teaching in another term. The difference operation can be implemented by selecting a
faculty teaching in winter 2017 in the outer query if the same faculty does not teach an
offering in a different term in the nested query.

Example 9.20

Another Difference Problem
Using a Type II Nested Query
List the name (first and last) and department of faculty who are only teaching in winter term 2017.

SELECT DISTINCT FacFirstName, FacLastName, FacDept
 FROM Faculty F1, Offering O1
 WHERE F1.FacNo = O1.FacNo
 AND OffTerm = 'WINTER' AND OffYear = 2017
 AND NOT EXISTS
 (SELECT * FROM Offering O2
 WHERE O2.FacNo = F1.FacNo
 AND (OffTerm <> 'WINTER' OR OffYear <> 2017))

FacFirstName FacLastName FacDept

EMMANUEL VICTORIA MS

MILLS JULIA FIN

9.2.4  Nested Queries in the FROM Clause
So far, you have seen nested queries in the WHERE clause with certain comparison
operators (IN and EXISTS) as well as with traditional comparison operators when the
nested query produces a single value such as the count of the number of rows. Similar
to the usage in the WHERE clause, nested queries also can appear in the HAVING
clause as demonstrated in the next section. Nested queries in the WHERE and the
HAVING clauses have been part of SQL since its initial design.

In contrast, nested queries in the FROM clause were supported beginning with
SQL:1999. The design of SQL:1999 began a philosophy of consistency in language
design. Consistency means that wherever an object is permitted, an object expression
should be permitted. In the FROM clause, this philosophy means that wherever a
table is permitted, a table expression (a nested query) should be allowed. Nested que-
ries in the FROM clause are not as widely used as nested queries in the WHERE and
HAVING clauses. The remainder of this section demonstrates some specialized uses
of nested queries in the FROM clause.

One usage of nested queries in the FROM clause is to compute an aggregate func-
tion within an aggregate function (nested aggregates). SQL does not permit an aggre-
gate function inside another aggregate function. A nested query in the FROM clause
overcomes the prohibition against nested aggregates as demonstrated in Example
9.21. Without a nested query in the FROM clause, two queries would be necessary to
produce the output. In Access, the nested query would be a stored query. In Oracle,
the nested query would be a view (see Chapter 10 for an explanation of views).

Another usage of a nested query in the FROM clause is to compute aggregates from
multiple groupings. Without a nested query in the FROM clause, a query can contain
aggregates from only one grouping. For example, multiple groupings are needed to
summarize the number of students per offering and the number of resources per offer-
ing. This query would be useful if the design of the university database was extended
with a Resource table and an associative table (ResourceUsage) connected to the Offering
and the Resource tables via 1-M relationships. The query would require two nested
queries in the FROM clause, one to retrieve the enrollment count for offerings and the
other to retrieve the resource count for offerings.

26008_ch09_p319-374.indd 338 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   339

In Access, a nested query in the FROM clause can compensate for the inability to
use the DISTINCT keyword inside aggregate functions. For example, the DISTINCT
keyword is necessary to compute the number of distinct courses taught by faculty as
shown in Example 9.22. To produce the same results in Access, a nested query in the
FROM clause is necessary as shown in Example 9.23. The nested query in the FROM
clause uses the DISTINCT keyword to eliminate duplicate course numbers. Section
9.3.3 contains additional examples using nested queries in the FROM clause to com-
pensate for the DISTINCT keyword inside the COUNT function.

Example 9.21

List the course number, the course description, the number of offerings, and the average enrollment count across offerings.

SELECT T.CourseNo, T.CrsDesc, COUNT(*) AS NumOfferings,
 AVG(T.EnrollCount) AS AvgEnroll
 FROM
 (SELECT Course.CourseNo, CrsDesc,
 Offering.OfferNo, COUNT(*) AS EnrollCount
 FROM Offering, Enrollment, Course
 WHERE Offering.OfferNo = Enrollment.OfferNo
 AND Course.CourseNo = Offering.CourseNo
 GROUP BY Course.CourseNo, CrsDesc, Offering.OfferNo
) T
 GROUP BY T.CourseNo, T.CrsDesc

Using a Nested Query in the FROM Clause

CourseNo CrsDesc NumOfferings AvgEnroll

FIN300 FUNDAMENTALS OF FINANCE 1 2

FIN450 PRINCIPLES OF INVESTMENTS 1 2

FIN480 CORPORATE FINANCE 1 3

IS320 FUNDAMENTALS OF BUSINESS PROGRAMMING 2 6

IS460 SYSTEMS ANALYSIS 1 7

IS480 FUNDAMENTALS OF DATABASE MANAGEMENT 2 5.5

Example 9.22 (Oracle)

List the faculty number, the last name, and the number of unique courses taught.

SELECT Faculty.FacNo, FacLastName,
 COUNT(DISTINCT CourseNo) AS NumPreparations
 FROM Faculty, Offering
 WHERE Faculty.FacNo = Offering.FacNo
 GROUP BY Faculty.FacNo, FacLastName

Using the DISTINCT Keyword
inside the COUNT Function

FacNo FacLastName NumPreparations

098-76-5432 VINCE 1

543-21-0987 EMMANUEL 1

654-32-1098 FIBON 2

765-43-2109 MACON 2

876-54-3210 COLAN 1

987-65-4321 MILLS 2

26008_ch09_p319-374.indd 339 3/2/18 11:51 PM

340   Part 5  Application Development with Relational Databases

Example 9.23

Using a Nested Query in the FROM
Clause Instead of the DISTINCT
Keyword inside the COUNT Function
List the faculty number, the last name, and the number of unique courses taught. The result is identical to Example 9.22.

Although this SELECT statement executes in Access and Oracle, you should use the statement in Example 9.22 in Oracle because

it will execute faster.

SELECT T.FacNo, T.FacLastName, COUNT(*) AS NumPreparations
FROM
 (SELECT DISTINCT Faculty.FacNo, FacLastName, CourseNo
 FROM Offering, Faculty
 WHERE Offering.FacNo = Faculty.FacNo) T
 GROUP BY T.FacNo, T.FacLastName

Division problems can be some of the most difficult problems. Because of the
difficulty, the divide operator of Chapter 3 is briefly reviewed. After this review,
this section discusses some easier division problems before moving to more
advanced problems.

9.3.1  Review of the Divide Operator
To review the divide operator, consider a simplified university database con-
sisting of three tables: Student1 (Table 9-10), Club (Table 9-11), and StdClub
(Table 9-12) showing student membership in clubs. The divide operator is typi-

cally applied to associative or linking tables showing
M-N relationships. The StdClub table links the Student1
and Club tables in a M-N relationship as a student
may belong to many clubs and a club may have many
students.

The divide operator builds a table consisting of the
values of one column (StdNo) that match all of the values
in a specified column (ClubNo) of a second table (Club).
A typical division problem is to list the students who
belong to all clubs. The resulting table contains only stu-
dent S1 because S1 is associated with all four clubs.

Divide: an operator of relational algebra that combines rows from two tables. The
divide operator produces a table in which values of a column from one input table are
associated with all the values from a column of the second table.

Division is more conceptually difficult than join because division matches on all values
whereas join matches on a single value. If this problem involved a join, it would be
stated as “list students who belong to any club.” The key difference is the word any
versus all. Most division problems can be written with adjectives every or all between a
verb phrase representing a table and a noun representing another table. In this exam-
ple, the phrase “students who belong to all clubs” fits this pattern. Another example is
“students who have taken every course.”

9.3  FORMULATING DIVISION PROBLEMS

TABLE 9-10
Student1 Table Listing

StdNo SName SCity

S1 JOE SEATTLE

S2 SALLY SEATTLE

S3 SUE PORTLAND

TABLE 9-11
Club Table Listing

ClubNo CName CPurpose CBudget CActual

C1 DELTA SOCIAL $1,000.00 $1,200.00

C2 BITS ACADEMIC $500.00 $350.00

C3 HELPS SERVICE $300.00 $330.00

C4 SIGMA SOCIAL $150.00

TABLE 9-12
StdClub Table Listing

StdNo ClubNo

S1 C1

S1 C2

S1 C3

S1 C4

S2 C1

S2 C4

S3 C3

26008_ch09_p319-374.indd 340 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   341

9.3.2  Simple Division Problems
There are a number of ways to perform division in SQL. Some textbooks describe
an approach using Type II nested queries. Because this approach can be difficult to
understand if you have not had a course in logic, a different approach is used here. The
approach here uses the COUNT function with a nested query in the HAVING clause.

The basic idea is to compare the number of clubs associated with a student in the
StdClub table with the number of clubs in the Club table. To perform this operation,
group the StdClub table on StdNo and compare the count of rows in each StdNo group
with the count of rows in the Club table. You can make this comparison using a nested
query in the HAVING clause as shown in Example 9.24.

Example 9.24

Simplest Division Problem

List the student number of students who belong to all of the clubs.

SELECT StdNo
 FROM StdClub
 GROUP BY StdNo
 HAVING COUNT(*) = (SELECT COUNT(*) FROM Club)

StdNo

S1

Note that the COUNT(*) on the left-hand side tallies the count or number of rows in
a StdNo group. The right-hand side contains a nested query with only a COUNT(*) in
the result. The nested query is Type I because there is no connection to the outer query.
Therefore, the nested query only executes one time and returns a single row with a
single value (the number of rows in the Club table).

Now let us examine some variations of the first problem. The most typical varia-
tion is to retrieve students who belong to a subset of the clubs rather than all of the
clubs. For example, retrieve students who belong to all social clubs. To accomplish
this change, you should modify Example 9.24 by including a WHERE condition in
both the outer and the nested query. Instead of counting all Student1 rows in a StdNo
group, count only the rows where the club's purpose is social. Compare this count to
the count of social clubs in the Club table. Example 9.25 shows these modifications.

Example 9.25

Division Problem to Find a Subset Match

List the student number of students who belong to all of the social clubs.

SELECT StdNo
 FROM StdClub, Club
 WHERE StdClub.ClubNo = Club.ClubNo
 AND CPurpose = 'SOCIAL'
 GROUP BY StdNo
 HAVING COUNT(*) =
 (SELECT COUNT(*) FROM Club
 WHERE CPurpose = 'SOCIAL')

StdNo

S1

S2

Examples 9.26 and 9.27 show other variations. In Example 9.26, a join between StdClub
and Student is necessary to obtain the student name. Example 9.27 reverses the previ-
ous problems by looking for clubs rather than students.

26008_ch09_p319-374.indd 341 3/2/18 11:51 PM

342   Part 5  Application Development with Relational Databases

Example 9.26

Division Problem with Joins

List the student number and the name of students who belong to all social clubs.

SELECT Student1.StdNo, SName
 FROM StdClub, Club, Student1
 WHERE StdClub.ClubNo = Club.ClubNo
 AND Student1.StdNo = StdClub.StdNo
 AND CPurpose = 'SOCIAL'
 GROUP BY Student1.StdNo, SName
 HAVING COUNT(*) =
 (SELECT COUNT(*) FROM Club
 WHERE CPurpose = 'SOCIAL')

StdNo SName

S1 JOE

S2 SALLY

Example 9.27

Another Division Problem

List the club numbers of clubs that have all Seattle students as members.

SELECT ClubNo
 FROM StdClub, Student1
 WHERE Student1.StdNo = StdClub.StdNo
 AND SCity = 'SEATTLE'
 GROUP BY ClubNo
 HAVING COUNT(*) =
 (SELECT COUNT(*) FROM Student1
 WHERE SCity = 'SEATTLE')

ClubNo

C1

C4

9.3.3  Advanced Division Problems
Example 9.28 (using the original university database tables) depicts another compli-
cation of division problems in SQL. Before tackling this additional complication, let
us examine a simpler problem. Example 9.28 can be formulated with the same tech-
nique as shown in Section 9.3.2. First, join the Faculty and Offering tables, select rows

Example 9.28 (Access)

Division Problem with a Join

List faculty number and the name (first and last) of faculty who teach all of the fall 2016, information systems offerings.

SELECT Faculty.FacNo, FacFirstName, FacLastName
 FROM Faculty, Offering
 WHERE Faculty.FacNo = Offering.FacNo
 AND OffTerm = 'FALL' AND CourseNo LIKE 'IS*'
 AND OffYear = 2016
 GROUP BY Faculty.FacNo, FacFirstName, FacLastName
 HAVING COUNT(*) =
 (SELECT COUNT(*) FROM Offering
 WHERE OffTerm = 'FALL' AND OffYear = 2016
 AND CourseNo LIKE 'IS*')

FacNo FacFirstName FacLastName

098-76-5432 LEONARD VINCE

26008_ch09_p319-374.indd 342 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   343

matching the WHERE conditions, and group the result by faculty name (first and last).
Then, compare the count of the rows in each faculty name group with the number of
fall 2016, information systems offerings from the Offering table.

Example 9.28 is not particularly useful because it is unlikely that any instruc-
tor has taught every offering. Rather, it is more useful to retrieve instructors who
have taught at least one offering of every course as demonstrated in Example 9.29.
Rather than counting the rows in each group, count the unique CourseNo values.
This change is necessary because CourseNo is not unique in the Offering table. There
can be multiple rows with the same CourseNo, corresponding to multiple offer-
ings for the same course. The solution only executes in Oracle because Access
does not support the DISTINCT keyword in aggregate functions. Example 9.30
shows an Access solution using two nested queries in FROM clauses. The second
nested query occurs inside the nested query in the HAVING clause. Appendix 9.A
shows an alternative to nested queries in the FROM clause using multiple SELECT
statements.

Example 9.28 (Oracle)

Division Problem with a Join

List faculty number and the name (first and last) of faculty who teach all of the fall 2016, information systems offerings.

SELECT Faculty.FacNo, FacFirstName, FacLastName
 FROM Faculty, Offering
 WHERE Faculty.FacNo = Offering.FacNo
 AND OffTerm = 'FALL' AND CourseNo LIKE 'IS%'
 AND OffYear = 2016
 GROUP BY Faculty.FacNo, FacFirstName, FacLastName
 HAVING COUNT(*) =
 (SELECT COUNT(*) FROM Offering
 WHERE OffTerm = 'FALL' AND OffYear = 2016
 AND CourseNo LIKE 'IS%')

Example 9.29 (Oracle)

Division Problem with DISTINCT
inside COUNT
List the faculty number and the name (first and last) of faculty who teach at least one section of all of the fall 2016 information

systems courses.

SELECT Faculty.FacNo, FacFirstName, FacLastName
 FROM Faculty, Offering
 WHERE Faculty.FacNo = Offering.FacNo
 AND OffTerm = 'FALL' AND CourseNo LIKE 'IS%'
 AND OffYear = 2016
 GROUP BY Faculty.FacNo, FacFirstName, FacLastName
 HAVING COUNT(DISTINCT CourseNo) =
 (SELECT COUNT(DISTINCT CourseNo) FROM Offering
 WHERE OffTerm = 'FALL' AND OffYear = 2016
 AND CourseNo LIKE 'IS%')

FacNo FacFirstName FacLastName

098-76-5432 LEONARD VINCE

26008_ch09_p319-374.indd 343 3/2/18 11:51 PM

344   Part 5  Application Development with Relational Databases

Example 9.30 (Access)

Division Problem Using Nested Queries in
the FROM Clauses instead of the DISTINCT
Keyword inside the COUNT Function
List the faculty number and the name (first and last) of faculty who teach at least one section of all of the fall 2016 information

systems courses. The result is the same as Example 9.29.

SELECT FacNo, FacFirstName, FacLastName
 FROM
 (SELECT DISTINCT Faculty.FacNo, FacFirstName,
 FacLastName, CourseNo
 FROM Faculty, Offering
 WHERE Faculty.FacNo = Offering.FacNo
 AND OffTerm = 'FALL' AND OffYear = 2016
 AND CourseNo LIKE 'IS*')
 GROUP BY FacNo, FacFirstName, FacLastName
 HAVING COUNT(*) =
 (SELECT COUNT(*) FROM
 (SELECT DISTINCT CourseNo
 FROM Offering
 WHERE OffTerm = 'FALL' AND OffYear = 2016
 AND CourseNo LIKE 'IS*'))

Example 9.31 (Oracle)

Another Division Problem with
DISTINCT inside COUNT
List the faculty who have taught all seniors in their fall 2016 information systems offerings.

SELECT Faculty.FacNo, FacFirstName, FacLastName
 FROM Faculty, Offering, Enrollment, Student
 WHERE Faculty.FacNo = Offering.FacNo
 AND OffTerm = 'FALL' AND CourseNo LIKE 'IS%'
 AND OffYear = 2016 AND StdClass = 'SR'
 AND Offering.OfferNo = Enrollment.OfferNo
 AND Student.StdNo = Enrollment.StdNo
 GROUP BY Faculty.FacNo, FacFirstName, FacLastName
 HAVING COUNT(DISTINCT Student.StdNo) =
 (SELECT COUNT(*) FROM Student
 WHERE StdClass = 'SR');

FacNo FacFirstName FacLastName

098-76-5432 LEONARD VINCE

Example 9.31 is another variation of the technique used in Example 9.29. The
DISTINCT keyword is necessary so that students taking more than one offering
from the same instructor are not counted twice. Note that the DISTINCT keyword
is not necessary for the nested query because only rows of the Student table are
counted. Example 9.32 shows an Access solution using a nested query in the FROM
clause.

26008_ch09_p319-374.indd 344 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   345

Example 9.32 (Access)

Another Division Problem Using
Nested Queries in the FROM Clauses
Instead of the DISTINCT Keyword
inside the COUNT Function
List the faculty who have taught all seniors in their fall 2016 information systems offerings. The result is identical to Example

9.31. The Oracle version of this statement uses the % as the wild card character.

SELECT FacNo, FacFirstName, FacLastName
 FROM
 (SELECT DISTINCT Faculty.FacNo, FacFirstName,
 FacLastName, Student.StdNo
 FROM Faculty, Offering, Enrollment, Student
 WHERE Faculty.FacNo = Offering.FacNo
 AND OffTerm = 'FALL' AND CourseNo LIKE 'IS*'
 AND OffYear = 2016 AND StdClass = 'SR'
 AND Offering.OfferNo = Enrollment.OfferNo
 AND Student.StdNo = Enrollment.StdNo)
 GROUP BY FacNo, FacFirstName, FacLastName
 HAVING COUNT(*) =
 (SELECT COUNT(*) FROM Student
 WHERE StdClass = 'SR');

9.4  NULL VALUE CONSIDERATIONS
This section does not involve difficult matching problems or new parts of the
SELECT statement. Rather, this section explains interpretation of query results
when tables contain null values. These effects have largely been ignored until
this section to simplify the presentation. Because many databases use null val-
ues, you need to understand the effects to attain a deeper understanding of query
formulation.

Null values affect simple conditions involving comparison operators, compound
conditions involving logical operators, aggregate calculations, and grouping. As you
will see, some of the null value effects are rather subtle. Because of these subtle effects,
a good table design minimizes, although it usually does not eliminate, the use of null
values. The null value effects described in this section are specified in the SQL stan-
dards (1992 through 2016). Because specific DBMSs may provide different results, you
may need to experiment with your DBMS.

9.4.1  Effect on Simple Conditions
Simple conditions involve a comparison operator, a column or column expression,
and a constant, column, or column expression. A simple condition results in a null
value if either column (or column expression) in a comparison is null. A row qualifies
in the result if the simple condition evaluates to true for the row. Rows evaluating to
false or null are discarded. Example 9.33 depicts a simple condition evaluating to null
for one of the rows.

A more subtle result can occur when a simple condition involves two columns and
at least one column contains null values. If neither column contains null values, every
row will be in the result of either the simple condition or the opposite (negation) of the
simple condition. For example, if < is the operator of a simple condition, the opposite

26008_ch09_p319-374.indd 345 3/2/18 11:51 PM

346   Part 5  Application Development with Relational Databases

condition contains ≥ assuming the columns remain in the same positions. If at least
one column contains null values, some rows will not appear in the result of either the
simple condition or its negation. More precisely, rows containing null values will be
excluded in both results as demonstrated in Examples 9.34 and 9.35.

Example 9.33

Simple Condition Using a
Column with Null Values
List the clubs (Table 9-11) with a budget greater than $200. The club with a null budget (C4) is omitted because the condition

evaluates as a null value.

SELECT *
 FROM Club
 WHERE CBudget > 200

ClubNo CName CPurpose CBudget CActual

C1 DELTA SOCIAL $1,000.00 $1,200.00

C2 BITS ACADEMIC $500.00 $350.00

C3 HELPS SERVICE $300.00 $330.00

Example 9.34

Simple Condition Involving Two Columns

List the clubs with the budget greater than the actual spending. The club with a null budget (C4) is omitted because the condi-

tion evaluates to null.

SELECT *
 FROM Club
 WHERE CBudget > CActual

ClubNo CName CPurpose CBudget CActual

C2 BITS ACADEMIC $500.00 $350.00

Example 9.35

Opposite Condition of Example 9.34

List the clubs with the budget less than or equal to the actual spending. The club with a null budget (C4) is omitted because the

condition evaluates to null.

SELECT *
 FROM Club
 WHERE CBudget <= CActual

ClubNo CName CPurpose CBudget CActual

C1 DELTA SOCIAL $1,000.00 $1,200.00

C3 HELPS SERVICE $300.00 $330.00

26008_ch09_p319-374.indd 346 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   347

9.4.2  Effect on Compound Conditions
Compound conditions involve one or more simple conditions connected
by the logical or Boolean operators AND, OR, and NOT. Like simple condi-
tions, compound conditions evaluate to true, false, or null. A row is selected
if the entire compound condition in the WHERE clause evaluates to true.

To evaluate the result of a compound condition, the SQL:2016 stan-
dard uses truth tables with three values. A truth table shows the results
of combinations of values (true, false, and null) with the logical operators.
Truth tables with three values define a three-valued logic. Tables 9-13
through 9-15 depict truth tables for the AND, OR, and NOT operators.
The internal cells in these tables are the result values. For example, the first
internal cell (True) in Table 9-13 results from the AND operator applied to
two conditions with true values. You can test your understanding of the
truth tables using Examples 9.36 and 9.37.

9.4.3  Effect on Aggregate Calculations and Grouping
Null values are ignored in aggregate calculations. Although this state-
ment seems simple, the results can be subtle. For the COUNT func-
tion, COUNT(*) returns a different value than COUNT(column) if the
column contains null values. COUNT(*) always returns the number of
rows. COUNT(column) returns the number of non-null values in the col-
umn. Example 9.38 demonstrates the difference between COUNT(*) and
COUNT(column).

Example 9.36

Evaluation of a Compound OR
Condition with a Null Value
List the clubs with a budget less than or equal to the actual spending or the actual spending less than $200. The club with a null

budget (C4) is included because the second condition evaluates to true.

SELECT *
 FROM Club
 WHERE CBudget <= CActual OR CActual < 200

ClubNo CName CPurpose CBudget CActual

C1 DELTA SOCIAL $1,000.00 $1,200.00

C3 HELPS SERVICE $300.00 $330.00

C4 SIGMA SOCIAL $150.00

Example 9.37

Evaluation of a Compound AND
Condition with a Null Value
List the clubs (Table 9-11) with the budget less than or equal to the actual spending and the actual spending less than $500. The

club with a null budget (C4) is not included because the first condition evaluates to null.

SELECT *
 FROM Club
 WHERE CBudget <= CActual AND CActual < 500

ClubNo CName CPurpose CBudget CActual

C3 HELPS SERVICE $300.00 $330.00

TABLE 9-13
AND Truth Table

AND True False Null

True True False Null

False False False False

Null Null False Null

TABLE 9-14
OR Truth Table

OR True False Null

True True True True

False True False Null

Null True Null Null

TABLE 9-15
NOT Truth Table

NOT True False Null

False True Null

26008_ch09_p319-374.indd 347 3/2/18 11:51 PM

348   Part 5  Application Development with Relational Databases

Example 9.38

COUNT Function with Null Values

List the number of rows in the Club table and the number of non null values in the CBudget column.

SELECT COUNT(*) AS NumRows,
 COUNT(CBudget) AS NumBudgets
 FROM Club

NumRows NumBudgets

4 3

An even more subtle effect can occur if the SUM or AVG functions are applied to a
column with null values. Without regard to null values, the following equation is true:
SUM(Column1) + SUM(Column2) = SUM(Column1 + Column2). With null values in
at least one of the columns, the equation may not be true because a calculation involv-
ing a null value yields a null value. If Column1 has a null value in one row, the plus
operation in SUM(Column1 + Column2) produces a null value for that row. However,
the value of Column2 in the same row is counted in SUM(Column2). Example 9.39
demonstrates this subtle effect using the minus operator instead of the plus operator.

Example 9.39

SUM Function with Null Values

Using the Club table, list the sum of the budget values, the sum of the actual values, the difference of the two sums, and the

sum of the differences (budget – actual). Parentheses enclose negative values in the result. The last two columns differ because

of a null value in the CBudget column for ClubNo C4. The CActual value (150) in the C4 row counts in SUM(CActual). However,

SUM(CBudget – CActual) uses null for the difference in the C4 row.

SELECT SUM(CBudget) AS SumBudget,
 SUM(CActual) AS SumActual,
 SUM(CBudget)-SUM(CActual) AS SumDifference,
 SUM(CBudget-CActual) AS SumOfDifferences
 FROM Club

SumBudget SumActual SumDifference SumOfDifferences

$1,800.00 $2,030.00 ($230.00) ($80.00)

Example 9.40

Grouping on a Column with Null Values

For each faculty number in the Offering table, list the number of offerings. In Microsoft Access and Oracle, an Offering row with

a null FacNo value displays as a blank. In Access, the null row displays before the non-null rows as shown below. In Oracle, the

null row displays after non-null rows.

SELECT FacNo, COUNT(*) AS NumRows
 FROM Offering
 GROUP BY FacNo

Null values also can affect grouping operations performed in the GROUP BY clause.
The SQL standard stipulates that all rows with null values are grouped together. The
grouping column shows null values in the result. In the university database, this kind
of grouping is useful to find offerings without assigned professors, as demonstrated
in Example 9.40.

26008_ch09_p319-374.indd 348 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   349

FacNo NumRows

2

098-76-5432 3

543-21-0987 1

654-32-1098 2

765-43-2109 2

876-54-3210 1

987-65-4321 2

9.5  HIERARCHICAL QUERIES
Hierarchical queries involve self-referencing relationships in which a child entity
is related to at most one parent entity. Classical organization charts, part explosion
diagrams, chart of accounts, and XML documents are the most prominent examples
amendable to hierarchical queries. A typical hierarchical query may involve finding
details or summarizing features about employees managed directly or indirectly by a
specified manager. Self-referencing relationships are specialized but important parts
of applications so understanding hierarchical query formulation provides advanced
skills not shared by typical database professionals.

This section covers two approaches for hierarchical queries. Oracle developed
a proprietary extension of the SELECT statement using the CONNECT BY PRIOR
clause. Standard SQL (SQL:1999 onwards) provides an extension to the SELECT state-
ment involving the WITH clause and recursive common table expressions. Since the
Oracle notation is more succinct, the proprietary Oracle approach is covered first in
more detail. The standard SQL notation is presented in less detail to provide some
background for other DBMSs. Hierarchical queries are not supported in Microsoft
Access so none of the examples in this section execute in any version of Microsoft
Access. Before covering the hierarchical query approaches, an example of hierarchi-
cally structured data is presented.

Hierarchical Query: a query involving self-referencing relationships in which a
child row is related to at most one parent row. Hierarchical queries typically retrieve
details about child rows (both direct and indirect) or summarize column values of
child rows.

9.5.1  Hierarchical Data Example
To study hierarchical query formulation, you need to clearly understand hierarchi-
cally structured data. Table 9-16 shows the new Faculty2 table expanded from the
Faculty table with additional rows, some columns removed, and some rows slightly
altered to fit into hierarchical query examples. The Faculty2 table has a self-referencing
relationship with FacSupervisor as a foreign key referencing FacNo. Each row has at
most one parent row. Rows having a null value for FacSupervisor reside at the top of
the organization chart. In Table 9-16, Victoria Emmanuel and Nicki Macon reside at
the top of the organization chart.

To clarify the hierarchical structure, Figures 9.2 and 9.3 graphically depict organi-
zation charts along with important column values for easy comparison. A graphical
representation of sample data can help you to formulate hierarchical queries.

26008_ch09_p319-374.indd 349 3/2/18 11:51 PM

350   Part 5  Application Development with Relational Databases

TABLE 9-16
Sample Faculty2 Table FacNo FacSupervisor FacFirstName FacLastName FacHireDate FacRank FacSalary

098-76-5432 654-32-1098 LEONARD VINCE 10-Apr-2004 ASST $55,000

543-21-0987 VICTORIA EMMANUEL 15-Apr-2005 PROF $120,000

654-32-1098 543-21-0987 LEONARD FIBON 01-May-2003 ASSC $70,000

765-43-2109 NICKI MACON 11-Apr-2006 ASSC $105,000

876-54-3210 654-32-1098 CRISTOPHER COLAN 01-Mar-2008 ASST $90,000

987-65-4321 765-43-2109 JULIA MILLS 15-Mar-2009 ASSC $95,000

111-22-3333 543-21-0987 JOHN MILLSON 01-May-2009 PROF $110,000

333-22-4444 111-22-3333 SALLY SCOTT 01-May-2010 ASST $90,000

555-66-7777 111-22-3333 SUSAN JONES 01-May-2011 ASSC $125,000

777-11-4321 765-43-2109 AIMEE MANNING 15-Mar-2010 ASST $85,000

888-33-1111 987-65-4321 JAMES BLOKE 15-Apr-2012 ASST $85,000

789-12-3210 987-65-4321 JAIME SANCHEZ 10-May-2013 PROF $107,000

FIGURE 9.2
Organization Chart with
Victoria Emmanuel at the Top

Victoria Emmanuel
543-21-0987

PROF
15-Apr-2005

$120,000

Leonard Fibon
654-32-1098

ASSC
01-May-2003

$70,000

John Millson
111-22-3333

PROF
01-May-2009

$110,000

Christopher Colan
876-54-3210

ASST
01-Mar-2008

$90,000

Leonard Vince
098-76-5432

ASST
10-Apr-2004

$55,000

Sally Scott
333-22-4444

ASST
01-May-2010

$90,000

Susan Jones
555-66-7777

ASSC
01-May-2011
$125,000

FIGURE 9.3
Organization Chart with Nicki
Macon at the Top

Nicki Macon
765-43-2109

ASSC
11-Apr-2006
$105,000

Julia Mills
987-65-4321

ASSC
05-Mar-2009

$95,000

James Bloke
888-33-1111

ASST
15-Apr-2012

$85,000

Jaime Sanchez
789-12-3210

PROF
10-May-2013

$107,000

Aimee Manning
777-11-4321

ASST
15-Mar-2010

$85,000

26008_ch09_p319-374.indd 350 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   351

The basic hierarchical query involves listing each top level faculty member along
with all related subordinates, direct and indirect. The sequence of rows from root (top
row) to leaf (lowest level) is known as a path. A SELECT statement cannot list all sub-
ordinates on a path unless the number of levels of subordinates is known. A self-join
can be done for each level but a variable number of self-joins is necessary even if the
maximum number of levels is known. Thus, an extension to the SELECT statement is
necessary to formulate even the basic hierarchical query.

Compiler optimization and higher productivity are important advantages of query
language support for hierarchical queries. SQL compilers have specialized algorithms
and optimization methods for hierarchical queries. In contrast, coding a hierarchical
query in a procedure with explicit loops eliminates the possibility of optimization by a
SQL compiler. In addition, procedural coding reduces software productivity as more
lines of code are necessary along with programming language knowledge.

9.5.2  Proprietary Oracle Extensions for Hierarchical Queries
Oracle provides the CONNECT BY PRIOR clause along with other clauses, opera-
tors, functions, and pseudo columns to support hierarchical queries. Syntactically, the
CONNECT BY PRIOR clause and other clauses follow the FROM and WHERE clauses
in a SELECT statement. The operators, functions, and pseudo columns can appear in
expressions in the list of result columns and conditions. Pseudo columns are not actual
columns in a table, but they behave like columns.

The examples begin with the simplest hierarchical query, although not particu-
larly useful. The CONNECT BY PRIOR clause contains a condition relating parent
and child rows, typically the self-join condition. Example 9.41 uses the CONNECT BY
PRIOR clause to visit each row on a path. Each row is visited one time for each level on
a path. For example, the row with COLAN appears three times in the result because it
resides on level 3 as previously shown in Figure 9.2. The LEVEL pseudo column iden-
tifies the hierarchical level of a row starting with 1 for the root level. The Faculty2 table
contains two root rows appearing with level 1 in the result.

Example 9.41

Simple Hierarchical Query using
CONNECT BY PRIOR (Oracle)
The result contains 28 rows (Table 9-17) with 18 rows for the six leaf rows (faculty not managing other faculty) at level 3 (6 * 3),

8 rows for the 4 rows at level 2 (4 * 2), and 2 root rows. The sorting order makes it easier to verify the visitation of rows.

SELECT FacNo, FacSupervisor, FacFirstName, FacLastName,
 FacHireDate, FacSalary, FacRank, LEVEL
 FROM Faculty2
 CONNECT BY PRIOR FacNo = FacSupervisor
 ORDER BY FacNo, LEVEL;

FacNo FacSupervisor FacFirstName FacLastName FacHireDate FacRank FacSalary LEVEL

098-76-5432 654-32-1098 LEONARD VINCE 10-APR-04 ASST 55000 1

098-76-5432 654-32-1098 LEONARD VINCE 10-APR-04 ASST 55000 2

098-76-5432 654-32-1098 LEONARD VINCE 10-APR-04 ASST 55000 3

111-22-3333 543-21-0987 JOHN MILLSON 01-MAY-09 PROF 110000 1

111-22-3333 543-21-0987 JOHN MILLSON 01-MAY-09 PROF 110000 2

333-22-4444 111-22-3333 SALLY SCOTT 01-MAY-09 ASST 90000 1

333-22-4444 111-22-3333 SALLY SCOTT 01-MAY-10 ASST 90000 2

26008_ch09_p319-374.indd 351 3/2/18 11:51 PM

352   Part 5  Application Development with Relational Databases

Example 9.41 treats all rows as roots of hierarchies. Typically, a small number of rows
are designated as roots. Oracle provides the START WITH clause to identify root rows.
In Example 9.42, the rows with null values for FacSupervisor are designated as the start-
ing rows. The START WITH clause eliminates duplicate rows in the result caused by
treating each row as a root.

FacNo FacSupervisor FacFirstName FacLastName FacHireDate FacRank FacSalary LEVEL

333-22-4444 111-22-3333 SALLY SCOTT 01-MAY-10 ASST 90000 3

543-21-0987 VICTORIA EMMANUEL 15-APR-05 PROF 120000 1

555-66-7777 111-22-3333 SUSAN JONES 01-MAY-11 ASSC 125000 1

555-66-7777 111-22-3333 SUSAN JONES 01-MAY-11 ASSC 125000 2

555-66-7777 111-22-3333 SUSAN JONES 01-MAY-11 ASSC 125000 3

654-32-1098 543-21-0987 LEONARD FIBON 01-MAY-03 ASSC 70000 1

654-32-1098 543-21-0987 LEONARD FIBON 01-MAY-03 ASSC 70000 2

765-43-2109 NICKI MACON 11-APR-06 ASSC 105000 1

777-11-4321 765-43-2109 AIMEE MANNING 15-MAR-10 ASST 85000 1

777-11-4321 765-43-2109 AIMEE MANNING 15-MAR-10 ASST 85000 2

789-12-3210 987-65-4321 JAIME SANCHEZ 10-MAY-13 PROF 107000 1

789-12-3210 987-65-4321 JAIME SANCHEZ 10-MAY-13 PROF 107000 2

789-12-3210 987-65-4321 JAIME SANCHEZ 10-MAY-13 PROF 107000 3

876-54-3210 654-32-1098 CRISTOPHER COLAN 01-MAR-08 ASST 90000 1

876-54-3210 654-32-1098 CRISTOPHER COLAN 01-MAR-08 ASST 90000 2

876-54-3210 654-32-1098 CRISTOPHER COLAN 01-MAR-08 ASST 90000 3

888-33-1111 987-65-4321 JAMES BLOKE 15-APR-12 ASST 85000 1

888-33-1111 987-65-4321 JAMES BLOKE 15-APR-12 ASST 85000 2

888-33-1111 987-65-4321 JAMES BLOKE 15-APR-12 ASST 85000 3

987-65-4321 765-43-2109 JULIA MILLS 15-MAR-09 ASSC 95000 1

987-65-4321 765-43-2109 JULIA MILLS 15-MAR-09 ASSC 95000 2

Example 9.42

Hierarchical Query using
START WITH (Oracle)
Example 9.42 revises Example 9.41 with a START WITH clause to limit starting rows to the roots of the faculty hierarchies. The

results are conveniently sorted to indicate that each Faculty2 row appears once in the result.

SELECT FacNo, FacSupervisor, FacFirstName, FacLastName,
 FacHireDate, FacSalary, FacRank, LEVEL
 FROM Faculty2
 START WITH FacSupervisor IS NULL
 CONNECT BY PRIOR FacNo = FacSupervisor
 ORDER BY LEVEL;

FacNo FacSupervisor FacFirstName FacLastName FacHireDate FacRank FacSalary LEVEL

765-43-2109 NICKI MACON 11-APR-06 ASSC 105000 1

543-21-0987 VICTORIA EMMANUEL 15-APR-05 PROF 120000 1

654-32-1098 543-21-0987 LEONARD FIBON 01-MAY-03 ASSC 70000 2

26008_ch09_p319-374.indd 352 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   353

In Example 9.42, the relationship of rows on the same level is not clear. To depict
relationships among rows on the same level, Oracle provides the SIBLINGS keyword
to specify a sort order for siblings, rows with the same parent. Example 9.43 sorts
siblings by FacLastName, a more convenient order than FacNo. In the result, you can
see the lexicographic order for siblings with COLAN followed by VINCE under par-
ent row FIBON. The rows are indented in the first column to show the hierarchical
relationships.

FacNo FacSupervisor FacFirstName FacLastName FacHireDate FacRank FacSalary LEVEL

987-65-4321 765-43-2109 JULIA MILLS 15-MAR-09 ASSC 95000 2

777-11-4321 765-43-2109 AIMEE MANNING 15-MAR-10 ASST 85000 2

111-22-3333 543-21-0987 JOHN MILLSON 01-MAY-09 PROF 110000 2

789-12-3210 987-65-4321 JAIME SANCHEZ 10-MAY-13 PROF 107000 3

876-54-3210 654-32-1098 CRISTOPHER COLAN 01-MAR-08 ASST 90000 3

888-33-1111 987-65-4321 JAMES BLOKE 15-APR-12 ASST 85000 3

555-66-7777 111-22-3333 SUSAN JONES 01-MAY-11 ASSC 125000 3

333-22-4444 111-22-3333 SALLY SCOTT 01-MAY-10 ASST 90000 3

098-76-5432 654-32-1098 LEONARD VINCE 10-APR-04 ASST 55000 3

Example 9.43

Hierarchical Query using the
SIBLNGS Keyword (Oracle)
The LPAD function adds spaces on the left to show the hierarchical structure. The LEVEL pseudo column determines the amount

of padding with no padding for the root rows.

SELECT LPAD(' ',2*(LEVEL-1)) || FacLastName AS LastName,
 FacHireDate, FacSalary, FacRank, LEVEL
 FROM Faculty2
 START WITH FacSupervisor IS NULL
 CONNECT BY PRIOR FacNo = FacSupervisor
 ORDER SIBLINGS BY FacLastName;

LastName FacHireDate FacRank FacSalary LEVEL

EMMANUEL 15-APR-05 PROF 120000 1

 FIBON 01-MAY-03 ASSC 70000 2

 COLAN 01-MAR-08 ASST 90000 3

 VINCE 10-APR-04 ASST 55000 3

 MILLSON 01-MAY-09 PROF 110000 2

 JONES 01-MAY-11 ASSC 125000 3

 SCOTT 01-MAY-10 ASST 90000 3

MACON 11-APR-06 ASSC 105000 1

 MANNING 15-MAR-10 ASST 85000 2

 MILLS 15-MAR-09 ASSC 95000 2

 BLOKE 15-APR-12 ASST 85000 3

 SANCHEZ 10-MAY-13 PROF 107000 3

26008_ch09_p319-374.indd 353 3/2/18 11:51 PM

354   Part 5  Application Development with Relational Databases

Instead of indenting to show the hierarchical structure, the complete path can be
shown. Oracle provides the SYS_CONNECT_BY_PATH function to show the com-
plete path with a column name and a separator character as parameters.

Example 9.45

Hierarchical Query using CONNECT_BY_ROOT
and CONNECT_BY_ISLEAF (Oracle)
The CONNECT_BY_ROOT operator uses a column name (FacLastName). The CONNECT_BY_ISLEAF pseudo column returns 1 if the

row is a leaf and 0 otherwise.

SELECT SYS_CONNECT_BY_PATH(FacLastName,'/') AS Path,
 CONNECT_BY_ROOT FacLastName AS Root,
 CONNECT_BY_ISLEAF AS IsLeaf,
 FacHireDate, FacSalary, FacRank, LEVEL
 FROM Faculty2
 START WITH FacSupervisor IS NULL
 CONNECT BY PRIOR FacNo = FacSupervisor
 ORDER SIBLINGS BY FacLastName;

In addition to the SYS_CONNECT_BY_PATH function, Oracle provides other
syntax elements for hierarchical queries as shown in Example 9.45. The CONNECT_
BY_ROOT operator retrieves a column value from a root row. The CONNECT_BY_
LEAF pseudo column provides a row’s leaf status. A row is a leaf if it has no children.

Example 9.44

Hierarchical Query using the
SYS_CONNECT_BY_PATH function (Oracle)
The SYS_CONNECT_BY_PATH function uses the FacLastName column to identify rows and the / as the separator between rows

on a path.

SELECT SYS_CONNECT_BY_PATH(FacLastName,'/') AS Path,
 FacHireDate, FacSalary, FacRank, LEVEL
 FROM Faculty2
 START WITH FacSupervisor IS NULL
 CONNECT BY PRIOR FacNo = FacSupervisor
 ORDER SIBLINGS BY FacLastName;

Path FacHireDate FacRank FacSalary LEVEL

/EMMANUEL 15-APR-05 PROF 120000 1

/EMMANUEL/FIBON 01-MAY-03 ASSC 70000 2

/EMMANUEL/FIBON/COLAN 01-MAR-08 ASST 90000 3

/EMMANUEL/FIBON/VINCE 10-APR-04 ASST 55000 3

/EMMANUEL/MILLSON 01-MAY-09 PROF 110000 2

/EMMANUEL/MILLSON/JONES 01-MAY-11 ASSC 125000 3

/EMMANUEL/MILLSON/SCOTT 01-MAY-10 ASST 90000 3

/MACON 11-APR-06 ASSC 105000 1

/MACON/MANNING 15-MAR-10 ASST 85000 2

/MACON/MILLS 15-MAR-09 ASSC 95000 2

/MACON/MILLS/BLOKE 15-APR-12 ASST 85000 3

/MACON/MILLS/SANCHEZ 10-MAY-13 PROF 107000 3

26008_ch09_p319-374.indd 354 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   355

The CONNECT_BY_ROOT operator can be used indirectly for grouping so that sum-
mary totals can be calculated for paths in a hierarchy. To calculate summary totals, the
root should not be restricted by the START WITH clause. Without a root restriction,
every row will be considered a root so that summary totals are calculated for each row,
not just the root rows. Example 9.46 shows summary salary totals and subordinate
counts for each faculty member and subordinates.

Path Root IsLeaf FacHireDate FacRank FacSalary LEVEL

/EMMANUEL EMMANUEL 0 15-APR-05 PROF 120000 1

/EMMANUEL/FIBON EMMANUEL 0 01- MAY-03 ASSC 70000 2

/EMMANUEL/FIBON/COLAN EMMANUEL 1 01-MAR-08 ASST 90000 3

/EMMANUEL/FIBON/VINCE EMMANUEL 1 10-APR-04 ASST 55000 3

/EMMANUEL/MILLSON EMMANUEL 0 01-MAY-09 PROF 110000 2

/EMMANUEL/MILLSON/JONES EMMANUEL 1 01-MAY-11 ASSC 125000 3

/EMMANUEL/MILLSON/SCOTT EMMANUEL 1 01-MAY-10 ASST 90000 3

/MACON MACON 0 11-APR-06 ASSC 105000 1

/MACON/MANNING MACON 1 15-MAR-10 ASST 85000 2

/MACON/MILLS MACON 0 15-MAR-09 ASSC 95000 2

/MACON/MILLS/BLOKE MACON 1 15-APR-12 ASST 85000 3

/MACON/MILLS/SANCHEZ MACON 1 10-MAY-13 PROF 107000 3

Example 9.46

Summary Totals for a Hierarchical Query
using the CONNECT_BY_ROOT
function (Oracle)
A nested query in the FROM clause is necessary because the CONNECT_BY_ROOT operator cannot be used as a grouping column.

The result is sorted by the number of faculty members in the group including the root row and subordinates (COUNT(*)).

SELECT Root, COUNT(*)-1 AS NumSubordinates,
 SUM(FacSalary) AS FacSalarySum
 FROM
 (SELECT CONNECT_BY_ROOT FacLastName AS Root, FacSalary
 FROM Faculty2
 CONNECT BY PRIOR FacNo = FacSupervisor)
GROUP BY Root
ORDER BY COUNT(*) DESC;

Root NumSubordinates FacSalarySum

EMMANUEL 6 660000

MACON 4 477000

FIBON 2 215000

MILLS 2 287000

MILLSON 2 325000

SANCHEZ 0 107000

26008_ch09_p319-374.indd 355 3/2/18 11:51 PM

356   Part 5  Application Development with Relational Databases

The last problems involve path exceptions. Many hierarchies show consistency of
values known as monotonicity on paths. Monotonicity means that column values
of subordinates change in the same direction (usually smaller) from ancestors. For
example in an organization hierarchy, monotonicity indicates that a manager has
larger compensation than direct and indirect subordinates. Path exception queries
involve violations about expected monotonicity of values. Typical path exception
queries involve managers making less than subordinates, assemblies weighing less
than constituent components, and parent accounts with smaller balances than related
subaccounts.

The first step to formulate path exception queries involves the closure of the hier-
archy. The closure of a hierarchy shows all pairs in which a child can be reached from
a parent. In an organization chart, the closure shows a manager paired with each direct
and indirect subordinate. In Figure 9.2, the closure for Macon contains Macon paired
with each subordinate, Mills, Manning, Bloke, and Sanchez. Example 9.47 demon-
strates the SELECT statement to derive the closure for the Faculty2 table. Each row in
the hierarchy is paired with each direct and indirect subordinate as shown in query
result.

The last two examples retrieve the closure in the nested query and apply WHERE
conditions in the outer query to retrieve path exceptions. Example 9.48 retrieves

Path Exception Query
a hierarchical query listing
violations of monotonic-
ity in path relationships in
hierarchical data. Monotonic-
ity means that column values
of subordinates change in
the same direction (usually
smaller) from ancestors.

Root NumSubordinates FacSalarySum

BLOKE 0 85000

SCOTT 0 90000

MANNING 0 85000

VINCE 0 55000

JONES 0 125000

COLAN 0 90000

Example 9.47

Closure of the Faculty2 Table (Oracle)

The WHERE clause removes redundant rows in which the faculty number matches the root’s faculty number or the supervisor

is null. The nested query in the FROM clause is necessary because the WHERE condition must be applied to the result without a

starting row as shown in Example 9.41. The unary PRIOR operator retrieves the value of the column name argument from the

parent row. Note that the PRIOR operator involves the immediate parent row while the CONNECT_BY_ROOT operator involves

the root row. The SYS_CONNECT_BY_PATH function and sort order improve the readability of the result.

SELECT *
 FROM
 (SELECT FacNo, PRIOR FacNo AS PriorFacNo,
 CONNECT_BY_ROOT FacNo AS FacSupNo, FacLastName,
 FacSalary, FacRank,
 SYS_CONNECT_BY_PATH(FacLastName,'/') AS Path
 FROM Faculty2
 CONNECT BY PRIOR FacNo = FacSupervisor)
WHERE FacSupNo <> FacNo
ORDER BY FacLastName;

26008_ch09_p319-374.indd 356 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   357

subordinate faculty members with larger salaries than their ancestors (either direct
or indirect supervisors). Example 9.49 retrieves subordinate faculty members with
a higher rank than their supervisors. The rank order is PROF (full professor), ASSC
(associate professor), and ASST (assistant professor). The results for both exam-
ples show the values for the subordinate and ancestor faculty member for ease of
comparison.

The Oracle notation presented in this section has a number of syntax elements. To
help you use the notation, Table 9-16 presents a convenient summary.

FacNo PriorFacNo FacSupNo FacLastName FacRank FacSalary Path

888-33-1111 987-65-4321 987-65-4321 BLOKE ASST 85000 /MILLS/BLOKE

888-33-1111 987-65-4321 765-43-2109 BLOKE ASST 85000 /MACON/MILLS/BLOKE

876-54-3210 654-32-1098 543-21-0987 COLAN ASST 90000 /EMMANUEL/FIBON/COLAN

876-54-3210 654-32-1098 654-32-1098 COLAN ASST 90000 /FIBON/COLAN

654-32-1098 543-21-0987 543-21-0987 FIBON ASSC 70000 /EMMANUEL/FIBON

555-66-7777 111-22-3333 111-22-3333 JONES ASSC 125000 /MILLSON/JONES

555-66-7777 111-22-3333 543-21-0987 JONES ASSC 125000 /EMMANUEL//MILLSON/JONES

777-11-4321 765-43-2109 765-43-2109 MANNING ASST 85000 /MACON/MANNING

987-65-4321 765-43-2109 765-43-2109 MILLS ASSC 95000 /MACON/MILLS

111-22-3333 543-21-0987 543-21-0987 MILLSON PROF 110000 /EMMANUEL/MILLSON

789-12-3210 987-65-4321 987-65-4321 SANCHEZ PROF 107000 /MILLS/SANCHEZ

789-12-3210 987-65-4321 765-43-2109 SANCHEZ PROF 107000 /MACON/MILLS/SANCHEZ

333-22-4444 111-22-3333 111-22-3333 SCOTT ASST 90000 /MILLSON/SCOTT

333-22-4444 111-22-3333 543-21-0987 SCOTT ASST 90000 /EMMANUEL/MILLSON/SCOTT

098-76-5432 654-32-1098 543-21-0987 VINCE ASST 55000 /EMMANUEL/FIBON/VINCE

098-76-5432 654-32-1098 654-32-1098 VINCE ASST 55000 /FIBON/VINCE

Example 9.48

Path Exception Query to Retrieve
Faculty Earning more than a Supervisor,
either Direct or Indirect (Oracle)
The path exception condition (comparison of faculty salary values) is added to the WHERE condition of the outer query. The

nested query uses the CONNECT_BY_ROOT operator to retrieve values from the root row.

SELECT *
 FROM
 (SELECT FacNo, CONNECT_BY_ROOT FacNo AS FacSupNo, FacLastName,
 CONNECT_BY_ROOT FacLastName AS FacSupLastName, FacSalary,
 CONNECT_BY_ROOT FacSalary AS FacSupSalary
 FROM Faculty2
 CONNECT BY PRIOR FacNo = FacSupervisor)
 WHERE FacSupNo <> FacNo AND FacSalary > FacSupSalary;

26008_ch09_p319-374.indd 357 3/2/18 11:51 PM

358   Part 5  Application Development with Relational Databases

FacNo FacSupNo FacLastName FacSupLastName FacSalary FacSupSalary

876-54-3210 654-32-1098 COLAN FIBON 90000 70000

555-66-7777 543-21-0987 JONES MILLSON 125000 110000

789-12-3210 987-65-4321 SANCHEZ MILLS 107000 95000

555-66-7777 111-22-3333 JONES EMMANUEL 125000 120000

789-12-3210 765-43-2109 SANCHEZ MACON 107000 105000

Example 9.49

Path Exception Query to Retrieve Faculty
with a Higher Rank than a Supervisor,
either Direct or Indirect (Oracle)
The path exception condition (comparison of faculty rank values) in the outer query involves three combinations of inconsistent

values for a subordinate (FacRank) and an ancestor (FacSupRank). The order among ranks is PROF > ASSC > ASST.

SELECT *
 FROM
 (SELECT FacNo, CONNECT_BY_ROOT FacNo AS FacSupNo, FacLastName,
 CONNECT_BY_ROOT FacLastName AS FacSupLastName,
 FacRank, CONNECT_BY_ROOT FacRank AS FacSupRank
 FROM Faculty2
 CONNECT BY PRIOR FacNo = FacSupervisor)
WHERE FacSupNo <> FacNo
 AND ((FacRank = 'PROF' AND FacSupRank = 'ASSC')
 OR (FacRank = 'PROF' AND FacSupRank = 'ASST')
 OR (FacRank = 'ASSC' AND FacSupRank = 'ASST'));

FacNo FacSupNo FacLastName FacSupLastName FacRank FacSupRank

789-12-3210 987-65-4321 SANCHEZ MILLS PROF ASSC

789-12-3210 765-43-2109 SANCHEZ MACON PROF ASSC

TABLE 9-16
Summary of Proprietary
Oracle Notation for
Hierarchical Queries

Syntax Element Meaning

CONNECT BY PRIOR Clause to specify a condition that establishes a link between parent and child rows

START WITH Clause to specify a condition to identify the root rows in a hierarchical query

SIBLINGS Keyword to indicate a sort order for siblings, rows with the same parent. Used in
the ORDER BY clause

LEVEL Pseudo column to determine the hierarchical level of a row beginning with 1 for
root rows

CONNECT_BY_ISLEAF Pseudo column to determine leaf status of a row, 1 if a row has no related child
rows, 0 otherwise

SYS_CONNECT_BY_
PATH

Function to retrieve the path for a row using a column and separator character

CONNECT_BY_ROOT Unary operator in the SELECT clause to retrieve the value of a specified column
from a root row

PRIOR Unary operator in the SELECT clause to reference the value of a specified col-
umn in the parent row

26008_ch09_p319-374.indd 358 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   359

9.5.3  Extensions in the SQL Standard for Hierarchical Queries
The SQL standard, starting with SQL:1999, provided recursive common table
expressions (CTE) to formulate hierarchical queries. CTEs can be used for other pur-
poses besides hierarchical queries although they are only necessary for hierarchical
queries so they were not previously introduced. Recursion means self-reference so a
recursive CTE references itself. Recursive CTEs are supported by most major enter-
prise DBMSs including Oracle so recursive CTEs provide a reasonably portable nota-
tion compared to the proprietary nature of the Oracle CONNECT BY PRIOR clause.

The recursive CTE notation is more verbose than the Oracle notation although the
recursive CTE notation uses only one syntax element compared to many syntax ele-
ments in the Oracle notation. The CTE notation involves two query blocks connected
by a union operation followed by a second SELECT statement. Example 9.50 shows the
basic pattern for a hierarchical query using a recursive CTE. Note the WITH keyword
begins the CTE.

Recursive Common Table
Expression (CTE)
Recursive CTEs are the SQL
standard notation for hierar-
chical queries. A recursive
CTE involves two query
blocks connected by a union
operation and a second
SELECT statement. The sec-
ond query block references
the CTE, a self-reference.
The second SELECT state-
ment uses the CTE to gener-
ate the results.

Example 9.50

Query pattern for Hierarchical
Query using a Recursive CTE
The WITH keyword indicates the CTE name and column names. The first SELECT block (<CTEQuery1>), known as the anchor

member, references the table with hierarchical data. The second SELECT block (<CTEQuery2>), known as the recursive member,

references the CTE name. The SELECT statement after the WITH clause uses the CTE to generate the result. The semicolon termi-

nates the entire statement including the WITH clause and SELECT statement.

WITH CTEName (ColumnName*)
AS
-- Anchor member (AM) referencing the hierarchical table.
 (<CTEQuery1>
UNION ALL
-- Recursive member (RM) referencing the CTEName.
 <CTEQuery2>)
-- Statement using CTEName
SELECT * FROM CTEName;

Example 9.51 shows a SQL statement conforming to the pattern in Example 9.50.
Example 9.51 begins with the definition of the CTE following the WITH keyword.
Faculty2CTE contains the columns to identify a row as well as a column to identify the
hierarchical level of a column. The CTE definition contains the query blocks specify-
ing the anchor and recursive members following the AS keyword. The connection
between the query blocks occurs in the join condition and the LevelNo calculation in
the recursive member.

Example 9.51

Basic Hierarchical Query using
a Recursive CTE (Oracle)
Example 9.51 generates a result equivalent to Example 9.42. The anchor member (AM) retrieves the two roots of the hierarchi-

cal table (FacSupervisor IS NULL). The recursive member (RM) repeatedly executes through each level below the roots. The

LevelNo column in the CTE is 1 for the root rows in the anchor member. The LevelNo value is incremented by 1 for each level

below the root in the recursive member. Note that LevelNo is a computed column, not the pseudo column used in the proprietary

Oracle notation.

26008_ch09_p319-374.indd 359 3/2/18 11:51 PM

360   Part 5  Application Development with Relational Databases

This subsection finishes with two path exception examples to demonstrate recursive
CTE notation on useful problems. Example 9.52 lists details about faculty earning
more than a supervisor at any level. Example 9.53 lists details about faculty with a
higher rank than a supervising faculty member. In both examples, you should note
that the second SELECT statement using the CTE contains path exception conditions.

WITH Faculty2CTE (FacNo, FacSupervisor, FacFirstName,
 FacLastName, FacHireDate, FacRank, FacSalary, LevelNo)
AS
-- RM referencing Faculty2CTE, the recursive CTE
(SELECT FacNo, FacSupervisor, FacFirstName, FacLastName,
 FacHireDate, FacRank, FacSalary, 1
 FROM Faculty2
 WHERE FacSupervisor IS NULL
UNION ALL
 SELECT F2.FacNo, F2.FacSupervisor, F2.FacFirstName,
 F2.FacLastName, F2.FacHireDate, F2.FacRank,
 F2.FacSalary, F2CTE.LevelNo + 1
 FROM Faculty2 F2 INNER JOIN Faculty2CTE F2CTE
 ON F2.FacSupervisor = F2CTE.FacNo
)
-- Statement using the CTE
SELECT * FROM Faculty2CTE
ORDER BY LevelNo, FacNo;

FacNo FacSupervisor FacFirstName FacLastName FacHireDate FacRank FacSalary LevelNo

543-21-0987 VICTORIA EMMANUEL 15-APR-05 PROF 120000 1

765-43-2109 NICKI MACON 11-APR-06 ASSC 105000 1

111-22-3333 543-21-0987 JOHN MILLSON 01-MAY-09 PROF 110000 2

654-32-1098 543-21-0987 LEONARD FIBON 01-MAY-03 ASSC 70000 2

777-11-4321 765-43-2109 AIMEE MANNING 15-MAR-10 ASST 85000 2

987-65-4321 765-43-2109 JULIA MILLS 15-MAR-09 ASSC 95000 2

098-76-5432 654-32-1098 LEONARD VINCE 10-APR-04 ASST 55000 3

333-22-4444 111-22-3333 SALLY SCOTT 01-MAY-10 ASST 90000 3

555-66-7777 111-22-3333 SUSAN JONES 01-MAY-11 ASSC 125000 3

789-12-3210 987-65-4321 JAIME SANCHEZ 10-MAY-13 PROF 107000 3

876-54-3210 654-32-1098 CRISTOPHER COLAN 01-MAR-08 ASST 90000 3

888-33-1111 987-65-4321 JAMES BLOKE 15-APR-12 ASST 85000 3

Example 9.52

Path Exception Query using the
Recursive CTE Notation (Oracle)
Example 9.52 retrieves faculty earning more than a supervisor at any level, generating the same result as Example 9.48. The join

operations in each query block retrieve columns from the supervisor’s row.

WITH Faculty2CTE (FacNo, FacSupNo, FacLastName,
 FacSupLastName, FacSalary, FacSupSalary)
AS
(SELECT F1.FacNo, F1.FacSupervisor, F1.FacLastName,
 F1Sup.FacLastName, F1.FacSalary, F1Sup.FacSalary
 FROM Faculty2 F1 INNER JOIN Faculty2 F1Sup
 ON F1.FacSupervisor = F1Sup.FacNo

26008_ch09_p319-374.indd 360 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   361

UNION ALL
 SELECT F2.FacNo, F2CTE.FacSupNo, F2.FacLastName,
 F2CTE.FacSupLastName, F2.FacSalary, F2CTE.FacSupSalary
 FROM Faculty2 F2 INNER JOIN Faculty2CTE F2CTE
 ON F2.FacSupervisor = F2CTE.FacNo)
-- Statement using the CTE with path exception condition
SELECT *
 FROM Faculty2CTE
 WHERE FacSupNo <> FacNo AND FacSalary > FacSupSalary;

FacNo FacSupNo FacLastName FacSupLastName FacSalary FacSupSalary

876-54-3210 654-32-1098 COLAN FIBON 90000 70000

789-12-3210 987-65-4321 SANCHEZ MILLS 107000 95000

555-66-7777 543-21-0987 JONES MILLSON 125000 110000

555-66-7777 111-22-3333 JONES EMMANUEL 125000 120000

789-12-3210 765-43-2109 SANCHEZ MACON 107000 105000

Example 9.53

Path Exception Query using the
Recursive CTE notation (Oracle)
Example 9.52 retrieves faculty with a higher rank than a supervisor at any level, generating the same result as Example 9.49. The

join operations in each query block retrieve columns from the supervisor’s row.

WITH Faculty2CTE (FacNo, FacSupNo, FacLastName,
 FacSupLastName, FacRank, FacSupRank)
AS
(SELECT F1.FacNo, F1.FacSupervisor, F1.FacLastName,
 F1Sup.FacLastName, F1.FacRank, F1Sup.FacRank
 FROM Faculty2 F1 INNER JOIN Faculty2 F1Sup
 ON F1.FacSupervisor = F1Sup.FacNo
UNION ALL
 SELECT F2.FacNo, F2CTE.FacSupNo, F2.FacLastName,
 F2CTE.FacSupLastName, F2.FacRank, F2CTE.FacSupRank
 FROM Faculty2 F2 INNER JOIN Faculty2CTE F2CTE
 ON F2.FacSupervisor = F2CTE.FacNo)
-- Statement using the CTE with path exception condition
SELECT *
 FROM Faculty2CTE
 WHERE FacSupNo <> FacNo
 AND ((FacRank = 'PROF' AND FacSupRank = 'ASSC')
 OR (FacRank = 'PROF' AND FacSupRank = 'ASST')
 OR (FacRank = 'ASSC' AND FacSupRank = 'ASST'));

FacNo FacSupNo FacLastName FacSupLastName FacRank FacSupRank

789-12-3210 987-65-4321 SANCHEZ MILLS PROF ASSC

789-12-3210 765-43-2109 SANCHEZ MACON PROF ASSC

26008_ch09_p319-374.indd 361 3/2/18 11:51 PM

362   Part 5  Application Development with Relational Databases

Chapter 9 presented advanced query formulation skills with an emphasis on com-
plex matching problems and additional parts of the SQL SELECT statement. Complex
matching problems involve the outer join operator with its variations (one-sided and
full), the difference operator, and the division operator. In addition to more complex
matching problems, this chapter explained the subtle effects of null values to provide a
deeper understanding of query results and presented hierarchical queries that support
retrieval from hierarchically-structured tables.

Two new parts of the SELECT statement were covered for complex matching prob-
lems. The keywords, LEFT, RIGHT, and FULL as part of the join operator style, support
outer join operations. Nested queries are a query inside another query. To understand
the effect of a nested query, you should look for tables used in both an outer and an
inner query. If there are no common tables, the nested query executes one time (Type I
nested query). Otherwise, the nested query executes one time for each row of the outer
query (Type II nested query). Type I nested queries are typically used to formulate
joins as part of the SELECT, UPDATE, and DELETE statements. Type I nested queries
with the NOT IN operator and Type II nested queries with the NOT EXISTS operator
are useful for problems involving the difference operator. Type I nested queries in the
HAVING clause are useful for problems involving the division operator.

For hierarchical queries, two SQL extensions were covered. Oracle provides pro-
prietary notation with the CONNECT BY PRIOR clause, START WITH clause, SIB-
LINGS sort specification, LEVEL pseudo column, and several functions. The SQL
standard notation involves recursive common table expressions involving the WITH
statement containing two query blocks connected by a union operation and a SELECT
statement to generate the hierarchical query results. The proprietary Oracle notation
is more succinct but not portable to other DBMSs. Somewhat surprisingly, Oracle sup-
ports both its proprietary notation and the SQL standard notation.

Although advanced query skills are not as widely applied as fundamental skills
covered in Chapter 4, they are important when required. You can gain a competitive
advantage by mastering these advanced query formulation skills.

Chapters 4 and 9 covered important query formulation skills and a large part of
the SELECT statement of SQL. Despite this significant coverage, you still have much
left to learn. You need lots of practice to confidently formulate complex matching
problems and hierarchical queries. In addition, you have not learned to apply your
query formulation skills to building applications. Chapter 10 applies your skills to
building applications with views, while Chapter 11 applies your skills to stored pro-
cedures and triggers.

CLOSING THOUGHTS

REVIEW CONCEPTS

•	 Formulating one-sided outer joins with Access and Oracle

SELECT OfferNo, CourseNo, Offering.FacNo, Faculty.FacNo,
 FacFirstName, FacLastName
 FROM Offering LEFT JOIN Faculty
 ON Offering.FacNo = Faculty.FacNo
 WHERE CourseNo = 'IS480'

•	 Formulating full outer joins using the FULL JOIN keyword (SQL:2016 and
Oracle)

SELECT FacNo, FacFirstName, FacLastName, FacSalary,
 StdNo, StdFirstName, StdLastName, StdGPA
 FROM Faculty FULL JOIN Student
 ON Student.StdNo = Faculty.FacNo

26008_ch09_p319-374.indd 362 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   363

•	 Formulating full outer joins by combining two one-sided outer joins in Access
SELECT FacNo, FacFirstName, FacLastName, FacSalary,
 StdNo, StdFirstName, StdLastName, StdGPA
 FROM Faculty RIGHT JOIN Student
 ON Student.StdNo = Faculty.FacNo
	 UNION
SELECT FacNo, FacFirstName, FacLastName, FacSalary,
 StdNo, StdFirstName, StdLastName, StdGPA
 FROM Faculty LEFT JOIN Student
 ON Student.StdNo = Faculty.FacNo

•	 Mixing inner and outer joins (Access and Oracle)
SELECT OfferNo, Offering.CourseNo, OffTerm, CrsDesc,
 Faculty.FacNo, FacFirstName, FacLastName
 FROM (Faculty RIGHT JOIN Offering
 ON Offering.FacNo = Faculty.FacNo)
	 INNER JOIN Course
 ON Course.CourseNo = Offering.CourseNo
 WHERE OffYear = 2017

•	 Ambiguous query containing a non-preserved table (table with only matching
rows in the result) in a one-sided outer join involved in another join or outer join
operation

•	 Understanding that conditions in the WHERE or HAVING clause can use
SELECT statements in addition to scalar (individual) values

•	 Identifying Type I nested queries by the IN keyword and the lack of a reference
to a table used in an outer query

•	 Using a Type I nested query to formulate a join
SELECT DISTINCT StdNo, StdFirstName, StdLastName,
 StdMajor
 FROM Student
 WHERE Student.StdNo IN
 (SELECT StdNo FROM Enrollment
 WHERE EnrGrade >= 3.5)

•	 Using a Type I nested query inside a DELETE statement to test conditions on a
related table
DELETE FROM Offering
 WHERE Offering.FacNo IN
 (SELECT FacNo FROM Faculty
 WHERE FacFirstName = 'LEONARD'
 AND FacLastName = 'VINCE')

•	 Using a Type I nested query inside an UPDATE statement to test conditions on a
related table
UPDATE Offering SET OffLocation = 'BLM412'
 WHERE OffYear = 2017 AND FacNo IN
 (SELECT FacNo FROM Faculty
 WHERE FacFirstName = 'LEONARD'
 AND FacLastName = 'FIBON')

•	 Not using a Type I nested query for a join when a column from the nested query
is needed in the final query result

•	 Identifying problem statements involving the difference operator: the words not
or only relating two nouns in a sentence

•	 Limited SQL formulations for difference problems: Type I nested queries with
the NOT IN operator, one-sided outer join with an IS NULL condition, and
difference operation using the EXCEPT or MINUS keywords

26008_ch09_p319-374.indd 363 3/2/18 11:51 PM

364   Part 5  Application Development with Relational Databases

•	 Using a Type I nested query with the NOT IN operator for difference problems
involving a comparison of a single column
SELECT FacNo, FacFirstName, FacLastName, FacDept, FacSalary
 FROM Faculty
 WHERE FacNo NOT IN
 (SELECT StdNo FROM Student)

•	 Identifying Type II nested queries by a reference to a table used in an outer
query

•	 Using Type II nested queries with the NOT EXISTS operator for complex
difference problems
SELECT FacNo, FacFirstName, FacLastName, FacDept, FacSalary
 FROM Faculty
 WHERE NOT EXISTS
 (SELECT * FROM Student
 WHERE Student.StdNo = Faculty.FacNo)

•	 Using a nested query in the FROM clause to compute nested aggregates or
aggregates for more than one grouping
SELECT T.CourseNo, T.CrsDesc, COUNT(*) AS NumOfferings,
 AVG(T.EnrollCount) AS AvgEnroll
 FROM
 (SELECT Course.CourseNo, CrsDesc,
 Offering.OfferNo, COUNT(*) AS EnrollCount
 FROM Offering, Enrollment, Course
 WHERE Offering.OfferNo = Enrollment.OfferNo
 AND Course.CourseNo = Offering.CourseNo
 GROUP BY Course.CourseNo, CrsDesc, Offering.OfferNo
) T
 GROUP BY T.CourseNo, T.CrsDesc

•	 Identifying problem statements involving the division operator: the word every
or all connecting different parts of a sentence

•	 Using the count method to formulate division problems
SELECT StdNo
 FROM StdClub
 GROUP BY StdNo
 HAVING COUNT(*) = (SELECT COUNT(*) FROM Club)

•	 Evaluating a simple condition containing a null value in a column
expression

•	 Using three-valued logic and truth tables to evaluate compound conditions
with null values

•	 Understanding the result of aggregate calculations with null values
•	 Understanding the result of grouping on a column with null values
•	 Recognizing the need to formulate hierarchical queries for tables with

hierarchical data
•	 Using the CONNECT BY PRIOR and START WITH clauses to formulate basic

hierarchical queries
SELECT FacNo, FacSupervisor, FacFirstName, FacLastName,
 FacHireDate, FacSalary, FacRank, LEVEL
 FROM Faculty2
 START WITH FacSupervisor IS NULL
 CONNECT BY PRIOR FacNo = FacSupervisor
 ORDER BY LEVEL;

26008_ch09_p319-374.indd 364 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   365

•	 Applying the proprietary Oracle syntax elements including the LEVEL pseudo
column, CONNECT_BY_ROOT operator, SYS_CONNECT_BY_PATH function,
CONNECT_BY_ISLEAF pseudo column, and SIBLINGS keyword to formulate
more complex hierarchical queries

•	 Formulating path exception queries listing violations of monotonicity in path
relationships such as subordinates earning more than their direct or indirect
supervisors. Path exception queries use the closure of the hierarchy.

•	 Recognizing recursive common table expressions, the SQL standard notation for
formulating hierarchical queries on enterprise DBMSs

QUESTIONS

  1.	Explain a situation when a one-sided outer join is useful.
  2.	Explain a situation when a full outer join is useful.
  3.	How do you interpret the meaning of the LEFT and RIGHT JOIN keywords in

the FROM clause?
  4.	What is the interpretation of the FULL JOIN keywords in the FROM clause?
  5.	How do you perform a full outer join in SQL implementations (such as

Microsoft Access) that do not support the FULL JOIN keywords?
  6.	What is a nested query?
  7.	What is the distinguishing feature about the appearance of Type I nested

queries?
  8.	What is the distinguishing feature about the appearance of Type II nested

queries?
  9.	How many times is a Type I nested query executed as part of an outer query?

  10.	How is a Type I nested query like a procedure in a computer program?
  11.	How many times is a Type II nested query executed as part of an outer query?
  12.	How is a Type II nested query like a nested loop in a computer program?
  13.	What is the meaning of the IN comparison operator?
  14.	What is the meaning of the EXISTS comparison operator?
  15.	What is the meaning of the NOT EXISTS comparison operator?
  16.	When can you not use a Type I nested query to perform a join?
  17.	Why is a Type I nested query a good join method when you need a join in a

DELETE or UPDATE statement?
  18.	Why does SQL:2016 permit nested queries in the FROM clause?
  19.	Identify two situations in which nested queries in the FROM clause are

necessary.
  20.	How do you detect that a problem involves a division operation?
  21.	Explain the “count” method for formulating division problems.
  22.	Why is it sometimes necessary to use the DISTINCT keyword inside the COUNT

function for division problems?
  23.	What is the result of a simple condition when a column expression in the

condition evaluates to null?
  24.	What is a truth table?
  25.	How many values do truth tables have in the SQL:2016 standard?
  26.	How do you use truth tables to evaluate compound conditions?
  27.	How do null values affect aggregate calculations?

26008_ch09_p319-374.indd 365 3/2/18 11:51 PM

366   Part 5  Application Development with Relational Databases

  28.	Explain why the following equation may not be true if Column1 or Column2
contains null values: SUM(Column1) – SUM(Column2) = SUM(Column1 –
Column2)

  29.	How are null values handled in a grouping column?
  30.	In Access, how do you compensate for the lack of the DISTINCT keyword inside

the COUNT function?
  31.	When can you use a Type I nested query with the NOT IN operator to formulate

a difference operation in SQL?
  32.	When can you use a one-sided outer join with an IS NULL condition to

formulate a difference operation in SQL?
  33.	When can you use a MINUS operation in SQL to formulate a difference

operation in SQL?
  34.	What is the most general way to formulate difference operations in SQL

statements?
  35.	Is the one-sided outer join operator associative?
  36.	What makes a query ambiguous?
  37.	What is the difference between Microsoft Access and Oracle in handling

ambiguous queries?
  38.	What is a hierarchical query?
  39.	What is the difference between a self-join and a hierarchical query?
  40.	What is an important advantage for query language support for hierarchical

queries?
  41.	What is a path exception query?
  42.	Explain the usage of the CONNECT BY PRIOR and START WITH clauses.
  43.	Explain the usage of the CONNECT_BY_ROOT operator and the SYS_

CONNECT_BY_PATH function.
  44.	Explain the usage of the LEVEL pseudo column and the SIBLINGS keyword.
  45.	What is a recursive common table expression?
  46.	Briefly compare the proprietary Oracle notation for hierarchical queries to

recursive common table expressions.
  47.	Explain the difference between the PRIOR operator and the CONNECT_BY_

ROOT operator.
  48.	What is the limitation of using a one-sided outer is an IS NULL condition for a

difference problem?
  49.	What is the limitation of using a Type I nested query with the NOT IN operator

for a difference problem?
  50.	What is the limitation of using a Type I nested query with the NOT IN operator

for a difference problem?

PROBLEMS

The problems use the tables of the Order Entry database introduced in the Problems
section of Chapter 4. When formulating the problems, remember that the EmpNo for-
eign key in the OrderTbl table allows null values. An order does not have an associated
employee if taken over the Internet.

  1.	Using a Type I nested query, list the customer number, name (first and last), and
city of each customer who has a balance greater than $150 and placed an order in
February 2017.

26008_ch09_p319-374.indd 366 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   367

  2.	Using a Type II nested query, list the customer number, name (first and last),
and city of each customer who has a balance greater than $150 and placed an
order in February 2017.

  3.	Using two Type I nested queries, list the product number, the name, and the
price of products with a price greater than $150 that were ordered on January 23,
2017.

  4.	Using two Type I nested queries and another join style, list the product number,
name, and price of products with a price greater than $150 that were ordered in
January 2017 by customers with balances greater than $400.

  5.	List the order number, order date, employee number, and employee name (first
and last) of orders placed on January 23, 2017. List the order even if there is not
an associated employee.

  6.	List the order number, order date, employee number, employee name (first
and last), customer number, and customer name (first and last) of orders
placed on January 23, 2017. List the order even if there is not an associated
employee.

  7.	List all the people in the database. The resulting table should have all columns
of the Customer and Employee tables. Match the Customer and Employee tables on
first and last names. If a customer does not match any employees, the columns
pertaining to the Employee table will be blank. Similarly for an employee who
does not match any customers, the columns pertaining to the Customer table will
be blank.

  8.	For each Ink Jet product ordered in January 2017, list the order number, order
date, customer number, customer name (first and last), employee number (if
present), employee name (first and last), quantity ordered, product number, and
product name. Include products containing Ink Jet in the product name. Include
both Internet (no employee) and phone orders (taken by an employee).

  9.	Using a Type II nested query, list the customer number and name of Colorado
customers who have not placed orders in February 2017.

  10.	Repeat problem 9 using a Type I nested query with a NOT IN condition instead
of a nested query. If the problem cannot be formulated in this manner, provide
an explanation indicating the reason.

  11.	Repeat problem 9 using the MINUS keyword. Note that Access does not support
the MINUS keyword. If the problem cannot be formulated in this manner,
provide an explanation indicating the reason.

  12.	Repeat problem 9 using a one-sided outer join and an IS NULL condition. If the
problem cannot be formulated in this manner, provide an explanation indicating
the reason.

  13.	Using a Type II nested query, list the employee number, first name, and last
name of employees in the (720) area code who have not taken orders. An
employee is in the (720) area code if the employee phone number contains the
string (720) in the beginning of the column value.

  14.	Repeat problem 13 using a Type I nested query with a NOT IN condition instead
of a nested query. If the problem cannot be formulated in this manner, provide
an explanation indicating the reason. (Hint: you need to think carefully about
the effect of null values in the OrderTbl.EmpNo column.)

  15.	Repeat problem 9 using a one-sided outer join and an IS NULL condition. If the
problem cannot be formulated in this manner, provide an explanation indicating
the reason.

  16.	Repeat problem 9 using the MINUS keyword. Note that Access does not support
the MINUS keyword. If the problem cannot be formulated in this manner,
provide an explanation indicating the reason.

26008_ch09_p319-374.indd 367 3/2/18 11:51 PM

368   Part 5  Application Development with Relational Databases

  17.	List the order number and order date of orders containing only one product with
the words Ink Jet in the product description.

  18.	List the customer number and name (first and last) of customers who have
ordered products only manufactured by Connex. Include only customers who
have ordered at least one product manufactured by Connex. Remove duplicate
rows from the result.

  19.	List the order number and order date of orders containing every product with
the words Ink Jet in the product description.

  20.	List the product number and name of products contained on every order placed
on January 7, 2017 through January 9, 2017.

  21.	List the customer number and name (first and last) of customers who have
ordered every product manufactured by ColorMeg, Inc. in January 2017.

  22.	Using a Type I nested query, delete orders placed by customer Betty Wise in
January 2017. The CASCADE DELETE action will delete related rows in the
OrdLine table.

  23.	Using a Type I nested query, delete orders placed by Colorado customers that
were taken by Landi Santos in January 2017. The CASCADE DELETE action will
delete related rows in the OrdLine table.

  24.	List the order number and order date of orders in which any part of the
shipping address (street, city, state, and zip) differs from the customer’s
address.

  25.	List the employee number and employee name (first and last) of employees who
have taken orders in January 2017 from every Seattle customer.

  26.	For Colorado customers, compute the average amount of their orders. The
average amount of a customer’s orders is the sum of the amount (quantity
ordered times the product price) on each order divided by the number of orders.
The result should include the customer number, customer last name, and
average order amount.

  27.	For Colorado customers, compute the average amount of their orders and the
number of orders placed. The result should include the customer number,
customer last name, average order amount, and number of orders placed. In
Access, this problem is especially difficult to formulate.

  28.	For Colorado customers, compute the number of unique products ordered.
If a product is purchased on multiple orders, it should be counted only one
time. The result should include the customer number, customer last name, and
number of unique products ordered.

  29.	For each employee with a commission less than 0.04, compute the number of
orders taken and the average number of products per order. The result should
include the employee number, employee last name, number of orders taken, and
the average number of products per order. In Access, this problem is especially
difficult to formulate as a single SELECT statement.

  30.	For each Connex product, compute the number of unique customers who
ordered the product in January 2017. The result should include the product
number, product name, and number of unique customers.

  31.	Please explain if the following SELECT statement is ambiguous. If it is
ambiguous, provide a variation of this statement with possibly different results.
The variation should be the identical SQL statement except for the order of
operations in the FROM clause.
SELECT OrderTbl.OrdNo, OrdDate, Employee.EmpNo,
 EmpFirstName, EmpLastName, Customer.CustNo,

26008_ch09_p319-374.indd 368 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   369

 CustFirstName, CustLastName, OrdLine.Qty,
 Product.ProdNo, ProdName
FROM (((OrderTbl LEFT JOIN Employee
 ON OrderTbl.EmpNo = Employee.EmpNo)
 INNER JOIN Customer
 ON Customer.CustNo = OrderTbl.CustNo)
 INNER JOIN OrdLine
 ON OrderTbl.OrdNo = OrdLine.OrdNo)
 INNER JOIN Product
 ON OrdLine.ProdNo = Product.ProdNo

  32.	Please explain if the following SELECT statement is ambiguous. If it is
ambiguous, provide a variation of this statement with possibly different results.
The variation should be the identical SQL statement except for the order of
operations in the FROM clause.
SELECT OrderTbl.OrdNo, OrdDate, Employee.EmpNo,
 EmpFirstName, EmpLastName, Customer.CustNo,
 CustFirstName, CustLastName, OrdLine.Qty,
 Product.ProdNo, ProdName
FROM (((OrderTbl RIGHT JOIN Employee
 ON OrderTbl.EmpNo = Employee.EmpNo)
 INNER JOIN Customer
 ON Customer.CustNo = OrderTbl.CustNo)
 INNER JOIN OrdLine
 ON OrderTbl.OrdNo = OrdLine.OrdNo)
 INNER JOIN Product
 ON OrdLine.ProdNo = Product.ProdNo

  33.	Add 1 to the order quantity of each product ordered by customer number
C9943201 on January 23, 2017. In the UPDATE statement, you should not use an
order number constant. You need to reference the related tables in the UPDATE
statement. Write the UPDATE statement in both Access and Oracle using a Type
I nested query.

  34.	Revise problem 33 to add 1 to the order quantity of each product ordered by
Harry Sanders on January 23, 2017. In the UPDATE statement, you should not
use an order number or customer number constant. You need to reference the
related tables in the UPDATE statement. Write the UPDATE statement in both
Access and Oracle using a Type I nested query.

  35.	Revise problem 33 to add 1 to the order quantity of each product with product
name containing the string “Color Inkjet” ordered by Harry Sanders on January
23, 2017. In the UPDATE statement, you should not use an order number,
customer number, or product number constant. You need to reference the
related tables in the UPDATE statement. Write the UPDATE statement in both
Access and Oracle using a Type I nested query.

Null Value Problems
The following problems are based on the Product and Employee tables of the Order
Entry database. The tables are repeated below for your convenience. The ProdNext-
ShipDate column contains the next expected shipment date for the product. If the value
is null, a new shipment has not been arranged. A shipment may not be scheduled for a
variety of reasons, such as the large quantity on hand or unavailability of the product
from the manufacturer. In the Employee table, the commission rate can be null indicat-
ing a commission rate has not been assigned. A null value for SupEmpNo indicates that
the employee has no supervisor.

26008_ch09_p319-374.indd 369 3/2/18 11:51 PM

370   Part 5  Application Development with Relational Databases

  1.	 Identify the result rows in the following SELECT statement. Both Access and
Oracle versions of the statement are shown.
Access:
SELECT *
 FROM Product
 WHERE ProdNextShipDate = #1/22/2017#

Oracle:
SELECT *
 FROM Product
 WHERE ProdNextShipDate = '22-Jan-2017';

  2.	 Identify the result rows in the following SELECT statement:
Access:
SELECT *
 FROM Product
 WHERE ProdNextShipDate = #1/22/2017#
 AND ProdPrice < 100

Oracle:
SELECT *
 FROM Product
 WHERE ProdNextShipDate = '22-Jan-2017'
 AND ProdPrice < 100;

Product

ProdNo ProdName ProdMfg ProdQOH ProdPrice ProdNextShipDate

P0036566 17 inch Color Monitor ColorMeg, Inc.   12 $169.00 2/20/2017

P0036577 19 inch Color Monitor ColorMeg, Inc.   10 $319.00 2/20/2017

P1114590 R3000 Color Laser Printer Connex   5 $699.00 1/22/2017

P1412138 10 Foot Printer Cable Ethlite 100 $12.00

P1445671 8-Outlet Surge Protector Intersafe 33 $14.99

P1556678 CVP Ink Jet Color Printer Connex   8 $99.00 1/22/2017

P3455443 Color Ink Jet Cartridge Connex   24 $38.00 1/22/2017

P4200344 36-Bit Color Scanner UV Components   16 $199.99 1/29/2017

P6677900 Black Ink Jet Cartridge Connex   44 $25.69

P9995676 Battery Back-up System Cybercx   12 $89.00 2/1/2017

Employee

EmpNo EmpFirstName EmpLastName EmpPhone EmpEMail SupEmpNo EmpCommRate

E1329594 Landi Santos (303) 789-1234 LSantos@bigco.com E8843211 0.02

E8544399 Joe Jenkins (303) 221-9875 JJenkins@bigco.com E8843211 0.02

E8843211 Amy Tang (303) 556-4321 ATang@bigco.com E9884325 0.04

E9345771 Colin White (303) 221-4453 CWhite@bigco.com E9884325 0.04

E9884325 Thomas Johnson (303) 556-9987 TJohnson@bigco.com 0.05

E9954302 Mary Hill (303) 556-9871 MHill@bigco.com E8843211 0.02

E9973110 Theresa Beck (720) 320-2234 TBeck@bigco.com E9884325

26008_ch09_p319-374.indd 370 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   371

  3.	 Identify the result rows in the following SELECT statement:
Access:
SELECT *
 FROM Product
 WHERE ProdNextShipDate = #1/22/2017#
 OR ProdPrice < 100

Oracle:
SELECT *
 FROM Product
 WHERE ProdNextShipDate = '22-Jan-2017'
 OR ProdPrice < 100;

  4.	Determine the result of the following SELECT statement:
SELECT COUNT(*) AS NumRows,
 COUNT(ProdNextShipDate) AS NumShipDates
 FROM Product

  5.	Determine the result of the following SELECT statement:
SELECT ProdNextShipDate, COUNT(*) AS NumRows
 FROM Product
 GROUP BY ProdNextShipDate

  6.	Determine the result of the following SELECT statement:
SELECT ProdMfg, ProdNextShipDate, COUNT(*) AS NumRows
 FROM Product
 GROUP BY ProdMfg, ProdNextShipDate

  7.	Determine the result of the following SELECT statement:
SELECT ProdNextShipDate, ProdMfg, COUNT(*) AS NumRows
 FROM Product
 GROUP BY ProdNextShipDate, ProdMfg

  8.	 Identify the result rows in the following SELECT statement:
SELECT EmpFirstName, EmpLastName
 FROM Employee
 WHERE EmpCommRate > 0.02

  9.	Determine the result of the following SELECT statement:
SELECT SupEmpNo, AvG(EmpCommRate) AS AvgCommRate
 FROM Employee
 GROUP BY SupEmpNo

  10.	Compare the result of the following SELECT statement to the result of problem 9.
What result row in problem 9 does not appear in problem 10’s result? Explain
why the row does not appear in problem 10’s result. The SELECT statement for
problem 10 computes the average commission rate of subordinate employees. The
result includes the employee number, first name, and last name of the supervising
employee as well as the average commission amount of the subordinate employees.
SELECT Emp.SupEmpNo, Sup.EmpFirstName, Sup.EmpLastName,
 AVG(Emp.EmpCommRate) AS AvgCommRate
 FROM Employee Emp, Employee Sup
 WHERE Emp.SupEmpNo = Sup.EmpNo
 GROUP BY Emp.SupEmpNo, Sup.EmpFirstName, Sup.EmpLastName

  11.	Using your knowledge of null value evaluation, explain why these two SQL
statements generate different results for the Order Entry Database. You should
remember that null values are allowed for OrderTbl.EmpNo.
SELECT EmpNo, EmpLastName, EmpFirstName
 FROM Employee

26008_ch09_p319-374.indd 371 3/2/18 11:51 PM

372   Part 5  Application Development with Relational Databases

WHERE EmpNo NOT IN
(SELECT EmpNo FROM OrderTbl WHERE EmpNo IS NOT NULL)

SELECT EmpNo, EmpLastName, EmpFirstName
FROM Employee
WHERE EmpNo NOT IN
(SELECT EmpNo FROM OrderTbl)

  12.	Using problem 11 as an example, explain the impact of using a Type I nested
query for a difference problem. (Hint: this explanation involves null values.)

Hierarchical Query Problems
The following problems use the Employee2 table, extended from the Employee table of
the Order Entry database. Some of the columns have been dropped and others added
for these problems. Here are comments about the extensions to the Employee table.

•	 As in the Employee table, EmpNo is the primary key.
•	 As in the Employee table, the SupEmpNo column is a foreign key referencing the

EmpNo column.
•	 The EmpSalary column should be smaller for subordinates than supervisors, both

direct and indirect.
•	 The EmpGrade column should be larger for subordinates than supervisors, both

direct and indirect.
•	 The EmpCommRate should be larger for subordinates than supervisors, both

direct and indirect.

  1.	Draw organizational charts, similar to Figures 9.2 and 9.3, to depict the
hierarchical organization among rows in the Employee2 table.

  2.	Using the Oracle proprietary notation, write a SELECT statement to retrieve the
closure (combinations of employee and supervisor, direct or indirect) starting
with the root employees having null values for SupEmpNo. The result should
contain EmpNo, EmpLastName, EmpSalary, EmpGrade, SupEmpNo, EmpCommRate,
root employee number, and the LEVEL pseudo column. Order the result
by EmpLastName and the LEVEL pseudo column. Note that you will need

Employee2

EmpNo EmpFirstName EmpLastName EmpSalary EmpGrade SupEmpNo EmpCommRate

E1329594 Landi Santos 36000 2 E8843211 0.050

E8544399 Joe Jenkins 30000 4 E8843211 0.040

E8843211 Amy Tang 35000 3 E9884325 0.030

E9345771 Colin White 40000 2 E9884325 0.040

E9884325 Thomas Johnson 60000 2 0.035

E9954302 Mary Hill 37000 3 E8843211 0.050

E9973110 Theresa Beck 42000 1 E9884325 0.033

E1234567 Claire Adams 50000 1 0.025

E7654321 Yanjuan Pong 40000 3 E1234567 0.030

E4321098 Miguel Sanchez 52000 2 E1234567 0.033

E6543210 Bradley Smith 35000 3 E7654321 0.045

E5432109 Susan Henry 41000 2 E7654321 0.050

E9876543 Michael Roberts 55000 2 E4321098 0.040

E8765432 Melissa Cole 42000 3 E4321098 0.033

26008_ch09_p319-374.indd 372 3/2/18 11:51 PM

Chapter 9  Advanced Query Formulation with SQL   373

to rename the LEVEL pseudo column in the output list to reference it in the
ORDER BY clause.

  3.	 Using the Oracle proprietary notation, write a SELECT statement to retrieve the
closure (combinations of employee and supervisor, direct or indirect) starting with
the root employees having null values for SupEmpNo. The result should contain
EmpNo, EmpLastName, root employee number, and path using last name as the
row identifier and / as the separator. Sort the siblings by employee last name.

  4.	Using the Oracle proprietary notation, write a SELECT statement to retrieve
the closure (combinations of employee and supervisor, direct or indirect)
starting with the root employees having null values for SupEmpNo. The result
should contain EmpLastName arranged to depict the hierarchical structure using
the LPAD function (See Example 9.43.), EmpNo, EmpSalary, EmpGrade, and
EmpCommRate. Sort the siblings by employee last name.

  5.	Using the Oracle proprietary notation, summarize each supervisor (non-leaf
row) on the number of subordinates (direct and indirect) and sum of the salary
of the subordinates. The result should include the employee last name, sum of
the salary, and number (count) of subordinates (both direct and indirect). Only
include non-leaf nodes in the final result.

  6.	Using the Oracle proprietary notation, list details about employees with a
larger salary than a supervisor, direct or indirect. The result should include the
employee number, last name, and salary of both the employee and supervisor
as well as the path from the supervisor to the employee using the last name to
identify rows on the path and / as the separator character.

  7.	Using the Oracle proprietary notation, list details about employees with a
smaller grade than a supervisor, direct or indirect. The result should include the
employee number, last name, and grade of both the employee and supervisor
as well as the path from the supervisor to the employee using the last name to
identify rows on the path and / as the separator character.

  8.	Using the Oracle proprietary notation, list details about employees with a
smaller commission rate than a supervisor, direct or indirect. The result should
include the employee number, last name, and commission rates of the employee
and supervisor as well as the path from the supervisor to the employee using
the last name to identify rows on the path and / as the separator character.

  9.	Using the Oracle proprietary notation, summarize the commission amounts
earned on January 2017 sales for each employee supervised by Johnson either
directly or indirectly. The earned commission is calculated by the employee’s
commission rate times the amount of sales on orders taken by the employee.
The amount of sales on an order is calculated by summing the quantity ordered
times price for each product on an order. You should combine the Employee2
and OrderTbl tables on employee number to link employees with orders. The
result should include the employee number, employee last name, last name
of the employee’s direct supervisor, hierarchical level, and sum of the earned
commission.

  10.	Using the recursive CTE notation, list details about employees with a larger
salary than a supervisor, direct or indirect. The result should include the
employee number, last name, and salary of both the employee and supervisor.

  11.	Using the recursive CTE notation list details about employees with a smaller
grade than a supervisor, direct or indirect. The result should include the
employee number, last name, and grade of both the employee and supervisor.

  12.	Using the recursive CTE notation, list details about employees with a smaller
commission than a supervisor, direct or indirect. The result should include
the employee number, last name, and commission of both the employee and
supervisor.

26008_ch09_p319-374.indd 373 3/2/18 11:51 PM

374   Part 5  Application Development with Relational Databases

REFERENCES FOR FURTHER STUDY

Most textbooks for the business student do not cover query formulation and SQL in
as much detail as here. For resources about the SQL standard, you should consult
the SQL standards page (www.jcc.com/resources/sql-standards) in JCC Consult-
ing website. For new features in the latest SQL standard, you should consult modern
SQL (modern-sql.com). For product-specific SQL advice, the sqlblog.com site features
forums about a number of DBMSs including Microsoft SQL Server and open source
products. The Database Journal (www.databasejournal.com) provides articles, tutori-
als, and resources about many DBMS products. Oracle documentation can be found at
the Oracle Technet site (www.oracle.com/technetwork). The Mimer Developer web-
site has validators (developer.mimer.se/validator) for the SQL standards as aids to
writing portable SQL statements.

26008_ch09_p319-374.indd 374 3/2/18 11:51 PM

375  

OVERVIEW
Chapters 3, 4, and 9 provided the foundation for under-
standing relational databases and formulating queries in
SQL. Most importantly, you gained practice with a large
number of examples, acquired problem-solving skills
for query formulation, and learned different parts of the
SELECT statement. This chapter extends your query for-
mulation skills to building applications with views.

This chapter emphasizes views as the foundation for
building database applications. Before discussing the
link between views and database applications, essential
background is provided. You will learn the motivation
for views, the CREATE VIEW statement, and usage of
views in the SELECT statement and data manipulation

(INSERT, UPDATE, and DELETE) statements. Most view
examples in Sections 10.2 and 10.3 are supported by
both Microsoft Access and Oracle. After this back-
ground, you will learn to use views for hierarchical forms
and reports. You will learn the steps for analyzing data
requirements culminating in views to support the data
requirements.

The presentation in Sections 10.1 and 10.2 covers
core features in SQL:2016 that were part of SQL-92.
Some rules about updatable views in Sections 10.3 and
10.4 are specific to Microsoft Access due to the varying
support among DBMSs and the strong support available
in Access. Appendix 10.B provides an alternative per-
spective with updatability rules in Oracle.

Learning Objectives

This chapter describes underlying concepts for views and demonstrates
usage of views in forms and reports. After this chapter, the student
should have acquired the following knowledge and skills:

•	 Write CREATE VIEW statements

•	 Write queries that use views

•	 Explain basic ideas about the modification and materialization
approaches for processing queries using views

•	 Apply rules to determine if single-table and multiple-table views are
updatable

•	 Determine data requirements for hierarchical forms

•	 Write queries that provide data for hierarchical forms

•	 Write queries that provide data for hierarchical reports

Application
Development
with Views

10
chapter

26008_ch10_p375-414.indd 375 3/2/18 10:13 PM

376   Part 5  Application Development with Relational Databases

A view is a virtual or derived table. Virtual means that a view behaves like a base table
but no physical table exists. A view can be used in a query like a base table. However,
the rows of a view do not exist until they are derived from base tables. This section
describes the importance of views and demonstrates view definition in SQL.

10.1.1  Motivation
Views provide the external level of the Three Schema Architecture described in
Chapter 1. The Three Schema Architecture promotes data independence to reduce the
impact of database definition changes on applications that use a database. Because
database definition changes are common, reducing the impact of database definition
changes is important to control the cost of software maintenance. Views provide com-
partmentalization of database requirements so that database definition changes do not
affect applications using a view. If an application accesses a database through a view,
most changes to the conceptual schema will not affect the application. For example, if
you change a table name used in a view changes, you must change the view definition,
but applications using the view do not change.

Simplification of tasks is another important benefit of views. Many queries can be
easier to formulate if a view is used rather than base tables. Without a view, a SELECT
statement may involve two, three, or more tables and require grouping if summary
data are needed. With a view, the SELECT statement can just reference a view without
joins or grouping. Training users to write single table queries is much easier than train-
ing them to write multiple table queries with grouping.

Views provide simplification, similar to macros in programming languages and
spreadsheets. A macro is a named collection of commands. Using a macro removes the
burden of specifying the commands. In a similar manner, using a view removes the
burden of writing the underlying query.

Views also provide a flexible level of security. Restricting access by views is more
flexible than restrictions for columns and tables because a view is any derived part of
a database. Data not in the view are hidden from a user. For example, you can restrict
a user to selected departments, products, or geographic regions in a view. Security
using tables and columns cannot specify conditions and computations, which can be
done in a view. A view even can include aggregate calculations to restrict users to row
summaries rather than individual rows.

The only drawback to views can be performance. For most views, using the views
instead of base tables directly will not involve a noticeable performance penalty. For
some complex views, using the views can involve a significant performance penalty as
opposed to using the base tables directly. The performance penalty can vary by DBMS.
Before using complex views, you are encouraged to compare performance to usage of
the base tables directly.

10.1.2  View Definition
Defining a view is only slightly more difficult than writing a query. SQL provides
the CREATE VIEW statement in which a view name and a SELECT statement must
be specified, as shown in Examples 10.1 and 10.2. In Oracle, the CREATE VIEW
statement executes directly. In Microsoft Access, the CREATE VIEW statement can
be used in SQL-92 query mode1. In SQL-89 query mode, the SELECT statement part
of the examples can be saved as a stored query to achieve the same effect as a view.
You create a stored query simply by writing it and then supplying a name when
saving it.

1 SQL-89 is the default query mode in Microsoft Access. The query mode can be changed using the Options
window.

View
a table derived from base
or physical tables using a
query.

10.1  BACKGROUND

26008_ch10_p375-414.indd 376 3/2/18 10:13 PM

Chapter 10  Application Development with Views   377

Example 10.1

Define a Single Table View

Define a view named IS_View consisting of students majoring in IS.

CREATE VIEW IS_View AS
 SELECT * FROM Student
 WHERE StdMajor = 'IS'

StdNo StdFirstName StdLastName StdCity StdState StdZip StdMajor StdClass StdGPA

123-45-6789 HOMER WELLS SEATTLE WA 98121-1111 IS FR 3.00

345-67-8901 WALLY KENDALL SEATTLE WA 98123-1141 IS SR 2.80

567-89-0123 MARIAH DODGE SEATTLE WA 98114-0021 IS JR 3.60

876-54-3210 CRISTOPHER COLAN SEATTLE WA 98114-1332 IS SR 4.00

890-12-3456 LUKE BRAZZI SEATTLE WA 98116-0021 IS SR 2.20

901-23-4567 WILLIAM PILGRIM BOTHELL WA 98113-1885 IS SO 3.80

Example 10.2

Define a Multiple Table View

Define a view named MS_View consisting of offerings taught by faculty in the Management Science department.

CREATE VIEW MS_View AS
 SELECT OfferNo, Offering.CourseNo, CrsUnits, OffTerm,
 OffYear, Offering.FacNo, FacFirstName,
 FacLastName, OffTime, OffDays
 FROM Faculty, Course, Offering
 WHERE FacDept = 'MS'
 AND Faculty.FacNo = Offering.FacNo
 AND Offering.CourseNo = Course.CourseNo

OfferNo CourseNo CrsUnits OffTerm OffYear FacNo FacFirstName FacLastName OffTime OffDays

1234 IS320 4 FALL 2016 098-76-5432 LEONARD VINCE 10:30 AM MW

3333 IS320 4 SPRING 2017 098-76-5432 LEONARD VINCE 8:30 AM MW

4321 IS320 4 FALL 2016 098-76-5432 LEONARD VINCE 3:30 PM TTH

4444 IS320 4 WINTER 2017 543-21-0987 VICTORIA EMMANUEL 3:30 PM TTH

8888 IS320 4 SUMMER 2017 654-32-1098 LEONARD FIBON 1:30 PM MW

9876 IS460 4 SPRING 2017 654-32-1098 LEONARD FIBON 1:30 PM TTH

5679 IS480 4 SPRING 2017 876-54-3210 CRISTOPHER COLAN 3:30 PM TTH

In the CREATE VIEW statement, a list of column names, enclosed in parentheses, can
follow the view name. A list of column names is required when you want to rename
one or more columns from the names used in the SELECT clause. The column list
is omitted in MS_View because there are no renamed columns. The column list is
required in Example 10.3a to rename the aggregate calculation (COUNT(*)) column. If
one column is renamed, the entire list of column names must be given. Alternatively,
renaming can be selectively done in the result list as shown in Example 10.3b.

26008_ch10_p375-414.indd 377 3/2/18 10:13 PM

378   Part 5  Application Development with Relational Databases

Example 10.3a

Define a View with Renamed Columns

Define a view named Enrollment_View consisting of offering data and the number of students enrolled.

CREATE VIEW Enrollment_View
(OfferNo, CourseNo, Term, Year, Instructor, NumStudents)
 AS
 SELECT Offering.OfferNo, CourseNo, OffTerm, OffYear,
 FacLastName, COUNT(*)
 FROM Offering, Faculty, Enrollment
 WHERE Offering.FacNo = Faculty.FacNo
 AND Offering.OfferNo = Enrollment.OfferNo
 GROUP BY Offering.OfferNo, CourseNo, OffTerm, OffYear,
 FacLastName

OfferNo CourseNo Term Year Instructor NumStudents

1234 IS320 FALL 2016 VINCE 6

4321 IS320 FALL 2016 VINCE 6

5555 FIN300 WINTER 2017 MACON 2

5678 IS480 WINTER 2017 MILLS 5

5679 IS480 SPRING 2017 COLAN 6

6666 FIN450 WINTER 2017 MILLS 2

7777 FIN480 SPRING 2017 MACON 3

9876 IS460 SPRING 2017 FIBON 7

Example 10.3b

Define a View with Renamed
Columns in the SELECT Clause
Define a view named Enrollment_View1 consisting of offering data and the number of students enrolled. The result is identical

to Example 10.3a.

CREATE VIEW Enrollment_View1 AS
 SELECT Offering.OfferNo, CourseNo, OffTerm, OffYear,
 FacLastName AS Instructor,
 COUNT(*) AS NumStudents
 FROM Offering, Faculty, Enrollment
 WHERE Offering.FacNo = Faculty.FacNo
 AND Offering.OfferNo = Enrollment.OfferNo
 GROUP BY Offering.OfferNo, CourseNo, OffTerm, OffYear,
 FacLastName

10.2  USING VIEWS FOR RETRIEVAL
This section shows examples of queries that use views and explains processing of que-
ries with views. After showing examples in Section 10.2.1, two methods to process
queries with views are described in Section 10.2.2.

26008_ch10_p375-414.indd 378 3/2/18 10:13 PM

Chapter 10  Application Development with Views   379

10.2.1  Using Views in SELECT Statements
Once a view is defined, it can be used in SELECT statements. You simply use the
view name in the FROM clause and the view columns in other parts of the statement.
You can add other conditions and select a subset of the columns as demonstrated in
Examples 10.4 and 10.5.

Both queries are much easier to write than the original queries. A novice user can prob-
ably write both queries with just a little training. In contrast, it may take many hours of
training for a novice user to write queries with multiple tables and grouping.

According to SQL:2016, a view can be used in any query. In practice, most DBMSs
have some limitations on view usage in queries. For example, some DBMSs do not
support the queries2 shown in Examples 10.6 and 10.7.

10.2.2  Processing Queries with View References
To process queries that reference a view, a DBMS can use either a materialization or
modification strategy. View materialization requires the storage of view rows. The

2 Microsoft Access 97 through 2016 and Oracle 8i through 12c all support Examples 10.6 and 10.7.

View Materialization
a method to process a query
on a view by executing the
query directly on the stored
view. The stored view can
be materialized on demand
(when the view query is
submitted) or periodically
rebuilt from the base tables.
For databases with a mixture
of retrieval and update
activity, materialization
usually is not an efficient way
to process a query on a view.

Example 10.4 (Oracle)

Query Using a Multiple Table View

List the spring 2017 courses in MS_View.

SELECT OfferNo, CourseNo, FacFirstName, FacLastName,
 OffTime, OffDays
 FROM MS_View
 WHERE OffTerm = 'SPRING' AND OffYear = 2017

OfferNo CourseNo FacFirstName FacLastName OffTime OffDays

3333 IS320 LEONARD VINCE 8:30 AM MW

9876 IS460 LEONARD FIBON 1:30 PM TTH

5679 IS480 CRISTOPHER COLAN 3:30 PM TTH

Example 10.5 (Oracle)

Query Using a Grouping View

List the spring 2017 offerings of IS courses in the Enrollment_View. In Access, you need to substitute the * for % as the wildcard

symbol.

SELECT OfferNo, CourseNo, Instructor, NumStudents
 FROM Enrollment_View
 WHERE Term = 'SPRING' AND Year = 2017
 AND CourseNo LIKE 'IS%'

OfferNo CourseNo Instructor NumStudents

5679 IS480 COLAN 6

9876 IS460 FIBON 7

26008_ch10_p375-414.indd 379 3/2/18 10:13 PM

380   Part 5  Application Development with Relational Databases

simplest way to store a view is to build the view from the base tables on demand
(when the view query is submitted). Processing a query with a view reference requires
that a DBMS execute two queries, as depicted in Figure 10.1. A user submits a query
using a view (Queryv). The query defining the view (Queryd) is executed and a tempo-
rary view table is created. Figure 10.1 depicts this action by the arrow into the view.
Then, the query using the view is executed using the temporary view table.

View materialization is usually not the preferred strategy because it requires a
DBMS to execute two queries. However, on certain queries such as Examples 10.6
and 10.7, materialization may be necessary. In addition, materialization is preferred
in data warehouses in which retrievals dominate. In a data warehouse environment,
views are periodically refreshed from base tables rather than materialized on demand.
Chapter 15 discusses materialized views used in data warehouses.

In an environment with a mix of update and retrieval operations, view
modification usually provides better performance than materialization because the

View Modification
a method to process a query
on a view involving the
execution of only one query.
A query using a view is
translated into a query using
base tables by replacing
references to the view with
its definition. For databases
with a mixture of retrieval
and update activity,
modification provides an
efficient way to process a
query on a view.

Example 10.6

Grouping Query Using a View
Derived from a Grouping Query
List the average number of students by instructor name using Enrollment_View.

SELECT Instructor, AVG(NumStudents) AS AvgStdCount
 FROM Enrollment_View
 GROUP BY Instructor

Instructor AvgStdCount

COLAN   6

FIBON   7

MACON 2.5

MILLS 3.5

VINCE   6

Example 10.7

Joining a Base Table with a View
Derived from a Grouping Query
List the offering number, instructor, number of students, and course units using the Enrollment_View view and the Course table.

SELECT OfferNo, Instructor, NumStudents, CrsUnits
 FROM Enrollment_View, Course
 WHERE Enrollment_View.CourseNo = Course.CourseNo
 AND NumStudents < 5

OfferNo Instructor NumStudents CrsUnits

5555 MACON 2 4

6666 MILLS 2 4

7777 MACON 3 4

26008_ch10_p375-414.indd 380 3/2/18 10:13 PM

Chapter 10  Application Development with Views   381

DBMS only executes one query. Figure 10.2 shows that a query using a view is modi-
fied or rewritten as a query using base tables only; then the modified query is executed
using the base tables. The modification process happens automatically without any
user knowledge or action. In most DBMSs, the modified query cannot be seen even if
you want to review it.

As a view modification example, consider the transformation shown from Exam-
ple 10.8 to Example 10.9. When you submit a query using a view, the reference to the
view is replaced with the definition of the view. The view name in the FROM clause is
replaced by base tables. In addition, the conditions in the WHERE clause are combined
using the Boolean AND operator with the conditions in the query defining the view.
The underlined parts in Example 10.9 indicate substitutions made in the modification
process.

View

SQL Engine ResultQueryd

Queryv: Query that references
a view

Queryv

Queryd: Query that defines a
view

DB

SQL Engine

FIGURE 10.1
Process Flow of View
Materialization

Modify SQL Engine
QueryV QueryB

Results

QueryV: query that references a view

QueryB: modification of QueryV such that references to the view are
replaced by references to base tables.

DB

FIGURE10.2
Process Flow of View
Modification

Example 10.8

Query Using MS_View

SELECT OfferNo, CourseNo, FacFirstName, FacLastName,
 OffTime, OffDays
 FROM MS_View
 WHERE OffTerm = 'SPRING' AND OffYear = 2017

OfferNo CourseNo FacFirstName FacLastName OffTime OffDays

3333 IS320 LEONARD VINCE 8:30 AM MW

9876 IS460 LEONARD FIBON 1:30 PM TTH

5679 IS480 CRISTOPHER COLAN 3:30 PM TTH

26008_ch10_p375-414.indd 381 3/2/18 10:13 PM

382   Part 5  Application Development with Relational Databases

Depending on its definition, a view can be read-only or updatable. A read-only view
can be used in SELECT statements as demonstrated in Section 10.2. All views are at least
read-only. A read-only view cannot be used in queries involving INSERT, UPDATE,
and DELETE statements. A view that can be used in modification statements as well
as SELECT statements is known as an updatable view. Updatable views support
data requirements for data entry forms, commonly used for database input by users.
Instead of tedious coding, data requirements for data entry forms can be specified in
a simplified manner using views. This section describes rules for defining both single-
table and multiple-table updatable views.

10.3.1  Single-Table Updatable Views
An updatable view allows you to insert, update, or delete rows in the underlying base
tables by performing the corresponding operation on the view. Whenever a modifica-
tion is made to a view row, a corresponding operation is performed on the base table.
Intuitively, this means that the rows of an updatable view correspond in a one-to-one
manner with rows from the underlying base tables. If a view contains the primary

Updatable View
a view that can be used in
SELECT statements as well
as UPDATE, INSERT, and
DELETE statements. Views
that can be used only with
SELECT statements are
known as read-only views.
Updatable views provide
a foundation for simplified
specification of data
requirements for data entry
forms.

Some DBMSs perform additional simplification of modified queries to remove
unnecessary joins. For example, the Course table is not needed because there are no
conditions and columns from the Course table in Example 10.9. In addition, the join
between the Offering and the Course tables is not necessary because every Offering row
is related to a Course row (null is not allowed). As a result the modified query can be
simplified by removing the Course table. Simplification will result in a faster execution
time, as the most important factor in execution time is the number of tables.

Example 10.9

Modification of Example 10.8

Example 10.8 is modified by replacing references to MS_View with base table references.

SELECT OfferNo, Course.CourseNo, FacFirstName,
 FacLastName, OffTime, OffDays
 FROM Faculty, Course, Offering
 WHERE FacDept = 'MS'
 AND Faculty.FacNo = Offering.FacNo
 AND Offering.CourseNo = Course.CourseNo
 AND OffTerm = 'SPRING' AND OffYear = 2017

Example 10.10

Further Simplification of Example 10.9

Simplify by removing the Course table because it is not needed in Example 10.9.

SELECT OfferNo, CourseNo, FacFirstName, FacLastName,
 OffTime, OffDays
 FROM Faculty, Offering
 WHERE FacDept = 'MS'
 AND Faculty.FacNo = Offering.FacNo
 AND OffTerm = 'SPRING' AND OffYear = 2017

10.3  UPDATING USING VIEWS

26008_ch10_p375-414.indd 382 3/2/18 10:13 PM

Chapter 10  Application Development with Views   383

key of the base table, then each view row matches a base table row. A single-table
view is updatable if it satisfies the following three rules that include the primary key
requirement.

Rules for Single-Table Updatable Views

•	 The view contains the primary key of the base table.
•	 The view contains all required columns (NOT NULL) of the base table except

required columns with default values.
•	 The view’s query does not have the GROUP BY or DISTINCT keywords.

Following these rules, Fac_View1 (Example 10.11) is updatable while Fac_View2
(Example 10.12) and Fac_View3 (Example 10.13) are read-only. Fac_View1 is updatable
assuming the missing Faculty columns are not required. Fac_View2 violates Rules 1
and 2 while Fac_View3 violates all three rules making both views read-only.

Example 10.11

Single-Table Updatable View

Create a row and column subset view with the primary key.

CREATE VIEW Fac_View1 AS
 SELECT FacNo, FacFirstName, FacLastName, FacRank,
 FacSalary, FacDept, FacCity, FacState, FacZipCode
 FROM Faculty
 WHERE FacDept = 'MS'

FacNo FacFirstName FacLastName FacRank FacSalary FacDept FacCity FacState FacZipCode

098-76-5432 LEONARD VINCE ASST 35000.00 MS SEATTLE WA 98111-9921

543-21-0987 VICTORIA EMMANUEL PROF 120000.00 MS BOTHELL WA 98011-2242

654-32-1098 LEONARD FIBON ASSC 70000.00 MS SEATTLE WA 98121-0094

876-54-3210 CRISTOPHER COLAN ASST 40000.00 MS SEATTLE WA 98114-1332

Example 10.12

Single Table Read-Only View

Create a row and column subset without the primary key.

CREATE VIEW Fac_View2 AS
 SELECT FacDept, FacRank, FacSalary
 FROM Faculty
 WHERE FacSalary > 50000

FacDept FacRank FacSalary

MS PROF 120000.00

MS ASSC 70000.00

FIN PROF 65000.00

FIN ASSC 75000.00

26008_ch10_p375-414.indd 383 3/2/18 10:13 PM

384   Part 5  Application Development with Relational Databases

Because Fac_View1 is updatable, it can be used in INSERT, UPDATE, and DELETE
statements to change the Faculty table. In Chapter 4, you used these statements to
change rows in base tables. Examples 10.14 through 10.16 demonstrate that these state-
ments can be applied to views to change rows of the underlying base tables. Note that
modifications to views are subject to the integrity rules of the underlying base tables.
For example, the insertion in Example 10.14 is rejected if another Faculty row has 999-
99-8888 as the faculty number. When deleting rows in a view or changing the primary
key column, the rules on referenced rows apply (Section 3.4). For example, the deletion
in Example 10.16 is rejected if the Faculty row with FacNo 098-76-5432 has related rows
in the Offering table and the delete action for the Faculty-Offering relationship is set to
RESTRICT.

Example 10.13

Single table read-only view

Create a grouping view with faculty department and average salary.

CREATE View Fac_View3 (FacDept, AvgSalary) AS
 SELECT FacDept, AVG(FacSalary)
 FROM Faculty
 WHERE FacRank = 'PROF'
 GROUP BY FacDept

FacDept AvgSalary

FIN 65000

MS 120000

Example 10.14

Insert Operation on Updatable View

Insert a new faculty row into the MS department.

INSERT INTO Fac_View1
 (FacNo, FacFirstName, FacLastName, FacRank, FacSalary,
 FacDept, FacCity, FacState, FacZipCode)
 VALUES ('999-99-8888', 'JOE', 'SMITH', 'PROF', 80000,
 'MS', 'SEATTLE', 'WA', '98011-011')

Example 10.15

Update Operation on Updatable View

Give assistant professors in Fac_View1 a 10 percent raise.

UPDATE Fac_View1
 SET FacSalary = FacSalary * 1.1
 WHERE FacRank = 'ASST'

26008_ch10_p375-414.indd 384 3/2/18 10:13 PM

Chapter 10  Application Development with Views   385

View Updates with Side Effects  Some modifications to updatable views can be
problematic, as demonstrated in Example 10.17 and Tables 10-1 and 10-2. The update
statement in Example 10.17 changes the department of the second row (Victoria
Emmanuel) in the view and the corresponding row in the base table. Upon regenerat-
ing the view, however, the changed row disappears (Table 10-2). The update has the
side effect of causing the row to disappear from the view. This kind of side effect can
occur whenever a column in the WHERE clause of a view definition is changed by an
UPDATE statement. Example 10.17 updates the FacDept column, the column used in
the WHERE clause of the definition of the Fac_View1 view.

Example 10.16

Delete Operation on Updatable View

Delete a specific faculty member from Fac_View1.

DELETE FROM Fac_View1
 WHERE FacNo = '999-99-8888'

Example 10.17

Update Operation on Updatable
View with a Side Effect
Change the department of highly paid faculty members to the finance department.

UPDATE Fac_View1
 SET FacDept = 'FIN'
 WHERE FacSalary > 100000

TABLE 10-1
Fac_View1 before
Update

FacNo FacFirstName FacLastName FacRank FacSalary FacDept FacCity FacState FacZipCode

098-76-5432 LEONARD VINCE ASST 35000.00 MS SEATTLE WA 98111-9921

543-21-0987 VICTORIA EMMANUEL PROF 120000.00 MS BOTHELL WA 98011-2242

654-32-1098 LEONARD FIBON ASSC 70000.00 MS SEATTLE WA 98121-0094

876-54-3210 CRISTOPHER COLAN ASST 40000.00 MS SEATTLE WA 98114-1332

TABLE 10-2
Fac_View1 after
Example 10.17 Update

FacNo FacFirstName FacLastName FacRank FacSalary FacDept FacCity FacState FacZipCode

098-76-5432 LEONARD VINCE ASST 35000.00 MS SEATTLE WA 98111-9921

654-32-1098 LEONARD FIBON ASSC 70000.00 MS SEATTLE WA 98121-0094

876-54-3210 CRISTOPHER COLAN ASST 40000.00 MS SEATTLE WA 98114-1332

Because this side effect can be confusing to a user, the WITH CHECK OPTION
clause can be used to prevent updates with side effects. If the WITH CHECK OPTION is
specified in the CREATE VIEW statement (Example 10.18), INSERT or UPDATE state-
ments that do not satisfy the WHERE clause are rejected. The update in Example 10.17
would be rejected if Fac_View1 contained a WITH CHECK OPTION clause because
changing FacDept to 'FIN' contradicts the WHERE condition with FacDept = 'MS'.

26008_ch10_p375-414.indd 385 3/2/18 10:13 PM

386   Part 5  Application Development with Relational Databases

10.3.2  Multiple-Table Updatable Views
It may be surprising but some multiple-table views are also updatable. A multiple-
table view may correspond in a one-to-one manner with rows from one or more tables
if the view contains the primary key of at least one table. Because multiple-table views
are more complex than single-table views, there is not wide agreement on updatability
rules for multiple-table views.

Some DBMSs provide no updatability support for multiple-table views. Other DBMSs
support updatability for a large number of multiple-table views. In this section, the updat-
ability rules in Microsoft Access are described as they support a wide range of multiple-
table views. To demonstrate the importance of updatable views, the rules for updatable
views in Access are linked to the presentation of hierarchical forms in Section 10.4.

To complement the presentation of the Access updatability rules, Appendix 10.B
describes rules for updatable join views in Oracle. The rules for updatable join views
in Oracle are similar to Microsoft Access although Oracle is more restrictive on allow-
able manipulation operations and conditions required for updatable tables.

Rules for 1-M Updatable Queries in Microsoft Access  In Microsoft Access,
multiple-table queries that support updates are known as 1-M updatable queries.
A 1-M updatable query involves two or more tables with one table playing the role
of the parent (or 1) table and another table playing the role of the child (or M) table.
For example, in a query involving the Course and the Offering tables, Course plays the
role of the parent table and Offering the child table. A 1-M updatable query can sup-
port manipulation operations on one table (typically the child table) or both tables.
To simplify the presentation, updatability rules for the child table are presented first.

Rules for Insert Operations on 1-M Updatable Queries for a Child Table

•	 The query contains the primary key of the child table.
•	 The query contains required foreign key column(s) of the child table.
•	 The query contains other required columns (besides foreign keys) without

default values of the child table.
•	 The query does not have a GROUP BY clause or the DISTINCT keyword.
•	 The join column of the parent table should be unique (either a primary key or a

unique constraint).
•	 The query uses the join operator style for all join operations in the FROM clause.

Example 10.18 (Oracle)

Single-Table Updatable View Using
the WITH CHECK OPTION clause
Create a row and column subset view with the primary key. The WITH CHECK OPTION clause is not supported in Access.

CREATE VIEW Fac_View1_Revised AS
 SELECT FacNo, FacFirstName, FacLastName, FacRank,
 FacSalary, FacDept, FacCity, FacState, FacZipCode
 FROM Faculty
 WHERE FacDept = 'MS'
 WITH CHECK OPTION

WITH CHECK OPTION: a clause in the CREATE VIEW statement that prevents side
effects when updating a view. The WITH CHECK OPTION clause prevents UPDATE
and INSERT statements that do not satisfy a view’s WHERE clause.

26008_ch10_p375-414.indd 386 3/2/18 10:13 PM

Chapter 10  Application Development with Views   387

the Offering table because the result does not contain a required foreign key (Offering.
CourseNo). In both examples, you should note usage of the join operator style (INNER
JOIN keywords), required by Microsoft Access for 1-M updatable queries.

Using a 1-M updatable query to support insert operations on a parent table is not
common as the presentation in Section 10.4 about hierarchical forms demonstrates. To
understand 1-M updatable queries completely, however, you should know the rules
for parent table operations in a 1-M updatable query.

A 1-M updatable query for a child table supports update operations as well as insert
operations. Here are two extensions for update operations on a 1-M updatable query.

•	 The query supports update operations on the child table even if missing a
required column (foreign key or other column besides the primary key) of the
child table as long as other rules are satisfied.

•	 The query supports update operations on the parent table even if the query does
not contain the primary key of the parent table as long as other rules are satisfied.

Using these rules, Course_Offering_View1 (Example 10.19) demonstrates a typical
updatable 1-M updatable query supporting insert operations on the child table (Offer-
ing) and update operations for columns of the parent table (Course). If any required col-
umns of the child table are missing, the query does not support inserts on the child table.
Example 10.20 shows a multiple table query that does not support insert operations on

Example 10.19 (Access)

1-M Updatable Query

Create a 1-M updatable query (saved as Course_Offering_View1) with a join between the Course and the Offering tables. This

query supports insert operations on the Offering table as well as update operations on Course columns (CrsDesc and CrsUnits).

Course_Offering_View1:

 SELECT CrsDesc, CrsUnits,
 Offering.OfferNo, OffTerm, OffYear,
 Offering.CourseNo, OffLocation, OffTime, FacNo,
 OffDays
	 FROM Course INNER JOIN Offering
 ON Course.CourseNo = Offering.CourseNo

Example 10.20 (Access)

Multiple-Table Query not
Supporting Insert Operations
This query (saved as Course_Offering_View2) does not support insert operations on the Offering table because the result lacks

Offering.CourseNo, a required foreign key. The query supports update operations on both parent (Course) and child (Offering)

tables, however. You should consider Example 10.20 as a negative example, depicting an uncommon situation.

Course_Offering_View2:

 SELECT CrsDesc, CrsUnits, Offering.OfferNo,
 OffTerm, OffYear, OffLocation,
 OffTime, FacNo, OffDays
	 FROM Course INNER JOIN Offering
 ON Course.CourseNo = Offering.CourseNo

26008_ch10_p375-414.indd 387 3/2/18 10:13 PM

388   Part 5  Application Development with Relational Databases

Rules for Insert Operations on 1-M Updatable Queries for a Parent Table

•	 The query contains the primary key of the parent table.
•	 The query contains required foreign key column(s) of the parent table.
•	 The query contains other required columns (besides foreign keys) without

default values of the parent table.
•	 The query does not have a GROUP BY clause or the DISTINCT keyword.
•	 The join column of the parent table should be unique (either a primary key or a

unique constraint).
•	 The query uses the join operator style for all join operations in the FROM clause.

A 1-M updatable query for a parent table supports update operations as well as insert
operations. Here are two extensions for update operations on a 1-M updatable query.

•	 The query supports update operations on the parent table even if missing a
required column (foreign key or other column besides the primary key) of the
parent table as long as other rules are satisfied.

•	 The query supports update operations on the parent table even if the query does
not contain the primary key of the parent table as long as other rules are satisfied.

Example 10.21 (Access)

1-M Updatable Query for Both
Parent and Child Table
Create a 1-M updatable query (saved as Course_Offering_View3) with a join between the Course and the Offering tables. This

query supports insert operations on both the Course and Offering tables as the primary key and required columns of the parent

and child tables are in the result. This query depicts an uncommon situation.

Course_Offering_View3:

 SELECT Course.CourseNo, CrsDesc, CrsUnits,
 Offering.OfferNo, OffTerm, OffYear,
 Offering.CourseNo, OffLocation, OffTime, FacNo, OffDays
	 FROM Course INNER JOIN Offering
 ON Course.CourseNo = Offering.CourseNo

Example 10.22 (Access)

1-M Updatable Query Supporting Insert
Operations on the Parent Table Only
Create a 1-M updatable query (saved as Course_Offering_View4) with a join between the Course and the Offering tables. This

query supports insert operations on the Course table but only update operations on the Offering tables as the primary key

(Offering.OfferNo) is not in the result. This query depicts an uncommon situation.

Course_Offering_View4:

 SELECT Course.CourseNo, CrsDesc, CrsUnits,
 Offering.CourseNo, OffTerm, OffYear,
 OffLocation, OffTime, FacNo, OffDays
	 FROM Course INNER JOIN Offering
 ON Course.CourseNo = Offering.CourseNo

26008_ch10_p375-414.indd 388 3/2/18 10:13 PM

Chapter 10  Application Development with Views   389

To insert a row into both tables (parent and child tables), the view must include the
primary key and the required columns of the parent table. If the view includes these
columns, supplying values for all columns inserts a row into both tables as demon-
strated in Example 10.25. Supplying values for just the parent table inserts a row only
into the parent table as demonstrated in Example 10.26. In both examples, the value
for Course.CourseNo must not match an existing Course row. If the value for Course.
CourseNo matches an existing row, the insert operation will fail with a message about
inserting a duplicate row.

Example 10.21 demonstrates a query supporting insert operations on both parent and
child tables. Example 10.22 depicts a query supporting insert operations on the parent
table but not on the child table. The requirement for insert operations on a parent table
is not common as indicated in Section 10.4 so both examples are unusual in practice.

Example 10.23 depicts another common example of a 1-M updatable query involv-
ing the Faculty and Offering tables. Although Faculty.OfferNo is not required (optional
foreign key), it is included in the query result to support updates on this column.

Example 10.23 (Access)

1-M Updatable Query

Create a 1-M updatable query (saved as Faculty_Offering_View1) with a join between the Faculty and the Offering tables. This

query supports update operations on both tables (Offering and Faculty) but only insert operations on the Offering table.

Faculty_Offering_View1:

 SELECT Offering.OfferNo, Offering.FacNo, CourseNo,
 OffTerm, OffYear, OffLocation, OffTime,
 OffDays, FacFirstName, FacLastName, FacDept
	 FROM Faculty INNER JOIN Offering
 ON Faculty.FacNo = Offering.FacNo

Inserting Rows in 1-M Updatable Queries  Inserting a new row in a 1-M updat-
able query is more involved than inserting a row in a single-table view. This compli-
cation occurs because there is a choice about the tables that support insert operations.
Rows from the child table only or both the child and parent tables can be inserted
as a result of a view update. To insert a row into the child table, you need only sup-
ply values for the child table as demonstrated in Example 10.24. Note that values for
Offering.CourseNo and Offering.FacNo must match existing rows in the Course and the
Faculty tables, respectively.

Example 10.24 (Access)

Inserting a Row into the Child Table
as a Result of a View Update
Insert a new row into Offering as a result of using Course_Offering_View1.

INSERT INTO Course_Offering_View1
 (Offering.OfferNo, Offering.CourseNo, OffTerm, OffYear,
 OffLocation, OffTime, FacNo, OffDays)
 VALUES (7799, 'IS480', 'SPRING', 2017, 'BLM201',
 #1:30PM#, '098-76-5432', 'MW')

26008_ch10_p375-414.indd 389 3/2/18 10:13 PM

390   Part 5  Application Development with Relational Databases

1-M Updatable Queries with More than Two Tables  Queries involving more
than two tables also can be updatable. The same rules apply to 1-M updatable queries
with more than two tables. However, you should apply the rules to each join in the
query. For example, if a query has three tables (two joins) then apply the rules to both
joins. In Faculty_Offering_Course_View1 (Example 10.27), Offering is the child table in
both joins. Thus, the foreign keys (Offering.CourseNo and Offering.FacNo) must be in
the query result. In the Faculty_Offering_Course_Enrollment_View1 (Example 10.28),
Enrollment is the child table in one join and Offering is the child table in the other two
joins. The primary key of the Offering table is not needed in the result unless Offering
rows should be inserted using the view. The query in Example 10.28 supports inser-
tions on the Enrollment table and updates on the other tables.

Example 10.25 (Access)

Inserting a Row into Both Tables
as a result of a View Update
Insert a new row into Course and Offering as a result of using Course_Offering_View3.

INSERT INTO Course_Offering_View3
 (Course.CourseNo, CrsUnits, CrsDesc, Offering.OfferNo,
 OffTerm, OffYear, OffLocation, OffTime, FacNo,
 OffDays)
 VALUES ('IS423', 4, 'OBJECT ORIENTED COMPUTING', 8877,
 'SPRING', 2017, 'BLM201', #3:30PM#,
 '123-45-6789', 'MW')

Example 10.26 (Access)

Inserting a Row into the Parent Table
as a Result of a View Update
Insert a new row into the Course table as a result of using the Course_Offering_View3.

INSERT INTO Course_Offering_View3
 (Course.CourseNo, CrsUnits, CrsDesc)
 VALUES ('IS481', 4, 'ADVANCED DATABASE')

Example 10.27 (Access)

1-M Updatable Query with Three Tables

Faculty_Offering_Course_View1:

SELECT CrsDesc, CrsUnits, Offering.OfferNo,
 Offering.CourseNo, OffTerm, OffYear,
 OffLocation, OffTime, Offering.FacNo, OffDays,
 FacFirstName, FacLastName
	 FROM (Course INNER JOIN Offering
 ON Course.CourseNo = Offering.CourseNo)
 INNER JOIN Faculty
 ON Offering.FacNo = Faculty.FacNo

26008_ch10_p375-414.indd 390 3/2/18 10:13 PM

Chapter 10  Application Development with Views   391

The specific rules about supported insert, update, and delete operations on 1-M
updatable queries are somewhat more complex than the presentation here. The
purpose here is to demonstrate that multiple-table views can be updatable and the
rules can be complex. The Microsoft Access documentation provides a more detailed
description of the rules.

The choices about updatable tables in a 1-M updatable query can be confusing
especially when the query includes more than two tables. Typically, only the child
table should support insert operations, so the considerations in Examples 10.25 and
10.26 do not apply. The choices are usually dictated by the needs of data entry forms,
presented in the next section.

Example 10.28 (Access)

1-M Updatable Query with Four Tables

Faculty_Offering_Course_Enrollment_View1:

SELECT CrsDesc, CrsUnits, Offering.CourseNo,
 Offering.FacNo, FacFirstName, FacLastName,
 OffTerm, OffYear, OffLocation, OffTime, OffDays,
 Enrollment.OfferNo, Enrollment.StdNo,
 Enrollment.EnrGrade
	 FROM ((Course INNER JOIN Offering
 ON Course.CourseNo = Offering.CourseNo)
		 INNER JOIN Faculty
 ON Offering.FacNo = Faculty.FacNo)
		 INNER JOIN Enrollment
 ON Enrollment.OfferNo = Offering.OfferNo

10.4  USING VIEWS IN HIERARCHICAL FORMS
One of the most important benefits of views is that they are the building blocks for
applications. Data entry forms, a cornerstone of most database applications, sup-
port retrieval and modification of tables. Data entry forms are formatted so that they
are visually appealing and easy to use. In contrast, the standard formatting of query
results may not appeal to most users. This section describes the hierarchical form, a
powerful kind of data entry form, and the relationships between updatable views and
hierarchical forms.

10.4.1  Hierarchical Forms
A form is a document used in a business process. A form is designed to support a busi-
ness task such as processing an order, registering for a class, or making an airline res-
ervation. Hierarchical forms3 support business tasks with a fixed and a variable part.
The fixed part of a hierarchical form is known as the main form, while the variable
(repeating) part is known as the subform. For example, a hierarchical form for course
offerings (Figure 10.3) shows course data in the main form and offering data in the
subform. A hierarchical form for class registration (Figure 10.4) shows registration and
student data in the main form and enrollment in course offerings in the subform. The
billing calculation fields below the subform are part of the main form. In each form,
the subform can display multiple records while the main form shows only one record.

3 The web version of a hierarchical form is a shopping cart with the cart page containing the variable part
and the checkout page containing the fixed part.

Hierarchical Form
a formatted window for
data entry and display using
a fixed (main form) and a
variable (subform) part. One
record is shown in the main
form and multiple, related
records are shown in the
subform.

26008_ch10_p375-414.indd 391 3/2/18 10:13 PM

392   Part 5  Application Development with Relational Databases

Hierarchical forms can be part of a system of related forms. For example, a stu-
dent information system may have forms for student admissions, grade recording,
course approval, course scheduling, and faculty assignments to courses. These forms
may be related indirectly through updates to the database or directly by sending data
between forms. For example, updates to a database made by processing a registration
form are used at the end of a term by a grade recording form. This chapter emphasizes
specification of data requirements for individual forms, an important skill of applica-
tion development. This skill complements other application development skills such
as user interface design and workflow design.

10.4.2  Relationship between Hierarchical Forms and Tables
Hierarchical forms support operations on 1-M relationships. A hierarchy or tree is
a structure with 1-M relationships. Each 1-M relationship has a parent (the 1 table)
and child (the M table). The 1-M relationship connects the main form to the subform.
A hierarchical form allows the user to insert, update, delete, and retrieve rows in both
tables of a 1-M relationship. In a typical design, a hierarchical form supports manipu-
lation (display, insert, update, and delete) of the parent table in the main form and
the child table in the subform. In essence, a hierarchical form provides a convenient
interface for operations on a 1-M relationship.

As examples, let us consider the hierarchical forms shown in Figures 10.3 and 10.4.
In the Course Offering Form (Figure 10.3), the relationship between the Course and
Offering tables enables the form to display a Course row in the main form and related
Offering rows in the subform. The Registration Form (Figure 10.4) operates on the Reg-
istration and Enrollment tables as well as the 1-M relationship between these tables. The
Registration table is a new table in the university database. Figure 10.5 shows a revised
relationship diagram.

FIGURE 10.3
Example Course Offering
Form

FIGURE 10.4
Example Registration Form

26008_ch10_p375-414.indd 392 3/2/18 10:13 PM

Chapter 10  Application Development with Views   393

To better support a business process, it is often useful to display related details in
the main form and the subform. Other information (outside of the parent and the child
tables) is usually for display purposes. Although it is possible to design a form to allow
columns from other tables to be changed, requirements of most business processes
do not support it. For example, the Registration Form (Figure 10.4) contains columns
from the Student table in the main form so that a user can be authenticated. Likewise,
columns from the Offering, Faculty, and Course tables are shown in the subform so that
a user can make an informed enrollment choice. If a business process permits columns
from other tables to be changed, this task is usually done using another form.

The Registration Form also contains summary fields (Total Units and Total Cost).
Both columns are computed from data on the subform. Total Units is the sum of the
Units field in the subform while Total Cost is calculated as the total units times the price
per hour plus the fixed charge.

10.4.3  Data Requirements for Hierarchical Forms
Data requirements for hierarchical forms involve decisions for each step listed below.
These steps clarify the relationship between a form and database tables referenced and
changed using the form. In addition, these steps can be used directly to implement the
form in some DBMSs such as Microsoft Access.

	 1. 	Identify the 1-M relationship that connects the main form to the subform.
	 2. 	Identify the join or linking columns for the 1-M relationship in step 1.
	 3. 	Identify the other tables appearing in the main form and the subform.
	 4. 	Determine the updatability of the tables in the hierarchical form.
	 5. 	Write queries for the main form and the subform.

Step 1: Identify the 1-M Relationship  The most important decision is matching the
form to a 1-M relationship in the database. If you are starting from a layout of a form
(such as Figure 10.3 or 10.4), look for a relationship that has columns from the parent
table in the main form and columns from the child table in the subform. If you are per-
forming the form design and layout yourself, decide on the 1-M relationship before you
sketch the form layout. The 1-M relationship connects the main form to the subform.

FIGURE 10.5
Relationships in the Revised
University Database

26008_ch10_p375-414.indd 393 3/2/18 10:13 PM

394   Part 5  Application Development with Relational Databases

You should focus on identification of the parent table. The parent table contains
the primary key of the main form. Typically, the main form contains its primary key
in the top left of the form. In Figure 10.3, the Course No field is the primary key of the
main form so Course is the parent table. In Figure 10.4, the Registration No. field is the
primary key of the main form, so Registration is the parent table. After the parent table
is identified, the child table should be easy. Typically, the table design only contains
one child table related to the parent table associated with the main form. For example,
Registration is related to only one other child table (Enrollment), and Course is related to
only one other child table (Offering). If the parent table is related to more than one child
table, choose the child table with columns in the subform.

One point of confusion involves 1-M relationships between tables represented in
the same part of the form. The 1-M relationship for the form involves a parent table
contained in the main form and child table contained in the subform. You should
ignore 1-M relationships involving tables contained in the same part of the form. In
Figure 10.4, the main form contains columns from the Student and Registration tables.
You should ignore this 1-M relationship in the first two data requirement steps because
this 1-M relationship involves tables in the same part of the form. You need to find a
1-M relationship that links the main form and subform.

Step 2: Identify the Linking Columns  If you can identify the 1-M relationship,
identifying the linking columns is usually easy. The linking columns are simply the
join columns from both tables (parent and child) in the relationship. In the Course
Offering Form, the linking columns are Course.CourseNo and Offering.CourseNo. In the
Registration Form, the linking columns are Registration.RegNo and Enrollment.RegNo.
It is important to remember that the linking columns connect the main form to the
subform. With this connection, the subform only shows rows that match the linking
column value of the main form. Without this connection, the subform displays all
rows, not just the rows related to the record displayed in the main form.

Step 3: Determine Other Tables  In addition to the 1-M relationship, other tables
can be shown in the main form and the subform to provide a context to a user. If
you see columns from other tables, you should note those tables so that you can use
them in step 5 when writing queries for the form. For example, the Registration Form
includes columns from the Student table in the main form. The subform includes col-
umns from the Offering, Faculty, and Course tables. Computed columns, such as Total
Units and Total Cost, are not a concern until the form is implemented.

Step 4: Determine Updatable Tables  The fourth step requires that you understand
the tables that can be changed when using the form. As part of designing a hierarchi-
cal form, you should clearly understand the requirements of the underlying business
process. These requirements should be transformed into decisions about the tables
affected by user actions in the form such as updating a field or inserting a new record.

Typically, there is only one table in the main form and one table in the subform that
should be changed as the user enters data. In the Registration Form, the Registration
table is changed when the user manipulates the main form and the Enrollment table is
changed when the user manipulates the subform. Usually, other tables identified in
step 3 are read-only due to business requirements. The Student, Offering, Faculty, and
Course tables are read-only in the Registration subform. For some form fields that are
not updatable in a hierarchical form, buttons can be used to transfer to another form to
change the data. For example, a button can be added to the main form to allow a user
to change student data in another form.

Sometimes the main form does not support updates to any tables. In the Course
Offering Form, the Course table is not changed when using the main form. The rea-
son for making the main form read-only is to support the course approval process.
Most universities require a separate approval process for new courses using a sepa-
rate form. The Course Offering Form is designed only for adding offerings to existing

26008_ch10_p375-414.indd 394 3/2/18 10:13 PM

Chapter 10  Application Development with Views   395

courses and changing details of offerings of a course. If a university does not have this
constraint, the main form can be used to change the Course table.

Step 5: Write Form Queries  The last step integrates decisions made in the other
steps. You should write a query for the main form and a query for the subform. These
queries must support updates to the tables you identified in step 4. You should follow
the rules for formulating updatable views (both single-table and multiple-table) given
in Section 10.3. Some DBMSs may require that you use a CREATE VIEW statement for
these queries while other DBMSs may allow you to type the SELECT statements directly.

Tables 10-3 and 10-4 summarize the responses for steps 1 to 4 for the Course Offer-
ing and Registration forms. For step 5, examples 10.29 to 10.32 show queries for the
main forms and subforms of Figures 10.3 and 10.4. In Example 10.31, the Address form
field (Figure 10.4) is derived from the StdCity and StdState columns. In Example 10.32,
the primary key of the Offering table is not needed because the query does not support
insert operations on the Offering table. The query only supports insert operations on
the Enrollment table. Note that all examples conform to the Microsoft Access rules for
1-M updatable queries.

TABLE 10-3
Summary of Query
Formulation Steps for the
Course Offering Form

Step Response

1 Course (parent table), Offering (child table)

2 Course.CourseNo, Offering.CourseNo

3 Only data from the Course and Offering tables

4 Insert, update, and delete operations on the Offering table in the subform

Example 10.29 (Access)

Query for the Main Form of the
Course Offering Form

SELECT CourseNo, CrsDesc, CrsUnits FROM Course

Example 10.30 (Access)

Query for the Subform of the
Course Offering Form

SELECT * FROM Offering

TABLE 10-4
Summary of Query
Formulation Steps for the
Registration Form

Step Response

1 Registration (parent table), Enrollment (child table)

2 Registration.RegNo, Enrollment. RegNo

3 Data from the Student table in the main form and the Offering, Course, and Faculty tables in
the subform

4 Insert, update, and delete operations on the Registration table in the main form and the
Enrollment table in the subform

26008_ch10_p375-414.indd 395 3/2/18 10:13 PM

396   Part 5  Application Development with Relational Databases

You should note that neither query calculates summary fields in the main form.
The Registration form contains the summary fields, Total Units and Total Cost. Sum-
mary field calculations are always specified in the form, not in the query. Your
form queries (main form and subform) should never contain a GROUP BY clause to
calculate summary fields because GROUP BY eliminates updatability. The details
of summary field calculation depend on the form design tool. You should consult
documentation about your DBMS and form design tool for calculating summary
fields.

In the subform query for the Registration Form (Example 10.32), there is one other
issue. The subform query will display an Offering row only if there is an associated
Faculty row. If you want the subform to display Offering rows regardless of whether
there is an associated Faculty row, a one-sided outer join should be used, as shown in
Example 10.33. You can tell if an outer join is needed by looking at example copies of
the form. If you can find offerings listed without an assigned faculty, then you need a
one-sided outer join in the query.

As another example, Table 10-5 summarizes responses to the query formulation
steps for the Faculty Assignment Form shown in Figure 10.6. The goal of this form is to
support administrators in assigning faculty to course offerings. The 1-M relationship
for the form is the relationship from the Faculty table to the Offering table. This form
cannot be used to insert new Faculty rows or change data about Faculty. In addition,
this form cannot be used to insert new Offering rows. The only update operation sup-
ported by this form is to change the Faculty assigned to teach an existing Offering. To
update the assigned faculty in the subform, the linking column (Offering.FacNo) must

Summary Field Calculation
summary fields involving
aggregate functions are
never calculated by the
queries for the main
form and subform. The
calculations are specified
in the form design tool, not
in form queries. Thus, form
queries should never have a
GROUP BY clause.

Example 10.31 (Access)

Query for the Main Form of
the Registration Form

SELECT RegNo, RegTerm, RegYear, RegDate,
 Registration.StdNo, RegStatus, StdFirstName,
 StdLastName, StdClass, StdCity, StdState
 FROM Registration INNER JOIN Student
 ON Registration.StdNo = Student.StdNo

Example 10.32 (Access)

Query for the Subform of
the Registration Form

SELECT RegNo, Enrollment.OfferNo, Offering.CourseNo,
 OffTime, OffLocation, OffTerm, OffYear,
 Offering.FacNo, FacFirstName, FacLastName,
 CrsDesc, CrsUnits
 FROM ((Enrollment INNER JOIN Offering
 ON Enrollment.OfferNo = Offering.OfferNo)
 INNER JOIN Faculty
 ON Faculty.FacNo = Offering.FacNo)
 INNER JOIN Course
 ON Course.CourseNo = Offering.CourseNo

26008_ch10_p375-414.indd 396 3/2/18 10:13 PM

Chapter 10  Application Development with Views   397

Example 10.34 (Access)

Main Form Query for the
Faculty Assignment Form

SELECT FacNo, FacFirstName, FacLastName, FacDept
 FROM Faculty

Example 10.35 (Access)

Subform Query for the Faculty
Assignment Form

SELECT OfferNo, Offering.CourseNo, FacNo, OffTime,
 OffDays, OffLocation, CrsUnits
 FROM Offering INNER JOIN COURSE
 ON Offering.CourseNo = Course.CourseNo

Example 10.33 (Access)

Revised Subform Query with a
One-Sided Outer Join

SELECT RegNo, Enrollment.OfferNo, Offering.CourseNo,
 OffTime, OffLocation, OffTerm, OffYear,
 Offering.FacNo, FacFirstName, FacLastName,
 CrsDesc, CrsUnits
 FROM ((Enrollment INNER JOIN Offering
 ON Enrollment.OfferNo = Offering.OfferNo)
 INNER JOIN Course
 ON Offering.CourseNo = Course.CourseNo)
 LEFT JOIN Faculty
 ON Faculty.FacNo = Offering.FacNo

TABLE 10-5
Summary of Query
Formulation Steps for the
Faculty Assignment Form

Step Response

1 Faculty (parent table), Offering (child table)

2 Faculty.FacNo, Offering.FacNo

3 Data from the Course table in the subform

4 Update Offering.FacNo

FIGURE 10.6
Example Faculty Assignment
Form

26008_ch10_p375-414.indd 397 3/2/18 10:13 PM

398   Part 5  Application Development with Relational Databases

appear in the subform. Examples 10.34 and 10.35 show the main form and the subform
queries.

Common Query Formulation Errors  Despite careful planning of data require-
ments, you can still make errors in query formulation especially for the initial form
queries that you write. Table 10-6 provides a convenient summary of formulation
errors for form queries. Note that the third error (omitting the linking column) is
specific to query formulation for hierarchical forms in Microsoft Access. Students
omit the linking column because it does not typically appear in the subform as
shown in the form examples (Registration Form, Faculty Assignments Form, and
Course Offering Form) in this section. Form design tools need the linking column
to make the association between data shown on the main form and subform. Using
the main form’s parent table in the subform is also specific to hierarchical forms in
Microsoft Access.

Examples 10.36 (revised Example 10.31) and 10.37 (revised Example 10.32) inject
errors into the queries for the Registration Form. After you attempt to detect and cor-
rect errors, you can see an explanation about the errors in Appendix 10.C.

TABLE 10-6
Common Errors in Form
Queries

Item Description Remedy

Foreign key Using a primary key from the parent
table instead of a foreign key from the
child table

Include all required foreign keys in
updatable tables in the query result

GROUP BY clause Using a GROUP BY clause to calculate
summary fields

Eliminate the GROUP BY clause and
aggregate functions; specify summary
fields using the form design tool

Linking column Omitting linking column in the subform
query

Include the linking column in the result
of the subform query even when the
linking column is not displayed in the
subform

Required columns Missing required columns in a table in
which the query should support inserts

Include all required columns without
default values in the query result

Duplicate parent table Subform query contains the parent
table of the main form

Remove the main form’s parent table
in the subform. The subform should
contain the child table for the form, not
both parent and child tables.

Example 10.36 (Access)

Query for the Main Form of
the Registration Form
The SELECT statement contains some formulation errors covered in Table 10-6.

SELECT RegNo, RegTerm, RegYear, RegDate,
 Student.StdNo, RegStatus, StdFirstName,
 StdLastName, StdClass, StdCity, StdState
 FROM Registration INNER JOIN Student
 ON Registration.StdNo = Student.StdNo
 GROUP BY RegNo, RegTerm, RegYear, RegDate,
 Student.StdNo, RegStatus, StdFirstName,
 StdLastName, StdClass, StdCity, StdState

26008_ch10_p375-414.indd 398 3/2/18 10:13 PM

Chapter 10  Application Development with Views   399

Example 10.37 (Access)

Query for the Subform of
the Registration Form
The SELECT statement contains some formulation errors covered in Table 10-6.

SELECT Offering.OfferNo, Offering.CourseNo,
 OffTime, OffLocation, OffTerm, OffYear,
 Offering.FacNo, FacFirstName, FacLastName,
 CrsDesc, CrsUnits
 FROM (((Enrollment INNER JOIN Offering
 ON Enrollment.OfferNo = Offering.OfferNo)
 INNER JOIN Faculty
 ON Faculty.FacNo = Offering.FacNo)
 INNER JOIN Course
 ON Course.CourseNo = Offering.CourseNo)
 INNER JOIN Registration
 ON Registration.RegNo = Enrollment.RegNo

Besides being the building blocks of data entry forms, views are also the building
blocks of reports. A report is a stylized presentation of data appropriate to a selected
audience. A report is similar to a form in that both use views and present the data
much differently than they appear in the base tables. A report differs from a form in
that a report does not change the base tables while a form can make changes to the
base tables. This section describes the hierarchical report, a powerful kind of report,
and the relationship between views and hierarchical reports.

10.5.1  Hierarchical Reports
Hierarchical reports (also known as control break reports) use nesting or indenta-
tion to provide a visually appealing format. The Faculty Schedule Report (Figure 10.7)
shows data arranged by department, faculty name, and term. Each indented field is
known as a group. The nesting of the groups indicates the sorting order of the report.
The innermost line in a report is known as the detail line. In the Faculty Schedule

Hierarchical Report
a formatted display of a
query using indentation to
show grouping and sorting.

10.5  USING VIEWS IN REPORTS

FIGURE 10.7
Faculty Schedule Report

26008_ch10_p375-414.indd 399 3/2/18 10:13 PM

400   Part 5  Application Development with Relational Databases

Report, detail lines show the course number, offering number, and other details of the
assigned course. The detail lines also can be sorted. In the Faculty Schedule Report, the
detail lines are sorted by course number.

The major advantage of hierarchical reports is that users can more readily grasp
the meaning of data that are sorted and arranged in an indented manner. The standard
output of a query (a datasheet) is difficult to inspect when data from multiple tables
are in the result. For example, the datasheet (Figure 10.8) shows the same values as the
Faculty Schedule Report but the relationships among fields is difficult to detect. It is
distracting to see the department, faculty name, and term repeated.

To improve appearance, hierarchical reports can show summary data in detail
lines, computed columns, and calculations after groups. The detail lines in Figure 10.9
show the enrollment count (number of students enrolled) in each course offering taught
by a professor. In SQL, the number of students is computed with the COUNT function.
The columns Percent Full ((Enrollment/Limit) * 100) and Low Enrollment (a
true/false value) are computed. A check box is a visually appealing way to display
true/false columns. Many reports show summary calculations after each group. In the
Faculty Work Load Report, summary calculations show the total units and students as
well as average percentage full of course offerings.

10.5.2  Data Requirements for Hierarchical Reports
Data requirements for reports are simpler than hierarchical forms because updatability
requirements do not exist. Report queries are usually read-only without updatability

FIGURE 10.8
Datasheet Showing the
Contents of the Faculty
Schedule Report

FacDept FacLastName FacFirstName OffTerm CourseNo OfferNo OffLocation OffTime OffDays

FIN MACON NICKI SPRING FIN480 7777 BLM305 1:30 PM MW

FIN MACON NICKI WINTER FIN300 5555 BLM207 8:30 AM MW

FIN MILLS JULIA WINTER FIN450 6666 BLM212 10:30 AM TTH

FIN MILLS JULIA WINTER IS480 5678 BLM302 10:30 AM MW

MS COLAN CRISTOPHER SPRING IS480 5679 BLM412 3:30 PM TTH

MS EMMANUEL VICTORIA WINTER IS320 4444 BLM302 3:30 PM TTH

MS FIBON LEONARD SPRING IS460 9876 BLM307 1:30 PM TTH

MS VINCE LEONARD FALL IS320 4321 BLM214 3:30 PM TTH

MS VINCE LEONARD FALL IS320 1234 BLM302 10:30 AM MW

MS VINCE LEONARD SPRING IS320 3333 BLM214 8:30 AM MW

FIGURE 10.9
Faculty Work Load Report

26008_ch10_p375-414.indd 400 3/2/18 10:13 PM

Chapter 10  Application Development with Views   401

support. In addition, a report only contains one query as opposed to two or more que-
ries for a hierarchical form.

In formulating a query for a report, you should (1) match fields in the report to
database columns, (2) determine necessary tables, and (3) identify the join conditions.
Most report queries will involve joins and possibly one-sided outer joins. More dif-
ficult queries involving difference and division operations are not common. You can
follow these steps to formulate the query, shown in Example 10.38, for the Faculty
Schedule Report (Figure 10.7).

Example 10.38

Query for the Faculty Scheduling
Report

SELECT Faculty.FacNo, Faculty.FacFirstName, FacLastName,
 Faculty.FacDept, Offering.OfferNo,
 Offering.CourseNo, Offering.OffTerm,
 Offering.OffYear, Offering.OffLocation,
 Offering.OffTime, Offering.OffDays
 FROM Faculty, Offering
 WHERE Faculty.FacNo = Offering.FacNo
 AND ((Offering.OffTerm = 'FALL'
 AND Offering.OffYear = 2016)
 OR (Offering.OffTerm = 'WINTER'
 AND Offering.OffYear = 2017)
 OR (Offering.OffTerm = 'SPRING'
 AND Offering.OffYear = 2017))

The major query formulation issue for hierarchical reports is the level of the out-
put. Sometimes you have a choice between individual rows or groups of rows in the
query result. A rule of thumb is that the query should produce data for detail lines
on the report. The query for the Faculty Work Load Report (Example 10.39) groups
data and counts the number of students enrolled. The query directly produces data
for detail lines on the report. If the query produced one row per student enrolled in a
course (a finer level of detail), then the report must calculate the number of students
enrolled. With most reporting tools, it is easier to perform aggregate calculations in the
query when the detail line of the report shows only summary data.

Query Formulation Tip for Hierarchical Reports: the query for a report should
produce data for detail lines of the report. If detail lines in a report contain summary
data, the query should usually contain summary data.

The other calculations (PercentFull and LowEnrollment) in Example 10.39 can be per-
formed in the query or report with about the same effort. Note that OffLimit is a new
column in the Offering table. It shows the maximum number of students that can
enroll in a course offering. The Access formulation uses two notational shortcuts not
recognized by the Oracle SQL compiler. Access SQL allows the usage of a renamed
column (NumStds) in other expressions in the SELECT list. In addition, Access SQL
allows usage of a comparison operator to return a true/false value. Oracle SQL does
not allow the renamed column (NumStds) to appear in other expressions. In addition,
the Oracle formulation uses a CASE expression, a proprietary extension of Oracle SQL
instead of the comparison operator. The keyword CASE begins a CASE expression.

26008_ch10_p375-414.indd 401 3/2/18 10:13 PM

402   Part 5  Application Development with Relational Databases

Example 10.39 (Access)

Query for the Faculty Work Load Report
with summary data in detail lines

SELECT Offering.OfferNo, FacFirstName, FacLastName,
 FacDept, OffTerm, CrsUnits, OffLimit,
 Count(Enrollment.RegNo) AS NumStds,
 NumStds/OffLimit AS PercentFull,
 (NumStds/OffLimit) < 0.25 AS LowEnrollment
 FROM Faculty, Offering, Course, Enrollment
 WHERE Faculty.FacNo = Offering.FacNo
 AND Course.CourseNo = Offering.CourseNo
 AND Offering.OfferNo = Enrollment.OfferNo
 AND ((Offering.OffTerm = 'FALL'
 AND Offering.OffYear = 2016)
 OR (Offering.OffTerm = 'WINTER'
 AND Offering.OffYear = 2017)
 OR (Offering.OffTerm = 'SPRING'
 AND Offering.OffYear = 2017))
 GROUP BY Offering.OfferNo, FacFirstName, FacLastName,
 FacDept, OffTerm, CrsUnits, OffLimit

Example 10.39 (Oracle)

Query for the Faculty Work Load Report
with summary data in detail lines

SELECT Offering.OfferNo, FacFirstName, FacLastName,
 FacDept, OffTerm, CrsUnits, OffLimit,
 Count(Enrollment.RegNo) AS NumStds,
 Count(Enrollment.RegNo)/OffLimit AS PercentFull,
 CASE WHEN
 Count(Enrollment.RegNo)/OffLimit < 0.25
 THEN 'T'
 ELSE 'F' END AS LowEnrollment
 FROM Faculty, Offering, Course, Enrollment
 WHERE Faculty.FacNo = Offering.FacNo
 AND Course.CourseNo = Offering.CourseNo
 AND Offering.OfferNo = Enrollment.OfferNo
 AND ((Offering.OffTerm = 'FALL'
 AND Offering.OffYear = 2016)
 OR (Offering.OffTerm = 'WINTER'
 AND Offering.OffYear = 2017)
 OR (Offering.OffTerm = 'SPRING'
 AND Offering.OffYear = 2017))
 GROUP BY Offering.OfferNo, FacFirstName, FacLastName,
 FacDept, OffTerm, CrsUnits, OffLimit

CLOSING THOUGHTS

This chapter presented views, virtual tables derived from base tables with queries. The
important concepts about views are the motivation for views and the usage of views
in database application development. The original motivation for view usage is data
independence. Changes to base table definitions usually do not affect applications that

26008_ch10_p375-414.indd 402 3/2/18 10:13 PM

Chapter 10  Application Development with Views   403

use views. The current motivations for view usage are simplification of query formula-
tion and flexible specification for security control. To effectively use views, you need to
understand the difference between read-only and updatable views. A read-only view
can be used in a query just like a base table. All views are at least read-only, but only
some views are updatable. With an updatable view, changes to rows in a view are
propagated to the underlying base tables. Both single-table and multiple-table views
can be updatable. The most important determinant of updatability is that a view con-
tains primary keys of the underlying base tables.

Views have become the building blocks of database applications because form and
report tools use views. Data entry forms support retrieval and changes to a database.
Hierarchical forms manipulate 1-M relationships in a database. To define a hierarchi-
cal form, you need to identify the 1-M relationship and define updatable views for
the fixed (main form) and variable (subform) parts of the form. Hierarchical reports
provide a visually appealing presentation of data. To define a hierarchical report, you
need to identify grouping levels and formulate a query to produce data for the detail
lines of the report.

This chapter continues Part 5 with emphasis on application development with
relational databases. In Chapter 9, you extended your query formulation skills and
understanding of relational databases begun in the Part 2 chapters. This chapter
stressed the application of query formulation skills in building applications based on
views. Chapter 11 demonstrates the usage of queries in stored procedures and trig-
gers to customize and extend database applications. To cement your understanding
of application development with views, you need to use a relational DBMS especially
to build forms and reports. It is only by applying the concepts to an actual database
application that you will really learn the concepts.

REVIEW CONCEPTS

•	 Benefits of views: data independence, simplified query formulation, security
•	 View definition in SQL:

CREATE VIEW IS_Students AS
 SELECT * FROM Student WHERE StdMajor = 'IS'

•	 Using a view in a query:
SELECT StdFirstName, StdLastName, StdCity, StdGPA
 FROM IS_Students
 WHERE StdGPA >= 3.7

•	 Using an updatable view in INSERT, UPDATE, and DELETE statements:
UPDATE IS_Students
 SET StdGPA = 3.5
 WHERE StdClass = 'SR'

•	 View modification: DBMS service to process a query on a view involving the
execution of only one query. A query using a view is translated into a query
using base tables by replacing references to the view with its definition.

•	 View materialization: DBMS service to process a query on a view by executing
the query directly on the stored view. The stored view can be materialized on
demand (when the view query is submitted) or periodically rebuilt from its base
tables.

•	 Typical usage of view modification for databases that have a mix of update and
retrieval operations

•	 Updatable view: a view that can be used in SELECT statements as well as
UPDATE, INSERT, and DELETE statements.

•	 Rules for defining single-table updatable views: primary key and required columns

26008_ch10_p375-414.indd 403 3/2/18 10:13 PM

404   Part 5  Application Development with Relational Databases

•	 WITH CHECK OPTION clause to prevent view updates with side effects
•	 Rules for defining multiple-table updatable views: primary key and required

columns of each updatable table along with foreign keys of the child tables
•	 1-M updatable queries for developing data entry forms in Microsoft Access
•	 Components of a hierarchical form: main form and subform
•	 Hierarchical forms providing a convenient interface for manipulating 1-M

relationships and associated tables
•	 Data requirement steps for hierarchical forms: identify the 1-M relationship,

identify the linking columns, identify other tables on the form, determine
updatability of tables, write the queries for the main form and subform

•	 Writing updatable queries for the main form and the subform
•	 Form queries (main form and subform) not using the GROUP BY clause
•	 Common errors in updatable queries for forms: using primary key of parent

table instead of foreign key of child table, GROUP BY to calculate summary
fields, omitting the linking column in a subform query, missing required
columns from tables with supported insert operations, and using the parent
table of the main form in the subform query

•	 Summary calculations specified using a form design tool, not in a form query
(main form or subform query)

•	 Hierarchical report: a formatted display of a query using indentation to show
grouping and sorting

•	 Components of hierarchical reports: grouping fields, detail lines, and group
summary calculations

•	 Writing queries for hierarchical reports: provide data for detail lines

QUESTIONS

  1.	How do views provide data independence?
  2.	How can views simplify queries written by users?
  3.	How is a view like a macro in a spreadsheet?
  4.	What is view materialization?
  5.	What is view modification?
  6.	When is modification preferred to materialization for processing view queries?
  7.	What is an updatable view?
  8.	Why are some views read-only?
  9.	What are the rules for single-table updatable views?

  10.	What are the rules for a 1-M updatable query to support insert operations for a
child table in Microsoft Access?

  11.	What is the purpose of the WITH CHECK clause?
  12.	What is a hierarchical form?
  13.	Briefly describe how a hierarchical form can be used in a business process that

you know about. For example, if you know something about order processing,
describe how a hierarchical form can support this process.

  14.	What is the difference between a main form and a subform?
  15.	What is the purpose of linking columns in hierarchical forms?
  16.	Why should you write updatable queries for a main form and a subform?
  17.	Why are tables used in a hierarchical form even when the tables cannot be

changed as a result of using the form?

26008_ch10_p375-414.indd 404 3/2/18 10:13 PM

Chapter 10  Application Development with Views   405

  18.	What is the first step of specifying data requirements for hierarchical forms?
  19.	What is the second step of specifying data requirements for hierarchical forms?
  20.	What is the third step of specifying data requirements for hierarchical forms?
  21.	What is the fourth step of specifying data requirements for hierarchical forms?
  22.	What is the fifth step of specifying data requirements for hierarchical forms?
  23.	Provide an example of a hierarchical form in which the main form is not

updatable. Explain the business reason that determines the read-only status of
the main form.

  24.	What is a hierarchical report?
  25.	What is a grouping column in a hierarchical report?
  26.	How do you identify grouping columns in a report?
  27.	What is a detail line in a hierarchical report?
  28.	What is the relationship of grouping columns in a report to sorting columns?
  29.	Why is it often easier to write a query for a hierarchical report than for a

hierarchical form?
  30.	What does it mean that a query should produce data for the detail line of a

hierarchical report?
  31.	Do commercial DBMSs agree on the rules for updatable multiple-table views?

If no, briefly comment on the level of agreement about rules for updatable
multiple-table views.

  32.	What side effects can occur when a user changes the row of an updatable view?
What is the cause of such side effects?

  33.	Describe a scenario in which materialization is preferred to modification for
view processing.

  34.	Why should it be easy to identify the child table in the 1-M relationship for a
hierarchical form?

  35.	How do you determine the updatable tables in a hierarchical form?
  36.	Identify calculated summary fields on the example forms in this chapter. Are the

summary calculations specified in a form design tool or in form queries?
  37.	Briefly explain common query formulation errors for main form and subform

queries.
  38.	What are the rules for a 1-M updatable query to support insert operations for a

parent table in Microsoft Access?
  39.	Identify keywords that eliminate updatability for a query.
  40.	What join style must be used in Microsoft Access for 1-M updatable queries?
  41.	Under what conditions does a 1-M updatable query support update operations

on a child table?
  42.	Under what conditions does a 1-M updatable query support update operations

on a parent table?
  43.	Can a 1-M updatable query support update operations on a parent table if the

query result does not contain the primary key of the parent table?

PROBLEMS

The problems use the extended order entry database depicted in Figure 10.P1 and Table
10-P1. Oracle CREATE TABLE statements for the new tables and the revised Product table
follow Table 10-P1. This database extends the order entry database used in the problems
of Chapters 4 and 9 with three tables: (1) Supplier, containing the list of suppliers for
products carried in inventory; (2) Purchase, recording the general details of purchases to

26008_ch10_p375-414.indd 405 3/2/18 10:13 PM

406   Part 5  Application Development with Relational Databases

replenish inventory; and (3) PurchLine, containing the products requested on a purchase.
In addition, the extended order entry database contains a new 1-M relationship (Supplier
to Product) that replaces the Product.ProdMfg column in the original database.

In addition to the revisions noted in the previous paragraph, you should be aware
of several assumptions made in the design of the Extended Order Entry Database:

•	 The design makes the simplifying assumption that there is only one supplier
for each product. This assumption is appropriate for a single retail store that
orders directly from manufacturers.

•	 The 1-M relationship from Supplier to Purchase supports the purchasing
process. In this process, a user designates the supplier before selecting items
to order from the supplier. Without this relationship, the business process and
associated data entry forms would be more difficult to implement.

FIGURE 10.P1
Relationship Diagram for
the Revised Order Entry
Database

TABLE 10-P1
Explanations of Selected
Columns in the Revised
Order Entry Database

Column Name Description

PurchDate Date of making the purchase

PurchPayMethod Payment method for the purchase (Credit, PO, or Cash)

PurchDelDate Expected delivery date of the purchase

SuppDiscount Discount provided by the supplier

PurchQty Quantity of product purchased

PurchUnitCost Unit cost of the product purchased

CREATE TABLE Product
(ProdNo 	 CHAR(8),
 	 ProdName	 VARCHAR2(50) CONSTRAINT ProdNameRequired NOT NULL,
	 SuppNo	� CHAR(8) CONSTRAINT SuppNo1Required NOT NULL,
	 ProdQOH	 INTEGER DEFAULT 0,
	 ProdPrice	 DECIMAL(12,2) DEFAULT 0,
 	 ProdNextShipDate	 DATE,

26008_ch10_p375-414.indd 406 3/2/18 10:13 PM

Chapter 10  Application Development with Views   407

  1.	Define a view containing products from supplier number S3399214. Include all
Product columns in the view.

  2.	Define a view containing the details of orders placed in January 2017. Include all
OrderTbl columns, OrdLine.Qty, and the product name in the view.

  3.	Define a view containing the product number, name, price, and quantity on
hand along with the number of orders in which the product appears.

  4.	Using the view defined in problem 1, write a query to list the products with a
price greater than $300. Include all view columns in the result.

  5.	Using the view defined in problem 2, write a query to list the rows containing
the words “Ink Jet” in the product name. Include all view columns in the
result.

 CONSTRAINT PKProduct PRIMARY KEY (ProdNo),
 CONSTRAINT SuppNoFK1 FOREIGN KEY (SuppNo) REFERENCES Supplier
 ON DELETE CASCADE)

CREATE TABLE Supplier
(SuppNo 	 CHAR(8),
 	 SuppName	 VARCHAR2(30) CONSTRAINT SuppNameRequired NOT NULL,
	 SuppEmail	 VARCHAR2(50),
	 SuppPhone	 CHAR(13),
	 SuppURL	 VARCHAR2(100),
 	 SuppDiscount	 DECIMAL(3,3),
 CONSTRAINT PKSupplier PRIMARY KEY (SuppNo))

CREATE TABLE Purchase
(PurchNo 	 CHAR(8),
 	 PurchDate	 DATE CONSTRAINT PurchDateRequired NOT NULL,
	 SuppNo	 CHAR(8) CONSTRAINT SuppNo2Required NOT NULL,
	 PurchPayMethod	 CHAR(6) DEFAULT 'PO',
 	 PurchDelDate	 DATE,
 CONSTRAINT PKPurchase PRIMARY KEY (PurchNo) ,
 CONSTRAINT SuppNoFK2 FOREIGN KEY (SuppNo) REFERENCES Supplier)

CREATE TABLE PurchLine
(ProdNo CHAR(8),
 	 PurchNo CHAR(8),
	 PurchQty INTEGER DEFAULT 1 CONSTRAINT PurchQtyRequired NOT NULL,
 	 PurchUnitCost    DECIMAL(12,2),
CONSTRAINT PKPurchLine PRIMARY KEY (PurchNo, ProdNo),
CONSTRAINT FKPurchNo FOREIGN KEY (PurchNo) REFERENCES Purchase
 ON DELETE CASCADE,
CONSTRAINT FKProdNo2 FOREIGN KEY (ProdNo) REFERENCES Product)

26008_ch10_p375-414.indd 407 3/2/18 10:13 PM

408   Part 5  Application Development with Relational Databases

  6.	Using the view defined in problem 3, write a query to list the products in which
more than five orders have been placed. Include the product name and the
number of orders in the result.

  7.	For the query in problem 4, modify the query so that it uses base tables only.
  8.	For the query in problem 5, modify the query so that it uses base tables only.
  9.	For the query in problem 6, modify the query so that it uses base tables only.

  10.	Is the view in problem 1 updatable? Explain why or why not.
  11.	Is the view in problem 2 updatable? Explain why or why not. What database

tables can be changed by modifying rows in the view?
  12.	Is the view in problem 3 updatable? Explain why or why not.
  13.	For the view in problem 1, write an INSERT statement that references the view.

The effect of the INSERT statement should add a new row to the Product table.
  14.	For the view in problem 1, write an UPDATE statement that references the view.

The effect of the UPDATE statement should modify the ProdQOH column of the
row added in problem 13.

  15.	For the view in problem 1, write a DELETE statement that references the
view. The effect of the DELETE statement should remove the row added in
problem 13.

  16.	Modify the view definition of problem 1 to prevent side effects. Use a different
name for the view than the name used in problem 1. Note that the WITH CHECK
OPTION clause cannot be specified in Microsoft Access using the SQL window.

  17.	Write an UPDATE statement for the view in problem 1 to modify the SuppNo of
the row with ProdNo of P6677900 to S4420948. The UPDATE statement should
be rejected by the revised view definition in problem 16 but accepted by the
original view definition in problem 1. This problem cannot be done in Access
using the SQL window.

  18.	Define a 1-M updatable query involving the Customer and the OrderTbl tables.
The query should support insert operations to the OrderTbl table. The query
should include all columns of the OrderTbl table and the name (first and last),
street, city, state, and zip of the Customer table. Note that this problem is specific
to Microsoft Access.

  19.	Define a 1-M updatable query involving the Customer table, the OrderTbl
table, and the Employee table. The query should support insert operations to
the OrderTbl table. Include all rows in the OrderTbl table even if there is a null
employee number. The query should include all columns of the OrderTbl table,
the name (first and last), street, city, state, and zip of the Customer table, and the
name (first and last) and phone of the Employee table. Note that this problem is
specific to Microsoft Access.

  20.	Define a 1-M updatable query involving the OrdLine and the Product tables. The
query should support insert operations to the OrdLine table. The query should
include all columns of the OrdLine table and the name, the quantity on hand,
and the price of the Product table. Note that this problem is specific to Microsoft
Access.

  21.	Define a 1-M updatable query involving the Purchase and the Supplier tables. The
query should support updates and inserts to the Product and the Supplier tables.
Include the necessary columns so that both tables are updatable. Note that this
problem is specific to Microsoft Access.

  22.	For the sample Simple Order Form shown in Figure 10.P2, answer the five
data requirement questions discussed in Section 10.4.3. The form supports
manipulation of the heading and the details of orders.

  23.	For the sample Order Form shown in Figure 10.P3, answer the five data
requirement questions discussed in Section 10.4.3. Like the Simple Order

26008_ch10_p375-414.indd 408 3/2/18 10:13 PM

Chapter 10  Application Development with Views   409

Form depicted in Figure 10.P2, the Order Form supports manipulation of
the heading and the details of orders. In addition, the Order Form displays
data from other tables to provide a context for the user when completing an
order. The Order Form supports both phone (an employee taking the order)
and Web (without an employee taking the order) orders. The subform query
should compute the Amount field as Qty*ProdPrice. Do not compute the
Total Amount field in either the main form query or the subform query. It is
computed in the form.

  24.	Modify your answer to problem 23 assuming that the Order Form supports only
phone orders, not Web orders.

  25.	For the sample Simple Purchase Form shown in Figure 10.P4, answer the five
data requirement questions discussed in Section 10.4.3. The form supports
manipulation of the heading and the details of purchases.

  26.	For the sample Purchase Form shown in Figure 10.P5, answer the five data
requirement questions presented in Section 10.4.3. Like the Simple Purchase
Form depicted in Figure 10.P4, the Purchase Form supports manipulation
of the heading and the details of purchases. In addition, the Purchase Form
displays data from other tables to provide a context for the user when
completing a purchase. The subform query should compute the Amount field as
PurchQty*PurchUnitCost. The Amount field is to the right of the Unit Cost
Field in the subform. Do not compute the Total Amount field in either the main
form query or the subform query. It is computed in the form.

FIGURE 10.P2
Simple Order Form

FIGURE 10.P3
Order Form

26008_ch10_p375-414.indd 409 3/2/18 10:13 PM

410   Part 5  Application Development with Relational Databases

  27.	For the sample Supplier Form shown in Figure 10.P6, answer the five data
requirement questions presented in Section 10.4.3. The main form supports the
manipulation of supplier data while the subform supports the manipulation of
only the product number and the product name of the products provided by the
supplier in the main form.

FIGURE 10.P4
Simple Purchase Form

FIGURE 10.P5
Purchase Form

FIGURE 10.P6
Supplier Form

26008_ch10_p375-414.indd 410 3/2/18 10:13 PM

Chapter 10  Application Development with Views   411

  28.	For the Order Detail Report, write a SELECT statement to produce the data for
the detail lines. The grouping column in the report is OrdNo. The report should
list the orders for customer number O2233457 in January 2017.

Order Number Order Date Product No Qty Price Amount

O2233457 1/12/2017 P1441567 1 $14.99 $14.99

P0036577 2 $319.00 $638.00

Total Order Amount $652.99

O4714645 1/11/2017 P9995676 2 $89.00 $178.00

P0036566 1 $369.00 $369.00

Total Order Amount $547.00

Order Detail Report

Order Summary Report

Zip Code Month Order Line Count Order Amount Sum

80111 January 2017 10 $1,149

February 2017 21 $2,050

Summary of 80111 31 $3,199

80113 January 2017 15 $1,541

February 2017 11 $1,450

Summary of 80113 31 $2,191

  29.	For the sample Order Summary Report, write a SELECT statement to produce
the data for the detail lines. The Zip Code report field is the first five characters
of the CustZip column. The grouping field in the report is the first five characters
of the CustZip column. The Order Amount Sum report field is the sum of the
quantity times the product price. Limit the report to year 2017 orders. You
should also include the month number in the SELECT statement so that the
report can be sorted by the month number instead of the Month report field. Use
the following expressions to derive computed columns used in the report:

•	 In Microsoft Access, the expression left(CustZip, 5) generates the Zip
Code report field. In Oracle, the expression substr(CustZip, 1, 5)
generates the Zip Code report field.

•	 In Microsoft Access, the expression format(OrdDate, "mmmm yyyy")
generates the Year report field. In Oracle, the expression to_char(OrdDate,
'MONTH YYYY') generates the Year report field.

•	 In Microsoft Access, the expression month(OrdDate) generates the Month
report field. In Oracle, the expression to_number(to_char(OrdDate,
'MM'))generates the Month report field.

  30.	Revise the Order Summary Report to list the number of orders and the average
order amount instead of the Order Line Count and Order Amount Sum. The
revised report appears below. You will need to use a SELECT statement in the
FROM clause or write two statements to produce the data for the detail lines.

Order Summary Report

Zip Code Month Order Count Average Order Amount

80111 January 2017 5 $287.25

February 2017 10 $205.00

Summary of 80111 15 $213.27

80113 January 2017 5 $308.20

February 2017 4 $362.50

Summary of 80113 9 $243.44

26008_ch10_p375-414.indd 411 3/2/18 10:13 PM

412   Part 5  Application Development with Relational Databases

  32.	For the sample Purchase Summary Report, write a SELECT statement to
produce the data for the detail lines. The Area Code report field is the second
through fourth characters of the SuppPhone column. The grouping field in the
report is the second through fourth characters of the SuppPhone column. The
Purchase Amount Sum report field is the sum of the quantity times the product
price. Limit the report to year 2017 orders. You should also include the month
number in the SELECT statement so that the report can be sorted by the month
number instead of the Month report field. Use the following expressions to
derive computed columns used in the report:

•	 In Microsoft Access, the expression mid(SuppPhone, 2, 3) generates the
Area Code report field. In Oracle, the expression substr(SuppPhone, 2, 3)
generates the Area Code report field.

•	 In Microsoft Access, the expression format(PurchDate, "mmmm yyyy")
generates the Year report field. In Oracle, the expression to_char(PurchDate,
'MONTH YYYY') generates the Year report field.

•	 In Microsoft Access, the expression month(PurchDate) generates the Month
report field. In Oracle, the expression to_number(to_char(PurchDate,
'MM'))generates the Month report field.

  31.	For the Purchase Detail Report, write a SELECT statement to produce the data
for the detail lines. The grouping column in the report is PurchNo. The report
should list the orders for supplier number S5095332 in February 2017.

Purchase Detail Report

Purch Number Purch Date Product No Qty Cost Amount

P2345877 2/11/2017 P1441567 1 $11.99 $11.99

P0036577 2 $229.00 $458.00

Total Purchase
Amount

$469.99

P4714645 2/10/2017 P9995676 2 $69.00 $138.00

P0036566 1 $309.00 $309.00

Total Purchase
Amount

$447.00

Area Code Month Purch Line Count Purch Amount Sum

303 January 2017 20 $1,149

February 2017 11 $2,050

Summary of 303 31 $3,199

720 January 2017 19 $1,541

February 2017 11 $1,450

Summary of 720 30 $2,191

Purchase Summary Report

  33.	Revise the Purchase Summary Report to list the number of purchases and the
average purchase amount instead of the Purchase Line Count and Purchase
Amount Sum. The revised report appears below. You will need to use a SELECT
statement in the FROM clause or write two statements to produce the data for
the detail lines.

26008_ch10_p375-414.indd 412 3/2/18 10:13 PM

Chapter 10  Application Development with Views   413

  34.	Define a view containing purchases from supplier names Connex or Cybercx.
Include all Purchase columns in the view.

  35.	Define a view containing the details of purchases placed in February 2017.
Include all Purchase columns, PurchLine.PurchQty, PurchLine.PurchUnitCost, and
the product name in the view.

  36.	Define a view containing the product number, name, price, and quantity on
hand along with the sum of the quantity purchased and the sum of the purchase
cost (unit cost times quantity purchased).

  37.	Using the view defined in problem 34, write a query to list the purchases made
with payment method PO. Include all view columns in the result.

  38.	Using the view defined in problem 35, write a query to list the rows containing
the words Printer in the product name. Include all view columns in the result.

  39.	Using the view defined in problem 36, write a query to list the products in which
the total purchase cost is greater than $1,000. Include the product name and the
total purchase cost in the result.

  40.	For the query in problem 37, modify the query so that it uses base tables only.
  41.	For the query in problem 38, modify the query so that it uses base tables only.
  42.	For the query in problem 39, modify the query so that it uses base tables only.
  43.	Write a CREATE VIEW statement containing a join of the Customer and OrderTbl

tables. The view should include all Customer columns and all OrderTbl columns
except OrderTbl.CustNo. The view should only contain customers with a balance
greater than $200.

  44.	Is the view in problem (43) an updatable join view in Oracle? If yes, identify
the key preserving table. You should consult Appendix 10.B and the Oracle
Database Administrators Guide for details about updatable join views and key
preserving tables.

  45.	Indicate the result of the following manipulation statements using the view in
problem (43).

•	 Insert statement using Customer columns.
•	 Update statement increasing the balance of all Seattle customers by $100.
•	 Insert statement using the OrderTbl columns.
•	 Update statement changing the date of an order with a specified order number.
•	 Delete statement to remove all view rows associated with a particular

customer number.
  46.	Using the view defined in problem 35, write a query to list the purchase orders

in February 2017 in which the total purchase cost is greater than $100. Include
the purchase date and the total purchase cost in the result.

  47.	For the query in problem 46, modify the query so that it uses base tables only.
Use the view modification process without additional simplification.

  48.	For the query in problem 47, modify the query to remove unnecessary joins.

Purchase Summary Report

Area Code Month Purchase Count Average Purchase Amount

303 January 2017 8 $300.00

February 2017 12 $506.50

Summary of 303 20 $403.25

720 January 2017 6 $308.20

February 2017 3 $362.50

Summary of 720 9 $243.44

26008_ch10_p375-414.indd 413 3/2/18 10:13 PM

414   Part 5  Application Development with Relational Databases

REFERENCES FOR FURTHER STUDY

Date (2003) provides additional details of view updatability issues especially related to
multiple-table views. Melton and Simon (2001) describe updatable query specifications
in SQL:1999. For product-specific SQL advice, For product-specific SQL advice, the
sqlblog.com site features forums about a number of DBMSs including Microsoft SQL
Server and open source products. The Database Journal (www.databasejournal.com)
provides articles, tutorials, and resources about many DBMS products. Oracle docu-
mentation can be found at the Oracle Technet site (www.oracle.com/technetwork).

26008_ch10_p375-414.indd 414 3/2/18 10:13 PM

415  

OVERVIEW
Chapter 10 provided details about application develop-
ment with views. You learned about defining user views,
updating base tables with views, and using views in
forms and reports. This chapter augments your data-
base application development skills with stored proce-
dures and triggers. Stored procedures provide reuse of
common code, while triggers provide rule processing
for common tasks. Together, stored procedures and
triggers support customization of database applica-
tions and improved productivity in developing database
applications.

To become skilled in database application develop-
ment as well as in database administration, you need to
understand stored procedures and triggers. Since both
stored procedures and triggers are coded in a data-
base programming language, this chapter first provides

background about the motivation and design issues for
database programming languages as well as specific
details about PL/SQL, the proprietary database pro-
gramming language of Oracle.

After the background about database program-
ming languages and PL/SQL, this chapter then presents
stored procedures and triggers. For stored procedures,
you will learn about the motivation and coding practices
for simple and more advanced procedures. For triggers,
you will learn about the classification of triggers, trigger
execution procedures, and coding practices for triggers.

The presentation of PL/SQL in Sections 11.1 to 11.3
assumes that you have had a previous course in com-
puter programming using a business programming lan-
guage such as Visual Basic, Java, or JavaScript. If you
would like a broader treatment of the material with-
out computer programming details, you should read
Sections 11.1.1, 11.1.2, 11.3.1, and the introductory material

Learning Objectives

This chapter explains the motivation and design issues for stored
procedures and triggers and provides practice writing them using PL/SQL,
the database programming language of Oracle. After this chapter, the
student should have acquired the following knowledge and skills:

•	 Explain the reasons for writing stored procedures and triggers

•	 Understand the design issues of language style, binding, database
connection, and result processing for database programming languages

•	 Write PL/SQL procedures

•	 Understand the classification of triggers

•	 Write PL/SQL triggers

•	 Understand trigger execution procedures

Stored
Procedures
and Triggers

11
chapter

26008_ch11_p415-476.indd 415 3/2/18 9:25 PM

in Section 11.2 before the beginning of Section 11.2.1. In
addition, the trigger examples in Section 11.3.2 mostly
involve SQL statements so that you can understand the
trigger examples without detailed knowledge of pro-
gramming statements in PL/SQL.

For continuity, all examples about stored proce-
dures and triggers use the revised university database
of Chapter 10. Figure 11.1 shows the Access relationship
window of the revised university database for conve-
nient reference.

416   Part 5  Application Development with Relational Databases

FIGURE 11.1
Relationship Window for the
Revised University Database

After learning about the power of nonprocedural access and application develop-
ment tools, you might think that procedural languages are not necessary for database
application development. However, these tools, despite their power, are not complete
solutions for commercial database application development. This section presents the
motivation for database programming languages, design issues for database program-
ming languages, and details about PL/SQL, the database programming language of
Oracle.

11.1.1  Motivation for Database Programming Languages
A database programming language is a procedural language with an interface to
one or more DBMSs. The interface allows a program to combine procedural state-
ments with database access, usually nonprocedural database access. This subsection
discusses three primary motivations (customization, batch processing, and data inten-
sive web applications) for using a database programming language and two second-
ary motivations (efficiency and portability).

Customization  Most database application development tools support customiza-
tion. Customization is necessary because no tool provides a complete solution for the
development of complex database applications. Customization allows an organiza-
tion to use the built-in power of a tool along with customized code to change the tool’s
default actions and to add new actions beyond those supported by the tool.

To support customized code, most database application development tools use
event-driven coding. In this coding style, an event triggers execution of a procedure.
An event model includes events for user actions such as clicking a button, as well
as internal events such as before a database record is updated. An event procedure

Database Programming
Language
a procedural language
with an interface to one or
more DBMSs. The interface
allows a program to combine
procedural statements with
nonprocedural database
access.

11.1  DATABASE PROGRAMMING LANGUAGES AND PL/SQL

26008_ch11_p415-476.indd 416 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   417

may access the values of controls on forms and reports as well as retrieve and update
database rows. Event procedures are coded using a database programming language,
often a proprietary language provided by a DBMS vendor. For commercial application
development, event coding is common.

Batch Processing  Despite the growth of online database processing, batch process-
ing continues to be an important way to process database work. For example, check
processing typically is a batch process in which a clearinghouse bank processes large
groups or batches of checks during nonpeak hours. Batch processing usually involves
a delay from the occurrence of an event to its capture in a database. In the check pro-
cessing case, checks are presented for payment to a merchant but not processed by
a clearinghouse bank until later. Some batch processing applications such as billing
statement preparation involve a cutoff time, not a time delay. Batch processing in
situations involving time delays and time cutoffs can provide significant economies
of scale to offset the drawback of less timely data. Even with the continued growth of
commercial web commerce, batch processing remains an important method of pro-
cessing database work.

Application development for batch processing involves writing computer pro-
grams in a database programming language. Since few development tools support
batch processing, coding can be detailed and labor intensive. A programmer typically
must write code to read input data, perform database manipulation, and create output
records to show processing results.

Data Intensive Web Applications  The prominence of data intensive web applica-
tions has invigorated the need for nonprocedural database access inside procedural
language code. Shopping carts for electronic commerce are the most common data
intensive web application. As part of the shopping experience, consumers place goods
in an electronic shopping cart and then checkout to complete the purchase. Data inten-
sive web applications in other areas have become widely used including portfolio
management with online trading, health insurance exchanges, online banking, and
digital mapping services.

In some ways, web development for data intensive web applications is back to the
future. In the early years of personal computers and client-server processing, markup
languages for page layout dominated. The later development of graphical user inter-
faces for personal computers replaced markup languages with office software suites
and application development tools for DBMS products reduced the need for tedious
coding in form and report development.

Web development has changed software development needs sharply, however.
Web development is dominated by markup languages such as the Hypertext Markup
Language (HTML), eXtensible Markup Language (XML), and Cascading Style Sheets
(CSS). For data intensive web applications, markup language code is typically created
inside code pages using procedural languages such as JavaScript. Database access is
necessary to populate controls in data intensive web pages for shopping cart and other
consumer web applications. Application development tools have achieved only limited
usage for web development in contrast to extensive usage for non-web applications.
Thus, nonprocedural database access inside procedural language code is necessary to
develop data intensive web applications for both traditional and mobile users.

Other Motivations  Efficiency and portability are two additional reasons for using
a database programming language. When distrust in optimizing database compilers
was high (until the mid-1990s), efficiency was a primary motivation for using a data-
base programming language. To avoid inefficiencies of optimizing compilers, some
DBMS vendors supported record-at-a-time access with a programmer determining
the access plan for complex queries. As confidence has grown in optimizing database
compilers, efficiency has become less important. However, demands of high-volume,
mission-critical web applications such as online shopping and financial trading have

26008_ch11_p415-476.indd 417 3/2/18 9:25 PM

418   Part 5  Application Development with Relational Databases

made custom database coding necessary to achieve acceptable performance in these
applications.

Portability can be important in some environments. Most application development
tools and database programming languages are proprietary. If an organization wants
to remain vendor neutral, an application can be built using a nonproprietary program-
ming language (such as Java) along with a standard database interface. If just DBMS
neutrality is desired (not neutrality from an application development tool), some
application development tools allow connection with a variety of DBMSs through
standard database interfaces such as the Open Database Connectivity (ODBC), the
Java Database Connectivity (JDBC), and the Entity Framework. Portability is a particu-
lar concern for web database access in which an application must be compatible with
many types of servers and browsers.

11.1.2  Design Issues
Before undertaking the study of any database programming language, you should
understand design issues about integrating a procedural language with a nonproc-
edural language. Understanding these issues will help you differentiate among the
many languages in the marketplace and understand features of a specific language.
Most DBMSs provide several alternatives for database programming languages.
This section discusses the design issues of language style, binding, database connec-
tion, and result processing with an emphasis on the design choices first specified in
SQL:1999 and refined through SQL:2016. Many DBMS vendors are adapting to the
specifications in SQL:2016.

Language Style  SQL:2016 provides two language styles for integrating a proce-
dural language with SQL. A statement-level interface involves changes to the
syntax of a host programming language to accommodate embedded SQL statements.
The host language contains additional statements to establish database connections,
execute SQL statements, use the results of an SQL statement, associate programming
variables with database columns, handle exceptions in SQL statements, and manipu-
late database descriptors. Statement-level interfaces are available for standard and
proprietary languages. For standard languages such as Java and Visual Basic, some
DBMSs provide a precompiler to process the statements before invoking the pro-
gramming language compiler. Most DBMSs also provide proprietary languages
such as the Oracle language PL/SQL with a statement-level interface to support
embedded SQL.

The SQL:2016 specification defines the Persistent Stored Modules (SQL/PSM) lan-
guage as a database programming language. Because SQL/PSM was defined after
many DBMS vendors already had widely used proprietary languages, most DBMS
vendors do not conform to the SQL/PSM standard. However, the SQL/PSM standard
has influenced the evolution of proprietary database programming languages such as
Oracle PL/SQL.

The second language style provided by SQL:2016 is known as a call-level
interface (CLI). The SQL:2016 CLI contains a set of procedures and a set of type defi-
nitions for SQL data types. The procedures provide similar functionality to the addi-
tional statements in a statement-level interface. The SQL:2016 CLI is more difficult to
learn and use than a statement-level interface. However, the SQL:2016 CLI is portable
across host languages, whereas the statement-level interface is not portable and not
supported for all programming languages.

The most widely used call-level interfaces are the Open Database Connectivity
(ODBC) supported by Microsoft and the Java Database Connectivity (JDBC) sup-
ported by Oracle. Because both Microsoft and Oracle have cooperated with the SQL
standards efforts, the most recent versions of these proprietary CLIs are compatible to
the SQL:2016 CLI. Because of the established user bases, these interfaces probably will
continue to be more widely used than the SQL:2016 CLI.

Statement-Level Interface
a language style for integrat-
ing a programming language
with a nonprocedural
language such as SQL.
A statement-level interface
involves changes to the syn-
tax of a host programming
language to accommodate
embedded SQL statements.

Call-Level Interface (CLI)
a language style for integrat-
ing a programming language
with a nonprocedural
language such as SQL. A CLI
includes a set of procedures
and a set of type definitions
for manipulating the results
of SQL statements in com-
puter programs.

26008_ch11_p415-476.indd 418 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   419

Binding  Binding for a database programming language involves the association of
an SQL statement with its access plan. Recall from Chapter 8 that an SQL compiler
determines the best access plan for an SQL statement after a detailed search of pos-
sible access plans. Static binding involves the determination of the access plan at
compile time. Because the optimization process can consume considerable computing
resources, it is desirable to determine the access plan at compile time and then reuse
the access plan for repetitively executed statements. However, in some applications,
data to retrieve cannot be predetermined. These situations require dynamic binding
in which the access plan for a statement is determined when the statement is executed
during run-time of the application. Even in these dynamic situations, it is useful to
reuse the access plan for a statement if the statement is repetitively executed by the
application.

SQL:2016 specifies both static and dynamic binding to support a range of data-
base applications. A statement-level interface can support both static and dynamic
binding. Embedded SQL statements have static binding. Dynamic SQL statements are
supported by the SQL:2016 EXECUTE statement that contains an SQL statement as an
input parameter. If a dynamic statement is repetitively executed by an application,
the SQL:2016 PREPARE statement supports reuse of the access plan. The SQL:2016
CLI supports only dynamic binding. If a dynamic statement is repetitively executed
by an application, the SQL:2016 CLI provides the Prepare() procedure to reuse the
access plan.

Database Connection  A database connection identifies the database used by an
application. A database connection can be implicit or explicit. For procedures and
triggers stored in a database, the connection is implicit. The SQL statements in triggers
and procedures implicitly access the database that contains the triggers and proce-
dures unless a different connection is specified.

In programs external to a database, the connection is explicit. SQL:2016 contains
the CONNECT statement and other related statements for statement-level interfaces
and the Connect() procedure and related procedures in the CLI. A database is identi-
fied by a web address or a database identifier that contains a web address. Using a
database identifier relieves a database programmer from knowing the specific web
address for a database as well as providing the server administrator more flexibility to
relocate a database to a different location on a server.

Result Processing  To process the results of SQL statements, database program-
ming languages must resolve differences in data types and processing orientation.
The data types in a programming language may not correspond exactly to the stan-
dard SQL data types. To resolve this mismatch, the database interface provides state-
ments or procedures to map between the programming language data types and the
SQL data types.

The result of a SELECT statement can be one row or a collection of rows. For
SELECT statements that return at most one row (for example, retrieval by primary
key), the SQL:2016 specification allows the result values to be stored in program vari-
ables. In the statement-level interface, SQL:2016 provides the USING clause to store
result values in program variables. The SQL:2016 CLI provides for implicit storage of
result values using predefined descriptor records that can be accessed in a program.

For SELECT statements that return more than one row, a cursor must be used.
A cursor allows storage and iteration of a set of records returned by a SELECT state-
ment. A cursor is similar to a dynamic array in which the array size is determined
by the size of the query result. For statement-level interfaces, SQL:2016 provides
statements to declare cursors, open and close cursors, position cursors, and retrieve
values from cursors. The SQL:2016 CLI provides procedures with similar functional-
ity to the statement-level interface. Section 11.2.3 presents details about cursors for
PL/SQL.

Cursor
a construct in a database
programming language that
allows storage and iteration
of a set of records returned
by a SELECT statement. A
cursor is similar to a dynamic
array in which the array size
is determined by the size of
the query result.

26008_ch11_p415-476.indd 419 3/2/18 9:25 PM

420   Part 5  Application Development with Relational Databases

11.1.3  PL/SQL Statements
Programming Language/Structured Query Language (PL/SQL) is a proprietary
database programming language for the Oracle DBMS. Since its introduction in 1992,
Oracle has steadily added features to PL/SQL so that it has the features of a modern
programming language as well as a statement-level interface for SQL. Because PL/
SQL is a widely used language among Oracle developers and Oracle is a widely used
enterprise DBMS, this chapter uses PL/SQL to depict stored procedures and triggers.

To prepare you to read and code stored procedures and triggers, this section pres-
ents examples of PL/SQL statements. After reading this section, you should under-
stand the structure of PL/SQL statements and be able to write PL/SQL statements
using the example statements as guidelines. This section shows enough PL/SQL state-
ment examples to allow you to read and write stored procedures and triggers of mod-
est complexity after you complete the chapter. However, this section depicts neither all
PL/SQL statements nor all statement variations.

This section is not a tutorial about computer programming. To follow the remain-
der of this chapter, you should have taken a previous course in computer program-
ming or have equivalent experience. You will find that PL/SQL statements are similar
to statements in other modern programming languages such as Java and Visual Basic.

Basics of PL/SQL  PL/SQL statements contain reserved words and symbols, user
identifiers, and constant values. Reserved words in PL/SQL are not case sensitive.
Reserved symbols include the semicolon (;) for terminating statements as well as
operators such as + and −. User identifiers provide names for variables, constants, and
other PL/SQL constructs. User identifiers like reserved words are not case sensitive.
The following list defines restrictions on user identifiers:

•	 Must have a maximum of 30 characters.
•	 Must begin with a letter.
•	 Allowable characters are letters (upper- and lower-case), numbers, the dollar

sign, the pound symbol (#), and the underscore.
•	 Must not be identical to any reserved word or symbol.
•	 Must not be identical to other identifiers, table names, or column names.

A PL/SQL statement may contain constant values for numbers and character strings
along with certain reserved words. The following list provides background about PL/
SQL constants:

•	 Numeric constants can be whole numbers (100), numbers with a decimal point
(1.67), negative numbers (−150.15), and numbers in scientific notation (3.14E7).

•	 String constants are surrounded in single quotation marks such as ‘this is a
string’. Do not use single quotation marks to surround numeric or Boolean
constants. String constants are case sensitive so that ‘This is a string’ is a different
value than ‘this is a string’. To use a single quotation mark in a string constant,
you should use two single quotation marks as ‘today’’s date’.

•	 Boolean constants are the TRUE and FALSE reserved words.
•	 The reserved word NULL can be used as a number, string, or Boolean constant.

For strings, two single quotation marks ‘’ without anything inside denote the
NULL value.

•	 PL/SQL does not provide date constants. You should use the To_Date function
to convert a string constant to a date value.

Variable Declaration and Assignment Statements  A variable declaration contains
a variable name (a user identifier), a data type, and an optional default value. Table 11-1
lists common PL/SQL data types. Besides using the predefined types, a variable’s
type can be a user defined-type created with a TYPE statement. A default value can be
indicated with the DEFAULT keyword or the assignment (:=) symbol. The DECLARE
keyword should precede the first variable declaration as shown in Example 11.1.

26008_ch11_p415-476.indd 420 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   421

For variables associated with columns of a database table, PL/SQL provides
anchored declarations. Anchored declarations relieve the programmer from knowing
the data types of database columns. An anchored declaration includes a fully-qualified
column name followed by the keyword %TYPE. Example 11.2 demonstrates anchored
variable declarations using columns from the revised university database of Chapter
10. The last anchored declaration involves a variable using the type associated with a
previously defined variable.

Example 11.1

Lines beginning with double hyphens are comments.

DECLARE
 aFixedLengthString	 CHAR(6) DEFAULT 'ABCDEF';
 aVariableLengthString	 VARCHAR2(30);
 anIntegerVariable	 INTEGER := 0;
 aFixedPrecisionVariable	 DECIMAL(10,2);
 -- Uses the SysDate function for the default value
 aDateVariable	 DATE DEFAULT SysDate;

PL/SQL Variable Declarations

Example 11.2

DECLARE
 anOffTerm Offering.OffTerm%TYPE;
 anOffYear Offering.OffYear%TYPE;
 aCrsUnits Course.CrsUnits%TYPE;
 aSalary1 DECIMAL(10,2);
 aSalary2 aSalary1%TYPE;

PL/SQL Anchored Variable Declarations

TABLE 11-1
Summary of Common PL/SQL
Data Types

Category Data Types Comments

String CHAR(L), VARCHAR2(L) CHAR for fixed length strings, VARCHAR2 for variable
length strings; L for the maximum length

Numeric INTEGER, SMALLINT, POSITIVE,
NUMBER(W,D), DECIMAL(W,D),
FLOAT, REAL

W for the width; D for the number of digits to the right of
the decimal point

Logical BOOLEAN TRUE, FALSE values

Date DATE Stores both date and time information including the
century, the year, the month, the day, the hour, the
minute, and the second. A date occupies 7 bytes.

Oracle also provides structured data types for combining primitive data types.
Oracle supports variable length arrays (VARRAY), tables (TABLE), and records
(RECORD) for combining data types. For information about the structured data types,
you should consult the online Oracle documentation such as the PL/SQL User’s Guide.

Assignment statements involve a variable, the assignment symbol (:=), and an
expression on the right. Expressions can include combinations of constants, variables,
functions, and operators. When evaluated, an expression produces a value. Example
11.3 demonstrates assignment statements with various expression elements.

26008_ch11_p415-476.indd 421 3/2/18 9:25 PM

422   Part 5  Application Development with Relational Databases

Conditional Statements  PL/SQL provides the IF and CASE statements for condi-
tional decision making. In an IF statement, a logical expression or condition evaluating
to TRUE, FALSE, or NULL, follows the IF keyword. Conditions contain comparison
expressions using the comparison operators (Table 11-2) connected using the logical
operators AND, OR, and NOT. Parentheses can be used to clarify the order of evalu-
ation in complex conditions. When mixing the AND and OR operators, you should
use parentheses to clarify the order of evaluation. Conditions are evaluated using the
three-valued logic described in Chapter 9 (Section 9.4).

Similar to other languages, the PL/SQL IF statement has multiple variations.
Example 11-4 depicts the first variation known as the IF-THEN statement. Any num-
ber of statements can be used between the THEN and END IF keywords. Example 11-5
depicts the second variation known as the IF-THEN-ELSE statement. This statement
allows a set of alternative statements if the condition is false. The third variation
(IF-THEN-ELSIF) depicted in Example 11-6 allows a condition for each ELSIF clause
along with a final ELSE clause if all conditions are false.

Example 11.3

It is assumed that variables used in the examples have been previously declared. Lines beginning with double hyphens are

comments.

aFixedLengthString := 'XYZABC';
-- || is the string concatenation function
aVariableLengthString := aFixedLengthString || 'ABCDEF';
anIntegerVariable := anAge + 1;
aFixedPrecisionVariable := aSalary * 0.10;
-- To_Date is the date conversion function
aDateVariable := To_Date('30-Jun-2017');

PL/SQL Assignment Examples

TABLE 11-2
List of PL/SQL Comparison
Operators

Operator Meaning

= Equal to

<> Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

IF-THEN Statement

IF condition THEN
 sequence of statements
END IF;

IF-THEN-ELSE Statement

IF condition THEN
 sequence of statements 1
ELSE
 sequence of statements 2
END IF;

26008_ch11_p415-476.indd 422 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   423

IF-THEN-ELSIF Statement

IF condition1 THEN
 sequence of statements 1
ELSIF condition2 THEN
 sequence of statements 2
ELSIF conditionN THEN
 sequence of statements N
ELSE
 sequence of statements N+1
END IF;

Example 11.4

It is assumed that variables used in the examples have been previously declared.

IF aCrsUnits > 3 THEN
 CourseFee := BaseFee + aCrsUnits * VarFee;
END IF;

IF anOffLimit > NumEnrolled OR CourseOverRide = TRUE THEN
 NumEnrolled := NumEnrolled + 1;
 EnrDate := SysDate;
END IF;

IF-THEN Statement Examples

Example 11.5

It is assumed that variables used in the examples have been previously declared.

IF aCrsUnits > 3 THEN
 CourseFee := BaseFee + ((aCrsUnits – 3) * VarFee);
ELSE
 CourseFee := BaseFee;
END IF;

IF anOffLimit > NumEnrolled OR CourseOverRide = TRUE THEN
 NumEnrolled := NumEnrolled + 1;
 EnrDate := SysDate;
ELSE
 Enrolled := FALSE;
END IF;

IF-THEN-ELSE Statement Examples

Example 11.6

It is assumed that variables used in the examples have been previously declared.

IF anOffTerm = 'Fall' AND Enrolled := TRUE THEN
 FallEnrolled := FallEnrolled + 1;

IF-THEN-ELSIF Statement Examples

26008_ch11_p415-476.indd 423 3/2/18 9:25 PM

424   Part 5  Application Development with Relational Databases

The CASE statement uses a selector instead of condition. A selector is an expres-
sion whose value determines a decision. Example 11.7 shows a CASE statement
corresponding to the second part of Example 11.6. The CASE statement was first
introduced in PL/SQL for Oracle 9i. Previous Oracle versions give a syntax error for
Example 11.7.

ELSIF anOffTerm = 'Spring' AND Enrolled := TRUE THEN
 SpringEnrolled := SpringEnrolled + 1;
ELSE
 SummerEnrolled := SummerEnrolled + 1;
END IF;

IF aStdClass = 'FR' THEN
 NumFR := NumFR + 1;
 NumStudents := NumStudents + 1;
ELSIF aStdClass = 'SO' THEN
 NumSO := NumSO + 1;
 NumStudents := NumStudents + 1;
ELSIF aStdClass = 'JR' THEN
 NumJR := NumJR + 1;
 NumStudents := NumStudents + 1;
ELSIF aStdClass = 'SR' THEN
 NumSR := NumSR + 1;
 NumStudents := NumStudents + 1;
END IF;

Example 11.7

CASE Statement Example Corresponding
to the Second Part of Example 11-6
It is assumed that variables used in the example have been previously declared.

CASE aStdClass
 WHEN 'FR' THEN
 NumFR := NumFR + 1;
 NumStudents := NumStudents + 1;
 WHEN 'SO' THEN
 NumSO := NumSO + 1;
 NumStudents := NumStudents + 1;
 WHEN 'JR' THEN
 NumJR := NumJR + 1;
 NumStudents := NumStudents + 1;
 WHEN 'SR' THEN
 NumSR := NumSR + 1;
 NumStudents := NumStudents + 1;
END CASE;

CASE Statement

CASE selector
 WHEN expression1 THEN sequence of statements 1
 WHEN expression2 THEN sequence of statements 2
 WHEN expressionN THEN sequence of statements N
 [ELSE sequence of statements N+1]
END CASE;

26008_ch11_p415-476.indd 424 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   425

Iteration Statements  PL/SQL contains three iteration statements along with a
statement to terminate a loop. The FOR LOOP statement iterates over a range of inte-
ger values, as shown in Example 11.8. The WHILE LOOP statement iterates until a
stopping condition is false, as shown in Example 11.9. The LOOP statement iterates
until an EXIT statement ceases termination, as shown in Example 11.10. Note that the
EXIT statement can also be used in the FOR LOOP and the WHILE LOOP statements
to cause early termination of a loop.

Example 11.8

FOR LOOP Statement Example

It is assumed that variables used in the example have been previously declared.

FOR Idx IN 1 .. NumStudents LOOP
 TotalUnits := TotalUnits + (Idx * aCrsUnits);
END LOOP;

Example 11.9

WHILE LOOP statement
corresponding to Example 11.8

Idx := 1;
WHILE Idx <= NumStudents LOOP
 TotalUnits := TotalUnits + (Idx * aCrsUnits);
 Idx := Idx + 1;
END LOOP;

FOR LOOP Statement

FOR variable IN BeginExpr .. EndExpr LOOP
 sequence of statements
END LOOP;

WHILE LOOP Statement

WHILE condition LOOP
 sequence of statements
END LOOP;

Example 11.10

LOOP statement corresponding
to Example 11.8

Idx := 1;
LOOP
 TotalUnits := TotalUnits + (Idx * aCrsUnits);
 Idx := Idx + 1;
 EXIT WHEN Idx > NumStudents;
END LOOP;

26008_ch11_p415-476.indd 425 3/2/18 9:25 PM

426   Part 5  Application Development with Relational Databases

11.1.4  Executing PL/SQL Statements in Anonymous Blocks
PL/SQL is a block structured language. You will learn about named blocks in
Section 11.2. This section introduces anonymous blocks so that you can execute state-
ment examples in SQL Developer, a visual tool for creating database objects, build-
ing data models, monitoring database activity, and testing database procedures. SQL
Developer replaced SQL *Plus, the traditional command-oriented tool for submitting
SQL and PL-SQL statements. Anonymous blocks also are useful for testing procedures
and triggers. Before presenting anonymous blocks, a brief introduction to the SQL
Developer is provided.

SQL Developer provides the SQL Worksheet tool for executing SQL, PL/SQL, and
SQL *Plus commands. You can use the Run Statement button to execute SQL state-
ments, and the Run Script button to execute a collection of SQL, PL/SQL, and SQL
*Plus statements. Table 11-3 lists common SQL *Plus commands useful in the SQL
Developer. The SQL Developer documentation provides details about the SQL *Plus
commands supported in the SQL Worksheet tool. The anonymous procedures and
related SQL *Plus commands in Examples 11.11 and 11.12 can be executed in the SQL
Worksheet using the Run Script button.

A PL/SQL block contains an optional declaration section (DECLARE keyword),
an executable section (BEGIN keyword), and an optional exception section (EXCEP-
TION keyword). The presentation here depicts anonymous blocks containing declara-
tion and executable sections. Section 11.2 depicts the exception section.

LOOP Statement

LOOP
 sequence of statements containing an EXIT statement
END LOOP;

Block Structure

[DECLARE
 sequence of declarations]
BEGIN
 sequence of statements
[EXCEPTION
 sequence of statements to respond to exceptions]
END;

TABLE 11-3
List of SQL *Plus Commands
useful in the SQL Developer

Command Example and Meaning

SET SET SERVEROUTPUT ON causes the results of PL/SQL statements to be displayed.

SHOW SHOW ERRORS causes compilation errors to be displayed.

SPOOL SPOOL FileName causes the output to be written to FileName. SPOOL OFF stops spooling
to a file.

/ Use on a line by itself to terminate a collection of statements or SQL *Plus commands

To demonstrate anonymous blocks, Example 11.11 computes the sum and product of
integers 1 to 10. The Dbms_Output.Put_Line procedure displays the results. The Dbms_
Output package contains procedures and functions to read and write lines in a buffer.
Example 11.12 modifies Example 11.11 to compute the sum of the odd numbers and
the product of the even numbers.

26008_ch11_p415-476.indd 426 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   427

Example 11.11

Anonymous Block to Compute
the Sum and the Product
The first line (SET command) and the last line (/) are not part of the anonymous block.

-- SQL *Plus command
SET SERVEROUTPUT ON;
-- Anonymous block
DECLARE
 TmpSum INTEGER;
 TmpProd INTEGER;
 Idx INTEGER;
BEGIN
-- Initialize temporary variables
 TmpSum := 0;
 TmpProd := 1;
 -- Use a loop to compute the sum and product
 FOR Idx IN 1 .. 10 LOOP
 TmpSum := TmpSum + Idx;
 TmpProd := TmpProd * Idx;
 END LOOP;
 -- Display the results
 Dbms_Output.Put_Line('Sum is ' || To_Char(TmpSum));
 Dbms_Output.Put_Line('Product is ' || To_Char(TmpProd));
END;
/

Example 11.12

Anonymous Block to Compute the
Sum of the Even Numbers and the
Product of the Odd Numbers

The SET command is not necessary if it was used for Example 11.11 in the same session of SQL *Plus.

SET SERVEROUTPUT ON;
DECLARE
 TmpSum INTEGER;
 TmpProd INTEGER;
 Idx INTEGER;
BEGIN
 -- Initialize temporary variables
 TmpSum := 0;
 TmpProd := 1;
 -- Use a loop to compute the sum of the even numbers and
 -- the product of the odd numbers.
 -- Mod(X,Y) returns the integer remainder of X/Y.
 FOR Idx IN 1 .. 10 LOOP
 IF Mod(Idx,2) = 0 THEN -- even number
 TmpSum := TmpSum + Idx;
 ELSE
 TmpProd := TmpProd * Idx;
 END IF;
 END LOOP;
 -- Display the results
 Dbms_Output.Put_Line('Even sum is ' || To_Char(TmpSum));
 Dbms_Output.Put_Line('Odd product is ' || To_Char(TmpProd));
END;
/

26008_ch11_p415-476.indd 427 3/2/18 9:25 PM

428   Part 5  Application Development with Relational Databases

With background about database programming languages and PL/SQL, you are now
ready to learn about stored procedures. Programming languages have supported
procedures since the early days of business computing. Procedures support the man-
agement of complexity by allowing computing tasks to be divided into manageable
chunks. A database procedure is like a programming language procedure except that
it is managed by the DBMS, not the programming environment. The following list
explains the reasons for a DBMS to manage procedures:

•	 A DBMS can compile the programming language code along with the SQL
statements in a stored procedure. In addition, a DBMS can detect when the SQL
statements in a procedure need to be recompiled due to changes in database
definitions.

•	 Stored procedures allow flexibility for client-server development. The stored
procedures are saved on a server and not replicated on each client. In the early
days of client-server computing, the ability to store procedures on a server was
a major motivation for stored procedures. With the development of distributed
objects on the Web, this motivation is not as important now because there are
other technologies for managing stored procedures on remote servers.

•	 Stored procedures allow for the development of more complex operators and
functions than supported by SQL. Chapter 19 describes the importance of
specialized procedures and functions in object-oriented databases.

•	 Database administrators can manage stored procedures with the same tools
for managing other parts of a database application. Most importantly, stored
procedures are managed by the security system of the DBMS.

This section covers PL/SQL procedures, functions, and packages. Some additional
parts of PL/SQL (cursors and exceptions) are shown to demonstrate the utility of
stored procedures. Testing scripts assume that the university tables are populated
according to the data on the textbook’s website.

11.2.1  PL/SQL Procedures
In PL/SQL, a procedure is a named block with an optional set of parameters. Each
parameter contains a parameter name, a usage (IN, OUT, IN OUT), and a data type.
An input parameter (IN) should not be changed inside a procedure. An output param-
eter (OUT) is given a value inside a procedure. An input-output parameter (IN OUT)
should have a value provided outside a procedure but can be changed inside a pro-
cedure. The data type specification should not include any constraints such as length.
For example, you should use the data type VARCHAR2 without a length specification
for a parameter containing text.

11.2  STORED PROCEDURES

Procedure Structure

CREATE [OR REPLACE] PROCEDURE ProcedureName
 [(Parameter1, …, ParameterN)]
IS
 [sequence of declarations]
BEGIN
 sequence of statements
[EXCEPTION
 sequence of statements to respond to exceptions]
END;

As a simple example, the procedure pr_InsertRegistration in Example 11.13 inserts
a row into the Registration table of the university database. The input parameters,
defined using anchored data types, provide the values to insert. The Dbms_Output.

26008_ch11_p415-476.indd 428 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   429

Put_Line procedure call displays a message that the insert was successful. In the testing
code that follows the CREATE PROCEDURE statement, the ROLLBACK statement
eliminates changes made by all SQL statements. ROLLBACK statements are useful in
testing code when database changes should not be permanent.

Example 11.13

Procedure to Insert a Row into
the Registration Table along with
Code to Test the Procedure

CREATE OR REPLACE PROCEDURE pr_InsertRegistration
(aRegNo IN Registration.RegNo%TYPE,
 aStdNo IN Registration.StdNo%TYPE,
 aRegStatus IN Registration.RegStatus%TYPE,
 aRegDate IN Registration.RegDate%TYPE,
 aRegTerm IN Registration.RegTerm%TYPE,
 aRegYear IN Registration.RegYear%TYPE) IS
-- Insert a new registration using parameter values
BEGIN
INSERT INTO Registration
	 (RegNo, StdNo, RegStatus, RegDate, RegTerm, RegYear)
VALUES (aRegNo, aStdNo, aRegStatus, aRegDate, aRegTerm, aRegYear);

dbms_output.put_line('Row added to Registration table');
END;
/

-- Testing code
SET SERVEROUTPUT ON;
-- Number of rows before the procedure execution
SELECT COUNT(*) FROM Registration;

BEGIN
pr_InsertRegistration
 (1275,'901-23-4567','F',To_Date('27-Feb-2017'),'Spring',2017);
END;
/
-- Number of rows after the procedure execution
SELECT COUNT(*) FROM Registration;
-- Delete the inserted row using the ROLLBACK statement
ROLLBACK;

To enable reuse of pr_InsertRegistration by other procedures, you should replace
the output display with an output parameter indicating the success or failure of the
insertion. Example 11.14 modifies Example 11.13 to use an output parameter. The
OTHERS exception catches a variety of errors such as a violation of a primary key
constraint or a foreign key constraint. You should use the OTHERS exception when
you do not need specialized code for each kind of exception. To catch a specific error,
you should use a predefined exception (Table 11-4) or create a user-defined exception.
Example 11.26 (in the trigger section) contains an example of a user-defined exception.
After the procedure, the script includes test cases for a successful insert as well as a
primary key constraint violation.

26008_ch11_p415-476.indd 429 3/2/18 9:25 PM

430   Part 5  Application Development with Relational Databases

Example 11.14

Procedure to Insert a Row into
the Registration Table Along with
Code to Test the Procedure

CREATE OR REPLACE PROCEDURE pr_InsertRegistration
(aRegNo IN Registration.RegNo%TYPE,
 aStdNo IN Registration.StdNo%TYPE,
 aRegStatus IN Registration.RegStatus%TYPE,
 aRegDate IN Registration.RegDate%TYPE,
 aRegTerm IN Registration.RegTerm%TYPE,
 aRegYear IN Registration.RegYear%TYPE,
 aResult OUT BOOLEAN) IS
-- Create a new registration
-- aResult is TRUE if successful, false otherwise.
BEGIN
aResult := TRUE;
INSERT INTO Registration
	 (RegNo, StdNo, RegStatus, RegDate, RegTerm, RegYear)
VALUES (aRegNo, aStdNo, aRegStatus, aRegDate, aRegTerm, aRegYear);

EXCEPTION
WHEN OTHERS THEN aResult := FALSE;
END;
/

-- Testing code
SET SERVEROUTPUT ON;
-- Number of rows before the procedure execution
SELECT COUNT(*) FROM Registration;
DECLARE
 -- Output parameter declared in the calling block
 Result BOOLEAN;
BEGIN
-- This test should succeed.
-- Assign value to the output parameter (Result).
pr_InsertRegistration
(1275,'901-23-4567','F',To_Date('27-Feb-2017'),'Spring',2017,Result);
IF Result THEN
 dbms_output.put_line('Registration row added');
ELSE
 dbms_output.put_line('Registration row not added');
END IF;

-- This test should fail because of the duplicate primary key.
pr_InsertRegistration
(1275,'901-23-4567','F',To_Date('27-Feb-2017'),'Spring',2017,Result);
IF Result THEN
 dbms_output.put_line('Registration row added');
ELSE
 dbms_output.put_line('Registration row not added');
END IF;
END;
/

-- Number of rows after the procedure executions
SELECT COUNT(*) FROM Registration;
-- Delete inserted row
ROLLBACK;

26008_ch11_p415-476.indd 430 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   431

11.2.2  PL/SQL Functions
Functions should return values instead of manipulating output variables and having
side effects such as inserting rows into a table. You should always use a procedure if
you want to have more than one result and/or have a side effect. Functions should
be usable in expressions, meaning that a function call can be replaced by the value it
returns. A PL/SQL function is similar to a procedure in that both contain a parameter
list. However, a function should use only input parameters. After the parameter list,
the return data type is defined without any constraints such as length. In the function
body, the sequence of statements should include a RETURN statement to generate the
function’s output value.

TABLE 11-4
List of Common Predefined
PL/SQL Exceptions

Exception When Raised

Cursor_Already_Open Attempt to open a cursor that has been previously opened

Dup_Val_On_Index Attempt to store a duplicate value in a unique index

Invalid_Cursor Attempt to perform an invalid operation on a cursor such as closing a cursor
that was not previously opened

No_Data_Found SELECT INTO statement returns no rows

Rowtype_Mismatch Attempt to assign values with incompatible data types between a cursor and a
variable

Timeout_On_Resource Timeout1 occurs such as when waiting for an exclusive lock

Too_Many_Rows SELECT INTO statement returns more than one row

Function Structure

CREATE [OR REPLACE] FUNCTION FunctionName
 [(Parameter1, …, ParameterN)]
RETURN DataType
IS
 [sequence of declarations]
BEGIN
 sequence of statements including a RETURN statement
[EXCEPTION
 sequence of statements to respond to exceptions]
END;

Procedures versus Functions: use a procedure if the code should have more than
one result or a side effect. Functions should be usable in expressions, meaning that a
function call can be replaced by the value it returns. To enable functions to be used in
expressions, functions should only use input parameters.

As a simple example, the function fn_RetrieveStdName in Example 11.15 retrieves
the name of a student given the student number. The predefined exception No_Data_
Found is true if the SELECT statement does not return at least one row. The SELECT
statement uses the INTO clause to associate the variables with the database columns.
The INTO clause can be used only when the SELECT statement returns at most one
row. If an INTO clause is used when a SELECT statement returns more than one row,
an exception is generated. The Raise_Application_Error procedure displays an error
message and an error number. This predefined procedure is useful to handle unex-
pected errors.

1 Chapter 17 explains the usage of timeouts with transaction locking to prevent deadlocks.

26008_ch11_p415-476.indd 431 3/2/18 9:25 PM

432   Part 5  Application Development with Relational Databases

Example 11.15

Function to Retrieve the Student
Name Given the Student Number

CREATE OR REPLACE FUNCTION fn_RetrieveStdName
(aStdNo IN Student.StdNo%type) RETURN VARCHAR2 IS
-- Retrieves the student name (concatenate first and last name)
-- given a student number. If the student does not exist,
-- return null.
aFirstName Student.StdFirstName%TYPE;
aLastName Student.StdLastName%TYPE;

BEGIN
SELECT StdFirstName, StdLastName
 INTO aFirstName, aLastName
 FROM Student
 WHERE StdNo = aStdNo;

RETURN(aLastName || ', ' || aFirstName);

EXCEPTION
-- No_Data_Found is raised if the SELECT statement returns no data.
 WHEN No_Data_Found THEN
 RETURN(NULL);

 WHEN OTHERS THEN
 raise_application_error(-20001, 'Database error');

END;
/
-- Testing code
SET SERVEROUTPUT ON;
DECLARE
aStdName VARCHAR2(50);
BEGIN
-- This call should display a student name.
aStdName := fn_RetrieveStdName('901-23-4567');
IF aStdName IS NULL THEN
	 dbms_output.put_line('Student not found');
ELSE
	 dbms_output.put_line('Name is ' || aStdName);
END IF;

-- This call should not display a student name.
aStdName := fn_RetrieveStdName('905-23-4567');
IF aStdName IS NULL THEN
	 dbms_output.put_line('Student not found');
ELSE
	 dbms_output.put_line('Name is ' || aStdName);
END IF;
END;
/

Example 11.16 shows a function with a more complex query than the function
in Example 11.15. The testing code contains two cases to test for an existing student
and a non-existing student along with a SELECT statement that uses the function in
the result. An important benefit of functions is that they can be used in expressions in
SELECT statements.

26008_ch11_p415-476.indd 432 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   433

Example 11.16

Function to Compute the Weighted GPA
Given the Student Number and Year

CREATE OR REPLACE FUNCTION fn_ComputeWeightedGPA
(aStdNo IN Student.StdNo%TYPE, aYear IN Offering.OffYear%TYPE)
 RETURN NUMBER IS
-- Computes the weighted GPA given a student number and year.
-- Weighted GPA is the sum of units times the grade
-- divided by the total units.
-- If the student does not exist, return null.
WeightedGPA NUMBER;

BEGIN
SELECT SUM(EnrGrade*CrsUnits)/SUM(CrsUnits)
 INTO WeightedGPA
 FROM Student, Registration, Enrollment, Offering, Course
 WHERE Student.StdNo = aStdNo
 AND Offering.OffYear = aYear
 AND Student.StdNo = Registration.StdNo
 AND Registration.RegNo = Enrollment.RegNo
 AND Enrollment.OfferNo = Offering.OfferNo
 AND Offering.CourseNo = Course.CourseNo;

RETURN(WeightedGPA);

EXCEPTION
 WHEN No_Data_Found THEN
 RETURN(NULL);

 WHEN OTHERS THEN
 raise_application_error(-20001, 'Database error');

END;
/
-- Testing code
SET SERVEROUTPUT ON;
DECLARE
aGPA DECIMAL(3,2);
BEGIN
-- This call should display a weighted GPA.
aGPA := fn_ComputeWeightedGPA('901-23-4567', 2017);
IF aGPA IS NULL THEN
	 dbms_output.put_line('Student or enrollments not found');
ELSE
	 dbms_output.put_line('Weighted GPA is ' || to_char(aGPA));
END IF;

-- This call should not display a weighted GPA.
aGPA := fn_ComputeWeightedGPA('905-23-4567', 2017);
IF aGPA IS NULL THEN
	 dbms_output.put_line('Student or enrollments not found');
ELSE
	 dbms_output.put_line('Weighted GPA is ' || to_char(aGPA));
END IF;
END;
/
-- Use the function in a query
SELECT StdNo, StdFirstName, StdLastName,
 fn_ComputeWeightedGPA(StdNo, 2017) AS WeightedGPA
FROM Student;

26008_ch11_p415-476.indd 433 3/2/18 9:25 PM

434   Part 5  Application Development with Relational Databases

11.2.3  Using Cursors
The previous procedures and functions are rather simple as they involve retrieval of
a single row. More complex procedures and functions involve iteration through mul-
tiple rows using a cursor. PL/SQL provides cursor declaration (explicit or implicit), a
specialized FOR statement for cursor iteration, cursor attributes to indicate the status
of cursor operations, and statements to perform actions on explicit cursors. PL/SQL
supports static cursors in which the SQL statement is known at compile-time as well as
dynamic cursors in which the SQL statement is not determined until run-time.

Example 11.17 depicts an implicit cursor to return the class rank of a student in an
offering. Implicit cursors are not declared in the DECLARE section. Instead, implicit
cursors are declared, opened, and iterated inside a FOR statement. In Example 11.17,
the FOR statement iterates through each row of the SELECT statement using the
implicit cursor EnrollRec. The SELECT statement sorts the result in descending order by

Example 11.17

Using an Implicit Cursor to Determine the
Class Rank of a Given Student and Offering

CREATE OR REPLACE FUNCTION fn_DetermineRank
(aStdNo IN Student.StdNo%TYPE, anOfferNo IN Offering.OfferNo%TYPE)
 RETURN INTEGER IS
-- Determines the class rank given a StdNo and OfferNo.
-- Computes dense ranking with no gap in ranks for matching grades
-- Uses an implicit cursor.
-- If the student or offering do not exist, return 0.
TmpRank INTEGER :=0;
PrevEnrGrade Enrollment.EnrGrade%TYPE := 9.9;
FOUND BOOLEAN := FALSE;

BEGIN
-- Loop through implicit cursor
FOR EnrollRec IN
 (SELECT Student.StdNo, EnrGrade
 FROM Student, Registration, Enrollment
 WHERE Enrollment.OfferNo = anOfferNo
 AND Student.StdNo = Registration.StdNo
 AND Registration.RegNo = Enrollment.RegNo
 ORDER BY EnrGrade DESC) LOOP

 IF EnrollRec.EnrGrade < PrevEnrGrade THEN
 -- Increment the class rank when the grade changes
 TmpRank := TmpRank + 1;
 PrevEnrGrade := EnrollRec.EnrGrade;
 END IF;
 IF EnrollRec.StdNo = aStdNo THEN
 Found := TRUE;
 EXIT;
 END IF;
END LOOP;

Implicit PL/SQL Cursor: a cursor that is neither explicitly declared nor explicitly
opened. Instead a special version of the FOR statement declares, opens, iterates, and
closes a locally named SELECT statement. An implicit cursor cannot be referenced
outside of the FOR statement in which it is declared.

26008_ch11_p415-476.indd 434 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   435

IF Found THEN
 RETURN(TmpRank);
ELSE
 RETURN(0);
END IF;

EXCEPTION
WHEN OTHERS THEN
 raise_application_error(-20001, 'Database error');

END;
/
-- Testing code
SET SERVEROUTPUT ON;
-- Execute query to see test data
SELECT Student.StdNo, EnrGrade
 FROM Student, Registration, Enrollment
 WHERE Enrollment.OfferNo = 5679
 AND Student.StdNo = Registration.StdNo
 AND Registration.RegNo = Enrollment.RegNo
 ORDER BY EnrGrade DESC;

-- Test script
DECLARE
aRank INTEGER;
BEGIN
-- This call should return a rank of 6.
aRank := fn_DetermineRank('789-01-2345', 5679);
IF aRank > 0 THEN
	 dbms_output.put_line('Rank is ' || to_char(aRank));
ELSE
	 dbms_output.put_line('Student is not enrolled.');
END IF;

-- This call should return a rank of 0.
aRank := fn_DetermineRank('789-01-2005', 5679);
IF aRank > 0 THEN
	 dbms_output.put_line('Rank is ' || to_char(aRank));
ELSE
	 dbms_output.put_line('Student is not enrolled.');
END IF;
END;
/

enrollment grade. The function exits the FOR statement when the StdNo value matches
the parameter value. The class rank is incremented only when the grade changes so
that two students with the same grade have the same rank. The function computes a
dense ranking with no gaps in ranks.

Example 11.18 depicts a procedure with an explicit cursor to return the class rank
and the grade of a student in an offering. The explicit cursor EnrollCursor in the CUR-
SOR statement contains offer number as a parameter. Explicit cursors must use param-
eters for nonconstant search values in the associated SELECT statement. The OPEN,
FETCH, and CLOSE statements replace the FOR statement of Example 11.17. After the
FETCH statement, the condition EnrollCursor%NotFound tests for the empty cursor.

PL/SQL supports a number of cursor attributes as listed in Table 11-5. When used
with an explicit cursor, the cursor name precedes the cursor attribute. When used
with an implicit cursor, the SQL keyword precedes the cursor attribute. For example,
SQL%RowCount denotes the number of rows in an implicit cursor. The implicit cursor
name is not used.

Explicit PL/SQL Cursor
a cursor that is declared
with the CURSOR statement
in the DECLARE section.
Explicit cursors are usually
manipulated by the OPEN,
CLOSE, and FETCH state-
ments. Explicit cursors can
be referenced anyplace
inside the BEGIN section.

26008_ch11_p415-476.indd 435 3/2/18 9:25 PM

436   Part 5  Application Development with Relational Databases

Example 11.18

Using an Explicit Cursor to Determine
the Class Rank and Grade of a
Given Student and Offering

CREATE OR REPLACE PROCEDURE pr_DetermineRank
(aStdNo IN Student.StdNo%TYPE, anOfferNo IN Offering.OfferNo%TYPE,
 OutRank OUT INTEGER, OutGrade OUT Enrollment.EnrGrade%TYPE) IS
-- Determines the class rank and grade for a given student number
-- and OfferNo using an explicit cursor.
-- Computes dense ranking with no gap in ranks for matching grades
-- If the student or offering do not exist, return 0.
TmpRank INTEGER :=0;
PrevEnrGrade Enrollment.EnrGrade%TYPE := 9.9;
Found BOOLEAN := FALSE;
TmpGrade Enrollment.EnrGrade%TYPE;
TmpStdNo Student.StdNo%TYPE;
-- Explicit cursor
CURSOR EnrollCursor (tmpOfferNo Offering.OfferNo%TYPE) IS
 SELECT Student.StdNo, EnrGrade
 FROM Student, Registration, Enrollment
 WHERE Enrollment.OfferNo = anOfferNo
 AND Student.StdNo = Registration.StdNo
 AND Registration.RegNo = Enrollment.RegNo
 ORDER BY EnrGrade DESC;

BEGIN
-- Open and loop through explicit cursor
OPEN EnrollCursor(anOfferNo);
LOOP
 FETCH EnrollCursor INTO TmpStdNo, TmpGrade;
 EXIT WHEN EnrollCursor%NotFound;
 IF TmpGrade < PrevEnrGrade THEN
 -- Increment the class rank when the grade changes
 TmpRank := TmpRank + 1;
 PrevEnrGrade := TmpGrade;
 END IF;
 IF TmpStdNo = aStdNo THEN
 Found := TRUE;
 EXIT;
 END IF;
END LOOP;

CLOSE EnrollCursor;
IF Found THEN
 OutRank := TmpRank;
 OutGrade := PrevEnrGrade;
ELSE
 OutRank := 0;
 OutGrade := 0;
END IF;

EXCEPTION
WHEN OTHERS THEN
 raise_application_error(-20001, 'Database error');
END;
/
-- Testing code
SET SERVEROUTPUT ON;
-- Execute query to see test data

26008_ch11_p415-476.indd 436 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   437

SELECT Student.StdNo, EnrGrade
 FROM Student, Registration, Enrollment
 WHERE Student.StdNo = Registration.StdNo
 AND Registration.RegNo = Enrollment.RegNo
 AND Enrollment.OfferNo = 5679
 ORDER BY EnrGrade DESC;

-- Test script
DECLARE
aRank INTEGER;
aGrade Enrollment.EnrGrade%TYPE;
BEGIN
-- This call should produce a rank of 6.
pr_DetermineRank('789-01-2345', 5679, aRank, aGrade);
IF aRank > 0 THEN
	 dbms_output.put_line('Rank is ' || to_char(aRank) || '.');
	 dbms_output.put_line('Grade is ' || to_char(aGrade) || '.');
ELSE
	 dbms_output.put_line('Student is not enrolled.');
END IF;

-- This call should produce a rank of 0.
pr_DetermineRank('789-01-2005', 5679, aRank, aGrade);
IF aRank > 0 THEN
	 dbms_output.put_line('Rank is ' || to_char(aRank) || '.');
	 dbms_output.put_line('Grade is ' || to_char(aGrade) || '.');
ELSE
	 dbms_output.put_line('Student is not enrolled.');
END IF;
END;
/

TABLE 11-5
List of Common Cursor
Attributes

Cursor Attribute Value

%IsOpen True if cursor is open

%Found True if cursor is not empty following a FETCH statement

%NotFound True if cursor is empty following a FETCH statement

%RowCount Number of rows fetched. After each FETCH, the RowCount is incremented

11.2.4  PL/SQL Packages
Packages support a larger unit of modularity than procedures or functions. A pack-
age may contain procedures, functions, exceptions, variables, constants, types, and
cursors. By grouping related objects together, a package provides easier reuse than
individual procedures and functions. Oracle provides many predefined packages such
as the DBMS_Output package containing groups of related objects. In addition, a pack-
age separates a public interface from a private implementation to support reduced
software maintenance efforts. Changes to a private implementation do not affect the
usage of a package through its interface. Chapter 19 on object databases provides more
details about the benefits of larger units of modularity.

A package interface contains the definitions of procedures and functions along
with other objects that can be specified in the DECLARE section of a PL/SQL block.
All objects in a package interface are public. Example 11.19 demonstrates the interface
for a package combining some of the procedures and functions presented in previous
sections.

26008_ch11_p415-476.indd 437 3/2/18 9:25 PM

438   Part 5  Application Development with Relational Databases

Package Interface Structure

CREATE [OR REPLACE] PACKAGE PackageName IS
[Constant, variable, and type declarations]
[Cursor declarations]
[Exception declarations]
[Procedure definitions]
[Function definitions]
END PackageName;

Example 11.19

Package Interface Containing
Related Procedures and Functions
for the University Database

CREATE OR REPLACE PACKAGE pck_University IS
PROCEDURE pr_DetermineRank
 (aStdNo IN Student.StdNo%TYPE, anOfferNo IN Offering.OfferNo%TYPE,
 OutRank OUT INTEGER, OutGrade OUT Enrollment.EnrGrade%TYPE);
FUNCTION fn_ComputeWeightedGPA
(aStdNo IN Student.StdNo%TYPE, aYear IN Offering.OffYear%TYPE)
 RETURN NUMBER;
END pck_University;
/

A package implementation or body contains the private details of a package. For
each object in the package interface, the package body must define an implementa-
tion. In addition, private objects can be defined in a package body. Private objects
can be used only inside the package body. External users of a package cannot access
private objects. Example 11.20 demonstrates the body for the package interface in
Example 11.19. Note that each procedure or function terminates with an END state-
ment containing the procedure or function name. Otherwise the procedure and func-
tion implementations are identical to creating a procedure or function outside of a
package.

Package Body Structure

CREATE [OR REPLACE] PACKAGE BODY PackageName IS
[Variable and type declarations]
[Cursor declarations]
[Exception declarations]
[Procedure implementations]
[Function implementations]
[BEGIN sequence of statements]
[EXCEPTION exception handling statements]
END PackageName;

To use the objects in a package, you need to use the package name before the object
name. In Example 11.21, you should note that the package name (pck_University) pre-
cedes the procedure and function names.

26008_ch11_p415-476.indd 438 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   439

Example 11.20

Package Body Containing Implementations
of Procedures and Functions

CREATE OR REPLACE PACKAGE BODY pck_University IS
PROCEDURE pr_DetermineRank
 (aStdNo IN Student.StdNo%TYPE, anOfferNo IN Offering.OfferNo%TYPE,
 OutRank OUT INTEGER, OutGrade OUT Enrollment.EnrGrade%TYPE) IS
-- Determines the class rank and grade for a given student number
-- and OfferNo using an explicit cursor.
-- If the student or offering do not exist, return 0.
TmpRank INTEGER :=0;
PrevEnrGrade Enrollment.EnrGrade%TYPE := 9.9;
Found BOOLEAN := FALSE;
TmpGrade Enrollment.EnrGrade%TYPE;
TmpStdNo Student.StdNo%TYPE;
-- Explicit cursor
CURSOR EnrollCursor (tmpOfferNo Offering.OfferNo%TYPE) IS
 SELECT Student.StdNo, EnrGrade
 FROM Student, Registration, Enrollment
 WHERE Enrollment.OfferNo = anOfferNo
 AND Student.StdNo = Registration.StdNo
 AND Registration.RegNo = Enrollment.RegNo
 ORDER BY EnrGrade DESC;

BEGIN
-- Open and loop through explicit cursor
OPEN EnrollCursor(anOfferNo);
LOOP
 FETCH EnrollCursor INTO TmpStdNo, TmpGrade;
 EXIT WHEN EnrollCursor%NotFound;
 IF TmpGrade < PrevEnrGrade THEN
 -- Increment the class rank when the grade changes
 TmpRank := TmpRank + 1;
 PrevEnrGrade := TmpGrade;
 END IF;
 IF TmpStdNo = aStdNo THEN
 Found := TRUE;
 EXIT;
 END IF;
END LOOP;

CLOSE EnrollCursor;
IF Found THEN
 OutRank := TmpRank;
 OutGrade := PrevEnrGrade;
ELSE
 OutRank := 0;
 OutGrade := 0;
END IF;

EXCEPTION
WHEN OTHERS THEN
 raise_application_error(-20001, 'Database error');
END pr_DetermineRank;

FUNCTION fn_ComputeWeightedGPA
(aStdNo IN Student.StdNo%TYPE, aYear IN Offering.OffYear%TYPE)
 RETURN NUMBER IS
-- Computes the weighted GPA given a student number and year.
-- Weighted GPA is the sum of units times the grade

26008_ch11_p415-476.indd 439 3/2/18 9:25 PM

440   Part 5  Application Development with Relational Databases

-- divided by the total units.
-- If the student does not exist, return null.
WeightedGPA NUMBER;

BEGIN

SELECT SUM(EnrGrade*CrsUnits)/SUM(CrsUnits)
 INTO WeightedGPA
 FROM Student, Registration, Enrollment, Offering, Course
 WHERE Student.StdNo = aStdNo
 AND Offering.OffYear = aYear
 AND Student.StdNo = Registration.StdNo
 AND Registration.RegNo = Enrollment.RegNo
 AND Enrollment.OfferNo = Offering.OfferNo
 AND Offering.CourseNo = Course.CourseNo;

RETURN(WeightedGPA);

EXCEPTION
 WHEN no_data_found THEN
 RETURN(NULL);

 WHEN OTHERS THEN
 raise_application_error(-20001, 'Database error');

END fn_ComputeWeightedGPA;
END pck_University;
/

Example 11.21

Script to Use the Procedures and
Functions of the University Package

SET SERVEROUTPUT ON;
DECLARE
aRank INTEGER;
aGrade Enrollment.EnrGrade%TYPE;
aGPA NUMBER;
BEGIN
-- This call should produce a rank of 6.
pck_University.pr_DetermineRank('789-01-2345', 5679, aRank, aGrade);
IF aRank > 0 THEN
	 dbms_output.put_line('Rank is ' || to_char(aRank) || '.');
	 dbms_output.put_line('Grade is ' || to_char(aGrade) || '.');
ELSE
	 dbms_output.put_line('Student is not enrolled.');
END IF;
-- This call should display a weighted GPA.
aGPA := pck_University.fn_ComputeWeightedGPA('901-23-4567', 2017);
IF aGPA IS NULL THEN
	 dbms_output.put_line('Student or enrollments not found');
ELSE
	 dbms_output.put_line('Weighted GPA is ' || to_char(aGPA));
END IF;
END;
/

26008_ch11_p415-476.indd 440 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   441

Triggers are rules managed by a DBMS. Because a trigger involves an event, a con-
dition, and a sequence of actions, it also is known as an event-condition-action rule.
Writing the action part or trigger body is similar to writing a procedure or a function
except that a trigger has no parameters. Triggers are executed by the rule system of the
DBMS not by explicit calls as for procedures and functions. Triggers officially became
part of SQL:1999 although most DBMS vendors implemented triggers long before the
release of SQL:1999.

This section covers Oracle triggers with background about SQL:2016 triggers. The
first part of this section discusses the reasons that triggers are important parts of data-
base application development and provides a classification of triggers. The second
part demonstrates trigger coding in PL/SQL for a variety of common tasks. The third
part presents specialized triggers for maintaining generalization hierarchies and pro-
cessing view updates using the Oracle INSTEAD OF trigger event. The final part pres-
ents the trigger execution procedures of Oracle and SQL:2016.

11.3.1  Motivation and Classification of Triggers
Triggers are widely implemented in DBMSs because they have a variety of uses in
business applications. The following list explains typical uses of triggers.

•	 Complex integrity constraints: Integrity constraints that cannot be specified by
constraints in CREATE TABLE statements. A typical restriction on constraints
in CREATE TABLE statements is that columns from other tables cannot be
referenced. Triggers allow reference to columns from multiple tables to overcome
this limitation. An alternative to a trigger for a complex constraint is an assertion
discussed in Chapter 16. However, most DBMSs do not support assertions so
triggers are the only choice for complex integrity constraints.

•	 Transition constraints: Integrity constraints that compare the values before and
after an update occurs. For example, you can write a trigger to enforce the
transition constraint that salary increases do not exceed 10 percent.

•	 Update propagation: Update derived columns in related tables such as to
maintain perpetual inventory balance or the seats remaining on a scheduled
flight.

•	 Exception reporting: Create a record of unusual conditions as an alternative
to rejecting a transaction. A trigger can also send a notification in an e-mail
message. For example, instead of rejecting a salary increase of 10 percent, a
trigger can create an exception record and notify a manager to review the salary
increase.

•	 Audit trail: Create a historical record of a transaction such as a history of
automated teller usage.

•	 Generalization hierarchy simulation: Perform update propagation to maintain
generalization hierarchy relationships and enforce generalization hierarchy
constraints. Although SQL:2016 supports generalization hierarchies for tables,
many DBMSs do not support table generalization hierarchies. Triggers can be
written to support generalization hierarchies converted into a table design as
specified by the Generalization Hierarchy Rule (see Section 6.4.3).

•	 Operations on updatable join views: Map modification operations on complex
views to underlying base tables. Triggers on updatable join views extend
limitations that Oracle imposes on updatable join views.

SQL:2016 classifies triggers by granularity, timing, and applicable event. For granular-
ity, a trigger can involve each row affected by an SQL statement or an entire SQL state-
ment. Row triggers are more common than statement triggers. For timing, a trigger

Trigger
a rule that is stored and
executed by a DBMS.
Because a trigger involves
an event, a condition, and a
sequence of actions, it also
is known as an event-
condition-action rule.

11.3  TRIGGERS

26008_ch11_p415-476.indd 441 3/2/18 9:25 PM

442   Part 5  Application Development with Relational Databases

can fire before or after an event. Typically, triggers for constraint checking fire before
an event, while triggers updating related tables and performing other actions fire after
an event. For applicable event, a trigger can apply to INSERT, UPDATE, and DELETE
statements. Update triggers should specify a list of applicable columns.

Because the SQL:1999 trigger specification was defined in response to vendor
implementations, most trigger implementations varied from the original specification
in SQL:1999 and the revised specification in SQL:2016. Oracle supports most parts
of the specification while adding proprietary extensions. An important extension is
the INSTEAD OF trigger that fires in place of an event, not before or after an event.
Oracle also supports data definition events and other database events. Microsoft SQL
Server provides statement triggers with access to row data in place of row triggers.
Thus, most DBMSs support the spirit of the SQL:2016 trigger specification in trigger
granularity, timing, and applicable events but do not adhere strictly to the SQL:2016
trigger syntax.

11.3.2  Basic Trigger Development using Oracle PL/SQL
An Oracle trigger contains a trigger name, a timing specification, an optional referenc-
ing clause, an optional granularity, an optional WHEN clause, and a PL/SQL block for
the body as explained in the following list:

•	 The timing specification involves the keywords BEFORE, AFTER, or INSTEAD
OF along with a triggering event using the keywords INSERT, UPDATE, or
DELETE. With the UPDATE event, you can specify an optional list of columns.
To specify multiple events, you can use the OR keyword. Oracle also supports
data definition and other database events, but these events are beyond the scope
of this chapter.

•	 The referencing clause allows alias names for the old (values before triggering
event) and new (values after triggering event) data that can be referenced in a
trigger.

•	 The granularity is specified by the FOR EACH ROW keywords. If you omit these
keywords, the trigger is a statement trigger.

•	 The WHEN clause restricts when a trigger fires or executes. Because Oracle has
numerous restrictions on conditions in WHEN clauses, the WHEN clause is used
infrequently.

•	 The body of a trigger looks like other PL/SQL blocks except that triggers have
more restrictions on the statements in a block.

Oracle Trigger Structure

CREATE [OR REPLACE] TRIGGER TriggerName
TriggerTiming TriggerEvent
[Referencing clause]
[FOR EACH ROW]
[WHEN (Condition)]
[DECLARE sequence of declarative statements]
BEGIN sequence of statements
[EXCEPTION exception handling statements]
END;

Introductory Triggers and Testing Code  To start on some simple Oracle triggers,
Examples 11.22 through 11.24 contain triggers that fire respectively on every INSERT,
UPDATE, and DELETE statement on the Course table. Example 11.25 demonstrates a
trigger with a combined event that fires for every action on the Course table. The trig-
gers in Examples 11.22 through 11.25 have no purpose except to depict a wide range
of trigger syntax as explained in the following list.

26008_ch11_p415-476.indd 442 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   443

•	 A common naming scheme for triggers identifies the table name, the triggering
actions (I for INSERT, U for UPDATE, and D for DELETE), and the timing
(B for BEFORE and A for AFTER). For example, the last part of the trigger name
(DIUA) in Example 11.25 denotes the DELETE, INSERT, and UPDATE events
along with the AFTER timing.

•	 In Example 11.25, the OR keyword in the trigger event specification supports
compound events involving more than one event.

•	 There is no referencing clause as the default names for the old (:OLD) and the
new (:NEW) row are used in the trigger bodies.

Example 11.22

Trigger That Fires for INSERT
statements on the Course Table Along
with Testing Code to Fire the Trigger

CREATE OR REPLACE TRIGGER tr_Course_IA
AFTER INSERT
ON Course
FOR EACH ROW
BEGIN
 -- No references to OLD row because only NEW exists for INSERT
 dbms_output.put_line('Inserted Row');
 dbms_output.put_line('CourseNo: ' || :NEW.CourseNo);
 dbms_output.put_line('Course Description: ' || :NEW.CrsDesc);
 dbms_output.put_line('Course Units: ' || To_Char(:NEW.CrsUnits));
END;
/
-- Testing statements
SET SERVEROUTPUT ON;
INSERT INTO Course (CourseNo, CrsDesc, CrsUnits)
 VALUES ('IS485','Advanced Database Management',4);

ROLLBACK;

Example 11.23

Trigger That Fires for Every UPDATE
Statement on the Course Table Along
with Testing Code to Fire the Trigger

CREATE OR REPLACE TRIGGER tr_Course_UA
AFTER UPDATE
ON Course
FOR EACH ROW
BEGIN
 dbms_output.put_line('New Row Values');
 dbms_output.put_line('CourseNo: ' || :NEW.CourseNo);
 dbms_output.put_line('Course Description: ' || :NEW.CrsDesc);
 dbms_output.put_line('Course Units: ' || To_Char(:NEW.CrsUnits));

26008_ch11_p415-476.indd 443 3/2/18 9:25 PM

444   Part 5  Application Development with Relational Databases

 dbms_output.put_line('Old Row Values');
 dbms_output.put_line('CourseNo: ' || :OLD.CourseNo);
 dbms_output.put_line('Course Description: ' || :OLD.CrsDesc);
 dbms_output.put_line('Course Units: ' || To_Char(:OLD.CrsUnits));
END;
/
-- Testing statements
SET SERVEROUTPUT ON;
-- Add row so it can be updated
INSERT INTO Course (CourseNo, CrsDesc, CrsUnits)
 VALUES ('IS485','Advanced Database Management',4);

UPDATE Course
 SET CrsUnits = 3
 WHERE CourseNo = 'IS485';

ROLLBACK;

Example 11.24

Trigger That Fires for Every DELETE
Statement on the Course Table Along
with Testing Code to Fire the Trigger

CREATE OR REPLACE TRIGGER tr_Course_DA
AFTER DELETE
ON Course
FOR EACH ROW
BEGIN
 -- No references to NEW row because only OLD exists for DELETE
 dbms_output.put_line('Deleted Row');
 dbms_output.put_line('CourseNo: ' || :OLD.CourseNo);
 dbms_output.put_line('Course Description: ' || :OLD.CrsDesc);
 dbms_output.put_line('Course Units: ' || To_Char(:OLD.CrsUnits));
END;
/
-- Testing statements
SET SERVEROUTPUT ON;
-- Insert row so that it can be deleted
INSERT INTO Course (CourseNo, CrsDesc, CrsUnits)
 VALUES ('IS485','Advanced Database Management',4);

DELETE FROM Course
 WHERE CourseNo = 'IS485';

ROLLBACK;

Triggers, unlike procedures, cannot be tested directly. Instead, you should use
SQL statements that cause a trigger to fire. When the trigger in Example 11.25 fires
for an INSERT statement, the old values are null. Likewise, when the trigger fires for
a DELETE statement, the new values are null. When the trigger fires for an UPDATE
statement, the old and new values are not null unless the table had null values before
the update.

26008_ch11_p415-476.indd 444 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   445

BEFORE ROW Trigger for Constraint Checking  BEFORE ROW triggers
typically are used for complex integrity constraints because BEFORE ROW triggers
should not contain SQL manipulation statements. For example, enrolling in an offer-
ing involves a complex integrity constraint to ensure that a seat exists in the related
offering. Example 11.26 demonstrates a BEFORE ROW trigger to ensure that a seat
remains when a student enrolls in an offering. The trigger ensures that the number of
students enrolled in the offering is less than the limit. The testing code inserts students
and modifies the number of students enrolled so that the next insertion raises an error.

The trigger in Example 11.26 contains a user-defined exception to handle the error.
The trigger code declares the name of the user-defined exception (NoSeats) in the
DECLARE section using the EXCEPTION keyword. To cause the exception to occur,
the RAISE statement uses the exception name typically as part of an IF statement. To
handle the user-defined exception, the EXCEPTION section uses a WHEN clause with
the name of the user-defined exception.

AFTER ROW Trigger for Update Propagation  The testing code for the BEFORE
ROW trigger in Example 11.26 includes an UPDATE statement to increment the
number of students enrolled. An AFTER trigger can automate this task as shown
in Example 11.27. The triggers in Examples 11.26 and 11.27 work in tandem. The
BEFORE ROW trigger ensures that a seat remains in the offering. The AFTER ROW
trigger then updates the related Offering row.

Example 11.25

Trigger with a Combined Event That Fires
for Every action on the Course Table Along
with testing Code to Fire the Trigger

CREATE OR REPLACE TRIGGER tr_Course_DIUA
AFTER INSERT OR UPDATE OR DELETE
ON Course
FOR EACH ROW
BEGIN
 dbms_output.put_line('Inserted Table');
 dbms_output.put_line('CourseNo: ' || :NEW.CourseNo);
 dbms_output.put_line('Course Description: ' || :NEW.CrsDesc);
 dbms_output.put_line('Course Units: ' || To_Char(:NEW.CrsUnits));

 dbms_output.put_line('Deleted Table');
 dbms_output.put_line('CourseNo: ' || :OLD.CourseNo);
 dbms_output.put_line('Course Description: ' || :OLD.CrsDesc);
 dbms_output.put_line('Course Units: ' || To_Char(:OLD.CrsUnits));
END;
/
-- Testing statements
SET SERVEROUTPUT ON;
INSERT INTO Course (CourseNo, CrsDesc, CrsUnits)
VALUES ('IS485','Advanced Database Management',4);

UPDATE Course
 SET CrsUnits = 3
 WHERE CourseNo = 'IS485';

DELETE FROM Course
 WHERE CourseNo = 'IS485';

ROLLBACK;

26008_ch11_p415-476.indd 445 3/2/18 9:25 PM

446   Part 5  Application Development with Relational Databases

Example 11.26

Trigger to Ensure That a Seat
Remains in an Offering

CREATE OR REPLACE TRIGGER tr_Enrollment_IB
-- This trigger ensures that the number of enrolled
-- students is less than the offering limit.
BEFORE INSERT
ON Enrollment
FOR EACH ROW
DECLARE
 anOffLimit Offering.OffLimit%TYPE;
 anOffNumEnrolled Offering.OffNumEnrolled%TYPE;
 -- user defined exception declaration
 NoSeats EXCEPTION;
 ExMessage VARCHAR(200);
BEGIN
 SELECT OffLimit, OffNumEnrolled
 INTO anOffLimit, anOffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = :NEW.OfferNo;

 IF anOffNumEnrolled >= anOffLimit THEN
 RAISE NoSeats;
 END IF;
EXCEPTION
 WHEN NoSeats THEN
 -- error number between -20000 and -20999
 ExMessage := 'No seats remaining in offering ' ||
 to_char(:NEW.OfferNo) || '.';
 ExMessage := ExMessage || 'Number enrolled: ' ||
 to_char(anOffNumEnrolled) || '. ';
 ExMessage := ExMessage || 'Offering limit: ' ||
 to_char(anOffLimit);
 Raise_Application_Error(-20001, ExMessage);
END;
/
-- Testing statements
SET SERVEROUTPUT ON;
-- See offering limit and number enrolled
SELECT OffLimit, OffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = 5679;
-- Insert the last student
INSERT INTO Enrollment (RegNo, OfferNo, EnrGrade)
 VALUES (1234,5679,0);

-- update the number of enrolled students
UPDATE Offering
 SET OffNumEnrolled = OffNumEnrolled + 1
 WHERE OfferNo = 5679;

-- See offering limit and number enrolled
SELECT OffLimit, OffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = 5679;
-- Insert a student beyond the limit
INSERT INTO Enrollment (RegNo, OfferNo, EnrGrade)
 VALUES (1236,5679,0);

ROLLBACK;

26008_ch11_p415-476.indd 446 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   447

Example 11.27

Trigger to Update the Number of
Enrolled Students in an Offering

CREATE OR REPLACE TRIGGER tr_Enrollment_IA
-- This trigger updates the number of enrolled
-- students in the related Offering row.
AFTER INSERT
ON Enrollment
FOR EACH ROW
BEGIN
 UPDATE Offering
 SET OffNumEnrolled = OffNumEnrolled + 1
 WHERE OfferNo = :NEW.OfferNo;
EXCEPTION
 WHEN OTHERS THEN
 RAISE_Application_Error(-20001, 'Database error');
END;
/
-- Testing statements
SET SERVEROUTPUT ON;
-- See the offering limit and number enrolled
SELECT OffLimit, OffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = 5679;
-- Insert the last student
INSERT INTO Enrollment (RegNo, OfferNo, EnrGrade)
VALUES (1234,5679,0);

-- See the offering limit and number enrolled
SELECT OffLimit, OffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = 5679;

ROLLBACK;

Combining Trigger Events to Reduce the Number of Triggers  The triggers
in Examples 11.26 and 11.27 involve insertions to the Enrollment table. Additional
triggers are needed for updates to the Enrollment.OfferNo column and deletions of
Enrollment rows.

As an alternative to separate triggers for events on the same table, one large
BEFORE trigger and one large AFTER trigger can be written. Each trigger contains
multiple events as shown in Examples 11.28 and 11.29. The action part of the trigger
in Example 11.29 uses the keywords INSERTING, UPDATING, and DELETING to
determine the triggering event. The script in Example 11.30 is rather complex because
it tests two complex triggers.

There is no clear preference for many smaller triggers or fewer larger triggers.
Although smaller triggers are easier to understand than larger triggers, the number
of triggers is a complicating factor to understand interactions among triggers. Section
11.3.4 explains trigger execution procedures to clarify issues of trigger interactions.

Additional BEFORE ROW Trigger Examples  BEFORE triggers can also be used
for transition constraints and data standardization. Example 11.31 depicts a trigger for
a transition constraint. The trigger contains a WHEN clause to restrict the trigger exe-
cution. Example 11.32 depicts a trigger to enforce uppercase usage for the faculty name
columns. Although BEFORE triggers should not perform updates with SQL state-
ments, they can change the new values as the trigger in Example 11.32 demonstrates.

26008_ch11_p415-476.indd 447 3/2/18 9:25 PM

448   Part 5  Application Development with Relational Databases

Example 11.28

Trigger to Ensure That a Seat Remains
in an Offering When Inserting or
Updating an Enrollment Row

-- Drop the previous trigger to avoid interactions
DROP TRIGGER tr_Enrollment_IB;
CREATE OR REPLACE TRIGGER tr_Enrollment_IUB
-- This trigger ensures that the number of enrolled
-- students is less than the offering limit.
BEFORE INSERT OR UPDATE OF OfferNo
ON Enrollment
FOR EACH ROW
DECLARE
 anOffLimit Offering.OffLimit%TYPE;
 anOffNumEnrolled Offering.OffNumEnrolled%TYPE;
 NoSeats EXCEPTION;
 ExMessage VARCHAR(200);
BEGIN
 SELECT OffLimit, OffNumEnrolled
 INTO anOffLimit, anOffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = :NEW.OfferNo;

 IF anOffNumEnrolled >= anOffLimit THEN
 RAISE NoSeats;
 END IF;
EXCEPTION
 WHEN NoSeats THEN
 -- error number between -20000 and -20999
 ExMessage := 'No seats remaining in offering ' ||
 to_char(:NEW.OfferNo) || '.';
 ExMessage := ExMessage || 'Number enrolled: ' ||
 to_char(anOffNumEnrolled) || '. ';
 ExMessage := ExMessage || 'Offering limit: ' ||
 to_char(anOffLimit);
 raise_application_error(-20001, ExMessage);
END;

Example 11.29

Trigger to Update the Number of Enrolled
Students in an Offering When Inserting,
Updating, or Deleting an Enrollment Row

-- Drop the previous trigger to avoid interactions
DROP TRIGGER tr_Enrollment_IA;
CREATE OR REPLACE TRIGGER tr_Enrollment_DIUA
-- This trigger updates the number of enrolled
-- students the related offering row.
AFTER INSERT OR DELETE OR UPDATE OF OfferNo
ON Enrollment
FOR EACH ROW

26008_ch11_p415-476.indd 448 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   449

BEGIN
 -- Increment the number of enrolled students for insert, update
 IF INSERTING OR UPDATING THEN
 UPDATE Offering
 SET OffNumEnrolled = OffNumEnrolled + 1
 WHERE OfferNo = :NEW.OfferNo;
 END IF;
-- Decrease the number of enrolled students for delete, update
IF UPDATING OR DELETING THEN
 UPDATE Offering
 SET OffNumEnrolled = OffNumEnrolled - 1
 WHERE OfferNo = :OLD.OfferNo;
END IF;

EXCEPTION
 WHEN OTHERS THEN
 raise_application_error(-20001, 'Database error');
END;

Example 11.30

Script to Test the Triggers in
Examples 11.28 and 11.29

-- Test case 1
-- See the offering limit and number enrolled
SELECT OffLimit, OffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = 5679;
-- Insert the last student
INSERT INTO Enrollment (RegNo, OfferNo, EnrGrade)
 VALUES (1234,5679,0);
-- See the offering limit and the number enrolled
SELECT OffLimit, OffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = 5679;

-- Test case 2
-- Insert a student beyond the limit: exception raised
INSERT INTO Enrollment (RegNo, OfferNo, EnrGrade)
 VALUES (1236,5679,0);
-- Transfer a student to offer 5679: exception raised
UPDATE Enrollment
 SET OfferNo = 5679
 WHERE RegNo = 1234 AND OfferNo = 1234;

-- Test case 3
-- See the offering limit and the number enrolled before update
SELECT OffLimit, OffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = 4444;
-- Update a student to a non full offering
UPDATE Enrollment
 SET OfferNo = 4444
 WHERE RegNo = 1234 AND OfferNo = 1234;
-- See the offering limit and the number enrolled after update
SELECT OffLimit, OffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = 4444;

26008_ch11_p415-476.indd 449 3/2/18 9:25 PM

450   Part 5  Application Development with Relational Databases

-- Test case 4
-- See the offering limit and the number enrolled before delete
SELECT OffLimit, OffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = 1234;
-- Delete an enrollment
DELETE Enrollment
 WHERE OfferNo = 1234;
-- See the offering limit and the number enrolled
SELECT OffLimit, OffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = 1234;

-- Erase all changes
ROLLBACK;

Example 11.31

Trigger to Ensure That a Salary Increase
Does Not Exceed 10 percent
Note that the NEW and OLD keywords should not be preceded by a colon (:) when used in a condition in the WHEN clause.

CREATE OR REPLACE TRIGGER tr_FacultySalary_UB
-- This trigger ensures that a salary increase does not exceed
-- 10%.
BEFORE UPDATE OF FacSalary
ON Faculty
FOR EACH ROW
WHEN (NEW.FacSalary > 1.1 * OLD.FacSalary)
DECLARE
	 SalaryIncreaseTooHigh EXCEPTION;
	 ExMessage VARCHAR(200);
BEGIN
 RAISE SalaryIncreaseTooHigh;
EXCEPTION
 WHEN SalaryIncreaseTooHigh THEN
 -- error number between -20000 and -20999
 ExMessage := 'Salary increase exceeds 10%. ';
 ExMessage := ExMessage || 'Current salary: ' ||
 to_char(:OLD.FacSalary) || '. ';
 ExMessage := ExMessage || 'New salary: ' ||
 to_char(:NEW.FacSalary) || '.';
 Raise_Application_Error(-20001, ExMessage);
END;
/
SET SERVEROUTPUT ON;
-- Test case 1: salary increase of 5%
UPDATE Faculty
 SET FacSalary = FacSalary * 1.05
 WHERE FacNo = '543-21-0987';
SELECT FacSalary FROM Faculty WHERE FacNo = '543-21-0987';
-- Test case 2: salary increase of 20% should generate an error.
UPDATE Faculty
 SET FacSalary = FacSalary * 1.20
 WHERE FacNo = '543-21-0987';
ROLLBACK;

26008_ch11_p415-476.indd 450 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   451

AFTER ROW Trigger for Exception Reporting  The trigger in Example 11.31
implements a hard constraint in that large raises (greater than 10 percent) are rejected.
A more flexible approach is a soft constraint in which a large raise causes a row to be
written to an exception table. The update succeeds but an administrator can review
the exception table at a later point to take additional action. A message can also be sent
to alert the administrator to review specific rows in the exception table.

Example 11.33 depicts a trigger to implement a soft constraint for large employee
raises. The AFTER trigger timing is used because a row should only be written to
the exception table if the update succeeds. As demonstrated in Section 11.3.4, AFTER
ROW triggers only execute if there are no errors encountered in integrity constraint
checking.

Example 11.32

Trigger to Change the Case of a
Faculty First and Last Name

CREATE OR REPLACE TRIGGER tr_FacultyName_IUB
-- This trigger changes the case of FacFirstName and FacLastName.
BEFORE INSERT OR UPDATE OF FacFirstName, FacLastName
ON Faculty
FOR EACH ROW
BEGIN
 :NEW.FacFirstName := UPPER(:NEW.FacFirstName);
 :NEW.FacLastName := UPPER(:NEW.FacLastName);
END;
/
-- Testing statements
UPDATE Faculty
 SET FacFirstName = 'Joe', FacLastName = 'Smith'
 WHERE FacNo = '543-21-0987';
-- Display the changed faculty name.
SELECT FacFirstName, FacLastName
 FROM Faculty
 WHERE FacNo = '543-21-0987';
ROLLBACK;

Example 11.33

Trigger to Insert a Row into an Exception Table. When a salary increase exceeds 10 percent, the trigger fires. Since LogTable must

be created before creating the trigger, the CREATE TABLE statement precedes the trigger. The SEQUENCE is an Oracle object that

maintains unique values. The expression LogSeq.NextVal generates the next value of the sequence.

-- Create exception table and sequence
CREATE TABLE LogTable
(ExcNo		 INTEGER 	 PRIMARY KEY,
 ExcTrigger	 VARCHAR2(25) NOT NULL,
 ExcTable		 VARCHAR2(25) NOT NULL,
 ExcKeyValue	VARCHAR2(15) NOT NULL,
 ExcDate		 DATE DEFAULT SYSDATE NOT NULL,
 ExcText		 VARCHAR2(255) NOT NULL);

CREATE SEQUENCE LogSeq INCREMENT BY 1;

CREATE OR REPLACE TRIGGER tr_FacultySalary_UA
-- This trigger inserts a row into LogTable when
-- when a raise exceeds 10%.

26008_ch11_p415-476.indd 451 3/2/18 9:25 PM

452   Part 5  Application Development with Relational Databases

AFTER UPDATE OF FacSalary
ON Faculty
FOR EACH ROW
WHEN (NEW.FacSalary > 1.1 * OLD.FacSalary)
DECLARE
	 SalaryIncreaseTooHigh EXCEPTION;
	 ExMessage VARCHAR(200);
BEGIN
 RAISE SalaryIncreaseTooHigh;
EXCEPTION
 WHEN SalaryIncreaseTooHigh THEN
	 INSERT INTO LogTable
	 (ExcNo, ExcTrigger, ExcTable, ExcKeyValue, ExcDate, ExcText)
	 VALUES (LogSeq.NextVal, 'TR_ FacultySalary_UA', 'Faculty',
 to_char(:New.FacNo), SYSDATE,
		 'Salary raise greater than 10%');
END;
/
SET SERVEROUTPUT ON;
-- Test case 1: salary increase of 5%
UPDATE Faculty
 SET FacSalary = FacSalary * 1.05
 WHERE FacNo = '543-21-0987';
SELECT FacSalary FROM Faculty WHERE FacNo = '543-21-0987';
SELECT * FROM LogTable;

-- Test case 2: salary increase of 20% should generate an exception.
UPDATE Faculty
 SET FacSalary = FacSalary * 1.20
 WHERE FacNo = '543-21-0987';
SELECT FacSalary FROM Faculty WHERE FacNo = '543-21-0987';
SELECT * FROM LogTable;
ROLLBACK;

Trigger Formulation Guidelines  Now that you have seen a variety of triggers,
you are ready to write your own triggers. This brief subsection provides guidelines to
help in writing triggers and tips to avoid common coding errors. You are encouraged
to apply these guidelines to the trigger problems at the end of the chapter.

Formulating a trigger involves identifying trigger events and timing along with
planning coding details. When coverage of multiple events is needed, a trigger devel-
oper should consider designs of a single trigger with a compound or multiple triggers
with individual events. As mentioned previously, there is no clear preference for many
smaller triggers or fewer larger triggers. Although smaller triggers are easier to under-
stand than larger triggers, the number of triggers is a complicating factor to under-
stand interactions among triggers. Trigger timing is usually clearer than designs for
multiple events. BEFORE ROW triggers should not manipulate data except through
the OLD and NEW keywords. Triggers that use SQL data manipulation statements
should be written as AFTER ROW triggers.

Trigger coding involves manipulation of data in the target table and often related
parent tables. The target table appears after the ON keyword. Columns of the target
table should be accessed using the NEW and OLD keywords. Oracle triggers execute
with a run-time error if the target table appears in the FROM clause of a SELECT state-
ment inside a trigger2. Every trigger presented in this section uses the OLD or NEW
keywords to access data in the target table.

As an aid to correct coding for the target and related parent tables in a trigger,
you should study trigger patterns shown in Tables 11-6 and 11-7. The trigger pattern

2 See the details in Section 11.3.4 about mutating table errors for an explanation about this restriction.

26008_ch11_p415-476.indd 452 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   453

for BEFORE ROW events uses :NEW values to retrieve a related row of a parent table.
This trigger pattern typically applies to triggers performing integrity constraints on
a column in a related row of a parent table. Related tables should be accessed using
SELECT statements often using the INTO clause to retrieve column values in trigger
variables. The only restriction on the INTO clause is that the SELECT statement must
return at most one row. Typically, the foreign key value in the target table row is used
to find the related row in the parent table. In Example 11.28, the OfferNo value of the
target table (Enrollment) is used (:NEW.OfferNo) in a WHERE condition to retrieve the
related row of the parent table (Offering). The INTO clause assigns the OffLimit and
OffNumEnrolled column values to trigger variables.

The trigger pattern for AFTER ROW events uses :OLD values to retrieve a related
row in a parent table. This trigger pattern typically applies to triggers updating a
column in a related row of a parent table. Related tables should be accessed using a
WHERE condition in an UPDATE statement on the parent table. Typically, the foreign
key value in the target table row is used to find the related row in the parent table. In
Example 11.29, the OfferNo value of the target table (Enrollment) is used (:OLD.OfferNo)
to find the related row of the parent table (Offering). The SET clause modifies column
values in the related parent row.

These coding patterns should help you avoid common coding errors as shown in
Table 11-8. The coding patterns apply directly to the first two rows of Table 11-8. In
the next two rows, the null value errors involve appropriate usage of the NEW and
OLD keywords. You should understand the difference between INSERT and DELETE
events for appropriate usage. The Too_Many_Rows exception is an uncommon error.
To avoid syntax errors with the NEW and OLD keywords, you should prefix the NEW
and OLD keywords with a colon (:) in the trigger body. In the WHEN clause, you just
use the NEW and OLD keywords without the colon (:) prefix.

TABLE 11-6
Trigger Pattern for BEFORE
ROW Trigger Using :NEW
Values

Trigger Pattern Template

-- Use for UPDATE events and sometimes INSERT events
SELECT <Parent columns>
 INTO <Trigger variables>
 FROM ParentTable
 WHERE ParentTable.PK = :NEW.FK

Trigger Pattern Example

-- Offering parent table and Enrollmment target table
-- See Example 11.28
SELECT OffLimit, OffNumEnrolled
 INTO anOffLimit, anOffNumEnrolled
 FROM Offering
 WHERE Offering.OfferNo = :NEW.OfferNo;

TABLE 11-7
Trigger Pattern for AFTER
ROW Using :OLD Values

Trigger Pattern Template

-- Use for UPDATE events and sometimes DELETE event
UPDATE ParentTable
 SET <Assignments for parent columns>
 WHERE ParentTable.PK = :OLD.FK

Trigger Pattern Example

-- Offering parent table and Enrollmment target table
-- See Example 11.29
UPDATE Offering
 SET OffNumEnrolled = OffNumEnrolled - 1
 WHERE Offering.OfferNo = :OLD.OfferNo;

26008_ch11_p415-476.indd 453 3/2/18 9:25 PM

454   Part 5  Application Development with Relational Databases

11.3.3  Specialized Oracle Triggers using the INSTEAD OF Event
Oracle provides the INSTEAD OF event, a proprietary event especially useful in simu-
lating generalization hierarchies and processing view updates. This section presents
detailed examples to depict both trigger usages.

Triggers to Simulate Operations on a Generalization Hierarchy  The tradition-
al relational model does not directly support generalization hierarchies as presented
in Chapters 5 and 6. Even though SQL:2016 has added support for generalization
hierarchies among tables (see Chapter 19), most DBMSs including Oracle do not sup-
port this part of the SQL:2016 specification. Because generalization hierarchies are a
specialized but useful feature, it is important to provide some level of support.

In Oracle, triggers can provide a level of support for generalization hierarchies
using the INSTEAD OF event for views. An INSTEAD OF trigger is used in place of a
manipulation event (INSERT, UPDATE, or DELETE) on a view. INSTEAD OF triggers
can only be used with views, typically to support view updates. INSTEAD OF triggers
are also useful for operations on tables related by generalization relationships as an
INSTEAD OF trigger can map an operation to more than one base table.

Before presenting the trigger example, some additional tables and views are
needed. The Generalization Hierarchy Rule (see Section 6.4.3) is applied to convert
the student generalization hierarchy in Figure 11.2 into tables as shown in Example
11.34. The Generalization Hierarchy Rule generates one table per entity type with the
primary key replicated in each table. Thus the subtype tables contain the primary key
plus the specialized columns specific to the subtype table. Example 11.35 contains two

TABLE 11-8
Common Trigger Coding
Errors

Error Resolution

Target table columns appear in a
SELECT clause

Use :NEW and :OLD keywords to access column values in the target
table. Remove target table in FROM clause.

Join conditions using target table
columns

Use :NEW and :OLD keywords for conditions to connect target table
to related tables. Remove target table in FROM clause.

Null value for a :NEW column value New values are undefined for DELETE events. Use old values
instead.

Null value for an :OLD column value Old values are undefined for INSERT events. Use new values
instead.

Too_Many_Rows exception raised Need cursor instead of SELECT … INTO statement. Sometimes too
many rows are returned because the new and/or old values were
not used in WHERE conditions.

Syntax for OLD and NEW keywords Use :NEW and :OLD in trigger body. Use NEW and OLD in WHEN
clause.

GradStudent2
GStdAdvisor

GStdThesisOpt
GStdAsstStatus

UndStudent2
UStdMajor
UStdMinor
UStdClass

Student2
StdNo

StdFirstName
StdLastName

StdGPA

D,C

FIGURE 11.2
ERD for Student
Generalization Hierarchy

26008_ch11_p415-476.indd 454 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   455

views combining the parent and subtype tables. These views will be used in INSTEAD
OF triggers to map manipulation actions on the views to the underlying base tables.

Example 11.34

CREATE TABLE Statements for the Student
Generalization Hierarchy. The table names
use the number 2 appended at the end to
avoid conflicts with other table names

-- Student2 is the parent table in the generalization hierarchy
CREATE TABLE Student2(
 StdNo CHAR(11),
 StdFirstName VARCHAR2(20) not null,
 StdLastName VARCHAR2(30) not null,
 StdGPA DECIMAL(3,2),
 CONSTRAINT Student2PK PRIMARY KEY (StdNo));
-- UndStudent2 is a child table in the generalization hierarchy
CREATE TABLE UndStudent2(
 StdNo CHAR(11),
 UStdMajor CHAR(6),
 UStdMinor CHAR(6),
 UStdClass CHAR(2),
 CONSTRAINT UndStudent2PK PRIMARY KEY (StdNo),
 CONSTRAINT UndStudent2FK FOREIGN KEY(StdNo) REFERENCES Student2
 ON DELETE CASCADE);
-- GradStudent2 is a child table in the generalization hierarchy
CREATE TABLE GradStudent2(
 StdNo CHAR(11),
 GStdAdvisor VARCHAR2(20),
 GStdThesisOpt CHAR(10) DEFAULT 'NONTHESIS', -- NONTHESIS or THESIS
 GStdAsstStatus CHAR(6) DEFAULT 'NONE', -- NONE, TA, RA
 CONSTRAINT GradStudent2PK PRIMARY KEY (StdNo),
 CONSTRAINT GradStudent2FK FOREIGN KEY(StdNo) REFERENCES Student2
 ON DELETE CASCADE);

Example 11.35

CREATE VIEW Statements for Views
Used to Manipulate the Student
Generalization Hierarchy

-- View for undergraduate students
CREATE VIEW AllUndStudent AS
 SELECT Student2.StdNo, StdFirstName, StdLastName, StdGPA,
 UStdMajor, UStdMinor, UStdClass
 FROM Student2, UndStudent2
 WHERE Student2.StdNo = UndStudent2.Stdno;
-- View for graduate students
CREATE VIEW AllGradStudent AS
 SELECT Student2.StdNo, StdFirstName, StdLastName, StdGPA,
 GStdAdvisor, GStdThesisOpt, GStdAsstStatus
 FROM Student2, GradStudent2
 WHERE Student2.StdNo = GradStudent2.Stdno;

26008_ch11_p415-476.indd 455 3/2/18 9:25 PM

456   Part 5  Application Development with Relational Databases

To insert a row into a child table in a generalization hierarchy, a row should be
added to the parent table. Example 11.36 contains INSTEAD OF triggers that insert
rows in the child and parent tables. For example, the tr_UndStudent_II trigger inserts
a row into the UndStudent2 and Student2 tables. The testing code in Example 11.37
contains INSERT statements for each view. The INSTEAD OF trigger executes in place
of the INSERT statements. Note that INSTEAD OF triggers are proprietary to Oracle.

Example 11.36

Triggers to Insert Rows in Child
and Parent Tables of the Student
Generalization Hierarchy

-- Insert trigger for undergraduate students
CREATE OR REPLACE TRIGGER tr_AllUndStudent_II
INSTEAD OF INSERT ON AllUndStudent
FOR EACH ROW
BEGIN
-- Insert into parent (Student2)
INSERT INTO Student2 (StdNo, StdFirstName, StdLastName,StdGPA)
 VALUES(:New.StdNo,:New.StdFirstName,:New.StdLastName,:New.StdGPA);
-- Insert into child (UndStudent2)
INSERT INTO UndStudent2 (StdNo, UStdMajor, UStdMinor, UStdClass)
 VALUES(:New.StdNo, :New.UStdMajor, :New.UStdMinor, :New.UStdClass);
EXCEPTION
 WHEN OTHERS THEN
 raise_application_error(-20001, 'DB error in tr_UndStudent_II');
END;
-- Insert trigger for graduate students
CREATE OR REPLACE TRIGGER tr_AllGradStudent_II
INSTEAD OF INSERT ON AllGradStudent
FOR EACH ROW
BEGIN
-- Insert into parent (Student2)
INSERT INTO Student2 (StdNo, StdFirstName, StdLastName,StdGPA)
 VALUES(:New.StdNo,:New.StdFirstName,:New.StdLastName,:New.StdGPA);
-- Insert into child (UndStudent2)
INSERT INTO GradStudent2(StdNo,GStdAdvisor,GStdThesisOpt, GStdAsstStatus)
VALUES(:New.StdNo,:New.GStdAdvisor,:New.GStdThesisOpt, :New.GStdAsstStatus);
EXCEPTION
 WHEN OTHERS THEN
 raise_application_error(-20001, 'DB error in tr_GradStudent_II');
END;

Example 11.37

Testing Code for INSTEAD
OF INSERT Triggers

-- Test cases for tr_UndStudent_II
INSERT INTO AllUndStudent
 (StdNo,StdFirstName,StdLastName,StdGPA,UStdMajor,UStdMinor,
 UStdClass)
 VALUES('123-45-6789','HOMER','WELLS',3.00,'IS','ACCT','FR');

26008_ch11_p415-476.indd 456 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   457

The student generalization hierarchy has a disjointness constraint so that a stu-
dent cannot simultaneously be both an undergraduate and graduate student. Example
11.38 contains a modified trigger to check for membership in the other child table of
the generalization hierarchy. In the original trigger in Example 11.36, inserting the
same row in the other child (GradStudent2) using the AllGradStudent view will fail
because a row already exists in the parent table (Student2).

INSERT INTO AllUndStudent
 (StdNo, StdFirstName, StdLastName, StdGPA, UStdMajor, UStdMinor,
 UStdClass)
 VALUES('234-56-7890','CANDY','KENDALL',2.70,'FIN','IS','JR');
-- SELECT statements to verify insertions
SELECT * FROM AllUndStudent;
SELECT * FROM Student2;
SELECT * FROM UndStudent2
-- Test cases for tr_GradStudent_II
INSERT INTO AllGradStudent
 (StdNo, StdFirstName, StdLastName, StdGPA, GStdAdvisor,
 GStdThesisOpt, GStdAsstStatus)
 VALUES ('345-67-8901','WALLY','KENDALL', 2.80, 'Jones', 'NONTHESIS',
 'NONE');
INSERT INTO AllGradStudent
 (StdNo, StdFirstName, StdLastName, StdGPA, GStdAdvisor,
 GStdThesisOpt, GStdAsstStatus)
 VALUES ('456-78-9012','JOE','ESTRADA', 3.20,'Jones','THESIS','RA');
-- SELECT statements to verify insertions
SELECT * FROM AllGradStudent;
SELECT * FROM Student2;
SELECT * FROM GradStudent2;
ROLLBACK;

Example 11.38

Ensure that an Undergraduate Student is not in the GradStudent Table along with Testing Code.

-- Extended INSTEAD OF trigger to enforce disjointness constraint
CREATE OR REPLACE TRIGGER tr_UndStudent_II
INSTEAD OF INSERT ON AllUndStudent
FOR EACH ROW
DECLARE
 GradStdExists EXCEPTION;
 ExMessage VARCHAR(200);
 GrdStdCnt INTEGER;
BEGIN
SELECT COUNT(*) INTO GrdStdCnt FROM GradStudent2
 WHERE GradStudent2.StdNo = :New.StdNo;
IF GrdStdCnt > 0 THEN
 RAISE GradStdExists;
END IF;
-- Insert into parent (Student2)
INSERT INTO Student2 (StdNo, StdFirstName, StdLastName,StdGPA)
 VALUES(:New.StdNo,:New.StdFirstName,:New.StdLastName,:New.StdGPA);
-- Insert into child (UndStudent2)
INSERT INTO UndStudent2 (StdNo, UStdMajor, UStdMinor, UStdClass)
 VALUES(:New.StdNo, :New.UStdMajor, :New.UStdMinor, :New.UStdClass);

Modification of Trigger in Example 11.36

26008_ch11_p415-476.indd 457 3/2/18 9:25 PM

458   Part 5  Application Development with Relational Databases

Another trigger is needed to manage updates. Updates to a view should be directed
to the appropriate base table. Example 11.39 contains an INSTEAD OF UPDATE trig-
ger to direct updates to the appropriate table (Student2 or UndStudent2). A similar
trigger is necessary to direct graduate student updates to the Student2 or GradStudent2
table. Note that Oracle does not allow column specification in INSTEAD OF UPDATE
triggers. In BEFORE and AFTER triggers, it is good coding practice for UPDATE trig-
gers to specify the column.

EXCEPTION
 WHEN GradStdExists THEN
 -- error number between -20000 and -20999
 ExMessage := 'Graduate student already exists. ';
 ExMessage := ExMessage || 'StdNo: ' || :New.StdNo;
 Raise_Application_Error(-20001, ExMessage);
 WHEN OTHERS THEN
 raise_application_error(-20001, 'DB error in tr_UndStudent_II');
END;
/
-- Trigger testing statements
-- Test cases for tr_UndStudent_II: should succeed
INSERT INTO AllUndStudent
 (StdNo, StdFirstName, StdLastName, StdGPA, UStdMajor, UStdMinor,
 UStdClass)
 VALUES ('123-45-6789','HOMER','WELLS',3.00,'IS','ACCT','FR');
INSERT INTO AllUndStudent
 (StdNo, StdFirstName, StdLastName, StdGPA, UStdMajor, UStdMinor,
 UStdClass)
 VALUES ('234-56-7890','CANDY','KENDALL',2.70,'FIN','IS','JR');
-- Test cases for tr_GradStudent_IA: should succeed
INSERT INTO AllGradStudent
 (StdNo, StdFirstName, StdLastName, StdGPA, GStdAdvisor,
 GStdThesisOpt, GStdAsstStatus)
 VALUES('345-67-8901','WALLY','KENDALL', 2.80, 'Jones', 'NONTHESIS',
 'NONE');
INSERT INTO AllGradStudent
 (StdNo, StdFirstName, StdLastName, StdGPA, GStdAdvisor,
 GStdThesisOpt, GStdAsstStatus)
 VALUES ('456-78-9012','JOE','ESTRADA', 3.20,'Jones','THESIS','RA');
-- Test cases should fail because grad student exists
INSERT INTO AllUndStudent
(StdNo, StdFirstName, StdLastName, StdGPA, UStdMajor, UStdMinor,
 UStdClass)
 VALUES ('345-67-8901','WALLY','KENDALL', 3.00,'IS','ACCT','FR');
ROLLBACK;

Example 11.39

INSTEAD OF UPDATE Trigger to
Update either Student2 or UndStudent2
Table along with Testing Code

-- Update trigger for UndStudent
-- Cannot specify column list for INSTEAD of UPDATE triggers
CREATE OR REPLACE TRIGGER tr_AllUndStudent_UI
INSTEAD OF UPDATE ON AllUndStudent
FOR EACH ROW
BEGIN

26008_ch11_p415-476.indd 458 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   459

-- Update UndStudent2
 IF UPDATING('UStdMajor') THEN
 UPDATE UndStudent2
 SET UStdMajor = :NEW.UStdMajor
 WHERE StdNo = :OLD.StdNo;
 END IF;
 IF UPDATING('UStdMinor') THEN
 UPDATE UndStudent2
 SET UStdMinor = :NEW.UStdMinor
 WHERE StdNo = :OLD.StdNo;
 END IF;
 IF UPDATING('UStdClass') THEN
 UPDATE UndStudent2
 SET UStdClass = :NEW.UStdClass
 WHERE StdNo = :OLD.StdNo;
 END IF;
-- Update Student2
 IF UPDATING('StdGPA') THEN
 UPDATE Student2
 SET StdGPA = :NEW.StdGPA
 WHERE StdNo = :OLD.StdNo;
 END IF;
 IF UPDATING('StdFirstName') THEN
 UPDATE Student2
 SET StdFirstName = :NEW.StdFirstName
 WHERE StdNo = :OLD.StdNo;
 END IF;
 IF UPDATING('StdLastName') THEN
 UPDATE Student2
 SET StdLastName = :NEW.StdLastName
 WHERE StdNo = :OLD.StdNo;
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 raise_application_error(-20001, 'DB error in tr_UStdMajor_UI');
END;
/
-- Trigger testing statements
-- Insert data: depends on tr_UndStudent_II
INSERT INTO AllUndStudent
 (StdNo, StdFirstName, StdLastName, StdGPA, UStdMajor, UStdMinor,
 UStdClass)
 VALUES ('123-45-6789','HOMER','WELLS',3.00,'IS','ACCT','FR');
INSERT INTO AllUndStudent
 (StdNo, StdFirstName, StdLastName, StdGPA, UStdMajor, UStdMinor,
 UStdClass)
 VALUES ('234-56-7890','CANDY','KENDALL',2.70,'FIN','IS','JR');
-- Update statements
UPDATE AllUndStudent
 SET UStdMajor = 'MGMT'
 WHERE StdNo = '123-45-6789';
UPDATE AllUndStudent
 SET StdGPA = 3.1
 WHERE StdNo = '234-56-7890';
-- View results
SELECT * FROM AllUndStudent;
SELECT * FROM Student2;
SELECT * FROM UndStudent2;
ROLLBACK;

Triggers for Multiple Table View Updates  Chapter 10 (Appendix 10.B) presented
rules for updatable join views in Oracle. Updatable join views are more restrictive than
Microsoft Access 1-M updatable queries on the supported modification operations.

26008_ch11_p415-476.indd 459 3/2/18 9:25 PM

460   Part 5  Application Development with Relational Databases

Oracle restricts modification operations to one underlying table (known as the key
preserving table) in modification statements on views. This subsection presents
INSTEAD OF trigger examples to extend the range of modification operations on
multiple table views in Oracle.

In a trigger supporting insert operations on both parent and child tables (the child
table is typically the key preserving table), you should check for existence of the parent
row. If the parent row does not exist, the insert operation should be mapped to both
parent and child tables. Otherwise, the insert operation only maps to the child table. In
Example 11.40, Course is the parent table and Offering is the child table in the updatable
join view. The INSTEAD OF INSERT trigger in Example 11.41 maps an insert opera-
tion on the view to both tables or just the Offering table.

Example 11.40 (Oracle)

Updatable Join View Combining the Course and the Offering Tables.

CREATE VIEW CourseOfferingView AS
 SELECT Course.CourseNo, CrsDesc, CrsUnits,
 OfferNo, OffTerm, OffYear,
 OffLocation, OffTime, FacNo, OffDays,
 OffLimit, OffNumEnrolled
	 FROM Course INNER JOIN Offering
 ON Course.CourseNo = Offering.CourseNo

Updatable Join View

Example 11.41

INSTEAD OF INSERT Trigger to Map a View
Insertion to the Underlying Tables (Course
and Offering) along with Testing Code

CREATE OR REPLACE TRIGGER tr_CourseOfferingView_II
INSTEAD OF INSERT ON CourseOfferingView
FOR EACH ROW
DECLARE
 CourseCnt INTEGER;
BEGIN
SELECT COUNT(*) INTO CourseCnt FROM Course
 WHERE CourseNo = :NEW.CourseNo;
IF CourseCnt = 0 THEN
 -- INSERT into Course table
 INSERT INTO Course (CourseNo, CrsDesc, CrsUnits)
 VALUES(:NEW.CourseNo, :NEW.CrsDesc, :NEW.CrsUnits);
END IF;
-- INSERT into Offering table
INSERT INTO Offering (OfferNo, CourseNo, OffTerm, OffYear,
 OffLocation, OffTime, FacNo, OffDays, OffLimit,
 OffNumEnrolled)
VALUES(:NEW.OfferNo, :NEW.CourseNo, :NEW.OffTerm, :NEW.OffYear,
 :NEW.OffLocation, :NEW.OffTime, :NEW.FacNo, :NEW.OffDays,
 :NEW.OffLimit, :NEW.OffNumEnrolled);

26008_ch11_p415-476.indd 460 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   461

In a trigger supporting update operations on columns from both parent and child
tables, you should use a similar approach to the trigger in Example 11.39. Updates to
a view should be directed to the appropriate base table. Example 11.42 contains an
INSTEAD OF UPDATE trigger to direct updates to the appropriate table (Course or
Offering).

Example 11.42

INSTEAD OF UPDATE Trigger to Update
Columns from the Course and Offering
Tables along with Testing Code

-- Update trigger for CourseOfferingView
-- Does not support updates to the primary keys of the tables
CREATE OR REPLACE TRIGGER tr_CourseOfferingView_UI
INSTEAD OF UPDATE ON CourseOfferingView
FOR EACH ROW
BEGIN
-- Update Course columns
 IF UPDATING('CrsDesc') THEN
 UPDATE Course
 SET CrsDesc = :NEW.CrsDesc
 WHERE CourseNo = :OLD.CourseNo;
 END IF;
 IF UPDATING('CrsUnits') THEN
 UPDATE Course
 SET CrsUnits = :NEW.CrsUnits
 WHERE CourseNo = :OLD.CourseNo;
 END IF;

EXCEPTION
 WHEN OTHERS THEN
 raise_application_error(-20001,
 'DB error in tr_CourseOfferingView_II');
END;
/
-- Trigger testing statements
-- Insert only an Offering as Course exists
INSERT INTO CourseOfferingView
 (OfferNo, CourseNo, OffTerm, OffYear, OffLocation, OffTime,
 FacNo, OffDays, OffLimit, OffNumEnrolled)
 VALUES (9999,'IS320','SUMMER',2017,'BLM402','9:00:00', NULL,'MW',
 10, 0);
-- Ensure that a row has been added to the Offering table
SELECT * FROM Offering WHERE OfferNo = 9999;
-- Insert into both Offering and Course as Course does not exist
INSERT INTO CourseOfferingView
 (CourseNo, CrsDesc, CrsUnits, OfferNo, OffTerm, OffYear,
 OffLocation, OffTime, FacNo, OffDays, OffLimit, OffNumEnrolled)
 VALUES ('IS321', 'IT Security', 3, 9009, 'SUMMER', 2017,
 'BLM412','9:00:00', NULL,'TTH', 10, 0);
-- Ensure that a row has been added to both tables
SELECT * FROM Course WHERE CourseNo = 'IS321';
SELECT * FROM Offering WHERE OfferNo = 9009;
ROLLBACK;

26008_ch11_p415-476.indd 461 3/2/18 9:25 PM

462   Part 5  Application Development with Relational Databases

-- Update Offering columns
 IF UPDATING('OffTerm') THEN
 UPDATE Offering
 SET OffTerm = :NEW.OffTerm
 WHERE OfferNo = :OLD.OfferNo;
 END IF;
 IF UPDATING('OffYear') THEN
 UPDATE Offering
 SET OffYear = :NEW.OffYear
 WHERE OfferNo = :OLD.OfferNo;
 END IF;
 IF UPDATING('OffLocation') THEN
 UPDATE Offering
 SET OffLocation = :NEW.OffLocation
 WHERE OfferNo = :OLD.OfferNo;
 END IF;
 IF UPDATING('OffDays') THEN
 UPDATE Offering
 SET OffDays = :NEW.OffDays
 WHERE OfferNo = :OLD.OfferNo;
 END IF;
 IF UPDATING('OffTime') THEN
 UPDATE Offering
 SET OffTime = :NEW.OffTime
 WHERE OfferNo = :OLD.OfferNo;
 END IF;
 IF UPDATING('FacNo') THEN
 UPDATE Offering
 SET FacNo = :NEW.FacNo
 WHERE OfferNo = :OLD.OfferNo;
 END IF;
 IF UPDATING('OffLimit') THEN
 UPDATE Offering
 SET OffLimit = :NEW.OffLimit
 WHERE OfferNo = :OLD.OfferNo;
 END IF;
 IF UPDATING('OffNumEnrolled') THEN
 UPDATE Offering
 SET OffNumEnrolled = :NEW.OffNumEnrolled
 WHERE OfferNo = :OLD.OfferNo;
 END IF;
EXCEPTION
 WHEN OTHERS THEN
 raise_application_error(-20001,
 'DB error in tr_CourseOfferingView_UI');
END;
/
-- Trigger testing statements
-- Insert rows for test
INSERT INTO Course
 (CourseNo, CrsDesc, CrsUnits)
 VALUES ('IS321', 'IT Security', 3);
INSERT INTO Offering
 (OfferNo, CourseNo, OffTerm, OffYear,
 OffLocation, OffTime, FacNo, OffDays, OffLimit, OffNumEnrolled)
 VALUES (9009, 'IS321', 'SUMMER', 2017,
 'BLM412','9:00:00', NULL,'TTH', 10, 0);
-- Update statements
-- Course columns
UPDATE CourseOfferingView
 SET CrsDesc = 'IT Security II'
 WHERE CourseNo = 'IS321';
UPDATE CourseOfferingView
 SET CrsUnits = 4
 WHERE CourseNo = 'IS321';

26008_ch11_p415-476.indd 462 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   463

-- Offering columns
UPDATE CourseOfferingView
 SET OffTerm = 'Fall'
 WHERE OfferNo = 9009;
UPDATE CourseOfferingView
 SET OffYear = 2014
 WHERE OfferNo = 9009;
UPDATE CourseOfferingView
 SET OffDays = 'MW'
 WHERE OfferNo = 9009;
UPDATE CourseOfferingView
 SET OffLocation = 'BLM305'
 WHERE OfferNo = 9009;
UPDATE CourseOfferingView
 SET OffTime = '10:30:00'
 WHERE OfferNo = 9009;
UPDATE CourseOfferingView
 SET FacNo = '543-21-0987'
 WHERE OfferNo = 9009;
UPDATE CourseOfferingView
 SET OffLimit = OffLimit +1
 WHERE OfferNo = 9009;
UPDATE CourseOfferingView
 SET OffNumEnrolled = OffNumEnrolled +1
 WHERE OfferNo = 9009;
-- View results
SELECT * FROM Course WHERE CourseNo = 'IS321';
SELECT * FROM Offering WHERE OfferNo = 9009;
ROLLBACK;

11.3.4  Understanding Trigger Execution
As the previous subsection demonstrated, individual triggers are usually easy to
understand. Collectively, however, triggers can be difficult to understand especially
in conjunction with integrity constraint enforcement and database actions. To under-
stand the collective behavior of triggers, integrity constraints, and database manip-
ulation actions, you need to understand the execution procedure used by a DBMS.
Although SQL:2016 specifies a trigger execution procedure, most DBMSs do not
adhere strictly to it. Therefore, this subsection emphasizes the Oracle trigger execution
procedure with comments about the differences between the Oracle and the SQL:2016
execution procedures.

Simplified Trigger Execution Procedure  The trigger execution procedure applies
to data manipulation statements (INSERT, UPDATE, and DELETE). Before this proce-
dure begins, Oracle determines the applicable triggers for an SQL statement. A trigger
is applicable to a statement if the trigger contains an event that matches the state-
ment type. To match an UPDATE statement with a column list, at least one column
in the triggering event must be in the list of columns updated by the statement. After
determining the applicable triggers, Oracle executes triggers in the order of BEFORE
STATEMENT, BEFORE ROW, AFTER ROW, and AFTER STATEMENT. An appli-
cable trigger does not execute if the WHEN condition is not true.

The trigger execution procedure of Oracle differs slightly from the SQL:2016 exe-
cution procedure for overlapping triggers. Two triggers with the same timing, gran-
ularity, and target table overlap if an SQL statement may cause both triggers to fire.
For example, a BEFORE ROW trigger with the UPDATE ON Customer event overlaps
with a BEFORE ROW trigger with the UPDATE OF CustBal ON Customer event. Both
triggers fire when updating the CustBal column. For overlapping triggers, Oracle pro-
vides arbitrary execution order by default. For SQL:2016, the execution order depends

Trigger Execution
Procedure
specifies the order of
execution among the
various kinds of triggers,
integrity constraints, and
database manipulation
statements. Trigger
execution procedures can
be complex because the
actions of a trigger may fire
other triggers.

Overlapping Triggers
two or more triggers with
the same timing, granularity,
and target table. The triggers
overlap if an SQL statement
may cause both triggers to
fire. You should not depend
on a particular firing order
for overlapping triggers.

26008_ch11_p415-476.indd 463 3/2/18 9:25 PM

464   Part 5  Application Development with Relational Databases

on the time in which the trigger is defined. Overlapping triggers are executed in the
order in which the triggers were created.

Simplified Oracle Trigger Execution Procedure

1.  Execute the applicable BEFORE STATEMENT triggers.
2.  For each row affected by the SQL manipulation statement:

  2.1.  Execute the applicable BEFORE ROW triggers.
  2.2.  Perform the data manipulation operation on the row.
  2.3.  Perform integrity constraint checking.
  2.4.  Execute the applicable AFTER ROW triggers.

3.  Perform deferred integrity constraint checking.
4.  Execute the applicable AFTER statement triggers.

Trigger overlap can be subtle for UPDATE triggers. Two UPDATE triggers on the
same table can overlap even if the triggers involve different columns. For example,
UPDATE triggers on OffLocation and OffTime overlap if an UPDATE statement changes
both columns. For UPDATE statements changing only one column, the triggers do not
overlap.

Oracle 12c provides the FOLLOWS clause to specify firing order among overlap-
ping triggers. The FOLLOWS clause guarantees the firing order of overlapping trig-
gers. This feature should be used sparingly because it requires knowledge of more
than one trigger to understand the impact of overlapping triggers.

As demonstrated in the Simple Trigger Execution Procedure, most constraint
checking occurs after executing the applicable BEFORE ROW triggers but before
executing the applicable AFTER ROW triggers. Deferred constraint checking is per-
formed at the end of a transaction. Chapter 17 on transaction management presents
SQL statements for deferred constraint checking. In most applications, few constraints
are declared with deferred checking.

Trigger Execution Procedure with Recursive Execution  Data manipulation
statements in a trigger complicate the simplified execution procedure. Data manipu-
lation statements in a trigger may cause other triggers to fire. Consider the AFTER
ROW trigger in Example 11.29 that fires when an Enrollment row is added. The trig-
ger updates the OffNumEnrolled column enrolled in the related Offering row. Suppose
there is another trigger on the OffNumEnrolled column of the Offering table that
fires when the OffNumEnrolled column becomes large (say within two of the limit).
This second trigger should fire as a result of the first trigger firing when an offering
becomes almost full.

When a data manipulation statement is encountered in a trigger, the trigger execu-
tion procedure is recursively executed. Recursive execution means that a procedure
calls itself. In the previous example, the trigger execution procedure is recursively
executed when a data manipulation statement is encountered in the trigger in Exam-
ple 11.29. In the Oracle execution procedure, steps 2.1 and 2.4 may involve recursive
execution of the procedure. In the SQL:2016 execution procedure, only step 2.4 may
involve recursive execution because SQL:2016 prohibits data manipulation statements
in BEFORE ROW triggers.

Actions on referenced rows also complicate the simplified execution procedure.
When deleting or updating a referenced row, the foreign key constraint can specify
actions (CASCADE, SET NULL, and SET DEFAULT) on related rows. For example, a
foreign key constraint containing ON DELETE CASCADE for Offering.CourseNo means
that deletion of a Course row causes deletion of the related Offering rows. Actions on
referenced rows can cause other triggers to fire leading to recursive execution of the
trigger execution procedure in step 2.3 for both Oracle and SQL:2016. Actions on refer-
enced rows are performed as part of constraint checking in step 2.3.

26008_ch11_p415-476.indd 464 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   465

With these complications that cause recursive execution, the full trigger execution
procedure is presented below. Most DBMSs such as Oracle limit the recursion depth
in steps 2.1, 2.3, and 2.4.

Oracle Trigger Execution Procedure with Recursive Execution

1.  Execute the applicable BEFORE STATEMENT triggers.
2.  For each row affected by the SQL manipulation statement

  2.1. � Execute the applicable BEFORE ROW triggers. Recursively execute the proce-
dure for data manipulation statements in a trigger.

  2.2.  Perform the data manipulation operation on the row.
  2.3. � Perform integrity constraint checking. Recursively execute the procedure for

actions on referenced rows.
  2.4. � Execute the applicable AFTER ROW triggers. Recursively execute the proce-

dure for data manipulation statements in a trigger.

3.  Perform deferred integrity constraint checking.
4.  Execute the applicable AFTER statement triggers.

The full execution procedure shows considerable complexity when executing a trig-
ger. To control complexity among a collection of triggers, you should follow these
guidelines:

•	 Define triggers for general purpose business rules, not rules specific to a given
application.

•	 Avoid data manipulation statements in BEFORE triggers.
•	 Limit data manipulation statements in AFTER triggers to statements that are

likely to succeed.
•	 For triggers that fire on UPDATE statements, always list the columns in which

the trigger applies.
•	 Ensure that overlapping triggers do not depend on a specific order to fire. In

most DBMSs, the firing order is arbitrary. Even if the order is not arbitrary (as in
SQL:2016), it is risky to depend on a specific firing order.

•	 Be cautious about triggers on tables affected by actions on referenced rows.
These triggers will fire as a result of actions on the parent tables.

Mutating Table Errors  Oracle has a restriction on trigger execution that can
impede the development of specialized triggers. In trigger actions, Oracle prohibits
SQL statements on the table in which the trigger is defined or on related tables affect-
ed by DELETE CASCADE actions. The underlying trigger target table and the related
tables are known as mutating tables. For example in a trigger on the Registration table,
Oracle prohibits SQL statements on the Registration table as well as on the Enrollment
table if the Enrollment table contains a foreign key constraint on Enrollment.RegNo with
the ON DELETE CASCADE action. If a trigger executes an SQL statement on a mutat-
ing table, a run-time error occurs.

Oracle has the mutating table restriction to provide a consistent snapshot of data
available in a trigger. Executing a SELECT statement on a mutating table would show
a trigger a possibly inconsistent snapshot of a table. If the statement executed with the
data existing before trigger execution, the new data does not appear. If the statement
executed with the data existing after execution of the underlying SQL statement, a fail-
ure would remove the new data. Chapter 17 presents concurrency control principles
to clarify this notion of consistency.

For most triggers, you can avoid mutating table errors by using row triggers with
new and old values. In specialized situations, you must redesign a trigger to avoid a
mutating table error. One situation involves a trigger to enforce an integrity constraint
involving other rows of the same table. For example, a trigger to ensure that no more

26008_ch11_p415-476.indd 465 3/2/18 9:25 PM

466   Part 5  Application Development with Relational Databases

than five rows contain the same value for a column would have a mutating table error.
Another example would be a trigger that ensures that a row cannot be deleted if it is
the last row associated with a parent table. A second situation involves a trigger for a
parent table that inserts rows into a child table if the child table has a foreign key con-
straint with ON DELETE CASCADE.

To write triggers in these situations, you will need a more complex solution. For
complete details, you should consult some websites that show solutions to avoid mutat-
ing table errors. The Oracle documentation mentions the following four approaches:

	 1.	 In simple situations, you can put the SELECT statement on the trigger target
table in a procedure or function and then call the procedure or function in the
trigger. The procedure or function can execute a query on the trigger table
without the mutation restriction. This solution will not work for triggers on child
tables having a referential integrity constraint with ON DELETE CASCADE.

	 2.	 In more complex situations, you may need to write a package and a collection
of triggers that use procedures in the package. The package maintains a private
array that contains the old and new values of the mutating table. Typically,
you will need a BEFORE STATEMENT trigger to initialize the private array,
an AFTER ROW trigger to insert into the private array, and an AFTER
STATEMENT trigger to enforce the integrity constraint using the private array.

	 3.	Create a view and use an INSTEAD OF trigger for the view. View triggers do
not have any mutating table restrictions.

	 4.	Write a compound trigger, a new feature in Oracle 11g. A compound trigger can
have multiple timings, BEFORE STATEMENT, BEFORE ROW, AFTER ROW,
and AFTER STATEMENT. A compound trigger supports accumulation of facts
from row changes and then uses the collection of row changes at after statement
time. In this manner, a compound trigger provides an alternative to a package
and collection of triggers.

To depict a relatively simple situation involving a mutation restriction, Example 11.43
uses the first method to avoid a mutating table error. The tr_Registration_IB trigger
implements an integrity constraint preventing a student from registering more than
one time. The trigger calls a function to determine if a registration exists with the same
student number, term, and year. The function uses a SELECT statement on the target
table (Registration) without causing a mutating table error. The SELECT statement in
the trigger body would have caused a mutating table error.

Example 11.43

Trigger to determine if a student is
already registered. The trigger calls the
function defined before the trigger

CREATE OR REPLACE FUNCTION fn_RegExists
(aStdNo IN Student.StdNo%TYPE, aRegTerm IN Registration.RegTerm%TYPE,
 aRegYear IN Registration.RegYear%TYPE)
RETURN BOOLEAN IS
-- Returns true if a Registration row exists with aStdNo,
-- aRegTerm, and aRegYear. Returns false otherwise.
RegCount INTEGER;
BEGIN
SELECT COUNT(*)
 INTO RegCount
 FROM Registration
 WHERE StdNo = aStdNo AND RegTerm = aRegTerm AND RegYear = aRegYear;

26008_ch11_p415-476.indd 466 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   467

This chapter has augmented your knowledge of database application development
with details about database programming languages, stored procedures, and triggers.
Database programming languages are procedural languages with an interface to one
or more DBMSs. Database programming languages support customization, batch pro-
cessing, and data intensive web applications as well as improved efficiency and porta-
bility in some cases. The major design issues in a database programming language are
language style, binding, database connections, and result processing. This chapter pre-
sented background about PL/SQL, a widely used database programming language
available as part of Oracle.

After learning about database programming languages and PL/SQL, the chapter
presented stored procedures. Stored procedures provide modularity like programming

IF RegCount = 0 THEN
 RETURN(FALSE);
ELSE
 RETURN(TRUE);
END IF;
END;
/

CREATE OR REPLACE TRIGGER tr_Registration_IB
-- This trigger raises an error if the student is already registered
-- by determining if a row with the same StdNo, RegTerm, and RegYear
-- exists in the Registration table.
BEFORE INSERT
ON Registration
FOR EACH ROW
DECLARE
 ExMessage VARCHAR(256);
BEGIN
 ExMessage := 'Registration exists: Error in tr_Registration_IB';
 IF fn_RegExists(:NEW.StdNo, :NEW.RegTerm, :NEW.RegYear) THEN
 raise_application_error(-20001, ExMessage);
 END IF;
END;
/

-- Testing statements
-- Insert a new student
INSERT INTO Student
	 (StdNo, StdFirstName, StdLastName, StdCity,
	 StdState, StdMajor, StdClass, StdGPA, StdZip)
	 VALUES ('999-99-9999', 'JOE', 'JONES', 'DENVER','CO', 'IS',
 'SO',3.00,'80217-3364');
-- Insert a registration for the new student without a failure.
INSERT INTO Registration
	 (RegNo,StdNo,RegStatus,RegDate,RegTerm,RegYear)
	 VALUES (1301,'999-99-9999','F','27-Feb-2017','Spring',2017);
-- Insert another registration in a different term without a failure.
INSERT INTO Registration
	 (RegNo,StdNo,RegStatus,RegDate,RegTerm,RegYear)
	 VALUES (1302,'999-99-9999','F','27-Apr-2017','Fall',2017);
-- Insert a third registration in the same term with a failure.
INSERT INTO Registration
	 (RegNo,StdNo,RegStatus,RegDate,RegTerm,RegYear)
	 VALUES (1303,'999-99-9999','F','27-Apr-2017','Fall',2017);
ROLLBACK;

CLOSING THOUGHTS

26008_ch11_p415-476.indd 467 3/2/18 9:25 PM

468   Part 5  Application Development with Relational Databases

language procedures. Stored procedures managed by a DBMS provide additional ben-
efits including reuse of access plans, dependency management, and security control by
the DBMS. You learned about PL/SQL procedure coding through examples demon-
strating procedures, functions, exception processing, and embedded SQL containing
single row results and multiple row results with cursors. You also learned about PL/
SQL packages that group related procedures, functions, and other PL/SQL objects.

The final part of the chapter covered triggers for business rule processing. A trig-
ger involves an event, a condition, and a sequence of actions. You learned the var-
ied uses for triggers as well as a classification of triggers by granularity, timing, and
applicable event. After this background material, you learned about coding Oracle
triggers using PL/SQL statements in a trigger body. To provide understanding about
the complexity of large collections of triggers, you learned about trigger execution pro-
cedures specifying the order of execution among various kinds of triggers, integrity
constraints, and SQL statements.

The material in this chapter is important for both application developers and data-
base administrators. Stored procedures and triggers can be a significant part of large
applications, perhaps as much as 25 percent of the code. Application developers use
database programming languages to code stored procedures and triggers, while data-
base administrators provide oversight in the development process. In addition, data-
base administrators may write stored procedures and triggers to support the process
of database monitoring. Thus, database programming languages, stored procedures,
and triggers are important tools for careers in both application development and data-
base administration.

REVIEW CONCEPTS

•	 Primary motivation for database programming languages: customization, batch
processing, and data intensive web applications

•	 Secondary motivation for database programming languages: efficiency and
portability

•	 Statement-level interface to support embedded SQL in a programming language
•	 Call-level interface to provide procedures to invoke SQL statements in a

programming language
•	 Popularity of proprietary call-level interfaces (ODBC and JDBC) instead of the

SQL:2016 call-level interface
•	 Support for static and dynamic binding of SQL statements in statement-level

interfaces
•	 Support for dynamic binding with access plan reuse for repetitive executions in

call-level interfaces
•	 Implicit versus explicit database connections
•	 Usage of cursors to integrate set-at-a-time processing of SQL with record-at-a-

time processing of programming languages
•	 PL/SQL data types and variable declaration
•	 Anchored variable declaration in PL/SQL
•	 Conditional statements in PL/SQL: IF-THEN, IF-THEN-ELSE, IF-THEN-ELSIF,

and CASE
•	 Looping statements in PL/SQL: FOR LOOP, WHILE LOOP, and LOOP with an

EXIT statement
•	 Anonymous blocks to execute PL/SQL statements and test stored procedures

and triggers

26008_ch11_p415-476.indd 468 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   469

•	 Motivations for stored procedures: compilation of access plans, flexibility
in client-server development, implementation of complex operators, and
convenient management using DBMS tools for security control and dependency
management

•	 Specification of parameters in PL/SQL procedures and functions
•	 Exception processing in PL/SQL procedures and functions
•	 Using static cursors in PL/SQL procedures and functions
•	 Implicit versus explicit cursors in PL/SQL
•	 PL/SQL packages to group related procedures, functions, and other objects
•	 Public versus private specification of packages
•	 Typical uses of triggers in business applications: complex integrity constraints,

transition constraints, update propagation, exception reporting, audit trails,
simulation of generalization hierarchies, and view updates

•	 Trigger granularity: statement versus row-level triggers
•	 Trigger timing: before or after an event
•	 Trigger events: INSERT, UPDATE, or DELETE as well as compound events with

combinations of these events
•	 SQL:2016 trigger specification versus proprietary trigger syntax
•	 Oracle BEFORE ROW triggers for complex integrity constraints, transition

constraints, and data entry standardization
•	 Oracle AFTER ROW triggers for update propagation and exception reporting
•	 Most common trigger coding error: trigger target table appears in a SELECT

statement in the trigger body
•	 Avoid most common trigger coding error by using the NEW and OLD

keywords to access column values of the trigger target table
•	 Oracle INSTEAD OF triggers that execute in place of manipulation operations

on views
•	 The order of trigger execution in a trigger execution procedure: BEFORE

STATEMENT, BEFORE ROW, AFTER ROW, AFTER STATEMENT
•	 The order of integrity constraint enforcement in a trigger execution procedure
•	 Arbitrary execution order for overlapping triggers
•	 Recursive execution of a trigger execution procedure for data manipulation

statements in a trigger body and actions on referenced rows
•	 Mutating table errors in Oracle triggers and approaches to avoid mutating table

errors

QUESTIONS

  1.	What is a database programming language?
  2.	Why is customization an important motivation for database programming

languages?
  3.	How do database programming languages support customization?
  4.	Why is batch processing an important motivation for database programming

languages?
  5.	Why is development of data intensive web applications an important motivation

for database programming languages?
  6.	Why is efficiency a secondary motivation for database programming languages,

not a primary motivation?

26008_ch11_p415-476.indd 469 3/2/18 9:25 PM

470   Part 5  Application Development with Relational Databases

  7.	Why is portability a secondary motivation for database programming
languages, not a primary motivation?

  8.	What is a statement-level interface?
  9.	What is a call-level interface?

  10.	What is binding for a database programming language?
  11.	What is the difference between dynamic and static binding?
  12.	What is the relationship between language style and binding?
  13.	What SQL:2016 statements and procedures support explicit database

connections?
  14.	What differences must be resolved to process the results of an SQL statement in

a computer program?
  15.	What is a cursor?
  16.	What statements and procedures does SQL:2016 provide for cursor processing?
  17.	Why study PL/SQL?
  18.	Explain case sensitivity in PL/SQL. Why are most elements case insensitive?
  19.	What is an anchored variable declaration?
  20.	What is a logical expression?
  21.	What conditional statements are provided by PL/SQL?
  22.	What iteration statements are provided by PL/SQL?
  23.	Why use an anonymous block?
  24.	Why should a DBMS manage stored procedures rather than a programming

environment?
  25.	What are the usages of a parameter in a stored procedure?
  26.	What is the restriction on the data type in a parameter specification?
  27.	Why use predefined exceptions and user-defined exceptions?
  28.	Why use the OTHERS exception?
  29.	How does a function differ from a procedure?
  30.	What are the two kinds of cursor declaration in PL/SQL?
  31.	What is the difference between a static and a dynamic cursor in PL/SQL?
  32.	What is a cursor attribute?
  33.	How are cursor attributes referenced?
  34.	What is the purpose of a PL/SQL package?
  35.	Why separate the interface from the implementation in a PL/SQL package?
  36.	What does a package interface contain?
  37.	What does a package implementation contain?
  38.	What is an alternative name for a trigger?
  39.	What are typical uses for triggers?
  40.	How does SQL:2016 classify triggers?
  41.	Why do most trigger implementations differ from the SQL:2016 specification?
  42.	How are compound events specified in a trigger?
  43.	How are triggers tested?
  44.	Is it preferable to write many smaller triggers or fewer larger triggers?
  45.	What is a trigger execution procedure?
  46.	What is the order of execution for various kinds of triggers?
  47.	What is an overlapping trigger? What is the execution order of overlapping

triggers?

26008_ch11_p415-476.indd 470 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   471

  48.	What situations lead to recursive execution of the trigger execution procedure?
  49.	List at least two ways to reduce the complexity of a collection of triggers.
  50.	What is a mutating table error in an Oracle trigger?
  51.	How are mutating table errors avoided?
  52.	What are typical uses of BEFORE ROW triggers?
  53.	What are typical uses of AFTER ROW triggers?
  54.	What is the difference between a hard constraint and a soft constraint?
  55.	What kind of trigger can be written to implement a soft constraint?
  56.	How does the Oracle trigger execution procedure differ from the SQL:2016

execution procedure for recursive execution?
  57.	What is an INSTEAD OF trigger?
  58.	Why are INSTEAD OF triggers useful to support operations on generalization

hierarchies?
  59.	How does an Oracle compound trigger differ from a trigger with multiple

manipulation actions?
  60.	What is the purpose of the FOLLOWS clause in an Oracle trigger?
  61.	Briefly describe common trigger coding errors and methods to resolve these errors.
  62.	What is the simplest method to avoid a mutating table error in an Oracle trigger?
  63.	Why does Oracle have the mutating table restriction?

PROBLEMS

Each problem uses the revised order entry database shown in Chapter 10. For your
reference, Figure 11.P1 shows a relationship window for the revised order entry data-
base. More details about the revised database can be found in the Chapter 10 problems.

The problems provide practice with PL/SQL coding and development of proce-
dures, functions, packages, and triggers. In addition, some problems involve anony-
mous blocks and scripts to test the procedures, functions, packages, and triggers.

FIGURE 11.P1
Relationship Diagram for
the Revised Order Entry
Database

26008_ch11_p415-476.indd 471 3/2/18 9:25 PM

472   Part 5  Application Development with Relational Databases

  1.	Write a PL/SQL anonymous block to calculate the number of days in a nonleap
year. Your code should loop through the months of the year (1 to 12) using a
FOR LOOP. You should use an IF-THEN-ELSIF statement to determine the
number of days to add for the month. You can group months together that have
the same number of days. Display the number of days after the loop terminates.

  2.	Revise problem 1 to calculate the number of days in a leap year. If working
in Oracle 9i or beyond, use a CASE statement instead of an IF-THEN-ELSIF
statement. Note that you cannot use a CASE statement in Oracle 8i.

  3.	Write a PL/SQL anonymous block to calculate the future value of $1,000 at 8
percent interest, compounded annually for 10 years. The future value at the end
of year i is the amount at the beginning of the year plus the beginning amount
times the yearly interest rate. Use a WHILE LOOP to calculate the future value.
Display the future amount after the loop terminates.

  4.	Write a PL/SQL anonymous block to display the price of product number
P0036577. Use an anchored variable declaration and a SELECT INTO statement
to determine the price. If the price is less than $100, display a message that the
product is a good buy. If the price is between $100 and $300, display a message
that the product is competitively priced. If the price is greater than $300, display
a message that the product is feature laden.

  5.	Write a PL/SQL procedure to insert a new row into the Product table using input
parameters for the product number, product name, product price, next ship
date, quantity on hand, and supplier number. For a successful insert, display
an appropriate message. If an error occurs in the INSERT statement, raise an
exception with an appropriate error message.

  6.	Revise problem 5 to generate an output value instead of displaying a message
about a successful insert. In addition, the revised procedure should catch a
duplicate primary key error. If the user tries to insert a row with an existing
product number, your procedure should raise an exception with an appropriate
error message.

  7.	Write testing scripts for the procedures in problems 5 and 6. For the procedure
in problem 6, your script should test for a primary key violation and a foreign
key violation.

  8.	Write a PL/SQL function to determine if the most recent order for a given
customer number was sent to the customer’s billing address. The function
should return TRUE if each order address column (street, city, state, and zip) is
equal to the corresponding customer address column. If any address column is
not equal, return false. The most recent order has the largest order date. Return
NULL if the customer does not exist or there are no orders for the customer.

  9.	Create a testing script for the PL/SQL function in problem 8.
  10.	Create a procedure to compute the commission amount for a given order

number. The commission amount is the commission rate of the employee taking
the order times the amount of the order. The amount of an order is the sum of
the quantity of a product ordered times the product price. If the order does not
have a related employee (a web order), the commission is zero. The procedure
should have an output variable for the commission amount. The output variable
should be null if an order does not exist.

  11.	Create a testing script for the PL/SQL procedure in problem 10.
  12.	Create a function to check the quantity on hand of a product. The input

parameters are a product number and a quantity ordered. Return FALSE if the
quantity on hand is less than the quantity ordered. Return TRUE if the quantity
on hand is greater than or equal to the quantity ordered. Return NULL if the
product does not exist.

  13.	Create a procedure to insert an order line. Use the function from problem 12 to
check for adequate stock. If there is not sufficient stock, the output parameter

26008_ch11_p415-476.indd 472 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   473

should be FALSE. Raise an exception if there is an insertion error such as a
duplicate primary key.

  14.	Create testing scripts for the function in problem 12 and the procedure in
problem 13.

  15.	Write a function to compute the median of the customer balance column. The
median is the middle value in a list of numbers. If the list size is even, the
median is the average of the two middle values. For example, if there are 18
customer balances, the median is the average of the ninth and tenth balances.
You should use an implicit cursor in your function. You may want to use the
Oracle SQL functions Trunc and Mod in writing your function. Write a test script
for your function. Note that this function does not have any parameters. Do not
use parentheses in the function declaration or in the function invocation when a
function does not have parameters.

  16.	Revise the function in problem 15 with an explicit cursor using the CURSOR,
the OPEN, the FETCH, and the CLOSE statements. Write a test script for your
revised function.

  17.	Create a package containing the function in problem 15, the procedure in
problem 13, the procedure in problem 10, the function in problem 8, and the
procedure in problem 6. The function in problem 12 should be private to the
package. Write a testing script to execute each public object in the package. You
do not need to test each public object completely. One execution per public
object is fine because you previously tested the procedures and functions outside
the package.

  18.	Write an AFTER ROW trigger to fire for every action on the Customer table. In
the trigger, display the new and old customer values every time that the trigger
fires. Write a script to test the trigger.

  19.	Write a trigger for a transition constraint on the Employee table. The trigger
should prevent updates that increase or decrease the commission rate by more
than 10 percent of the previous commission rate. Write a script to test your
trigger.

  20.	Write a trigger to remove the prefix “http://” in the column Supplier.SuppURL
on insert and update operations. Your trigger should work regardless of the
case of the prefix “http://”. You need to use Oracle SQL functions for string
manipulation. You should study Oracle SQL functions such as SubStr, Lower,
and LTrim. Write a script to test your trigger.

  21.	Write a trigger to ensure that there is adequate stock when inserting a new
OrdLine row or updating the quantity of an OrdLine row. On insert operations,
the ProdQOH of the related Product row should be greater than or equal to the
quantity in the new row. On update operations, the ProdQOH should be greater
than or equal to the difference in the quantity (new quantity minus old quantity).

  22.	Write a trigger to propagate updates to the Product table after an operation
on the OrdLine table. For insertions, the trigger should decrease the quantity
on hand by the order quantity. For updates, the trigger should decrease the
quantity on hand by the difference between the new order quantity minus the
old order quantity. For deletions, the trigger should increase the quantity on
hand by the old order quantity.

  23.	Write a script to test the triggers from problems 21 and 22.
  24.	Write a trigger to propagate updates to the Product table after insert operations

on the PurchLine table. The quantity on hand should increase by the purchase
quantity. Write a script to test the trigger.

  25.	Write a trigger to propagate updates to the Product table after update operations
on the PurchLine table. The quantity on hand should increase by the difference
between the new purchase quantity and the old purchase quantity. Write a script
to test the trigger.

26008_ch11_p415-476.indd 473 3/2/18 9:25 PM

474   Part 5  Application Development with Relational Databases

  26.	Write a trigger to propagate updates to the Product table after delete operations
on the PurchLine table. The quantity on hand should decrease by the old
purchase quantity. Write a script to test the trigger.

  27.	Write a trigger to propagate updates to the Product table updates to the ProdNo
column of the PurchLine table. The quantity on hand of the old product should
decrease while the quantity on hand of the new product should increase. Write a
script to test the trigger.

  28.	Suppose that you have an UPDATE statement that changes both the ProdNo
column and the PurchQty column of the PurchLine table. What triggers (that
you wrote in previous problems) fire for such an UPDATE statement? If
more than one trigger fires, why do the triggers overlap and what is the firing
order? Modify the overlapping triggers and prepare a test script so that you
can determine the firing order. Does the Oracle trigger execution procedure
guarantee the firing order?

  29.	For the UPDATE statement in problem 28, do the triggers that you created in
previous problems work correctly? Write a script to test your triggers for such
an UPDATE statement. If the triggers do not work correctly, rewrite them so
that they work correctly for an UPDATE statement on both columns as well as
UPDATE statements on the individual columns. Write a script to test the revised
triggers. Hint: you need to specify the column in the UPDATING keyword in the
trigger body. For example, you can specify UPDATING('PurchQty') to check
if the PurchQty column is being updated.

  30.	Can you devise another solution to the problem of UPDATE statements that
change both ProdNo and PurchQty? Is it reasonable to support such UPDATE
statements in online applications?

  31.	Write a trigger to implement a hard constraint on the Product.ProdPrice column.
The trigger should prevent updates that increase or decrease the value more
than 15 percent. Write a script to test the trigger.

  32.	Write a trigger to implement a soft constraint on the Product.ProdPrice column.
The trigger should insert a row into an exception table for updates that increase
or decrease the value more than 15 percent. You should use the exception table
shown in Example 11.33. Write a script to test the trigger.

  33.	Convert the employee generalization hierarchy shown in Figure 11.P2 into a
table design using the Generalization Hierarchy Rule (see Section 6.4.3).

  34.	Define two views for the table design of the employee generalization hierarchy
view. The first view (salary employee view) should contain all rows and
columns (direct and inherited) of salaried employees. The second view (hourly
employee view) should contain all rows and columns (direct and inherited) of
hourly employees.

  35.	Write triggers and associated testing code to insert rows into the salary and
hourly employee views. You should use INSTEAD OF INSERT triggers to map
the view operations into base table operations.

EmpNo
EmpName
EmpHireDate

Employee

EmpSalary

SalaryEmp

EmpRate

HourlyEmp

D,C

FIGURE 11.P2
Generalization Hierarchy for
Employees

26008_ch11_p415-476.indd 474 3/2/18 9:25 PM

Chapter 11  Stored Procedures and Triggers   475

  36.	Modify the INSTEAD OF INSERT trigger from problem 35 on the salary
employee view to enforce the disjointness constraint. Write testing code for the
modified trigger.

  37.	As an alternative to the modification of the INSTEAD OF INSERT trigger in
problem 36, write a trigger on the SalaryEmp table to enforce the disjointness
constraint. Write testing code for the new trigger. Does the trigger fire when
inserting a row in the salary employee view? Please explain your answer.

  38.	Write a trigger and associated testing code for updating columns of the salary
employee view. You should use an INSTEAD OF UPDATE trigger to map the
view operations into base table operations.

  39.	Do you need to write a trigger to enforce the completeness constraint for a
generalization hierarchy? Please explain your answer. Try to write a trigger to
explain your answer.

  40.	Write a trigger for a soft transition constraint on the Employee table. The trigger
should insert a row into an exception table for updates that increase or decrease
the commission rate by more than 10 percent of the previous commission rate.
You should use the exception table shown in Example 11.33. Write a script to test
the trigger.

  41.	Write an INSTEAD OF INSERT trigger to support insert operations on a view
joining the Customer and OrderTbl tables. You should create a view containing all
columns of each table. The trigger should map insert operations on the view to
the base tables. If the customer number provided in the insert statement does not
exist in the Customer table, a row should be inserted in both tables. Otherwise,
just insert a row into the OrderTbl table. Write a script to test the trigger.

  42.	Write an INSTEAD OF UPDATE trigger to support update operations on a view
joining the Customer and OrderTbl tables. You should create a view containing
all columns of each table. The trigger should map update operations on the view
to the appropriate base tables excluding the primary keys of each table and the
CustNo foreign key of OrderTbl. Write a script to test the trigger.

  43.	Consider a trigger on the PurchLine table involving insert or update operations
on ProdNo. The trigger should raise an error if a row is inserted or ProdNo
changed such that the new ProdNo value has a different supplier than other
products for the same purchase. Identify issues involving mutating tables for
this trigger and develop a plan to avoid a mutating table error when coding the
trigger if a problem exists.

  44.	Implement the trigger in problem 43 including any required procedures or
functions to avoid a mutating table error. Provide test cases to demonstrate that
your trigger works correctly.

REFERENCES FOR FURTHER STUDY

Although this chapter provides the most authoritative coverage of triggers of any
reference, you may want to augment this background for additional DBMS specific
details. The Oracle Technology Network (www.oracle.com/technetwork) contains a
wealth of material about PL/SQL, stored procedures, and triggers. The PL/SQL User’s
Guide provides details about PL/SQL and stored procedures. The Oracle SQL Reference
provides details about triggers as well as descriptions of predefined functions such as
Mod and SubStr. More details and examples can be found in the Oracle Concepts and
the Oracle Application Developers Guide. Melton and Simon (2001) describe triggers in
SQL:1999.

26008_ch11_p415-476.indd 475 3/2/18 9:25 PM

26008_ch11_p415-476.indd 476 3/2/18 9:25 PM

477  

part six

Part 6 provides detailed coverage of data warehouse management and design, data integra-

tion, and query formulation. Chapter 12 presents basic concepts, management background,

and examples of data warehouses in important industries. Chapter 13 describes conceptual

design of data warehouses with coverage of multidimensional representation, schema pat-

terns, summarizability patterns, and the schema integration process. Chapter 14 provides

details about data integration concepts, techniques, and tools. Chapter 15 covers query for-

mulation details about online analytic processing, SQL SELECT statement extensions for sub-

total calculations, SQL SELECT statement extensions for analytic functions, and summary data

management.

Data
Warehouse
Processing

26008_ch12_p477-508.indd 477 3/2/18 10:31 PM

26008_ch12_p477-508.indd 478 3/2/18 10:31 PM

479  

OVERVIEW
Imagine a corporate executive of a global retail firm
asking the question, “What retail stores were the top
producers during the past 12 months in major geographic
regions?” Follow-up questions may include, “What
were the most profitable products in the top producing
stores?” and “What were the most successful product
promotions at the top producing stores?” These ques-
tions are typical business intelligence questions, asked
every day by managers all over the world. Answers to
these questions often require complex SQL statements
that may take hours to code and execute. Furthermore,
formulating some of these queries may require data

from a diverse set of internal legacy systems and exter-
nal market sources, involving both relational databases
and unstructured data.

Business intelligence questions such as those in
the previous paragraph pose new requirements for data
modeling, database design methodologies, database
infrastructure, query formulation, data integration, and
DBMS features. This chapter presents characteristics and
management concepts for data warehouses deployed
to satisfy requirements of business intelligence. You will
initially learn about unique requirements for data ware-
house processing as opposed to transaction process-
ing. Then you will learn about management concepts for
developing data warehouses in organizations over time.

Learning Objectives
This chapter explains basic concepts and management principles of data
warehouses, historical databases used for business intelligence. After
this chapter, the student should have acquired the following knowledge
and skills:

•	 Explain conceptual differences between operational databases and
data warehouses

•	 Relate learning curve concepts to management of data warehouse
development

•	 Describe architectures for data warehouse development in
organizations

•	 Explain maturity concepts for development of data warehouses
including architecture selection, stages of growth, and capability
assessment

•	 Discuss insights about enterprise data warehouse development
through details of a business strategy game for data warehouse
development

•	 Discuss architecture and maturity concepts of data warehouses in
retail, education, and health care

Data Warehouse
Concepts and
Management

12
chapter

26008_ch12_p477-508.indd 479 3/2/18 10:31 PM

480   Part 6  Data Warehouse Processing

This chapter augments this conceptual background with
details of a business strategy game for data warehouse
development. To provide a concrete context for con-
ceptual material in this chapter, you will see examples
of enterprise data warehouses in retail, education, and
health care.

Chapter 12 begins Part 6 with four chapters about
data warehouses. This chapter provides a conceptual
foundation about data warehouse characteristics and
management principles. For basic concepts, you will
learn historical reasons for data warehouse usage and

technology development and characteristics of data
warehouses. For management principles, you will learn
development challenges, learning curve characteris-
tics, and maturity concepts as well as examples of data
warehouse usage in important industries. Chapters 13
to 15 extend this conceptual foundation with detailed
skills about data warehouse design, data integration,
and query formulation for enterprise data warehouses.
Collectively, the chapters in Part 6 provide breadth and
depth of coverage to support career aspirations as a
data warehouse or business intelligence professional.

The type of data used for business intelligence purposes is conceptually different from
data used in transaction processing systems. Data requirement differences reflect
fundamentally different processing environments for daily operations and business
intelligence. This section examines differences in processing environments lead-
ing to characteristics of data warehouses that support business intelligence needs of
organizations.

12.1.1  Transaction Processing versus Business Intelligence
Transaction processing involves different needs in an organization than business
intelligence. A transaction is a unit of repetitive work such as a product order, airline
reservation, bill payment, or course enrollment. Transaction processing, as presented
in Chapter 17, allows organizations to conduct daily business in an efficient manner.
Operational or production databases used in transaction processing assist with deci-
sions such as tracking orders, resolving customer complaints, and assessing staffing
requirements. These decisions involve detailed data about business processes. In con-
trast, business intelligence processing helps management provide medium-term and
long-term direction for an organization. Management needs support for decisions
such as capacity planning, product development, store locations, product promotions,
and sales forecasts.

These organizational needs involve different data requirements for transaction
processing and business intelligence as shown in Figure 12.1. Transaction processing
requires primary data from large volumes of transactions to support daily operations
and short-term decision making of an organization. In contrast, business intelli-
gence processing requires transformed secondary data from primary data sources to

12.1  BASIC CONCEPTS

Transaction processing
•Primary data from transactions
•Daily operations and short term
decisions

Business intelligence
processing
•

•

Transformed and integrated
secondary data
Medium and long-term
decisions

FIGURE 12.1
Data Requirements for
Transaction Processing and
Business Intelligence

26008_ch12_p477-508.indd 480 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   481

support medium and long-term decision-making. A data warehouse supports decision-
making with longer-term impact through transformations and integration of opera-
tional databases and external data sources.

Historically, most organizations have assumed that operational databases along
with relational database technology could provide adequate support for business
intelligence. As organizations developed operational databases for various functions,
an information gap developed. Gradually, organizations and DBMS vendors realized
limitations of operational databases and relational database technology for business
intelligence as depicted in Figure 12.2 and explained in the following points.

•	 Organizations and DBMS vendors experienced performance problems with
using an individual database for both transaction processing and business
intelligence processing. The demands of transaction processing and business
intelligence processing differ so sharply that an individual database could not
provide adequate performance for both purposes.

•	 Organizations realized that lack of integration among operational databases
hindered higher-level decision-making. This lack of integration was not a design
failure as operational databases primarily support transaction processing,
not business intelligence processing. Organizations learned that retrofitting
integration for operational databases was difficult.

•	 Product vendors realized that DBMSs lacked key features to support summary
data retrieval and analytical calculations, vital for business intelligence
processing. The SQL GROUP BY clause was inadequate for queries involving
summary data. The SELECT statement lacks features for analytical calculations
such as moving averages. Storage and optimization methods were inadequate for
queries involving summary data.

Since the early 1990s, a consensus has emerged that operational databases must
be transformed for business intelligence support. Operational databases can contain
inconsistencies in formats, entity identification, frequency of update, and units of
measure that hamper usage in business intelligence. In addition, organizations need
a broad view that integrates business processes for business intelligence. Because of
different requirements and performance limitations, operational databases are usually
separate from databases for business intelligence. Using a common database for both
kinds of processing can significantly degrade performance and make it difficult to
summarize activity across business units.

Commercial software vendors have performed substantial amounts of research
and development to add features for business intelligence. Initially, a new breed of
companies developed storage engines, summary data retrieval, and data transforma-
tion tools for business intelligence. Later, relational DBMS vendors added features for
efficient management of summary data, query language extensions for summary data,
optimization of queries involving summary data, and transformation of operational
databases. The technology provided by both business intelligence firms and relational
DBMS vendors has rapidly matured to provide strong commercial solutions for devel-
oping and managing data warehouses.

Data
warehouse
technology

and
deployments

Performance
limitations

Lack of
integration

Missing
DBMS

features

FIGURE 12.2
Technology and Deployment
Limitations

26008_ch12_p477-508.indd 481 3/2/18 10:31 PM

482   Part 6  Data Warehouse Processing

12.1.2  Characteristics of Data Warehouses
Data warehouse, a term coined by William Inmon in 1990, refers to a logically cen-
tralized data repository where data from operational databases and other sources are
integrated, cleaned, and standardized to support business intelligence. The transfor-
mational activities (cleaning, integrating, and standardizing) are essential for achieving
benefits. Data warehouses are optimized for reporting often involving summarization
of large amounts of data as well as periodic processing to integrate and transform
source data.

This definition of a data warehouse extends to four distinguishing characteristics,
as described in the following points.

	 1. 	Subject-Oriented: A data warehouse is organized around major business
subjects or entities such as customers, orders, and products. This subject
orientation contrasts to the process orientation for transaction processing.

	 2. 	Integrated: A data warehouse integrates data from multiple operational
databases and external data sources to provide a single, unified database for
business intelligence. Integration requires consistent naming conventions,
common data formats, and comparable measurement scales across data
sources. In addition, integration involves matching and merging entities such as
customers across data sources.

	 3. 	Time-Variant: Data warehouses use time stamps to represent historical
data. The time dimension supports identification of trends, prediction of future
operations, and determination of operating targets. Data warehouses essentially
consist of a long series of snapshots, each of which represents operational data
captured at a point in time.

	 4. 	Nonvolatile: New facts in a data warehouse are appended, rather than
replaced, preserving historical data. Refreshing a data warehouse primarily
involves appending new facts with a much lower level of updates to related
business entities. Dominance of inserting new facts ensures that update and
deletion anomalies are secondary for data warehouses. Transaction data are
transferred to a data warehouse only when most updating activity has been
completed.

Table 12-1 further depicts characteristics of data warehouses compared to operational
databases. Transaction processing relies on operational databases with current data at
the individual level, while business intelligence processing utilizes data warehouses
with historical data at both the individual and summarized levels. Individual-level
data provides flexibility for responding to a wide range of business intelligence needs
while summarized data provides fast response to repetitive queries. For example, an
order-entry transaction requires data about individual customers, orders, and inven-
tory items, while a business intelligence application may use monthly sales to cus-
tomers over a period of several years. Operational databases therefore have a process
orientation relevant to a particular business activity, compared to a subject orientation

Data Warehouse
a logically centralized reposi-
tory containing transformed
data from operational
databases and external data
sources.

TABLE 12-1
Comparison of Operational
Databases and Data
Warehouses

Characteristic Operational Database Data Warehouse

Currency Current Historical

Detail level Individual Individual and summary

Design orientation Process orientation Subject orientation

Rows per retrieval Few Thousands to millions

Normalization level Mostly normalized Relaxed design from BCNF

Modification level Volatile Nonvolatile (refreshed)

Data representation Relational Relational model with star schemas and
multidimensional model with data cubes

26008_ch12_p477-508.indd 482 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   483

for data warehouses with all customer data across business processes. A transaction
typically updates only a few rows, whereas a business intelligence application may
query thousands to millions of rows.

Data integrity and usage patterns of transaction processing require that opera-
tional databases be highly normalized. In contrast, data warehouses typically have
some violations from Boyce-Codd Normal Form to reduce effort to join large tables.
Most applications in business intelligence involve retrievals and periodic insertions of
new data. These operations do not suffer from redundancies caused by violations of
normal forms.

Because of the different processing requirements, data warehouse designs use
different data representations than operational databases. The relational data model
dominates for operational databases. In the early years of data warehouse deployment,
the multidimensional data model dominated. Relational databases now dominate for
data warehouses with a schema pattern known as a star schema. The multidimen-
sional data model now typically supports a business analyst representation of a data
warehouse.

12.1.3  Applications of Data Warehouses
Organizations undertake data warehousing projects for competitive reasons, to
achieve strategic advantage or to stay competitive. In many industries, a few organiza-
tions pioneered deployment of data warehouses to gain competitive advantage. Often,
organizations undertook a data warehousing project as part of a corporate strategy
to shift from a product focus to a customer focus. Successful data warehouses have
helped identify new markets, focus resources on profitable customers, improve reten-
tion of customers, and reduce inventory costs. After success by the pioneering organi-
zations, other organizations quickly followed to stay competitive.

Organizations in a wide range of industries and government areas have developed
data warehouses. A few key applications have driven the adoption of data warehous-
ing projects as listed in Table 12-2. Highly competitive industries such as retail, insur-
ance, airlines, and telecommunications invested early in data warehouse technology
and projects. Less competitive industries such as regulated utilities were slower to
invest although they now have substantial investments in data warehouse deployment.

The maturity of data warehouse deployment varies among industries and organi-
zations. Early adopters of data warehouses have deployed data warehouses since the
early 1990s while later adopters have deployed data warehouses since the 2000s. With
the rapid development of data warehouse technology and best practices, continued
investment in data warehouse technology and management practices are necessary to
sustain business value. Many large organizations have made major redevelopments
of their data warehouses to leverage improved technology and practices. To provide
guidance about investment decisions and management practices, organizations use
comparisons to peer organizations to gauge the level of data warehouse usage.

Data Mining  Data mining has emerged as a key application of data warehouses
across industries. The ability to discover hidden patterns in data can substantially
increase benefits provided by a data warehouse. Data mining refers to the process of
discovering implicit patterns in data and using these patterns for business advantage.
Data mining facilitates the ability to detect, understand, and predict patterns.

Data Mining
the process of discovering
implicit patterns in data and
using those patterns for
business advantage.

TABLE 12-2
Data Warehousing
Applications by Industry

Industry Key Applications

Airline Yield management, route assessment

Telecommunications Customer retention, network design

Insurance Risk assessment, product design, fraud detection

Retail Target marketing, supply-chain management

26008_ch12_p477-508.indd 483 3/2/18 10:31 PM

484   Part 6  Data Warehouse Processing

The most common application of data mining techniques is target marketing.
Retail companies can increase revenues and decrease costs if they can identify likely
customers and eliminate customers not likely to purchase. Data mining techniques
allow decision makers to focus marketing efforts by customer demographic and psy-
chographic data. The entertainment, financial services, travel, and consumer goods
industries also have benefited from data mining techniques. For example, the financial
services industry uses data mining techniques to develop new financial products and
promote them to customers likely to purchase them.

Requirements of data mining require extensions to capabilities traditionally pro-
vided by a mature data warehouse. Data mining needs more detailed data than tradi-
tional data warehouses provide. The volumes and dimensionality of data can be much
greater for data mining techniques than other analysis methods using data warehouse
queries. Data mining techniques thrive with clean, high-dimensional, transaction data.
To support these data mining requirements, many data warehouses now store data at
the level of the individual customer, product, and so on.

Data mining requires a collection of tools that extend beyond traditional statistical
analysis tools. Traditional statistical analysis tools are not well suited to high dimen-
sional data with a mix of numeric and categorical data. In addition, traditional sta-
tistical techniques do not scale well to large amounts of data. Data mining typically
includes the following kinds of tools:

•	 Data access tools to extract and sample transaction data according to complex
criteria from large databases

•	 Data visualization tools that enable a decision maker to gain a deeper, intuitive
understanding of data

•	 A rich collection of models to cluster, predict, and determine association rules
from large amounts of data. The models involve neural networks, genetic
algorithms, decision tree induction, rule discovery algorithms, probability
networks, and other technologies.

•	 An architecture that provides optimization, client-server processing, and parallel
processing to scale to large amounts of data

Data mining provides insights that may elude traditional techniques for data ware-
house queries. Data mining holds the promise of more effectively leveraging data
warehouses by providing the ability to identify hidden relationships in data. It facili-
tates data-driven discovery, using techniques such as building association rules (e.g.,
between advertising budget and seasonal sales), generating profiles (e.g., buying pat-
terns for a specific customer segment), and generating predictions. This knowledge
may help to improve business operations in critical areas, enabling target-marketing
efforts, better customer service, and improved fraud detection.

12.2  MANAGEMENT OF DATA WAREHOUSE DEVELOPMENT
Despite potential benefits of a data warehouse, many organizations have struggled
with data warehouse development and usage. A typical data warehouse project
involves a large capital investment, typically more than $1 million in just the first year
(AbuAli and Abu-Addose, 2010). According to a Gartner study in 2005, half of orga-
nizations have experienced failures in initial efforts to develop a data warehouse or
achieved limited acceptance after deployment. Thus, organizations must carefully
manage data warehouse development to achieve potential benefits.

To provide background and insight about data warehouse development, this sec-
tion presents management concepts important for data warehouse deployment in
organizations and demonstrates a business strategy game involving data warehouse
development. You will first learn about development difficulties and organizational
learning concepts typical in data warehouse projects. Then, you will learn about com-
mon architectures to deploy data warehouses in organizations. You will next learn

26008_ch12_p477-508.indd 484 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   485

about major concepts of data warehouse maturity including architecture selection,
stages of growth, and capability assessment. After studying architectures and matu-
rity concepts, you will learn details about a business strategy game that provides sim-
ulated experience with data warehouse development in organizations.

12.2.1  Development Challenges and Learning Effects
Development projects for data warehouses face potentially high and unforeseen costs
along with intangible benefits as depicted in Figure 12.3. Coordination challenges and
uncertain data quality levels drive potential high costs. Large data warehouse projects
involve coordination among many parts of an organization. Many organizations have
underestimated the time and effort to achieve coordination to reconcile different parts
of a data warehouse. Because an organization may not have attempted to integrate
operational databases, data quality problems may be unknown. A slow period of dis-
covery of data quality problems can be costly. Coordination and poor data quality
have caused substantial cost overruns in development projects for data warehouses.

In addition to potentially high development costs, organizations struggle with
intangible benefits from data warehouse investments. Although organizations strug-
gle to quantify intangible benefits, organizations often deem intangible benefits impor-
tant to long-term success. Traditionally, intangible benefits involve brand recognition,
employee expertise, and management skill. Intangible benefits for a data warehouse
typically involve increased data quality through fewer missing values, larger number
of matched entities particularly customers, higher levels of standardization, and more
data availability. After years of usage, intangible benefits may become tangible as
examples of increased revenue and reduced expenses can be associated to analysis not
possible before deployment of a data warehouse. For example, a data warehouse may
enable reduced losses due to improved fraud detection, improved customer reten-
tion through targeted marketing, and reduction in inventory carrying costs through
improved demand forecasting.

Learning curves provide insight to understand intangible benefits and high costs
in data warehouse projects. The traditional learning curve (Figure 12.4) indicates
improvement in performance of a skill as a function of learning effort such as number
of trials. The skill learning curve features a slow beginning with a high fixed cost (such
as many trials) to gain a rudimentary skill level. Essentially, the slow beginning indi-
cates a high fixed cost to learn a skill. At some point, a learner gains enough insight to
propel performance to much higher levels with few additional trials. After this period
of rapid advancement, a learner reaches a plateau in which it is difficult to advance
skill performance much.

The learning curve for production (Figure 12.5) has a different shape but some
similar lessons as the learning curve for skills. Organizations in high technology man-
ufacturing have applied the production learning curve to complex products such as
aircraft production. This curve switches the axes with units produced on the x-axis

FIGURE 12.3
Drivers of Difficulties in Data
Warehouse Development
Projects

Development
di�culties

(project failure
and unrealized

value)

Coordination
across diverse
organizational

units

Uncertain
data quality

in source
systems

Intangible
benefits

26008_ch12_p477-508.indd 485 3/2/18 10:31 PM

486   Part 6  Data Warehouse Processing

and effort such as work hours or cost on the y-axis. The curve features a steep negative
slope with few units produced at high cost due to discovery and correction of prob-
lems in initial production. The curve then enters steep deceleration after resolution
of production problems and production of more units. Finally, the curve enters the
plateau region after an organization resolves most quality problems.

The major lesson from the production cost curve is to expect high initial costs
to resolve quality problems especially for products with large levels of innovation.
Productivity improvements occur rapidly after this initial period with sharply falling
costs per unit produced.

The skill and production learning curves provide insight about maturity of data
warehouse usage in an organization. The business value learning curve (Figure 12.6)
shows the hypothetical relationship between deployment time of a data warehouse in
an organization and business value derived from its usage. The business value learn-
ing curve shows the characteristics of a skill attainment curve with an initial period of
low business value, followed by a period of rapid acceleration of business value until
reaching a plateau. The key insight from the business value learning curve is the initial
difficulty to create high value from combining data sources.

The data transformation learning curve (Figure 12.7) shows the hypothetical rela-
tionship between time that a data warehouse has been deployed and transformation
cost to resolve data quality problems. The data transformation learning curve has

FIGURE 12.4
Traditional Learning Curve
for Skill Attainment

Pe
rf

or
m

an
ce

Learning E�ort

Slow start

Rapid
improvement

Leveling o�

FIGURE 12.5
Traditional Learning Curve
for Production

E�
or

t

Units Produced

Slow start

Rapid
improvement

Leveling o�

26008_ch12_p477-508.indd 486 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   487

characteristics of a production learning curve with high costs to resolve initial data
quality problems followed by a period of steep decline in costs until reaching a bottom
plateau. The key insight from the curve is a high fixed cost to discover and resolve
unknown data quality problems during the initial period of usage.

According to learning curve concepts, organizations should mature in their usage
of data warehouses over time with increasing benefits and decreasing costs. However,
many organizations struggle with stagnant benefits and increasing costs, lacking a
coherent strategy to develop a data warehouse over time. The next subsections pres-
ent important tools that help organizations mature in deployment of data warehouses.

12.2.2  Architectures for Data Warehouse Deployment
When applied to computer systems, architecture refers to an organization of compo-
nents to support specified goals. For data warehouses, business goals drive technology
choices so architecture is primarily a business issue, not a technology issue. The scope
and integration level are important factors in determining an appropriate architecture.
Scope refers to the breadth of an organization supported by a data warehouse. Scope
can be measured in various ways such as the number of data sources used, number
of source systems providing inputs, or the number of organizational units provid-
ing inputs or using a data warehouse. Integration level refers to several data quality

FIGURE 12.6
Learning Curve for Business
Value of a Data Warehouse

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70

B
us

in
es

s
va

lu
e

Time

0

5

10

15

20

25

0 5 10 15

Tr
an

sf
or

m
at

io
n

C
os

t

Time

FIGURE 12.7
Learning Curve for Data
Transformation Costs

26008_ch12_p477-508.indd 487 3/2/18 10:31 PM

488   Part 6  Data Warehouse Processing

indicators across data sources. Integration level involves completeness, consistency,
conformity, and duplication across data sources, not within individual data sources.

The enterprise data warehouse architecture provides a scalable approach to sup-
port a large number of data sources and business units as depicted in Figure 12.8. To
assist with the transformation process, an organization should create an enterprise
data model (EDM). An EDM describes the structure of a data warehouse and contains
descriptive data required to access operational databases and external data sources.
The EDM may also contain details about cleaning and integrating data sources.

Departmental users generally need access and control of small portions of a data
warehouse, instead of an entire warehouse. To provide them with faster access while
isolating them from data needed by other user groups, smaller data warehouses called
data marts are often used. Data marts act as the interface between end users and
a corporate data warehouse, storing a subset of data and refreshing those data on a
periodic (e.g., daily or weekly) basis. Generally, a data warehouse and associated data
marts reside on different servers to improve performance and fault tolerance. Orga-
nizational units retain control over their own data marts, while the data warehouse
remains under the control of corporate information systems staff.

A staging area can augment an enterprise data warehouse to support data trans-
formation and operational decision-making. A staging area provides temporary stor-
age of transformed data before loading into the data warehouse. Organizations with
a large number of data sources and complex transformations typically use staging
areas. Some organizations use staging areas to support operational decision-making
for performance or productivity reasons. Staging areas supporting operational report-
ing requirements are known as operational data stores.

Given the large investment required to develop an enterprise data warehouse,
some organizations opt for lower cost approaches without an enterprise data model.
These organizations employ a bottom-up approach to data warehousing as depicted
in Figure 12.9. In the data mart architecture, an organization develops separate data
marts with relatively small scope and no integration among data marts. The set of
data marts may evolve into a large data warehouse if the organization can justify the
expense of building an enterprise data model.

The data mart bus architecture (Kimball 2003a) combines features of the enter-
prise data warehouse and data mart architectures as depicted in Figure 12.10. A data
mart bus transforms data sources into common business entities according to organi-
zational standards before loading transformed data into data marts. Similar to the data
mart architecture, each data mart contains its own data model to support a limited
number of user departments.

Enterprise Data Model
a conceptual data model of
the data warehouse defining
the structure of a data
warehouse and the
descriptive data to access
and transform operational
databases and external data
sources.

Data Mart
a subset or view of a data
warehouse, typically at a
department or functional
level, that contains all
data required for business
intelligence tasks of that
department.

Data warehouse

Operational
database

Operational
database

External
data source

EDM

Detailed and
summarized data

Transformation
process

Data warehouse
server

User
departments

Data mart

Data mart

Data mart tier

Extraction
process

Staging
Area

FIGURE 12.8
Enterprise Data Warehouse
Architecture with Staging
Area

26008_ch12_p477-508.indd 488 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   489

For highly decentralized or independent organizations, the federated data ware-
house architecture provides another compromise approach. As depicted in Figure 12.11,
the federated data warehouse approach supports two levels of data warehouses. Each
organization independently maintains one or more data warehouses using any of the
architectures. To provide inter-organizational sharing, each organization contributes
to the federated data warehouse. Typically, another layer of data integration and a
query portal support data sharing in the federated data warehouse. Depending on
the environment, participation can be voluntary or compulsory (typically required
by government agencies). Some users of a federated data warehouse may be external
stakeholders, not members of participating organizations.

Organizations driven by major events may develop oper marts (short for opera-
tional mart) as noted by Imhoff (2001). An oper mart, a just-in-time data mart, is usu-
ally built from one operational database in response to major events such as disasters
and new product introductions. An oper mart supports peak demand for reporting
and business analysis that accompanies a major event. After the decision support
demand subsides, an organization may dismantle an oper mart or merge it into an
existing data warehouse or data mart.

FIGURE 12.9
Data Mart Architecture

Operational
database

Operational
database

External
data source

Transformation
process

User
departments

Data mart

Data mart

Data mart tier

Data mart

Operational
database

Operational
database

External
data source

Data mart tier User departments

Data Mart
Bus

Data mart

...

Stardard business
entities

FIGURE 12.10
Data Warehouse Bus
Architecture

26008_ch12_p477-508.indd 489 3/2/18 10:31 PM

490   Part 6  Data Warehouse Processing

12.2.3  Data Warehouse Maturity Concepts
Maturity in deployment of information technology assets has become an important
concern for organizations. For data warehouses, maturity involves selection of an
appropriate architecture, monitoring of stages of maturity, and acquisition of capabili-
ties to implement an architecture.

Architecture Selection  Two opposing approaches provide limits on architectures for
data warehouses as depicted in Figure 12.12. The top-down approach develops an enter-
prise data warehouse, a single data warehouse for an organization. Through logical cen-
tralization, the top-down approach has a high level of integration and wide scope. The
bottom-up approach provides independent data marts with lower integration levels.
The data mart bus approach provides a compromise approach, combining development
of data marts with some level of integration. The federated approach provides another
compromise approach to facilitate data sharing among additional stakeholders.

Learning effects provide bias for data warehouse projects of smaller scope and
lower integration level. Intangible business value creates uncertainty about return on
data warehouse investments, especially data warehouses with a wide scope. Project
risks provide uncertainty about costs for data warehouses with a wide scope. Learning
effects typically postpone benefits while incurring costs early. Over longer periods, an
organization can mitigate these learning difficulties, however.

To overcome bias for data warehouses with narrow scope and low integration
levels, senior management in an organization should develop a high strategic view
of information technology. The level of sponsorship, information independence, and
task routineness influence an organization’s strategic view. Organizations with broad
sponsorship for projects, information dependence for long-term decision making, and
lower task routineness will have a higher strategic view, favorable to the enterprise
data warehouse approach.

FIGURE 12.11
Federated Data Warehouse
Architecture

Federated
Data Warehouse

Local DW

Local DW
...

Local DW

External Users

Data
Integration

Local Data
Warehouse Tier

Query
Portal

Top-Down
•Enterprise data warehouse
•Higher integration levels
•Logically centralized
•Larger project scope

Bottom-Up
•Independent data marts
•Lower integration levels
•Logically decentralized
•Smaller project scope

FIGURE 12.12
Characteristics of
Opposing Data Warehouse
Architectures

26008_ch12_p477-508.indd 490 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   491

Choudary (2010) identified factors influencing architecture selection for an orga-
nization as summarized in Tables 12-3 and 12-4. An organization should select a lower
level of integration with a data mart architecture if it has high resource constraints,
high urgency for information requirements, and low levels of other factors. An orga-
nization should select a medium level of integration in a data mart bus architecture
if it has moderate resource constraints, moderate need for data integration, and mod-
erate strategic view. An organization should select a higher integration level in an
enterprise data warehouse architecture if it perceives data as a strategic resource. An
organization should have low resource constraints, high need for data integration, and
high sponsorship levels.

Stages of Growth  The data warehouse maturity model (Eckerson 2007) pro-
vides guidance for investment decisions for data warehouses by stages of growth.
The maturity model consists of six stages as summarized in Table 12-5. The stages
provide a framework to view an organization’s progress, not an absolute metric as
organizations may demonstrate aspects of multiple stages at the same time. As orga-
nizations move from lower to more advanced stages, increased business value can
occur. However, organizations may have difficulty justifying significant new data
warehouse investments as benefits can be intangible, difficult to quantify.

An important insight of the maturity model is the difficulty of moving between
certain stages. For small but growing organizations, moving from the infant to the
child stages can be difficult because a significant investment in data warehouse tech-
nology is necessary. For large organizations, the struggle is to move from the teenager
to the adult stage. To make the transition, upper management must perceive the data
warehouse as a vital enterprise resource, not just a tool provided by the information
technology department.

The Data Warehouse Institute (TDWI) has developed a survey tool (available at
tdwi.org) to assess the maturity of individual organizations in data warehouse develop-
ment. The tool provides a maturity score in the categories of scope, sponsorship, fund-
ing, value, architecture, data, development, and delivery. The tool uses maturity scores
to compare organizations based on industry, company size, budget, and other variables.

Data Warehouse Maturity
Model
proposed to provide guid-
ance for data warehouse
investment decisions. The
stages of the Data Ware-
house Maturity Model pro-
vide a framework to view an
organization’s progress, not
an absolute metric as orga-
nizations may demonstrate
aspects of multiple stages at
the same time.

TABLE 12-3
Summary of Organization
Factors

Factor Description

Resource constraints Level of slack resources (financial, computing capacity, and personnel) for
data warehouse implementation

Information technology
skills

Level of skill of information technology organization

Integration need Level of reports and business decisions requiring data from different business
units and data sources

Sponsorship Ability to obtain funding and support from top management

Strategic view Perception of organizational value from business intelligence investments

Urgency Need for fast implementation of information technology requirements

TABLE 12-4
Data Warehouse
Architecture and
Organization Factor Levels

Organizational Factor

Data Warehouse Architecture

Data Mart Data Mart Bus Enterprise

Resource constraints High Moderate or High Low

Information technology skills Low Moderate High

Integration need Low Moderate High

Sponsorship Low Low or Moderate High

Strategic view Low Moderate High

Urgency High High or Moderate Low

26008_ch12_p477-508.indd 491 3/2/18 10:31 PM

492   Part 6  Data Warehouse Processing

The Data Warehouse Maturity Model has been extended into the Business Intel-
ligence (BI) Maturity Model by the Data Warehouse Institute. The BI Maturity Model
adds dimensions of usage, insight, control, and business value to the adoption dimen-
sion of the original maturity model. As BI usage matures, organizations progress from
information backlogs to utility support with access to power users, casual users, and
external parties. Insight improves as BI adoption matures with organizations improving
decision automation by increasing data freshness and decreasing decision latency. For
control, organizations balance flexibility and standards, generally adopting more orga-
nization wide standards as maturity increases. Business value increases slowly as adop-
tion matures with final stages of maturity providing competitive business advantage.

Capability Assessment  Capability assessment involves attainment of appropri-
ate maturity levels in process areas and activities. The most influential approach, the
Capability Maturity Model (CMM), was developed in the early 1990s by the Software
Engineering Institute. The CMM contains five maturity levels (initial, repeatable,
defined, managed, and optimized) showing progress in software development capa-
bilities. To achieve a specified maturity level, the CMM stipulates features for key pro-
cess areas. For example to achieve the managed level, an organization must achieve
levels of quantitative process management and software quality management.

Sen et al. (2012) applied the CMM to data warehouse maturity. They proposed
a detailed set of activities and features to achieve each capability level for both data
warehouse development and operations. Table 12-6 summarizes key process areas for
each maturity level for data warehouse development. The optimizing level requires
maturity in higher level activities neglected by most organizations. Lower levels of
maturity require more basic activities common to many organizations.

12.2.4  Business Strategy Game for Data Warehouse Development
Data warehouse architectures and maturity are abstract concepts, difficult to apply
in an organizational setting. Business strategy games provide a learning approach to
apply abstract concepts in simulated environments.

For data warehouse development, students have difficulty to obtain insights
gained from experiencing project relationships involving costs and benefits over
extended time periods. Benefits of data warehouse deployment are often intangible
especially during initial periods of usage. Benefits become tangible and increase as
organizational units increase usage. In contrast, costs are tangible and high during
data warehouse development especially with uncertain levels of data quality. Costs
decline as benefits increase during usage of a data warehouse over time. Learners need
to gain experience from balancing costs and benefits as organizations acquire capabili-
ties to support an organization’s strategy for developing a data warehouse.

This section provides an overview of Emerge2Maturity, a business strategy game
that addresses these difficulties. Emerge2Maturity decomposes complexity of data
warehouse development into a sequence of standard steps with common factors across

TABLE 12-5
Stages of the Data
Warehouse Maturity Model

Stage Scope Architecture Management Usage

Prenatal System Management reporting Individual employees

Infant Individual business
analysts

Operational reports and spreadsheets
(known as spreadmarts)

Management insight

Child Departments Data marts Support business analysis

Teenager Divisions Data warehouses Track business processes

Adult Enterprise Enterprise data warehouse Drive organization

Sage Inter-enterprise Web services and external networks Drive market and industry

Source: Eckerson 2007

26008_ch12_p477-508.indd 492 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   493

organizations. To help learners understand relationships among strategy and capabil-
ity assessment, Emerge2Maturity combines aspects of strategy and capability assess-
ment. For strategy, Emerge2Maturity shows trends, costs, and benefits with increased
benefits and decreased costs over time. For capability assessment, Emerge2Matury
uses simulation so that learners can observe results of their decisions before imple-
menting them. Simulation in Emerge2Maturity uses simple models to quantify costs
and benefits related to development choices made by players.

Game Flow  Emerge2Maturity supports decision making over a number of phases
as depicted in Figure 12.13. Players attempt to maximize profit (benefits minus costs)
subject to constraints about budget and resource levels. Emerge2Maturity uses uncer-
tain demand for information assets so players deal with risk in assessing capabilities.

In each phase, a player makes sequential decisions about capabilities for extrac-
tion, transformation, and integration for data source categories. Extraction involves
selecting data sources and transporting data to a staging area. Transformation involves
increasing data quality through operations on individual data sources. Integration
combines data from different sources, matching and consolidating common data.

To manage complexity from a large number of data sources, Emerge2Maturity
groups data sources into categories by levels of technology, complexity, and size.
Technology ranges from legacy systems to modern systems depending on currency of

TABLE 12-6
Summary of Key Process
Areas for Data Warehouse
Development

Maturity Level Key Process Areas

Optimizing Change management for meta data and technology, defect prevention,
process improvement program

Managed Data quality management, process management, service level management

Defined Process definition, stakeholder management process, architecture alignment,
data quality assurance, service level agreement, resource management,
configuration management

Repeatable Sponsor assurance, project planning and tracking, business justification,
requirements management

Initial Project management

Extraction

Transformation

Integration

Data Size

Transformation
Level

Integration
Level

Learning e�ects on
cost and benefit
rates

Uncertain
demand;

Constraints
for budget

and
capabilities

Capability
Assessment

Data source
categories

Impact of events on
budget constraints

Phase Transition

Simulate

Simulate

Simulate

FIGURE 12.13
Game Flow in
Emerge2Maturity

26008_ch12_p477-508.indd 493 3/2/18 10:31 PM

494   Part 6  Data Warehouse Processing

programming environment, DBMS, operating system, and hardware platform. Com-
plexity involves difficulty to transform diverse data with more complex data requir-
ing extensive time and effort to analyze. Size involves processing effort for data with
larger data requiring additional capacity to process.

Categories determine cost and benefits for individual data sources as all data
sources in a category have the same feature values. Feature values determine levels of
fixed costs, variable costs, production (number of queries produced), benefits, and risk
as depicted in Table 12-7. For example, legacy technology involves higher fixed costs
and complexity influences production, variable costs, benefits, and risks.

Transition among phases involves new constraint levels about budgets and capa-
bilities, a learning effect revising rates for costs and benefits, and random economic
events influencing budget constraints. Emerge2Maturity determines constraint levels
dynamically based on organizational strategy and capabilities achieved in previous
phases. The learning effect progresses over phases, affecting rates for costs and ben-
efits. Emerge2Maturity adjusts rates for costs and benefits according to a parameter in
a learning function. As an organization acquires capabilities, costs decrease and bene-
fits increase. Emerge2Maturity uses external economic events (recession or expansion)
with small probabilities of occurrence. If an event occurs, Emerge2Maturity randomly
adjusts the budget constraint, increasing the budget constraint for an expansion and
decreasing the budget constraint for a recession.

Game Implementation and Demonstration  Emerge2Maturity uses a web inter-
face dependent on common JavaScript packages and an external database. The web
interface controls player interactions and provides documentation to explain play
aspects. The external database contains static tables with the configuration of a game
(number of phases, category features, constraint levels, and other details) and dynamic
tables with game play results.

To begin game play, a player chooses a game and begins in phase 1. Emerge2Ma-
turity provides games with several skill levels based on number of phases, constraint
levels, and category features. At the beginning of a phase, Emerge2Maturity displays
constraint levels (budget and resource levels for data source categories) and features
of data source categories. Figure 12.14 shows three categories with constraints lim-
iting each category to a maximum of 5 data sources, 30% transformation level, and
30% integration level. The feature table, below the constraint table, shows the levels of
technology, complexity, and size for each category as well as the maximum number of
data sources. For example, category 1 has high technology, medium complexity, high
size, and 20 data sources.

In phase simulation for extraction, a player selects the number of data sources for
each category that maximizes expected profit (Figure 12.15). For each choice, a player
uses the simulation button to observe potential results from an uncertain demand. A
player has a small number of simulation attempts before committing an answer. After
committing an answer, Emerge2Maturity displays costs (expected and optimal) and
profit (optimal, expected, and simulated) in bar graphs. Figure 12.15 shows committed
choices of 5 data sources for category 1, 3 data sources for category 2, and 4 data sources
for category 3. A player then continues to the transformation and integration decisions.

TABLE 12-7
Influence of Feature Levels
on Development Variables Development Variable

Data Source Feature

Technology Complexity Size

Production level ✓ ✓

Fixed cost ✓ ✓

Variable cost ✓ ✓

Benefit rate ✓ ✓

Risk level ✓ ✓

26008_ch12_p477-508.indd 494 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   495

At the end of a phase, Emerge2Maturity saves a player’s decisions and outcomes
and then initiates the next phase. The Phase Summary page shows expected costs
and profits based on a player’s choices for capabilities for each data source category.
As a reference, the Phase Summary page also shows the optimal costs and profits.
Figure 12.16 shows a good result with expected profit from player choices as $21,348.05
compared to optimal profit of $21,490.15. For more detail, the Phase Summary page
decomposes costs and profits by category and decision, showing both expected results
from choices and optimal results.

At the end of a game, Emerge2Maturity calculates a numeric score based on the
difference between a player’s total profit and the optimal total profit. Emerge2Matu-
rity converts the profit difference to a qualitative score displayed on a five-point scale
as shown in Figure 12.17. In addition, Emerge2Maturity ranks players by score and
displays highest scores in a leaderboard. Emerge2Maturity uses points and a leader-
board to reward players for their accomplishments and encourage additional play.

As this demonstration indicates, Emerge2Mature provides a simulated, educa-
tional experience about management of data warehouse development. Players focus

FIGURE 12.14
Phase 1 Preparation in
Emerge2Maturity

FIGURE 12.15
Phase Simulation for
Extraction Decisions in
Phase 1

26008_ch12_p477-508.indd 495 3/2/18 10:31 PM

496   Part 6  Data Warehouse Processing

on data sources grouped by important features for technology, complexity, and size.
For data source categories, players manipulate capabilities for three related decisions
in data warehouse development (extraction, transformation, and integration). Simula-
tion allows players to observe impacts of a limited number of choices. Phase results
compare player choices for capabilities with optimal choices. In transition among
phases, players observe a learning effect, strategy changes for capability and budget
constraints, and impact of external events. A simple point system and leaderboard
provide incentives to improve and compete with other players.

Although Emerge2Maturity was not developed as a tool for actual management of
data warehouse development, it substantially extends abstract concepts traditionally
taught about maturity. The simulated game experience engages players, stimulating
them to think carefully about difficulties and trade-offs with data warehouse develop-
ment in organizations over decision-making phases.

FIGURE 12.16
Phase Summary for
Decisions in Phase 1

FIGURE 12.17
Game Score and
Leaderboard

26008_ch12_p477-508.indd 496 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   497

To elaborate on characteristics and management concepts presented in the first two
sections, this section presents business aspects of data warehouses in key industries.
Specifically, this section elaborates about data warehouse usage and characteristics
beyond summaries presented in Section 12.1.3. You will learn about business entities
and historical facts maintained in data warehouses for retail, education, and health
care. These industries have contrasting environments with retail dominated by large,
tightly integrated firms, K-12 education featuring autonomous school districts subject
to compulsory cooperation by higher levels of government, and health care influenced
by complex regulations and data standards imposed by third-party payers on inde-
pendent providers. For perspective about data warehouse maturity, you will learn
about development history and organizational units using these data warehouses.

12.3.1  Data Warehouses in Retail
The retail industry pioneered data warehouse usage. Wal-Mart first deployed a data
warehouse in 1990 to support decision-making about historical sales data. The retail
industry now has decades of experience with data warehouse usage to support vital
decision making about store site selection, product mix, supply chain management,
product pricing, and vendor management. As recognition of demand in the retail
industry, major DBMS vendors (such as Oracle, IBM, and TeraData) provide custom-
ized data warehouse solutions for the retail industry.

To depict details of data warehouse usage in the retail industry, this section covers
business requirements for the TPC-DS Benchmark1, a major data warehousing bench-
mark developed by the Transaction Processing Performance Council (TPC). The non-
profit TPC develops benchmarks for transaction processing and business intelligence
processing. The TPC has wide membership and contributions from vendors providing
DBMSs, hardware, and enterprise software as well as major professional associations.
This section focuses just on the business requirements for the TPC-DS Benchmark, not
detailed technical specifications.

The TPC-DS Benchmark represents business intelligence requirements of a retail
firm offering products in geographically disbursed stores, online through web shop-
ping, and printed catalogs. Operational systems used by the retail firm maintain cus-
tomer sales and returns from these sales channels. The retail firm also has systems to
manage inventory levels, modify prices according to promotions, create dynamic web
pages based on customer profiles, and manage customer profiles using customer rela-
tionship management software.

The TPC-DS Benchmark involves processing for transforming data sources and
query execution to support business analysts in decision-making tasks. Figure 12.18
depicts major data sources and processing to support requirements in the TPC-DS
Benchmark. Three major data sources (Store, Web, and Catalog) provide transaction
data about retail sales in physical stores, online, and printed catalogs. Two secondary
data sources (inventory and promotions) provide details about inventory levels and
promotion offerings. The data integration process transforms and integrates these data
sources and loads them into the data warehouse. The data warehouse supports ad
hoc queries, repetitive reports, iterative queries showing relationships and trends, and
queries supporting data mining analysis.

The data warehouse in the TPC-DS Benchmark maintains data about important
business entities and historical facts related to sales, inventory maintenance, promo-
tions, and managing customer profiles. Figure 12.19 provides a simplified representa-
tion of major types of business entities and historical facts in the data warehouse. For
the most important business entity, customer, the data warehouse maintains contact

1 TPC-DS Benchmark is a trademark of the Transaction Processing Performance Council.

12.3  DATA WAREHOUSE EXAMPLES

26008_ch12_p477-508.indd 497 3/2/18 10:31 PM

498   Part 6  Data Warehouse Processing

details, addresses, and household buying demographics. For historical facts, the data
warehouse maintains product sales in each channel (store, web, and catalog), returns
in each channel (store, web, and catalog), and inventory levels. For each major type
of historical fact, the data warehouse maintains many quantitative variables, not just
basic values for the level of sales, returns, and inventory.

12.3.2  Data Warehouses in Education
Learning standards substantially influence compulsory K-12 education in many
countries. In the USA, the federal government and state governments impose stan-
dards and regulations on local school districts. School districts in USA states operate

2 Adapted from TPC Benchmark DS, Standard Specification, Transaction Processing Performance Council,
June 2017.

Data Warehouse

Data Integration
Processing

Ad Hoc Queries

Store

Operational Data
Sources

Web

Store

Catalog

Inventory

Promotions

Business
Intelligence Support

Extract,
Transform, and

Load

Reports

Trends

Data Mining
Analysis

FIGURE 12.18
Components of the TPC-DS
Benchmark2

Product
sales and
returns,

Inventory
levels

Store

Product

Customer

Promotion

Warehouse Return Type

Shipment
Mode

Date/Time

Call Center

Web and
catalog
pages

FIGURE12.19
Types of Business Entities
and Historical Facts in the
Retail Data Warehouse

26008_ch12_p477-508.indd 498 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   499

autonomously with locally elected school boards setting policies and rules. Learning
standards require local school districts to report on student performance to facilitate
comparison of school districts, improve learning outcomes, and foster innovation in
instruction. Individual USA states often impose reporting requirements, while the fed-
eral government requires reporting for grant eligibility.

This section describes features of the Colorado Education Data Warehouse to depict
data warehouse usage in K-12 education. The Colorado Education Data Warehouse
supports reporting of student assessments and growth in K-12 schools in Colorado.
Assessments of student achievement provide evidence of the current status of student
knowledge and understanding. However, measurement of learning requires assess-
ment of growth in achievement over time, not just the current status of knowledge.

Colorado and other states have invested in systems to support assessment of stu-
dent growth. In 1997, the Colorado legislature passed a law that required development
of accountability systems for K-12 education. The Colorado legislature extended this
law in 2004 and 2007 to measure student growth, not just student achievement at a
point in time. Figure 12.20 depicts a timeline of accountability laws and data ware-
house projects in Colorado in response to the accountability laws.

As a response to the 2007 law, the Colorado Department of Education extended
its Education Data Warehouse and developed web portals to support assessments of
student growth. The original Education Data Warehouse was developed beginning in
2002 to support education accountability. The student growth extension, performed
from 2007 to 2009, had a budget of $6.7 million. As a result of the development since
2002, the Education Data Warehouse is in a mature state with data governance poli-
cies, processes and standards to manage the flow of data from capture to use. Data
stewards provide data quality audits as part of the ongoing monitoring of data quality
facilitated by master data management technology.

The Colorado Department of Education embarked on two major expansion proj-
ects in 2013. The Data Warehouse Expansion Project added data from preschool to
career and extended security and accuracy in teacher and student data reporting. The
Data Pipeline Project supported efficient transfer of data from school districts to the
education data warehouse. The Data Pipeline reduced data redundancy, captured
data with less time lag, created transaction interchanges to streamline the data collec-
tion process, and supported exchange of data on transferred students.

Colorado SchoolViewTM (www.schoolview.org) is a public portal that uses the
Education Data Warehouse. SchoolView supports visual analysis of student growth
on the Colorado Student Assessment Program (CSAP3) tests for all Colorado school

FIGURE 12.20
Timeline of Accountability
Laws and Data Warehouse
Projects in Colorado

A
cc

ou
nt

ab
ili

ty
la

w
s

19
97

 (i
ni

tia
l l

aw
)

20
04

 (s
tu

de
nt

gr
ow

th
)

20
07

 (m
or

e

st
ud

en
t g

ro
w

th
)

20
02

 (b
as

ic
ac

co
un

ta
bi

lit
y)

20
07

 (s
tu

de
nt

gr
ow

th
 e

xt
en

si
on

an
d

w
eb

 p
or

ta
ls

)
20

13
 (s

co
pe

 a
nd

da
ta

 in
te

gr
at

io
n

ex
te

ns
io

ns
)

D
at

a
w

ar
eh

ou
se

pr
oj

ec
ts

3 In 2011, the Colorado Department of Education replaced CSAP with the Traditional Colorado Assessment
Program (TCAP). The official name of the testing standard is TCAP/CSAP.

26008_ch12_p477-508.indd 499 3/2/18 10:31 PM

500   Part 6  Data Warehouse Processing

districts. Users can compare median student growth in reading, writing, and math
by school as depicted in Figure 12.21. In addition, users can search on the dimensions
of student group, grade, and ethnicity as well as rolling up to school districts. Figure
12.22 displays visual results for the student group dimension. By selecting a bubble
in the display, users can drill down to the individual member value. SchoolView pro-
vides a map interface in addition to standard searching tools for selecting schools and
school districts.

The SchoolView portal serves parents, teachers, school administrators, and gov-
ernment agencies. Parents use the portal as a decision aid for school enrollment of
their children. Colorado permits parental choice in enrollment although school district
boundaries may restrict the choice somewhat. School boards at the school district level
use SchoolView to make decisions about resource allocations to individual schools and
possible remedial actions for individual schools. Teachers and school administrators
need aggregate and individual student data to decide on program effectiveness and
student performance. Government agencies use SchoolView in decisions about educa-
tion policy. In particular, the USA federal “No Child Left Behind” law has requirements
fulfilled by SchoolView. The public part of SchoolView serves parents and the public.
Educators and government agencies have access to the private part of SchoolView.

The primary data sources for the data warehouse are achievement test (CSAP)
scores. Students take CSAP tests once per year in the second half of the school year.
CSAP scores are maintained by the Colorado Department of Education independent of
usage in SchoolView. School districts provide data for student grades and demographic

FIGURE 12.22
SchoolView Window with
Visual Display of Math
Results for Student Groups

FIGURE 12.21
SchoolView Window with
Visual Display of Math
Results for Individual Schools

26008_ch12_p477-508.indd 500 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   501

attributes. Colorado has 178 school districts so the number of data sources provided by
school districts is large. Figure 12.23 shows other data sources provided by higher edu-
cation, public safety, corrections, early childhood development, and human services.

This background on the Education Data Warehouse should provide insight about
the difficulty to develop and operate a data warehouse for highly decentralized orga-
nizations. The Education Data Warehouse has evolved over 15 years of development
with initial development in 2002, followed by major extensions since 2007, along with
plans for more extensions. The development effort required coordination among many
areas of state and local government in Colorado. Coordination was especially difficult
because each area of government involves elections with political agendas influencing
requirements and funding levels. The operation of the data warehouse involved many
new policies for data quality.

12.3.3  Data Warehouses in Health Care
Third-party payers, both government and private insurance, substantially influence
the health care industry. Third-party payers, in conjunction with industry, govern-
ment agencies, and health care organizations, have devised detailed coding standards
for diagnosis, procedure, and drug events. The World Health Organization maintains
the most prominent coding standard known as the International Classification of Dis-
eases (ICD). ICD-10, the current standard in the USA, contains about 68,000 codes, a
large increase from the previous version (ICD-9) containing about 13,000 codes. Third-
party payers mandate usage of ICD codes (along with procedure and drug codes) by
health care providers for reimbursement. Mandated usage of medical codes puts a
heavy burden on health care providers, typically requiring specialized staff to assist in
choosing appropriate codes.

Medical codes are important parts of electronic medical records. An electronic
medical record is a digital version of a patient’s medical history chart. Electronic medi-
cal records contain lab results, diagnoses, medications, treatment plans, immunization
details, hospital stays, digital images, and health care provider notes. Electronic medi-
cal records provide the promise of improved patient care, better care coordination,
practice efficiencies, increased patient participation, more accurate diagnoses, and
reduced costs. However, health care providers bear much of the cost of data collec-
tion, but only see indirect benefits. Thus, health care providers require incentives and
mandates to collect details of electronic medical records.

4 Source of Figure 12.23: 2009 Colorado SLDS Application Grant Proposal

FIGURE 12.23
Enterprise Architecture for
the Extended Education Data
Warehouse4

26008_ch12_p477-508.indd 501 3/2/18 10:31 PM

502   Part 6  Data Warehouse Processing

As an outgrowth of electronic medical records, standards for data warehouses
have been developed. The Observational Medical Outcomes Partnership (OMOP), a
public/private partnership, developed a prominent data warehouse standard for elec-
tronic medical records. The collaborative OMOP effort developed a standard vocabu-
lary and data model along with a suite of tools for data integration, query formulation,
and data generation. Most of these tools are available through open source software
licenses on the OMOP website (omop.org).

The OMOP Common Data Model provides a detailed specification for a medi-
cal data warehouse. Figure 12.24 provides an overview of the Common Data Model.
The Common Data Model contains business entities for persons (typically patients),
providers, cohorts, locations, organizations, care sites, payer plans, and time. The
Common Data Model tracks historical facts about treatments involving drugs or pro-
cedures and event occurrences involving observations, conditions, deaths, provider
visits, or exposures.

The OMOP Common Data Model and associated tools provide a foundation for
development of medical data warehouses. The Scalable Architecture for Federated
Translational Inquiries Network (SAFTINet), a multi-state collaboration of health care
providers, developed a data warehouse conforming to a subset of the OMOP stan-
dard. SAFTINet promises economies of scale for research studies about comparative
effectiveness. Comparative effectiveness research aims to reduce variation of treat-
ments across patient populations and conditions. Studies emphasizing comparative
effectiveness require pragmatic trials from diverse clinical settings and patient popu-
lations. Data warehouse usage promotes economies of scale, providing shared data
across studies instead of each study collecting its own data.

To support research studies using a medical data warehouse, SAFTINet extended
the OMOP tool set and populated a subset of the OMOP standard with data from clini-
cal health care practices and USA Medicaid claims data. SAFTINet supports external
users, separate from users of partner data sources as depicted in Figure 12.25. Part-
ners voluntarily contribute data sources including electronic medical records, claims
data, and administrative data. Data transformation components convert partner data
sources into data marts conforming to a subset of the OMOP Common Data Model.
No data integration occurs in the data transformation level. The Query System pro-
cesses queries, combining data from multiple data marts if necessary. The Data Mart
Bus integrates patient data across data marts if required in a query.

SAFTINet data marts conform to a subset of the OMOP Common Data model
as shown in Figure 12.26. SAFTINet focuses on underserved patient populations so

FIGURE 12.24
Overview of the OMOP
Common Data Model

Treatment (drug,
procedure),
Occurrence

(observation, visit,
condition, death,

exposure)

Person

Provider

Cohort

Location Organization

Care site

Payer plan

Time

26008_ch12_p477-508.indd 502 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   503

some parts of the Common Data Model are not relevant. In addition, SAFTINet faced
substantial barriers to participation by independent health care practices and limited
development resources. Thus, SAFTINet data marts use a subset of the OMOP Com-
mon Data Model due to the focus of SAFTINet, participation barriers, and limited
resources.

SAFTINet has demonstrated the potential of data warehouse standards to pro-
mote health care research. SAFTINet contains diverse participation by 14 health care
organizations, 100 primary care practices, 500 health care providers, and more than
400,000 patients in three USA states. To facilitate voluntary participation, SAFTINet
established governance committees. Usage of SAFTINet in research has been ham-
pered by internal review boards, strict privacy regulations, and approval of data
providers. These usage restrictions are common in medical information systems so
SAFTINet users face similar challenges as users of electronic medical records.

FIGURE 12.25
SAFTINet Architecture

OMOP Data martPartner 1 Data Sources

Partner 2 Data Sources

Partner n Data Sources

Data Transformation
SAFTINet Users

Data Mart
Bus and
Query
System

OMOP Data mart

...

Data Transformation

Data Transformation

OMOP Data mart

Occurrence
(visit,

condition,
death,

procedure,
observation)

Person

Provider

Organization

Care site

Time

FIGURE 12.26
Overview of the SAFTINet
Data Model

26008_ch12_p477-508.indd 503 3/2/18 10:31 PM

504   Part 6  Data Warehouse Processing

This chapter presented conceptual background about data warehouses in prepara-
tion for detailed skills emphasized in Chapters 13 to 15. Data warehouses, logically
centralized repositories of transformed data from operational databases and external
data sources, have become critical infrastructure for many organizations. The first
part of this chapter contrasted data requirements for transaction processing and busi-
ness intelligence processing. These differing requirements influenced organizations to
deploy data warehouses and DBMS vendors to develop new features for data ware-
houses. You learned about characteristics and applications of data warehouses sup-
porting business intelligence requirements for organizations.

Despite importance of business intelligence requirements, organizations struggle
to realize substantial value from data warehouses because of development difficulties.
The second part of this chapter covered management concepts important for deploy-
ing data warehouses in organizations. You learned about development difficulties and
learning curve concepts, architectures for data warehouses, and maturity concepts for
realizing business value from data warehouses over time. To provide insights about
data warehouse development in organizations, you learned concepts underlying a busi-
ness strategy game providing simulated experience with data warehouse development.

The final part of the chapter provided examples of data warehouses used in key
industries, providing a context for conceptual background in the first two parts. You
learned about characteristics of the retail, education, and health care industries and
data warehouse solutions to support organizations in these industries.

The concepts and data warehouse examples presented in this chapter provide
a foundation for development of detailed skills emphasized in the other chapters of
part 6. You will learn key skills pertaining to conceptual design of data warehouses
(Chapter 13), data integration (Chapter 14), and query formulation (Chapter 15).

CLOSING THOUGHTS

REVIEW CONCEPTS

•	 Data warehouse, a logically centralized repository of transformed data from
operational databases and external data sources

•	 Technology and deployment limitations of operational databases for business
intelligence processing: performance limitations, lack of integration and missing
DBMS features

•	 Data needs for transaction processing versus business intelligence applications
•	 Characteristics of a data warehouse: subject-oriented, integrated, time-variant,

and nonvolatile
•	 Comparison of operational databases and data warehouses on currency, detail

level, design orientation, rows per retrieval, normalization level, modification
level, and data representation

•	 Data mining, a key application of data warehouses across industries
•	 Development challenges with data warehouses involving substantial

coordination efforts, uncertain levels of data quality, and intangible benefits
•	 Characteristics of learning curves and application for business value and

transformation cost in data warehouse development projects
•	 Architectures for deploying a data warehouse: enterprise data warehouse, data

mart, data mart bus, and federated data warehouse
•	 Enterprise data model representing the conceptual structure of a data warehouse

and descriptive data to access and transform data sources
•	 Data mart representing a view of a data warehouse at a business unit level or

business analysis area

26008_ch12_p477-508.indd 504 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   505

•	 Architecture selection focusing on integration level and data warehouse scope
•	 Factors influencing architecture selection: resource constraints, information

technology skills, integration need, sponsorship, strategic view, and urgency
•	 Staging area to provide temporary storage of transformed data before loading

into a data warehouse
•	 Stages of the Data Warehouse Maturity Model (infant, child, teenager, adult,

and sage) and difficulty of moving between some stages (infant to child and
teenager to adult)

•	 Capability assessment to attain maturity level by reaching levels of process areas
and activities

•	 Key features of Emerge2Maturity, a business strategy game providing a
simulated experience of data warehouse development for an organization

•	 Historical usage of data warehouses in the retail industry
•	 Major data sources and types of business entities and historical facts for the data

warehouse used in the TPC-DS Benchmark
•	 Influences on K-12 education for development of data warehouses: learning

standards, independent school districts, and laws mandating reporting about
student achievement

•	 Data sources and users of the Colorado Education Data Warehouse
•	 Influences on health care organizations for development of data warehouses:

third-party payers, detailed coding schemes for medical events, and data
collection difficulties

•	 Standards for medical data warehouses: Common Data Model of the
Observational Medical Outcomes Partnership (OMOP)

•	 SAFTINet, a data warehouse supporting medical research studies, designed as
a subset of the OMOP Common Data Model with voluntary participation by
independent medical practices

QUESTIONS

  1.	What is the cause of poor performance when using operational databases for
business intelligence?

  2.	How does lack of integration inhibit usage of operational databases for business
intelligence?

  3.	What missing features inhibit usage of traditional DBMS technology for business
intelligence?

  4.	Explain subject-orientated as a defining characteristic of a data warehouse.
  5.	Explain integrated as a defining characteristic of a data warehouse.
  6.	Explain time-variant as a defining characteristic of a data warehouse.
  7.	Explain non-volatile as a defining characteristic of a data warehouse.
  8.	Compare operational databases and data warehouses on currency, detail level,

design orientation, rows per retrieval, normalization level, modification level,
and data representation.

  9.	Compare operational databases and data warehouses on normalization and
modification levels.

  10.	Compare operational databases and data warehouses on data representation.
  11.	How did commercial software vendors respond to missing features in DBMSs

for business intelligence?
  12.	Why do organizations undertake data warehouse projects?

26008_ch12_p477-508.indd 505 3/2/18 10:31 PM

506   Part 6  Data Warehouse Processing

  13.	What requirements of data mining require extensions to capabilities required by
a mature data warehouse?

  14.	Why has data mining emerged as a key application of data warehouses across
industries?

  15.	What factors contribute to potentially high and unforeseen costs in data
warehouse projects?

  16.	What are intangible benefits and how do intangible benefits affect data
warehouse projects?

  17.	What is a learning curve for skill improvement?
  18.	What is a learning curve for production?
  19.	How is the business value learning curve for data warehouses related to the

learning curve for skill attainment?
  20.	How is the data transformation learning curve related to the learning curve for

production?
  21.	What are important factors in data warehouse architectures?
  22.	What is the enterprise data warehouse architecture?
  23.	What are the components of an enterprise data model?
  24.	How does a data warehouse differ from a data mart?
  25.	What is a staging area in the enterprise data warehouse architecture?
  26.	What is the data mart architecture?
  27.	What is the data mart bus architecture?
  28.	What is the federated data warehouse architecture?
  29.	What is an oper mart?
  30.	What are the two opposing approaches that provide the limits of data

warehouse architectures?
  31.	What factor provides bias for data warehouses of smaller scope and lower

integration level?
  32.	How can organizations overcome bias for data warehouses of smaller scope and

lower integration level?
  33.	According to Choudary (2010), what factors should be high for an organization

to select the enterprise data warehouse architecture?
  34.	According to Choudary (2010), what factors should be high for an organization

to select the data mart architecture?
  35.	According to Choudary (2010), when should an organization select the data mart

bus architecture?
  36.	What is the purpose of the data warehouse maturity model?
  37.	What is an important insight provided by the data warehouse maturity model?
  38.	What are the five maturity levels in the Capability Maturity Model?
  39.	How does an organization reach the optimizing level in the data warehouse

maturity model proposed by Sen et al.?
  40.	What difficulties do students have to understand data warehouse development

in organizations?
  41.	How does Emerge2Maturity address learning difficulties about data warehouse

development?
  42.	What decisions does a player make in Emerge2Maturity?
  43.	How does Emerge2Maturity manage complexity about a large number of data

sources?
  44.	How and when do learning effects occur in Emerge2Maturity?

26008_ch12_p477-508.indd 506 3/2/18 10:31 PM

Chapter 12  Data Warehouse Concepts and Management   507

  45.	What random elements are used in Emerge2Maturity?
  46.	Provide a brief summary of the game playing experience in Emerge2Maturity.
  47.	What are the business intelligence requirements in the TPC-DS Benchmark?
  48.	What data sources are used in the TPC-DS Benchmark?
  49.	What types of business entities and historical facts are used in the TPC-DS

Benchmark?
  50.	What factors drive data warehouses used in K-12 education?
  51.	What data sources are used in the Colorado Education Data Warehouse?
  52.	What groups use the Colorado Education Data Warehouse through the

SchoolView portal?
  53.	What data standards are mandated by third-party payers in health care?
  54.	What is the Observation Medical Outcomes Partnership (OMOP)?
  55.	What is the OMOP Common Data Model?
  56.	What is SAFTINet? How is SAFTINet related to OMOP?

PROBLEMS

Due to the focus on characteristics and concepts of data warehouses, this chapter only
contains a small set of open-ended problems about major concepts. Other chapters in
part 6 contain a much larger set of detailed problems on skill development rather than
concept application.

  1.	For a data warehouse of a large retail firm, what architecture seems appropriate?
You should use the TPC-DS Benchmark as a model for a retail data warehouse.
Try to apply the architecture selection factors discussed in Section 12.2.3. If you
want more details beyond provided in this chapter, you can investigate retail
data warehouses used by major retailers such as Walmart, Amazon, and Target.
For Walmart, the references at the end of the chapter contain a detailed case
study about Walmart.

  2.	For the Colorado Education Data Warehouse, analyze the architecture selection
factors discussed in Section 12.2.3. Do you think that school districts in Colorado
have data warehouses separate from the Colorado Education Data Warehouse?
How does the architecture of the Colorado Education Data Warehouse differ
from the architecture of a large retail firm?

  3.	For SAFTINet, analyze the architecture selection factors discussed in Section
12.2.3. Do you think that health care practices and organizations participating
in SAFTINet have data warehouses separate from SAFTINet? Compare the
architecture selection factors of SAFTINet and the Colorado Education Data
Warehouse. Would you expect more participation from independent school
districts than independent health care organizations?

  4.	 Investigate an organization in another industry. Write a brief case study with
background about the industry, factors influencing data warehouse architecture
selection, and details about data sources, users, and types of business entities
and historical facts in the data warehouse. Analyze the architecture selection
factors and explain the architecture chosen.

  5.	 If your instructor has installed Emerge2Maturity, play some games and
discuss your experience. Do you understand the relationship of features of
data source categories to costs and benefits for extraction, transformation, and
integration? Do you understand the sequential nature of decisions for extraction,
transformation, and integration? Explain the learning effects for costs and
benefits as a game progresses? Did you enjoy playing Emerge2Maturity? What
insights about data warehouse development have you gained?

26008_ch12_p477-508.indd 507 3/2/18 10:31 PM

508   Part 6  Data Warehouse Processing

Several references provide additional details about important parts of Chapter 12.
Kimball (2003a) expounds on the data mart bus architecture presented in Section
12.2.2. Eckerson (2007) provides more details about the Data Warehouse Maturity
Model covered in Section 12.2.3, while the TDWI website (tdwi.org) provides details
about the Business Intelligence Maturity Model. Choudary (2010) provides details
about architecture selection factors summarized in Section 12.2.3. Sen et al. (2012)
describe the capability assessment model summarized in Section 12.2.3. Westerman
(2000) provides a detailed case study on data warehousing development at Walmart.
The case study, although somewhat dated, is a fascinating look into business prac-
tices and information technology development at Walmart, a major innovator in retail
information technology. The Transaction Processing Performance Council (tpc.org)
provides details about the TPC-DS Benchmark covered in Section 12.3.1. Shilling et
al. (2013) presents architectural details of SAFTINet, extending the presentation in
Section 12.3.3.

REFERENCES FOR FURTHER STUDY

26008_ch12_p477-508.indd 508 3/2/18 10:31 PM

509  

OVERVIEW
After gaining background about concepts and manage-
ment practices for data warehouses, you are ready to
learn detailed skills. This chapter emphasizes data rep-
resentation and design practices for conceptual design
of data warehouses, important skills for data warehouse
professionals.

Your learning in this chapter begins with data repre-
sentation for data warehouses. Organizations typically
use two representations of data warehouses for busi-
ness analysis and relational DBMS implementation. The
first section presents the multidimensional data model,
a representation typically used by business analysts.
You will learn concepts of data cube representation and

manipulation. The second section covers star schemas,
a representation of data cubes in a table design. You will
also learn about table design extensions for historical
integrity and dimension representation.

After background about data representation, this
chapter emphasizes design practices to apply data rep-
resentations. The third section presents design practices
to identify and resolve summarizability problems. Sum-
marizability is a key design issue for data warehouses,
ensuring that query results have predictable outcomes
for business analysts. You will learn about summarizabil-
ity problems and patterns for dimensions and dimen-
sion-fact relationships. The fourth section provides a
broader view of design practices with coverage of the
schema integration process to combine schemas from

Learning Objectives
This chapter explains data representation and design practices for data
warehouses. After this chapter, the student should have acquired the
following knowledge and skills:

•	 Explain terminology and operators of the multidimensional data
model for data cubes

•	 Apply relational data modeling patterns to multidimensional data

•	 Analyze data warehouse designs for summarizability problems and
historical integrity

•	 Apply steps of the schema integration process to a small number of
data sources

•	 Determine the grain for a data warehouse design

•	 Gain insights about methodologies for enterprise data warehouse
development

Conceptual
Design of Data
Warehouses

13
chapter

26008_ch13_p509-548.indd 509 3/2/18 10:36 PM

510   Part 6  Data Warehouse Processing

multiple data sources. You will learn the steps of the
schema integration process, determination of the grain
of a data warehouse design, and design methodologies
for enterprise data warehouse development.

This chapter provides a foundational skill set for
data warehouse professionals. Chapters 14 and 15

extend your skill set with detailed skills about data
integration and query formulation for enterprise data
warehouses. Collectively, the chapters in Part 6 provide
breadth and depth of coverage to support career aspi-
rations as a data warehouse or business intelligence
professional.

The multidimensional data model supports data representation and operations spe-
cifically tailored for business intelligence processing in data warehouses. The multi-
dimensional data model was originally proposed as a replacement for the relational
model for data warehouses. Over time, the multidimensional model has evolved into
a business analyst model, complementing the relational model for data warehouse
storage.

This section describes terminology and operations for the multidimensional data
model. The presentation emphasizes conceptual properties, important for data ware-
house design. For a query formulation perspective, Chapter 15 presents the Multidi-
mensional Expression Language (MDX), initially developed by Microsoft, along with
associated graphical tools.

13.1.1  Example of a Multidimensional Data Cube
This subsection begins with an example of a company that sells electronic products in
different parts of the USA. In particular, the company markets four different printer
products (mono laser, ink jet, photo, and portable) in five different states (California,
Washington, Colorado, Utah, and Arizona). To store daily sales data for each product
and each location in a relational database, Table 13-1 contains sample data consisting
of three columns (Product, Location, and Sales) and 20 rows (four instances of Product
times five instances of Location).

The representation of Table 13-1 can be complex and unwieldy. First, imagine that
the company wishes to add a fifth product (say, color laser). To track sales by states for
this new product, you need to add five rows, one each for each state. Second, note that
the data in Table 13-1 represents sales data for a particular day (for example, August
10, 2017). To store the same data for all 365 days of 2017, you need to add a fourth col-
umn to store the sales date, and duplicate the 20 rows for each date 365 times to yield
a total of 7,300 rows. By the same token, if you wish to store historic data for a period
of 10 years, you need 73,000 rows. Each new row must contain the product, state, and
date values.

Table 13-1 contains two dimensions, Product and Location, and a numeric value for
unit sales. Table 13-1 can be conceptually simplified by rearranging the data in a two-
dimensional format as depicted in Table 13-2.

The multidimensional representation is simple to understand and extend. For
example, adding dates requires a third dimension called Time, resulting in a three-
dimensional arrangement as shown in Figure 13.1. You can conceptually think of this
three-dimensional table as a book consisting of 365 pages, each page storing sales data
by product and state for a specific date of the year. In addition, the multidimensional
representation is more compact because the row and column labels are not duplicated
as in Table 13-1.

The multidimensional representation also provides a convenient representation of
summary totals. Each dimension in a data cube can accommodate totals (row totals,
column totals, depth totals, and overall totals) that a user can identify easily. For exam-
ple, to add row totals to Table 13-2, a Totals column can be added with one value per
row as shown in Table 13-3. In the relational representation as depicted in Table 13-1,

13.1  MULTIDIMENSIONAL REPRESENTATION OF DATA

26008_ch13_p509-548.indd 510 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   511

TABLE 13-1
Relational Representation of
Sales Data

Product Location Sales

Mono Laser California 80

Mono Laser Utah 40

Mono Laser Arizona 70

Mono Laser Washington 75

Mono Laser Colorado 65

Ink Jet California 110

Ink Jet Utah 90

Ink Jet Arizona 55

Ink Jet Washington 85

Ink Jet Colorado 45

Photo California 60

Photo Utah 50

Photo Arizona 60

Photo Washington 45

Photo Colorado 85

Portable California 25

Portable Utah 30

Portable Arizona 35

Portable Washington 45

Portable Colorado 60

TABLE 13-2
Two-Dimensional
Representation of Sales
Data

Product

Location Mono Laser Ink Jet Photo Portable

California 80 110 60 25

Utah 40 90 50 30

Arizona 70 55 60 35

Washington 75 85 45 45

Colorado 65 45 85 60

Product

Mono
Laser

Ink
Jet

Photo Portable

Lo
ca

tio
n

California

Utah

Arizona
Washington

Colorado
Time

1/1/2017
1/2/2017

…..
12/31/2017

80 110 60 25

40 90 50 30

70 55 60 35

75 85 45 45

65 45 85 60

FIGURE 13.1
A Three-Dimensional Data
Cube

totals must be added by using null values for column values. For example, to represent
the total California sales for all products, the row <–, California, 275> should be added
to Table 13-1 where – indicates all products.

26008_ch13_p509-548.indd 511 3/2/18 10:36 PM

512   Part 6  Data Warehouse Processing

In addition to advantages in usability, the multidimensional representation sup-
ports increased retrieval speed. Direct storage of multidimensional data obviates the
need to convert from a table representation to a multidimensional representation.
However, the multidimensional representation can suffer from excessive storage
because many cells can remain empty. Even with compression techniques, large mul-
tidimensional tables can consume considerably more storage space than correspond-
ing relational tables.

In summary, a multidimensional representation provides intuitive appeal for
business analysts. As the number of dimensions increases, business analysts find a
multidimensional representation easy to understand and visualize as compared to a
relational representation. Because the multidimensional representation matches the
needs of business analysts, this representation is widely used in business intelligence
tools even when relational tables provide physical storage.

13.1.2  Multidimensional Terminology
A data cube or hypercube generalizes the two-dimensional (Table 13-2) and three-
dimensional (Figure 13.1) representations shown in the previous subsection. A data
cube consists of cells containing measures (numeric values such as the unit sales
amounts) and dimensions to label or group numeric data (e.g., Product, Location, and
Time). Each dimension contains values known as members. For instance, the Location
dimension has five members (California, Washington, Utah, Arizona, and Colorado)
in Table 13-3. Both dimensions and measures can be stored or derived. For example,
purchase date is a stored dimension with purchase year, month, and day as derived
dimensions.

Dimension Details  Dimensions can have hierarchies composed of levels. For
instance, the Location dimension may have a hierarchy composed of the levels coun-
try, state, and city. Likewise, the Time dimension can have a hierarchy composed of
year, quarter, month, and date. Hierarchies can be used to drill down from higher
levels of detail (e.g., country) to lower levels (e.g., state and city) and to roll-up in the
reverse direction. Although hierarchies are not essential, they allow a convenient and
efficient representation. Without hierarchies, the Location dimension must contain the
most detailed level (city). However, computing aggregates across dimensions in this
representation can be difficult. Alternatively, the Location dimension can be divided
into separate dimensions for country, state, and city resulting in a larger data cube.

For flexibility, dimensions can have multiple hierarchies. In a dimension with
multiple hierarchies, usually at least one level is shared. For example, the Location
dimension can have one hierarchy with levels for country, state, and city, and a sec-
ond hierarchy with levels for country, state, and postal code. The Time dimension can
have one hierarchy with levels for year, quarter, and date and a second hierarchy with
levels year, week, and day of the year. Multiple hierarchies allow alternative organiza-
tions for a dimension.

Another dimension feature is the ragged hierarchy for a self-referencing relation-
ship among members of the same level. For example, a manager dimension could have

Data Cube
a multidimensional format in
which cells contain numeric
data called measures
organized by subjects called
dimensions. A data cube
is sometimes known as a
hypercube because concep-
tually it can have an indefi-
nite number of dimensions.

TABLE 13-3
Multidimensional
Representation of Sales
Data with Row Totals

Product

Location Mono Laser Ink Jet Photo Portable Totals

California 80 110 60 25 275

Utah 40 90 50 30 210

Arizona 70 55 60 35 220

Washington 75 85 45 45 250

Colorado 65 45 85 60 255

26008_ch13_p509-548.indd 512 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   513

a ragged hierarchy to display relationships among managers and subordinates. An
analyst manipulating a data cube may want to expand or contract the manager dimen-
sion according to relationships among managers and subordinates.

The selection of dimensions has an influence on the sparsity of a data cube. Spar-
sity indicates the extent of empty cells in a data cube. Sparsity can be a problem if
two or more dimensions are related. For example, if certain products are sold only in
selected states, cells are empty. If a large number of cells are empty, the data cube can
waste space and be slow to process. Special compression techniques can be used to
reduce the size of sparse data cubes.

Measure Details  Cells in a data cube contain measures such as the sales values in
Figure 13.1. Measures support numeric operations such as simple arithmetic, statisti-
cal calculations, and optimization methods. A cell may contain one or more measures.
For example, the number of units can be another measure for the sales data cube. The
number of nonempty cells in a multidimensional cube should equal the number of
rows in the corresponding relational table. For example, Table 13-2 contains 20 non-
empty cells corresponding to 20 rows in Table 13-1.

Derived measures can be stored in a data cube or computed from other measures
at run-time. Measures that can be derived from other measures in the same cell typi-
cally would not be stored. For example, total dollar sales can be calculated as total unit
sales times the unit price measures in a cell. Summary measures derived from a collec-
tion of cells may be stored or computed depending on the number of cells and the cost
of accessing the cells for the computation.

The aggregation property indicates allowable summary operations for mea-
sures. Additive measures can be summarized across all dimensions using addition.
Common additive measures include sales, cost, and profit. For example, the sales
measure in Figure 13.1 can be meaningfully summed across locations, products, and
time periods. Semi-additive measures can be summarized in some dimensions but not
all dimensions, typically not in the time dimension. Periodic measurements such as
account balances and inventory levels are semi-additive. For example, account balance
can be summed across product and location dimensions but not across time. However,
account balances can be averaged across time because the average operation allocates
account balances to dimension members. Non-additive measures cannot be summa-
rized in any dimension. Historical facts involving individual entities such as a unit
price for inventory items are non-additive. Some non-additive measures can be con-
verted to additive or semi-additive. For example, extended price (unit price * quantity)
is additive although unit price is not additive.

Other Data Cube Examples  As this section has indicated, data cubes can extend
beyond the three-dimensional example shown in Figure 13.1. Table 13-4 lists com-
mon data cubes to support human resource management and financial analysis. The
dimensions with slashes indicate hierarchical dimensions. The time and location
dimensions are also hierarchical, but possible levels are not listed since the levels can
be organization specific.

13.1.3  Time-Series Data
Time is one of the most common dimensions in a data warehouse, useful for identifying
trends, making forecasts, and so forth. A time series provides storage of all historic data
in one cell, instead of specifying a separate time dimension. The structure of a measure
becomes more complex with a time series, but the number of dimensions is reduced. In
addition, many statistical functions can operate directly on time-series data.

A time series is an array data type with a number of special properties as listed
below. The array supports a collection of values, one for each time period. Examples
of time-series measures include weekly sales amounts, daily stock closing prices, and
yearly employee salaries. The following list shows typical properties for a time series:

Aggregation Property
indicates allowable summary
operations for measures.
Business analysts who do
not understand the allow-
able operations may perform
operations that have no
meaning. The aggregation
property for a dimension can
be additive (summarized on
all dimensions using
addition), semi-additive
(summarized on some
dimensions using addition),
or non-additive (cannot be
summarized on any dimen-
sion using addition).

26008_ch13_p509-548.indd 513 3/2/18 10:36 PM

514   Part 6  Data Warehouse Processing

•	 Data Type: This property denotes the kind of data stored in the data points.
The data type is usually numeric such as floating point numbers, fixed decimal
numbers, or integers.

•	 Start Date: This property denotes the starting date of the first data point, for
example, 1/1/2017.

•	 Calendar: This property contains the calendar year appropriate for the time
series, for example, 2017 fiscal year. An extensive knowledge of calendar rules,
such as determining leap years and holidays embedded in a calendar, reduces
effort in data warehouse development.

•	 Periodicity: This property specifies the interval between data points. Periodicity
can be daily, weekly, monthly, quarterly, yearly (calendar or fiscal years), hourly,
15-minute intervals, 4-4-5 accounting periods, custom periodicity, and so on.

•	 Conversion: This property specifies conversion of unit data into aggregate data.
For instance, aggregating daily sales into weekly sales requires summation,
while aggregating daily stock prices into weekly prices requires an averaging
operation.

13.1.4  Data Cube Operators
A number of business intelligence operators have been proposed for data cubes. This
section discusses the most commonly used operators. Most business analysis tools
support additional operators along with convenient graphical interfaces for all opera-
tors. Chapter 15 provides details of graphical tools for data cube manipulation.

Slice  Because a data cube can contain a large number of dimensions, users often
need to focus on a subset of the dimensions to gain insights. The slice operator
retrieves a subset of a data cube similar to the restrict operator of relational algebra. In
a slice operation, one or more dimensions are set to specific values and the remaining
data cube is displayed. For example, Figure 13.2 shows the data cube resulting from
the slice operation on the data cube in Figure 13.1 where Time = 1/1/2017 and the
other two dimensions (Location and Product) are shown.

TABLE 13-4
Data Cubes to Support
Human Resource
Management and Financial
Analysis

Data Cube Typical Dimensions Typical Measures

Turnover
analysis

Company/line of business/department, location,
salary range, position classification, time

Head counts for hires, transfers, termi-
nations, and retirements

Employee
utilization

Company/line of business/department, location,
salary range, position classification, time

Full time equivalent (FTE) hours,
normal FTE hours, overtime FTE hours

Asset analysis Asset type, years in service band, time, account,
company/line of business/department, location

Cost, net book value, market value

Vendor
analysis

Vendor, location, account, time, business unit Total invoice amount

(Location × Product Slice for Time = 1/1/2017)

FIGURE 13.2
Example Slice Operation Product

Location Mono Laser Ink Jet Photo Portable

California 80 110 60 25

Utah 40 90 50 30

Arizona 70 55 60 35

Washington 75 85 45 45

Colorado 65 45 85 60

26008_ch13_p509-548.indd 514 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   515

A variation of the slice operator allows a decision maker to summarize across mem-
bers rather than to focus on just one member. The slice-summarize operator replaces
one or more dimensions with summary calculations. The summary calculation often
indicates the total value across members or the central tendency of the dimension such
as the average or median value. For example, Figure 13.3 shows the result of a slice-
summarize operation where the Product dimension is replaced by the sum of sales
across all products. A new column called Total Sales can be added to store overall
product sales for the entire year.

Dice  Because individual dimensions can contain a large number of members, users
need to focus on a subset of members to gain insights. The dice operator replaces a
dimension with a subset of values of the dimension. For example, Figure 13.4 shows
the result of a dice operation to display sales for the State of Utah for January 1, 2017.
A dice operation typically follows a slice operation and returns a subset of the values
displayed in the preceding slice. It helps focus attention on one or more rows or col-
umns of numbers from a slice.

Drill-Down  Users often want to navigate among the levels of hierarchical dimen-
sions. The drill-down operator allows users to navigate from a more general level to
a more specific level. For example, Figure 13.5 shows a drill-down operation on the
State of Utah of the Location dimension. The plus sign by Utah indicates a drill-down
operation.

Roll-Up  Roll-up (also called drill-up) is the opposite of drill-down. Roll-up involves
moving from a specific level to a more general level of a hierarchical dimension. For
example, a decision maker may roll-up sales data from daily to quarterly level for end-
of-quarter reporting needs. In the printer sales example, Figure 13.2 shows a roll-up of
the State of Utah from Figure 13.5.

Pivot  The pivot operator supports rearrangement of the dimensions in a data cube.
For example, in Figure 13.1, the position of the Product and the Location dimensions
can be reversed so that Product appears on the rows and Location on the columns. The
pivot operator allows a data cube to be presented in an appealing visual order.

The pivot operator is typically used on data cubes of more than two dimensions.
On data cubes of more than two dimensions, multiple dimensions appear in the row
and/or column area because more than two dimensions cannot be displayed in other
ways. For example, to display a data cube with Location, Product, and Time dimensions,

FIGURE 13.3
Example Slice-Summarize
Operation

Time

Location 1/1/2017 1/2/2017 … Total Sales

California 400 670 … 16,250

Utah 340 190 … 11,107

Arizona 270 255 … 21,500

Washington 175 285 … 20,900

Colorado 165 245 … 21,336

FIGURE 13.4
Example Dice Operation

Product

Mono
Laser

Ink
Jet

Photo Portable

Lo
ca

tio
n Utah 40 90 50 30

26008_ch13_p509-548.indd 515 3/2/18 10:36 PM

516   Part 6  Data Warehouse Processing

the Time dimension can be displayed in the row area inside the Location dimension.
A pivot operation could rearrange the data cube so that the Location dimension dis-
plays inside the Time dimension.

Summary of Operators  To help you recall the data cube operators, Table 13-5 sum-
marizes the purpose of each operator. These operators are conceptual, not actually
available for business analysts. Chapter 15 presents the MDX language and pivot table
tools to demonstrate extended operators in business intelligence tools. Business ana-
lysts typically use pivot table tools to manipulate data cubes. Pivot table tools provide
a simple, graphical interface for performing the operators described in this section.

FIGURE 13.5
Drill-Down Operation for the
State of Utah in Figure 13.2

Product

Location Mono Laser Ink Jet Photo Portable

California 80 110 60 25

+ Utah

  Salt Lake 20 20 10 15

  Park City 5 30 10 5

  Ogden 15 40 30 10

Arizona 70 55 60 35

Washington 75 85 45 45

Colorado 65 45 85 60

TABLE 13-5
Summary of Data Cube
Operators

Operator Purpose Description

Slice Focus attention on a subset of
dimensions

Replace a dimension with a single member value or
with a summary of its measure values

Dice Focus attention on a subset of
member values

Replace a dimension with a subset of members

Drill-down Obtain more detail about a
dimension

Navigate from a more general level to a more specific
level of a hierarchical dimension

Roll-up Summarize details about a
dimension

Navigate from a more specific level to a more general
level of a hierarchical dimension

Pivot Allow a data cube to be presented
in a visually appealing order

Rearrange the dimensions in a data cube

13.2  RELATIONAL DATA MODELING PATTERNS FOR DATA
WAREHOUSES

The multidimensional data model described in the previous section was originally
implemented by special-purpose storage engines for data cubes. These multidimen-
sional storage engines support definition, manipulation, and optimization of large
data cubes. Because of the commercial dominance of relational database technology, it
was only a matter of time before relational DBMSs provided support for multidimen-
sional data. Over two decades, major DBMS vendors have invested heavily in research
and development to support multidimensional data. Because of the investment level
and the market power of the relational DBMS vendors, most data warehouses now use
relational DBMSs for primary storage of data warehouses.

Because of the importance of relational DBMS usage for data warehouses, this
section presents relational data modeling patterns for multidimensional data. The
first subsection explains schema patterns based on the star schema, fundamental to

26008_ch13_p509-548.indd 516 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   517

relational database design for data warehouses. The next subsection shows application
of schema patterns in data warehouses for retail, education, and health care. The third
subsection explains time representation and historical integrity, important in query
results. Because most relational DBMSs lack dimension representation, the final sub-
section demonstrates the Oracle CREATE DIMENSION statement, a proprietary state-
ment beyond standard relational data modeling.

13.2.1  Schema Patterns
When using a relational database for a data warehouse, new data modeling patterns
represent multidimensional data. A star schema is a data modeling representation
of multidimensional data cubes. In a relational database, a star schema diagram looks
like a star with one large central table, called the fact table, at the center of the star that
is linked to multiple dimension tables in 1-M relationships in a radial pattern. The
fact table stores numeric data (facts), such as sales results, while the dimension tables
store descriptive data corresponding to individual dimensions of the data cube such
as product, location, and time. A 1-M relationship exists from each dimension table to
the fact table.

Fact tables are classified based on the types of measures stored in the tables.
A transaction table contains additive measures. Typical transaction tables store mea-
sures about sales, web activity, and purchases. A snapshot table provides a periodic
view of an asset level. Typical snapshot tables store semi-additive measures about
inventory levels, accounts receivable balances, and accounts payable balances.
A factless table records event occurrences such as attendance, room reservations, and
hiring. Typically, factless tables contain foreign keys without any measures. This clas-
sification is somewhat fluid as a fact table may be a combination of these types.

Figure 13.6 shows an ERD star schema for a sales cube extending the cube pre-
sented in Section 13.1. This ERD consists of four dimension entity types, Item, Cus-
tomer, Store, and TimeDim, along with one (transaction) fact entity type called Sales.
When converted to a table design, the Sales table has foreign keys to each dimension
table (Item, Customer, Store, and TimeDim). The Item entity type provides data for the
Product dimension shown in the Section 13.1 examples, while the Store entity type pro-
vides data for the Location dimension. In some designs, the fact entity type depends on
the related dimension entity types for its primary key. Since fact tables can have many
relationships, it is generally preferred to have an artificial identifier rather than a large,
combined primary key.

The store sales ERD in Figure 13.6 provides fine-grain detail for a data warehouse.
The store sales ERD provides detail to the individual customer, store, and item. This
level of detail is not necessary to support the sales data cubes presented in Section 13.1.
However, a fine-grained level provides flexibility to support unanticipated analysis as

Star Schema
a data modeling representa-
tion for multidimensional
databases. In a relational
database, a star schema
has a fact table in the center
related to multiple dimension
tables in 1-M relationships.

FIGURE 13.6
ERD Star Schema for the
Store Sales Example

Customer
CustId
CustName
CustPhone
CustStreet
CustCity
CustState
CustZip
CustNation

Store
StoreId
StoreManager
StoreStreet
StoreCity
StoreState
StoreZip
StoreNation
DivId
DivName
DivManager

Sales
SalesNo
SalesUnits
SalesDollar
SalesCost

Item
ItemId
ItemName
ItemUnitPrice
ItemBrand
ItemCategory

TimeDim
TimeNo
TimeDay
TimeMonth
TimeQuarter
TimeYear
TimeDayOfWeek
TimeFiscalYear

ItemSales

CustSales

TimeSales

StoreSales

26008_ch13_p509-548.indd 517 3/2/18 10:36 PM

518   Part 6  Data Warehouse Processing

well as data mining applications. This fine-grained level may replicate data in opera-
tional databases although the data warehouse representation may differ substantially
because of the subject orientation of the data warehouse and the cleaning and integra-
tion performed on the source data.

Variations to the Star Schema  The star schema in Figure 13.6 represents only a
single business process for sales tracking. Additional star schemas may be required
for other processes such as shipping and purchasing. For related business pro-
cesses that share some of the dimension tables, a star schema can be extended into a
constellation schema with multiple fact entity types, as shown in Figure 13.7. When
converted to a table design, the Inventory entity type becomes a fact table and 1-M
relationships become foreign keys in the fact table. The Inventory entity type adds a
number of measures including the quantity on hand of an item, the cost of an item,
and the quantity returned. All dimension tables are shared among both fact tables
except for the Supplier and Customer tables.

Fact tables are usually normalized while dimension tables are often not in third
normal form. For example, the Store entity type in Figures 13.6 and 13.7 is not in 3NF
because DivId determines DivName and DivManager. Normalizing dimension tables
to avoid storage anomalies is generally not necessary because they are usually stable
and small. The nature of a data warehouse indicates that dimension tables should be
designed for retrieval, not update. Retrieval performance is improved by eliminating
the join operations that would be needed to combine fully normalized dimension tables.

When the dimension tables are small, denormalization provides only a small gain
in retrieval performance. Thus, it is common to see small dimension tables normalized
as shown in Figure 13.8. This variation is known as the snowflake schema because
multiple levels of dimension tables surround the fact table. For the Customer and Item
tables, full normalization may not be a good idea because these tables can contain a
large number of rows.

The star schema and its variations require 1-M relationships from dimension tables
to a fact table. The usage of 1-M relationships simplifies query formulation and sup-
ports optimization techniques discussed in Chapter 15. In some cases, M-N relation-
ships may seem necessary between dimension and fact tables. Section 13.3 provides
details about resolution of M-N relationships between fact and dimension tables.

Constellation Schema
a data modeling representa-
tion for multidimensional
databases. In a relational
database, a constellation
schema contains multiple
fact tables in the center
related to dimension tables.
Typically, the fact tables
share some dimension
tables.
Snowflake Schema
a data modeling representa-
tion for multidimensional
databases. In a relational
database, a snowflake
schema has multiple levels
of dimension tables related
to one or more fact tables.
You should consider the
snowflake schema instead
of the star schema for small
dimension tables that are not
in 3NF.

Customer
CustId
CustName
CustPhone
CustStreet
CustCity
CustState
CustZip
CustNation

Store
StoreId
StoreManager
StoreStreet
StoreCity
StoreState
StoreZip
StoreNation
DivId
DivName
DivManager

Sales
SalesNo
SalesUnits
SalesDollar
SalesCost

Item
ItemId
ItemName
ItemUnitPrice
ItemBrand
ItemCategory

TimeDim
TimeNo
TimeDay
TimeMonth
TimeQuarter
TimeYear
TimeDayOfWeek
TimeFiscalYear

ItemSales

CustSales

TimeSales

StoreSales

Inventory
InvNo
InvQOH
InvCost
InvReturns

Supplier
SuppId
SuppName
SuppCity
SuppState
SuppZip
SuppNation

SuppInv

ItemInv

StoreInv

TimeInv

FIGURE 13.7
ERD Constellation Schema
for the Sales-Inventory
Example

26008_ch13_p509-548.indd 518 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   519

13.2.2  Example Table Designs for Data Warehouses
Table designs for enterprise data warehouses usually follow the patterns in the previ-
ous section although substantial variations sometimes occur in practice. To demon-
strate schema patterns in enterprise data warehouses, this section shows table designs
for data warehouses in retail, education, and health care. These examples extend the
presentation in Chapter 12 (section 12.3).

Table Design for the TPC-DS BenchmarkTM  The decision support benchmark
(TPC-DS) of the Transaction Processing Performance Council (TPC) provides a
moderate-sized schema using the patterns in the previous section. The TPC-DS
Benchmark contains 7 schema patterns and 17 dimension tables as summarized in
Table 13-6. Each column in Table 13-6 shows a schema pattern with a single fact
table and a number of dimension tables. Every schema pattern contains the Item
and Date_Dim dimension tables. Every schema pattern except Inventory contains
dimension tables related to customers (Customer, Customer_Address, Household_
Demographics, and Income_Band) as well as Time_Dim. The schema patterns involv-
ing returns (Store_Returns, Web_Returns, and Catalog_Returns) contain the Reason
dimension table. The schema patterns involving sales (Store_Sales, Catalog_Sales, and
Web_Sales) contain the Promotion dimension table.

Most of the schema patterns in the TPC-DS design use the snowflake pattern. The
Store Sales (Figure 13.9) and Web Sales (Figure 13.10) show snowflake designs for
customer related dimension tables (Customer_Address, Household_Demographics,
Customer_Demographics, and Income_Band). Note that arrows in the ERDs indicate
1-M relationships from the parent dimension table (such as Store) to the child table
(such as Store_Sales). The 1-M relationship from Income_Band to Household_Demo-
graphics indicates a second level snowflake. Both schema diagrams contain relation-
ship cycles, a variation of the schema patterns in the previous section. For example,
the Store Sales schema contains the cycle from Store_Sales to Customer, Customer to
Customer_Address, and Store_Sales to Customer_Address.

Table Design for the Colorado Education Data Warehouse  The Colorado
Education Data Warehouse, initially presented in Chapter 12.3.2, involves a complex
collection of nine constellation schemas. The constellation schemas contain 94 dimen-
sion tables and 32 fact tables. The fact tables have some level of denormalization as
fact tables contain both key and code values instead of just key values. The constella-
tion schemas have some level of snowflaking as ten dimension tables are referenced in
other dimension tables. The schema diagram uses nine pages in Microsoft Visio with
each page containing a constellation schema with many connections among fact and
dimension tables.

FIGURE 13.8
ERD Snowflake Schema for
the Store Sales Example

Customer
CustId
CustName
CustPhone
CustStreet
CustCity
CustState
CustZip
CustNation

Store
StoreId
StoreManager
StoreStreet
StoreCity
StoreState
StoreZip
StoreNation

Sales
SalesNo
SalesUnits
SalesDollar
SalesCost

Item
ItemId
ItemName
ItemUnitPrice
ItemBrand
ItemCategory

TimeDim
TimeNo
TimeDay
TimeMonth
TimeQuarter
TimeYear
TimeDayOfWeek
TimeFiscalYear

ItemSales

CustSales

TimeSales

StoreSales

Division
DivId
DivName
DivManager

DivStore

26008_ch13_p509-548.indd 519 3/2/18 10:36 PM

520   Part 6  Data Warehouse Processing

TABLE 13-6
Summary of the Table Design
for the TPC-DS Benchmark

Dimension Tables

Fact Tables

Store_
Sales

Store_
Returns

Catalog_
Sales

Catalog_
Returns

Web_
Sales

Web_
Returns

Inventory

Store √ √

Item √ √ √ √ √ √ √

Date_Dim √ √ √ √ √ √ √

Time_Dim √ √ √ √ √ √

Promotion √ √ √

Customer_Demographics √ √ √ √ √

Customer_Address √ √ √ √ √ √

Household_Demographics √ √ √ √ √ √

Customer √ √ √ √ √ √

Income_Band √ √ √ √ √ √

Reason √ √ √

Call_Center √ √

Catalog_Page √ √

Ship_Mode √ √ √ √

Warehouse √ √ √ √ √

Web_Site √ √

Web_Page √ √

1 Figures 13.9 and 13.10, from the TPC BenchmarkTM DS Standard Specification, Version 2.5.0, are copy-
righted by the Transaction Processing Performance Council.

One of the simplest schemas contains the fact table for standardized test (CSAP)
scores along with connections to 27 dimension tables as listed in Table 13-7. The
dimension tables demonstrate most of the concepts in earlier parts of this chapter.
Most dimension tables contain flat dimensions, typically a code value. For example,
dimension tables for ethnicity, homeless, migrant status, and gifted contain a single,
flat dimension. Some dimension tables contain hierarchical dimensions and multiple
dimensions. For example, the school dimension has location columns that form hier-
archical dimensions and other columns comprising flat dimensions. Each dimension
table uses two date columns (beginning and ending effective dates) to provide histori-
cal integrity as explained in the next subsection.

FIGURE 13.9
Store Sales Schema Diagram
for the TPC-DS Benchmark1

Customer

Customer_
Demographics

Promotion

Item

Store

Store_Sales

Customer_
Address

Household_
Demographics

Income_
Band

Time_Dim

Date_Dim

26008_ch13_p509-548.indd 520 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   521

The fact tables contain measures with a variety of aggregation properties. The
major fact table for CSAP results contains additive measures (number of points, per-
centage points, scaled score, and growth percentile) although these measures should
be shown as central tendencies (average or median) for reasonable interpretation.
Summary fact tables contain event counts such as the number of partially proficient
students in a test result. The finance fact tables contain semi-additive measures that
can be summarized across time such as bonded debt levels.

The Education Data Warehouse is modest-sized compared to typical enterprise
data warehouses. The total size of the Education Data Warehouse is about 270 GB. The
fact tables have about 200 million rows with 1.6 million rows added per year to the
major fact table.

Table Design for the OMOP Common Data Model  As presented in Chapter
12.3.3, the Observational Medical Outcomes Partnership (OMOP), a public/private
partnership, developed a prominent data warehouse standard for electronic medical
records. The OMOP Common Data Model (CDM) provides a detailed specification
for a medical data warehouse. Figure 13.11 shows an overview of the CDM with 39
tables organized in 5 areas. The standardized clinical tables contain details about clini-
cal events for each person during observation periods. A visit occurrence can involve
multiple procedures, drug exposures, device exposures, conditions, observations, lab
results, and notes.

The other areas in the CDM support the standard clinical data. The tables for stan-
dardized health economics contain cost details about visits, procedures, drugs, and
devices, dependent on the health care delivery system for a patient. The tables for
the health system document providers, care sites, and locations involved with patient
care. The tables in the derived elements area store derived details about cohorts, doses,
drugs, and conditions. A cohort can be derived from persons, providers, or visits. The

Customer_
Demographics

Web_Page

Customer

Promotion

Item

Date_Dim Web_Site
Warehouse

Time_Dim

Ship_Model

Household_
Demographics

Customer_
Address

Web_Sales

Income_
Band

FIGURE 13.10
Web Sales Schema Diagram
for the TPC-DS Benchmark

TABLE 13-7
List of Dimensions in the
Student Achievement Star
Schema

DIM_504_PLAN DIM_ESL DIM_IEP

DIM_ACCOMMODATION DIM_ETHNICITY DIM_LANGUAGE_BACKGROUND

DIM_BILINGUAL DIM_FARM DIM_MIGRANT_STATUS

DIM_CBLA_STATUS_CODE DIM_GENDER DIM_SCHOOL_EMH

DIM_CSAP_CONTENT_PROFICIENCY DIM_GIFTED_TALENTED DIM_SCHOOL_YEAR

DIM_CSAP_SUBJECT DIM_GRAD_CLASS DIM_SCHOOL

DIM_DID_NOT_TEST DIM_GRADE_CALC_EXEMPTION DIM_TIME_IN_DISTRICT

DIM_DISABLING_CONDITION DIM_GRADE DIM_TIME_IN_SCHOOL

DIM_DISTRICT DIM_HOMELESS DIM_TITLE_1

26008_ch13_p509-548.indd 521 3/2/18 10:36 PM

522   Part 6  Data Warehouse Processing

tables in the standardized vocabulary support detailed concepts used in CDM fact
tables. These tables are constant for each instantiation of the CDM.

The OMOP CDM contains variation from the standard schema patterns. As shown
in Figure 13.12, the ERD3 for the standardized clinical data contain M-N relation-
ships rather than just 1-M relationships in the standard schema patterns. Person is
the dimension table with 1-M relationships to two major fact tables (Visit_Occurrence
and Specimen). The other fact tables have 1-M relationships with Visit_Occurrence
and Person. For example, 1-M relationships exist from Person and Visit_Occurrence to
Measurement and Observation. Measurement and Observation are associative entity
types representing M-N relationships. Thus, the ERD for the standardized clinical data
complicate the standard schema patterns with M-N relationships.

13.2.3  Time Representation and Historical Integrity
Time representation is a crucial issue for data warehouses because most queries use
time in conditions. The principal usage of time is to record the occurrence of facts. The
simplest representation is a timestamp data type for a column in a fact table. In place
of a timestamp column, many data warehouses use a foreign key to a time dimension
table as shown in previous subsections. Using a time dimension table supports conve-
nient representation of organization-specific calendar features such as holidays, fiscal
years, and week numbers that are not represented in timestamp data types. The granu-
larity of the time dimension table is usually in days. If time of day is also required for
a fact table, it can be added as a column in the fact table to augment the foreign key to
the time table.

Most fact tables involve time represented as a foreign key to the time table with
augmentation for time of day if required. For fact tables involving international opera-
tions, two time representations (time table foreign keys along with optional time
of day columns) can be used to record the time at source and destination locations.
A variation identified by Kimball (2003) is the accumulating fact table that records the
status of multiple events rather than one event. For example, a fact table containing a

FIGURE 13.11
Overview of the OMOP
Common Data Model2

2 Figures 13.11 and 13.12 are copyrighted by the Observational Health Data Sciences and Informatics (www.
ohdsi.org).
3 This ERD notation displays a 1-M relationship with the key symbol by the parent entity type and infinity
symbol by the child entity type.

26008_ch13_p509-548.indd 522 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   523

snapshot of order processing would include order date, shipment date, delivery date,
payment date, and so on. Each event occurrence column can be represented by a for-
eign key to the time table along with a time of day column if needed.

For dimension tables, time representation involves the level of historical integrity,
an issue for updates to dimension tables. When a dimension row is updated, related
fact table rows are no longer historically accurate. For example, if the city column of a
customer row changes, the related sales rows are no longer historically accurate. To pre-
serve historical integrity, the related sales rows should point to an older version of the
customer row. Kimball (April 1996) presents three alternatives for historical integrity:

•	 Type I: overwrite old values with the changed data. This method provides no
historical integrity.

•	 Type II: use a version number to augment the primary key of a dimension table.
For each change to a dimension row, insert a row in the dimension table with
a larger version number. For example, to handle the change to the city column,
there is a new row in the Customer table with the same customer number but
a larger version number than the previous row. Besides the version number,
additional columns are needed to record the beginning effective date and ending
effective date for each historical column.

FIGURE 13.12
ERD for the Standardized
Clinical Data Tables

26008_ch13_p509-548.indd 523 3/2/18 10:36 PM

524   Part 6  Data Warehouse Processing

•	 Type III: use additional columns to maintain a fixed history. For example, to
maintain a history of the current city and the two previous city changes, three
city columns (CustCityCurr, CustCityPrev, CustCityPast) can be stored in the
Customer table along with associated six date columns (two date columns per
historical value column) to record the effective dates.

Figure 13.13 shows Type II and Type III alternatives for the CustCity column. The
Type II alternative involves multiple rows for the same customer, but the entire his-
tory is represented. The Type III alternative involves just a single row for each cus-
tomer, but only a limited history can be represented.

13.2.4  Extensions for Dimension Representation
The SQL CREATE TABLE statement lacks explicit representation of hierarchical
dimensions. Thus, the star schema and its variations do not provide explicit represen-
tation of hierarchical relationships of levels of a dimension. Because dimension defini-
tion is important to support data cube operations as well as optimization techniques
for query rewriting, some relational DBMS vendors have created proprietary SQL
extensions for dimensions. This section reviews the Oracle CREATE DIMENSION
statement to indicate the types of extensions that can be found in relational DBMSs.

The Oracle CREATE DIMENSION statement4 supports the specification of levels,
hierarchies, and constraints for a dimension. The first part of a dimension declara-
tion involves the specification of levels. For flat (nonhierarchical) dimensions, only a
single level exists in a dimension. However, most dimensions involve multiple levels
as depicted in Example 13.1 for the StoreDim dimension. Each level corresponds to one
column from the Store source table.

FIGURE 13.13
Alternatives for Historical
Dimensional Integrity of
CustCity

Customer
CustId
VersionNo
CustName
CustPhone
CustStreet
CustCity
CustCityBegE�Date
CustCityEndE�Date
CustState
CustZip
CustNation

Customer
CustId
CustName
CustPhone
CustStreet
CustCityCurr
CustCityCurrBegE�Date
CustCityCurrEndE�Date
CustCityPrev
CustCityPrevBegE�Date
CustCityPrevEndE�Date
CustCityPast
CustCityPastBegE�Date
CustCityPastEndE�Date
CustState
CustZip
CustNation

Type II Representation Type III Representation

4 Do not put blank lines in CREATE DIMENSION statements. The Oracle SQL compiler generates error
messages when encountering blank lines in CREATE DIMENSION statements.

Example 13.1

Oracle CREATE DIMENSION
Statement for the StoreDim Dimension
with the Specification of Levels

CREATE DIMENSION StoreDim
 LEVEL StoreId IS Store.StoreId
 LEVEL City IS Store.StoreCity
 LEVEL State IS Store.StoreState
 LEVEL Zip IS Store.StoreZip
 LEVEL Nation IS Store.StoreNation ;

26008_ch13_p509-548.indd 524 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   525

The next part of a CREATE DIMENSION statement involves the specification of
hierarchies. The Oracle CREATE DIMENSION statement supports dimensions with
multiple hierarchies as shown in Example 13.2. Specification of a hierarchy proceeds
from the most detailed level to the most general level. The CHILD OF keywords indi-
cate the direct hierarchical relationships in a dimension.

Example 13.2

Oracle CREATE DIMENSION Statement
for the StoreDim Dimension with the
Specification of Levels and Hierarchies

CREATE DIMENSION StoreDim
 LEVEL StoreId IS Store.StoreId
 LEVEL City IS Store.StoreCity
 LEVEL State IS Store.StoreState
 LEVEL Zip IS Store.StoreZip
 LEVEL Nation IS Store.StoreNation
 HIERARCHY CityRollup (
 StoreId CHILD OF
 City CHILD OF
 State CHILD OF
 Nation)
HIERARCHY ZipRollup (
 StoreId CHILD OF
 Zip CHILD OF
 State CHILD OF
 Nation);

The Oracle CREATE DIMENSION statement supports dimensions with levels from
multiple source tables. This feature applies to normalized dimension tables in snow-
flake schemas. Example 13.3 augments Example 13.2 with the inclusion of an addi-
tional level (DivId) along with an additional hierarchy containing the new level. In the
level specification, the DivId level references the Division table. In the DivisionRollup
hierarchy, the JOIN KEY clause indicates a join between the Store and the Division
tables. The JOIN KEY clause, at the end of a hierarchy specification, applies to a hier-
archy with levels from more than one source table.

Example 13.3

Oracle CREATE DIMENSION Statement
for the StoreDim Dimension with the
Usage of Multiple Source Tables

CREATE DIMENSION StoreDim
 LEVEL StoreId IS Store.StoreId
 LEVEL City IS Store.StoreCity
 LEVEL State IS Store.StoreState
 LEVEL Zip IS Store.StoreZip
 LEVEL Nation IS Store.StoreNation
 LEVEL DivId IS Division.DivId

26008_ch13_p509-548.indd 525 3/2/18 10:36 PM

526   Part 6  Data Warehouse Processing

The final part of a CREATE DIMENSION statement involves constraint specifi-
cation. The ATTRIBUTE clause defines functional dependency relationships involv-
ing dimension levels and related columns in dimension tables. Example 13.4 shows
ATTRIBUTE clauses for the related columns in the Division table.

 HIERARCHY CityRollup (
 StoreId CHILD OF
 City CHILD OF
 State CHILD OF
 Nation)
HIERARCHY ZipRollup (
 StoreId CHILD OF
 Zip CHILD OF
 State CHILD OF
 Nation)
HIERARCHY DivisionRollup (
 StoreId CHILD OF
 DivId
 JOIN KEY Store.DivId REFERENCES DivId);

Example 13.4

Oracle CREATE DIMENSION Statement
for the StoreDim Dimension with the Usage
of ATTRIBUTE Clauses for Constraints

CREATE DIMENSION StoreDim
 LEVEL StoreId IS Store.StoreId
 LEVEL City IS Store.StoreCity
 LEVEL State IS Store.StoreState
 LEVEL Zip IS Store.StoreZip
 LEVEL Nation IS Store.StoreNation
 LEVEL DivId IS Division.DivId
 HIERARCHY CityRollup (
 StoreId CHILD OF
 City CHILD OF
 State CHILD OF
 Nation)
HIERARCHY ZipRollup (
 StoreId CHILD OF
 Zip CHILD OF
 State CHILD OF
 Nation)
HIERARCHY DivisionRollup (
 StoreId CHILD OF
 DivId
 JOIN KEY Store.DivId REFERENCES DivId)
ATTRIBUTE DivId DETERMINES Division.DivName
ATTRIBUTE DivId DETERMINES Division.DivManager ;

In Example 13.4, the DETERMINES clauses are redundant with the primary key
constraint for the Division table. The DETERMINES clauses are shown in Example 13.4 to
reinforce constraints supported by the primary key declarations. DETERMINES clauses
are required for constraints not corresponding to primary key constraints to enable query
optimizations. For example, if each zip code is associated with one state, a DETERMINES
clause should be used to enable optimizations involving the zip code and state columns.

26008_ch13_p509-548.indd 526 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   527

Summarizability involves aggregation/disaggregation between a coarse level of detail
and finer levels of details. Summary operations are common in data warehouse que-
ries. Summary operations occur in drill down and rollup operations on a data cube
and join operations combining fact and dimension tables.

Violations of summarizability conditions detract from the usability of a data ware-
house. The most serious summarizability violations produce erroneous results. Even
if results are not incorrect, violations of summarizability conditions can lead to user
confusion. Violations of summarizability conditions can also restrict the ability to use
optimizations that improve query performance.

The first subsection focuses on the summarizability problems involving dimen-
sion tables containing hierarchical dimensions. The second subsection covers sum-
marizability problems involving join operations between fact and dimension tables.

13.3.1  Dimension-Fact Summarizability Problems and Patterns
This subsection presents three dimension summarizability problems beginning
with problems involving the drill-down operator. Drill-down incompleteness involves
inconsistency between totals shown in drill-down operations. Drilling from a parent
(coarser) level to a child (finer) level shows a smaller total indicating that measures
attributed to parent members have not been allocated to child members. In Figure 13.14,
the parent college level drills down to the department child level with a smaller total.
The enrollment in the business college is omitted in the department level because the
business college does not have departments. This inconsistency could cause user con-
fusion and erroneous decision making.

Roll-up incompleteness reverses drill-down incompleteness. Rolling up from a
child (finer) level to a parent (coarser) level shows a smaller total indicating that mea-
sure values attributed to child members have not been allocated to parent members.
In Figure 13.15, the product child level rolls up to the category parent level with a
smaller total. The sales of napkin products are omitted in the category level because
napkin products are not food or drink. This inconsistency could cause user confusion
and erroneous decision making.

The non strict dimension problem involves M-N relationships between dimen-
sion levels, typically exceptions to 1-M relationships. For example, the time dimen-
sion can have M-N relationships between levels as depicted in Figure 13.16. The

Dimension Summarizability
Problems
inconsistent results that
occur in summary opera-
tions involving relationships
between entity types rep-
resenting dimension levels.
The inconsistent results
involve different totals when
summing values at the child
and parent levels in a dimen-
sion hierarchy.

13.3  SUMMARIZABILITY PROBLEMS AND PATTERNS

ParentChild

Roll-up

20Napkin
15Tuna

Beer 5
Bread 10
Milk 10

Total 60

Napkin
15Tuna

Product Sales
Beer
Bread 10
Milk 10

Total

Drink 15

Food 25

Total 40

Category Sales

Drink 15

Food

Total

FIGURE 13.15
Roll-up Incompleteness
Example

FIGURE 13.14
Drill-Down Incompleteness
Example

Parent Child

Drill-Down

Department Enrollment

Civil Eng. 150

Comp. Sc. 650

Economics 330

Electrical Eng. 270

Math 225

Total 1,625

Business 1,250

CLAS 555

Eng 1,070

Total 2,875

College Enrollment

Business 1,250

CLAS

Eng

Total

26008_ch13_p509-548.indd 527 3/2/18 10:36 PM

528   Part 6  Data Warehouse Processing

weeks of the year can overlap months leading to different totals for weeks and
months. In Figure 13.16, January and February involve almost nine complete weeks.
The week total (95) is more than the two month total (90). Users may perceive the
difference as an inconsistency if they expect a 1-M relationship between month and
weeks.

Dimension Summarizability Patterns  To solidify your understanding of dimen-
sion summarizability, you should generalize beyond the examples presented in the
previous subsection. Schema patterns provide a tool to generalize beyond examples.
The summarizability patterns involve values for the minimum and maximum cardi-
nalities. You should be able to recognize schema patterns that provide summarizabil-
ity as well as patterns involving summarizability problems.

Summarizable schema patterns eliminate all three dimension summarizability
problems. As shown in Figure 13.17, the regular dimension pattern involves a mini-
mum cardinalilty of 1 for both the parent and child levels of a dimension hierarchy.
The parent’s minimum cardinality of 1 eliminates drill-down incompleteness, while
the child’s minimum cardinality of 1 eliminates rollup incompleteness. Although
the unusual dimension pattern with a maximum cardinality of 1 for the parent
eliminates summarizability problems, it is not typical in practice. The examples in
Figure 13.18 involving Year-Month (a) and Division-Brand (b) are typical examples
of regular summarizability patterns. In the year-month example, month refers to

FIGURE 13.16
Example of a Non Strict
Dimension Problem

Parent
Child

Roll-up
Month Sales

37

Feb-2017 53

Total 90

Jan-2017

Week Sales

1-2017 5
10
10
10
20

6-2017 10
7-2017 10
8-2017 10
9-2017 10
Total 95

2-2017
3-2017
4-2017
5-2017

FIGURE 13.17
Schema Patterns for Summarizable
Dimensions

Child

Parent

Child

Parent

Regular
Unusual

Month

Year

Brand

Division

(a) Year-Month (b) Division-Brand

FIGURE 13.18
Examples of Schema Patterns for Summarizable
Dimensions

Dimension Summarizability Pattern: a schema pattern that ensures consistent
results in summary operations involving the parent and child entity type in the relation-
ship. Relationship cardinalities determine the consistency of the summary operations.
The regular and unusual patterns are the two dimension summarizability patterns.

26008_ch13_p509-548.indd 528 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   529

the month within a specific year such as August 2017. The relationship between
Division and Store in Figure 13.8 is another example of a regular summarizability
pattern.

The values of minimum and maximum cardinalities determine schema pat-
terns for the three dimension summarizability problems. The drill-down incomplete
problem involves a minimum cardinality of 0 for the parent entity type as shown in
Figure 13.19. The roll-up incomplete problem involves a child’s minimum cardinal-
ity of 0. The non-strictness problem involves a M-N relationship. The examples in
Figure 13.20 depict ERDs for the College-Department, Category-Product, and Month-
WeekofYear examples presented in Figures 13.14 to 13.16 as small tables.

Resolving the dimension summarizability problems is typically not difficult con-
ceptually although the solutions may complicate the data integration process. For
drill-down incompleteness, unallocated parent members should be related to a default
child member. For example, colleges without departments should be represented by
a new child member such as business college enrollments should be allocated to the
“unallocated business” member in the department level. For roll-up incompleteness,
a new default parent member should be used for child members without a parent. For
example, a new “non food, non beverage” category can be added to the parent level
to relate to unassociated child members such as napkin. For the non strict dimension
problem, the simplest solution is to place the levels in different hierarchies. For exam-
ple, the weekofyear and month levels should be placed in different date hierarchies.
When the levels cannot be placed in different hierarchies, a major parent can be used in
place of multiple, related parent members. For example, a product related to multiple
categories can be related just to a major category. Another possible solution is to group
related parent members into parent groups so that each child member is related to a
single parent group.

To help you recall the conditions for dimension summarizability completeness
and incompleteness, Table 13-8 lists the conditions for each pattern.

13.3.2  Dimension-Fact Summarizability Problems and Patterns
Relationships between dimension and fact tables dominate relational representation
of data warehouses as explained in Section 13.2. Thus, it is important that join oper-
ations between fact and dimension tables show consistent summaries of measures.

FIGURE 13.20
Examples of Schema
Patterns for Dimension
Summarizability Problems

Department

College

Product

Category

Drill-down
incomplete

Roll-up
incomplete

Weekof
Year

Month

Non strict

FIGURE 13.19
Schema Patterns for
Dimension Summarizability
Problems

Child

Parent

Child

Parent

Drill-down
incomplete

Roll-up
incomplete

Child

Parent

Non strict

26008_ch13_p509-548.indd 529 3/2/18 10:36 PM

530   Part 6  Data Warehouse Processing

Incomplete dimension-fact relationships involve fact entities that do not have a related
parent entity in a dimension-fact relationship. Inconsistencies caused by incomplete
relationships are manifest in join operations with summary calculations. Figure 13.21
demonstrates inconsistent totals between (a) sales summarized by both customer and
month and (b) sales summarized by month only. The sales summarized by both cus-
tomer and month are inconsistent with the sales summarized by month due to anon-
ymous customers. Some sales have been recorded without a known customer due
to customer requirements for anonymity. A business analyst may become confused
because of the inconsistent totals.

The non strict dimension-fact relationship problem involves double counting
measure values due to an M-N relationship between dimension and fact tables. In
Figure 13.22, double counting of sales occurs when summarizing sales by individual

TABLE 13-8
Summary of the Dimension
Summarizability Conditions

Summarizability Pattern Conditions

Drill-down complete Parent minimum cardinality = 1

Drill-down incomplete Parent minimum cardinality = 0

Roll-up complete Child minimum cardinality = 1

Roll-up incomplete Child minimum cardinality = 0

Non strict Child maximum cardinality = M

Regular Parent min, max cardinality = (1, M)
Child min, max cardinality = (1, 1)

Unusual Parent max cardinality = 1

(a) Summarized by
Customer and Month

Customer Month Sales

Cust-1 Jan-2017

Cust-2 5

Cust-3

30

10

15

Total

Month Sales

Jan-2017

15

Total

25

40

(b) Summarized by
Month Only

Jan-2017

Feb-2017
Feb-2017

FIGURE 13.21
Incomplete Dimension-Fact
Relationship Example

(a) Unit sales by salesperson (b) Shared unit sales by salesperson

Salesperson Date UnitSales

SP1 10-Feb-2017 10

SP2 10

SP3 15

SP4 20

Total 55

Salesperson Date UnitSales

SP1, SP2 10

SP3 15

SP4 20

Total 45

10-Feb-2017

11-Feb-2017

12-Feb-2017

10-Feb-2017

11-Feb-2017

12-Feb-2017

FIGURE 13.22
Non Strict Dimension-Fact
Relationship Example

Dimension-Fact Relationship Summarizability Problems: inconsistent results
that occur in summary operations involving relationships between dimension and fact
entity types. The inconsistent results involve different totals when summing values
involving different dimension-fact relationships.

26008_ch13_p509-548.indd 530 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   531

salesperson and date. The sale on February 10, 2017 involves both SP1 and SP2. The
individual sales total (55) is greater than the shared sales (45) because the shared sale
is counted twice in Figure 13.22(a). The M-N relationship between the salesperson
dimension table and sales fact table leads to double counting of the sales total, possibly
causing erroneous decision making and user confusion.

Schema patterns for dimension-fact relationships support a more general under-
standing of summarizability problems. Figure 13.23 depicts patterns for summariz-
able dimension-fact relationships. In the regular dimension-fact pattern, a dimension
entity may not be related to any fact entity. The optional relationship supports sparsity
in which some dimension members do not have related fact entities. In Figure 13.23,
some products have not been sold so the relationship is optional. The unusual
dimension-fact pattern involves a mandatory relationship for the dimension entity
type. In Figure 13.24, every date must have a related sale. The mandatory relationship
for the dimension entity type is often not enforced because of difficulties in the data
integration process.

Non summarizable dimension-fact relationship patterns deviate from the summa-
rizable patterns in the cardinalities for the fact entity type. The incomplete dimension-
fact relationship pattern involves a minimum cardinality of 0 for the fact entity type
as shown in Figure 13.25. As an example, the Purchase entity type in Figure 13.26 has
a minimum cardinality of 0 indicating an incomplete dimension-fact relationship. The
non strict dimension-fact relationship involves a minimum cardinality of M for the
fact entity type as shown in Figure 13.25. As an example, the Sales entity type has a
maximum cardinality of M in Figure 13.26.

Resolving incomplete dimension-fact relationships is conceptually simple
although the resolution may complicate the data integration process. Unrelated fact
entities should be connected to a default dimension entity if a connection to an actual

Dimension-Fact
Relationship
Summarizability Pattern
a schema pattern that
ensures consistent results
in summary operations
involving relationships
between dimension and fact
entity types. Relationship
cardinalities determine the
consistency of the summary
operations. The regular and
unusual patterns are the two
dimension-fact relationship
summarizability patterns.

Fact

Dimension

Fact

Dimension

Regular Unusual

FIGURE 13.23
Schema Patterns for Summarizable
Dimension-Fact Relationships

FIGURE 13.24
Schema Examples of Summarizable
Dimension-Fact Relationships

Sales

Product

Sales

Date

Regular Unusual

Purchase

Agent

Incomplete
dimensioning

Sales

Salesperson

Non strict
dimensioning

FIGURE 13.26
Schema Examples of Non Summarizable Dimension-Fact
Relationships

Fact

Dimension

Incomplete

Fact

Dimension

Non strict

FIGURE 13.25
Schema Patterns for Non Summarizable Dimension-Fact
Relationships

26008_ch13_p509-548.indd 531 3/2/18 10:36 PM

532   Part 6  Data Warehouse Processing

dimension entity cannot be made. For example, anonymous sales should be connected
to a default anonymous customer in the customer entity type.

Resolving non strict dimension-fact relationships can be more complex than res-
olution of incomplete relationships. Sometimes the source data has exceptions that
involve M-N relationships, not 1-M relationships. For example, if the Sales fact table is
derived from customer invoices, some invoices may involve multiple customers such
as roommates or spouses. Two ways to resolve non strict dimension-fact relationships
are explained in the following list.

•	 If there are a small, fixed number of possible related entities, a simple adjustment
can be made to a fact entity type. Multiple relationships can be added between
dimension and fact entity types to allow for more than one related entity. For
example, the Sales entity type in Figure 13.6 can have an additional relationship
to identify an optional second customer on an invoice.

•	 If there can be groups of related entities, the representation is more difficult.
An entity type representing a group of related entities can be added with an
associative entity type that connects the other entity types. For example to
represent customer groups in Figure 13.6, a customer group entity type can be
added along with 1-M relationships to connect the customer group, Sales, and
Customer entity types.

Resolving M-N relationships involves a compromise for simplified query formu-
lation and data integration procedures. Some data warehouse designs retain M-N rela-
tionships to prioritize a faithful representation rather simplified query formulation
and integration procedures. The OMOP CDM in Section 13.2.2 shows a data ware-
house design preserving M-N relationships. The major part of the data warehouse
design for clinical patient data (Figure 13.12) contains several associative entity types
representing M-N relationships.

To help you recall the conditions for summarizability completeness and strictness
of dimension-fact relationships, Table 13-9 lists the conditions for each pattern.

TABLE 13-9
Summary of Dimension-Fact
Relationship Summarizability
Conditions

Summarizability Pattern Conditions

Complete dimension-fact relationship Fact minimum cardinality = 1

Incomplete dimension-fact relationship Fact minimum cardinality = 0

Strict dimension-fact relationship Fact maximum cardinality = 1

Non strict dimension-fact relationship Fact maximum cardinality = M

Regular dimension-fact relationship Dimension min, max cardinality = (0, M)
Fact min, max cardinality = (1, 1)

Unusual dimension-fact relationship Dimension minimum cardinality = 1

13.4  SCHEMA INTEGRATION AND DESIGN METHODOLOGIES
Data warehouse professionals use schema patterns and summarizability concepts as
important tools in data warehouse design. To apply them in data warehouse design,
these tools should be used in a schema integration process and overall design method-
ology. This section presents a process for schema integration and design methodolo-
gies for enterprise data warehouse design. The schema integration process specifies
steps for a integrating a small number of data sources into a conceptual data ware-
house design. A design methodology specifies a strategy to apply the schema integra-
tion process to a large number data sources for an enterprise data warehouse design.
Together, the schema integration process and design methodology support enter-
prise data warehouse design using schema patterns and summarizability concepts as
important tools.

26008_ch13_p509-548.indd 532 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   533

13.4.1  Schema Integration Process
The schema integration process uses specifications about business intelligence needs
and data source documentation to integrate a small number of data sources into a
conceptual design of a data warehouse. An organization’s requirements for business
intelligence indicate important decisions, measures, and analysis methods used by
business analysts. Some of the requirements can be wish lists, not currently used by
business analysts. Data sources provide raw material to satisfy business intelligence
requirements. The schema integration process uses ERDs, data dictionary documenta-
tion, and sample data about data sources.

Using documentation of data sources and specifications of business needs as
input, the schema integration process involves a sequence of steps to integrate a small
number of data sources as depicted in Figure 13.27. In the first step, you specify dimen-
sions and measures including important properties presented in Section 13.1. In the
second step, you determine the most appropriate grain for each dimension and make
estimated size calculations about the grains. A grain indicates the level of detail for
dimensions such as individual customers and stores. Estimated size calculations about
fact tables allow planning about hardware and software capacity for a data warehouse.
In the third step, you create a table design for the data warehouse that supports the
dimensional model and data sources. In the fourth step, you identify summarizability
problems and provide resolutions using patterns presented in Section 13.3. Finally,
in the fifth step, you provide mappings for the data sources and populate data ware-
house tables using sample data from the data sources. A mapping is an initial specifi-
cation for the data integration process. Chapter 14 presents details of data integration
to extend and implement an initial mapping specification.

The schema integration process may involve backtracking and iteration through
the steps. The order of steps indicates a logical progression allowing backtracking and
iteration especially as business intelligence requirements evolve as an organization
conducts the process.

Mini Case Study for Schema Integration  This section depicts details of the
schema integration process using a mini case study involving two data sources for
a retail firm. The Purchase database (Figure 13.28) supports purchase transactions

Specify
dimensions and

measures

Determine
grains and

estimate fact
table sizes

Create initial
table design

Analyze
summarizability

Map data
sources and

populate tables

FIGURE 13.27
Steps of the Schema
Integration Process

26008_ch13_p509-548.indd 533 3/2/18 10:36 PM

534   Part 6  Data Warehouse Processing

to replenish retail inventory. A purchase consists of a heading with the purchase
number, date, payment method, delivery date, and supplier. A purchase contains
a collection of products with the quantity and unit cost recorded on purchase lines
along with links to the product and purchase heading. Each product has one pre-
ferred supplier. However, a purchase can use a non-preferred supplier if necessary.
For additional insight about the tables, Appendix 13.A contains sample rows for
each table.

Individual stores of the retail firm also maintain an inventory of custom products
ordered from local suppliers. Individual store order products using purchase work-
sheets for custom products as depicted in Table 13-10. Inventory practices for custom
products are informal. New products are typically purchased when a manager senses
new demand for local items.

The data warehouse tracks inventory balances over time, a type of snapshot.
Snapshots are typical in applications in which balances are involved, such as account
balances in financial services, enrollment in courses, reservations in hospitality
and travel, and head count in personnel management. Snapshots cannot be aggre-
gated over time correctly as summation of quantities and values over time is not
meaningful.

The basic measures for inventory tracking are quantity on hand and inventory
value. Inventory valuation can be complex as many accounting methods exist to value
inventory. For this problem, the purchase price or unit cost of the inventory can be
used for valuation. The data warehouse should support detailed tracking of inventory
to the individual product, purchased by date, and supplier. Here are typical computa-
tions for analyzing and tracking inventory balances using the quantity on hand and
inventory valuation measures.

•	 The average quantities and stock values in each time period
•	 The opening and closing balances for each time period
•	 The change in inventory levels between consecutive periods and parallel periods
•	 The minimum and maximum inventory levels in a time period
•	 The relative contribution of the stocked item to the overall stock value

SuppNo
SuppName
SuppPhone
SuppEmail
SuppDisc

Supplier

PrefSupp

PLQty
PLUnitCost

PurchLine

PurchNo
PurchDate
PurchPayMethod
ProdDelDate

Purchase

Contains

PurchFrom

ProdNo
ProdName
ProdQOH
ProdPrice
ProdNextShipDate

Product

BoughtOn

FIGURE 13.28
ERD for Small Purchase
Database

TABLE 13-10
Sample Worksheet for
Custom Inventory

ProdCode ProdDesc Supp Qty Unit Price PurDate Amount

CPC1 Pencils Omart 20 $2.00 13-Feb-2017 $40.00

CPC2 Paper Smart 10 $3.50 14-Feb-2017 $35.00

CPC3 Folders Pmart 20 $1.50 11-Feb-2017 $30.00

26008_ch13_p509-548.indd 534 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   535

Selected Solution Details for the Mini Case Study  The requirements of this
mini case study involve three important decisions that involve some extensions of
material in previous sections. This mini case study requires calculations about esti-
mated grain sizes to gain insight about storage requirements of finer grains such as the
individual customer and store. Simplicity is an important principle of data warehouse
design. One area for simplification is fact table choice. Often an operational database
has transactions with multiple levels of detail such as the Purchase and PurchLine
entity types. Data warehouse designs are dominated by fact tables with a single level.
Populating sample data warehouse tables from source data provides insight about
data integration requirements and clarifies omissions in a data warehouse design.

Appendix 13.B contains full details of the solution so the remainder of this section
presents details of grain determination and mappings, aspects not covered in other
parts of this chapter. For each dimension, a data warehouse designer should determine
alternative grains or levels of details to estimate impacts on fact table sizes. The level
of detail of each related dimension determines fact table size and sparsity. Sparsity
appears in data cubes as empty cells. In a fact table, sparsity involves combinations
of dimension values without a related fact table row. Fine grains such as individual
customers, days, and products dominate data warehouse designs because of analy-
sis flexibility. However, fine grains cause large fact table sizes, high level of sparsity,
and substantial computing resources. Coarser grains such as customer postal codes,
product categories, and weeks reduce flexibility of analysis especially on data mining
applications. However, coarser grains reduce fact table sizes, sparsity, and computing
resources.

For fact table size estimation, the approach depends on matching fact tables to
source tables as depicted in Figure 13.29. If you can match a fact table to source tables,
you should determine sparsity using statistics about the size of a source table. For
example, if the fact table corresponds to the PurchLine table, you can use statistics
about the PurchLine size (number of rows) to compute sparsity. To compute sparsity,
you first compute the fill ratio, the number of non-empty cells to total cells. Fill ratio
is the number of rows in the source table divided by the product of the sizes of each
dimension table. Sparsity is computed as 1 minus the fill ratio.

If you cannot match a fact table to existing source tables (such as for coarse grains),
you should estimate sparsity to calculate the fact table size. Determining fact table size
may be necessary if statistics about a source table are not reliable or likely to change
substantially. To compute fact table size, you first calculate the fill ratio as the 1 minus
estimated sparsity since sparsity and fill ratio sum to 1. Fact table size is computed as
the product of the size of each dimension table multiplied by the fill ratio.

Mapping sample data in data sources to data warehouse tables involves associa-
tions and additional data as depicted in Figure 13.30. Most of the mapping is associa-
tions among source and data warehouse columns. There can be conversions such as

FIGURE 13.29
Grain Determination

Fact table size
• Use sizes of dimensions and

estimate sparsity
• Fill Ratio: 1 -Sparsity
• Fact Table Size: Product of

dimension sizes times fill ratio

Sparsity
• Match fact table to source tables
• Use sizes of dimensions and source

fact table
• Fill Ratio: Source table size divided

by product of dimension table sizes
• Sparsity: 1 –Fill Ratio

26008_ch13_p509-548.indd 535 3/2/18 10:36 PM

536   Part 6  Data Warehouse Processing

units of measure but details of conversions are not important for this problem. Chapter
14 covers details of conversions with data integration tools so the specification here
just involves the need for conversion.

Additional data is typically necessary to specify a complete mapping. Typical
additions are generated primary key values, default values for missing values, and
derived values. A typical derived value is a data source indicator to specify the data
source for a row. In this case, a data source indicator can specify if the source is the
Purchases database or custom products worksheet.

13.4.2  Data Warehouse Design Methodologies
When designing an enterprise data warehouse, an organization requires a methodol-
ogy to apply the principles and practices of data modeling and schema integration.
Without an appropriate methodology, the best principles and practices will likely fail
to produce a data warehouse with high value for an organization. This subsection
reviews a range of proposed methodologies to provide background and insights for
successful development of enterprise data warehouses.

Design methodologies for data warehouses differ from methodologies for transac-
tion databases because data warehouses are primarily repositories of secondary data.
Operational databases capture data at its source such as from an ATM, web shopping
cart, and manufacturing plant. In contrast, data warehouses transform data from pri-
mary sources (operational databases and external data sources) and then store and
summarize the transformed data.

Because of differences in data characteristics and usage, data warehouses have
different design artifacts than operational databases. Data warehouse design meth-
odologies support the development of data models, data integration procedures, and
data marts for enterprise data warehouses. The data models for data warehouses
have different patterns than data models for operational databases. Data integration
procedures are essential for data warehouses but typically not important for opera-
tional databases. Data marts have different characteristics than views for operational
databases.

The methodologies presented in this subsection have received some prominence
although numerous other approaches also have been proposed. Data warehouse
design methodologies differ by emphasis on the supply of data sources, the demand
for business intelligence services, and the possible level of automation in the develop-
ment process. Automation may have an important role because data sources already
exist as raw materials for data warehouse design. However, no commercial products
have been developed to support automation in data warehouse design methodologies.

Demand Driven Methodology  The demand-driven data warehouse design
methodology (also known as the requirements driven approach), first proposed by
Kimball et al. (1998), is one of the earliest data warehouse design methodologies. The
demand-driven methodology emphasizes the identification of data marts to capture
intended usage of a data warehouse as depicted in Figure 13.31. A data mart is defined
as a collection of related facts important for a group of data warehouse users. When
this methodology was proposed, the data mart architecture was common for data

Demand-driven data ware-
house design methodology
emphasizes the identifica-
tion of data marts to capture
intended usage of a data
warehouse. The demand-
driven methodology has
three phases for (1) identify-
ing data marts (subsets of
user requirements), (2) build-
ing a matrix relating data
marts and dimensions, and
(3) designing fact tables.

• Source column
matching

•Conversions
Associations

•Generated PK values
•Default values
•Derived values

Additions

FIGURE 13.30
Data Source Mapping

26008_ch13_p509-548.indd 536 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   537

warehouses. Because of its emphasis on subsets of user requirements, the demand-
driven approach has some similarity to the view driven approach to database design5.

After identifying data marts, possible dimensions for each data mart are listed.
Dimensions, standardized across data marts, are known as conformed dimensions. A
matrix relating conformed dimensions and data marts is developed to refine the initial
data mart specification.

The final step involves specification of fact tables with an emphasis on the grain of
fact tables. Typical grains are individual transactions, snapshots (points in time), and
line items on documents. The grain is usually determined by the primary dimensions.
After specifying the grain of a fact table, all dimensions are specified. The details of
each dimension are then specified including the hierarchical levels. In the last part,
measures for each fact table are specified including the measure properties such as
aggregation.

Supply Driven Methodology  The supply-driven data warehouse design
methodology (Moody and Kortink, 2000) emphasizes the analysis of existing data
sources. Entity types in ERDs of existing data sources are analyzed to provide a start-
ing point for the data warehouse design as shown in Figure 13.32. The supply-driven
methodology seems amenable to automation although automated tools to support the
methodology have not been reported.

In the first step, the supply-driven approach classifies entity types in existing
ERDs as a prelude to develop a star schema or variation for the data warehouse. Entity
types containing event data at a point in time are classified as transaction entity types.
Guidelines in the methodology indicate that transaction entity types typically have
numeric data that can be summarized. Typical events involve sales, purchases, reser-
vations, hiring, and so on. Event entity types will typically become fact tables in a star
schema. Entity types related to events in 1-M relationships are classified as compo-
nent entity types. Component entity types typically become dimension tables in a star
schema. In total, the first step provides a set of initial star schemas or a constellation
schema if dimensions are conformed.

The second step of the supply-driven methodology refines dimensions. Entity
types related to component entity types are labeled as classification entity types.
Dimension hierarchies are formed by classification and component entity types. Each
sequence of classification and component entity types, joined by 1-M relationships in
the same direction, becomes a dimension hierarchy.

The third step of the methodology refines the star schemas using two operators.
The collapse operator denormalizes dimension entity types to reduce snowflaking. For
example, the collapse operator applied to the Division-Store relationship in Figure 13.8
combines the Division and Store entity types eliminating the snowflake design. The
aggregation operator makes the grain coarser in transaction entity types. Aggregation
of a fact table may require modifications to the primary dimension tables to make the
dimension tables consistent with the grain of the fact table.

Hybrid Methodology  The hybrid data warehouse design methodology (Bonifati
et al., 2001) combines the demand and supply methodologies. The hybrid methodol-
ogy involves a demand-driven stage, a supply-driven stage, and then a third stage to
integrate the demand and supply-driven stages. The demand and supply stages can
be done independently as shown in Figure 13.33. The overall emphasis in the hybrid
approach is to balance the demand and supply aspects of data warehouse design pos-
sibly aided by automated tools.

The demand-driven stage collects requirements using the Goal-Question-Metrics
(GQM) paradigm. The GQM provides forms and interview guidelines to help define a

Supply-driven data ware-
house design methodology
emphasizes the analysis
of existing data sources.
Entities in ERDs of existing
data sources are analyzed to
provide a starting point for
the data warehouse design.
The supply-driven methodol-
ogy has three phases for
(1) classify entities, (2) refine
dimensions, and (3) refine
the schema.

FIGURE 13.31
Steps in the Demand-Driven
Data Warehouse Design
Methodology

Grains,
aggregation
properties,
dimensions

Build Data
Mart/

Dimension
Matrix

Identify Data
Marts

Design Fact
Tables

Conform
dimensions

5 Chapter 12 of the sixth edition covers the view driven approach for database design. Although this chapter
has been removed in the later editions, you can find this chapter on the textbook’s website.

FIGURE 13.32
Steps in the Supply-Driven
Data Warehouse Design
Methodology

Collapse and
aggregation

operators

Refine
Dimensions

Classify
Entities

Refine
Schema

Classification
entities

Transaction
and

component
entities

26008_ch13_p509-548.indd 537 3/2/18 10:36 PM

538   Part 6  Data Warehouse Processing

set of goals for the data warehouse. The methodology provides some informal guide-
lines to derive measures and dimensions from the goals.

The second step of the hybrid methodology involves analysis of existing ERDs.
This step may be partially automated although tool development has not been
reported. The methodology provides guidelines to identify fact and dimension tables
in existing ERDs. Potential fact tables are identified based on the number of additive
attributes. Dimension tables are involved in 1-M relationships with fact tables.

The third step of the hybrid methodology integrates the dimensional model in the
demand stage and the star schema in the supply stage. The methodology provides
guidelines to convert both models to a common vocabulary using terminology analy-
sis. After conversion to a common vocabulary, the methodology provides a process to
match the demand and supply models.

Hybrid data warehouse
design methodology:
combines the demand and
supply methodologies.
The hybrid methodology
involves a demand-driven
stage, a supply-driven stage,
and then a third stage to
integrate the demand and
supply-driven stages. The
demand and supply stages
can be done independently.
The overall emphasis in the
hybrid approach is to bal-
ance the demand and supply
aspects of data warehouse
design.

FIGURE 13.33
Steps in the Hybrid Data
Warehouse Design
Methodology

Terminology
analysis

Analyze
ERDs

Determine
Goals

Integrate
Models

Fact and
dimension

table
guidelines

GQM forms and
guidelines

This chapter provided detailed coverage of conceptual design concepts and practices
for enterprise data warehouses. To design a data warehouse, most organizations use
both the multidimensional data model and the relational model. Most organizations
use a relational DBMS for primary storage of a data warehouse and business intelli-
gence tools use the multidimensional model as a representation for business analysts.

For the multidimensional data model, this chapter presented terminology associ-
ated with data cubes and operators to manipulate data cubes. For the relational data
model, this chapter described data modeling patterns (the star schema and its varia-
tions), design rules for summarizability, time representation in relational data ware-
house designs, and extensions for representation of hierarchical dimensions in SQL.
To depict complexity of enterprise data warehouse designs in organizations, this chap-
ter demonstrated data warehouse designs in retail, education, and health care.

The final part of the chapter emphasized design of enterprise data warehouses.
A schema integration process was presented for analyzing a small number of data
sources. For designing enterprise data warehouses, several prominent design method-
ologies were reviewed.

The concepts and design skills emphasized in this chapter provide a foundation
for data warehouse professionals. The remaining chapters in part 6 extend this foun-
dation with skills for data integration and query formulation.

CLOSING THOUGHTS

REVIEW CONCEPTS

•	 Multidimensional data cube: dimensions, measures, hierarchies, time-series data type
•	 Important dimension properties: hierarchy and sparsity

26008_ch13_p509-548.indd 538 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   539

•	 Aggregation property for measures: additive, semi-additive, non-additive
•	 Data cube operators: slice, dice, drill-down, roll-up, pivot
•	 Star schema: fact table and related dimension tables in 1-M relationships
•	 Variations of the star schema: snowflake schema (multiple dimension levels)

and constellation schema (multiple fact tables and shared dimension tables)
•	 Classifications of fact tables: transaction table, snapshot table, and factless table
•	 Maintaining historical dimensional integrity using a Type II representation for

unlimited history and a Type III representation for limited history
•	 Dimension representation using the Oracle proprietary SQL statement (CREATE

DIMENSION) to support data cube operations and optimization techniques
•	 Dimension summarizability problems: drill-down incompleteness, roll-up

incompleteness, and non strict dimensions
•	 Dimension summarizability patterns: regular dimension pattern and unusual

dimension pattern
•	 Fact-dimension summarizability problems: incomplete dimension-fact

relationships and non strict dimension-fact relationships
•	 Fact-dimension summarizability patterns: regular dimension-fact pattern and

unusual dimension-fact pattern
•	 Schema integration process for analyzing a small set of data sources
•	 Input for the schema integration process: documentation of data sources and

specifications of business intelligence requirements
•	 Important decisions of schema integration: dimensional data model, grain size

estimation, table design, initial mapping of data sources, and population of data
warehouse tables with sample data

•	 Estimate sparsity by matching a fact table to source tables or estimate fact table
size using sizes of dimensions and estimate of sparsity

•	 Simplifying a data warehouse design by combining multiple source tables into
one fact table

•	 Data source mappings through source column matching, conversions, generated
primary key values, default values, and derived values

•	 Demand-driven data warehouse design methodology emphasizing the
identification of data marts to capture intended usage of a data warehouse

•	 Supply-driven data warehouse design methodology emphasizing the analysis of
existing data sources

•	 Hybrid data warehouse design methodology balancing the demand and supply-
driven methodologies

QUESTIONS

  1.	What are the advantages of multidimensional representation over relational
representation for business analysts?

  2.	Explain why a dimension may have multiple hierarchies.
  3.	Why is it important to specify the aggregation property for each measure?
  4.	Provide an example of a measure with each aggregation property value

(additive, semi-additive, and non-additive).
  5.	What are the advantages of using time-series data in a cell instead of time as a

dimension?
  6.	How is slicing a data cube different from dicing?

26008_ch13_p509-548.indd 539 3/2/18 10:36 PM

540   Part 6  Data Warehouse Processing

  7.	What are the differences between drilling-down and rolling-up a data cube
dimension?

  8.	How is a pivot operation useful for multidimensional databases?
  9.	Explain the significance of sparsity in a data cube.

  10.	What is a star schema?
  11.	What are the differences between fact tables and dimension tables?
  12.	How does a snowflake schema differ from a star schema?
  13.	What is a constellation schema?
  14.	What is the relationship between the types of fact tables and aggregation

properties for measures?
  15.	What is an accumulating fact table?
  16.	In the schema patterns for the TPC-DS Benchmark, what fact tables involve

sales?
  17.	In the schema patterns for the TPC-DS Benchmark, what fact tables involve

returns?
  18.	What variation to standard schema patterns is shown in the TPC-DS

Benchmark?
  19.	Describe the schema for standardized test scores in the Colorado Education Data

Warehouse.
  20.	Describe the main area of the OMOP Common Data Model.
  21.	Describe the variation from the standard schema patterns in the OMOP

Common Data Model.
  22.	How is time represented in a fact table?
  23.	What is the difference between Type II and Type III representations for historical

dimension integrity?
  24.	What is the purpose of the Oracle CREATE DIMENSION statement?
  25.	What is the difference between drill-down incompleteness and roll-up

incompleteness?
  26.	For the non strict dimension problem, will totals summarized at the child level

always be larger than totals summarized in the related parent level?
  27.	Why is the unusual dimension summarizability pattern called unusual?
  28.	List important cardinalities of the regular summarizability dimension pattern,

the drill-down incomplete pattern, and the roll-up imcomplete pattern.
  29.	Briefly explain the incomplete dimension fact relationship problem including the

schema pattern for the problem.
  30.	Briefly explain the difference between the non strict dimension problem and the

non strict dimension-fact relationship problem.
  31.	What is the difference between the regular and unusual patterns for

summarizable dimension-fact relationships?
  32.	Briefly explain two ways to resolve non strict dimension-fact relationships.
  33.	Briefly explain resolution of the incompleteness problems for dimension

summarizability.
  34.	Briefly explain resolution of the incomplete dimension-fact relationship problem.
  35.	What is the relationship between the schema integration process and design

methodologies for enterprise data warehouse development?
  36.	What inputs does the schema integration process use?
  37.	Does the schema integration process allow backtracking and iteration among the

steps?

26008_ch13_p509-548.indd 540 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   541

  38.	What is a grain in the schema integration process?
  39.	What is a mapping in the schema integration process? How is a mapping related

to the data integration process?
  40.	How can you simplify fact table design for a data warehouse schema?
  41.	Why should you populate sample data warehouse tables in the schema

integration process?
  42.	What are two alternative approaches for grain size estimation?
  43.	How do you compute the sparsity of a fact table?
  44.	How do you compute a fact table size starting with an estimate of sparsity?
  45.	What is involved with mapping sample data in data sources to data warehouse

tables?
  46.	What additional data is necessary to specify a complete mapping in the data

integration process?
  47.	Why are new design methodologies needed for data warehouse design instead

of using approaches for design of operational databases?
  48.	Briefly explain the demand-driven data warehouse design methodology.
  49.	Briefly explain the supply-driven data warehouse design methodology.
  50.	Briefly explain the hybrid data warehouse design methodology.

PROBLEMS

The problems provide practice with data cube definition and operations, schema
design patterns, resolution of summarizability problems, and CREATE DIMENSION
statements. The problems use a database for an automobile insurance provider
(Figure 13.P1) to support policy transactions (create and maintain customer policies)

InsuresParty

UsesItem

InsuredAuto
IAVIN
IALicPlateNo
IAState
IAMake
IAModel
IAYear

Policy
PolNo
PolBegDate
PolEndDate
PolIssueDate
PolPremium
PolGroupRating

PolicyItem
LineNo
PILimits
PIPremium
PIComments

Item
ItemId
ItemName
ItemMinCoverage
ItemMaxCoverage
ItemDesc

InsuredParty
IPNp
IPDrivLicNo
IPCity
IPState
IPZip
IPPhone
IPDOB
IPRiskCategory
IPSex

Contains

Agent
AgentNo
AgentName
AgentPhone
AgentRegion
AgentDept

Writes

Claimant
ClmtNo
ClmtSSN
ClmtName
ClmtCity
ClmtState
ClmtZip

Claim
ClaimNo
ClaimSubDate
ClaimDecDate
ClaimAmount
ClaimEstimate

InsuresAuto

MadeAgainst

MadeBy

AutoInvolved

DriverInvolved

FIGURE 13.P1
ERD for Auto Insurance
Policies and Claims

26008_ch13_p509-548.indd 541 3/2/18 10:36 PM

542   Part 6  Data Warehouse Processing

and claims transactions (claims made by other parties). This database design is sim-
plified to provide reasonable practice problems with the concepts in Chapter 13. The
policy transactions utilize the entity types Item, Agent, InsuredParty, Policy, Insured-
Auto, and PolicyItem, while the claims transactions use the entity types InsuredParty,
Claimant, InsuredAuto, Policy, and Claim. For each entity type, you should assume the
data types of your own choice. The cardinalities for the InsuresParty relationship indi-
cate that a policy can involve an entire family, not just individuals.
  1.	 Identify dimensions and measures in a data cube for automobile policy analysis.

Indicate the aggregation property of each measure.
  2.	 Identify the finest level grain of the fact table to support automobile policy

analysis. Justify your decision.
  3.	Consider a relationship between a dimension for insured parties and the

fact table in problem 2. Identify a summarizability problem involving this
relationship. Propose an alternative to resolve the summarizability problem.

  4.	Consider a relationship between a dimension for agents and the fact table in
problem 2. Identify a summarizability problem involving this relationship.
Propose an alternative to resolve the problem.

  5.	Consider relationships between dimension tables for items and insured autos
and the fact table in problem 2. Identify any summarizability problems in the
relationships. Propose an alternative representation for each summarizability
problem that you identified.

  6.	Design a time dimension table and one or more relationships to the fact table in
problem 2.

  7.	Design a star or snowflake schema to support the dimensions and measures
in the data cube from problem 1. Your schema should use resolutions to
summarizability problems that you proposed in earlier problems.

  8.	For each dimension table in the schema for problem 7, list the independent
and hierarchical dimensions. Analyze each hierarchical dimension for
summarizability problems. Propose alternative representations to resolve any
summarizability problems.

  9.	 Identify dimensions and measures in a data cube for claims analysis. Indicate
the aggregation property of each measure.

  10.	Identify the finest level grain of the fact table to support automobile claim
analysis. Justify your decision.

  11.	Consider a relationship between a dimension for claimants and the fact table in
problem 10. Identify any summarizability problems involving this relationship.
Propose an alternative to resolve the problem if a problem exists.

  12.	Consider a relationship between a dimension for insured autos and the fact
table in problem 10. Identify any summarizability problems involving this
relationship. Propose an alternative to resolve the problem if a problem exists.

  13.	Consider a relationship between a dimension for policies and the fact table in
problem 10. Identify any summarizability problems involving this relationship.
Propose an alternative to resolve the problem if a problem exists.

  14.	Consider a relationship between a dimension for insured party and the fact
table in problem 10. Identify any summarizability problems involving this
relationship. Propose an alternative to resolve the problem if a problem exists.

  15.	Design a time dimension table and one or more relationships to the fact table in
problem 10.

  16.	Design a star or snowflake schema to support the dimensions and measures
in the data cube for problem 9. Your schema should use resolutions to
summarizability problems that you proposed in earlier problems.

26008_ch13_p509-548.indd 542 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   543

  17.	For each dimension table in the schema for problem 16, list the independent
and hierarchical dimensions. Analyze each hierarchical dimension for
summarizability problems. Propose alternative representations to resolve any
summarizability problems.

  18.	Combine the star or snowflake schemas for policies (problem 7) and claims
(problem 16) into a constellation schema. Identify common dimension tables that
can be shared in the constellation schema.

  19.	For the InsuredPartyDim table, discuss the stability of the columns in the table.
What columns would typically change together? What columns would history
be desirable?

  20.	For the InsuredAutoDim table, discuss the stability of the columns in the table.
What columns would typically change together? What columns would history
be desirable?

  21.	Modify the InsuredPartyDim table for a history of the IPRiskCategory column.
Provide a type II representation and a type III representation with current and
previous risk values.

  22.	Modify the InsuredPartyDim table for a limited history of the IPCity, IPState,
and IPZip columns. The limited history should record the current and previous
values and change dates for the combination of columns.

  23.	Describe the data cube resulting from the operation to slice the policy data cube
by a certain agent.

  24.	Describe the data cube resulting from the operation to dice the data cube result
of the slice operation in problem 9 by insured parties having zip codes in a
specified state.

  25.	Begin with a data cube with four dimensions (InsuredParty, InsuredAuto,
Item, and Agent) and one measure (policy amount) in the cells. From this
data cube, describe the operation to generate a new data cube with three
dimensions (InsuredParty, Item, and Agent) and one measure (average auto
policy amount).

  26.	This problem involves the addition of external telematics data into the auto
insurance data warehouse design. Telematics involves advanced sensors
installed in a car or a smartphone to collect data on an individual car usage
including time, location, types of roads, and driving behavior such as speed. The
external data source is an XML file with the following structure. The XML file
only contains data for drivers insured by the auto insurance company. For this
problem, identify the dimensions and measures involved in the XML file. Think
carefully about the grain for the measures as the XML file is very large with time
intervals every 5 to 10 minutes per driving experience.
•	 Header record: VIN, license plate number, state, driver license number,

insurance policy number.
•	 Detail record (multiple records for the header record): date, start time, end

time, start GPS coordinates, end GPS coordinates, driving distance, road type,
average driving speed, and average speed limit.

  27.	Design a star or snowflake schema to support the dimensions and measures
in the data cube from problem 26. Utilize the dimensions in the schemas from
problem 18 as much as possible. You can assume that the data integration
process would add data missing from the XML file for some dimensions.

The final two problems provide practice with the Oracle CREATE
DIMENSION statement. These two problems need the SSCustomer and
SSTimeDim tables. These tables are part of the Store Sales database used in
Chapter 15. Here are the CREATE TABLE statements for these tables. Prefix of
SS in table names avoids schema name conflicts.

26008_ch13_p509-548.indd 543 3/2/18 10:36 PM

544   Part 6  Data Warehouse Processing

CREATE TABLE SSCustomer
(CustId 	 CHAR(8) NOT NULL,

 	CustName	 VARCHAR2(30) NOT NULL,
 	CustPhone	 VARCHAR2(15) NOT NULL,
	 CustStreet	 VARCHAR2(50) NOT NULL,
	 CustCity	 VARCHAR2(30) NOT NULL,
 	CustState	 VARCHAR2(20) NOT NULL,
 	CustZip	 VARCHAR2(10) NOT NULL,
	 CustNation	 VARCHAR2(20) NOT NULL,
 CONSTRAINT PKSSCustomer PRIMARY KEY (CustId));

CREATE TABLE SSTimeDim
(TimeNo 	 INTEGER NOT NULL,

 	TimeDay	 INTEGER NOT NULL,
 	TimeMonth	 INTEGER NOT NULL,
 	TimeQuarter	 INTEGER NOT NULL,
 	TimeYear	 INTEGER NOT NULL,
 	TimeDayofWeek INTEGER NOT NULL,
 	TimeFiscalYear INTEGER NOT NULL,
CONSTRAINT PKSSTimeDim PRIMARY KEY (TimeNo));

  28.	Write an Oracle CREATE DIMENSION statement for a customer dimension
consisting of the customer identifier, the city, the state, the zip, and the country.
Define two hierarchies grouping the customer identifier with the city, the state,
and the nation and the customer identifier with the zip, the state, and the nation.
You should review the material in Chapter 13.2.4 about the Oracle CREATE
DIMENSION statement.

  29.	Write an Oracle CREATE DIMENSION statement for a time dimension consisting
of the time identifier, the day, the month, the quarter, the year, the fiscal year, and
the day of the week. Define three hierarchies grouping the time identifier, the day,
the month, the quarter, and the year, the time identifier and the fiscal year, and
the time identifier and the day of the week. You should review the material in
Chapter 13.2.4 about the Oracle CREATE DIMENSION statement.

PRACTICE MINI CASE STUDY FOR SCHEMA INTEGRATION
The practice mini case study provides additional experience with the schema
integration process. You should not attempt the practice mini case study until you
understand the basic mini case study in Section 13.4.1 (with details in Appendix
13A) and its solution (Appendix 13B) in Chapter 13.

This practice mini case study contains two data sources with sample data
along with a statement of business intelligence needs. Using the data sources and
business intelligence needs, you will specify a dimensional model with proper-
ties of dimensions and measures, estimate the grain size, create a schema design
for the data warehouse that integrates the data sources, identify summarizability
problems in the design, and populate data warehouse tables from sample rows
in the data sources.

Data Sources
Fitness Unlimited is a leading provider of exercise centers with a variety of fitness
programs and membership options. Fitness Unlimited maintains a retail data-
base to track sales of services and merchandise. In the ERD for the retail database
(Figure 13.CS1), a sale contains a heading (Sale) with sales date and a collection
of merchandise recorded in the M-N relationship Contains. Service purchases are
recorded in the ServPurchase entity type with 1-M relationships from Service-
Category and Member. Typical services are lessons, premium equipment usage,

26008_ch13_p509-548.indd 544 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   545

and social events. The MemTypeOf relationship is optional for members because guest
members can use a fitness center and purchase merchandise and services on a short
term basis without having a paid membership. Tables with sample rows are shown
after Figure 13.CS1.

MmbrId
MmbrName
MmbrZip
MmbrEmail
MmbrDate

Member

MemTypeId
MemTypeName
MemTypePrice

MemberType

ServCatId
ServCatName
ServCatPrice

ServiceCategory

ServMember

MemTypeOf

MerchId
MerchName
MerchPrice
MerchType

Merchandise

SaleId
SaleDate

Sale

Contains

SoldTo

ServPurchId
ServPurchDate

ServPurchase

ServCatOf

Qty

FranchId
FranchRegion
FranchPostalCode
FranchModelType

Franchise

FranchiseOf

FIGURE 13.CS1
ERD for Retail Fitness
Database

Franchise

FranchId FranchRegion FranchPostalCode FranchModelType

F1 Northwest 98011 Full

F2 Mountain 80111 Medium

F3 Central 45236 Limited

MemberType

MemTypeId MemTypeName MemTypePrice

M1 Platinum $1,000

M2 Gold $800

M3 Value $300

ServiceCategory

ServCatId ServCatName ServCatPrice

SC1 Ball machine $15

SC2 Private lesson $75

SC3 Adult class $150

SC4 Child class $125

26008_ch13_p509-548.indd 545 3/2/18 10:36 PM

546   Part 6  Data Warehouse Processing

Merchandise

MerchId MerchName MerchPrice MerchType

MC1 Wilson balls $3 Balls

MC2 Wilson racket $200 Racket

MC3 Adidas shoes $100 Shoes

MC4 Racket stringing $40 Racket

Member

MmbrId MmbrName MmbrZip MemTypeId MmbrDate FranchId MmbrEmail

1111 Joe 98011 M1 1-Feb-2009 F1 joe@serv1.com

2222 Mary 80112 M2 1-Jan-2010 F2 mary@serv2.com

3333 Sue 45327 M3 3-Mar-2011 F3 sue@serv3.com

4444 George 45236 F3 george@serv4.com

Sale

SaleId SaleDate MmbrId

1111 10-Feb-2017 1111

2222 13-Feb-2017 2222

3333 13-Feb-2017 2222

4444 14-Feb-2017 3333

Contains

MerchId SaleId Qty

MC1 1111 2

MC2 1111 1

MC4 2222 1

MC3 3333 1

MC4 4444 1

ServicePurchase

ServPurchId ServPurchDate MmbrId ServCatId

1111 13-Feb-2017 1111 SC1

2222 14-Feb-2017 2222 SC2

4444 15-Feb-2017 4444 SC3

Franchises also sell special events to corporate customers and other organizations.
Since special event promotions and sales are not standard among franchises, spread-
sheets are typically used to track special events. The franchise sales database was
never extended to accommodate special event sales. The Special Events Worksheet
shows a typical format for tracking special event sales by a franchise. Most franchises
use a similar spreadsheet.

26008_ch13_p509-548.indd 546 3/2/18 10:36 PM

Chapter 13  Conceptual Design of Data Warehouses   547

Data Source Size Estimates
To estimate grain size, you should use these estimates about cardinalities of tables and
unique values of some columns.

•	 Franchise rows: 350
•	 Franchise postal codes: 200
•	 MemberType rows: 10
•	 Merchandise rows: 500
•	 MerchType values: 30
•	 ServCategory rows: 20
•	 Member rows: 50,000
•	 Member zip codes: 500
•	 Sale rows: 150,000 per year
•	 Contains rows: 450,000 per year
•	 ServicePurchase rows: 100,000 rows per year
•	 SpecialEvents Worksheet rows: 300 per year per franchise with 200 franchises

using this spreadsheet
•	 150 unique customers per special event worksheet

Business Intelligence Requirements
The data warehouse should support analysis of merchandise sales and service pur-
chases by franchise, merchandise or service type, and customer over time. For mer-
chandise, sales amount is computed as quantity times selling price. For services
purchases, each unit sale is recorded separately so only the service price at the time
of purchase is recorded. For customer, merchandise sales should be tracked by zip
code, membership date, and member type. For franchise, merchandise sales should be
tracked by franchise region, postal code, and model type.

The corporate sales office wants a high level of flexibility for sales analysis. For
data mining analysis, the sale office needs detail by individual customer, product or
service, franchise, and date. For typical reporting applications, the sales office needs
detail by customer location, franchise location, product or service type, and week.

Schema Integration Requirements
You should design a star schema (or variation) to support revenue analysis. You
should pay close attention to the grain of the fact table, the major part of the star
schema diagram. As part of the design, you should identify all relevant dimensions
with hierarchies specified. In your documentation, you should identify summarizabil-
ity problems in your star schema and indicate mapping from data sources into tables.

You should populate your data warehouse tables based on the data in the opera-
tional tables and spreadsheet. You do not need to insert the data into your tables.
You can just show table listings in your solution document. Your sample rows should
include all revenue events in the range February 10, 2017 to February 21, 2017.
  1.	You should identify dimensions, map dimensions to data sources, and specify

dimension hierarchies. For each dimension, you should identify its data sources

Special Events Worksheet

Corporate
Customer Id

Corporate Customer Name
And Location

Event Type
Code

Event Name Event Date Amount

CC1 First Data, Greenwood Village L-A Adult Social 13-Feb-2017 $1,000

CC2 DU Tennis, Denver L-B Pioneer Social 14-Feb-2017 $500

CC3 Creek High School, Greenwood
Village

L-C Team Practice 21-Feb-2017 $200

26008_ch13_p509-548.indd 547 3/2/18 10:36 PM

548   Part 6  Data Warehouse Processing

and attributes in each data source. For hierarchical dimensions, you should
indicate the levels from broad to narrow.

  2.	You should specify measures, related data sources, and measure aggregation
properties.

  3.	 Identify the grain in your dimensional design using the business needs as a
guideline. You should then indicate relative storage requirements for the grain
using statistics for the data sources. Using the cardinality estimates provided,
you should determine either the fact table size or sparsity and then compute the
unknown grain size variable. For example, you should compute sparsity if the
fact table size is given.

  4.	Extend your analysis to design a star schema (or variation) to support inventory
analysis. For each table, you should define the table name, primary key, and
columns. You do not need to write complete CREATE TABLE statements.

  5.	 Identify potential summarizability problems in your star schema and indicate
preferred resolutions of the summarizability problems. For incomplete
dimension-fact relationships, you should also indicate if columns in a dimension
table allow null values.

  6.	You should populate your data warehouse tables based on the data in the
sample tables and spreadsheet. You do not need to write SQL INSERT
statements or insert data into database tables. You can just show table listings in
your solution document. You should indicate mappings from data sources into
tables. For example, a mapping may involve generating new primary key values
for a data warehouse table or using a default value for a missing value.

Solution Quality
Quality is rather subjective in data warehouse designs, but some elements are less sub-
jective. You should address these quality items in the appropriate part of your solution.

•	 Schema pattern: You should use a recognized schema pattern: star, constellation,
or snowflake schema.

•	 Fact table selection: You should study fact table selection in the solution for
the practice mini case for inspiration. Typically, the fact table combines a two
level solution in a source schema into a single fact table. For example, an order
heading and order detail are usually combined into a fact table recording the
order details with dimension relationships to capture the order heading.

•	 Missing data in populated tables: You should ensure that your populated tables
include all revenue events shown in both data sources. The best check on your
schema design is to map sample rows from the data sources to the data warehouses.

•	 Simplicity: Typically, a schema design for a data warehouse simplifies the
schemas of the underlying data sources. Simplification can involve combining
some elements of data sources in decisions about dimensions and fact tables.

REFERENCES FOR FURTHER STUDY

Several references provide additional details about important parts of Chapter 13.
Kimball (1996, 2003) provides more details about historical integrity covered in Sec-
tion 13.2.3. The survey of summarizability concepts by Mazon et al. (2009) augments
Section 13.3 on summarizability problems and patterns. The survey of methodologies
for data warehouse design by Romero and Abello (2009) augments Section 13.4.2 on
design methodologies. For more details about data warehouse design methodologies,
you should consult Kimball et al. (1998) about the demand-driven approach, Moody
and Kortink (2000) about the supply-driven approach, and Bonifati et al. (2001) about
the hybrid approach.

26008_ch13_p509-548.indd 548 3/2/18 10:36 PM

549  

OVERVIEW
After acquiring background and detailed skills about
conceptual design of data warehouses through your
study of Chapter 13, you are ready to learn about data
integration, a unique and vital part of data warehouse
processing. Chapter 14 extends your design background
with concepts and detailed skills about data integration.
Together, Chapters 13 and 14 provide skills and knowl-
edge essential to careers and work assignments involv-
ing data warehouses.

Chapter 14 emphasizes concepts and practices for
data integration, fundamental to obtain business value

from a data warehouse. A data integration workflow
maps source data to populate data warehouse tables.
You will first learn management concepts about data
integration involving characteristics of change data,
workflows for refresh processes, and management of
refresh processing. After this conceptual background,
you will learn about data cleaning techniques for pars-
ing, standardizing values, and entity matching. In the
final part of the chapter, you will learn about architec-
tures and features of data integration tools, features of
commercial products for data integration, and special-
ized SQL statements for data integration tasks.

Learning Objectives
This chapter extends design skills covered in Chapter 13 with concepts
and practices about data integration. After this chapter, the student
should have acquired the following knowledge and skills:

•	 Explain the types of data sources, data quality issues, and data
cleaning tasks involved in data integration

•	 Gain insight about managing the complex processes of refreshing
and populating a data warehouse

•	 Apply regular expressions to parse text fields using simple patterns

•	 Explain techniques for correcting and standardizing values along
with the process of entity matching

•	 Describe the features of data integration tools for maintaining a data
warehouse

•	 Apply a data integration tool on a task of moderate complexity

•	 Write Oracle SQL statements for merging change data and inserting
change data into multiple fact tables

Data Integration
Concepts and
Practices

14
chapter

26008_ch14_p549-584.indd 549 3/2/18 10:51 PM

550   Part 6  Data Warehouse Processing

Data integration adds value to disparate data sources that contribute to enterprise
data warehouses. Data integration workflows seek to provide a single source of truth
for decision making. Integrating data sources involves challenges of large volumes of
data, legacy source systems, lack of standards for formats, units of measure, and integ-
rity rules, different update frequencies, missing data, and lack of common identifiers.
Data integration is a critical success factor for data warehouse projects. Many proj-
ects have failed due to unexpected difficulties in populating and maintaining a data
warehouse. Organizations must make substantial investments in effort, hardware, and
software to overcome challenges of data integration.

Data integration involves initially populating a data warehouse and periodically
refreshing a data warehouse as data sources change. Determining data to load in a
warehouse involves matching business intelligence needs to the realities of available
data. Reconciling the differences among data sources is a significant challenge espe-
cially considering that source systems typically cannot be changed. As data sources
change, a data warehouse should be refreshed in a timely manner to support business
intelligence needs. Since data sources change at different rates, the determination of
the time and content to refresh can be a significant challenge. Because of these chal-
lenges, data integration can involve significant investments in hardware, software,
and personnel to achieve a satisfactory solution.

This section presents concepts of data integration. The first part describes the kinds
of data sources available for populating a data warehouse. The second part describes
workflow specification for maintaining a data warehouse. The final part discusses
management of the process of periodic refresh of a data warehouse and initial loading
of source data.

14.1.1  Sources of Data
Accessing source data presents challenges in dealing with a variety of formats and
constraints on source systems. External source systems usually cannot be changed.
Internal source systems usually have restrictions and high costs about changes to
accommodate requirements of a data warehouse. Even if a source system can be
changed, budget constraints may allow only minor changes. Source data may be stored
in legacy format or modern format. Legacy format generally precludes retrieval using
nonprocedural languages such as SQL. Modern format means that the source data
can be accessed through a relational database or Web pages. Unless stored with for-
mal meta data, Web pages can be difficult to parse and nonstandard across websites.
Formal meta data usually involves XML data along with an XML schema to provide
interpretation of the XML data.

Change data from source systems provides the basis to update a data warehouse.
Change data comprises new source data (insertions) and modifications to existing source
data (updates and deletions). Further, change data can affect both fact and dimension
tables. The most common change data involves insertions of new facts. Insertions and
updates of dimension data are less common but are still important to capture.

Change data can be classified by source system requirements and processing level
as depicted in Figure 14.1 and summarized in Table 14-1. Source system requirements
involve modifications to source systems to acquire change data. Typical changes to
source systems are new columns such as timestamps required for queryable change
data and trigger code required for cooperative change data. Since source systems are
difficult to change, queryable and cooperative change data may not be available.

Processing level involves resource consumption and development required for
data integration procedures. Processing of logs and snapshot change data involve sub-
stantial computing resources. The amount of processing for a log varies so its process-
ing requirements may be larger than snapshot change data. If a source system does not
already generate logs, it is unlikely that log change data can be available.

14.1  DATA INTEGRATION CONCEPTS

26008_ch14_p549-584.indd 550 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   551

After understanding classification of change data, you should understand details
about each type of change data. Cooperative change data involves notification from a
source system about changes. The notification typically occurs at transaction comple-
tion time using a trigger as depicted in Figure 14.2. A trigger can input change data
immediately into a data warehouse or queue it for later input with other changes.
Because cooperative change data involves modifications to both a source system and
a data warehouse, it has traditionally been the least common format for change data.
However, as data warehouse projects mature and legacy systems are redeveloped,
cooperative change data should become more common.

Logged change data involves files that record changes or other user activity. For
example, a transaction log contains every change made by a transaction and a web log
contains page access histories (called clickstreams) by website visitors. Logged change
data usually involves no changes to a source system as logs are readily available for
most source systems.

Figure 14.3 shows an example of a web log. Substantial processing during data
integration is required for web logs to decompose text even though web logs follow
several standard formats. Since web logs record page visits, a transformation proce-
dure needs substantial processing to link related log records.

As its name implies, queryable change data comes directly from a data source
via a query as depicted in Figure 14.4. Queryable change data requires time stamp-
ing in a data source. Since data sources contain timestamps only for selected data, an
organization must augment queryable change data with other kinds of change data.

P
ro

ce
ss

in
g

Le
ve

l

Source System Requirements

Logged

Queryable

Cooperative

Snapshot

FIGURE 14.1
Classification of Change Data

TABLE 14-1
Summary of Change Data
Classification

Change Type Description Evaluation

Cooperative Source system notification using triggers Requires modifications to source systems

Logged Source system activity captured in logs Readily available but significant processing
to extract useful data

Queryable Source system queries using timestamps Requires timestamps in data sources and
non-legacy source systems

Snapshot Periodic dumps of source data
augmented with difference operations

Resource intensive for difference
operations; no source system
requirements so useful for legacy data

UPDATE …

DELETE …

INSERT …
Table

DELETE trigger

Applications

INSERT trigger

UPDATE trigger

FIGURE 14.2
Processing of Cooperative
Change Data

26008_ch14_p549-584.indd 551 3/2/18 10:51 PM

552   Part 6  Data Warehouse Processing

An organization typically uses queryable change data for fact tables containing col-
umns such as order date, shipment date, and hire date that are stored in operational
databases.

Snapshot change data involves periodic dumps of source data. To derive snap-
shot change data, Figure 14.5 shows a difference operation using the two most recent
source files to derive the result, called a delta. To generate a delta, transformation code
compares source files to identify new rows, changed rows, and deleted rows.

Snapshots have historically been the most common form of change data because
of applicability. Snapshots are the only form of change data without requirements on
a source system. Because computing a snapshot can be resource intensive, constraints
may exist about the time and frequency of retrieving a snapshot.

14.1.2  Workflow for Maintaining a Data Warehouse
Maintaining a data warehouse involves a variety of tasks that manipulate change data
from source systems. Figure 14.6 presents a generic workflow that organizes the tasks.

111.111.111.111
-
-

[08/Oct/2014:11:17:55-0400]
"GET/HTTP/1.1"
200

10801

"http://www.google.com/search?q=log+analyzer&ie=utf-8&oe=utf-
8&aq=t&rls=org.mozilla:en-US:o�cial&client=firefox-a”

"Mozilla/5.0(Windows;U;Windows NT 5.2;en-US;rv:1.8.1.7)
Gecko/20070914Firefox/2.0.0.7"

IP Address
Remote user
Authenticated user
Timestamp
Access request
Status

Bytes

Referrer URL

User agent

Web Log

FIGURE 14.3
Example of Logged Change
Data

Event table with
date columns

Recent events
table

SELECT …
FROM <EventTable>
WHERE <event-cond>

FIGURE 14.4
Processing of Queryable
Change Data

New rows
Changed rows
Deleted rows

Previous Source File

Current Source File

Delta

Di�erence

FIGURE 14.5
Processing of Snapshot
Change Data

26008_ch14_p549-584.indd 552 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   553

The preparation phase manipulates change data from individual source
systems. Extraction involves the retrieval of data from an individual source
system. Transportation involves movement of the extracted data to a stag-
ing area. Cleaning involves a variety of tasks to standardize and improve
the quality of the extracted data. Auditing involves recording results of the
cleaning process, performing completeness and reasonableness checks, and
handling exceptions.

The integration phase merges the separate, cleaned sources into one
source. Merging can involve the removal of inconsistencies among the
source data. Audit processes record results of the merging process, performs
completeness and reasonableness checks, and handles exceptions.

The update phase propagates integrated change data to various parts of
a data warehouse including fact and dimension tables, materialized views,
stored data cubes, and data marts. After propagation, notification can be
sent to user groups and administrators.

The preparation and integration phases should resolve data qual-
ity problems as summarized in Table 14-2. Data from legacy systems are
typically dirty, meaning that they may not conform to enterprise-wide data
quality standards. If directly loaded, dirty data may lead to poor decision
making. To resolve data quality problems, the auditing task should include
exception handling. Exceptions can be noted in a log file and then manually
addressed. Over time, exceptions should decrease as data quality standards
are improved on internal data sources.

In addition to exception handling, the auditing task should include com-
pleteness checks and reasonableness checks. A completeness check counts
the number of reporting units to ensure that all have reported during a given
period. A reasonableness check determines whether key facts fall in predetermined
bounds and are a realistic extrapolation of previous history. Exceptions may require
reconciliation by business analysts before propagation to a data warehouse.

The maintenance process varies among data sources. The workflow should be
customized to fit the requirements of each data source. For example, auditing may be
minimized for high-quality data sources. Data integration tools, depicted in Section
14.3, support graphical workflow modeling to allow customization of workflows by
organizations.

In addition to periodic maintenance, data integration involves the initial popula-
tion of a data warehouse as depicted in Figure 14.7. The initial loading process is more
open ended than refresh processing. Time requirements for discovering and resolving
data quality problems can be difficult to estimate. Profiling tools can facilitate dis-
covery of data quality problems. Data quality problems are usually resolved through
data integration procedures. If owners of source data cooperate, resolution can involve

Preparation
phase

Integration
phase

Update
phase

Propagation

Notification

Extraction

Cleaning

Auditing

Transportation

Merging

Auditing

FIGURE 14.6
Generic Workflow for Data Warehouse
Maintenance

Multiple identifiers: some data sources may use different primary keys for the same entity such as different
customer numbers

Multiple names: the same field may be represented using different field names

Different units: measures and dimensions may have different units and granularities.

Missing values: data may not exist in some databases; to compensate for missing values, different default
values may be used across data sources

Orphaned transactions: some transactions may be missing important parts such as an order without a
customer

Non-standard text data: some data sources may combine multiple columns into a single text column such
as addresses containing multiple components. In addition, format of address components can vary across
data sources.

Conflicting data: some data sources may have conflicting data such as different customer addresses

Different update times: some data sources may perform updates at different intervals

TABLE 14-2
Typical Data Quality
Problems

26008_ch14_p549-584.indd 553 3/2/18 10:51 PM

554   Part 6  Data Warehouse Processing

changes to source systems. The initial population process should be performed for
each major extension of a data warehouse.

14.1.3  Managing the Refresh Process
Refreshing a data warehouse is a complex process that involves management of time
differences between updating of data sources and updating of the related data ware-
house objects (tables, materialized views, data cubes, data marts). In Figure 14.8,
valid time lag is the difference between the occurrence of an event in the real world
(valid time) and the storage of the event in an operational database (transaction time).
Load time lag is the difference between transaction time and the storage of an event
in a data warehouse (load time). For internal data sources, there may be some control
over valid time lag. For external data sources, an organization usually has no control
over valid time lag. Thus, a data warehouse administrator has most control over load
time lag.

The framework in Figure 14.8 implies that data sources can change independently
leading to different change rates for fact and dimension tables. Fact tables gener-
ally record completed events such as orders, shipments, and purchases with links to
related dimensions. For example, inserting a row in a sales fact table requires foreign
keys that reference dimension tables for customers, stores, time, and items. However,
updates and insertions to related dimension tables may occur at different times than
fact events. For example, a customer may move or an item may change in price at dif-
ferent times than orders, shipments, or inventory purchases. Due to multiple change
rates, a data warehouse administrator should manage load time lag separately for
dimension tables and fact tables.

Managing the refresh process involves careful balancing of factors influencing the
primary objective as depicted in Figure 14.9. The primary objective in managing the
refresh process is to determine the refresh frequency and detailed refresh schedules
for each data source. The optimal refresh frequency maximizes the net refresh benefit

FIGURE 14.7
Overview of the Loading
Process for a Data
Warehouse

Data
quality
problems

Discover Resolve

Accounting

Unknown
processes

External
data sources

Internal
data sources

Data
warehouseData

integration
tools

Valid time lag

Load time lag

Fact and
dimension
changes

Primarily
dimension
changes

Staging
Area

FIGURE 14.8
Overview of the Data
Warehouse Refresh Process

26008_ch14_p549-584.indd 554 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   555

while satisfying important constraints. The net refresh benefit is the value
of data timeliness minus the cost of refresh.

The value of data timeliness depends on the sensitivity of decision
making to the currency of data. Some decisions are very time sensitive
such as inventory decisions for the product mix in stores. Other decisions
are not so time sensitive such as store location decisions.

The cost to refresh a data warehouse includes both computing and
human resources. Computing resources are necessary for all tasks in a
maintenance workflow. Human resources may be necessary in the audit-
ing tasks during the preparation and integration phases. The level of data
quality in source data also affects the level of human resources required.
The development effort to use data integration tools and write custom soft-
ware is not part of refresh cost unless development cost occurs with each
refresh.

An important distinction involves the fixed cost and the variable cost of refresh.
Large fixed cost encourages less frequent refresh because fixed cost occurs with each
refresh. Fixed cost may include startup and shutdown effort as well as fixed resource
rental.

Along with balancing the value of timeliness against the cost of refresh, a data
warehouse administrator must satisfy constraints on the refresh process as summa-
rized in Table 14-3. Constraints on either a data warehouse or a source system may
restrict frequent refresh. Source access constraints can be due to legacy technology with
restricted scalability for internal data sources or coordination problems for external
data sources. Integration constraints often involve identification of common entities
such as customers and transactions across data sources. Completeness/consistency
constraints can involve maintenance of the same time period in change data or inclu-
sion of change data from each data source for completeness. Data warehouse availabil-
ity often involves conflicts between online availability and warehouse loading.

Manage
refresh

frequency
and

schedules

Timeliness
importance

Refresh
costs

Constraints

FIGURE 14.9
Factors Influencing Refresh Process
Objective

TABLE 14-3
Summary of Refresh
Constraints

Constraint Type Description

Source access Restrictions on the time and frequency of extracting change data

Integration Restrictions that require concurrent reconciliation of change data

Completeness/consistency Restrictions that require loading of change data in the same refresh period

Availability Load scheduling restrictions due to resource issues including storage
capacity, online availability, and server usage

14.2  DATA CLEANING TECHNIQUES
Data cleaning is an important part of a data integration workflow to resolve the data
quality problems summarized in Table 14-2. This section explains common data clean-
ing techniques and demonstrates their usage to resolve data quality problems. Data
integration tools, presented in the next section, support nonprocedural specification
for many data cleaning techniques. This section covers parsing of multipurpose text
fields, correcting and standardizing values for missing and inconsistent values, and
matching entities among data sources.

14.2.1  String Parsing with Regular Expressions
Parsing decomposes complex objects into their constituent parts. For data integration,
parsing is important for decomposing multipurpose text data into individual fields.
Parsing of physical addresses, phone numbers, and email addresses are typical trans-
formations for marketing data warehouses. To facilitate target marketing analysis,
these composite fields should be decomposed into standard parts. For example, data

26008_ch14_p549-584.indd 555 3/2/18 10:51 PM

556   Part 6  Data Warehouse Processing

sources that contain addresses in a single field typically require parsing into
standard fields such as the street number, street, city, state, country, and postal
code. Figure 14.10 demonstrates parsing of a customer’s name and address into
constituent fields.

Regular expressions are pattern specifications that are important ele-
ments of parsing in data integration tasks. Chapter 4 provided a brief introduc-
tion to inexact matching in SQL SELECT statements although this subsection
provides more details because of the importance of regular expressions in data

integration. As depicted in Figure 14.11, a regular expression (or regex for short)
contains literals, metacharacters, and escape characters together that define a search
pattern. A literal is a character to match exactly. A metacharacter is one or more
special characters having a unique meaning such as the character ^ (circumflex or
caret). An escape sequence removes the special meaning of a metacharacter so that it
is matched as a literal. In a regular expression an escape sequence involves placing
the metacharacter \ (backslash) in front of a metacharacter.

To perform pattern matching, a user provides a regular expression known as the
search expression and a target string as depicted in Figure 14.12. The search expression
specifies the pattern to locate in the target string. In this example, the search expres-
sion contains 7 meta characters (^ (caret or circumflex), [(left square bracket),] (right
square bracket), +, -, \ (backslash), and $), 6 literal characters (a, z, c, o, m, .), and one
escape sequence (\.) to turn off the special meaning of the period symbol. The match
result shows the part of the target string matching the search expression.

Pattern matching with literals is simple although not important by itself.
Table 14-4 contains simple regular expressions using only literals. Note that literals
match the first appearance of the target string. The quotation marks are not part of the
regular expressions or target strings. A regular expression engine compares a regular
expression to a pattern, providing a true/false response along with an optional indica-
tion of the first matching character.

Regular Expression
a pattern specification that
is important for parsing of
multipurpose text fields
in data integration tasks.
A regular expression (or
regex for short) contains
literals (exactly matching
characters), metacharacters
(special meaning charac-
ters), and escape characters
(remove special meaning of
metacharacters).

FIGURE 14.10
Parsing Name and Address
into Constituent Fields

Input data from source file
John Michael Sorenstein, Senior
DBA
First Bank Heritage
12500 Second Street
Suite 250
Denver, CO 80202-3357

Parsed data in target file
First Name: John
Middle Name: Michael
Last Name: Sorenstein,
Title: Senior DBA
Firm: First Bank Heritage
Street Number: 12500
Street: Second Street
Unit: Suite 250
City: Denver
State: CO
Postal Code: 80202-3357

FIGURE 14.11
Regular Expression Components

Regular Expression

Literal Meta
character

Escape
sequence

FIGURE 14.12
Pattern Matching Example Search Expression Target String Match Result

^[a-z]+\.com$ abc.com abc.com

Meta characters Literals Escacpe sequence

^ c \.

[o

] m

+ a

- z

\ .

$

26008_ch14_p549-584.indd 556 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   557

Metacharacters, characters with special meaning within a search expression, pro-
vide the power of regular expressions. To help you understand prominent metacharac-
ters, Figure 14.13 provides a classification and Table 14-5 provides brief explanations.
The iteration or quantifier metacharacters, ?, *, +, and {}, support matches on consecu-
tive characters. The range metacharacters, [], match a single character from a range of
specified characters. The position metacharacters or anchors, ^, $, and . (period char-
acter), support matching in specified places in a target string. The alteration metacha-
racter, |, supports optional parts of search patterns. Table 14-6 provides examples for
each metacharacter along with comments about the examples.

The backslash (\) escape character removes the meaning of a metacharacter allow-
ing a metacharacter to be used as a literal. For example, the regular expression “abc*”
matches the search string “ddd abc*” but not “fabc”. The backslash only has the escape
meaning before a metacharacter. A backslash also combines with certain literal char-
acters to designate character classes, predefined sets of characters useful in patterns.
For example “\d” refers to the digits 0 to 9 and “\w” refers to word characters (letters,
digits, and underscore).

For complex matching requirements, a regular expression can match different
subparts or groups in a target string. Groups facilitate parsing because parts of a string
can be matched and used for later processing. For example, a date string can be parsed
into year, month, and day components using groups. The parentheses metacharacters
() provide matching on groups in a search string. Matching with groups provides a list

TABLE 14-4
Regular Expression Examples
with Literals Only

Search Expression Target String Evaluation

“a” “John Michael” True; matches the 9th position

“a” “Senior DBA” False; match is case sensitive

“Co” “Denver, CO” False; “o” not matched because of case sensitivity

“Suite 2” “Suite 250” True; match begins in 1st position; spaces are literals

FIGURE 14.13
Classification of Prominent
Metacharacters

Prominent metacharacters

Iteration or
quantifier

? * + {n},
{n,m}

Position

. ^ $

Other

[],
[^] \ |

TABLE 14-5
Meaning of Important
Metacharacters

Metacharacter Type Meaning

? Iteration Matches preceding character 0 or 1 time

* Iteration Matches preceding character 0 or more times

+ Iteration Matches preceding character 1 or more times

{n} Iteration Matches preceding character exactly n times

{n,m} Iteration Matches preceding character at least n times and at most m times

[] Range Matches enclosed character one time

^ Position Matches the following search string at the beginning of the search string;
using ^ only has meaning as the first character in a regular expression;
^ used inside [] has a different meaning

^ Range Negation of search pattern if ^ is inside []

$ Position Matches the preceding search pattern at the end of the search string;
$ only has meaning as the last character in a regular expression.

. Position Matches any character except a newline character at the specified
position only

| Alteration Matches either pattern to the left or right of the | character.

26008_ch14_p549-584.indd 557 3/2/18 10:51 PM

558   Part 6  Data Warehouse Processing

TABLE 14-6
Regular Expression Examples
with Metacharacters

Search Expression Target Strings Evaluation

“colou?r” “color”, “colour” Matches both search strings; Matches preceding
character 0 times in first search string

“tre*” “tree”, “tread”, “trough” Matches all three search strings; Matches
preceding character 0 times in third search
string

“tre+” “tree”, “tread”, “trough” Does not match the third search string; The +
metacharacter requires matching on at least
one character.

“[abcd]” “dog”, “fond” , “pen” Matches first two strings but not the third string;
Matches strings that contain any enclosed
character

“[0-9]{3}-[0-9]{4}” “123-4567”, “1234-567” Matches first string but not the second string;
Regular expression uses iteration and range
metacharacters.

“ba{2,3}b” “baab”, “baaab”, “bab”, “baaaab” Matches first two strings but not the last two
strings; four consecutive “a” characters do not
match in the last search string.

“^win” “erwin”, “window” Does not match the first search string because
“win” does not appear in the beginning of the
search string

“win$” “erwin”, “window” Does not match the second search string
because “win” does not appear at the end of
the search string

“[^0-9]+” “123”, “abc”, “a456” Matches the second and third search strings;
^ negates the string pattern inside the []
matching any non-digit.

“abc.e*” “fabc”, “fabcd”, “fabcee” Matches the second and third search strings;
Regular expression requires a character
following “abc”.

“dog|cat|frog” “a dog”, “cat friend”, “frogman” Matches all three search strings because of the
alteration metacharacters in the pattern

of matched groups. For example, the search expression “a(b*)c” matched against the
target string “abbc” produces two matched groups: (Group 0) “abbc” matching the
entire regular expression and (Group 1) “bb” matching the regular expression group
“(b*)”. As additional features, a pattern can have more than one group and groups can
be nested. For example, the search expression “(d(e*))*(c+)” contains group 1 with the
pattern “(d(e*))”, group 2 with the pattern “(e*)”, and group 3 with the pattern “(c+)”.
In addition, the entire pattern is group 0.

This introduction only scratches the surface of the power and complexity of regu-
lar expressions. There are other important aspects such as conditional matching and
additional grouping features. Data integration tools typically support regular expres-
sions along with a replacement function to substitute specified contents for matching
parts of a target string. Libraries of regular expressions support parsing of common
fields such as names, addresses, phone numbers, and email addresses. Developing
high quality regular expressions is tedious and difficult due to complexity and excep-
tions in text data such as addresses.

Regular expressions support context-fee parsing when the meaning of a symbol
does not depend on its relationship to other symbols in text. Natural language process-
ing provides parsing and understanding natural language text that is context-sensitive.
Sentiment analysis has emerged as an important area of natural language processing
for business intelligence. Sentiment analysis involves identification and categorization
of opinions in text such as recommendations posted in product reviews. Due to vary-
ing business intelligence requirements, sentiment analysis is typically performed in

26008_ch14_p549-584.indd 558 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   559

text mining, a business intelligence application using a data warehouse rather than a
part of data integration.

14.2.2  Correcting and Standardizing Values
Correcting values involves resolution of missing and conflicting values. Reasonable
resolution requires understanding the reason for missing values. Missing values in
summarizability problems (incomplete drill-downs, incomplete roll-ups, and incom-
plete dimension-fact relationships) can usually be resolved through default values as
indicated in Chapter 13. Missing values in these cases usually involve unallocated
relationships. For example, a department is not allocated to a division, a division lacks
departments, or a sale involves an anonymous customer. In these situations, default
values for unattached entities are appropriate. Missing values inapplicable to an entity
can often be resolved through default values. For example, unmarried students and
customers will not have values for attributes related to spouses. The default value
could be the same value as the corresponding value for the entity. For example, stu-
dent age and spouse age would be set to the same value for unmarried students.

Missing values that are unknown rather than inapplicable are more difficult to
resolve. For example, missing dates of birth, addresses (or parts of an address), and
grade point averages are more difficult to resolve. One approach to unknown values
involves typical values. For unknown numeric values, a median or average value can
be used. For unknown non numeric values, the mode (most frequent value) can be
used. Typical values can be refined through conditional probability calculations. The
typical value would the one most likely given other attribute values of the entity. More
complex approaches will predict missing values using data mining algorithms. These
approaches extend the conditional probability approach by additional decision criteria
using a large sample.

Detailed investigations possibly conducted using search services can resolve some
cases of unknown values and conflicting values. Figure 14.14 demonstrates the result
of an investigation to determine the middle name and street address in an employee
record. A map and knowledge about the location of a building was used to obtain
the street address. Other employee files were used for the missing middle name. For
conflicting values, the more recent value is preferred although a data source may lack
timestamps to determine the update time. Without a timestamp, the more credible
source may be preferred.

Standardization involves business rules to transform values into preferred repre-
sentations. Both standard and custom business rules can be developed. Standardiza-
tion is typically applied to units of measure and abbreviations. To augment searching,
business rules can provide alternative values in the results of data warehouse queries.
Data standardization services can be purchased for names, addresses, and product
details although customization may be necessary.

The approaches described in this subsection are reactive, attempting to resolve
problems occurring in existing data sources. Proactive approaches can be more cost
effective if changes in data collection procedures can be made in different parts of

Input data from source file
First Name: Mary
Last Name: Jones
Title: Financial Analyst II
Address:First National Bank Building
Unit: Suite 400
City: Denver
State: CO
Postal Code: 80217-4556

Corrected data in target file
First Name: Mary
Middle Name: Elizabeth
Last Name: Jones,
Title: Financial Analyst II
Firm: Security Unlimited
Street Number: 100
Street: First Street
Unit: Suite 400
City: Denver
State: CO
Postal Code: 80217-4556

FIGURE 14.14
Completed Missing Values
through an Investigation

26008_ch14_p549-584.indd 559 3/2/18 10:51 PM

560   Part 6  Data Warehouse Processing

an organization. Standards can be facilitated by XML schemas with rules about data
interchange. It may even be possible to apply standards to external data sources if
external users derive benefits from a data warehouse.

14.2.3  Entity Matching
Entity matching refers to identification of duplicate records when no common, reliable
identifier exists. The classic application involves identification of duplicate customers
in lists from different firms. Because a common identifier does not exist, duplicates
must be identified from other common attributes such as names, address components,
phone numbers, and ages. Because these common attributes come from different data
sources, inconsistency and non standard representations may exist complicating the
matching process.

Despite the difficulty of the entity matching problem, it is important in many
applications. Marketing is the most prominent area as firms are often interested in
expanding their customer bases. Merging of firms typically triggers a major customer
matching effort. Law enforcement agencies need to link crimes to suspects and com-
bine aliases into one suspect. Fraud detection must resolve individuals who claim
benefits under different identifiers when the individuals are the same person. For
example, the same person may fraudulently file multiple tax returns to receive tax
credits. Other applications involve insurance industry needs to link crash and injury
reports and gene identification in lab and research reports.

Entity Matching Example  The simple example in Table 14-7 depicts difficulties of
entity matching. The data sources do not have a common identifier to reliably match
so non unique fields must be used.

Data source 1 has the maiden (pre marriage) name and work address. Data source
2 has the marital name and home address. The middle name, job title, and firm also
have different values. The state and country fields have different values due to usage
of abbreviations and non-abbreviations. Experience indicates these records are likely
a match because of proximity of Bothell and Redmond in Washington state, matching
first name with same uncommon spelling, sharing part of the last name, and matching
employment after standardizing the firm and job titles. The last name difference can
be explained by combining last names after marriage.

An entity matching algorithm without this domain expertise, may indicate an
inconclusive match rather than a likely match. A costly investigation by a domain
expert may be necessary to resolve this inconclusive match.

The example in Table 14-7 shows common fields for two data sources. Matching
is more complex if data sources contain unstructured data such as text, images, and
events rather than common, structured fields.

TABLE 14-7
Entity Matching Example

Fields

Data Source

Data Source 1 Data Source 2

First Name Aimee Aimee

Middle Name Christina C.

Last Name Parker Parker-Lewis

Job Title Product Manager Prod. Mgr.

Firm Microsoft Corporation Microsoft

Street 15580 NE 31st Street 16517 78th Place NE

City Redmond Bothell

State WA Washington

Postal Code 98052 98020

Country USA United States

26008_ch14_p549-584.indd 560 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   561

Entity Matching Outcomes  To obtain a more precise understanding of entity
matching, the outcomes of comparing two cases should be understood. The outcomes
of entity identification are similar to standard classification problems. The rows in the
Table 14-8 represent predictions and the columns represent actual results of matching
two entities for duplication. A true match involves a predicted match and an actual
match allowing the two records to be combined correctly. A false match involves
a predicted match but an actual non match resulting in two records combined that
should have remained separate. A false non match involves a prediction of non match
but an actual match resulting in two records remaining separate that should be com-
bined. A true non match involves a prediction of non match and actual non match
resulting in two separate records remaining separate. The possible match situations
involve predictions with too much uncertainty. Investigation is required to resolve
cases with high uncertainty in match prediction.

In an economic sense, entity matching procedures should balance the benefits of
consolidated entity lists (true matches and true non matches) against the costs of incor-
rect actions (false matches and false non matches) plus investigation costs. The costs of
false matches are typically the largest as a false match eliminates a potential customer.
Determining uncertainty levels leading to investigations is also important if investiga-
tion cost is substantial. Investigation costs may be labor intensive, likely more than the
cost of false non matches.

Entity Matching Approaches  Many approaches to entity identification have been
developed but no dominant approach has emerged. Data mining tools typically
include methods for entity identification. In addition, commercial services with cus-
tomization to individual data source requirements can match entities but usually with
relatively high cost. Before deciding on a solution, an organization should investigate
data quality levels in data sources to consolidate. To improve entity identification
results, investment to improve consistency and incompleteness in underlying data
sources is usually worthwhile.

Entity matching algorithms use quasi identifiers to compensate for missing
common identifiers. A quasi identifier is a collection of columns almost unique in
combination. In a study published in 2000, Sweeney demonstrated that 87% of the
US population can be identified by a combination of gender, birth date, and postal
code. Other examples of quasi identifiers are name components, location components,
profession, and race. Before an entity matching algorithm can be applied, common
quasi identifiers should be determined. Poor data quality such as missing values and
unknown update times complicate choices for quasi identifiers.

For quasi identifiers with a text data type, entity matching algorithms typically
use distance measures for text comparisons. Often, text fields in a quasi identifier will
not match exactly so similarity assessment must be performed. Three common mea-
sures of text similarity are edit distance, N-gram distance, and phonetic distance. Edit
distance is the number of deletions, insertions, or substitutions required to transform
a source string into a target string. N-gram distance breaks text into subsequences of
length n and then measures intersections among the n-grams. Phonetic distance codes
words into standard consonant sounds. Phonetic distance has many applications in
law enforcement to account for different name spellings. Data integration tools typi-
cally contain functions for each distance measure.

Entity Matching
identification of duplicate
records when no common,
reliable identifier exists.
Because a common identifier
does not exist, duplicates
must be identified from other
common attributes such
as names, address compo-
nents, phone numbers, and
ages. The result of matching
two records may be a true
match, false match, false non
match, true non match, or
additional investigation.

Quasi Identifier
a combination of columns
that is almost unique for an
entity. Entity matching algo-
rithms use quasi identifiers
to compensate for missing
common identifiers.

TABLE 14-8
Entity Matching OutcomesActual

Predicted Match Non Match

Match True match False match

Possible Match Investigation Investigation

Non Match False non match True non match

26008_ch14_p549-584.indd 561 3/2/18 10:51 PM

562   Part 6  Data Warehouse Processing

To depict edit distance, Figure 14.15 demonstrates a simple example. In this exam-
ple, the edit distance to transform “Saturday” into “Sunday” is 3 operations. This
example shows two sequences of operations. The first sequence involves two dele-
tions (“a” and “t”) are followed by substitution of “n” for “r”. The second sequence
involves two substitutions (“u” for “a” followed by “n” for “t”) and two deletions (“u”
and “r”). The edit distance equals 3 as the first alternative contains fewer operations
than the second alternative.

The example in Figure 14.15 shows only two sequences of operations so finding
the minimal number of operations is easy. For more complex text values, a large num-
ber of sequences must be evaluated to find the minimal solution.

Customer data integration is a generalization of entity matching for market-
ing data warehouses. Customer data integration promotes the sharing of customer
data between both front-office and back-office processes as well as with business-to-
consumer and business-to-business web-enabled systems. Customer data integration
provides an enterprise customer hub that serves as a central repository of customer
information reconciled from multiple data sources, both internal and external. The
customer data integration market is comprised of process and technology solutions for
recognizing a customer at any business point while aggregating and delivering timely
and accurate data about customers.

Alternative 1 with 3 operations

1. Sturday (delete “a”)

2. Surday (delete “t”)

3. Sunday (substitute “n” for “r”)

Alternative 2 with 4 operations

1. Suturday (substitute “u” for “a”)

2. Sunurday (substitute “n” for “t”)

3. Sunrday (delete “u”)

4. Sunday (delete “r”)

FIGURE 14.15
Edit Distance Example for
“Saturday” to “Sunday”

14.3  DATA INTEGRATION TOOLS
To manage complexity in data integration processes to populate and refresh a data
warehouse, software products for data integration have been developed. In earlier
years of data warehouse development, data integration involved tedious coding for
data cleaning tasks and data source connectivity. Many project failures partly resulted
from unexpected difficulties during the labor intensive process to develop data inte-
gration solutions. In addition, organizations experienced difficulty meeting perfor-
mance requirements because of the resource intensive nature of refresh processing.

This section provides broad coverage of data integration tools linked with prac-
tice exercises on the textbook’s website for developing skills on a particular tool. This
section begins with a broad coverage of common features and architectures in data
integration tools. To provide more detail about features, the next three sections pres-
ent major data integration tools, Talend Open Studio, Pentaho Data Integration, and
the Oracle Data Integrator. The final section explains SQL statements applicable to
selected data integration tasks.

14.3.1  Architectures and Features of Data Integration Tools
Software vendors realized the potential to improve software development productiv-
ity and refresh performance. Data integration software have evolved from indepen-
dent tools to integrated development environments supporting a full range of data
integration tasks, graphical and non-procedural specification, and code generation
to minimize custom coding. Improved performance is a more recent feature of data

Data Integration Tools
software tools for extraction,
transformation, and loading
of change data from data
sources to a data ware-
house. Enterprise tools pro-
vide integrated development
environments supporting a
full range of data integration
tasks.

26008_ch14_p549-584.indd 562 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   563

integration tools. Many data integration tools now provide features such as scalable
parallel processing to help organizations meet demanding performance requirements
of refresh processing.

Marketplace and Architectures  The vibrant marketplace for data integration
products and services contains third party vendors and DBMS vendors offering both
proprietary and open source products along with a wide range of services. Third
party vendors emphasize support for a variety of DBMS products. DBMS vendors
leverage relational database support for data warehouse implementation. At the end
of 2016, a Gartner report estimated software revenue from data integration tools at
$2.7 billion with annual growth rate of 6.3 percent to grow to $4 billion in 2021. In the
Gartner market summary for 2017, Informatica has maintained market leadership for
more than a decade. As depicted in Figure 14.16, the Gartner market summary classi-
fies firms by vision and execution. Vision involves innovation level, geographic areas,
financial performance, and platform support. Execution involves market share, accep-
tance of new technologies, and credibility. Talend is the only firm with a base open
source product and enterprise subscription service in the top quadrant. The overall
marketplace is fluid with acquisitions and new product developments likely having
strong influence on future market structure.

Two major architectures dominate enterprise data integration tools. The Extrac-
tion, Transformation, and Loading (ETL) architecture performs transformation before
loading as shown in Figure 14.17a. Transformations and data quality checks are per-
formed by a dedicated ETL engine before loading transformed data into target data
warehouse tables. The Extraction, Loading, and Transformation (ELT) architecture
performs data transformations and data quality checks after loading as depicted in
Figure 14.17b. The ELT architecture relies on a relational DBMS to generate SQL state-
ments and procedures and move data between tables.

ETL architecture supporters emphasize DBMS independence of ETL engines,
while ELT architecture supporters emphasize superior optimization technology in
relational DBMS engines. ETL architectures can usually support more complex opera-
tions in a single transformation than ELT architectures, but ELT architecture may use
less network bandwidth. Some data integration tools support both architectures so
the distinction between the architectures may blur somewhat in the future. In addi-
tion, a combination of ETL and ELT processing may provide better performance for
enterprise data warehouses so the demand for both architectures should grow without
either architecture dominating.

Features  Data integration tools provide essential and secondary features as depict-
ed in Figure 14.18 and summarized in Table 14-8. Integrated development envi-
ronments (IDEs) support complex software projects with a source code editor, visual

Integrated Development
Environment
an essential feature of a data
integration tool. Integrated
development environments
(IDEs) support complex soft-
ware projects with a source
code editor, visual specifica-
tion tools, debugger, and
code generator packaged in
a convenient graphical inter-
face. Since data integration
involves complex software
development, IDEs have
become an essential feature
for data integration tools.

1 Adapted from Beyer, M., Thoo, E., Zaidi, E, and Greenwald, R. “Gartner Magic Quadrant for Data Integra-
tion Tools,” Gartner, August 2017.

Ex
ec

ut
io

n

Vision

Low vision,
high execution

High vision,
low execution

High vision,
high execution

Low vision,
low execution

Informatica,
IBM, SAP,
Talend,

Oracle, SAS

Information Builders,
Cisco, Denodo

Microsoft

Adeptia Attunity

Syncsort,
Pentaho,

Actian

FIGURE 14.16
Summary of Gartner’s 2017
Market for Data Integration
Tools1

26008_ch14_p549-584.indd 563 3/2/18 10:51 PM

564   Part 6  Data Warehouse Processing

specification tools, debugger, and code generator packaged in a convenient graphical
interface. Since data integration involves complex software development, IDEs have
become essential for data integration tools. Most data integration tools use rule and
graphical specifications rather than procedural coding to indicate workflow and trans-
formations. Some tools can generate code that can be customized for more flexibility.
Data source connectivity supports numerous types of data sources including files,
databases, XML, and email. A repository stores workflow designs, transformations,
data source connections, and other aspects of data integration tasks.

Secondary features are provided by most products, but sometimes require an
extended product with an additional license. Job management involves monitoring
and scheduling of workflows for execution of data integration workflows. Schedul-
ing typically handles base schedules, repetition, conditional execution, and stepping
through a workflow to identify problems. Monitoring provides logging of events, per-
formance alerts, and reports.

Transform
(ETL Engine)

Data
Source

Data
Source

Data
Source

Extract Load DW Tables

Transform
(Relational

DBMS)

Data
Source

Data
Source

Data
Source

Extract Load DW Tables

a) ETL Architecture

b) ELT Architecture

FIGURE 14.17
ETL versus ELT Architectures
for Data Integration

Essential

Integrated
development
environment

Workflow and
transformation
specifications

Data source
connectivity

Repository

Secondary

Job
management

Change data
capture

Data profiling

FIGURE 14.18
Essential and Secondary
Features of Data Integration
Tools

TABLE 14-8
Description of Typical
Features of Enterprise Data
Integration Tools

Feature Description

Workflow specification Graphical specification of workflow designs and executions

Transformation specification Non procedural specification of data transformations for data types,
calculations, lookups, aggregations, and string manipulations

Job management Graphical display of workflow progress; Tools for optimized scheduling of
jobs using parallel processing

Data profiling Non procedural specification to understand data characteristics and data
quality levels

Change data capture Synchronous (via triggers) and asynchronous capture of source data

Integrated
development environment

Graphical development environment for all data integration functions along
with team support and version control

Repository Database for all data integration specifications, jobs, users, and data capture
results

Database/file connectivity Connection to a large collection of databases and file types

26008_ch14_p549-584.indd 564 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   565

Data profiling helps a data warehouse administrator and data owners understand
and improve data quality in data sources. A data profiling tool can reduce unexpected
delays and surprises in populating and refreshing a data warehouse. The Microsoft
SQL Server data profiling tool provides a number of functions to understand data
quality.

•	 Descriptive statistics about the distribution of values in a column
•	 Null value ratio
•	 Uniqueness showing the number of distinct values for a column and

combinations of columns
•	 Column relationships showing functional dependency coverage and inclusion

coverage for foreign keys

Change data capture typically uses a publish and subscribe model to control change
data availability and notify subscribers about change data availability. Figure 14.19
shows a publisher, the data owner, providing authorization to extract source data.
Triggers can capture change data to change tables or logs. A log extraction process
transforms log data and inserts it into change tables. A subscriber uses published
change data in a data warehouse for decision making.

The following subsections provide more detail about essential features in Talend
Open Studio, Pentaho Data Integration, and Oracle Data Integrator. Talend and Pen-
taho offer open source base products and extended products with a subscription
service. The Oracle Data Integrator supports the ELT architecture, while Talend and
Pentaho primarily support the ETL architecture.

14.3.2  Talend Open Studio
Talend provides a base open source product along with subscription services. The
community edition uses a standard open source license. Talend provides subscription
services for enterprise editions with extended product features and technical support.
Talend offers product extensions for big data with parallel and real-time processing
options, data quality with a library of data quality tests, and master data management
with data profiling. The Talend Open Studio primarily supports the ETL architecture
although it provides a component for the ELT architecture.

Talend Open Studio for Data Integration supports graphical job design, a palette
of data transformation components, a metadata repository, job monitoring, and data-
base connectivity. The job design component provides graphical specification
to define and connect transformation components. The job execution com-
ponent makes connections to data sources (databases, files, and XML data),
executes data transformations, and graphically displays execution results. The
repository component allows retrievals of job designs, source schemas, trans-
formation components, and job executions.

Talend provides a convenient IDE for job design and execution as depicted
in Figure 14.20. The repository pane contains components of a job design as
well as metadata about data source schemas, code, SQL templates, and docu-
mentation. The design pane contains the outline of job components and a code
viewer for components with custom code. The component palette contains a
list of folders containing components. An analyst can drag a component from
an open folder into the job design canvas. After placing components in the
Canvas, an analyst connects them with data flows. The job pane contains job
properties and execution details. The Canvas shows a job design or execution.
In this snapshot, the Canvas contains a job design for an interval match with
four components and three data flows. During job execution, the IDE annotates
each part of a job design in the Canvas with execution details such as run times
and number of objects read or written.

Table 14-9 shows icons for selected components of selected categories of
Talend components. Each icon contains a short text description to clarify the

Source
Tables

Logs

Change
Tables

Log
extraction
processes

Triggers

Publishing
Processes

Subscriber

Publisher

FIGURE 14.19
Overview of Change Data Capture

26008_ch14_p549-584.indd 565 3/2/18 10:51 PM

566   Part 6  Data Warehouse Processing

meaning of the component. Each component has an associated property window for
specifying its property values after it is placed on the Canvas.

To clarify job design features and components, an example job design is presented.
A Talend job design involves a number of components connected to process work.
In Figure 14.21, the Excel data source (SSExcelSource) contains rows to be loaded into
the SSSales table, the fact table of the Store Sales data warehouse. The first component
in the flow is the Excel file, a tFileInputExcel component. The file input is processed
by the tSchemaComplianceCheck component, a data quality component. Null value
and data type checks are performed in the tSchemaComplianceCheck component. The
output of the tSchemaComplianceCheck component is further processed by the tMap
component. The tMap component performs joins on four dimension tables (SSCus-
tomer, SSStore, SSTimeDim, and SSItem) to ensure valid foreign keys. The tMap compo-
nent uses four tOracleInput components to perform the joins. The output of the tMap
processing is loaded into the SSSales table, a tOracleOutput component. A commercial
job flow would also have outputs for rejected records. The job in Figure 14.21 only has
outputs for accepted records. The tSchemaComplianceCheck and tMap components
would both be connected to an additional output for rejected records.

Component details are specified in a non-procedural manner using property
windows and graphical displays. For example, the tMap component uses a graphical

Repository
pane

Canvas with job design

Component
palette

Job
pane

Design
pane

FIGURE 14.20
Integrated Development
Environment for Talend
Open Studio

TABLE 14-9
Prominent Component
Categories in Talend Open
Studio

26008_ch14_p549-584.indd 566 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   567

display to support join specification. In Figure 14.22, the fields in the Excel data source
are mapped to columns in the SSTimeDim Oracle table. The columns in the top part
(row1) of Figure 14.22 are from the input file. The columns in the bottom part (row2)
of the window are the SSTimeDim table. A drag and drop method is used to match the
columns in the data source and table.

FIGURE 14.21
Example Job Design using
Talend Open Studio

FIGURE 14.22
Talend Join Specification for
Time Columns in the tMap
Component

26008_ch14_p549-584.indd 567 3/2/18 10:51 PM

568   Part 6  Data Warehouse Processing

Talend Open Studio provides graphical display of job executions as depicted in
Figure 14.23. The screen snapshot was taken from the job design pane after executing
the job. The job execution display shows the number of rows processed along with
processing times. Figure 14.23 shows that the Excel input file contained 12 rows. The
tSchemaComplianceCheck component rejected two rows for null value or data type
violations, passing 10 rows to the tMap component. The tMap component rejected two
rows for foreign key violations, passing 8 rows to the tOracleOutput component for
loading into the SSSales fact table.

14.3.3  Pentaho Data Integration
Pentaho provides a unified platform for data integration, business analytics, and big
data. Like Talend, Pentaho provides an open source community edition and pro-
prietary extensions in commercial editions. Pentaho offers commercial products for
data integration, business analytics, and big data analytics. The community edition
of Pentaho Data Integration (known as Kettle) contains three components: Spoon for
graphical design of transformations and jobs, Pan for execution of transformations,
and Kitchen for job execution.

A Pentaho transformation supports data flow among steps and hops to connect
steps. A transformation involves steps, hops, database connections, and distributed
processing resources. Pentaho provides a library of steps as shown in Figure 14.24.
A job is a higher level data flow among transformations and external entities. Hops
provide directed connections among steps. Steps can have multiple input and output
connections specified in hops. Pentaho also supports specification of database connec-
tions and distributed processing resources such as partitions and clusters.

The Spoon integrated development environment (Figure 14.25) supports viewing
components in transformations, designing transformations, and executing transfor-
mations. The IDE is somewhat simpler than Talend. The View tab shows steps, hops,
and other components in the transformation displayed in the Canvas. The Design tab
contains folders of step types. An analyst drags a step from an open folder in the
Design tab and places it in the Canvas. Execution controls appear in the tool bar above
the Canvas.

Figure 14.26 depicts a simple transformation to filter a Microsoft Excel file. The
graphical display of the transformation contains two steps, an input step for a Micro-
soft Excel file and a filter rows step. The hop indicates a data flow from Excel file step
to the Filter rows step. Spoon supports a specification window to provide property
values for a step. The specification window for the Excel file indicates the file location,
worksheet, fields in the worksheet, and other details. The specification window for the
filter rows step indicates the conditions in the bottom part and next steps executed for
passing and failing the specified conditions.

This transformation in Figure 14.27 extends the transformation in Figure 14.26
with more steps and hops. Figure 14.27 shows a transformation that merges the Excel

FIGURE 14.23
Example Job Execution using
Talend Open Studio

26008_ch14_p549-584.indd 568 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   569

FIGURE 14.24
Pentaho Folders containing a
Library of Steps

file input with the SSTimeDim table. The sorting row steps are necessary because the
merge join step requires data sources sorted on the same criteria. The specification
window for the Merge Join step indicates two input steps, join type, and key fields for
merging. The merge step uses three date fields (Day, Month, and Year) from the Excel
file and three date columns (TimeDay, TimeMonth, and TimeYear) from the TimeDim
table.

This merge join in Figure 14.27 indicates the tedious nature of some transforma-
tions in the ETL architecture. Database compilers determine details about join algo-
rithms and join order for SQL SELECT statements. In the Pentaho ETL architecture,
transformations indicate join algorithms and join order, details handled by database
compilers in the ELT approach. Figure 14.28 shows the complete Pentaho trans-
formation for combining four tables using merge join steps. The transformation in
Figure 14.28 performs the same task as the Talend job specification in Figure 14.21. The
Pentaho transformation specifies join algorithms and join order, optimization deci-
sions performed by optimizing database compilers. Unlike vendors of data integration

26008_ch14_p549-584.indd 569 3/2/18 10:51 PM

570   Part 6  Data Warehouse Processing

View
pane

Canvas

Execution
controls

FIGURE 14.25
Integrated Development
Environment for Pentaho
Spoon

FIGURE 14.26
Example Transformation for
Filtering an Excel File

products, DBMS vendors have decades of research and development in technology for
optimizing database compilers.

14.3.4  Oracle Data Integrator
Oracle developed the Oracle Data Integrator (ODI) from earlier products and exter-
nal acquisitions. The ODI has evolved from the acquisition of Sunopsis in 2006 and
the Oracle Warehouse Builder, first released in 2000. Oracle has merged both prod-
ucts into the ODI with no new releases for the Oracle Warehouse Builder after 11gR2.
The current version of the ODI supports development of platform independent data

26008_ch14_p549-584.indd 570 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   571

integration solutions although dependent on an Oracle database server in the Extrac-
tion, Loading, and Transformation (ELT) architecture.

The ODI contains four major components as depicted in Figure 14.29, adapted
from the ODI 12 documentation2. On the desktop, the ODI Studio provides naviga-
tors for designing data integrity rules and transformations, executing production sce-
narios, defining the topology of a data integration architecture, and specifying security
details such as users, roles, and profiles. On the server side, the ODI requires the Web-
Logic application server to provide components shown in Figure 14.29. An Oracle
database server manages repositories defining information technology infrastructure,
project scenarios, execution logs, and model details. The repositories support an open

FIGURE 14.27
Example Transformation with
a Merge Join Step

FIGURE 14.28
Pentaho Transformation for
Joining 4 Tables

2 Oracle, Oracle Fusion Middleware Getting Started with the Oracle Data Integrator 12c, October 2015.

26008_ch14_p549-584.indd 571 3/2/18 10:51 PM

572   Part 6  Data Warehouse Processing

relational data model with user-defined elements. The ODI supports extraction from
a wide range of data sources including legacy data, files, XML, DBMSs, third-party
enterprise applications, and data warehouses.

A data warehouse administer or analyst uses the ODI studio to implement data
integration projects using data sources and a target data warehouse. Figure 14.30,
adapted from the ODI 12 documentation, depicts a small data integration project for a
sales administration data warehouse. The project uses a database of orders and exter-
nal files of sales people and age groups. A data warehouse administrator or analyst
defines declarative rules for transformations and integrity control, both stored in the
repository. The ODI Studio generates integration scenarios to implement transforma-
tions and integrity rules. An integration scenario implements transformations with
mappings, packages, procedures, and variables. The ODI Operator Navigator sup-
ports sessions, execution of integration scenarios using data sources to refresh the
Sales Administration data warehouse.

Mapping specifications support a declarative or rules driven approach to sepa-
rate specification from implementation. Figure 14.31, from the ODI 12 documentation,
depicts a mapping specification to transform and load a data source of customers into
the customer dimension table. The mapping defines three data sources (age group
table, customer source table, and sales person file), operations for lookup and join,

Desktop

Web/Application Server

Repositories
Sources and Targets

Java
Virtual

Machine

ODI Studio
• Designer
• Operator
• Topology
• Security

Enterprise
Manager Cloud

Control

Fusion
Middleware

Console

Servlet
Container

Web Service
Container

Data Sources Connection Pool

ODI
Master

Repository

ODI Work
Repository

Databases Files XML Applications

FIGURE 14.29
Components in the Oracle
Data Integrator

Repository

Orders
ApplicationsODI Studio

Sales Administration

Integration
Scenarios

Parameters
(Files)

Declarative
Rules

Data Integrity
Control

Generates

FIGURE 14.30
Simple ODI Project Example

26008_ch14_p549-584.indd 572 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   573

and the target data source (customer dimension table). The lookup operation ensures
that customer age is within minimum and maximum ages as defined in the age group
table. The join operation combines the sales person file with the customer source table.
Target expressions in a mapping transform columns in a data source into columns of
the target table. In this example, target expressions map column names, concatenate
first and last names, convert marital status to an abbreviation, and convert age in years
to an age group.

Before acquiring and redeveloping tools for enterprise data integration, Oracle
offered many independent tools appropriate for selected data integration tasks. Oracle
has incorporated some of the features of the independent tools into the Oracle Data
Integrator. The following list summarizes some independent integration tools avail-
able in Oracle.

•	 SQL*Loader is a long standing Oracle utility for loading data from text files into
Oracle tables. SQL*Loader provides data type conversion, conditional loading of
data, simple NULL value handling, transformation of data before loading using
SQL functions, and direct-path loading for improved performance.

•	 Oracle Change Data Capture supports synchronous (via triggers) or
asynchronous capture (via log files) of change data. The Change Data Capture
feature uses a Publish and Subscribe model to control change data availability
and notify subscribers about change data availability. Oracle Change Data
Capture has been incorporated into the Oracle Data Integrator.

•	 The Oracle Data Pump enables very high-speed movement of data and metadata
from one database to another using import and export utilities.

14.3.5  Oracle SQL Statements for Data Integration
Oracle provides two SQL statements for specific data integration tasks. The MERGE
statement supports conditional processing of change data for dimension tables using
a single SQL statement. Oracle’s implementation of the MERGE statement follows

3 Figure 14.31 Copyright © 2015 by Oracle. Oracle Fusion Middleware Getting Started with the Oracle Data Inte-
grator 12c, October 2015.

FIGURE 14.31
ODI Mapping Specification3

26008_ch14_p549-584.indd 573 3/2/18 10:51 PM

574   Part 6  Data Warehouse Processing

the standard specification, originally proposed in the SQL:2003 standard. The pro-
prietary Oracle INSERT statement supports addition of rows into multiple target
tables with optional conditional specification. This section provides details about
both statements.

MERGE Statement  The MERGE statement provides conditional update or insert
of change data. If a row in a change table matches a row in a target table, the matching
target row is updated. Otherwise, the change row is inserted into the target table. The
MERGE statement provides improved productivity and performance as compared to
multiple statements (INSERT and UPDATE) to accomplish the same task.

The MERGE statement uses a source table, target table, and join condition to sup-
port conditional updating and inserting. The diagram in Figure 14.32 indicates that
the MERGE statement matches rows in a source table to a target table to generate a
new target table. The legend in Figure 14.32 indicates the common heading row in the
source and target tables, new rows in the source table, matching rows between the
source and target table, and non-matching rows in the target table. In the new target
table, the MERGE statement inserts new rows in the source table, updates matching
rows, and retains non-matching rows with changes.

To specify merge processing, the MERGE statement uses the MERGE INTO key-
words followed by the target table name. The source table name follows the USING
keyword. The join condition follows the ON keyword. The WHEN clauses provide
action for a matching target row (typically an UPDATE statement) and a non-match-
ing row (typically an INSERT statement).

The MERGE statement in Example 14.1 uses SSCustomer as the target table with
the alias Target and SSCustomerChanges as the source table with the alias Source. Note
that alias names are optional in the MERGE statement. The join condition compares
CustId in the source and target tables. The MATCHED keyword precedes an UPDATE
statement setting each column in the target table to the value specified in the corre-
sponding source column. The NOT MATCHED keywords precede an INSERT state-
ment using the columns of the target table (SSCustomer) and the values from the source
table (SSCustomerChanges).

Sometimes matching change rows only contain values for modified columns. For
non-modified columns, a change row contains null values. Partial content for match-
ing change rows reduces the need to specify values for all columns in a row. For new
rows, a change table still contains values for all required columns, however.

MERGE INTO <Target_Table>
USING <Source_Table>
ON <join_condition>
WHEN MATCHED THEN
UPDATE SET …

WHEN NOT MATCHED THEN
INSERT …

Target Table
(after Merge)

Legend
• Heading row: large grid pattern
• New source rows: vertical pattern
• Matched rows: wave pattern
• Target rows not matched: upward diagonal pattern

Source Table

Target Table

FIGURE 14.32
Overview of the SQL MERGE
Statement

26008_ch14_p549-584.indd 574 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   575

Example 14.2 revises Example 14.1 with partial content for matching rows in
the change table. For matching rows, the WHEN condition determines if a column
value is null. If a change column value is null, the existing value in the target row is
used. Otherwise, the new value in the change row is used. Oracle SQL provides the
DECODE function for this type of comparison. DECODE (Source.Col1, NULL, Target.
Col1, Source.Col1) generates the Target.Col1 value if Source.Col1 is null. Otherwise
DECODE generates the Source.Col1 value.

Example 14.1

MERGE statement updating matched
rows and inserting non-matched
rows. Appendix 14.A contains
statements to create both tables

MERGE INTO SSCustomer Target
USING SSCustomerChanges Source
ON (Target.CustId = Source.CustId)
WHEN MATCHED THEN
 UPDATE SET
 Target.CustName = Source.CustName,
 Target.CustPhone = Source.CustPhone,
 Target.CustStreet = Source.CustStreet,
 Target.CustCity = Source.CustCity,
 Target.CustState = Source.CustState,
 Target.CustZip = Source.CustZip,
 Target.CustNation = Source.CustNation
WHEN NOT MATCHED THEN
 INSERT (Target.CustId, Target.CustName, Target.CustPhone,
   Target.CustStreet, Target.CustCity, Target.CustState,
   Target.CustZip, Target.CustNation)
 VALUES (Source.CustId, Source.CustName, Source.CustPhone,
   Source.CustStreet, Source.CustCity, Source.CustState,
   Source.CustZip, Source.CustNation);

Example 14.2

MERGE statement using the DECODE
function to determine columns with
null values. Appendix 14.A contains
statements to create both tables

-- INSERT statements with null values for non-modified columns
-- CustStreet and CustZip modified and null values for other columns
INSERT INTO SSCustomerChanges2
(CustId, CustName, CustPhone, CustStreet, CustCity, CustState, CustZip)
VALUES
('C0954327',NULL,NULL,'444 Jump Ave.',NULL ,NULL,'80128-5443',NULL);

-- MERGE statement
MERGE INTO SSCustomer Target
USING SSCustomerChanges2 Source
ON (Target.CustId = Source.CustId)

26008_ch14_p549-584.indd 575 3/2/18 10:51 PM

576   Part 6  Data Warehouse Processing

Multiple Table INSERT Statement  Oracle provides the proprietary, multiple
table INSERT statement for data integration tasks to insert rows from a change table
to a set of target fact tables. Typically, the target tables are partitioned by columns
(vertical partitioning) or rows (horizontal partitioning). Insertion is usually uncon-
ditional for target tables partitioned by columns. Insertion is conditional for target
tables partitioned by rows. The multiple table INSERT statement provides improved
productivity and performance as compared to multiple INSERT statements to accom-
plish the same task. The proprietary multiple table INSERT statement has been part
of Oracle SQL since the 1990s.

The multiple table INSERT statement uses a source table, multiple target tables,
and optional conditions. The diagram in Figure 14.33 indicates a multiple table INSERT
statement for two target tables with row partitioning. The legend in Figure 14.33 indi-
cates the common heading row in the source and target tables, target 1 rows in the

WHEN MATCHED THEN
 UPDATE SET
 Target.CustName = DECODE(Source.CustName, NULL,
 Target.CustName, Source.CustName),
 Target.CustPhone = DECODE(Source.CustPhone, NULL,
 Target.CustPhone, Source.CustPhone),
 Target.CustStreet = DECODE(Source.CustStreet, NULL,
 Target.CustStreet, Source.CustStreet),
 Target.CustCity = DECODE(Source.CustCity, NULL,
 Target.CustCity, Source.CustCity),
 Target.CustState = DECODE(Source.CustState, NULL,
 Target.CustState, Source.CustState),
 Target.CustZip = DECODE(Source.CustZip, NULL,
 Target.CustZip, Source.CustZip),
 Target.CustNation = DECODE(Source.CustNation, NULL,
 Target.CustNation, Source.CustNation)
WHEN NOT MATCHED THEN
 INSERT (Target.CustId, Target.CustName, Target.CustPhone,
   Target.CustStreet, Target.CustCity, Target.CustState,
   Target.CustZip, Target.CustNation)
 VALUES (Source.CustId, Source.CustName, Source.CustPhone,
   Source.CustStreet, Source.CustCity, Source.CustState,
   Source.CustZip, Source.CustNation);

Source Table

Target Table 2

Target Table 1

Legend
• Heading row: large grid pattern
• Target1 rows: vertical pattern
• Target2 rows: wave pattern
• Existing rows: diagonal pattern

INSERT [ALL | FIRST]
[WHEN <condition> THEN]
INTO <Target_Table1> …
[WHEN <condition> THEN]
INTO <Target_Table2> …
[ELSE]
INTO <Target_TableN> …
SELECT … FROM <Source_Table>;

FIGURE 14.33
Overview of the SQL INSERT
Statement for Multiple Tables

26008_ch14_p549-584.indd 576 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   577

source and target 1 tables, target 2 rows in the source and target 2 table, and existing
rows in the target tables. In the target tables, the INSERT statement adds new rows
in each target table using row conditions applied to source rows. If target tables are
partitioned by columns instead of rows, the columns in the target tables will overlap
usually on the primary key, not on other columns.

To specify processing of insertions into multiple tables, Oracle provides two
statement variations. The ALL keyword supports insertion into tables partitioned by
columns. The ALL keyword indicates that rows of the source table are inserted into
all target tables. Typically the ALL keyword is used unconditionally without WHEN
conditions. The FIRST keyword supports target tables partitioned by rows. WHEN
conditions are used with the FIRST keyword to indicate the target table in which to
insert. A row is inserted into the target table with the first matching WHEN condi-
tion. The SELECT block at the end of the statement retrieves data from the source
table.

Some examples clarify the unconditional and conditional INSERT statements
for multiple tables. Figure 14.34 depicts insertions of rows from the ProductSale table
into four target tables partitioned by columns. The source table shares three columns
(ProductId, ProductName, and ProductCategory) with each target table. Four columns
(Qtr1, Qtr2, Qtr3, and Qtr4) are specific to each target. The target tables contain differ-
ent quarter sales in each table.

The INSERT ALL statement in Example 14.3 uses one INTO clause for each tar-
get table. For example, the INTO clause for the Qtr1Sale table uses the Qtr1 column.
The SELECT block at the end of the statement indicates retrieval of all rows from the
ProductSale table.

A second example clarifies the conditional INSERT FIRST statement. Figure
14.35 depicts an example inserting rows from the ProductSale table into three tar-
get tables partitioned by rows. The first three columns of the source table (Prod-
uctSale) match the first three columns of the target tables (ElectronicsSale, BooksSale,
and MoviesSale). The target tables are partitioned with different values for the
ProductCategory column in each table. The last column (TotalSales) of the target tables
is computed as the sum of the last four columns (Qtr1, Qtr2, Qtr3, and Qtr4) of the
ProductSale table.

FIGURE 14.34
Example of Unconditional
SQL INSERT ALL Statement

Qtr1Sale

Qtr2Sale

Qtr3Sale

Qtr4Sale

ProductSale

26008_ch14_p549-584.indd 577 3/2/18 10:51 PM

578   Part 6  Data Warehouse Processing

The INSERT FIRST statement in Example 14.4 uses one WHEN clause and one
INTO clause for each target table. For example, the INTO clause for the ElectronicsSale
table uses “Electronics” as the value in the WHEN condition. The SELECT block at the
end of the statement indicates retrieval of all rows from the ProductSale table.

Example 14.3

Unconditional multiple table insert using
INSERT ALL keywords. Appendix 14.A
contains statements to create all tables

INSERT ALL
INTO Qtr1Sale VALUES (Product_ID,ProductName,ProductCategory,Qtr1)
INTO Qtr2Sale VALUES (Product_ID,ProductName,ProductCategory,Qtr2)
INTO Qtr3Sale VALUES (Product_ID,ProductName,ProductCategory,Qtr3)
INTO Qtr4Sale VALUES (Product_ID,ProductName,ProductCategory,Qtr4)
SELECT * FROM ProductSale;

ElectronicsSale

BooksSale

MoviesSale

ProductSale

FIGURE 14.35
Example of Conditional SQL
INSERT FIRST Statement

Example 14.4

Conditional multiple table insert using
INSERT FIRST keywords. Appendix 14.A
contains statements to create all tables

INSERT FIRST
 WHEN (ProductCategory = 'Electronics') THEN
 INTO ElectronicsSale VALUES
 (Product_ID,ProductName,ProductCategory, (Qtr1+Qtr2+Qtr3+Qtr4))
WHEN (ProductCategory = 'Movies') THEN
 INTO MoviesSale VALUES
 (Product_ID,ProductName,ProductCategory, (Qtr1+Qtr2+Qtr3+Qtr4))
WHEN (ProductCategory = 'Books') THEN
 INTO BooksSale VALUES
 (Product_ID,ProductName,ProductCategory, (Qtr1+Qtr2+Qtr3+Qtr4))
SELECT * FROM ProductSale;

26008_ch14_p549-584.indd 578 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   579

You should only use INSERT ALL when a source table row can be inserted into
multiple target tables although INSERT ALL and INSERT FIRST often produce iden-
tical results. For Example 14.4, INSERT ALL and INSERT FIRST produce identical
results. Mutually exclusive conditions in WHEN clauses generate identical results
with both ALL and FIRST options. Non-exclusive conditions such as > 400 and > 700
generate additional rows for INSERT ALL because a row matching > 700 also matches
> 400. INSERT FIRST uses the first matching WHEN clause only, inserting each source
row into at most one target table.

CLOSING THOUGHTS

This chapter extended the conceptual background and skills foundation provided in
Chapters 12 and 13 with detailed coverage of data integration. Maintaining a data
warehouse is a difficult process that must be carefully managed. The first part of
Chapter 14 presented the kinds of data sources used in maintaining a data warehouse,
a generic workflow describing the tasks involved in maintaining and populating a
data warehouse, and conceptual background about managing the refresh process.
This conceptual material extends management concepts covered in Chapter 12.2.

The data integration techniques in Chapter 14 extend the skills and concepts of
the schema integration process covered in Chapter 13.4. The second part of Chapter
14 covered parsing with regular expressions, correcting and standardizing values, and
entity matching. Writing regular expressions is a detailed skill important in extracting
components embedded in text fields. Correcting and standardizing values involves
resolution of missing, conflicting, and non-standardized data from data sources.
Entity matching identifies and resolves duplicate records when no common, reliable
identifier exists, an important integration task especially for customer-oriented data
warehouses.

This chapter advocated usage of data integration tools with integrated develop-
ment environments to improve productivity for development of data integration pro-
cedures as well as improve operational performance of refresh processing. The third
part of this chapter provided broad coverage of features and architectures of data
integration tools and details about prominent data integration tools. You are encour-
aged to gain experience with a commercial data integration tool, extending the details
of product coverage (Talend Open Studio, Pentaho Data Integration, or Oracle Data
Integrator) in this chapter. You should also practice using SQL statements for data
integration, the SQL standard MERGE statement and the proprietary Oracle INSERT
statement for multiple tables.

REVIEW CONCEPTS

•	 Primary goal of data integration: provide a single source of truth
•	 Data integration challenges: large volumes of data, legacy source systems, lack

of standards for formats, units of measure, and integrity rules, varying update
frequencies, missing data, and lack of common identifiers

•	 Classifying change data by processing level and source system requirements
•	 Kinds of change data used to populate a data warehouse: cooperative, logged,

queryable, and snapshot
•	 Cooperative change data involving triggers in source systems to capture change

data at transaction time
•	 Logged change data involving logs of activity and substantial processing to

decompose text data in a log

26008_ch14_p549-584.indd 579 3/2/18 10:51 PM

580   Part 6  Data Warehouse Processing

•	 Queryable change data involving time stamps in a data source and periodically
executed queries on a source system

•	 Snapshot change data involving periodic dumps of source data and difference
processing to identify new records, changed records, and deleted records

•	 Phases in the workflow for maintaining a data warehouse: preparation,
integration, and propagation

•	 Data quality problems encountered in data warehouse loading and
maintenance: multiple identifiers, multiple names, different units, missing
values, orphaned transactions, non-standard text data, conflicting data, and
different update times

•	 Initial population of a data warehouse to discover and resolve data quality
problems

•	 Control over valid time lag and load time lag in refreshing a data warehouse
•	 Factors influencing refresh frequency and schedules: timeliness importance,

refresh costs, and constraints
•	 Determining the refresh frequency for a data warehouse: balancing frequency of

refresh against refresh costs while satisfying refresh constraints
•	 Types of refresh constraints: source access, integration, completeness/

consistency, availability
•	 Regular expressions for decomposing multipurpose text fields into constituent

parts
•	 Regular expressions containing literals (characters to match exactly),

metacharacters (characters with special meaning), and escape sequences (using a
metacharacter as a literal)

•	 Metacharacters for specifying patterns in regular expressions involving iteration,
range of characters, position, and alteration

•	 Pattern matching components: search expression, target string, and match result
•	 Sentiment analysis for context sensitive parsing
•	 Importance of understanding the reason for missing values in resolving

problems
•	 Entity matching to identify duplicate records when no common, reliable

identifier exists
•	 Entity matching outcomes when comparing records
•	 Usage of quasi identifiers in entity matching
•	 Distance measures for text comparisons as fundamental tools for entity

matching
•	 Importance of data integration tools to improve productivity for developing

data integration procedures and workflows
•	 Essential features of data integration tools: integrated development

environments, graphical specification of workflows, non procedural
specification of transformations, repository, and data source connectivity

•	 Secondary features of data integration tools: data profiling, change data capture,
and job management

•	 ETL architecture emphasizing the usage of an ETL engine independent of a
DBMS engine for performing complex data transformations before loading into
data warehouse tables

•	 ELT architecture emphasizing the usage of a relational DBMS to perform
complex data transformations after loading data into data warehouse tables

•	 Talend Open Studio: integrated development environment and non procedural
specification of jobs and components

26008_ch14_p549-584.indd 580 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   581

•	 Pentaho Data Integration: integrated development environment and non
procedural specification of transformations, hops, and steps

•	 Oracle Data Integrator: prominent data integration tool using the Extraction,
Loading, and Transformation architecture

•	 SQL standard MERGE statement combining insertion and updating of change
data for dimensions

•	 Proprietary Oracle INSERT statement supporting inserts from a change table to
multiple fact tables

QUESTIONS

  1.	What is cooperative change data?
  2.	What is logged change data?
  3.	What is queryable change data?
  4.	What is snapshot change data?
  5.	Briefly explain the classification of change data.
  6.	Briefly describe the phases of data warehouse maintenance.
  7.	Briefly define common data quality problems that should be resolved by the

preparation and integration phases.
  8.	What is valid time lag?
  9.	What is load time lag?

  10.	What is the primary objective in managing the refresh process for a data
warehouse?

  11.	How does importance of timeliness affect the objective of refreshing a data
warehouse?

  12.	What are components of refresh costs?
  13.	What types of constraints affect the refresh process?
  14.	Briefly explain the initial loading process for a data warehouse.
  15.	What are the elements of a regular expression?
  16.	To perform pattern matching, what elements does a user provide?
  17.	How are regular expressions useful for resolving data quality problems?
  18.	Briefly explain metacharacters for iteration.
  19.	Briefly explain metacharacters for specification of a matching position.
  20.	When should you use an escape sequence in a regular expression?
  21.	Why are groups useful in regular expressions?
  22.	Briefly explain principles for handling missing values that are inapplicable or

involved with summarizability problems.
  23.	Briefly explain principles for handling missing values that are unknown.
  24.	Briefly explain principles for standardizing values.
  25.	What is entity matching?
  26.	Briefly explain the outcomes of entity matching.
  27.	Which outcome is typically most important to avoid in entity matching?
  28.	What is a quasi identifier and how is it used in the entity matching process?
  29.	Why are distance measures for text comparisons important in entity matching?
  30.	What are common distance measures of text similarity used in entity matching?
  31.	What benefits are provided by data integration tools?

26008_ch14_p549-584.indd 581 3/2/18 10:51 PM

582   Part 6  Data Warehouse Processing

  32.	Briefly explain the ETL architecture for data integration.
  33.	Briefly explain the ELT architecture for data integration.
  34.	Which data integration architecture (ETL or ELT) will likely dominate in the

future?
  35.	Briefly explain essential features of data integration tools.
  36.	How does the Gartner market summary classify firms?
  37.	What is job management as a feature of a data integration tool?
  38.	What is data profiling as a feature of a data integration tool?
  39.	What is change data capture as a feature of a data integration tool?
  40.	What features are provided by Talend Open Studio for Data Integration?
  41.	Briefly describe three components provided in Talend Open Studio.
  42.	What components are provided in the community edition of Pentaho Data

Integration?
  43.	What is a transformation in a job for Pentaho Data Integration?
  44.	What is a hop in a transformation in Pentaho Data Integration?
  45.	How did the Oracle Data Integrator evolve?
  46.	What is a mapping specification in the Oracle Data Integrator?
  47.	What architectures are supported by Talend Open Studio, Pentaho Data

Integration, and Oracle Data Integrator?
  48.	What is the purpose of the MERGE statement?
  49.	What elements are specified in a MERGE statement?
  50.	What is the purpose of the multiple table INSERT statement?
  51.	What elements are specified in an INSERT statement for multiple tables?
  52.	Briefly describe two statement variations for processing insertions into multiple

tables.
  53.	What is sentiment analysis and how is it used for data warehouses?

PROBLEMS

The problems provide practice with regular expressions and Oracle SQL statements
for data integration tasks. To gain experience with regular expressions, you should
use a web page containing a regular expression tester (such as regex101.com, regexr.
com, and www.regextester.com) for regular expression problems (1 to 3). Problems 4
to 11 involve the MERGE and multiple table INSERT statements available in Oracle.
Appendix 14.B contains SQL statements for creating tables used in these problems.
The textbook’s website contains a complete of statements to create and populate all
tables used in the problems.

For practice with data integration tools, the presentation in this chapter lacks suf-
ficient details. You need a detailed tutorial and practice problems. Due to the length
of a tutorial (more than 40 pages), the textbook’s website contains tutorial material.
You can find a detailed tutorial for Pentaho Data Integration on the textbook’s website
along with supporting materials for tables and files used in the tutorial.
  1.	Determine the results of pattern matching using the regular expressions and

target strings in Table 14-P1. You should determine the results yourself using
knowledge of the metacharacters and then use a regular expression testing tool
to verify your predicted results.

  2.	Write a regular expression to match against phone numbers with the format
“(ddd) ddd-dddd” where d is a digit and the parentheses are literal characters.
The first digit in a phone number should not be a 0. There should not be

26008_ch14_p549-584.indd 582 3/2/18 10:51 PM

Chapter 14  Data Integration Concepts and Practices   583

any other characters at the beginning or ending of the string. Use a regular
expression testing tool to test your regular expression.

  3.	Write a regular expression to match against postal codes with the following
format: “ddddd-dddd” where d is a digit. The hyphen is a literal character.
Both the hyphen and last four digits are optional. If there is a hyphen, the last
four digits must be present. There should not be any other characters at the
beginning or ending of the string. Use a regular expression testing tool to test
your regular expression.

  4.	Write an Oracle SQL MERGE statement to combine the SSItem dimension
table and the SSItemChanges1 change table. Appendix 14.AB contains CREATE
TABLE statements for both tables. Each matching row of SSItemChanges1
contains values for both modified and non-modified columns.

  5.	Write an Oracle SQL MERGE statement to combine the SSItem dimension table
and the SSItemChanges2 change table. Appendix 14.B contains CREATE TABLE
statements for both tables. Each matching row of SSItemChanges2 contains new
values for modified columns and null values for non-modified columns.

  6.	Write an Oracle SQL INSERT FIRST statement to insert rows of the ProductSale1
table into four tables (ProductSales2014, ProductSales2015, ProductSales2016, and
ProductSales2017). Appendix 14.B contains CREATE TABLE statements for all
tables. Note that the target tables lack the SalesYear column. If SalesYear equals
2014, insert a row into ProductSales2014. The comparisons for the other tables
only differ on the SalesYear value and suffix in the name of the target table.
You should compute the SalesAmt column in each target table as the sum of
the quarter sales (Qtr1, Qtr2, Qtr3, and Qtr4) in the corresponding row of the
ProductSale table.

  7.	On problem 6, is the number of the rows in the target tables the same when
using INSERT FIRST versus INSERT ALL? Justify your answer.

  8.	Write an Oracle SQL INSERT FIRST statement to insert rows of the ProductSale2
table into three target tables (Year_Low_Sales, Year_Mid_Sales, and Year_High_
Sales). Appendix 14.B contains CREATE TABLE statements for all tables. Insert
a row into Year_Low_Sales when annual sales (sum of Qtr1, Qtr2, Qtr3, and
Qtr4) are less than 4,000. Insert a row into Year_Mid_Sales when annual sales
are greater than or equal 4,000 and less than 7,000. Insert remaining rows into
Year_High_Sales. You should compute the SalesAmt column in each target table
as the sum of the quarter sales (Qtr1, Qtr2, Qtr3, and Qtr4) in the corresponding
row of the ProductSale table.

  9.	On problem 8, is the number of the rows in the target tables the same when
using INSERT FIRST versus INSERT ALL? Justify your answer.

TABLE 14-P1
Regular Expressions and
Search Strings to Evaluate

Regular Expression Target Strings Evaluation (please complete)

“labou?r” “pro labor”, “labour union”

“help*” “hello”, “hellcat”, “herself”

“help+” “hepless”, “helpless”, “help me”

“[aeiou][bcdfgm]” “a dog”, “ihop”, “uomo”

“[A-Z]{1}:[0-9]{2,4}” “a:100”, “big A:2456”

“^big” “bill dig”, “one big bill”

“big$” “bill dig”, “dig bin”

“[^a-z]+[^A-Z]” “123ab”, “aBCd”, “aaBB”

“^\^” “^abc”, “abc^”, “abc”

“\$$” “abc$”, “$abc”, “abc$d”

26008_ch14_p549-584.indd 583 3/2/18 10:51 PM

584   Part 6  Data Warehouse Processing

  10.	Write an Oracle MERGE statement to combine the Mobile_Bill table with the
Mobile_Usage table matching on CustId. Appendix 14.B contains CREATE
TABLE statements for both tables. The Mobile_Bill table contains the most recent
bill with the current amount (CurrentAmt) and past amount (PastAmt). When
a match occurs, update the Mobile_Bill.CurrentAmt column as minutes used
(Mobile_Usage.MinutesUsed) times 0.05 and the Mobile_Bill.PastAmt column as
the previous current amount (Mobile_Bill.CurrentAmt) plus the previous past
amount (Mobile_Bill.PastAmt). When a match does not occur, insert a row into
the Mobile_Bill table with the customer identifier (Mobile_Usage.CustId), minutes
used (Mobile_Usage.MinutesUsed) times 0.05, and 0 for the past amount (Mobile_
Bill.PastAmt).

  11.	Write an Oracle INSERT FIRST statement to insert rows from a mobile customer
table (Mobile_Customer) into three tables (Mobile_Gold, Mobile_Silver, and
Mobile_Bronze) based on a customer’s current revenue amount (Mobile_Customer.
CurrentAmt). Appendix 14.B contains CREATE TABLE statements for all tables.
If the current revenue amount is greater than or equal to 150, insert the mobile
customer row into the Mobile_Gold table. If the current revenue amount is greater
than or equal to 100, insert the mobile customer row into the Mobile_Silver table.
Otherwise, insert the mobile customer row into the Mobile_Bronze table.

  12.	On problem 11, is the number of the rows in the target tables the same when
using INSERT FIRST versus INSERT ALL? Justify your answer.

REFERENCES FOR FURTHER STUDY

Several references provide additional details about important parts of Chapter 14. You
should consult Bouzeghoub et al. (1999) and Fisher and Berndt (2001) about the refresh
process. For additional details about regular expressions, you should search under
“regular expression tutorials” and “regular expression testers”. For more details
about Talend Open Studio, you should visit the Talend website (www.talend.com).
For more details about Pentaho Data Integration, you should visit the Pentaho website
(www.pentaho.com). You can install the free community edition products for both
Talend and Pentaho. For details about Oracle data integration features, you should
consult the online documentation in the Oracle Technology Network (www.oracle.
com/technetwork).

26008_ch14_p549-584.indd 584 3/2/18 10:51 PM

585  

OVERVIEW
After the foundation of skills and management concepts
about data warehouses provided in Chapters 12 to 14,
you are ready to complete your data warehouse study
with detailed skills for query formulation. Although these
query formulation skills build on the foundation in Chap-
ters 4 and 9, query formulation for data warehouses
involves substantial new concepts and practices. These
skills are especially important for information technol-
ogy professionals assisting business analysts to use
data warehouses for business intelligence applications.

Chapter 15 emphasizes query formulation skills for
both data cubes and relational databases. You will first

learn concepts and query formulation skills for data
cubes, providing a business analyst perspective about
query formulation. Chapter 15 covers an important de
facto standard for data cubes, Microsoft Multidimen-
sional Expressions (MDX) as well as pivot table tools
providing convenient interfaces for MDX retrievals.
Next, you will learn about two major extensions of the
SQL SELECT statement for a data warehouse stored
as a relational database. Extensions to the GROUP BY
clause support calculations of subtotals in query results.
Extensions for analytic functions support qualitative per-
formance, trend analysis, and quantitative comparisons,
important in many business intelligence applications.

Learning Objectives
This chapter helps you develop skills for query formulation in business
intelligence applications, extending skills for conceptual data ware­
house design in Chapter 13 and data integration in Chapter 14. After this
chapter, the student should have acquired the following knowledge and
skills:

•	 Explain terminology and basic statement syntax of Microsoft Multi­
dimensional Expressions

•	 Gain practice with a pivot table tool for OLAP queries

•	 Write and document SQL SELECT statements using the CUBE,
ROLLUP, and GROUPING SETS operators

•	 Write and document SQL SELECT statements using analytic func­
tions for qualitative performance, trend analysis, and quantitative
comparisons

•	 Understand conceptual differences between materialized views for
summary data storage and retrieval and traditional relational views
for retrieval of derived data

•	 Gain insights about the complexity of the query rewriting process to
match materialized views with user queries

•	 Explain storage and optimization technologies in relational DBMSs
for data warehouses

Query
Formulation for
Data Warehouses

15
chapter

26008_ch15_p585-640.indd 585 3/2/18 10:53 PM

586   Part 6  Data Warehouse Processing

Online Analytic Processing (OLAP) refers to computing solutions for multidimen-
sional analysis of data warehouses by business analysts. In the early days of data ware-
houses, OLAP solutions provided both primary storage of data warehouses as well as
retrieval tools. Since large-scale investment by relational DBMS vendors, OLAP solu-
tions now mostly provide storage of data marts to augment primary storage of data
warehouses in relational databases as well as a foundation for business intelligence
tools used by business analysts.

This section emphasizes basic aspects of OLAP client technology rather than
detailed coverage appropriate in a business intelligence course. The first section pro-
vides an overview of Microsoft Multidimensional Expressions (MDX), an important
de facto standard for OLAP technology. The second section presents an overview of
pivot table tools that provide a convenient interface for data cube manipulation and
MDX statements.

15.1.1  Microsoft Multidimensional Expressions (MDX)
Microsoft Multidimensional Expressions (MDX) has emerged as an important OLAP
specification used in Microsoft products, other vendor products, and open source
projects. MDX provides the foundation for the Microsoft SQL Server Analysis Ser-
vice and Microsoft Excel pivot tables. A wide range of vendors has adopted MDX for
both commercial products and open source projects. Prominent commercial vendors
using MDX are Hyperion, IBM, and SAP in addition to Microsoft. Prominent open
source projects using MDX are JPivot, Pivot4J, OLAP4J, and the Mondrian OLAP
server.

MDX is a mature specification, becoming a de facto standard after careful develop-
ment. As depicted in Figure 15.1, Microsoft initially developed MDX in the late 1990s
with a specification in 1997 and release as part of the Microsoft OLAP Services 7.0 in
1998. After the initial specification in 1997, Microsoft made a major revision to MDX in
2005. With cooperation from Microsoft, a web standards group (XMLA Council) speci-
fied mdXML as part of the Extensible Markup Language (XML) for Analysis standard.
XML is the underlying language or meta language for other web languages such as
HTML.

Analytic functions extend both the processing model
and the syntax of the SQL SELECT statement.

The last part of Chapter 15 emphasizes extensions
to relational DBMSs for efficient storage and retrieval of
summary data. You will learn about materialized views,
query rewriting principles to substitute materialized
views in user queries, optimization techniques employed

by relational DBMSs, and architectures to support data
warehouse processing. Since relational DBMSs pro-
vide the underlying storage and retrieval capabilities for
enterprise data warehouses, understanding relational
DBMS features for data warehouses is essential back-
ground for a data warehouse professional.

15.1  ONLINE ANALYTIC PROCESSING (OLAP)

1998 MS OLAP
services release

2001 mdXML
specification by
XMLA Council

MS 2005 MDX
revision

1997 MSOLAP
specification

FIGURE 15.1
MDX History

26008_ch15_p585-640.indd 586 3/2/18 10:53 PM

Chapter 15  Query Formulation for Data Warehouses   587

Cube Representation in MDX  This subsection presents concepts about MDX
data cubes rather than tedious data definition statements. Typically, a data ware-
house professional defines an MDX cube with a graphical tool or guided speci-
fication rather than using MDX data definition statements directly. For example,
Microsoft provides the Cube Wizard to define an MDX cube.

MDX supports cube specification with some extensions to cube concepts pre-
sented in Chapter 13.1. An MDX cube consists of dimensions and measures. The
cube in Figure 15.21 contains two measures (Quantity and Sales) along with five
dimensions (Markets, Customers, Product, Time, and Order Status). An MDX
dimension contains attributes, components of a dimension. For example, the Prod-
uct dimension has attributes Line, Vendor, and Product. Attributes can indepen-
dent or related in a hierarchy. In Figure 15.2, attributes are hierarchically related.
For the Product dimension, the attributes have a hierarchy containing Line as the
parent, Vendor within Line, and Product within Vendor.

In MDX, members are values of an attribute. Figure 15.3 depicts members of
the attribute hierarchy for the Product dimension. For example, “Classic Cars” is a
member of the Line attribute, “Autoart Studio Design” is a member of the Vendor
attribute, and “1968 Ford Mustang” is a member of the Product attribute.

To comprehend MDX queries, you need insight from a populated cube in MDX.
Figure 15.4 depicts a snapshot of the Steel Wheels data cube in the Pivot4J plugin
of Pentaho Business Analytics, a client tool that supports MDX. In this snapshot,
the rows contain members of the Product dimension, while the columns contain
members of the Time dimension. The cells contain sales values for the combination
of member values, one from each dimension. For example, 1,514,407 is the sales value
for Classic Cars in 2003.

A somewhat subtle part of MDX cubes is the presence of measures on either the
rows or columns. Figure 15.4 displays the Sales measure stacked on the columns inside
the Time dimension.

An MDX cube can also contain aggregations. Figure 15.4 displays average sales
for members of the Product and Time dimension. For example, 282,876 is the average
sales in 2003 and 1,363,807 is the average sales of classic cars.

MDX has some cube terminology beyond terms defined in Chapter 13.1. An MDX
tuple, a combination of members with one from each member, identifies a cell. For
example in Figure 15.4, the combination of members, Classic Cars and 2003, identify a
cell. Axis refers to a dimension from a source data cube used in a query. In MDX, cubes
typically have two axis, rows and columns, although more axes can be used. Multiple
dimensions may be stacked or embedded on the same dimension. A slicer refers to a
tuple in the result of an MDX query result.

1 Figures 15.2 through 15.4 contain snapshots using the Pivot4J plugin in Pentaho Business Analytics.

FIGURE 15.2
Example MDX Cube

FIGURE 15.3
Attribute Hierarchy and
Members in an MDX Cube

26008_ch15_p585-640.indd 587 3/2/18 10:53 PM

588   Part 6  Data Warehouse Processing

MDX SELECT Statement  Although the MDX SELECT statement appears similar
to the SQL SELECT statement, fundamental differences exist. The result of a SQL
SELECT statement is a table, while the result of an MDX SELECT statement is a
data cube. Tables are two-dimensional objects with rows and columns. Data cubes
are n-dimensional possibly with summary calculations. Different mathematical
approaches (relational algebra for tables and matrix algebra for data cubes) provide
the foundation for query languages.

The difference in underlying objects (tables versus data cubes) makes retrieval
languages rather different even though some important keywords remain the same.
Table 15-1 compares SELECT statement clauses in SQL and MDX. In the SELECT
clause, MDX supports cubes with a maximum of 128 dimensions although most result
cubes contain a small number of dimensions. MDX provides aliases for the first five
dimensions in a result cube: COLUMNS, ROWS, PAGES, SECTIONS, and CHAPTERS.
The FROM clause in MDX uses only a single, source cube. Conditions in the WHERE
clause slice the source cube in the FROM clause. Dimensions in the WHERE clause dif-
fer from dimensions in the SELECT clause.

Some examples clarify basic elements of the MDX SELECT statement. Figure 15.5
displays a data cube result and associated MDX SELECT statement. The SELECT
clause contains members (2003 and 2004) of the Time Dimension on the rows. The
columns axis contains two measures, Sales and Quantity. The FROM clause indicates
that SteelWheelsSales is the source data cube. The WHERE clause restricts sales and
quantity calculations to classic cars. The WHERE clause condition defines a slicer, a
result tuple in the data cube result.

FIGURE 15.4
Steel Wheels Cube Display
in Pivot4J

TABLE 15-1
Comparison of the SQL
SELECT and MDX SELECT
Statements

Language

Clause SQL MDX

SELECT List of columns List of axis dimensions (source cube cells)

FROM List of tables Cube name

WHERE Conditions restricting rows Restriction to a combination of dimension members
(result cube cells)

26008_ch15_p585-640.indd 588 3/2/18 10:53 PM

Chapter 15  Query Formulation for Data Warehouses   589

The cross join operator combines multiple dimensions or measures on a query
axis. You should use the cross join operator only with a small number of elements as
it generates all combinations of elements. In Figure 15.6, the cross join operator com-
bines selected members (Shipped and Cancelled) of the Order Status dimension with
the Sales and Quantity measures on the Columns axis. As in Figure 15.5, the WHERE
clause in Figure 15.6 restricts sales and quantity calculations to classic cars. Since the
Shipped and Cancelled members are not exhaustive, the result lacks Sales and Quan-
tity values for other Order Status members.

The examples in Figures 15.7 and 15.8 show the impact of a slicer condition.
A dimension in a slicer condition cannot be used in an axis. The MDX statement in
Figure 15.8 contains a WHERE condition to limit the calculated results to the North
American member in the territory attribute of the Markets dimension. The Sales values
in the cells are smaller in Figure 15.8 than Figure 15.7 because of the slicer condition in
Figure 15.8. For example, sales of classic cars in 2003 are 4,959 for North America, but
12,762 for all territories in 2003.

The SELECT statements in Figures 15.7 and 15.8 depict multiple dimensions on
the columns axis and the usage of the default measure (Sales), not shown in either
query axis. If no measure is specified on a query axis, the default measure is shown in
the cells.

15.1.2  Pivot Table Tools for OLAP Queries
Unlike the SQL SELECT statement, the MDX SELECT statement is not typically used to
query data cubes directly. Business analysts, typical users of data cubes, lack training
of information technology professionals. The previous section indicated the tedious

FIGURE 15.5
MDX Query and Associated
Data Cube

FIGURE 15.6
MDX Query with a CrossJoin
Operation and Associated
Data Cube

26008_ch15_p585-640.indd 589 3/2/18 10:53 PM

590   Part 6  Data Warehouse Processing

specification of MDX SELECT statement details even for relatively simple retrievals.
The MDX SELECT statement involves substantial more complexity than indicated in
the previous section. In practice, MDX provides a solid foundation for pivot table tools
that hide the complexity of MDX while providing a convenient interface for business
analysts.

Pivot tables have become the standard interface for data cubes. Microsoft Excel has
provided a pivot table feature for many years. Other commercial vendors and open
source projects also support pivot tables. This section provides an overview of two
pivot table tools (Pivot4J plugin and WebPivotTable) to augment your background on
data cube retrieval.

Pivot table tools provide a client interface to manipulate a data cube or other data
source such as an Excel spreadsheet. To manipulate a data cube, a pivot table tool

FIGURE 15.7
MDX Query with a CrossJoin
Operation and No Slicer

FIGURE 15.8
MDX Query with a Slicer
Added to Figure 15.7

26008_ch15_p585-640.indd 590 3/2/18 10:53 PM

Chapter 15  Query Formulation for Data Warehouses   591

depends on an OLAP server for cube storage and execution of MDX queries. Pivot4J
provides a built-in OLAP server, while WebPivotTable depends on an external OLAP
server. Pivot4J can also use an external OLAP server.

Pivot4J  Pivot4J, an open source project, extends earlier open source projects, Olap4J
and JPivot. Pivot4J provides an Application Program Interface (API) that developers
can use to build a pivot table interface. The earlier project, JPivot provided both an
API and pivot table interface. However, the open source community dropped JPivot
in 2008 so developers must build an interface with Pivot4J. OLAP4J provides an open
source API that generates MDX queries. Pentaho released OLAP4J in 2015 as a Java
API that can use a variety of OLAP servers such as the open source Mondrian server
and Microsoft SQL Server Analysis Services.

Pentaho has developed a Pivot4J plugin that can be installed in the community edi-
tion of Pentaho Business Analytics. The plugin uses the Pivot4J API and the Modrian
OLAP server. Figure 15.9 depicts the interface for the Pivot4J plugin of Pentaho Busi-
ness Analytics. The interface contains panes for feature buttons, OLAP Navigator,
Cube Structure, Pivot Structure, Query Result, and MDX Query.

•	 The top pane contains buttons for various features.
•	 The OLAP (Online Analytic Process) Navigator (on the left) shows the selected

cube (SteelWheelsSales).
•	 The Cube Structure pane shows the dimensions and measures of the selected

cube.
•	 The Pivot Structure contains the dimensions and measures in the axes of the

pivot table. Dimensions and measures can be dragged from the Cube Structure
and dropped into the axes of the Pivot Structure.

Pivot4J provides duality between operations on pivot tables and MDX. Typically,
a business analyst creates or modifies a query result by modifying the Pivot Structure
pane or selected buttons in the feature pane. Alternatively, an analyst can type an
MDX statement into the MDX Query pane. If the statement is meaningful, the result
will be displayed in the Query Result pane. Figures 15.6 to 15.9 demonstrate duality
between pivot table retrieval operations and MDX in Pivot4J.

WebPivotTable  WebPivotTable, a Javascript based tool, executes in a browser by
itself or integrates into websites. The original release of WebPivotTable mimicked
features in Microsoft Excel pivot tables. Later releases of WebPivotTable extended its

FIGURE 15.9
Pivot4J Plugin Interface in
Pentaho Business Analytics

26008_ch15_p585-640.indd 591 3/2/18 10:53 PM

592   Part 6  Data Warehouse Processing

original goal to support external OLAP servers and MDX. WebPivotTable provides a
free edition and commercial enterprise edition.

When using an OLAP data cube, WebPivotTable acts as a client connected to an
OLAP server. With cube calculations performed on an external OLAP server, slow
performance or server errors can occur for complex operations on a pivot table.

Similar to the Pivot4J plugin, WebPivotTable provides a convenient interface for
manipulating data cubes. Figure 15.10 shows a pivot table query using the Microsoft
AdventureWorks data cube. The AdventureWorks cube contains 16 dimensions with
47 measures as shown in the Fields List pane. The pivot table in Figure 15.10 contains
Size Range and Product Model Categories on the Rows area, Date Month of Year on
the Columns area, and Reseller Sales Amount measure in the Values area. The filter on
Country acts as a slicer restricting calculations to selected countries.

Similar to the Pivot4J plugin, WebPivotTable provides duality between pivot table
operations and MDX. The MDX statement displays after selecting the MDX button in
Figure 15.10. The statement in Figure 15.11, generated by WebPivotTable, shows addi-
tional elements of MDX including the Hierarchize, Exists, and Union functions. The
generated statement is tedious to read, demonstrating difficulty faced by a business
analyst to use MDX directly.

FIGURE 15.11
MDX SELECT Statement for
Pivot Table in Figure 15.10

FIGURE 15.10
WebPivotTable Interface

15.2  SQL EXTENSIONS FOR SUBTOTAL CALCULATIONS
The GROUP BY clause was found inadequate for business intelligence applications.
A major limitation of the original GROUP BY clause is the lack of subtotals in results.
GROUP BY results only contain the lowest level totals for each combination of group-
ing columns. Pivot tables can have subtotals on any query dimension in an axis.

26008_ch15_p585-640.indd 592 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   593

Subtotals are not limited to addition. Any statistical function can be used to summa-
rize a dimension such as average and minimum.

A simple example depicts the lack of subtotals in GROUP BY results. Figure 15.12
compares a GROUP BY query result and associated data cube. The subtotals in the
data cube show the sum of sales for rows (states) and columns (months) along with the
grand total. In contrast, the GROUP BY result contains no subtotals. The GROUP BY
result contains no missing values as only combinations with non-null values appear in
the result. In contrast, a data cube shows missing values with a dash denoting a miss-
ing value. For example, the data cube contains a dash for State = “CA” and Month =
“Jan” while the GROUP BY result does not contain this row.

As a response to the lack of subtotals, new summarization capabilities were added
to the GROUP BY clause in the SQL:1999 standard. The extensions involve the ability
to produce summary totals (CUBE and ROLLUP operators) as well as more precise
specification of grouping columns (GROUPING SETS operator). This section describes
these new parts of the GROUP BY clause using Oracle SQL as an enterprise DBMS that
implements the standard SQL features. If you need a refresher about the GROUP BY
clause, you should review GROUP BY coverage in Chapter 4 before embarking on this
section.

The examples in the remainder of this chapter use the Store Sales Data Warehouse
introduced in Chapter 13. Figure 15.13 displays the ERD for ease of reference.

15.2.1  CUBE Operator
The CUBE operator clause produces all possible subtotal combinations in addition
to the normal totals shown in a GROUP BY clause. Because all possible subtotals are

CUBE Operator
an operator that augments
the normal GROUP BY result
with all combinations of sub-
totals. The CUBE operator
is appropriate to summarize
columns from independent
dimensions rather than col-
umns representing different
levels of a single dimension.

FIGURE 15.13
ERD Snowflake Schema
for the Store Sales Data
Warehouse

Customer
CustId
CustName
CustPhone
CustStreet
CustCity
CustState
CustZip
CustNation

Store
StoreId
StoreManager
StoreStreet
StoreCity
StoreState
StoreZip
StoreNation

Sales
SalesNo
SalesUnits
SalesDollar
SalesCost

Item
ItemId
ItemName
ItemUnitPrice
ItemBrand
ItemCategory

TimeDim
TimeNo
TimeDay
TimeMonth
TimeQuarter
TimeYear
TimeDayOfWeek
TimeFiscalYear

ItemSales

CustSales

TimeSales

StoreSales

Division
DivId
DivName
DivManager

DivStore

State Month SUM(Sales)

CA Dec 100

CA Feb 75

CO Dec 150

CO Jan 100

CO Feb 200

CN Dec 50

CN Jan 75

State
Month

Dec Jan Feb Total

CA 100 - 75 175

CO 150 100 200 450

CN 50 75 - 125

Total 300 175 275 750

GROUP BY Result Sales Pivot Table

SELECT State, Month, SUM(Sales)
···
GROUP BY State, Month

FIGURE 15.12
Comparison of GROUP BY
Results and Pivot Table

26008_ch15_p585-640.indd 593 3/2/18 10:54 PM

594   Part 6  Data Warehouse Processing

generated, the CUBE operator is appropriate to summarize columns from indepen-
dent dimensions rather than columns representing different levels of the same dimen-
sion. For example, the CUBE operator would be appropriate to generate subtotals for
all combinations of year, store state, and item brand. In contrast, a CUBE operation
to show all possible subtotals of year, month, and day would have limited interest
because of the hierarchy in the time dimension.

To depict the CUBE operator, Example 15.1 displays a SELECT statement with a
GROUP BY clause containing just two columns. Only six rows are shown in the result
so that the effect of the CUBE operator can be understood easily. With two values in
the StoreZip column and three values in the TimeMonth column, the number of subtotal
combinations is six (two StoreZip subtotals, three TimeMonth subtotals, and one grand
total) as shown in Example 15.2. Blank values in the result represent a summary over
all possible values of the column. For example, the row <80111, -, 33000> represents
the total sales in the zip code 80111 over all months (- represents a do not care value
for the month).

Example 15.1

GROUP BY clause and
partial result without subtotals
SELECT StoreZip, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId AND
 Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear = 2016
 GROUP BY StoreZip, TimeMonth;

StoreZip TimeMonth SumSales

80111 1 10000

80111 2 12000

80111 3 11000

80112 1 9000

80112 2 11000

80112 3 15000

Example 15.2 (Oracle)

GROUP BY clause and partial result with
subtotals produced by the CUBE operator
SELECT StoreZip, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear = 2016
 GROUP BY CUBE(StoreZip, TimeMonth);

26008_ch15_p585-640.indd 594 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   595

With more than two grouping columns, the CUBE operator becomes more difficult to
understand. Examples 15.3 and 15.4 extend Examples 15.1 and 15.2 with an additional
grouping column (TimeYear). The number of rows in the result increases from 12 rows
in the result of Example 15.3 without the CUBE operator to 36 rows in the result of
Example 15.4 with the CUBE operator. For three grouping columns with M, N, and P
unique values, the maximum number of subtotal rows produced by the CUBE opera-
tor is M + N + P + M*N + M*P + N*P + 1. Since the number of subtotal rows grows
substantially with the number of grouped columns and the unique values per column,
the CUBE operator should be used with caution when grouping on more than three
columns.

StoreZip TimeMonth SumSales

80111 1 10000

80111 2 12000

80111 3 11000

80112 1 9000

80112 2 11000

80112 3 15000

80111 33000

80112 35000

1 19000

2 23000

3 26000

68000

Example 15.3

GROUP BY Clause with three
grouping columns and the
partial result without subtotals
SELECT StoreZip, TimeYear, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear BETWEEN 2016 AND 2017
 GROUP BY StoreZip, TimeYear, TimeMonth;

StoreZip TimeYear TimeMonth SumSales

80111 2016 1 10000

80111 2016 2 12000

80111 2016 3 11000

80112 2016 1 9000

80112 2016 2 11000

80112 2016 3 15000

80111 2017 1 11000

26008_ch15_p585-640.indd 595 3/2/18 10:54 PM

596   Part 6  Data Warehouse Processing

StoreZip TimeYear TimeMonth SumSales

80111 2017 2 13000

80111 2017 3 12000

80112 2017 1 10000

80112 2017 2 12000

80112 2017 3 16000

Example 15.4 (Oracle)

GROUP BY clause with three grouping
columns and the result with subtotals
produced by the CUBE operator
SELECT StoreZip, TimeYear, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear BETWEEN 2016 AND 2017
 GROUP BY CUBE(StoreZip, TimeYear, TimeMonth);

StoreZip TimeYear TimeMonth SumSales

80111 2016 1 10000

80111 2016 2 12000

80111 2016 3 11000

80112 2016 1 9000

80112 2016 2 11000

80112 2016 3 15000

80111 2017 1 11000

80111 2017 2 13000

80111 2017 3 12000

80112 2017 1 10000

80112 2017 2 12000

80112 2017 3 16000

80111 1 21000

80111 2 25000

80111 3 23000

80112 1 19000

80112 2 22000

80112 3 31000

80111 2016 33000

80111 2017 36000

80112 2016 35000

80112 2017 38000

26008_ch15_p585-640.indd 596 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   597

StoreZip TimeYear TimeMonth SumSales

2016 1 19000

2016 2 23000

2016 3 26000

2017 1 21000

2017 2 25000

2017 3 28000

80111 69000

80112 73000

1 40000

2 48000

3 54000

2016 68000

2017 74000

142000

The CUBE operator is not a primitive operator. The result of a CUBE operation can be
produced using a number of SELECT statements connected by UNION operations,
as shown in Example 15.5. The additional SELECT statements generate subtotals for
each combination of grouped columns. With two grouped columns, three additional
SELECT statements are needed to generate the subtotals. With N grouped columns,
2N – 1 additional SELECT statements are needed. Obviously, the CUBE operator is
much easier to write than a large number of additional SELECT statements.

Example 15.5

Rewrite Example 15.2 without using the
CUBE operator. In each additional SELECT
block, the NULL value replaces the
column in which totals are not generated

SELECT StoreZip, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear = 2016
 GROUP BY StoreZip, TimeMonth
 UNION
SELECT StoreZip, NULL, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear = 2016
 GROUP BY StoreZip
UNION

26008_ch15_p585-640.indd 597 3/2/18 10:54 PM

598   Part 6  Data Warehouse Processing

15.2.2  ROLLUP Operator
The SQL ROLLUP operator provides a similar capability to the roll-up operator
for data cubes. The roll-up operator for data cubes produces totals for coarser parts
of a dimension hierarchy. The SQL ROLLUP operator produces subtotals for each
ordered subset of grouped columns to simulate the effects of the roll-up operator for
data cubes. For example, the SQL operation ROLLUP(TimeYear, TimeQuarter,
TimeMonth, TimeDay) produces subtotals for the column subsets <TimeYear,
TimeQuarter, TimeMonth>, <TimeYear, TimeQuarter>, <TimeYear> as well as the
grand total. As this example implies, the order of columns in a ROLLUP operation is
significant.

As the previous paragraph indicates, the ROLLUP operator produces only a par-
tial set of subtotals for the columns in a GROUP BY clause. Examples 15.6 and 15.7
demonstrate the ROLLUP operator on hierarchically related dimensions. Example
15.6 uses two grouping columns (TimeYear and TimeQuarter), producing subtotals on
TimeYear and the grand total. Example 15.7 uses three grouping columns (TimeYear,
TimeQuarter, and TimeMonth), producing subtotals for the column subsets <TimeYear,
TimeQuarter>, TimeYear, and the grand total. The partial result in Example 15.7 only
contains data for one month in each quarter so the month sales equals the subtotal of
quarter sales containing the month.

ROLLUP Operator
an operator that augments
the normal GROUP BY result
with a partial set of subtotals.
The ROLLUP operator is
appropriate to summarize
levels from a dimension
hierarchy.

SELECT NULL, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear = 2016
 GROUP BY TimeMonth
UNION
SELECT NULL, NULL, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear = 2016;

Example 15.6 (Oracle)

GROUP BY clause with two grouping
columns and result with subtotals
produced by the ROLLUP operator
SELECT TimeYear, TimeQuarter, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear BETWEEN 2016 AND 2017
 GROUP BY ROLLUP(TimeYear, TimeQuarter);

TimeYear TimeQuarter SumSales

2016 1 52490

2016 2 61720

26008_ch15_p585-640.indd 598 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   599

TimeYear TimeQuarter SumSales

2016 3 56866

2016 4 59836

2016 230932

2017 1 74910

2017 2 89110

2017 3 75086

2017 4 81288

2017 320394

551326

Example 15.7 (Oracle)

GROUP BY clause with three grouping
columns and partial result with subtotals
produced by the ROLLUP operator
SELECT TimeYear, TimeQuarter, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear BETWEEN 2016 AND 2017
 GROUP BY ROLLUP(TimeYear, TimeQuarter, TimeMonth);

TimeYear TimeQuarter TimeMonth SumSales

2016 1 2 52490

2016 1 52490

2016 2 5 61720

2016 2 61720

2016 3 7 56866

2016 3 56866

2016 4 10 59386

2016 4 59386

2016 230932

2017 1 2 74910

2017 1 74910

2017 2 5 89110

2017 2 89110

2017 3 7 75086

2017 3 75086

2017 4 10 81288

2017 4 81288

2017 320394

551326

26008_ch15_p585-640.indd 599 3/2/18 10:54 PM

600   Part 6  Data Warehouse Processing

Examples 15.8 and 15.9 contrast the ROLLUP operator with the CUBE operator.
Note that Example 15.8 contains three subtotal rows compared to six subtotal rows
in Example 15.2 with the CUBE operator. In Example 15.9, subtotals are produced
for the values in the column combinations <StoreZip, TimeYear>, <StoreZip>, and the
grand total. In Example 15.4 with the CUBE operator, subtotals are also produced for
the values in the column combinations <StoreZip, TimeYear>, <TimeMonth, TimeYear>,
<TimeMonth>, and <TimeYear>. Thus, the ROLLUP operator produces far fewer sub-
total rows compared to the CUBE operator as the number of grouped columns and
unique values per column increases.

Example 15.8 (Oracle)

ROLLUP example compared with
Example 15.2 to understand the difference
between the CUBE and ROLLUP operators
SELECT StoreZip, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear = 2016
 GROUP BY ROLLUP(StoreZip, TimeMonth);

StoreZip TimeMonth SumSales

80111 1 10000

80111 2 12000

80111 3 11000

80112 1 9000

80112 2 11000

80112 3 15000

80111 33000

80112 35000

68000

Example 15.9 (Oracle)

ROLLUP example compared with Example
15.4 to understand the difference between
the CUBE and ROLLUP operators
SELECT StoreZip, TimeYear, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear BETWEEN 2016 AND 2017
 GROUP BY ROLLUP(StoreZip, TimeYear, TimeMonth);

26008_ch15_p585-640.indd 600 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   601

Like the CUBE operator, the ROLLUP operator is not a primitive operator. The result
of a ROLLUP operation can be produced using a number of SELECT statements con-
nected by the UNION operator as shown in Example 15.10. The additional SELECT
statements generate subtotals for each ordered subset of grouped columns. With three
grouped columns, three additional SELECT statements are needed to generate the
subtotals. With N grouped columns, N additional SELECT statements are needed. In
each additional SELECT statement, the NULL value replaces the column in which
totals are not generated. Obviously, the ROLLUP operator is much easier to write than
a large number of SELECT blocks.

StoreZip TimeYear TimeMonth SumSales

80111 2016 1 10000

80111 2016 2 12000

80111 2016 3 11000

80112 2016 1 9000

80112 2016 2 11000

80112 2016 3 15000

80111 2017 1 11000

80111 2017 2 13000

80111 2017 3 12000

80112 2017 1 10000

80112 2017 2 12000

80112 2017 3 16000

80111 2016 33000

80111 2017 36000

80112 2016 35000

80112 2017 38000

80111 69000

80112 73000

142000

Example 15.10

Rewrite of Example 15.7 without
using the ROLLUP operator
SELECT TimeYear, TimeQuarter, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear BETWEEN 2016 AND 2017
 GROUP BY TimeYear, TimeQuarter, TimeMonth
 UNION
SELECT StoreZip, TimeYear, NULL, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId

26008_ch15_p585-640.indd 601 3/2/18 10:54 PM

602   Part 6  Data Warehouse Processing

15.2.3  GROUPING SETS Operator
The GROUPING SETS operator provides more flexibility than the CUBE and
ROLLUP operators. The GROUPING SETS operator requires explicit specification of
column subsets, even normal GROUP BY columns. In contrast, the CUBE and ROLLUP
operators provide implicit specification of subtotals. The GROUPING SETS operator
is appropriate when precise control over subtotals is needed. If explicit control is not
required, the CUBE and ROLLUP operators provide more succinct specification.

To depict the GROUPING SETS operator, the previous examples are recast using
the GROUPING SETS operator. In Example 15.11, the GROUPING SETS operator
involves subtotals for the StoreZip and TimeMonth columns along with the grand total
denoted by the empty parentheses. The subset (StoreZip, TimeMonth) also must be
specified because all column combinations must be explicitly specified, even the nor-
mal grouping without the GROUPING SETS operator. Example 15.12 contains eight
column combinations to provide the same result as Example 15.4 with the CUBE of
three columns. Example 15.13 contains three column combinations to provide the
same result as Example 15.7 with the ROLLUP of three columns.

GROUPING SETS Operator
an operator in the GROUP
BY clause that requires
explicit specification of
column subsets. The
GROUPING SETS operator
is appropriate when precise
control over subtotals is
required.

 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear BETWEEN 2016 AND 2017
 GROUP BY TimeYear, TimeQuarter
UNION
SELECT TimeYear, NULL, NULL, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear BETWEEN 2016 AND 2017
 GROUP BY TimeYear
UNION
SELECT NULL, NULL, NULL, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.No
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear BETWEEN 2016 AND 2017;

Example 15.11 (Oracle)

GROUP BY clause using the
GROUPING SETS operator producing
the same result as Example 15.2
SELECT StoreZip, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND StoreNation IN ('USA', 'Canada') AND TimeYear = 2016
GROUP BY GROUPING SETS((StoreZip, TimeMonth), StoreZip,
 TimeMonth, ());

26008_ch15_p585-640.indd 602 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   603

Example 15.14 depicts a situation in which the GROUPING SETS operator is
preferred to the CUBE operator. Because the TimeYear and TimeMonth columns are
from the same dimension hierarchy, a full cube usually is not warranted. Instead,

Example 15.12 (Oracle)

GROUP BY Clause using the GROUPING
SETS operator producing the same result
as Example 15.4
SELECT StoreZip, TimeYear, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear BETWEEN 2016 AND 2017
 GROUP BY GROUPING SETS((StoreZip, TimeYear, TimeMonth),
 (StoreZip, TimeMonth), (StoreZip, TimeYear),
 (TimeMonth, TimeYear), StoreZip, TimeMonth, TimeYear, ());

Example 15.13 (Oracle)

GROUP BY clause using the
GROUPING SETS operator producing
the same result as Example 15.7
SELECT TimeYear, TimeQuarter, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear BETWEEN 2016 AND 2017
 GROUP BY GROUPING SETS((TimeYear, TimeQuarter, TimeMonth),
 (TimeYear, TimeQuarter), TimeYear,());

Example 15.14 (Oracle)

GROUP BY clause using the GROUPING
SETS operator to indicate the column
combinations from which subtotals are
needed
SELECT StoreZip, TimeYear, TimeMonth, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear BETWEEN 2016 AND 2017
 GROUP BY GROUPING SETS((StoreZip, TimeYear, TimeMonth),
 (StoreZip, TimeYear), (TimeYear, TimeMonth),
 StoreZip, TimeYear, ());

26008_ch15_p585-640.indd 603 3/2/18 10:54 PM

604   Part 6  Data Warehouse Processing

the GROUPING SETS operator can be used to specify the column combina-
tions from which subtotals are needed. Subtotals involving TimeMonth with-
out TimeYear are excluded in Example 15.14 but are included in a full CUBE
operation.

15.2.4  Variations of Subtotal Operators
The CUBE, ROLLUP, and GROUPING SETS operators presented in previous
subsections provide a solid foundation for subtotals in the GROUP BY clause.
The SQL standard provides more flexibility to combine subtotals operators
and ability to identify generated subtotals. This flexibility and identification
ability can be useful in specialized situations. This subsection provides exam-
ples of subtotal variations depicted in Figure 15.14 and summarized in the
following list.

•	 Partial cube and rollup operators on a subset of grouping columns
•	 Composite columns to treat a combination of columns as a single column
•	 Nesting cube and rollup operators inside the GROUPING SETS operator
•	 Usage of subtotal identifiers to indicate the grouping level of result rows

A partial cube produces subtotals for a subset of independent columns. In Example
15.15, the clause, GROUP BY TimeMonth, CUBE(DivId, StoreZip), produces
totals on the subtotal groups <TimeMonth, DivId, StoreZip>, <TimeMonth, DivId>,
<TimeMonth, StoreZip>, and <TimeMonth>. TimeMonth concatenates with each subto-
tal group generated by the CUBE operator. For example, TimeMonth concatenates with
the grand total group generated by the CUBE operator so that the last subtotal group
contains TimeMonth.

Subtotal
variations

Partial cube and
rollup

Composite
columns

Nested subtotal
operations

Subtotal
identifiers

FIGURE 15.14
Important SQL Subtotal Variations

Example 15.15 (Oracle)

SELECT TimeMonth, DivId, StoreZip, SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear = 2016
 GROUP BY TimeMonth, CUBE(DivId, StoreZip)
 ORDER BY TimeMonth, DivId, StoreZip;

Partial CUBE example

A partial rollup produces subtotals for a subset of hierarchically related columns.
In Example 15.16, the clause, GROUP BY StoreState, ROLLUP(TimeMonth,
TimeDay), produces totals on the subtotal groups <StoreState, TimeMonth, TimeDay>,
<StoreState, TimeMonth>, and <StoreState>. StoreState concatenates with each subtotal
group generated by the ROLLUP operator. For example, StoreState concatenates with
the grand total group (empty parentheses) generated by the ROLLUP operator so that
the last subtotal group contains StoreState.

Composite columns can be used with the CUBE or ROLLUP operators to skip some
subtotal groups. In Example 15.17, the clause, GROUP BY ROLLUP(StoreNation,
(StoreState, StoreCity), produces totals on the subtotal groups <StoreNation,
StoreState, StoreCity>, <StoreNation>, and <>. The ROLLUP operation skips the subto-
tal group (StoreNation, StoreState) because the ROLLUP operator treats the composite
column (StoreState, StoreCity) as a single column.

26008_ch15_p585-640.indd 604 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   605

Nesting a cube or rollup operation inside a GROUPING SETS operation generates
different subtotals than a partial CUBE or ROLLUP operation. As previously shown, a
partial CUBE or ROLLUP operation concatenates with the other GROUP BY columns.
In contrast, concatenation does not occur when nesting a CUBE or ROLLUP operation
inside a GROUPING SETS operation.

Example 15.18 uses a nested rollup operation with a composite column. The
GROUP BY clause generates subtotals for (StoreNation, StoreState, StoreCity), StoreNa-
tion, and the grand total for the nested ROLLUP operation and TimeMonth subtotals
for the GROUPING SETS operation. TimeMonth does not concatenate with the ROL-
LUP subtotals.

Example 15.16 (Oracle)

SELECT StoreState, TimeMonth, TimeDay,
 SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear = 2016
 GROUP BY StoreState, ROLLUP(TimeMonth, TimeDay)
 ORDER BY StoreState, TimeMonth, TimeDay;

Partial ROLLUP example

Example 15.17 (Oracle)

SELECT StoreNation, StoreState, StoreCity,
 SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND TimeYear = 2016
 GROUP BY ROLLUP(StoreNation, (StoreState, StoreCity))
 ORDER BY StoreNation, StoreState, StoreCity;

Composite columns example

Example 15.18 (Oracle)

SELECT TimeMonth, StoreNation, StoreState, StoreCity,
 SUM(SalesDollar) AS SumSales
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND (StoreNation = 'USA' OR StoreNation = 'Canada')
 AND TimeYear = 2016
 GROUP BY GROUPING SETS(TimeMonth,
 ROLLUP(StoreNation, (StoreState, StoreCity)))
 ORDER BY TimeMonth, StoreNation, StoreState, StoreCity;

Nested ROLLUP example

26008_ch15_p585-640.indd 605 3/2/18 10:54 PM

606   Part 6  Data Warehouse Processing

Sometimes it is useful to distinguish subtotal groups. The GROUPING_ID func-
tion generates a hierarchical group number for each result row. For example a CUBE
of three columns generates 8 subtotal groups. The GROUPING_ID function, using the
CUBE columns, labels rows with a number from 0 to 7. Other functions are GROUP_
ID to identify duplicate subtotal rows and GROUPING to distinguish normal group-
ing rows (0) from subtotal rows (1).

Example 15.19 shows a GROUPING_ID function using three columns. It is typical
to include all grouping columns in a GROUPING_ID function although not necessary.
The GROUPING_ID function labels each row with a grouping number from 0 to 7
with 0 for the finest level of totals (StoreZip, TimeMonth, and DivId) and 7 for the grand
total. The ORDER BY sorts by GROUPING_ID to cluster rows in the same subtotal
group.

Example 15.19 (Oracle)

SELECT StoreZip, TimeMonth, DivId, SUM(SalesDollar) AS SumSales,
 GROUPING_ID(StoreZip, TimeMonth, DivId) AS Group_Level
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND StoreNation IN ('USA', 'Canada') AND TimeYear = 2016
 GROUP BY CUBE (StoreZip, TimeMonth, DivId)
 ORDER BY Group_Level;

GROUPING_ID example

The subtotal variations are specialized so actual uses are not easy to identify. The
GROUPING SETS operator provides complete control of subtotal rows so these vari-
ations do not provide additional control. However, the variations allow more com-
pact specification than GROUPING SETS when complete CUBE and ROLLUP are not
needed. Beyond these specialized situations, you can use these variations to amaze
and amuse coworkers. If you understand these variations, you have a solid under-
standing of the SQL subtotal operators.

15.3  SQL EXTENSIONS FOR ANALYTIC FUNCTIONS
Business intelligence applications typically involve analysis that combines data
retrieval and computations. The GROUP BY clause, extended with subtotal operators,
supports capabilities of data cubes but lacks capabilities for common business intel-
ligence applications. The SQL SELECT statement requires a substantial extension, not
just extensions to an individual clause.

This section covers analytic function extensions to the SQL SELECT statement to
support business intelligence applications. This section begins with motivation and
processing overview of analytic function extensions. The next three sections cover
query formulation for prominent business intelligence applications involving relative
performance, trend analysis, and quantitative contributions.

15.3.1  Motivation and Processing Overview
Business analysts use a data warehouse for business intelligence applications combin-
ing retrieval with complex computations. These applications are beyond the scope
of queries typically supported by the SQL SELECT statement. Figure 15.15 depicts
common business intelligence analysis that a data warehouse can support. Relative

26008_ch15_p585-640.indd 606 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   607

performance identifies top and worst performers by ranking business units such as
stores by sales and agents by commissions. Trend analysis depicts changes between
time periods often involving summary calculations on sliding windows such as
moving averages of security prices over a number of periods. Ratio comparisons
show top or bottom thresholds such as the top ten percent of stores by sales. In
addition, ratios show contributions to a whole such as a region’s sales as part of
total sales.

Organizations found the SQL SELECT statement inadequate to support these
common types of business intelligence analysis. Figure 15.16 depicts factors influ-
encing extensions to the SQL SELECT statement for common business intelligence
analysis. Before extensions to the SQL SELECT statement, implementing business
intelligence solutions required a complex skill set involving data retrieval, procedural
coding, and external tool usage. Organizations experienced difficulties to find individ-
uals possessing the necessary skill set. Productivity was poor for developing business
intelligence applications with complex SELECT statements and procedural coding
often required. Performance was slow with SQL compilers often developing poorly
performing plans for complex SELECT statements. In addition, complex calculations
were typically done outside of SQL statements so SQL compilers could not optimize
both data retrieval and computations.

To overcome these deficiencies, the SQL SELECT statement needed a major exten-
sion for both processing and statement specification. The processing and statement
requirements make the analytic function extension more complex than the subtotal
operator extension covered in section 15.2. Analytic functions were initially added to
SQL:1999 with major enterprise DBMS vendors now providing substantial support.
The other subsections cover major analytic functions supported by Oracle. Most enter-
prise DBMS vendors and the SQL standard support these functions along with many
other analytic functions.

Analytic functions differ from aggregate functions although both operate on
groups of rows. An analytic function computes multiple values for a groups of rows,
while an aggregate function computes a single value for a group of rows. Thus, an
analytic function preserves the number of rows in a group of rows, while an aggregate
function reduces a group of rows to a single row. Processing of analytic functions
occurs after aggregate functions so a single SELECT statement can contain both aggre-
gate functions and analytic functions.

Processing of analytic functions involves a new step after GROUP BY processing.
As depicted in Figure 15.17, analytic processing occurs after row and group process-
ing so that calculations can be performed on GROUP BY results. Many queries with
analytic functions use grouping so that analytic calculations can use summary calcu-
lations for groups of rows. Analytic function processing involves organizing results
into partitions, evaluating functions over partitions, and then ordering the partitions.
Ordering provides a criteria for an analytic function rather than arrangement of the
final result for the ORDER BY clause.

The revised processing model has three subtle points. First, processing of analytic
functions often involves partitions and grouping in the same statement. Partitioning

Analytic Function
an extension in the SQL
SELECT statement to sup-
port business intelligence
applications. An analytic
function computes multiple
values for a group of rows,
preserving the number of
rows in the group. Process-
ing of an analytic function
occurs after computing
aggregate functions used in
a GROUP BY clause.

Relative performance

Trend analysis

Ratio comparisons

FIGURE 15.15
Common Business Intelligence
Analysis

Analytic
function

extensions

Complex skill
set

Poor
productivity

Poor
performance

FIGURE 15.16
Factors influencing Analytic
Function Extensions

26008_ch15_p585-640.indd 607 3/2/18 10:54 PM

608   Part 6  Data Warehouse Processing

in analytic functions occurs after grouping and calculation of aggregate functions.
Second, ordering in analytic functions differs from ordering of a query result. Order-
ing applies to some analytic functions as a criteria. Third, the appearance of analytic
functions in a SELECT statement seems to conflict with the evaluation order. Analytic
functions appear in the SELECT clause but evaluation occurs after row and group
processing before result processing in the final step. Writing and executing SELECT
statements with analytic functions clarifies these subtle points.

15.3.2  Query Formulation for Relative Performance
Identifying top and worst performers involves functions that provide a relative order-
ing or ranking of entities. The SQL standard provides a variety of analytic functions
for ranking. This section first introduces basic syntax before covering details of promi-
nent functions for relative performance.

Before examining complete SELECT statements, you should focus just on the
basic syntax for analytic functions. The SELECT clause contains result columns and
analytic functions. Figure 15.18 shows the basic syntax of an analytic function along
with partial statement examples. The syntax of an analytic function involves an ana-
lytic function name followed by parentheses surrounding an optional list of columns.
The syntax continues with the OVER keyword followed by parentheses surrounding
optional ORDER BY keywords and an ordering specification. The ordering indicates a
criteria for function evaluation, not a final ordering of results.

Two partial examples in Figure 15.18 with the RANK function depict the basic
syntax. The RANK function does not use a ColumnList so empty parentheses are used.
The first example ranks on the ItemPrice column. The AS keyword renames the com-
puted rank column. The second example ranks on an aggregate function, the sum of
SalesDollar. The aggregate function, SUM, indicates that a complete SELECT statement
requires a GROUP BY clause.

Example 15.20 ranks items by unit price. In the statement, you should note the
RANK function with the empty parentheses, the OVER keyword, and the ORDER
BY specification inside the OVER clause. The ORDER BY clause determines ranking
by ascending order (default) of ItemUnitPrice. Sample rows indicate the values of the
RANK function with the smallest unit price (12.00) receiving the top rank (1).
Example 15.21 ranks customers by descending sum of dollar sales. Because the RANK
function uses a SUM function, the SELECT statement requires a GROUP BY clause.
The ORDER BY specification in the OVER clause indicates that customers are ranked
using the SUM function on the SalesDollar column in descending order. Thus, the first
result row with the largest sum of sales obtains the top ranking (1).

FIGURE 15.17
Extension of SELECT
Statement Processing for
Analytic Functions

Rows

• FROM
• WHERE

Groups

• GROUP
BY

• HAVING

Analytic

• Create
partitions

• Evaluate
functions

• Order
partitions

Result

• ORDER
BY

• SELECT

Syntax: <AnalyticFunction> ([<ColumnList>])

 OVER ([ORDER BY <OrderSpec>])

Partial Example 1: �RANK() OVER (ORDER BY ItemPrice) AS RankUnitPrice

Partial Example 2: �RANK() OVER (ORDER BY SUM(SalesDollar)) AS RankSales

FIGURE 15.18
Basic Syntax and Partial
Examples of Analytic
Functions

26008_ch15_p585-640.indd 608 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   609

Examples 15.20 and 15.21 use the RANK function over an entire result table. To pro-
vide rankings on multiple groups of rows, analytic functions can be applied to par-
titions, not just an entire result table. As indicated in the processing model (Figure
15.17), partitioning occurs twice in a SELECT statement with both a GROUP BY clause
and partitioning in an analytic function. This situation is common because analytic
functions are often applied to row summaries created by the GROUP BY clause. You
should remember that analytic function processing occurs after GROUP BY process-
ing with analytic functions often evaluated on row summaries generated in GROUP
BY results.

The extended syntax shown in Figure 15.19 indicates optional partitioning as
shown by square brackets surrounding the PARTITION BY keywords followed by a
partition specification. The PARTITION BY keywords followed by a list of columns
indicates that the associated analytic function is computed multiple times, once for
each set of rows in a partition. The optional ordering details follow the partition details
with no changes from the basic syntax.

Example 15.20 (Oracle)

RANK example over entire result
table and partial results
SELECT ItemId, ItemBrand, ItemUnitPrice,
 RANK() OVER (ORDER BY ItemUnitPrice) AS RankUnitPrice
 FROM Item;

ItemId ItemBrand ItemUnitPrice RankUnitPrice

I1412138 Ethlite 12.00 1

I1445671 Intersafe 14.99 2

I6677900 Connex 25.69 3

I3455443 Connex 38.00 4

Example 15.21 (Oracle)

RANK function using a SUM
function over entire result table
along with partial query results
SELECT CustName, SUM(SalesDollar) AS SumSales,
 RANK() OVER (ORDER BY SUM(SalesDollar) DESC) AS SumSalesRank
 FROM Sales, Customer
 WHERE Sales.CustId = Customer.CustId
 GROUP BY CustName;

CustName SumSales SumSalesRank

Sheri Gordon 556322 1

Wally Jones 94004 2

Jim Glussman 91100 3

Candy Kendall 90664 4

26008_ch15_p585-640.indd 609 3/2/18 10:54 PM

610   Part 6  Data Warehouse Processing

The partial example in Figure 15.19 extends example 1 in Figure 15.18 with the
PARTITION BY clause. The RANK function evaluates on sets of rows with the same
CustState value. The RANK function values start over for each CustState value. For
example, if 10 CustState values exist in the results before analytic function evaluation,
the RANK function generates 10 different rankings. A separate ranking will be deter-
mined for all rows with the same CustState value.

Example 15.22 extends Example 15.21 with partitioning. Example 15.22 ranks cus-
tomers by the sum of dollar sales with partitioning on customer state. The SELECT
statement uses the PARTITION BY keywords with the CustState column. The ORDER
BY keyword ensures that the results are sorted on CustState. Within each state, the
RANK function arranges rows by ranking value.

FIGURE 15.19
Extended Syntax and Partial
Example of an Analytic
Functions

Syntax:
 <AnalyticFunction> ([<ColumnList>])
 OVER ([PARTITION BY <PartitionSpec>] [ORDER BY <OrderSpec>])

Partial Example:
 RANK() OVER (
 PARTITION BY CustState
 ORDER BY SUM(SalesRank)) AS SalesRank

Example 15.22 (Oracle)

RANK function with partitioning on
GROUP BY result
SELECT CustState, CustName, SUM(SalesDollar) AS SumSales,
 RANK() OVER (PARTITION BY CustState
 ORDER BY SUM(SalesDollar) DESC) AS SalesRank
 FROM Sales, Customer
 WHERE Sales.CustId = Customer.CustId
 GROUP BY CustState, CustName
 ORDER BY CustState;

CustState CustName SumSales SalesRank

BC Larry Styles 50620 1

CO Sheri Gordon 556322 1

CO Jim Glussman 91100 2

CO Jerry Wyatt 87420 3

CO Mike Boren 47412 4

Oracle provides additional functions for relative performance besides RANK.
DENSE_RANK differs from RANK on duplicate values. RANK creates a gap on the
next value after duplicates. DENSE_RANK does not create gaps. For example, golf
leaderboards are typically reported using gaps. A leaderboard with -10, -9, -9, -8 dis-
plays with gaps (RANK function) as 1, 2, 2, 4. Without gaps (DENSE_RANK function),
the leaderboard displays as 1, 2, 2, 3.

The NTILE and ROW_NUMBER function are less widely used than RANK and
DENSE_RANK. The NTILE function divides rows into equal divisions. For example,
NTILE(4) divides rows into 4 divisions or quartiles. ROW_NUMBER generates a total
order of rows with row numbers 1 to the number of rows. For rows with duplicate
values, ROW_NUMBER may generate inconsistent results depending on other parts
of a statement.

26008_ch15_p585-640.indd 610 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   611

Example 15.23 demonstrates each ranking function to depict differences. Each
analytic function uses the same criteria, descending sum of unit sales. The analytic
functions evaluate over the entire GROUP BY result on customer zip code. No parti-
tioning is specified to focus just on the analytic functions.

Example 15.23 (Oracle)

Common qualitative ranking
functions on entire GROUP BY result
SELECT CustZip, SUM(SalesUnits) AS SumSalesUnits,
 RANK() OVER (ORDER BY SUM(SalesUnits) DESC) SURank,
 DENSE_RANK() OVER (ORDER BY SUM(SalesUnits) DESC) SUDenseRank,
 NTILE(4) OVER (ORDER BY SUM(SalesUnits) DESC) SUNTile,
 ROW_NUMBER() OVER (ORDER BY SUM(SalesUnits) DESC) SURowNum
 FROM Sales, Customer
 WHERE Sales.CustId = Customer.CustId
 GROUP BY CustZip;

CustZip SumSalesUnits SURank SUDenseRank SUNTile SURowNum

80129-5543 11440 1 1 1 1

98105-1093 2000 2 2 1 2

80111-0033 1960 3 3 1 3

98105-3345 1760 4 4 2 4

80222-0022 1720 5 5 2 5

98104-2211 1272 6 6 3 6

98178-3311 1272 6 6 3 7

80113-5431 1152 8 7 4 8

98103-1121 720 9 8 4 9

15.3.3  Query Formulation for Trend Analysis
After coverage of the basic and extended syntax of analytic functions as well as func-
tions for relative performance, you are ready for extensions for another prominent
type of business intelligence analysis. Trend analysis in finance and forecasting typi-
cally involves changes in numeric variables such as sales or stock prices in sets of rows
known as windows. Windows are typically defined by time intervals such as years or
months. Typical examples of window comparisons are a 90 day moving average of
stock prices, percentage annual sales growth, performance of an advertising campaign
over recent months, and cumulative sales performance for various organizational
units. Analytic function extensions for window comparisons provide easier applica-
tion development with a reduced skill set, increased software development productiv-
ity, and improved execution performance.

Before studying syntax and examples, you should understand basic window con-
cepts as summarized in Figure 15.20. A window contains a collection of rows in which
a numeric variable is calculated. A window can be specified in units of physical rows
using the ROWS keyword or logical rows using the RANGE keyword. Logical win-
dows are specified by values such as number of days. Numeric variables are calculated
in windows so that variables can be compared across windows. A cumulative window
is fixed on one end, typically the beginning and changes on the other end. A sliding
window changes on both ends.

26008_ch15_p585-640.indd 611 3/2/18 10:54 PM

612   Part 6  Data Warehouse Processing

A window specification, after ordering details, is optional for analytic func-
tions as noted in the syntax specification shown in Figure 15.21. Common sum-
mary functions such as AVG, SUM, COUNT, MIN, MAX, and VARIANCE can
be used with a window specification. The Oracle documentation provides a com-
plete list of aggregate functions that can be used with a window specification.

A window specification beginning with ROWS indicates a physical window.
For example, ROWS UNBOUNDED PRECEDING indicates a window of the cur-
rent row and all preceding rows. ROWS 2 PRECEDING indicates the current row
and the two previous rows. ROWS 3 FOLLOWING indicates the current row and
the next three rows. Logical window specifications are presented later in this
subsection.

Figure 15.22 depicts a cumulative, physical window specified as ROWS
UNBOUNDED PRECEDING. Initially, the window is just a single row. When processing
the second row, the window is the current row (second row) and previous rows (first
row). Figure 15.22 shows the window for the fifth row comprising the current row
(row 5) and the previous rows (rows 1 to 4). The arrow indicates the direction of win-
dow movement from the first row towards the last physical row. For each window, an
aggregate function such as SUM is calculated.

Example 15.24 demonstrates a SELECT statement for a cumulative physical win-
dow using the SUM function. The SELECT statement calculates the cumulative sum of
dollar sales by zip code and year over the entire result without partitioning. The win-
dow specification, ROWS UNBOUNDED PRECEDING, indicates a cumulative physical

Units

Physical
(ROWS)

Logical
(RANGE)

Movement

Cumulative

Sliding

FIGURE 15.20
Window Concepts for SQL Analytic
Functions

Syntax
 <AnalyticFunction> ([<ColumnList>])
 OVER ([PARTITION BY <PartitionSpec>] [ORDER BY <OrderSpec>]
 [<WindowSpec>])

Partial examples of window specification
 ROWS UNBOUNDED PRECEDING
 ROWS 2 PRECEDING
 ROWS 3 FOLLOWING

FIGURE 15.21
Extended Syntax and Partial
Examples for Window
Specification

Window start

Current row

Current
window

ROWS UNBOUNDED PRECEDING

1

2

3

4

5

6

7

8

9

10

11

12

Row

FIGURE 15.22
Cumulative Window
Depiction

26008_ch15_p585-640.indd 612 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   613

window. Note that window calculations involve the sum of the sum of dollar sales.
Processing of the GROUP BY clause calculates the sum of dollar sales so analytic func-
tion processing just calculates the cumulative sum of sales. For clarity, the result con-
tains both sum of sales and cumulative sales.

Example 15.24 (Oracle)

Cumulative sales by zip code and
year over the entire grouping
result along with partial result
SELECT StoreZip, TimeYear, SUM(SalesDollar) AS SumSales,
 SUM(SUM(SalesDollar)) OVER
 (ORDER BY StoreZip, TimeYear
 ROWS UNBOUNDED PRECEDING) AS CumSumSales
 FROM Store, TimeDim, Sales
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 GROUP BY StoreZip, TimeYear;

StoreZip TimeYear SumSales CumSumSales

80111-0033 2014 89572 89572

80111-0033 2015 91972 181544

80111-0033 2016 43056 224600

80111-0033 2017 133238 357838

80129-5543 2014 92360 450198

Example 15.25 extends example 15.24 with partitioning. The SELECT statement cal-
culates the cumulative sum of dollar sales by zip code and year over partitions of
store zip code values. The partitioning clause with the PARTITIONED BY keywords

Example 15.25 (Oracle)

Cumulative sales by zip code and year
with partitioning along with partial result
SELECT StoreZip, TimeYear, SUM(SalesDollar) AS SumSales,
 SUM(SUM(SalesDollar)) OVER (PARTITION BY StoreZip
 ORDER BY StoreZip, TimeYear
 ROWS UNBOUNDED PRECEDING) AS CumSumSales
 FROM Store, TimeDim, Sales
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 GROUP BY StoreZip, TimeYear;

StoreZip TimeYear SumSales CumSumSales

80111-0033 2014 89572 89572

80111-0033 2015 91972 181544

80111-0033 2016 43056 224600

80111-0033 2017 133238 357838

80129-5543 2014 92360 92360

80129-5543 2015 92260 185020

26008_ch15_p585-640.indd 613 3/2/18 10:54 PM

614   Part 6  Data Warehouse Processing

indicates that window calculation restarts for each zip code value. The window
specification, ROWS UNBOUNDED PRECEDING indicates a cumulative physical
window.

After initial coverage of cumulative physical windows specified with the ROWS
keyword (Figure 15.20), this subsection now covers sliding windows, both physical
and logical. Sliding windows, also known as moving windows, change on both ends.
Logical windows, indicated by the RANGE keyword, are specified for an ordering
variable such as shipment date or number of years. The RANGE values indicate start-
ing and ending points of a window.

To clarify logical window concepts, Figure 15.23 shows some partial examples.
These partial examples show the ordering column and the logical window specifica-
tion because a logical window specification cannot be understood without knowing
the ordering column. Logical windows require additive ordering columns, typically
columns with a DATE or INTEGER data type.

•	 Partial example 1 in Figure 15.23 indicates a cumulative window containing the
current row and rows with all previous values of TimeYear. RANGE UNBOUNDED
PRECEDING differs from ROWS UNBOUNDED PRECEDING when the current row
has the same ordering column value as the next row. For RANGE UNBOUNDED
PRECEDING the next row is included in the window while the next row is not
included for ROWS UNBOUNDED PRECEDING.

•	 Partial example 2 in Figure 15.23 defines a sliding logical window. The window
specification, RANGE 90 PRECEDING, includes the current row and rows with
HireDate in the previous 90 days. For columns with a DATE data type, the
default interval is days.

•	 Partial example 3 in Figure 15.23 defines a centered, sliding, logical window.
The window specification, RANGE BETWEEN 365 PRECEDING AND 365
FOLLOWING, includes the current row, rows within the previous 365 days of
ShipDate in the current row, and rows within the next 365 days of the current
row.

•	 Partial example 4 in Figure 15.23 uses the INTERVAL keyword to specify a
centered, sliding, logical window. The window specification in examples 3 and
example 4 differ only for leap years. Interval values must be entered as a text
value with an integer inside single quotation marks. The ordering column must
have a DATE data type when using the INTERVAL keyword. Intervals can also
be specified using the MONTH and DAY keywords.

Figure 15.24 depicts a sliding, physically centered window specified as ROWS BETWEEN
1 PRECEDING AND 1 FOLLOWING. In Figure 15.24, you should note the window for
the fifth row comprising the current row (row 5), the previous row (row 4), and the
next row (row 6). The arrows indicate the forward direction of movement for both the
start and end of the window. For each window, an aggregate function such as AVG is
calculated.

Partial example 1
 ORDER BY TimeYear RANGE UNBOUNDED PRECEDING

Partial example 2
 ORDER BY HireDate RANGE 90 PRECEDING

Partial example 3
 ORDER BY ShipDate
 RANGE BETWEEN 365 PRECEDING AND 365 FOLLOWING

Partial example 4
 ORDER BY ShipDate
 RANGE BETWEEN INTERVAL '1' YEAR PRECEDING AND
 INTERVAL '1' YEAR FOLLOWING

FIGURE 15.23
Partial Examples for Logical
Windows

26008_ch15_p585-640.indd 614 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   615

As a more complete reference, the Window Boundaries table in Figure 15.24 shows
the starting and ending rows of the window for each current row. Note that the win-
dows for first and last rows contain only two rows.

Example 15.26 demonstrates a SELECT statement for a sliding physical window
using the AVG function. The SELECT statement calculates the average of the sum of
dollar sales by zip code and year over the entire result without partitioning. The win-
dow specification, ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING, indicates a
sliding, physically-centered window.

FIGURE 15.24
Depiction of a Sliding,
Physically Centered Window

Window start
Current row
Window end

Current
window

Current
Row

Window
Start

Window
End

1 1 2

2 1 3

3 2 4

4 3 5

5 4 6

6 5

7

8

9

10

11

7

8

9

10

11

6

7

8

9

10 11

Window Boundaries
Row

1

2

3

4

5

6

7

8

9

10

11

ROWS BETWEEN 1 PRECEDING and 1 FOLLOWING

Example 15.26 (Oracle)

Moving average of sum of sales by zip and
year, and month, centered with previous
and next row along with partial results
SELECT StoreZip, TimeYear, SUM(SalesDollar) AS SumSales,
 AVG(SUM(SalesDollar)) OVER
 (ORDER BY StoreZip, TimeYear
 ROWS BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS CenterMovAvgSumSales
 FROM Store, TimeDim, Sales
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 GROUP BY StoreZip, TimeYear;

StoreZip TimeYear SumSales CenterMovAvgSumSales

80111-0033 2014 89572 90772.00

80111-0033 2015 91972 74866.67

80111-0033 2016 43056 89422.00

80111-0033 2017 133238 89551.33

80129-5543 2014 92360 106086.00

80129-5543 2015 92260 92593.33

26008_ch15_p585-640.indd 615 3/2/18 10:54 PM

616   Part 6  Data Warehouse Processing

Figure 15.25 depicts a sliding, logically centered window for ship date, specified as
RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING. Figure 15.25 shows the win-
dow for the fifth row with ship date 11/6/2017: the current row (row 5), row 4 with the
previous date (11/5/2017), and rows 6 and 7 with the next date (11/7/2017).

As a more complete reference, the Window Boundaries table in Figure 15.25
shows the starting and ending rows in the window for each current row. With dupli-
cate or missing values, a centered, logical window may not be physically centered. For
example, the window shown in Figure 15.25 is not physically centered on the current
row with starting row 4 and ending row 7. You should study the window boundaries
to see other examples of logically centered windows that are not physically centered.

Example 15.27 demonstrates a SELECT statement for a sliding, logically-centered
window using the AVG function. The SELECT statement calculates the average of

FIGURE 15.25
Depiction of a Sliding,
Logically Centered Window

Window start

Current row

Window end

Current
window

Window Boundaries
Row ShipDate

1 11 /2/2017

2 11 /3/2017

3 11 /4/2017

RANGE BETWEEN 1 PRECEDING and 1 FOLLOWING

4 11 /5/2017

5 11 /6/2017

6 11 /7/2017

7 11 /7/2017

8 11 /9/2017

9 11 /9/2017

10 11 / 10/2017

11 11 / 12 /2017

Current
Row

Window
Start

Window
End

1 1 2

2 1 3

3 2 4

4 3 5

5 4 7

6 5 7

7 5 7

108 8

109 8

1010 8

1111 11

Example 15.27 (Oracle)

Moving average of sum of sales by zip,
year, and month, centered with previous
and next logical rows along with results
SELECT TimeYear, SUM(SalesDollar) AS SumSales,
 AVG(SUM(SalesDollar)) OVER
 (ORDER BY TimeYear
 RANGE BETWEEN 1 PRECEDING AND 1 FOLLOWING) AS CenterMovAvgSumSales
 FROM Store, TimeDim, Sales
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 GROUP BY TimeYear ;

TimeYear SumSales CenterMovAvgSumSales

2014 275648 277198.00

2015 278748 261776.00

2016 230932 276691.33

2017 320394 275663.00

26008_ch15_p585-640.indd 616 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   617

sum of dollar sales by year without partitioning. The window specification, RANGE
BETWEEN 1 PRECEDING AND 1 FOLLOWING, indicates a sliding, logically-centered
window.

15.3.4  Query Formulation for Ratio Comparisons
Ratio comparisons, common in business intelligence, provide more precision than
relative performance comparisons. Ratios support quantitative evaluation of business
entities determining contribution and distribution of measures among entities. Contri-
bution ratios indicate parts of a whole such as the share of total sales for each division.
Distribution ratios specify the size of cumulative subsets as compared to the size of a
total population such as the threshold for the top 5 percent of unit sales.

Oracle provides three analytic functions for ratio comparisons as summarized in
Figure 15.26. The RATIO_TO_REPORT function computes contributions for additive
columns such as sales units. The ratios in the result sum to 1 showing the contribution
of each part to the whole. The CUME_DIST and PERCENT_RANK functions compute
distribution ratios for ordered columns such as unit prices and credit ratings. The larg-
est value of a cumulative distribution function is 1. Oracle provides two functions for
distribution ratios differing on the minimum value in the range. The CUME_DIST
function does not generate 0 as a result while PERCENT_RANK generates 0. Precise
definitions of both functions are given later in this subsection.

Examples begin with the RATIO_TO_REPORT function since it is simpler than the
distribution functions. Example 15.28 computes contribution ratios of the sum of dol-
lar sales by year and customer city with contribution ratios restarting on year. For clar-
ity, the result is ordered by year and descending sum or dollar sales. In the SELECT
statement, you should note the parameter for the RATIO_TO_REPORT function is the

FIGURE 15.26
Summary of Functions for
Ratio Comparisons• Contribution ratios for additive columns

• Ratios sum to 1

RATIO_TO_REPORT

• Distribution ratios for ordered columns
• Maximum value of 1
• Di�er slightly on range and formula

CUME_DIST and PERCENT_RANK

Example 15.28 (Oracle)

Contribution ratio on sum of dollar sales by
year and customer city, partitioned on year,
and result ordered by year and descending
sum of sales along with partial results
SELECT TimeYear, CustCity, SUM(SalesDollar) AS SumSales,
 RATIO_TO_REPORT(SUM(SalesDollar))
 OVER (PARTITION BY TimeYear) AS SumSalesRatio
 FROM Customer, Sales, TimeDim
 WHERE Sales.CustId = Customer.CustId
 AND Sales.TimeNo = TimeDim.TimeNo
 GROUP BY TimeYear, CustCity
 ORDER BY TimeYear, SUM(SalesDollar) DESC;

26008_ch15_p585-640.indd 617 3/2/18 10:54 PM

618   Part 6  Data Warehouse Processing

SUM function of SalesDollar. Unlike other analytic functions presented in this section,
an ordering inside the OVER clause cannot be specified. However, a partitioning can
be specified in the PARTITION BY clause.

To understand examples with analytic functions for cumulative distribution, you
need some basic probability background. A cumulative distribution determines the
cumulative probability for each x value, the probability that a random or chance vari-
able is less than or equal to a specified x value. Figure 15.27 displays the cumulative
distribution for highest average salaries. Starting pension amounts for public employ-
ees are based on their highest average salaries. This data comes from several studies
about public employee retirees in Colorado from 2001 to 2006. Looking at the graph
carefully, you can see that about half of the observations have a highest average salary
of less than or equal to $54,711.

The Oracle functions for cumulative distribution differ slightly on formulas for
cumulative probabilities and result range as depicted in Figure 15.28. In the numerator,
CUME_DIST uses the number of preceding rows inclusive of the specified row, while
PERCENT_RANK uses rank minus 1. In the denominator, CUME_DIST uses the total
number of rows (N), while PERCENT_RANK uses the number of rows minus 1 (N-1).
For the result range, CUME_DIST generates probabilities greater than 0 to 1, while
PERCENT_RANK generates probabilities inclusive between 0 and 1. In the cumu-
lative distribution of highest average salaries (Figure 15.27), CUME_DIST(54,950) is
0.50987 (801/1571), while PERCENT_RANK(54,950) is 0.50955 (800/1570).

Example 15.29 demonstrates the cumulative distribution functions (PERCENT_
RANK and CUME_DIST) for item unit prices. To help verify calculations, the result
also shows RANK and ROW_NUMBER function values. You can easily compute val-
ues for the cumulative distribution functions as the result contains 10 rows.

TimeYear CustCity SumSales SumSalesRatio

2014 Littleton 138838 0.5037

2014 Seattle 68032 0.2468

2014 Denver 44380 0.1610

2014 Vancouver 12490 0.0453

2014 Englewood 11908 0.0453

2015 Littleton 141638 0.5081

2015 Seattle 68532 0.2459

2015 Denver 44380 0.1592

2015 Vancouver 12290 0.0441

2015 Englewood 11908 0.0427

1

P
ro

ba
bi

lit
y

0.8

0.9

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

$0.00 $20,000.00 $40,000.00

Highest Average Salary

Cumulative Distribution for Highest Average Salaries

$60,000.00 $80,000.00 $100,000.00 $120,000.00 $140,000.00

FIGURE 15.27
Cumulative Distribution
Graph

26008_ch15_p585-640.indd 618 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   619

FIGURE 15.28
Summary of Cumulative
Distribution Functions• rows preceding inclusive / N

• Result range: >0 to 1

CUME_DIST

• (rank -1) / (N-1)
• Result range: ≥0 to 1

PERCENT_RANK

Example 15.29 (Oracle)

Cumulative distribution functions on
item unit price along with the result table
SELECT ItemName, ItemUnitPrice,
 RANK() OVER (ORDER BY ItemUnitPrice) As RankUP,
 PERCENT_RANK() OVER (ORDER BY ItemUnitPrice) As PerRankUP,
 ROW_NUMBER() OVER (ORDER BY ItemUnitPrice) As RowNumUP,
 CUME_DIST() OVER (ORDER BY ItemUnitPrice) As CumDistUP
 FROM Item;

ItemName ItemUnitPrice RankUP PerRankUP RowNumUP CumDistUP

Cable 12.00 1 0.000 1 0.100

Surge Protector 14.99 2 0.111 2 0.200

Black Cartridge 25.69 3 0.222 3 0.300

Color Cartridge 38.00 4 0.333 4 0.400

Battery Backup 89.00 5 0.444 5 0.500

CVP Printer 99.00 6 0.555 6 0.600

17 inch Monitor 169.00 7 0.666 7 0.700

Color Scanner 199.99 8 0.777 8 0.800

19 inch Monitor 319.00 9 0.888 9 0.900

Color Laser 699.00 10 1.000 10 1.000

Example 15.30 demonstrates handling of equal values by the cumulative distribution
functions. To help verify calculations, the RANK and ROW_NUMBER function values
are also shown. The SELECT statement uses the cumulative distribution functions for
the sum of unit sales by customer name. You can easily compute values for the cumu-
lative distribution functions as the result contains nine rows.

Example 15.31 demonstrates a more useful statement to retrieve top perform-
ers. The SELECT statement uses the CUME_DIST function for item unit price. The
result should contain the items in the top 30 percent of the largest unit prices. The
SELECT statement uses a nested query in the FROM clause because analytic func-
tions cannot be tested in the WHERE or HAVING clauses. The nested query gener-
ates the computed cumulative distribution column so that a WHERE condition can
reference it in the outer query. The nested query in the FROM clause is surrounded
by parentheses.

26008_ch15_p585-640.indd 619 3/2/18 10:54 PM

620   Part 6  Data Warehouse Processing

Example 15.30 (Oracle)

Demonstrate handling of duplicate values
in cumulative distribution functions on sum
of sales units grouped by customer name
SELECT CustName, SUM(SalesUnits) AS SumSalesUnits,
 RANK() OVER (ORDER BY SUM(SalesUnits)) AS RankSU,
 PERCENT_RANK() OVER (ORDER BY SUM(SalesUnits)) AS PerRankSU,
 ROW_NUMBER() OVER (ORDER BY SUM(SalesUnits)) As RowNumSU,
 CUME_DIST() OVER (ORDER BY SUM(SalesUnits)) AS CumDistSU
 FROM Sales, Customer
 WHERE Sales.CustId = Customer.CustId
 GROUP BY CustName;

CustName SumSalesUnits RankSU PerRankSU RowNumSU CumDistSU

Beth Taylor 720 1 0.000 1 0.111

Mike Boren 1152 2 0.115 2 0.222

Betty Wise 1272 3 0.250 3 0.444

Larry Styles 1272 3 0.250 4 0.444

Jerry Wyatt 1720 5 0.500 5 0.555

Candy Kendall 1760 6 0.625 6 0.666

Jim Glussman 1960 7 0.750 7 0.777

Wally Jones 2000 8 0.875 8 0.888

Sheri Gordon 11440 9 1.000 9 1.000

Example 15.31 (Oracle)

Demonstrate retrieval of top
performers using the CUME_DIST
function in a nested query
SELECT ItemName, ItemBrand, ItemUnitPrice, CumDistUP
 FROM (SELECT ItemId, ItemName, ItemBrand, ItemUnitPrice,
 CUME_DIST()
 OVER (ORDER BY ItemUnitPrice DESC) As CumDistUP
 FROM Item)
 WHERE CumDistUnitPrice <= 0.3;

ItemName ItemBrand ItemUnitPrice CumDistUP

Color Laser Connex 699.00 0.100

19 inch Monitor ColorMeg, Inc. 319.00 0.200

Color Scanner UV Components 199.99 0.300

You should note that analytic functions for ratio comparisons use measures with
numeric columns. The RATIO_TO_REPORT function computes contributions of addi-
tive measures to an overall total. The cumulative distribution functions show cumula-
tive probabilities of ordered columns.

26008_ch15_p585-640.indd 620 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   621

To support queries involving large fact tables, relational DBMSs provide materialized
views. A materialized view is a stored view that must be periodically synchronized
with its source data. Materialized views are attractive in data warehouses because fact
tables are stable except for periodic refreshments typically performed during nonpeak
times. In contrast, traditional (non materialized) views dominate operational database
processing because transaction tables can be extremely volatile with high refresh cost.
Along with materialized views, most relational DBMSs support automatic substitu-
tion of materialized views for source tables in a process known as query rewriting.

The first two parts of this section depict materialized views using the Oracle syn-
tax and provides examples of the query rewriting process. The last part of this section
covers storage and optimization technologies, extending coverage in Chapter 8.

15.4.1  Materialized Views in Oracle
As a context for materialized definition and usage, this subsection compares traditional
views (covered in Chapter 10) and materialized views. Figure 15.29 provides a con-
venient comparison. Like a traditional view, a materialized view involves a SELECT
statement so it can contain any content of a database, not just row and column subsets.
Unlike a traditional view, materialized views provide performance improvement in
query intensive environments, not simplification. Materialized views are invisible to
users in contrast to direct usage of traditional views. Performance improvements from
materialized views involve substantial processing and difficult design choices in con-
trast to relatively simple processing and design choices for traditional views.

Specification of a materialized view in Oracle involves storage properties, map-
ping details, and materialization properties unique for materialized views. Because
materialized views are stored, most of the storage properties for base tables can also be
specified for materialized views. Since storage properties are not the focus here, they
will not be depicted. The mapping specification is the same for traditional views as for
materialized views. A SELECT statement provides the mapping necessary to populate
a materialized view. The following list summarizes materialization properties.

•	 Method of refresh (incremental or complete): Oracle has a number of restrictions
on the types of materialized views that can be incrementally refreshed so
incremental refreshment is not presented.

•	 Refresh timing (on demand or on commit): For the on demand option, Oracle
provides the DBMS_MView package with several refresh procedures (Refresh,
Refresh_All_MViews, Refresh_Dependent) to specify refresh timing details.

•	 Build timing (immediate or deferred): For the deferred option, the refresh
procedures in the DBMS_MView package can be used to specify the details of
populating a materialized view.

Materialized View
a stored view that must be
periodically synchronized
with its source data. Material-
ized views support storage
of summarized data for fast
query response.

15.4  SUMMARY DATA MANAGEMENT AND OPTIMIZATION

Traditional views
•Derived when used
•Simplification
•Visible
•Simple processing

Materialized views
•Stored and periodically refreshed
•Performance improvements
•Invisible
•Substantial processing

FIGURE 15.29
Summary of Traditional Views
and Materialized Views

26008_ch15_p585-640.indd 621 3/2/18 10:54 PM

622   Part 6  Data Warehouse Processing

Examples 15.32 to 15.34 depict the syntax of the CREATE MATERIALIZED VIEW
statement. These statements appear similar to CREATE VIEW statements except for
the materialization clauses. The build timing is immediate in Examples 15.32 and
15.34, while the build timing is deferred in Example 15.33. The refresh method is com-
plete and the refresh timing is on demand in all three materialized views. The SELECT
statement following the AS keyword provides the mapping to populate a material-
ized view.

Example 15.32 (Oracle)

Materialized view containing sales for all
countries for years after 2014 grouped by
state and year
CREATE MATERIALIZED VIEW MV1
BUILD IMMEDIATE
REFRESH COMPLETE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT StoreState, TimeYear, SUM(SalesDollar) AS SUMDollar1
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND TimeYear > 2014
 GROUP BY StoreState, TimeYear;

Example 15.33 (Oracle)

Materialized view containing USA sales in
all years grouped by state, year, and month
CREATE MATERIALIZED VIEW MV2
BUILD DEFERRED
REFRESH COMPLETE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT StoreState, TimeYear, TimeMonth,
 SUM(SalesDollar) AS SUMDollar2
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND StoreNation = 'USA'
 GROUP BY StoreState, TimeYear, TimeMonth;

Example 15.34 (Oracle)

Materialized view containing Canadian sales
before 2015 grouped by city, year, and month
CREATE MATERIALIZED VIEW MV3
BUILD IMMEDIATE
REFRESH COMPLETE ON DEMAND
ENABLE QUERY REWRITE AS

26008_ch15_p585-640.indd 622 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   623

User awareness is an important difference between traditional views and mate-
rialized views. For queries using operational databases, traditional views simplify
query formulation by replacing base tables in queries. A user perceives a database as a
view shielding a user from the complexities of base tables. In contrast, data warehouse
queries use fact and dimension tables although traditional views may also hide the
complexity of a data warehouse design. In addition, fact and dimension tables may be
hidden through a query tool to simplify query formulation. However, data warehouse
users are unaware of materialized views as a DBMS uses materialized views internally
to improve performance.

Processing of materialized views involves query rewrite, design, and refresh as
summarized in Figure 15.30. The query rewriting process substitutes materialized
views for base tables to improve performance of queries. The next section covers
details of query rewriting. Design involves selection of the best set of materialized
views for a given workload. Evaluation of sets of candidate materialized views uses
query rewriting and cost estimates from an optimizing SQL compiler. Some enter-
prise DBMSs provide design tools to help select the best set of materialized views.
Refreshing materialized views usually occurs after transformation and loading. The
frequency and schedule of refreshing materialized views is part of refresh process
management. Some enterprise DBMSs provide tools to manage details about refresh-
ing materialized views.

15.4.2  Query Rewriting Principles
The query rewriting process for materialized views reverses the query modification
process for traditional views presented in Chapter 10. Recall that the query modifica-
tion process (Figure 15.31) substitutes base tables for views so that materialization
of the views is not needed. In contrast, the query rewriting process (Figure 15.32)

Query Rewriting
a substitution process in
which a materialized view
replaces references to fact
and dimension tables in a
query. An optimizing com-
piler evaluates whether a
substitution will improve per-
formance over the original
query without the material-
ized view substitution.

SELECT StoreCity, TimeYear, TimeMonth,
 SUM(SalesDollar) AS SUMDollar3
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND StoreNation = 'Canada'
 AND TimeYear <= 2014
 GROUP BY StoreCity, TimeYear, TimeMonth;

Query
Rewrite

•Match query to
 MVs
•Evaluate
 rewritten query

Design

•Specify workload
•Search large space
•Evaluate choices

Refresh
•Frequency
•Method

FIGURE 15.30
Summary of Processing for
Materialized Views

26008_ch15_p585-640.indd 623 3/2/18 10:54 PM

624   Part 6  Data Warehouse Processing

Modify SQL Engine
Query V Query B Results

QueryV: query that references a view

QueryB: modification of QueryV such that references to the view are
replaced by references to base tables.

Base
tables

FIGURE 15.31
Process Flow of View
Modification

Rewrite SQL Engine
Query FD Query MV

Results

QueryFD: query that references fact and dimension tables

QueryMV: rewrite of QueryFD such that materialized views are
substituted for fact and dimension tables whenever justified by
expected performance improvements.

MVs,
base
tables

FIGURE 15.32
Process Flow of Query
Rewriting

substitutes materialized views for fact and dimension tables to avoid accessing large
fact and dimension tables. The substitution process is only performed if performance
improvements are expected.

Overall, query rewriting is more complex than query modification because query
rewriting involves a more complex substitution process and requires an optimizing
compiler to evaluate costs. In both processes, a DBMS, not a user, performs the sub-
stitution process. In the query rewriting process, an optimizing compiler evaluates
whether the substitution will improve performance over the original query. In the
query modification process, an optimizing compiler does not compare the cost of the
modified query to the original query because modification usually provides substan-
tial performance improvement.

Query Rewriting Details  Query rewriting involves a matching process between a
query using fact and dimension tables and a collection of materialized views contain-
ing summary data. In brief, a materialized view can provide data for a query if the
materialized view matches components of a SELECT statement as explained in the
following list and summarized in Table 15-2.

•	 Row condition match: materialized view rows specified in its WHERE clause must
contain query rows defined by its WHERE clause. Rewrite is not possible if a
materialized view contains more restrictive conditions than a query. Rewrite is
possible if the conditions in a query are at least as restrictive as a materialized
view. For example, if a materialized view has the conditions StoreNation = 'USA'
AND TimeYear = 2016, but a query only has the condition StoreNation = 'USA',
the materialized view cannot provide data for the query because the conditions
in the materialized view are more restrictive.

•	 Grouping match for level of detail: Grouping columns in a materialized view
must contain grouping columns in a query. Rewrite is not possible if a grouping
column in a query is not contained in a materialized view. For example, a query

26008_ch15_p585-640.indd 624 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   625

with a grouping on TimeYear and TimeMonth cannot use a materialized view
with a grouping on TimeYear. However, a materialized view with grouping
on TimeYear and TimeMonth can be rolled up to provide data for a query with
grouping on TimeYear.

•	 Grouping dependencies: if a column in a query does not appear in a materialized
view, rewrite is still possible if a functional dependency derives the column.
Primary keys, candidate keys, and dimension dependencies (via the
DETERMINES clause in the Oracle CREATE DIMENSION statement) provide
functional dependencies. For example, a query with a grouping on StoreCity
can be derived from a materialized view with a grouping on StoreId because
StoreId → StoreCity. Joins can be used to retrieve columns in a query but not in
a materialized view as long as there is a functional relationship (usually a 1-M
relationship) connecting the tables.

•	 Aggregate match: aggregates in the query must match available aggregates in
the materialized view or be derivable from aggregates in the materialized view.
For example, a query containing average is derivable from a materialized view
containing sum and count.

Example 15.35 presents an example data warehouse query and the rewritten
query to depict the matching process. Table 15-3 depicts matching between MV1 and
the query in Example 15.35. MV1 and the query match directly on the grouping col-
umns and aggregate computations. The condition on TimeYear (> 2014) in MV1 con-
tains the query condition (2016). In addition, the query contains an extra condition on

TABLE 15-2
Summary of Matching
Requirements for Query
Rewriting

Matching Type Requirements

Row conditions Materialized view rows specified by its WHERE clause must contain the query
rows defined by its WHERE clause.

Grouping detail Grouping columns in a materialized view must contain grouping columns in a
query or derivable by a functional dependency.

Grouping dependencies Query columns must match or be derivable by functional dependencies involv-
ing materialized view columns.

Aggregate functions Query aggregate functions must match or be derivable from materialized view
aggregate functions.

Example 15.35

Data warehouse query and rewritten
query using the MV1 materialized view
-- Data warehouse query
SELECT StoreState, TimeYear, SUM(SalesDollar)
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND StoreNation IN ('USA','Canada')
 AND TimeYear = 2016
 GROUP BY StoreState, TimeYear;

-- Query Rewrite: replace Sales and TimeDim tables with MV1
SELECT DISTINCT MV1.StoreState, TimeYear, SumDollar1
 FROM MV1, Store
 WHERE MV1.StoreState = Store.StoreState
 AND TimeYear = 2016
 AND StoreNation IN ('USA','Canada');

26008_ch15_p585-640.indd 625 3/2/18 10:54 PM

626   Part 6  Data Warehouse Processing

StoreNation. The materialized view result does not need to contain StoreNation because
StoreState → StoreNation. Grouping is not necessary in the rewritten query because
identical grouping is already performed in MV1. The DISTINCT keyword removes
duplicate state values in the result because the Store table has multiple rows with the
same state value.

Example 15.36 presents a more complex example of query rewriting involving
three SELECT blocks combined using the UNION operator. Table 15-4 depicts match-
ing between the materialized views (MV1, MV2, MV3) and the query in Example 15.36.
The first query block retrieves the total sales in the United States or Canada from 2014
to 2017. The second query block retrieves the USA store sales in 2014. The third query
block retrieves Canadian store sales in 2014. The GROUP BY clauses are necessary in
the second and third query blocks to roll-up the finer level of detail in the material-
ized views. In the third query block, the condition on StoreNation is needed because
some cities have identical names in both countries. The materialized view results do
not need to contain StoreNation because StoreState → StoreNation. The DISTINCT key-
word in the first and third query blocks removes duplicate state values in the result
because the Store table has multiple rows with the same state value.

TABLE 15-3
Matching between
Materialized View and
Example 15.35

Materialized View Query

Grouping StoreState, TimeYear StoreState, TimeYear

Conditions TimeYear > 2014 TimeYear = 2016
StoreNation = ('USA', 'Canada')

Aggregates SUM(SalesDollar) SUM(SalesDollar)

Example 15.36

Data Warehouse Query and Rewritten
Query using the MV1, MV2, and
MV3 Materialized Views
-- Data warehouse query
SELECT StoreState, TimeYear, SUM(SalesDollar)
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND StoreNation IN ('USA','Canada')
 AND TimeYear BETWEEN 2014 and 2017
 GROUP BY StoreState, TimeYear;

-- Query Rewrite
SELECT DISTINCT MV1.StoreState, TimeYear, SumDollar1 AS StoreSales
 FROM MV1, Store
 WHERE MV1.StoreState = Store.StoreState
 AND TimeYear <= 2017 AND StoreNation IN ('USA','Canada')
UNION
SELECT StoreState, TimeYear, SUM(SumDollar2) as StoreSales
 FROM MV2
 WHERE TimeYear = 2014
 GROUP BY StoreState, TimeYear
UNION
SELECT DISTINCT StoreState, TimeYear, SUM(SumDollar3) as StoreSales
 FROM MV3, Store
 WHERE MV3.StoreCity = Store.StoreCity
 AND TimeYear = 2014 AND StoreNation = 'Canada'
 GROUP BY StoreState, TimeYear;

26008_ch15_p585-640.indd 626 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   627

Example 15.37 extends Example 15.36 with a CUBE operator. In the rewritten
query, the CUBE is performed one time at the end rather than in each SELECT block.
To perform the CUBE one time, the FROM clause should contain a nested query. An
alternative to the nested query in the FROM clause is to place the nested query in a
separate CREATE VIEW statement.

TABLE 15-4
Matching between
Materialized Views and
Example 15.36

MV1 MV2 MV3 Query

Grouping StoreState,
TimeYear

StoreState,
TimeMonth, TimeYear

StoreCity, TimeMonth,
TimeYear

StoreState, TimeYear

Conditions TimeYear > 2014 StoreNation = 'USA' TimeYear <= 2014
StoreNation = 'Canada'

TimeYear BETWEEN
2014 AND 2017
StoreNation IN ('USA',
'Canada')

Aggregates SUM(SalesDollar) SUM(SalesDollar) SUM(SalesDollar) SUM(SalesDollar)

Example 15.37

Data warehouse query and rewritten
query using MV1, MV2, and MV3
-- Data warehouse query
SELECT StoreState, TimeYear, SUM(SalesDollar)
 FROM Sales, Store, TimeDim
 WHERE Sales.StoreId = Store.StoreId
 AND Sales.TimeNo = TimeDim.TimeNo
 AND StoreNation IN ('USA','Canada')
 AND TimeYear BETWEEN 2014 and 2017
 GROUP BY CUBE(StoreState, TimeYear);

-- Query Rewrite
SELECT StoreState, TimeYear, SUM(StoreSales) as SumStoreSales
 FROM (
 SELECT DISTINCT MV1.StoreState, TimeYear, SumDollar1 AS StoreSales
 FROM MV1, Store
 WHERE MV1.StoreState = Store.StoreState
 AND TimeYear <= 2017
 AND StoreNation IN ('USA','Canada')
 UNION
 SELECT StoreState, TimeYear, SUM(SumDollar2) as StoreSales
 FROM MV2
 WHERE TimeYear = 2014
 GROUP BY StoreState, TimeYear
 UNION
 SELECT DISTINCT StoreState, TimeYear, SUM(SumDollar3) as StoreSales
 FROM MV3, Store
 WHERE MV3.StoreCity = Store.StoreCity
 AND TimeYear = 2014 AND StoreNation = 'Canada'
 GROUP BY StoreState, TimeYear)
GROUP BY CUBE(StoreState, TimeYear);

These examples indicate the range of query rewriting possibilities rather than
capabilities of actual DBMSs. Most enterprise DBMSs support query rewriting, but
the range of query rewriting support varies. Because of the complexity and the propri-
etary nature of query rewriting, the details of query rewriting algorithms are beyond
the scope of this textbook.

26008_ch15_p585-640.indd 627 3/2/18 10:54 PM

628   Part 6  Data Warehouse Processing

15.4.3  Storage and Optimization Technologies
Several storage technologies have been developed to support multidimensional data
capabilities in OLAP servers and enterprise DBMSs. In addition to storage technolo-
gies, DBMS vendors have developed data warehouse appliances, complete hardware
and software solutions for deploying enterprise level data warehouses. This section
describes features of storage technologies along with details about vendor offerings of
data warehouse appliances.

MOLAP (Multidimensional OLAP)  Originally, vendors of business intelligence
software developed a storage architecture that directly manipulates data cubes. This
storage architecture, known as MOLAP for Multidimensional OLAP, was the only
choice as a storage technology for data warehouses until the mid-1990s. At the cur-
rent time, MOLAP has been eclipsed as the primary storage architecture for data
warehouses, but it still is an important technology for summary data cubes, small data
warehouses, and data marts.

MOLAP storage engines directly manipulate stored data cubes as depicted in
Figure 15.33. The storage engines of MOLAP systems are optimized for the unique
characteristics of multidimensional data such as sparsity and complex aggregation
across thousands of cells. Because data cubes are precomputed, MOLAP query perfor-
mance is generally better than competing approaches that use relational database stor-
age. Even with techniques to deal with sparsity, MOLAP engines can be overwhelmed
by the size of data cubes. A fully calculated data cube may expand many times as
compared to the raw input data. This data explosion problem limits the size of data
cubes that MOLAP engines can manipulate.

ROLAP (Relational OLAP)  Because of potential market size and growth of data
warehouse processing, vendors of relational DBMSs have extended their products
with additional features to support operations and storage structures for multidimen-
sional data. These product extensions are collectively known as ROLAP for Relational
OLAP. Given the growing size of data warehouses and the intensive research and
development by relational DBMS vendors, it was only a matter of time before ROLAP
became the dominant storage engine for data warehouses.

In the ROLAP approach, relational databases store multidimensional data using
the star schema or its variations as depicted in Figure 15.33. Data cubes are dynami-
cally constructed from fact and dimension tables as well as from materialized views.
Typically, only a subset of a data cube must be constructed as specified in a user’s
query. Extensions to SQL as described in section 15.2 allow users to manipulate the
dimensions and measures in virtual data cubes.

ROLAP engines incorporate a variety of storage and optimization techniques for
summary data retrieval. This list explains the most prominent techniques:

MOLAP
a storage engine that
directly stores and manipu-
lates data cubes. MOLAP
engines generally offer the
best query performance but
place limits on the size of
data cubes.

ROLAP
relational DBMS extensions
to support multidimensional
data. ROLAP engines sup-
port a variety of storage and
optimization techniques for
summary data retrieval.

Dim1

Fact1

MVs

CubesDim1

Fact1 MVs

Cubes

ROLAP HOLAP MOLAP

QueryPerformance
Low Medium High

Storage Capacity
High Medium Low

FIGURE 15.33
Summary of Storage
Architectures for Data
Warehouses

26008_ch15_p585-640.indd 628 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   629

•	 Bitmap join indexes (see Chapter 8 for details) are particularly useful for columns
in dimension tables with few values such as CustState. A bitmap join index
provides a precomputed join from the values of a dimension table to the rows
of a fact table. To support snowflake schemas, some DBMS vendors support
bitmap join indexes for dimension tables related to other dimension tables. For
example, a bitmap index for the Division.DivManager column has an index record
that contains a bitmap for related rows of the Store table and a second bitmap for
rows of the Sales table related to matching rows of the Store table.

•	 Columnstore indexes (see Chapter 8 for details) provide substantial performance
improvements for grouping queries performing calculations on relatively few
columns in large fact tables with millions of rows.

•	 Star join query optimization uses bitmap join indexes on dimension tables to
reduce the number of rows in a fact table to retrieve. A star join involves a fact
table joined with one or more dimension tables. Star join optimization involves
three phases. In the first phase, the bitmap join indexes on each dimension table
are combined using the union operator for conditions connected by the OR
operator and the intersection operator for conditions connected by the AND
operator. In the second phase, the bitmaps resulting from the first phase are
combined using the intersection operator. In the third phase, the rows of the fact
table are retrieved using the bitmap resulting from the second phase. Star join
optimization can result in substantially reduced execution time as compared to
traditional join algorithms that combine two tables at a time.

•	 Query rewriting using materialized views can eliminate the need to access large
fact and dimension tables. If materialized views are large, they can be indexed
to improve retrieval performance. Query rewriting uses an optimizing compiler
to evaluate the benefit of using materialized views as compared to the fact and
dimension tables.

•	 Summary storage advisors determine the best set of materialized views that should
be created and maintained for a given query workload. For consistency with
other components, the summary advisor is integrated with the query rewriting
component and optimizing query compiler.

•	 Partitioning, striping, and parallel query execution provide opportunities to reduce
the execution time of data warehouse queries. The choices must be carefully
studied so that the use of partitioning and striping support the desired level of
parallel query execution.

Despite intensive research and development on ROLAP storage and optimization tech-
niques, MOLAP engines still provide faster query response time. However, MOLAP
storage suffers from limitations in data cube size so that ROLAP storage is necessary
for fine-grained data warehouses. In addition, the difference in response time has
narrowed so that ROLAP storage may involve only a slight performance penalty if
ROLAP storage and optimization techniques are properly utilized.

HOLAP (Hybrid OLAP)  Because of the tradeoffs between MOLAP and ROLAP, a
third technology known as HOLAP for Hybrid OLAP has been developed to combine
ROLAP and MOLAP. HOLAP supports division of a data warehouse between relation-
al storage of fact and dimension tables and multidimensional storage of summary data
cubes as depicted in Figure 15.33. When an OLAP query is submitted, the HOLAP sys-
tem can combine data from the ROLAP managed data and the MOLAP managed data.

Despite the appeal of HOLAP, it has potential disadvantages that may limit its
use. First, HOLAP can be more complex than either ROLAP or MOLAP, especially if
a DBMS vendor does not provide full HOLAP support. To fully support HOLAP, a
DBMS vendor must provide both MOLAP and ROLAP engines as well as tools to com-
bine both storage engines in the design and operation of a data warehouse. Second,
there is considerable overlap in functionality between the storage and optimization
techniques in ROLAP and MOLAP engines. It is not clear whether the ROLAP storage

HOLAP
a storage engine for data
warehouses that combines
ROLAP and MOLAP storage
engines. HOLAP involves
both relational and multidi-
mensional data storage as
well as combining data from
both relational and multidi-
mensional sources for data
cube operations.

26008_ch15_p585-640.indd 629 3/2/18 10:54 PM

630   Part 6  Data Warehouse Processing

and optimization techniques should be discarded or used in addition to the MOLAP
techniques. Third, because the difference in response time has narrowed between
ROLAP and MOLAP, the combination of MOLAP and ROLAP may not provide sig-
nificant performance improvement to justify the added complexity.

Data Warehouse Appliances and Cloud Solutions  Data warehouse appliances
provide prepackaged solutions for operating a data warehouse using various storage
technologies and optimization methods. A data warehouse appliance is a combina-
tion of hardware and software components for rapid deployment and transparent
operation of data warehouses. The components typically include an operating system,
a DBMS, server hardware, and storage devices. Early appliances emphasized propri-
etary components but the trend now is for more open and industry standard compo-
nents especially commodity hardware and open source operating systems.

Data warehouse appliances offer the promise of increased performance, reduced
maintenance costs, and improved scalability. Most appliance products provide par-
allel database processing (see Chapter 18) and other performance enhancements to
improve both query and refresh processing. Performance improvement is partially
due to dedicated components and tuning for data warehouse processing without com-
promise for other types of processing. Vendors have designed data warehouse appli-
ances for rapid deployment and transparent operation. Organizations have reported
lower staffing costs for data warehouse administrators due to less performance tuning
and monitoring. The performance and maintenance benefits are especially important
as data warehouse processing loads increase. Vendors have designed data warehouse
appliances for scalability with relatively easy addition of components as loads increase.

Data warehouse appliances lack flexibility. An organization purchasing a data
warehouse appliance commits to a proprietary solution with limited flexibility for
design changes. Using a data warehouse appliance often means redeploying a data
warehouse to a new environment with potential migration costs.

The market for data warehouse appliances has stagnated due to emphasis on flex-
ibility and customized solutions. Major DBMS vendors continue to offer data ware-
house appliances as shown in Table 15-5, but innovation in these products has slowed.
These offerings are becoming niche products for organizations willing to sacrifice flex-
ibility for turnkey solutions.

Cloud base solutions for data warehouse deployment provide flexibility lacking
in data warehouse appliances. Major DBMS vendors, major web service providers
(Google and Amazon), and specialized vendors provide cloud solutions for data ware-
house deployment. Cloud solutions differ widely from external hosting of a vendor’s
data warehouse products to complete new solutions only available in a cloud service.
For example, IBM, Microsoft, Oracle, and Teradata manage cloud-enabled versions
of their base products. Amazon, Google, and Snowflake offer new data warehouse
solutions designed only for cloud deployment. The market seems poised for growth
of flexible, cloud solutions compared to rigid data warehouse appliances. However,
traditional local hosting of data warehouse solutions should continue to dominate for
many years over cloud solutions and appliances.

Data Warehouse Appliance
a prepackaged solu-
tion for operating a data
warehouse using various
storage technologies and
optimization methods. A
data warehouse appliance is
a combination of hardware
and software components
for rapid deployment and
transparent operation of
data warehouses.

TABLE 15-5
Major Offerings of Data
Warehouse Appliances

Company Products Notes

Microsoft Parallel Data Warehouse, Fast Track Data
Warehouse

Alliances with HP and Dell

IBM PureData System Variety of product offerings for a range
of data warehouse and business analytic
needs

TeraData Teradata Data Warehouse Appliance 2800 Alliance with Intel

Oracle Oracle Exadata Intelligent Warehouse
Solution

Variety of configurations for both data
warehouse and transaction processing

26008_ch15_p585-640.indd 630 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   631

This chapter extended the conceptual background and skills foundation provided in
Chapters 12 to 14 with detailed coverage of query formulation and summary data
management. Online Analytic Processing (OLAP) for multidimensional databases
occupies an important niche in many organizations, providing the foundation of
query formulation by business analysts. The first part of this chapter covered Micro-
soft Multidimensional Expressions (MDX), the de facto standard for OLAP databases
along with pivot table tools providing a convenient interface for MDX data cubes. The
MDX coverage in this chapter extended conceptual material about multidimensional
data representation in Chapter 13.1.

Because relational DBMSs provide efficient management and powerful query
formulation for large databases, relational DBMSs provide the foundation for most
enterprise data warehouses. For querying data warehouses implemented as relational
databases, extensions to the SQL SELECT statement were specified in the SQL standard
and implemented by major DBMS vendors. The second part of this chapter presented
extensions to the GROUP BY clause for subtotal calculations, important when sum-
marizing multidimensional data. Details about the CUBE, ROLLUP, and GROUPING
SETS operators were shown to extend query formulation skills for multidimensional
data in star schemas. The third part of this chapter presented SQL extensions for com-
mon types of business intelligence applications. These analytic function extensions
involve an additional processing step for SELECT statements and syntax revisions in
the SQL SELECT statement. The third part of this chapter covered analytic functions
for relative performance of business units, trend analysis, and ratio comparisons.

DBMS vendors have made substantial product extensions for efficient manage-
ment of summary data and new optimization technologies for data warehouse que-
ries. The last part of this chapter presented materialized views, a fundamental tool
for efficient management of summary data. Details about defining materialized views
and the query rewriting process to use materialized views to improve retrieval per-
formance of summary data were provided. In addition, the last part of this chapter
presented storage technologies for data warehouses using both relational and data
cube storage engines. Together, background on materialized views and storage tech-
nologies equip a student to understand basic issues with efficient implementation of
a data warehouse.

CLOSING THOUGHTS

REVIEW CONCEPTS

•	 Microsoft Multidimensional Expressions (MDX) providing a de facto standard
for Online Analytic Processing (OLAP)

•	 MDX SELECT statement for queries on data cubes
•	 Pivot table tools providing a convenient interface for manipulating MDX data

cubes
•	 Pivot4J plugin using a built-in OLAP server and MDX statement generation
•	 WebPivotTable using an external OLAP server and MDX statement generation
•	 Extensions of the GROUP BY clause for subtotal calculation: CUBE, ROLLUP,

and GROUPING SETS operators
•	 CUBE operator for generating all possible combinations of subtotals
•	 ROLLUP operator for generating subtotals for columns related in a dimension

hierarchy
•	 GROUPING SETS operator for precise control of subtotals
•	 Equivalence of GROUP BY operators to a collection of SELECT blocks connected

by UNION operations

26008_ch15_p585-640.indd 631 3/2/18 10:54 PM

632   Part 6  Data Warehouse Processing

•	 Variations of subtotal operators for partial cube and rollup operations,
composite columns, nested subtotal operations, and subtotal identifiers

•	 Analytic function extensions to support relative performance of business units,
trend analysis, and ratio comparisons

•	 Factors influencing analytic function extensions: difficult to write, poor
productivity, and poor performance

•	 Additional step in SELECT statement processing for analytic functions
•	 Basic syntax for analytic functions with OVER keyword and ordering

specification
•	 Extended syntax for partitioning in analytic functions with PARTITION BY

keywords
•	 Analytic functions for relative performance calculations: RANK, DENSE_RANK,

ROW_NUMBER, and NTILE
•	 RANK function with gaps for duplicate values and DENSE_RANK function

without gaps for duplicate values
•	 Window concepts for queries involving trend analysis: units (physical and

logical) and movement (sliding and cumulative)
•	 Extended syntax for window specifications with the ROWS and RANGE

keywords
•	 Analytic functions for ratio comparisons: RATIO_TO_REPORT, CUME_DIST,

and PERCENT_RANK
•	 Cumulative distribution, an important concept for quantitative comparisons of

business units
•	 Differences between CUME_DIST and PERCENT_RANK on range of result and

formulas for computing cumulative probabilities
•	 Materialized views for storage of precomputed summary data
•	 CREATE MATERIALIZED VIEW statement involving method of refresh, refresh

timing, build timing, storage properties, and a SELECT statement
•	 Process flow for query rewriting (materialized views) versus process flow for

view modification (traditional views)
•	 Query rewriting involving substitution of materialized views for fact and

dimension tables to improve performance of data warehouse queries
•	 Matching requirements for query rewriting involving row conditions, grouping

detail, grouping dependencies, and aggregate functions
•	 Data warehouse storage architectures: ROLAP, MOLAP, and HOLAP
•	 Star join optimization using bitmap indexes on dimension tables to reduce the

number of rows in a fact table to retrieve
•	 Columnstore indexes for improved performance of grouping queries on large

fact tables
•	 Data warehouse appliances providing combinations of hardware and

software components for rapid deployment and transparent operation of data
warehouses

QUESTIONS

  1.	Briefly provide a brief history of Microsoft Multidimensional Expressions
(MDX).

  2.	What commercial products and open source projects use MDX?
  3.	What is an attribute in MDX cube representation?

26008_ch15_p585-640.indd 632 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   633

  4.	What is a member in MDX cube representation?
  5.	How are measures shown in an MDX cube?
  6.	What is a tuple in MDX cube representation? How is a tuple related to a slicer?
  7.	What is an axis in an MDX query?
  8.	Compare the MDX SELECT statement to the SQL SELECT statement.
  9.	What relational algebra operator (see Chapter 3) is equivalent to the MDX cross

join operator?
  10.	What is a slicer condition? What is the relationship between dimensions on an

axis and dimensions in a slicer condition?
  11.	Why is MDX not used directly by business analysts?
  12.	What is the difference between the Pivot4J plugin in Pentaho Business Analytics

and WebPivotTable for usage of an OLAP server?
  13.	What is the relationship between MDX and pivot table tools such as the Pivot4J

plugin and WebPivotTable?
  14.	What limitation in the GROUP BY clause is addressed by the CUBE, ROLLUP,

and GROUPING SETS operators?
  15.	How are missing values shown in a data cube versus in a result of an SQL

SELECT statement with a GROUP BY clause?
  16.	What is the purpose of the CUBE operator?
  17.	Briefly explain derivation of the CUBE operator using the UNION operator.
  18.	What is the purpose of the ROLLUP operator?
  19.	Briefly explain derivation of the ROLLUP operator using the UNION operator.
  20.	What is the purpose of the GROUPING SETS operator?
  21.	What is a partial CUBE?
  22.	What is a partial ROLLUP?
  23.	How are composite columns used in a CUBE or ROLLUP operation?
  24.	How does a partial CUBE or ROLLUP differ from a nested CUBE or ROLLUP?
  25.	What is the GROUPING_ID function?
  26.	Briefly explain common business intelligence applications supported by analytic

function extensions in the SQL SELECT statement.
  27.	What factors influenced extensions to the SQL SELECT statement for analytic

functions?
  28.	Briefly describe extensions in SELECT statement processing for analytic function

extensions.
  29.	Briefly explain subtle points in the revised processing model for analytic

functions.
  30.	Briefly explain the basic syntax for analytic functions without partitioning.
  31.	Briefly explain the extended syntax for analytic functions with partitioning.
  32.	What is the difference between the RANK and DENSE_RANK functions?
  33.	What is the role of windows for trend analysis queries?
  34.	Briefly explain window concepts in the SQL SELECT statement.
  35.	Briefly explain three examples of physical windows in an SQL window

specification.
  36.	What is the difference between a cumulative window and a sliding window?
  37.	What types of ratio comparisons are supported in extensions to the SQL SELECT

statement?
  38.	What is the RATIO_TO_REPORT function?

26008_ch15_p585-640.indd 633 3/2/18 10:54 PM

634   Part 6  Data Warehouse Processing

  39.	What is a cumulative distribution?
  40.	What are the CUME_DIST and PERCENT_RANK functions?
  41.	What are differences between the CUME_DIST and PERCENT_RANK

functions?
  42.	In Example 15.30, show the computation in the CUME_DIST function for sum of

sales unit with value of 1272.
  43.	In Example 15.30, show the computation in the PERCENT_RANK function for

sum of sales unit with value of 1272.
  44.	Why are materialized views important for data warehouses but typically not

important for operational databases?
  45.	What materialization properties does Oracle provide for materialized views?
  46.	Compare and contrast query rewriting for materialized views to query

modification for traditional (nonmaterialized) views.
  47.	Briefly explain the matching process in query rewriting.
  48.	Explain the importance of indexing fact and dimension tables in a data

warehouse.
  49.	What are the pros and cons of a MOLAP storage engine?
  50.	What are the pros and cons of a ROLAP storage engine?
  51.	What are the pros and cons of a HOLAP storage engine?
  52.	List some storage and optimization techniques in ROLAP engines.
  53.	What is star join optimization?
  54.	What are the advantages of data warehouse appliances?
  55.	Why has development and usage of data warehouse appliances stagnated?

PROBLEMS

The problems provide practice with relational database manipulation of multidimen-
sional data using the store sales snowflake schema shown in Section 15.2. For your
reference, Figure 15.P1 displays the ERD for the store sales snowflake schema. To sup-
port the usage of Oracle with these problems, the textbook’s website contains Oracle
CREATE TABLE statements and sample data for the tables of the store sales schema.
In the Oracle statements, the tables have been prefixed with “SS” to avoid conflicts
with other table names in the same schema.

FIGURE 15.P1
ERD Snowflake Schema for
the Store Sales Example

26008_ch15_p585-640.indd 634 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   635

  1.	 Write a SELECT statement to summarize sales by store state, year, and item brand.
The result should compute the SUM of the dollar sales for the years 2016 and 2017.
The result should include full totals for every combination of grouped fields.

  2.	Write a SELECT statement to summarize sales by year, quarter, and month. The
result should compute the SUM of the dollar sales for the years 2016 and 2017.
The result should include partial totals in order of the grouped fields (year,
quarter, and month).

  3.	Write a SELECT statement to summarize sales by store state, month, and
year. The result should compute the SUM of the dollar sales for the years 2016
and 2017. The result should include partial totals in order of the hierarchical
dimension (year and month). Do not use the GROUPING SETS operator in your
SQL statement.

  4.	Write a SELECT statement to summarize sales by customer state, customer zip,
year, and quarter. The result should compute the SUM of the dollar sales for
the years 2016 and 2017. The result should include partial totals for hierarchical
dimensions (year/quarter and state/zip). Do not use the GROUPING SETS
operator in your SQL statement.

  5.	Rewrite the SQL statement solution for problem 1 without using the CUBE,
ROLLUP, or GROUPING SETS operators. To reduce your time, you can write
the first few query blocks and then indicate the pattern to rewrite the remaining
query blocks. In rewriting the queries, you may use two single quotes (with
nothing inside) as the default text value and 0 as the default numeric value.

  6.	Rewrite the SQL statement solution for problem 2 without using the CUBE,
ROLLUP, or GROUPING SETS operators. In rewriting the queries, you may use
two single quotes (with nothing inside) as the default text value and 0 as the
default numeric value.

  7.	Rewrite the SQL statement solution for problem 3 without using the CUBE,
ROLLUP, or GROUPING SETS operators. In rewriting the queries, you can use
two single quotes (with nothing inside) as the default text value and 0 as the
default numeric value.

  8.	Rewrite the SQL statement solution for problem 3 using the GROUPING SETS
operator instead of the ROLLUP operator.

  9.	Rewrite the SQL statement solution for problem 4 using the GROUPING SETS
operator instead of the ROLLUP operator.

  10.	Perform the indicated calculation and show the underlying formula for the
following problems. The number of unique values in each dimension is shown
in parentheses.

•	 Calculate the maximum number of rows for a query with a rollup of year (2),
quarter (4), and month (12). Separate the calculation to show the number of
rows appearing in the normal GROUP BY result and the number of subtotal
rows generated by the ROLLUP operator.

•	 Calculate the maximum number of rows in a query with a rollup of year (2),
quarter (4), month (12), and weeks per month (4). Separate the calculation
to show the maximum number of rows appearing in the normal GROUP BY
result and the maximum number of subtotal rows generated by the rollup
operator.

•	 Calculate the maximum number of rows in a query with a cube of state (5),
brands (10), and year (2). Separate the calculation to show the maximum
number of rows appearing in the normal GROUP BY result and the maximum
number of subtotal rows generated by the cube operator.

•	 Calculate the number of subtotal groups in a query with a cube of state (5),
division (4), brand (10), and year (2). A subtotal group is equivalent to a

26008_ch15_p585-640.indd 635 3/2/18 10:54 PM

636   Part 6  Data Warehouse Processing

SELECT statement when formulating the query without any GROUP BY
operators.

  11.	Write an Oracle CREATE MATERIALIZED VIEW statement to support the store
sales schema. The materialized view should include the sum of the dollar sales
and the sum of the cost of sales. The materialized view should summarize the
measures by the store identifier, the item identifier, and the time number. The
materialized view should include sales in the year 2016.

  12.	Write an Oracle CREATE MATERIALIZED VIEW statement to support the store
sales schema. The materialized view should include the sum of the dollar sales
and the sum of the cost of sales. The materialized view should summarize the
measures by the store identifier, the item identifier, and the time number. The
materialized view should include sales in the year 2017.

  13.	Rewrite the SQL statement solution for problem 1 using the materialized views
in problems 11 and 12. You should ignore the CUBE operator in the solution for
problem 1. Your SELECT statement should reference the materialized views as
well as base tables if needed.

  14.	Rewrite the SQL statement solution for problem 1 using the materialized
views in problems 11 and 12. Your SELECT statement should reference the
materialized views as well as base tables if needed. You should think carefully
about how to handle the CUBE operator in your rewritten query.

  15.	Rewrite the SQL statement solution for problem 3 using the materialized views
in problems 11 and 12. You should ignore the ROLLUP operator in the solution
for problem 3. Your SELECT statement should reference the materialized views
as well as base tables if needed.

  16.	Rewrite the SQL statement solution for problem 3 using the materialized
views in problems 11 and 12. Your SELECT statement should reference the
materialized views as well as base tables if needed. You should think carefully
about how to handle the ROLLUP operator in your rewritten query.

  17.	Write an Oracle CREATE MATERIALIZED VIEW statement using the store sales
schema. The materialized view should include the sum of sales units and the
sum of the cost of sales. The materialized view should summarize the measures
by the customer zip code and year of sales. The materialized view should
include sales in 2016 and before.

  18.	Write an Oracle CREATE MATERIALIZED VIEW statement using the store sales
schema. The materialized view should include the sum of sales units and the
sum of the cost of sales. The materialized view should summarize the measures
by the customer zip code, sales year, and sales quarter. The materialized view
should include USA sales only.

  19.	Write an Oracle CREATE MATERIALIZED VIEW statement using the store sales
schema. The materialized view should include the sum of the sales units and
sum of the cost of sales. The materialized view should summarize the measures
by the customer zip code, sales year, and sales quarter. The materialized view
should include Canadian sales for 2016 and 2017.

  20.	Write a SELECT statement using the base data warehouse tables to retrieve the
sum of the sales cost divided by the sum of the unit sales in the USA and Canada
in 2016. The result should include customer zip code, year, and sum of the sales
cost per unit. Rewrite the SELECT statement using one or more materialized
views defined in problems 17 to 19.

  21.	Write a SELECT statement using the base data warehouse tables to retrieve the
sum of the sales cost divided by the sum of the unit sales in the USA and Canada
from 2015 to 2017. The result should include customer zip code, year, and sum
of the sales cost per unit. Rewrite the SELECT statement using one or more
materialized views defined in problems 17 to 19.

26008_ch15_p585-640.indd 636 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   637

  22.	Identify the subtotals generated with the following GROUP BY clause: GROUP
BY TimeYear, CUBE(ItemCategory, StoreZip).

  23.	Identify the subtotals generated with the following GROUP BY clause: GROUP
BY TimeYear, TimeQuarter, CUBE(ItemCategory, StoreZip).

  24.	Identify the subtotals generated with the following GROUP BY clause: GROUP
BY ItemCategory, ROLLUP(TimeYear, TimeQuarter, TimeMonth).

  25.	Identify the subtotals generated with the following GROUP BY clause: GROUP
BY ItemCategory, StoreZip, ROLLUP(TimeYear, TimeQuarter,
TimeMonth).

  26.	Identify the subtotals generated with the following GROUP BY clause:
GROUP BY CUBE(ItemCategory, StoreZip), ROLLUP(TimeYear,
TimeQuarter, TimeMonth).

  27.	Identify the subtotals generated with the following GROUP BY clause:
GROUP BY ROLLUP(ItemCategory, ItemBrand), ROLLUP(TimeYear,
TimeQuarter, TimeMonth).

  28.	Identify the subtotals generated with the following GROUP BY clause: GROUP
BY ROLLUP(StoreNation, StoreState, (StoreZip, StoreCity)).

  29.	Identify the subtotals generated with the following GROUP BY clause:
GROUP BY GROUPING SETS(ItemCategory, ROLLUP(TimeYear,
TimeQuarter), StoreZip).

  30.	Identify the subtotals generated with the following GROUP BY clause:
GROUP BY GROUPING SETS(TimeYear, StoreZip, CUBE(ItemBrand,
ItemCategory), CustZip).

  31.	Write a SELECT statement to rank item brands by descending average dollar
sales in 2014 to 2015. The result should display item brand, average dollar sales,
and rank. The result should contain a single ranking for all item brands.

  32.	Write a SELECT statement to rank item brands by descending average dollar
sales in 2014 to 2015. The result should only contain brands with more than
10 sales in 2014 to 2015. The result should display item brand, count of sales,
average dollar sales, and rank. The result should contain a single ranking for all
item brands.

  33.	Write a SELECT statement to dense rank item brands by descending count of
sales rows. The result should contain a separate ranking for each year. The result
should only contain brands with more than 5 sales in a year. The result should
display item brand, year, count of rows, and dense rank.

  34.	Write a SELECT statement to rank and dense rank item brands by descending
sum of dollar sales for sales in 2014. The result should contain a separate ranking
for each month. The result should display item brand, month, sum of sales, rank,
and dense rank.

  35.	Write a SELECT statement to calculate the cumulative sum of 2014 sales by item
brand and month. The result should contain a separate cumulative sum of sales
for each item brand. The result should contain item brand, month, sum of sales,
and cumulative sum of sales.

  36.	Write a SELECT statement to calculate the cumulative sum of sales by year and
item brand. The result should contain a separate cumulative sum of sales for
each year. The result should only contain brands with more than 5 sales in a
year. The result should display year, item brand, count of rows, sum of sales,
and cumulative sum of sales.

  37.	Write a SELECT statement to calculate the moving average of sum of sales by
year and item brand. The result should contain a separate moving average for
each year. The window should be centered on the 2 preceding and 2 following
rows. The result should only contain brands with more than 5 sales in a year.

26008_ch15_p585-640.indd 637 3/2/18 10:54 PM

638   Part 6  Data Warehouse Processing

The result should display year, item brand, count of rows, sum of sales, and
average sum of sales.

  38.	Write a SELECT statement to calculate the moving average of sum of 2014 sales
by month. The moving average should be centered on the 3 preceding and 3
following months. The result should display month, sum of sales, and average
sum of sales.

  39.	Write a SELECT statement to calculate a moving average of sum of dollar sales
by store zip and sales date. The result should contain a separate moving average
for each store zip. The moving average should be centered on the 3 previous
and 3 following months. The result should display store zip, sales date, sum of
sales, and average sum of sales. In the statement, you need to combine TimeDim
columns into a complete sales date. You can use this expression: to_date(to_
char(TimeDay, 'FM00') || to_char(TimeMonth, 'FM00') || to_
char(TimeYear), 'DDMMYYYY')).

  40.	Write a SELECT statement to compute the cumulative distribution (CUME_
DIST) of dollar sales in Colorado (CO). The result should not contain duplicates.
The result should display dollar sales and cumulative distribution of dollar sales.

  41.	Write a SELECT statement to display the top performing customer zip codes
(30%) by year on sum of dollar sales. You can use either cumulative distribution
function. The result should contain separate top performing zip codes for each
year. The result should display year, customer zip code, sum of dollar sales, and
cumulative distribution. Order the result by year and cumulative distribution.

  42.	Write a SELECT statement to compute the contribution ratio on the sum of
2015 sales by month and item brand. The result should contain a separate
contribution ratio for each month. The result should display month, item brand,
sum of unit sales, and contribution ratio. The result should be ordered by month
and descending sum of unit sales.

  43.	Write a SELECT statement to compute sum of dollar sales by item brand, store
state, and month. The result should sum 2016 sales in stores in USA or Canada.
The result should contain subtotals for a partial CUBE on item brand and store
state along with grouping on month. Sort the result in a convenient ordering. In
documentation before the SELECT statement, you should list the subtotal groups
in the result.

  44.	Write a SELECT statement to compute sum of dollar sales by item brand,
quarter, month, and day. The result should sum 2016 sales in stores in USA
or Canada. The result should contain subtotals for a partial ROLLUP on
quarter, month, and day along with grouping on item brand. Sort the result in
a convenient ordering. In documentation before the SELECT statement, you
should list the subtotal groups in the result.

  45.	Write a SELECT statement to compute sum of dollar sales by year, quarter,
month, and day. The result should sum sales occurring in USA or Canada stores.
The result should contain subtotals for a ROLLUP on a composite column
(year and quarter), month, and day. Sort the result in a convenient ordering. In
documentation before the SELECT statement, you should list the subtotal groups
in the result.

  46.	Write a SELECT statement to compute sum of dollar sales by item brand, store
state, month, and day. The result should sum 2016 sales in stores in USA or
Canada. The result should contain subtotals for a nested ROLLUP on month and
day along with normal subtotals on item brand and store state. Sort the result
in a convenient ordering. In documentation before the SELECT statement, you
should list the subtotal groups in the result.

  47.	Write a SELECT statement to compute sum of dollar sales by item brand, store
state, and month. The result should sum 2016 sales in stores in USA or Canada.

26008_ch15_p585-640.indd 638 3/2/18 10:54 PM

Chapter 15  Query Formulation for Data Warehouses   639

The result should contain subtotals for a partial CUBE on item brand and store
state along with grouping on month. The result columns should contain the
grouping columns, sum of dollar sales, and grouping identifier for all grouping
columns. Sort the result in a convenient ordering. In documentation before the
SELECT statement, you should list the subtotal groups in the result along with
the grouping identifier of each subtotal group.

  48.	Write a SELECT statement to compute the contribution ratio on sum of
dollar sales by store city for sales in 2017. The result should contain one set of
contribution ratios for all store cities in the result. Order the result by descending
sum of dollar sales.

  49.	Install and use the Pivot4J plugin in Pentaho Business Analytics. The textbook’s
website contains an installation document and a tutorial with instructions about
usage of a predefined cube in the Pivot4J plugin.

  50.	Use the OLAP cube demonstration on the WebPivotTable website. No
installation is required. The textbook’s website contains a guided tutorial about
the OLAP cube demonstration.

REFERENCES FOR FURTHER STUDY

The Microsoft website contains tutorials about MDX. This Microsoft page (see bullet)
contains an overview about data access with MDX along with links for details about
query formulation details.

•	 https://docs.microsoft.com/en-us/sql/analysis-services/multidimensional-
models/mdx/multidimensional-model-data-access-analysis-services-
multidimensional-data

The Pivot4J page (www.pivot4j.org) contains an overview of Pivot4J and download
links for the Pivot4J plugin of Pentaho Business Analytics. WebPivotTable.com con-
tains documentation and a demonstration using a data cube hosted on an external
OLAP server. This chapter presented important analytic functions although enterprise
DBMSS provide more functions. For details about other analytic functions, consult
enterprise DBMS documentation. For example the search terms, “Oracle analytic func-
tions” provides links to documentation about analytic functions provided in Oracle.

26008_ch15_p585-640.indd 639 3/2/18 10:54 PM

26008_ch15_p585-640.indd 640 3/2/18 10:54 PM

641  

part seven

The chapters in Part 7 emphasize the role of database specialists and the details of manag-

ing databases in various operating environments. Chapter 16 provides a context for the other

chapters through coverage of the responsibilities, tools, and processes used by database

administrators and data administrators. The other chapters in Part 7 provide a foundation

for managing databases in important environments: Chapter 17 on transaction processing,

Chapter 18 on distributed processing, parallel databases, and distributed data, and Chapter

19 on object and NoSQL databases. These chapters emphasize concepts, architectures, and

design choices important to database specialists. In addition, Chapters 16 and 19 provide

details about SQL statements used in transaction processing and object database develop-

ment as well as Couchbase N1QL statements to manipulate document databases.

Managing
Database
Environments

26008_ch16_p641-680.indd 641 3/2/18 10:56 PM

26008_ch16_p641-680.indd 642 3/2/18 10:56 PM

643  

OVERVIEW
Utilizing the knowledge and skills in Parts 1 through 6,
you should be able to develop databases and imple-
ment applications that use the databases. You learned
about query formulation, conceptual data modeling,
relational database design, physical database design,
application development with views, stored proce-
dures, triggers, and data warehouse development and
processing. Part 7 complements these knowledge and
skill areas by exploring concepts and skills involved
in managing databases in different processing envi-
ronments. This chapter describes the responsibili-
ties and tools of data specialists (data administrators

and database administrators) and provides an intro-
duction to the different processing environments for
databases.

Before learning details of the processing environ-
ments, you need to understand the organizational
context in which databases exist and learn tools and
processes for managing databases. This chapter first
discusses an organizational context for databases. You
will learn about database support for management deci-
sion making, the goals of programs to support informa-
tion management in organizations, the responsibilities
of data and database administrators, and the challenges
in managing exploding data growth. After explaining the
organizational context, this chapter presents new tools

Learning Objectives

This chapter provides detailed coverage about the responsibilities and
tools of database specialists known as data administrators and database
administrators. After this chapter, the student should have acquired the
following knowledge and skills:

•	 Compare and contrast the responsibilities of database administrators
and data administrators especially for meeting challenges of big data

•	 Write SQL statements to control databases for security and integrity

•	 Manage stored procedures and triggers

•	 Understand the roles of data dictionary tables and the information
resource dictionary

•	 Describe the data planning process

•	 Explain the motivation for data governance and the components of
data governance programs in organizations

•	 Understand the process to select and evaluate DBMSs

•	 Gain insights about the processing environments in which database
technology is used

Data and
Database
Administration

16
chapter

26008_ch16_p641-680.indd 643 3/2/18 10:56 PM

and processes to manage databases. You will learn
SQL statements for security and integrity, management
of triggers and stored procedures, and data dictionary
manipulation as well as processes for data planning,

data governance, and DBMS selection. This chapter
concludes with an introduction to the different process-
ing environments that will be presented in more detail in
the other chapters of Part 7.

This section reviews management decision-making levels and discusses database sup-
port for decision making at all levels. After this background, this section describes
organizational programs (information resource management, knowledge manage-
ment, and data governance), responsibilities of data specialists to manage information
resources, and challenges of managing exploding data growth.

16.1.1  Database Support for Management Decision Making
Databases support business operations and management decision making at various
levels. Most large organizations have developed many operational databases to help
conduct business efficiently. Operational databases directly support major functions
such as order processing, manufacturing, accounts payable, and product distribution.
The reasons for investing in an operational database are typically faster processing,
larger volumes of business, and reduced personnel costs.

As organizations achieve improved operations, they begin to realize the decision-
making potential of their databases. Operational databases provide the raw materials
for management decision making as depicted in Figure 16.1. Lower-level management
can obtain exception and problem reports directly from operational databases. How-
ever, much value must be added to leverage the operational databases for middle
and upper management. The operational databases must be cleaned, integrated, and
summarized to provide value for tactical and strategic decision making. Integration
is necessary because operational databases often are developed in isolation without
regard for the information needs of tactical and strategic decision making.

Table 16-1 provides examples of management decisions and data requirements.
Lower-level management deals with short-term problems related to individual trans-
actions. Periodic summaries of operational databases and exception reports assist
operational management. Middle management relies on summarized data that are
integrated across operational databases. Middle management may want to inte-
grate data across different departments, manufacturing plants, and retail stores. Top
management relies on the results of middle management analysis and external data
sources. Top management needs to integrate data so that customers, products, suppli-
ers, and other important entities can be tracked across an entire organization. In addi-
tion, external data must be captured and then integrated with internal data.

Operational Database
a database to support
the daily functions of an
organization.

16.1  ORGANIZATIONAL CONTEXT FOR MANAGING DATABASES

644   Part 7  Managing Database Environments

FIGURE 16.1
Database Support for
Management Levels Top

(strategic)

Middle
(tactical)

Lower
(operational)

Individual operational
databases

Cleaned and integrated
operational databases

External data sources and
summarized, tactical databases

Operational databases

Management Hierarchy

26008_ch16_p641-680.indd 644 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   645

16.1.2  Approaches for Managing Data Resources
As a response to the challenges of leveraging operational databases and information
technology for management decision making, several management approaches have
been developed over the last two decades. The original approach known as informa-
tion resource management was developed in the 1990s. Information resource man-
agement involves processing, distributing, and integrating information throughout
an organization. A key element of information resource management is control of
information life cycles (Figure 16.2). Each level of management decision making and
business operations has its own information life cycle. For effective decision making,
the life cycles must be integrated to provide timely and consistent information. For
example, information life cycles for operations provide input to life cycles for manage-
ment decision making.

Data quality is a particular concern for information resource management because
of the impact of data quality on management decision making. As discussed in
Chapter 2, data quality involves a number of dimensions such as correctness, timeli-
ness, consistency, completeness, and reliability. Often the level of data quality that suf-
fices for business operations may be insufficient for decision making at upper levels of
management. This conflict is especially true for the consistency dimension. For exam-
ple, inconsistency of customer identification across operational databases can impair
decision making at the upper management level. Information resource management
emphasizes a long-term, organization-wide perspective on data quality to ensure sup-
port for management decision making.

Starting about the mid-1990s, a movement developed to extend information
resource management into knowledge management. Traditionally, information
resource management has emphasized technology to support predefined recipes for
decision making rather than the ability to react to a constantly changing business envi-
ronment. To succeed in today’s business environment, organizations must empha-
size fast response and adaptation to extend planning efforts. To meet this challenge,
organizations should develop systems that facilitate knowledge creation rather than
information management. For knowledge creation, a greater emphasis is on human
information processing and organization dynamics to balance the technology empha-
sis, as shown in Figure 16.3.

Information Life Cycle
the stages of information
transformation in an orga-
nization. Each entity has its
own information life cycle
that should be managed
and integrated with the life
cycles of other entities.

Knowledge Management
applying information technol-
ogy with human information
processing capabilities and
organization processes to
support rapid adaptation to
change.

TABLE 16-1
Examples of Management
Decision Making

Level Example Decisions Data Requirements

Top Identify new markets and products; plan
growth; reallocate resources across divisions

Economic and technology forecasts; news
summaries; industry reports; medium-term
performance reports

Middle Choose suppliers; forecast sales, inventory, and
cash; revise staffing levels; prepare budgets

Historical trends; supplier performance; critical
path analysis; short-term and medium-term
plans

Lower Schedule employees; correct order delays;
find production bottlenecks; monitor resource
usage

Problem reports; exception reports; employee
schedules; daily production results; inventory
levels

FIGURE 16.2
Typical Stages of an
Information Life Cycle

Acquisition

Storage

Protection

Processing

Formatting

Dissemination

Usage

26008_ch16_p641-680.indd 645 3/2/18 10:56 PM

646   Part 7  Managing Database Environments

This vision for knowledge management provides a context for usage of informa-
tion technology to solve business problems. The best information technology will fail
if not aligned with human and organization elements. Information technology should
amplify individual intellectual capacity, compensate for limitations in human process-
ing, and support positive organization dynamics.

The emphasis on information and knowledge management has shifted to data
governance over the last decade. The rapid growth of electronic commerce and finan-
cial scandals in the 2000s propelled major changes in regulatory oversight and cor-
porate responsibilities. In the U.S., the Sarbanes-Oxley law, the Health Insurance
Portability and Accountability Act, and the more recent Dodd-Frank law have added
new corporate responsibilities for data management. The European Union has enacted
broad data privacy directives impacting organizations with any European operations.

This changed environment has spurred the movement for data governance.
According to the Data Governance Institute (http://www.datagovernance.com),
“data governance is the exercise of decision-making and authority for data-related
matters.” Data governance attempts to mitigate risks associated with the complex
regulatory environment, information security, and information privacy especially for
personal identifiable data and related business transactions.

Data governance provides a system of checks and balances to develop data rules
and policies, support application of data rules and policies, and evaluate compliance
of data rules and policies as depicted in Figure 16.4. The system of data governance
operates in a manner similar to separate government branches in which the legisla-
tive branch makes laws, the executive branch enforces laws, and the judicial branch
resolves disputes about the meaning and application of laws.

Data governance has been applied to a number of corporate initiatives. Per-
ceived shortcomings in data quality especially in attributes impacted by regulations
are primary drivers of data governance initiatives. For data quality improvements,

Data Governance
according to the Data
Governance Institute, data
governance involves the
application of decision-
making and authority for
data-related issues.

Technology

Human information
processing

Organization
dynamics

FIGURE 16.3
Three Pillars of Knowledge
Management

Establish
data rules

and policies

Support
application

of data rules
and policies

Evaluate
compliance
of data rules
and policies

FIGURE 16.4
Data Governance Checks
and Balances

26008_ch16_p641-680.indd 646 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   647

data governance initiatives typically focus on development of data quality measures,
reporting status of data quality, and establishing decision rights and accountabilities.
Mergers and acquisitions often trigger data governance initiatives to ensure consistent
data definitions and integrate corporate policies involving data privacy and security.
Similarly, business intelligence developments often lead to data governance initiatives
to establish policies for data integration particularly for changes to source data in dif-
ferent parts of an organization.

16.1.3  Responsibilities of Data Specialists
As part of controlling information resources, new management responsibilities have
arisen. The data administrator (DA) is a middle- or upper-management position with
broad responsibilities for information resource management. The database adminis-
trator (DBA) is a support role with responsibilities related to individual databases and
DBMSs. Table 16-2 compares the responsibilities of data administrators and database
administrators. The data administrator views the information resource in a broader
context than the database administrator. The data administrator considers all kinds
of data whether stored in relational databases, files, web pages, or external sources.
The data administrator also supports data governance through membership in the
data governance office and consulting on activities managed by the data governance
office. The database administrator typically considers only data stored in databases
and implementing controls to support data governance policies.

Development of an enterprise data model is one of the most important respon-
sibilities of the data administrator. An enterprise data model provides an integrated
model of all databases of an organization. Because of its scope, an enterprise data
model is less detailed than the individual databases that it encompasses. The enter-
prise data model concentrates on the major subjects in operational databases rather the
full details. An enterprise data model can be developed for data planning (what data-
bases to develop) or business intelligence (how to integrate and summarize existing
databases). Section 16.3 describes the details of data planning. In Chapters 13 and 14,
you learned details of data warehouse design and data integration, important imple-
mentations of an enterprise data model for business intelligence.

Large organizations may offer much specialization in data administration and
database administration. For data administration, specialization can occur by task and
environment. On the task side, data administrators can specialize in planning versus
policy establishment. On the environment side, data administrators can specialize in
environments such as business intelligence, operations, and nontraditional data such
as images, text, and video. For database administration, specialization can occur by
DBMS, task, and environment. Because of the complexities of learning a DBMS, DBAs
typically specialize in one product. Task specialization is usually divided between

Enterprise Data Model
a conceptual data model
of an organization. An
enterprise data model can
be used for data planning or
business intelligence.

TABLE 16-2
Responsibilities of Data
Administrators and Database
Administrators

Position Responsibilities

Data administrator Develops an enterprise data model
Establishes inter-database standards and policies about naming, data sharing,
and data ownership
Negotiates contractual terms with information technology vendors
Develops long-range plans for information technology
Supports data governance activities

Database administrator Develops detailed knowledge of individual DBMSs
Consults on application development
Performs data modeling, logical database design, and physical database design
Enforces data administration standards
Monitors database performance
Performs technical evaluation of DBMSs
Creates security, integrity, and rule-processing statements
Devises standards and policies related to individual databases and DBMSs

26008_ch16_p641-680.indd 647 3/2/18 10:56 PM

648   Part 7  Managing Database Environments

data modeling, application development support, and performance evaluation. Envi-
ronment specialization is usually divided between transaction processing and data
warehouses.

In large organizations, various titles are used for database specialists. The follow-
ing list explains some common titles used in large organizations.

•	 Database architect: primarily specializes in data modeling and logical database
design

•	 System DBA: interfaces with system administration and analyzes database
impact on hardware and operating system

•	 Application DBA: specializes in management and usage of procedural objects
including triggers, stored procedures, and transaction design

•	 Senior DBA: a highly experienced DBA who supervises junior DBAs and
provides expert trouble shooting

•	 Performance DBA: specializes in physical database design and performance tuning
•	 Data warehouse administrator: specializes in operation and development of data

warehouses

In small organizations, the boundary between data administration and database
administration is fluid. There may not be separate positions for data administrators
and database administrators. The same person may perform duties from both posi-
tions. As organizations grow, specialization usually develops so that separate posi-
tions are created.

16.1.4  Challenges of Big Data
In many organizations, data specialists confront the problem of exploding data growth.
According to the 2014 Digital Universe Study by IDC, the volume of digital data will
continue to double every two years, reaching 44 trillion gigabytes by 2020. IDC pre-
dicts that the volume of digital data will increase from 10 trillion gigabytes in 2015 to
180 trillion gigabytes in 2025. To digest this increasing deluge of data, IDC predicts
that worldwide revenues for big data management and analytics will grow at a com-
pound growth rate of 11.7% from 2016 to 2020.

The growth in data comes from a variety of sources such as sensors in smart
phones, energy meters, and automobiles, interaction of individuals in social media
websites, radio frequency identification tags in retail, and digitized multimedia con-
tent in medicine, entertainment, and security. This data growth breaks existing sys-
tems and business processes, providing challenges and opportunities for both vendors
developing database technology and organizations using database technology.

The phenomenon of explosive data growth known as big data was first stated by
Doug Laney of the Meta Group in 20011. According to Laney’s report, big data con-
tains three dimensions: volume (amount of data), velocity (rate of generating and pro-
cessing data), and variety (type of data especially the distinction between structured
and unstructured data). Most attention is focused on data volumes but the other two
dimensions must be managed effectively to deal with problems of big data. Comple-
menting the dimensions of big data, the McKinsey Global Institute defines big data
as “datasets whose size is beyond the ability of typical database software to capture,
store, manage, and analyze.” This definition provides flexibility to vary volumes con-
sidered as big data by technology, industry sector, and time.

Big data creates opportunities if managed well. Organizations can unlock the value
of big data through increasing velocity on application processing speeds, improving
accuracy of forecasts and performance of business units, narrowing segmentation of
customers, improving decision making through analytics, and developing new gen-
erations of products and services.

1 Laney, Doug, “3D Data Management: Controlling Data Volume, Velocity and Variety,” META Group
(now Gartner), February 2001.

Big Data
the phenomenon of explod-
ing data growth. Big data has
three dimensions, volume,
velocity, and variety. The
volume of big data that
exceeds the limits of data-
base software depends on
technology, industry sector,
and time.

26008_ch16_p641-680.indd 648 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   649

To effectively manage big data, data specialists should have a clear understand-
ing of data volume units. Basic units of data are the byte (one character or 8 bits),
kilobyte (KB), megabyte (MB), and gigabyte (GB). A kilobyte is either 1,024 bytes
(binary system measure) or 1,000 bytes (metric system measure). Since computers are
binary machines, kilo means 1,024 for digital storage. Storage manufacturers often use
the metric system measure perhaps because the public does not understand binary
measures. However using the metric system measure provides less capacity than the
binary system measure. Thus, a megabyte denotes either 1,000 or 1,024 KB while a
gigabyte denotes either 1,000 or 1,024 MB.

Table 16-3 extends the basic data units to larger units along with big data exam-
ples. Terabyte was big data in previous decades. Now, it is the typical capacity of hard
drives on personal computers. Petabyte is yesterday’s big data as shown by efforts at
Google and Teradata to manage petabyte levels. Exabyte is generally considered as the
current big data level as demonstrated by internet traffic rates. Zettabyte and yottabyte
are emerging big data levels with hypothetical examples of storage capacity needs.

TABLE 16-3
Data Unit Sizes for Big DataData Unit Big Data Example

Terabyte (TB)
1,024 (1,000) GB

Typical hard drive size on a laptop computer in 2017 is 1 TB.

Petabyte (PB)
1,024 (1,000) TB

Teradata Database 14 has a capacity of 50 PB of compressed data.

Exabtye (EB)
1,024 (1,000) PB

Estimate of global IP traffic in 2021 by Cisco is 278 EB per month.

Zettabyte (ZB)
1,024 (1,000) EB

Cisco estimate of total volume of IP traffic in 2021 is 3.3 ZB. IDC estimate of digital
universe in 2020 is 40 ZB.

Yottabyte (YB)
1,024 (1,000) ZB

High definition video of all human activity would be approximately 100 YB. Estimate of
storage capacity of U.S. National Security data center is 1.0 YB.

16.2  TOOLS OF DATABASE ADMINISTRATION
To fulfill the responsibilities mentioned in the previous section, database administra-
tors use a variety of tools. You already have learned about tools for data modeling,
logical database design, view creation, physical database design, triggers, and stored
procedures. Some of the tools are SQL statements (CREATE VIEW and CREATE
INDEX) while others are part of CASE tools for database development. This section
presents additional tools for security, integrity, and data dictionary access and dis-
cusses management of stored procedures and triggers.

16.2.1  Security
Security involves protecting a database from unauthorized access and malicious
destruction. Because of the value of data in corporate databases, there is strong moti-
vation for unauthorized users to gain access to corporate databases. Competitors have
strong motivation to access sensitive information about product development plans,
cost-saving initiatives, and customer profiles. Lurking criminals want to steal unan-
nounced financial results, business transactions, and sensitive customer data such as
credit card numbers. Social deviants and terrorists can wreak havoc by intentionally
destroying database records. With growing use of the Web to conduct business, com-
petitors, criminals, and social deviants have even more opportunity to compromise
database security.

Security is a broad subject involving many disciplines. There are legal and ethi-
cal issues about who can access data and when data can be disclosed. There are net-
work, hardware, operating system, and physical controls that augment the controls

Database Security
protecting databases from
unauthorized access and
malicious destruction.

26008_ch16_p641-680.indd 649 3/2/18 10:56 PM

650   Part 7  Managing Database Environments

provided by DBMSs. There are also operational problems about passwords, authen-
tication devices, and privacy enforcement. These issues are not further addressed
because they are beyond the scope of DBMSs and database specialists. The remain-
der of this subsection emphasizes access control approaches and SQL statements for
authorization rules.

For access control, DBMSs support creation and storage of authorization rules and
enforcement of authorization rules when users access a database. Figure 16.5 depicts
the interaction of these elements. Database administrators create authorization rules
that define allowable operations on database objects for users. Enforcement of autho-
rization rules involves authenticating a user and ensuring that authorization rules are
not violated by access requests (database retrievals and modifications). Authentication
occurs when a user first connects to a DBMS. Authorization rules must be checked for
each access request.

The most common approach to authorization rules is known as discretionary
access control. In discretionary access control, users are assigned access rights or
privileges to specified parts of a database. For precise control, privileges are usually
specified for views rather than tables or fields. Users can be given the ability to read,
update, insert, and delete specified parts of a database. To simplify the maintenance
of authorization rules, privileges should be assigned to groups or roles rather than
individual users. Because roles are more stable than individual users, authorization
rules that reference roles require less maintenance than rules referencing individual
users. Users are assigned to roles and given passwords. During the database login
process, the database security system authenticates users and notes the roles to which
they belong.

Mandatory access controls are less flexible than discretionary access controls.
In mandatory control approaches, each object is assigned a classification level and
each user is given a clearance level. A user can access an object if the user’s clear-
ance level provides access to the classification level of the object. Typical clearance and
classification levels are confidential, secret, and top secret. Mandatory access control
approaches primarily have been applied to highly sensitive and static databases for
national defense and intelligence gathering. Because of the limited flexibility of manda-
tory access controls, only a few DBMSs support them. DBMSs that are used in national
defense and intelligence gathering must support mandatory controls, however.

In addition to access controls, DBMSs support encryption of databases. Encryp-
tion involves the encoding of data to obscure their meaning. An encryption algorithm
changes the original data (known as the plaintext). To decipher the data, the user sup-
plies an encryption key to restore the encrypted data (known as the ciphertext) to
its original (plaintext) format. Enterprise DBMSs usually allow a choice of encryp-
tion algorithms such as the Advanced Encryption Standard (AES) and the Triple
Data Encryption Standard (Triple DES). To protect data at the operating system level,

Authorization Rules
define authorized users,
allowable operations, and
accessible parts of a data-
base. The database security
system stores authorization
rules and enforces them for
each database access.

Discretionary Access
Control
users are assigned access
rights or privileges to speci-
fied parts of a database.
Discretionary access control
is the most common kind of
security control supported
by commercial DBMSs.

Mandatory Access Control
a database security
approach for highly sensitive
and static databases. A user
can access a database ele-
ment if the user’s clearance
level provides access to the
classification level of the
element.

FIGURE 16.5
Database Security System

Database security
system

Users

Data dictionary

Authorization rules

Authentication,
access requests

DBA

26008_ch16_p641-680.indd 650 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   651

enterprise DBMSs such as Oracle, Microsoft, and IBM apply encryption to the file level
in a technology known as Transparent Data Encryption (TDE). In addition, enterprise
DBMSs typically support government security standards such as the Federal Informa-
tion Processing Standard 140 of the U.S. government for database deployment in a
government environment.

SQL:2016 Security Statements  SQL:2016 supports discretionary authorization
rules using the CREATE/DROP ROLE statements and the GRANT/REVOKE state-
ments. When a role is created, the DBMS grants the role to either the current user or
current role. In Example 16.1, the ISFaculty and ISAdvisor roles are granted to the
current user while the ISAdministrator role is granted to the role of the current user.
The WITH ADMIN clause means that a user assigned the role can assign the role to
others. The WITH ADMIN option should be used sparingly because it provides wide
latitude to the role. A role can be dropped with the DROP ROLE statement.

Example 16.1 (SQL:2016)

CREATE ROLE ISFaculty;
CREATE ROLE ISAdministrator WITH ADMIN CURRENT_ROLE;
CREATE ROLE ISAdvisor;

CREATE ROLE Statement Examples

In a GRANT statement, you specify the privileges (see Table 16-4), object (table,
column, or view), and list of authorized users (or roles). In Example 16.2, SELECT
access is given to three roles (ISFaculty, ISAdvisor, ISAdministrator) while UPDATE
access is given only to the ISAdministrator. Individual users must be assigned to roles
before they can access the ISStudentGPA view.

Example 16.2 (SQL:2016)

View Definition, GRANT, and
REVOKE Statements
CREATE VIEW ISStudentGPA AS
 SELECT StdNo, StdFirstName, StdLastName, StdGPA
 FROM Student
 WHERE StdMajor = 'IS';
-- Grant privileges to roles
GRANT SELECT ON ISStudentGPA
 TO ISFaculty, ISAdvisor, ISAdministrator;
GRANT UPDATE ON ISStudentGPA.StdGPA TO ISAdministrator;
-- Assign users to roles
GRANT ISFaculty TO Mannino;
GRANT ISAdvisor TO Olson;
GRANT ISAdministrator TO Smith WITH GRANT OPTION;

REVOKE SELECT ON ISStudentGPA FROM ISFaculty RESTRICT;

The GRANT statement can also be used to assign users to roles as shown in the
last three GRANT statements in Example 16.2. In addition to granting the privileges in
Table 16-4, a user can be authorized to pass privileges to other users using the WITH
GRANT OPTION keyword. In the last GRANT statement of Example 16.2, user Smith

26008_ch16_p641-680.indd 651 3/2/18 10:56 PM

652   Part 7  Managing Database Environments

can grant the ISAdministrator role to other users. The WITH GRANT option should be
used sparingly because it provides wide latitude to the user.

To remove an access privilege, the REVOKE statement is used. In the last statement
of Example 16.2, the SELECT privilege is removed from ISFaculty. The RESTRICT
clause means the privilege is revoked only if the privilege has not been granted to the
specified role by more than one user.

Security Specification in Oracle DBMS  Oracle extends the SQL:2016 security state-
ments with the CREATE USER statement, predefined roles, and additional privileges.
In SQL:2016, user creation is an implementation issue. Since Oracle does not rely on the
operating system for user creation, it provides the CREATE USER statement. Oracle pro-
vides predefined roles to simplify role definition including the CONNECT role to create
a session, the RESOURCE role for creating tables and application objects such as stored
procedures, and the DBA role for managing databases. Oracle discourages usage of these
legacy roles although these roles continue to have substantial usage. Oracle provides a
number of other predefined roles described in the Oracle documentation. In addition,
Oracle provides the PUBLIC user group to support common privileges for all users.

For privileges, Oracle distinguishes between system privileges (independent of
object) and object privileges. Granting system privileges usually is reserved for highly
secure roles because of the far-reaching nature of system privileges as shown in
Table 16-5. Typically accounts with DBA or SYS role should have system privileges.
The ORACLE object privileges are similar to the SQL:2016 privileges except that Oracle
provides more objects than SQL:2016, as shown in Table 16-6.

In addition to extensions to the standard SQL security statements, Oracle provides
advanced security features (security policies, auditing, and profiles) with no counter-
part in the SQL:2016 specification. Security policies support dynamic restrictions for
fine-grained control to the row and column level. Security restrictions based on views

TABLE 16-4
Explanation of Common
SQL:2016 Privileges

Privilege Explanation

SELECT Query the object; can be specified for individual columns

UPDATE Modify the value; can be specified for individual columns

INSERT Add a new row; can be specified for individual columns

DELETE Delete a row; cannot be specified for individual columns

TRIGGER Create a trigger on a specified table

REFERENCES Reference columns of a given table in integrity constraints

EXECUTE Execute the stored procedure

TABLE 16-5
Explanation of Common
Oracle System Privileges

System Privilege Explanation

CREATE X, CREATE ANY X Create objects of kind X in one’s schema2; CREATE ANY allows creating
objects in other schemas

ALTER X, ALTER ANY X Alter objects of kind X in one’s schema; ALTER ANY X allows altering
objects in other schemas

INSERT ANY, DELETE ANY,
UPDATE ANY, SELECT ANY

Insert, delete, update, and select from a table in any schema

DROP X, DROP ANY X DROP objects of kind X in one’s schema; DROP ANY allows dropping of
objects in other schemas

ALTER SYSTEM, ALTER
DATABASE, ALTER SESSION

Issue ALTER SYSTEM commands, ALTER DATABASE commands, and
ALTER SESSION commands

ANALYZE ANY Analyze any table, index, or cluster

2 A schema is a collection of related tables and other Oracle objects that are managed as a unit.

26008_ch16_p641-680.indd 652 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   653

alone cannot be customized to the individual user level without a large number of
views, one per user. Security policies in Oracle support dynamic generation of con-
ditions so that access can be restricted based on individual user characteristics such
as customer numbers and employee departments. Oracle provides auditing to record
user database actions. Auditing can be triggered by combinations of user name, state-
ment type, time, and database object. In addition, security policies can trigger auditing
when specified elements in an Oracle database are accessed or changed. Profiles spec-
ify resource limits for roles and users. Profiles can restrict CPU time, memory usage,
data block accesses, idle time, elapsed time, and concurrent sessions.

Authorization restrictions by application objects such as forms and reports should
also be supported in addition to the database objects permissible in the GRANT state-
ment. These additional security constraints are usually specified in proprietary interfaces
or in application development tools, rather than in SQL. For example, Microsoft Access
2003 allows definition of authorization rules for database objects (tables and stored que-
ries) as well as application objects (forms and reports). However, Access 2007 and later
versions dropped support for application-level security, instead relying on SQL security
constraints and improved control of components that may pose security risks.

The fundamental problem with application level security is the ease of bypass.
Any usage outside of the application bypasses application level security. Thus, enter-
prise DBMS vendors emphasize database level security, not application level security.

16.2.2  Integrity Constraints
You have already seen integrity constraints presented in previous chapters. In
Chapter 3, you learned about primary keys, foreign keys, candidate keys, and non-
null constraints along with the corresponding SQL syntax. In Chapter 5, you stud-
ied cardinality constraints and generalization hierarchy constraints. In Chapter 7, you
studied functional and multivalued dependencies as part of the normalization pro-
cess. Chapter 8 described indexes that can be used to enforce primary and candidate
key constraints efficiently. Chapter 11 presented triggers that can be used to specify
complex integrity constraints. This subsection describes additional kinds of integrity
constraints and the corresponding SQL syntax.

SQL Domains  In Chapter 3, standard SQL data types were defined. A data type
indicates the kind of data (character, numeric, yes/no, etc.) and permissible opera-
tions (numeric operations, string operations, etc.) for columns using the data type.

TABLE 16-6
Mapping between
Common Oracle Privileges
and Objects

3 A sequence is a collection of values maintained by Oracle. Sequences typically are used for system-
generated primary keys.
4 Recall from Chapter 15 that a materialized view is stored rather than derived. Materialized views are useful
in data warehouses as presented in Chapter 15.

Object

Privilege
Table View Sequence3 Procedure, Function, Package,

Library, Operator, Index, Type
Materialized

View4

ALTER X X

DELETE X X X

EXECUTE X

INDEX X

INSERT X X X

REFERENCES X X

SELECT X X X X

UPDATE X X X

26008_ch16_p641-680.indd 653 3/2/18 10:56 PM

654   Part 7  Managing Database Environments

SQL:2016 provides a limited ability to define new data types using the CREATE
DOMAIN statement. A domain can be created as a subset of a standard data type.
Example 16.3 demonstrates the CREATE DOMAIN statement along with usage of the
new domains in place of standard data types. The CHECK clause defines a constraint
for the domain limiting the domain to a subset of the standard data type.

Example 16.3 (SQL:2016)

CREATE DOMAIN Statements
and Usage of the Domains
CREATE DOMAIN StudentClass AS CHAR(2)
 CHECK (VALUE IN ('FR', 'SO', 'JR', 'SR'))

CREATE DOMAIN CourseUnits AS SMALLINT
 CHECK (VALUE BETWEEN 1 AND 9)

In the CREATE TABLE statement for the Student table, the domain can be referenced in the StdClass column.

StdClass StudentClass NOT NULL

In the CREATE TABLE statement for the Course table, the domain can be referenced in the CrsUnits column.

CrsUnits CourseUnits NOT NULL

Example 16.4 (SQL:2016)

Distinct Types and Usage
of the Distinct Types
-- USD distinct type and usage in a table definition
CREATE DISTINCT TYPE USD AS DECIMAL(10,2);
USProdPrice USD

CREATE DISTINCT TYPE Euro AS DECIMAL(10,2);
EuroProdPrice Euro

-- Type error: columns have different distinct types
USProdPrice > EuroProdPrice

SQL:2016 provides a related feature known as a distinct type. Like a domain, a
distinct type is based on a primitive type. Unlike a domain, a distinct type cannot have
constraints. However, the SQL specification provides improved type checking for dis-
tinct types as compared to domains. A column having a distinct type can be compared
only with another column using the same distinct type. Example 16.4 demonstrates
distinct type definitions and a comparison among columns based on the types.

For object-oriented databases, SQL:2016 provides user-defined types, a more pow-
erful capability than domains or distinct types. User-defined data types can be defined
with new operators and functions. In addition, user-defined data types can be defined
using other user-defined data types. Chapter 19 describes user-defined data types as
part of the presentation of the object-oriented features of SQL:2016. Because of the
limitations, most DBMSs no longer support domains and distinct types. For example,
Oracle supports user-defined types but does not support domains or distinct types.

26008_ch16_p641-680.indd 654 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   655

CHECK Constraints in the CREATE TABLE Statement  When a constraint
involves row conditions on columns of the same table, a CHECK constraint may
be used. CHECK constraints are specified as part of the CREATE TABLE statement
as shown in Example 16.5. For easier traceability, you should always use constraint
names. When a constraint violation occurs, most DBMSs will display the constraint
name.

Example 16.5 (SQL:2016)

Here is a CREATE TABLE statement with CHECK constraints for the valid GPA range and upper-class students (juniors and seniors)

having a declared (non-null) major.

CREATE TABLE Student
(StdNo 	 CHAR(11),
 StdFirstName	VARCHAR(50)	CONSTRAINT StdFirstNameRequired NOT NULL,
 StdLastName	 VARCHAR(50)	CONSTRAINT StdLastNameRequired NOT NULL,
 StdCity	 VARCHAR(50)	CONSTRAINT StdCityRequired NOT NULL,
 StdState	 CHAR(2)	 CONSTRAINT StdStateRequired NOT NULL,
 StdZip	 CHAR(9)	 CONSTRAINT StdZipRequired NOT NULL,
 StdMajor	 CHAR(6),
 StdClass	 CHAR(6),
 StdGPA	 DECIMAL(3,2),	
CONSTRAINT PKStudent PRIMARY KEY (StdSSN),	
CONSTRAINT ValidGPA CHECK (StdGPA BETWEEN 0 AND 4),
CONSTRAINT MajorDeclared CHECK
 (StdClass IN ('FR','SO') OR StdMajor IS NOT NULL))

CHECK Constraint Clauses

Although CHECK constraints are widely supported, most DBMSs limit the con-
ditions inside CHECK constraints. The SQL:2016 specification allows any condition
that could appear in a SELECT statement including conditions that involve SELECT
statements. Most DBMSs do not permit conditions involving SELECT statements in
a CHECK constraint. For example, Oracle prohibits SELECT statements in CHECK
constraints as well as references to columns from other tables. For these complex con-
straints, assertions may be used (if supported by the DBMS) or triggers if assertions
are not supported.

SQL:2016 Assertions  SQL:2016 assertions are more powerful than constraints
about domains, columns, primary keys, and foreign keys. Unlike CHECK constraints,
assertions are not associated with a specific table. An assertion can involve a SELECT
statement of arbitrary complexity. Thus, assertions can be used for constraints involv-
ing multiple tables and statistical calculations, as demonstrated in Examples 16.6
through 16.8. However, complex assertions should be used sparingly because they
can be inefficient to enforce. There may be more efficient ways to enforce assertions
such as through event conditions in a form and stored procedures. As a DBA, you are
advised to investigate the event programming capabilities of application development
tools before using complex assertions.

Assertions are checked after related modification operations complete. For exam-
ple, the OfferingConflict assertion in Example 16.7 would be checked for each insertion
of an Offering row and for each change to one of the columns in the WHERE clause
of the assertion. In some cases, an assertion should be delayed until other statements
complete. The keyword DEFERRABLE can be used to allow an assertion to be tested
at the end of a transaction rather than immediately. Deferred checking is an issue with
transaction design discussed in Chapter 17.

26008_ch16_p641-680.indd 655 3/2/18 10:56 PM

656   Part 7  Managing Database Environments

Example 16.6 (SQL:2016)

This assertion statement ensures that each faculty has a course load between three and nine units.

CREATE ASSERTION FacultyWorkLoad
 CHECK (NOT EXISTS
 (SELECT Faculty.FacNo, OffTerm, OffYear
 FROM Faculty, Offering, Course
 WHERE Faculty.FacNo = Offering.FacNo
 AND Offering.CourseNo = Course.CourseNo
 GROUP BY Faculty.FacNo, OffTerm, OffYear
 HAVING SUM(CrsUnits) < 3 OR SUM(CrsUnits) > 9))

CREATE ASSERTION Statement.

Example 16.7 (SQL:2016)

This assertion statement ensures that no two courses are offered at the same time and place. The conditions involving the

OffTime and OffDays columns should be refined to check for any overlap, not just equality. Because these refinements would

involve string and date functions specific to a DBMS, they are not shown.

CREATE ASSERTION OfferingConflict
 CHECK (NOT EXISTS
 (SELECT O1.OfferNo
 FROM Offering O1, Offering O2
 WHERE O1.OfferNo <> O2.OfferNo
 AND O1.OffTerm = O2.OffTerm
 AND O1.OffYear = O2.OffYear
 AND O1.OffDays = O2.OffDays
 AND O1.OffTime = O2.OffTime
 AND O1.OffLocation = O2.OffLocation))

CREATE ASSERTION Statement

Example 16.8 (SQL:2016)

Assertion Statement to Ensure that
Full-Time Students Have at Least Nine Units
CREATE ASSERTION FullTimeEnrollment
 CHECK (NOT EXISTS
 (SELECT Enrollment.RegNo
 FROM Registration, Offering, Enrollment, Course
 WHERE Offering.OfferNo = Enrollment.OfferNo
 AND Offering.CourseNo = Course.CourseNo
 AND Offering.RegNo = Registration.RegNo
 AND RegStatus = 'F'
 GROUP BY Enrollment.RegNo
 HAVING SUM(CrsUnits) >= 9))

Assertions are not widely supported because assertions overlap with triggers. An
assertion is a limited kind of trigger with an implicit condition and action. Because
assertions are simpler than triggers, they are usually easier to create and more efficient
to execute. However, no enterprise DBMS supports assertions so triggers must be used
in places where assertions would be more appropriate.

26008_ch16_p641-680.indd 656 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   657

16.2.3  Management of Triggers and Stored Procedures
In Chapter 11, you learned about the concepts and coding details of stored procedures
and triggers. Although a DBA writes stored procedures and triggers to help manage
databases, the primary responsibilities for a DBA are to manage stored procedures and
triggers, not to write them. The DBA’s responsibilities include setting standards for
coding practices, monitoring dependencies, and understanding trigger interactions.

For coding practices, a DBA should consider documentation standards, param-
eter usage, and content, as summarized in Table 16-7. Documentation standards may
include naming standards, explanations of parameters, and descriptions of pre- and
post-conditions of procedures. Parameter usage in procedures and functions should be
monitored. Functions should use only input parameters and not have side effects. For
content, triggers should not perform integrity checking that can be coded as declarative
integrity constraints (CHECK constraints, primary keys, foreign keys, …). To reduce
maintenance, triggers and stored procedures should reference the data types of associ-
ated database columns. In Oracle, this practice involves anchored data types. Because
most application development tools support triggers and event procedures for forms
and reports, the choice between a database trigger/procedure versus an application
trigger/procedure is not always clear. A DBA should participate in setting standards
that provide guidance between using database triggers and procedures as opposed to
application triggers and event procedures.

A stored procedure or trigger depends on the tables, views, procedures, and func-
tions that it references as well as on access plans created by the SQL compiler. When a
referenced object changes, its dependents should be recompiled. In Figure 16.6, trigger
X needs recompilation if changes are made to the access plan for the UPDATE state-
ment in the trigger body. Likewise, the procedure needs recompilation if the access
plan for the SELECT statement becomes outdated. Trigger X may need recompilation
if changes are made to table A or to procedure pr_LookupZ. Most DBMSs maintain
dependencies to ensure that stored procedures and triggers work correctly. If a proce-
dure or trigger uses an SQL statement, most DBMSs will automatically recompile the
procedure or trigger if the associated access plan becomes obsolete.

A DBA should be aware of the limitations of DBMS-provided tools for depen-
dency management. Table 16-8 summarizes the dependency management issues of
access plan obsolescence, modification of referenced objects, and deletion of referenced
objects. For access plans, a DBA should understand that manual recompilation may
be necessary if optimizer statistics become outdated. For remotely stored procedures
and functions, a DBA can choose between timestamp and signature dependency main-
tenance. With timestamp maintenance, a DBMS will recompile a dependent object
for any change in referenced objects. Timestamp maintenance may lead to excessive
recompilation because many changes to referenced objects do not require recompila-
tion of the dependent objects. Signature maintenance involves recompilation when
a signature (parameter name or usage) changes. A DBA also should be aware that a
DBMS will not recompile a procedure or trigger if a referenced object is deleted. The
dependent procedure or trigger will be marked as invalid because recompilation is not
possible.

Trigger interactions were discussed in Chapter 11 as part of trigger execution
procedures. Triggers interact when one trigger fires other triggers and when triggers

TABLE 16-7
Summary of Coding Practice
Concerns for a DBA

Coding Practice Area Concerns

Documentation Procedure and trigger naming standards; explanation of parameters;
comments describing pre- and post-conditions

Parameter usage Only input parameters for functions; no side effects for functions

Trigger and procedure content Do not use triggers for standard integrity constraints; usage of anchored
data types for variables; standards for application triggers and event
procedures versus database triggers and procedures

26008_ch16_p641-680.indd 657 3/2/18 10:56 PM

658   Part 7  Managing Database Environments

overlap leading to firing in arbitrary order. A DBA can use trigger analysis tools pro-
vided by a DBMS vendor or manually analyze trigger interactions if no tools are pro-
vided. A DBA should require extra testing for interacting triggers. To minimize trigger
interaction, a DBA should implement guidelines like those summarized in Table 16-9.

16.2.4  Data Dictionary Manipulation
The data dictionary is a special database that describes individual databases and the
database environment. The data dictionary contains data descriptors called metadata
that define the source, use, value, and meaning of data. DBAs typically deal with two
kinds of data dictionaries to track the database environment. Each DBMS provides a
data dictionary to track tables, columns, triggers, indexes, and other objects managed
by the DBMS. Independent CASE tools provide a data dictionary known as the infor-
mation resource dictionary that tracks a broader range of objects relating to informa-
tion systems development. This subsection provides details about both kinds of data
dictionaries.

Metadata
data that describe other data
including the source, use,
value, and meaning of the
data.

FIGURE 16.6
Dependencies among
Database Objects

Trigger X
…
ON A
BEGIN
UPDATE Y … ;
pr_LookupZ(P1, P2);
…
END

Procedure pr_LookupZ
(P1 IN INT, P2 OUT INT)
BEGIN
...
SELECT … FROM Z … ;
…
END

Depends on

Access Plan for UPDATE
statement on table Y

Table A

Access Plan for
SELECT statement
on table Z

Depends on

TABLE 16-8
Summary of Dependency
Concerns for a DBA

Dependency Area Concerns

Access plan obsolescence DBMS should automatically recompile. DBA may need to recompile
when optimizer statistics become outdated.

Modification of referenced objects DBMS should automatically recompile. DBA should choose between
timestamp and signature maintenance for remote procedures and
functions.

Deletion of referenced objects DBMS marks procedure/trigger as invalid if referenced objects are
deleted.

TABLE 16-9
Summary of Guidelines to
Control Trigger Complexity

Guideline Explanation

BEFORE ROW triggers Do not use data manipulation statements in BEFORE ROW triggers to avoid
firing other triggers.

UPDATE triggers Use a list of columns for UPDATE triggers to reduce trigger overlap.

Actions on referenced rows Be cautious about triggers on tables affected by actions on referenced rows.
These triggers will fire as a result of actions on parent tables.

Overlapping triggers Do not depend on a specific firing order.

26008_ch16_p641-680.indd 658 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   659

Catalog Tables in SQL:2016 and Oracle  SQL:2016 contains catalog tables in the
Definition_Schema as summarized in Table 16-10. The Definition_Schema contains
one or more catalog tables corresponding to each object that can be created in an SQL
data definition or data control statement. The base catalog tables in the Definition_
Schema are not meant to be accessed in applications. For access to metadata in appli-
cations, SQL:2016 provides the Information_Schema that contains views of the base
catalog tables of the Definition_Schema.

The SQL:2016 Definition_Schema and Information_Schema have few implementa-
tions because most DBMSs already had proprietary catalog tables long before the stan-
dard was released. Thus, you will need to learn the catalog tables of each DBMS with
which you work. Typically, a DBMS may have hundreds of catalog tables. However,
for any specific task such as managing triggers, a DBA needs to use a small number
of catalog tables. Table 16-11 lists some of the most important catalog tables in Oracle.

A DBA implicitly modifies catalog tables when using data definition commands
such as the CREATE TABLE statement. The DBMS uses catalog tables to process que-
ries, authorize users, check integrity constraints, and perform other database process-
ing. The DBMS consults catalog tables before performing almost every action. Thus,
integrity of catalog tables is crucial to the operation of the DBMS. Only the most-
authorized users should be permitted to modify catalog tables. To improve security
and reliability, the data dictionary is usually a separate database stored independently
of user databases.

A DBA can query the catalog tables through proprietary interfaces and SELECT
statements. Proprietary interfaces such as the Table Definition window of Microsoft
Access and the Oracle Enterprise Manager are easier to use than SQL but are not por-
table across DBMSs. SELECT statements provide more control over the information
retrieved than do proprietary interfaces.

Information Resource Dictionary  An information resource dictionary contains
a much broader collection of metadata than does a data dictionary for a DBMS. An
information resource dictionary (IRD) contains metadata about individual databases,

Information Resource
Dictionary
a database of metadata that
describes the entire informa-
tion systems life cycle. The
information resource diction-
ary system manages access
to an IRD.

TABLE 16-10
Summary of Important
Catalog Tables in SQL:2016

Table Contents

USERS One row for each user

DOMAINS One row for each domain

DOMAIN_CONSTRAINTS One row for each domain constraint on a table

TABLES One row for each table and view

VIEWS One row for each view

COLUMNS One row for each column

TABLE_CONSTRAINTS One row for each table constraint

REFERENTIAL_CONSTRAINTS One row for each referential constraint

TABLE 16-11
Common Catalog Tables for
Oracle

Table Name Contents

USER_CATALOG Contains basic data about each table and view defined by a user.

USER_OBJECTS Contains data about each object (functions, procedures, indexes, triggers,
etc.) defined by a user. This table contains the time created and the last time
changed for each object.

USER_TABLES Contains extended data about each table such as space allocation and statisti-
cal summaries.

USER_TAB_COLUMNS Contains basic and extended data for each column such as the column name,
the table reference, the data type, and a statistical summary.

USER_VIEWS Contains the SQL statement defining each view.

26008_ch16_p641-680.indd 659 3/2/18 10:56 PM

660   Part 7  Managing Database Environments

computerized and human processes, configuration management, version control,
human resources, and the computing environment. Conceptually, an IRD defines
metadata used throughout the information systems life cycle. Both DBAs and DAs
can use an IRD to manage information resources. In addition, other information sys-
tems professionals can use an IRD during selected tasks in the information systems
life cycle.

Because of its broader role, an IRD is not consulted by a DBMS to conduct oper-
ations. Rather, an information resource dictionary system (IRDS) manages an IRD.
Many CASE tools can use the IRDS to access an IRD as depicted in Figure 16.7. CASE
tools can access an IRD directly through the IRDS or indirectly through the import/
export feature. The IRD has an open architecture so that CASE tools can customize and
extend its conceptual schema.

There are two primary proposals for the IRD and the IRDS. The IRD and the IRDS
were originally developed as standards by the International Standards Organization
(ISO) in the early 1990s. The implementation of the standards, however, was limited.
Microsoft and Texas Instruments jointly developed the Microsoft Repository, which
supported many of the goals of the IRD and the IRDS although it did not conform to
the standard. However, the Microsoft Repository has been phased out after initially
gaining some acceptance among CASE tool vendors.

As an alternative to the IRD and IRDS, the Object Management Group (OMG)
developed the Model Driven Architecture (MDA) in the early 2000s. The MDA provides
an open specification that supports formal modeling of all aspects of the software life
cycle including business processes, software architectures, data warehousing, metadata
repositories, tool integration and even the software development process itself. The
MDA uses multiple standards, including the Unified Modeling Language (UML), the
Meta-Object Facility (MOF), XML Metadata Interchange (XMI), Enterprise Distributed
Object Computing (EDOC), the Software Process Engineering Metamodel (SPEM), and
the Common Warehouse Metamodel (CWM). The OMG relies on commercial and open
source developers to implement tools for the MDA. However, the MDA has not gained
enough commercial acceptance to be considered an important standard.

Thus, the IRD and IRDS remain idealized concepts without a widely accepted
commercial standard. Data specialists must deal with proprietary data dictionary
interfaces in commercial CASE tools to compliment the dictionary tables available
with enterprise DBMSs.

FIGURE 16.7
IRDS Architecture

DBMS

IRD

CASE tool 1

IRDS

CASE tool 2 CASE tool n

Metadata
import

Metadata
export

...

16.3  PROCESSES FOR DATABASE SPECIALISTS
This section describes processes performed by data administrators and database
administrators. Data administrators perform data planning as part of the informa-
tion systems planning process. Data administrators participate in data governance

26008_ch16_p641-680.indd 660 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   661

sometimes serving on the data governance committee and other times consulting on
activities managed by the data governance committee. Both data administrators and
database administrators may perform tasks in the process of selecting and evaluating
DBMSs. This section presents the details of all three processes.

16.3.1  Data Planning
Despite large expenditures on information technology, many organizations feel dis-
appointed in the payoff. Many organizations have created islands of automation that
support local objectives but not the global objectives for the organization. The islands-
of-automation approach can lead to a misalignment of the business and information
technology objectives. One result of the misalignment is the difficulty in extracting the
decision-making value from operational databases.

As a response to problems with islands of automation, many organizations per-
form a detailed planning process for information technology and systems. The plan-
ning process is known under various names such as information systems planning,
business systems planning, information systems engineering, and information sys-
tems architecture. All of these approaches provide a process to achieve the following
objectives:

•	 Evaluation of current information systems with respect to the goals and
objectives of the organization

•	 Determination of the scope and the timing of developing new information
systems and utilization of new information technology

•	 Identification of opportunities to apply information technology for competitive
advantage

The information systems planning process involves the development of enterprise
models of data, processes, and organizational roles, as depicted in Figure 16.8. In the
first part of the planning process, broad models are developed. Table 16-12 shows the
initial level of detail for the data, process, and organization models. Because the enter-
prise data model is usually more stable than the process model, it is usually devel-
oped first. To integrate these models, interaction models are developed as shown in
Table 16-12. If additional detail is desired, the process and the data models are further
expanded. These models should reflect the current information systems infrastructure
as well as planned future directions.

Data administrators play an important part in the development of information
system plans. Data administrators conduct numerous interviews to develop the
enterprise data model and coordinate with other planning personnel to develop the
interaction models. To improve the likelihood that plans will be accepted and used,
data administrators should involve senior management. By emphasizing the decision-
making potential of integrated information systems, senior management will be moti-
vated to support the planning process.

Information Systems
Planning
the process of developing
enterprise models of data,
processes, and organiza-
tional roles. Information
systems planning evaluates
existing systems, identi-
fies opportunities to apply
information technology for
competitive advantage, and
plans new systems.

Data

Processes Organization

Align information
systems with
business environment

Enterprise models

Business goals
and objectives

FIGURE 16.8
Enterprise Models
Developed in the Information
Systems Planning Process

26008_ch16_p641-680.indd 661 3/2/18 10:56 PM

662   Part 7  Managing Database Environments

16.3.2  Data Governance Processes and Tools
Data governance overlaps somewhat with data planning. Data governance empha-
sizes controls and accountability while data planning emphasizes enterprise models to
guide usage and development of information technology. For example, data planning
involves models of an organization and data usage within an organization but does
not typically involve the controls and compliance representation in data governance
models.

Microsoft and the Data Governance Institute have developed data governance
approaches. The Microsoft approach provides some useful modeling tools so its
approach is covered in this section. Otherwise, the approaches are reasonably similar.
For more details about both approaches, you should see references listed in this sec-
tion and at the end of the chapter.

The Microsoft Data Governance for Privacy, Confidentiality, and Compliance
(DGPC) Framework contains components5 for people, process, and technology as
depicted in Figure 16.9. The people part of the framework involves a pyramid with
a small group of executive management providing strategic direction to a data gov-
ernance organization. The data governance organization contains a diverse group of
data stewards organized into steering committees and working groups. A data stew-
ard, typically a manager of a business area or a subject area expert, assumes respon-
sibility for policies and standards applying to selected data. At the bottom of the
pyramid, data consumers adhere to the policies and standards established by the data
governance organization. Data consumers also report on violations of policies and
standards for corrective action performed by data stewards and the data governance
organization.

Data Steward
an individual responsible
for policies and standards
applying to selected data.
Typically managers from
business areas or experts
from subject areas serve as
data stewards.

TABLE 16-12
Level of Detail of Enterprise
Models

Model Levels of Detail

Data Subject model (initial level), entity model (detailed level)

Process Functional areas and business processes (initial level), activity model
(detailed level)

Organization Role definitions and role relationships

Data-process interaction Matrix and diagrams showing data requirements of processes

Process-organization interaction Matrix and diagrams showing role responsibilities

Data-organization Matrix and diagrams showing usage of data by roles

5 Salido, J. and Voon, P. “A Guide to Data Governance for Privacy, Confidentiality, and Compliance (Part 2):
People and Process,” Microsoft Corporation, Whitepaper, January 2010.

People

• Strategic committment
by executive
management

• Guidance by governance
organization

• Cooperation from data
consumers

Process

• Establish policies and
standards

• Manage governance
organization

• Apply tools and
technologies

• Implement and monitor
controls

Technology

• Trusted infrastructure
• Identity and access
controls

• Information protection
and classification

• Monitoring of integrity
and compliance

FIGURE 16.9
Components of the Microsoft
DGPC Framework
(Adapted from Salido and
Voon, 2010, Part 2)

26008_ch16_p641-680.indd 662 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   663

The DGPC Framework contains four core processes for managing the gover-
nance organization, requirements, strategies/policies, and controls as depicted in
Figure 16.10. Managing the data governance organization involves processes for
appointing members, defining roles and responsibilities, creating working groups,
and reporting status and performance of data governance initiatives. Managing
requirements involves translating business strategy into data quality and compliance
requirements and collecting and integrating authority documents including regula-
tions, standards, and policies. Managing strategies and policies involves processes to
review, approve, publish, and implement authority documents. Managing the control
environment involves processes for developing and monitoring controls and using
tools to model information lifecycles and technology domains. The Microsoft informa-
tion cycle is similar to the lifecycle shown in Figure 16.2. Table 16-13 lists functions of
the four key technology domains: secure infrastructure, identity and access controls,
information protection, and auditing and reporting.

Controls, tools for managing risks to data assets, can be classified according to
their timing (preventative, detective, and corrective) and automation level (manual,
technology-aided, and automatic). Preventative controls are applied before an event
occurs to ensure compliance. Typical preventative controls are segregation of duties
and approval levels. Detective controls are applied after an event occurs to determine
errors and irregularities. Exception reports, reconciliations, and audits are typical
detective controls. Corrective controls are applied after detection of errors and non-
compliance. Malware removal and backup restore are typical corrective controls. The

Control
a tool to manage risks to
data assets. Controls can be
classified according to their
timing (preventative, detec-
tive, and corrective) and
automation level (manual,
technology-aided, and
automatic).

Manage Data
Governance
Organization

• Appoint comitttee
members

• Report status
• Define roles and

responsibilities

Manage
Requirements

• Data quality
requirements

• Regulations
• Security and privacy

standards
• Control frameworks

Manage
Strategies and

Policies

• Policies for privacy
classification

• Data security and
privacy principles

• Data retention policies

Manage
Control

Environment

• Apply tools to
technology domains
and information life
cylces

• Monitor controls

FIGURE 16.10
Core Processes in the
Microsoft DGPC Framework
(Adapted from Salido and
Voon, 2010, Part 2)

TABLE 16-13
List of Functions in Microsoft
Security Domains

Security Domain Functions

Secure infrastructure Stop malware and intrusions
Monitor systems from evolving threats

Identity and access control Safeguard sensitive data from unauthorized access or use
Support controls for identity, access, and provisioning

Information protection Protect sensitive data in databases, documents, messages, and records
Safeguard data in motion
Automate data classification for privacy

Auditing and reporting Monitor integrity of systems and data
Monitor compliance of data privacy and confidentiality with policies

Adapted from Salido and Voon, 2010, Part 2

26008_ch16_p641-680.indd 663 3/2/18 10:56 PM

664   Part 7  Managing Database Environments

level of automation depends on the type of control. Corrective controls are easiest to
automate. Some human involvement is usually necessary for preventative and detec-
tive controls to perform procedures or review control results.

The Risk-Gap Analysis Matrix6 combines the information lifecycle and technology
domains. The rows of the matrix are the data lifecycle stages while the columns are
the technology domains as shown in Table 16-14. The last column identifies manual
controls, not part of the technology domains. The cells show gaps in measures to pro-
tect data and manage risks for combinations of lifecycle activity and security domain.
Gaps should be evaluated using compliance, data privacy, and confidentiality prin-
ciples applicable to the combination of a lifecycle stage and technology domain.

Microsoft provides a risk-gap analysis process to support identification and reso-
lution of gaps as depicted in Figure 16.11. In the first step, the context is established
through defining the business purpose and listing the specific privacy, security, and
compliance objectives. In the second step, threats are identified using a threat model-
ing tool such as the Microsoft Security Development Lifecycle tool. In the third step,
risks for each cell of the risk-gap matrix are determined using the security and privacy
principles. In the fourth step, risk mitigation techniques are chosen subject to cost-ben-
efit analyses. In the fifth step, the effectiveness of mitigation techniques are evaluated
using data collected from data consumers.

To gauge an organization’s relative progress in data governance, Microsoft pro-
vides the DGPC Capability Maturity Model (CMM)7. The CMM helps organizations

6 Salido, J. and Voon, P. “A Guide to Data Governance for Privacy, Confidentiality, and Compliance (Part 3):
Managing Technological Risk,” Microsoft Corporation, Whitepaper, March 2010.
7 Salido, J. and Voon, P. “A Guide to Data Governance for Privacy, Confidentiality, and Compliance (Part 4):
A Capability Maturity Model,” Microsoft Corporation, Whitepaper, April 2010.

FIGURE 16.11
Microsoft Risk Gap Analysis
Process
(Adapted from Salido and
Voon, 2010, Part 3)

Determine
context

Identify
possible
threats

Analyze
uncertainties

Mitigate risks

Evaluate
results

TABLE 16-14
Template Risk-Gap Matrix
in the Microsoft DGPC
Framework

Technology Domain

Lifecycle
Stage

Secure
Infrastructure

Identity and
Access Control

Information
Protection

Auditing and
Reporting

Manual
Controls

Collect

Update

Process

Delete

Storage

Transfer

Adapted from Salido and Voon, 2010, Part 3

26008_ch16_p641-680.indd 664 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   665

determine their current status, target future status goals, and create action plans to
reach maturity targets. The CMM provides a timeline showing stages of maturity, a
development process to determine activities to reach future target maturity targets,
and a table with details about capabilities in each core area. As depicted in Table
16-15, the stages of the CMM depend on the levels of training for personnel, develop-
ment and integration of processes, and automation and integration of controls. The
CMM development process involves understanding CMM capabilities, determining
target levels, prioritizing development of new capabilities, and measuring progress.
The main artifact of the CMM development process is a detailed table with main sec-
tions for people, process, and technology. Each area is evaluated on the four matu-
rity levels with capabilities noted as current, planned, in progress, delivered, and
adopted.

To support the DGPC for Microsoft Office 365, Microsoft provides some software
tools. The initial release of Office 365 Advanced Data Governance supports automated
recommendations of retention policies, data profiling for retention, and detective con-
trols for suspicious user interactions. Policy recommendations involve retention and
deletion rules consistent with organization and industry norms. Data profiling classi-
fies data by type, age, and user interaction. Detective controls provide standard alerts
indicating unusual volumes of file operations and custom alerts with customized
matching conditions and thresholds.

Data administrators and database administrators are usually involved in data gov-
ernance. Data administrators participate through membership in the data governance
office and consulting on activities managed by the data governance office. With their
broad outlook on corporate data assets and interaction with various data stewards,
data administrators are well-suited to manage a data governance office. Data adminis-
trators can also be heavily involved in setting policies for data definitions, data quality,
and controls. Database administrators usually serve a support role to help implement
technology-aided and automated controls.

16.3.3  Selection and Evaluation of Database Management Systems
Selection and evaluation of a DBMS can be a very important task for an organiza-
tion. DBMSs provide an important part of the computing infrastructure. As organiza-
tions strive to conduct electronic commerce over the Internet and extract value from
operational databases, DBMSs play an even greater role. The selection and evaluation
process is important because of the impacts of a poor choice. The immediate impacts
may be slow database performance and loss of the purchase price. A poorly perform-
ing information system can cause lost sales and higher costs. The longer-term impacts
are high switching costs. To switch DBMSs, an organization may need to convert data,
recode software, and retrain employees. The switching costs can be much larger than
the original purchase price.

TABLE 16-15
Stages of the Microsoft
Capability Maturity Model

Stage People Process Technology

Basic Lack of training and
awareness

Few, immature processes Lack of tools without integration

Standardized Formal training Established and communicated
processes

Minimal tools for foundation
goals

Rationalized Formal training with
compliance metrics

Process improvement Increased usage of automated
controls and some integration

Dynamic Formal training with
compliance metrics

Integrated compliance efforts Full usage of automated and
technology-aided controls with
integration

Adapted from Salido and Voon, 2010, Part 4

26008_ch16_p641-680.indd 665 3/2/18 10:56 PM

666   Part 7  Managing Database Environments

Selection and Evaluation Process  The selection and evaluation process involves
a detailed assessment of an organization’s needs and features of candidate DBMSs.
The goal of the process is to determine a small set of candidate systems that will be
investigated in more detail. Because of the detailed nature of the process, a DBA per-
forms most of the tasks. Therefore, a DBA needs a thorough knowledge of DBMSs to
perform the process.

Figure 16.12 depicts the steps of the selection and evaluation process. In the first
step, a DBA conducts a detailed analysis of the requirements. Because of the large
number of requirements, it is helpful to group them. Table 16-16 lists major groupings
of requirements while Table 16-17 shows some individual requirements in one group.
Each individual requirement should be classified as essential, desirable, or optional to
the requirement group. In some cases, several levels of requirements may be neces-
sary. A DBA should be able to objectively measure individual requirements in candi-
date systems.

After determining the groupings, the DBA should assign weights to the major
requirement groups and score candidate systems. With more than a few major require-
ment groups, assigning consistent weights is very difficult. The DBA needs a tool to
help assign consistent weights and to score candidate systems. The Analytic Hier-
archy Process (AHP) provides a simple approach that achieves a reasonable level
of consistency. The AHP has been used in a variety of management decision-making
situations. As evidence of AHP’s acceptance, a number of commercial software tools
support the AHP.

Using the AHP, you assign weights to pairwise combinations of requirement
groups using the nine-point scale in Table 16-18. For example, you should assign a
weight that represents the importance of conceptual data definition as compared to
nonprocedural retrieval. As shown in Table 16-19, the ranking of 5 in row 2, column
1 means that nonprocedural retrieval is significantly more important than conceptual
data definition. For consistency, if entry Aij = x, then Aji = 1/x. Thus, the entry in row 1,
column 2 is 1/5. The diagonal elements (comparing a requirement group to itself)
should always be 1. Thus, it is necessary to complete only half the rankings in Table
16-19. The final row in the Table 16-19 shows column sums used to normalize weights
and determine importance values.

After assigning pairwise weights to the requirement groups, the weights are com-
bined to determine an importance weight for each requirement group. The cell values
are normalized by dividing each cell by its column sum as shown in Table 16-20. The
final importance value for each requirement group is the average of the normalized
weights in each row as shown in Table 16-21.

Analytic Hierarchy Process
a decision theory technique
to evaluate problems with
multiple objectives. The pro-
cess supports the selection
and evaluation process by
allowing a systematic assign-
ment of weights to require-
ments and scores to features
of candidate DBMSs.

Score
candidate
systems

Analyze
requirements

Determine
weights

Ranked
candidates

FIGURE 16.12
Overview of the Selection
and Evaluation Process

TABLE 16-16
Some Major Requirement
Groups

Category

Data definition (conceptual)

Nonprocedural retrieval

Data definition (internal)

Application development

Procedural language

Concurrency control

Recovery management

Parallel database processing

Distributed database support

Vendor support

Query optimization

26008_ch16_p641-680.indd 666 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   667

TABLE 16-17
Some Detailed Requirements
for the Conceptual Data
Definition Category

Requirement (Importance) Explanation

Entity integrity (essential) Declaration and enforcement of primary keys

Candidate keys (desirable) Declaration and enforcement of candidate keys

Referential integrity (essential) Declaration and enforcement of referential integrity

Referenced rows (desirable) Declaration and enforcement of rules for referenced rows

Standard data types (essential) Support for whole numbers (several sizes), floating-point numbers
(several sizes), fixed-point numbers, fixed-length strings, variable-
length strings, and dates (date, time, and timestamp)

User-defined data types (desirable) Support for new data types or a menu of optional data types

User interface (desirable) Graphical user interface to manipulate dictionary tables

General assertions (optional) Declaration and enforcement of multitable constraints

CHECK constraints (essential) Declaration and enforcement of intra table constraints

TABLE 16-18
Interpretation of Rating
Values for Pairwise
Comparisons

Ranking Value of Aij Meaning

1 Requirements i and j are equally important.

3 Requirement i is slightly more important than requirement j.

5 Requirement i is significantly more important than requirement j.

7 Requirement i is very significantly more important than requirement j.

9 Requirement i is extremely more important than requirement j.

TABLE 16-19
Sample Weights for Some
Requirement Groups

Data Definition
(Conceptual)

Nonprocedural
Retrieval

Application
Development

Concurrency
Control

Data Definition (conceptual) 1 1/5 (0.20) 1/3 (0.33) 1/7 (0.14)

Nonprocedural Retrieval 5 1 3 1/3 (0.33)

Application Development 3 1/3 (0.33) 1 1/5 (0.20)

Concurrency Control 7 3 5 1

Column Sum 16 4.53 9.33 1.67

TABLE 16-20
Normalized Weights for
Some Requirement Groups

Data Definition
(Conceptual)

Nonprocedural
Retrieval

Application
Development

Concurrency
Control

Data Definition (conceptual) 0.06 0.04 0.04 0.08

Nonprocedural Retrieval 0.31 0.22 0.32 0.20

Application Development 0.19 0.07 0.11 0.12

Concurrency Control 0.44 0.66 0.54 0.60

TABLE 16-21
Importance Values for Some
Requirement Groups

Requirement Group Importance

Data Definition (conceptual) 0.06

Nonprocedural Retrieval 0.26

Application Development 0.12

Concurrency Control 0.56

26008_ch16_p641-680.indd 667 3/2/18 10:56 PM

668   Part 7  Managing Database Environments

Importance weights must be computed for each subcategory of requirement
groups in the same manner as for requirement groups. For each subcategory, pairwise
weights are assigned before normalizing the weights and computing final importance
values.

After computing importance values for the requirements, candidate DBMSs are
assigned scores. Scoring candidate DBMSs can be complex because of the number of
individual requirements and the need to combine individual requirements into an
overall score for the requirement group. As the first part of the scoring process, a DBA
should carefully investigate the features of each candidate DBMS.

Many approaches have been proposed to combine individual feature scores into
an overall score for the requirement group. The Analytic Hierarchy Process supports
pairwise comparisons among candidate DBMSs using the rating values in Table 16-18.
The interpretations change slightly to reflect comparisons among candidate DBMSs
rather than the importance of requirement groups. For example, a value 3 should be
assigned if DBMS i is slightly better than DBMS j. For each requirement subcategory,
a comparison matrix should be created to compare the candidate DBMSs. Scores for
each DBMS are computed by normalizing the weights and computing the row aver-
ages as for requirement groups.

After scoring the candidate DBMSs for each requirement group, the final scores
are computed by combining the requirement group scores with the importance of
requirement groups. For details about computing the final scores, you should consult
the references at the end of the chapter about the Analytic Hierarchy Process.

DBMS Evaluation using Benchmarks  After the selection and evaluation process
completes, the top two or three candidate DBMSs should be evaluated in more detail.
Benchmarks can be used to provide a more detailed evaluation of candidate DBMSs.
A benchmark is a workload to evaluate the performance of a system or product.
A good benchmark should be relevant, portable, scalable, and understandable. Because
developing good benchmarks requires significant expertise, most organizations
should not attempt to develop a benchmark. Fortunately, the Transaction Processing
Performance Council (TPC) has developed a number of standard, enterprise bench-
marks as summarized in Table 16-22. Each enterprise benchmark was developed over
an extended time period with input from a diverse group of contributors.

The TPC benchmarks have been extended with specifications for pricing, energy
efficiency, and virtualization measurement. The pricing specification was developed

Benchmark
a workload to evaluate the
performance of a system or
product. A good bench-
mark should be relevant,
portable, scalable, and
understandable.

8 In addition to the currently supported enterprise benchmarks, the TPC has three express benchmarks and
six obsolete benchmarks.

TABLE 16-22
Summary of TPC Enterprise8
Benchmarks

Benchmark Description Performance Measures

TPC-C Online order entry benchmark Transactions per minute, price per
transactions per minute

TPC-DI Data integration benchmark for a fictitious
brokerage firm with multiple data sources

Combined throughput (elapsed time)
measure for historical load and incremental
update, price per throughput

TPC-DS Decision support benchmark for a retail
product supplier; uses both queries and
data integration processing

Effective query throughput (queries per
elapsed time), price per query throughput,
system availability date

TPC-E Transaction workload of a brokerage firm Transactions per second, price per
transactions per second

TPC-H Decision support for ad hoc queries Composite queries per hour, price per
composite queries per hour

TPC-VMS Virtualized database benchmark for base
benchmarks (TPC-C, TPC-DS, TPC-E, or
TPC-H)

Minimum base benchmark performance,
price per base benchmark performance,
system availability date

26008_ch16_p641-680.indd 668 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   669

to reduce confusion caused by special pricing policies offered by vendors especially
benchmark pricing. Vendor prices should be generally available, published prices for
commercial products to evaluate price/performance for a three year period. Each ven-
dor must disclose the purchase price of associated hardware, software licensing costs,
and maintenance contracts. The pricing specification stipulates auditing requirements
for the full disclosure agreement about prices provided in a benchmark result.

In response to the growing importance of energy efficiency in information tech-
nology selection, the TPC developed the TPC-Energy specification. Customers have
increasingly demanded both price/performance and energy/performance results for
information technology purchasing decisions. The TPC-Energy specification provides
standards for energy metrics and a software tool to support energy measurement and
reporting by benchmark vendors. The energy metric standard stipulates components
of the system under test and aspects of the physical environment (such as tempera-
ture, humidity, and altitude) for execution of a benchmark. The Energy Metric System
supports a Web interface for power system instrumentation, power and temperature
logging, and report generation.

The virtualized database benchmark (TPC-VMS) supports benchmark execution
and reporting on virtualized databases. Organizations increasingly utilize virtualiza-
tion environments leading to demands for benchmark measurements for virtualized
databases.

A DBA can use the TPC results to obtain reasonable estimates about the perfor-
mance of a DBMS in a specific hardware/software environment. The TPC perfor-
mance results involve total system performance, not just DBMS performance so that
results are not inflated when a customer uses a DBMS in a specific hardware/software
environment. To facilitate price performance trade-offs, the TPC publishes the perfor-
mance measure along with price/performance for each benchmark. The price covers
all cost dimensions of an entire system environment including workstations, commu-
nications equipment, system software, computer system or host, backup storage, and
three years’ maintenance cost. The TPC audits the benchmark results prior to publica-
tion to ensure that vendors have not manipulated results.

To augment the published TPC results, an organization may want to evaluate a
DBMS on a trial basis. Customized benchmarks can be created to gauge the efficiency
of a DBMS for its intended usage. In addition, the user interface and the application
development capabilities can be evaluated by building small applications.

Final Selection Process  The final phase of the selection process typically involves
nontechnical considerations performed by data administrators along with senior man-
agement and legal staff. Assessment of each vendor’s future prospects is important
because information systems can have a long life. If the underlying DBMS does not
advance with the industry, it may not support future initiatives and upgrades to the
information systems that use it. Because of the high fixed and variable costs (main-
tenance fees) of a DBMS, negotiation is often a critical element of the final selection
process. The final contract terms along with one or two key advantages often make
the difference in the final selection.

Open source DBMS software is a recent development that complicates selec-
tion and evaluation decisions. Organizations considering open source DBMS soft-
ware should understand distinctions between open source and open core license
models. An open source license grants users the right to use, copy, share, inspect, and
alter software without payment. License variations place conditions in which software
can be shared and altered. Organizations using open source DBMS software (such as
PostgreSQL) typically pay for product support from an external vendor although the
DBMS does not have any license costs.

In contrast, the open core license model provides a core software product under
an open source license and an enhanced version as a commercial product. The com-
mercial product in an open core license typically has a reduced price as compared
to traditional commercial software. Essentially the open core model provides a way

Open source versus open
core license model
an open source license
grants users rights to
use, copy, share, inspect,
and alter software with-
out license payments. An
open core model involves
a core product under an
open source license and an
enhanced product under a
commercial license.

26008_ch16_p641-680.indd 669 3/2/18 10:56 PM

670   Part 7  Managing Database Environments

to monetize open source software development. As an example, MySQL uses an
open core license with a core product available under an open source license and an
enhanced product under a commercial license.

For open source DBMSs, the lack of profit motive may hinder future product
development. Usage of DBMS software for mission critical systems can lead to high
switching costs if an organization’s needs change and DBMS product development
stalls. The open core model provides organizations an upgrade path with a free core
product and a commercial product with more certain future development. Despite
this uncertainty, many organizations utilize open source DBMS software especially for
non-mission-critical systems.

16.4  MANAGING DATABASE ENVIRONMENTS
DBMSs operate in several different processing environments. Data specialists must
understand the environments to ensure adequate database performance and set stan-
dards and policies. This section provides an overview of the processing environments
with an emphasis on the tasks performed by database administrators and data admin-
istrators. Chapters 12 to 15 provided details about data warehouse environments. The
other chapters in Part 7 provide the details about the other processing environments.

16.4.1  Transaction Processing
Transaction processing involves the daily operations of an organization. Every day,
organizations process large volumes of orders, payments, cash withdrawals, airline
reservations, insurance claims, and other kinds of transactions. DBMSs provide essen-
tial services to perform transactions in an efficient and reliable manner. Organizations
such as banks with automatic tellers, airlines with online reservation systems, and
universities with online registration could not function without reliable and efficient
transaction processing. With exploding interest to conduct business over the Internet,
the importance of transaction processing will grow even larger.

Data specialists have many responsibilities for transaction processing, as listed
in Table 16-23. Data administrators may perform planning responsibilities involving
infrastructure and disaster recovery. Database administrators usually perform the
more detailed tasks such as consulting on transaction design and monitoring perfor-
mance. Because of the importance of transaction processing, database administrators
often must be on call to troubleshoot problems. Chapter 17 presents details of transac-
tion processing for concurrency control and recovery management. After you read
Chapter 17, you may want to review Table 16-23 again.

16.4.2  Data Warehouse Processing
As you learned in Chapters 12 to 15, data warehouses support business intelli-
gence requirements. Because many organizations have not been able to use opera-
tional databases directly to support management decision making, the idea of a data

TABLE 16-23
Responsibilities of Database
Specialists for Transaction
Processing

Area Responsibilities

Transaction design Consult about design to balance integrity and performance; educate about
design issues and DBMS features

Performance monitoring Monitor transaction performance and troubleshoot performance problems;
modify resource levels to improve performance

Transaction processing
infrastructure

Determine resource levels of disks, memory, RAID devices, and servers for
efficient and reliable processing

Disaster recovery Provide contingency plans for various kinds of database failures

26008_ch16_p641-680.indd 670 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   671

warehouse was conceived. A data warehouse is a logically centralized database in
which enterprise-wide data are stored to facilitate business intelligence activities by
user departments. Data from operational databases and external sources are extracted,
cleaned, integrated, and then loaded into a data warehouse. Because a data warehouse
contains secondary data, most activity involves retrievals of summarized data.

Data specialists have many responsibilities for data warehouses, as listed in Table
16-24. Data administrators may perform planning responsibilities involving the data
warehouse architecture and the enterprise data model. Database administrators usu-
ally perform the more detailed tasks such as data warehouse design, performance
monitoring, and consulting. To support a large data warehouse, additional software
products separate from a DBMS may be necessary for data integration, reporting,
and analytical processing. A selection and evaluation process should be conducted to
choose the most appropriate product for each need. Chapters 12 to 15 presented details
of data warehouses. After you read Chapters 12 and 15, you may want to review Table
16-24 again.

16.4.3  Distributed Environments
DBMSs can operate in distributed environments to support both transaction process-
ing and data warehouses. In distributed environments, DBMSs can provide the abil-
ity to distribute processing and data among computers connected by a network. For
distributed processing, a DBMS may allow the distribution of functions provided by
the DBMS as well as application processing to be distributed among different com-
puters in a network. For distributed data, a DBMS may allow tables to be stored and
possibly replicated at different sites in a network. The ability to distribute process-
ing and data provides the promise of improved flexibility, scalability, performance,
and reliability. However, these improvements only can be obtained through careful
design.

Data specialists have many responsibilities for distributed database environments,
as shown in Table 16-25. Data administrators usually perform planning responsibili-
ties involving setting goals and determining architectures. Because distributed envi-
ronments do not increase functionality, they must be justified by improvements in
the underlying operations. Database administrators perform more detailed tasks such
as performance monitoring and distributed database design. To support distributed
environments, other software products along with major extensions to a DBMS may
be necessary. A selection and evaluation process should be conducted to choose the
most appropriate products. Chapter 18 presents the details of distributed processing
and distributed data. After you read Chapter 18, you may want to review Table 16-25
again.

TABLE 16-24
Responsibilities of
Database Specialists for
Data Warehouses

Area Responsibilities

Data warehouse usage Educate and consult about application design and DBMS features for data
warehouse processing

Performance monitoring Monitor data warehouse refresh and query performance; troubleshoot
integrity problems; modify resource levels to improve performance

Data warehouse refresh Determine the frequency of refreshing the data warehouse and the
schedule of activities to refresh the data warehouse; design and
implement data integration workflows and procedures

Data warehouse architecture Determine architecture to support decision-making needs; select database
and data integration products to support architecture determine resource
levels for efficient processing

Enterprise data model Provide expertise about operational database content; design conceptual
data models for data warehouses; promote data quality to support data
warehouse development

26008_ch16_p641-680.indd 671 3/2/18 10:56 PM

672   Part 7  Managing Database Environments

16.4.4  Object Databases and NoSQL Databases
Object DBMSs support additional functionality for transaction processing and busi-
ness intelligence processing. Many information systems use a richer set of data types
than provided by relational DBMSs. For example, many financial databases need to
manipulate time series, a data type not provided by most relational DBMSs. With the
ability to convert any kind of data to a digital format, the need for new data types is
even more pronounced. Business databases often need to integrate traditional data
with nontraditional data based on new data types. For example, information systems
for processing insurance claims must manage traditional data such as account num-
bers, claim amounts, and accident dates as well as nontraditional data such as images,
maps, and drawings. Because of these needs, existing relational DBMSs have been
extended with object capabilities.

NoSQL (Not Only SQL) databases are the opposite side of object database manage-
ment. NoSQL databases support simplified and flexible data representations, limited
constraint checking, non-standard query languages, and highly efficient processing
for emerging big data applications. The market for NoSQL DBMSs has grown rapidly
from a small base as organizations invest in big data applications.

Data specialists have many responsibilities for object databases and NoSQL data-
bases as shown in Table 16-26. Data administrators usually perform planning responsi-
bilities involving setting goals and determining architectures. Database administrators
perform more detailed tasks such as performance monitoring, consulting, and data-
base design. An object DBMS extends an existing relational DBMS. A NoSQL database
can extend an existing DBMS or be a new DBMS without relational database features.
A selection and evaluation process should be conducted to choose the most appropri-
ate product. Chapter 19 presents the details of object and NoSQL DBMSs. After you
read Chapter 19, you may want to review Table 16-26 again.

TABLE 16-25
Responsibilities of Database
Specialists for Distributed
Environments

Area Responsibilities

Application development Educate and consult about impacts of distributed environments for
transaction processing and data warehouses

Performance monitoring Monitor performance and troubleshoot problems with a special
emphasis on distributed environments

Distributed environment architectures Identify goals for distributed environments; choose distributed
processing, parallel database, big data, and distributed database
architectures to meet goals; select additional software products to
support architectures

Distributed environment design Design distributed databases; determine resource levels for
efficient processing

TABLE 16-26
Responsibilities of
Database Specialists for
Object and NoSQL
Databases

Area Responsibilities

Application development Educate and consult about extended data types, creating new data
types, inheritance for data types and tables, and other object features
as well as simplified data representations in NoSQL databases

Performance monitoring Monitor performance and troubleshoot problems with new data types for
object databases and processing approaches for NoSQL databases

NoSQL database architectures Choose data representation and processing approaches; Identify
applications that require NoSQL technology

Object database design Design object databases; select data types; create new data types,
design functions and procedures for new data types; For NoSQL
databases, convert conventional design into simplified NoSQL
representation

26008_ch16_p641-680.indd 672 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   673

This chapter has described the responsibilities, tools, and processes used by data spe-
cialists to manage databases and support management decision making. Many orga-
nizations provide two roles for managing information resources. Data administrators
perform broad planning and policy setting, while database administrators perform
detailed oversight of individual databases and DBMSs. To provide a context to under-
stand the responsibilities of data specialists, this chapter described frameworks for
managing organizational information and knowledge as well as governance of infor-
mation resources. In many organizations, data specialists participate in these frame-
works in an environment dominated by challenges and opportunities from exploding
data growth.

This chapter described a number of tools to support database administrators.
Database administrators use security rules to restrict access and integrity constraints
to improve data quality. This chapter described security rules and integrity constraints
along with associated SQL:2016 syntax and additional Oracle security features. For
triggers and stored procedures, this chapter described managerial responsibilities of
DBAs to complement the coding details in Chapter 11. The data dictionary is an impor-
tant tool for managing individual databases as well as integrating database develop-
ment with information systems development. This chapter presented two kinds of
data dictionaries: catalog tables used by DBMSs and the information resource diction-
ary used by CASE tools.

Database specialists need to understand three important processes to manage
information technology. Data administrators participate in a detailed planning pro-
cess that determines new directions for information systems development. This chap-
ter described the data planning process as an important component of the information
systems planning process. Data administrators often serve in key roles in data gover-
nance, a process to control risks to data assets and improve compliance with privacy
and confidentiality policies. Database administrators may support data governance by
helping to implement technology-aided controls. This chapter described the Microsoft
Framework for Data Governance, Privacy, Confidentiality, and Compliance, a promi-
nent approach involving people, processes, and technology components to support
data governance activities. Both data administrators and database administrators par-
ticipate in the selection and evaluation of DBMSs. Database administrators perform
detailed tasks while data administrators often make final selection decisions based
on a detailed recommendation and negotiation with vendors. This chapter described
the steps of the selection and evaluation process and the tasks performed by database
administrators and data administrators in the process.

This chapter provides a context for the data warehouse chapters (Chapters 12 to
15) and other chapters in Part 7. The other chapters provide details about different
database environments including transaction processing, distributed environments,
and object and NoSQL databases. This chapter has emphasized the responsibilities,
tools, and processes of database specialists for managing these environments. After
completing the other chapters in Part 7, you are encouraged to reread this chapter to
help you integrate the details with management concepts and techniques.

CLOSING THOUGHTS

REVIEW CONCEPTS

•	 Information resource management: management philosophy to control
information resources and apply information technology to support
management decision-making

•	 Data governance involving the application of decision-making and authority for
data-related issues

26008_ch16_p641-680.indd 673 3/2/18 10:56 PM

674   Part 7  Managing Database Environments

•	 Database administrator: support position for managing individual databases
and DBMSs

•	 Data administrator: management position with planning and policy
responsibilities for information technology

•	 Challenges and opportunities dealing with big data, the phenomenon of
exploding growth of data volumes, velocity, and variety

•	 Discretionary access controls for assigning access rights to groups and users
•	 Mandatory access controls for highly sensitive and static databases used in

intelligence gathering and national defense
•	 SQL CREATE/DROP ROLE statements and GRANT/REVOKE statements for

discretionary authorization rules
CREATE ROLE ISFaculty

GRANT SELECT ON ISStudentGPA
 TO ISFaculty, ISAdvisor, ISAdministrator

REVOKE SELECT ON ISStudentGPA FROM ISFaculty

•	 Oracle system and object privileges for discretionary access control
•	 Advanced Oracle security tools for fine grained control of data access, auditing,

and resource limitations
•	 SQL CREATE DOMAIN statement for data type constraints

CREATE DOMAIN StudentClass AS CHAR(2)

 CHECK (VALUE IN ('FR', 'SO', 'JR', 'SR'))

•	 SQL distinct types for improved type checking
•	 Limitations of SQL domains and distinct types compared to user-defined data

types
•	 SQL CREATE ASSERTION statement for complex integrity constraints

CREATE ASSERTION OfferingConflict
 CHECK (NOT EXISTS
 (SELECT O1.OfferNo
 FROM Offering O1, Offering O2
 WHERE O1.OfferNo <> O2.OfferNo
 AND O1.OffTerm = O2.OffTerm
 AND O1.OffYear = O2.OffYear
 AND O1.OffDays = O2.OffDays
 AND O1.OffTime = O2.OffTime
 AND O1.OffLocation = O2.OffLocation))

•	 CHECK constraints in the CREATE TABLE statement for constraints involving
row conditions on columns of the same table
CREATE TABLE Student
(StdSSN 	 CHAR(11),
 StdFirstName	VARCHAR(50)	�CONSTRAINT StdFirstNameRequired

NOT NULL,
 StdLastName	VARCHAR(50)	�CONSTRAINT StdLastNameRequired

NOT NULL,
 StdCity	 VARCHAR(50)	�CONSTRAINT StdCityRequired NOT

NULL,
 StdState	 CHAR(2)	� CONSTRAINT StdStateRequired NOT

NULL,
 StdZip		 CHAR(9)	� CONSTRAINT StdZipRequired NOT

NULL,
 StdMajor	 CHAR(6),

26008_ch16_p641-680.indd 674 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   675

 StdClass	 CHAR(6),
 StdGPA		 DECIMAL(3,2),
CONSTRAINT PKStudent PRIMARY KEY (StdSSN),
CONSTRAINT ValidGPA CHECK (StdGPA BETWEEN 0 AND 4),
CONSTRAINT MajorDeclared CHECK
 (StdClass IN ('FR','SO') OR StdMajor IS NOT NULL))

•	 Management of trigger and procedure coding practices: documentation
standards, parameter usage, and content

•	 Management of object dependencies: access plan obsolescence, modification of
referenced objects, deletion of referenced objects

•	 Controlling trigger complexity: identifying trigger interactions, minimizing
trigger actions that can fire other triggers, removing dependence on a specific
firing order for overlapping triggers

•	 Catalog tables for tracking the objects managed by a DBMS
•	 Information resource dictionary for managing the information systems

development process
•	 Development of an enterprise data model as an important part of the

information systems planning process
•	 Establishment of an organization to develop, implement, and monitor policies

and standards for data governance
•	 Developing controls to detect, prevent, and correct violations of integrity,

security, and privacy policies
•	 Selection and evaluation process for matching organization needs to DBMS

features
•	 Using a tool such as the Analytic Hierarchy Process for consistently assigning

importance weights and scoring candidate DBMSs
•	 Using TPC benchmark results to gauge the performance of DBMSs
•	 Open source versus open core license models to reduce licensing costs of DBMSs
•	 Responsibilities of database specialists for managing transaction processing,

data warehouses, distributed environments, and object and NoSQL DBMSs

QUESTIONS

  1.	Why is it difficult to use operational databases for management decision
making?

  2.	How must operational databases be transformed for management decision
making?

  3.	What are the phases of the information life cycle?
  4.	What does it mean to integrate information life cycles?
  5.	What data quality dimension is important for management decision making but

not for operational decision making?
  6.	How does knowledge management differ from information resource

management?
  7.	What are the three pillars of knowledge management?
  8.	What kind of position is the data administrator?
  9.	What kind of position is the database administrator?

  10.	Which position (data administrator versus database administrator) takes a
broader view of information resources?

26008_ch16_p641-680.indd 675 3/2/18 10:56 PM

676   Part 7  Managing Database Environments

  11.	What is an enterprise data model?
  12.	For what reasons is an enterprise data model developed?
  13.	What kinds of specialization are possible in large organizations for data

administrators and database administrators?
  14.	What is discretionary access control?
  15.	What is mandatory access control?
  16.	What kind of database requires mandatory access control?
  17.	What are the purposes of the GRANT and REVOKE statements in SQL?
  18.	Why should authorization rules reference roles instead of individual users?
  19.	Why do authorization rules typically use views rather than tables or columns?
  20.	What are the two uses of the GRANT statement?
  21.	Why should a DBA cautiously use the WITH ADMIN clause in the CREATE

ROLE statement and the WITH GRANT OPTION clause in the GRANT
statement?

  22.	What is the difference between system privileges and object privileges in Oracle?
Provide an example of a system privilege and an object privilege.

  23.	What other disciplines does computer security involve?
  24.	What is the purpose of the CREATE DOMAIN statement? Compare and contrast

an SQL domain with a distinct type.
  25.	What additional capabilities does SQL:2016 add for user-defined types as

compared to domains?
  26.	What is the purpose of assertions in SQL?
  27.	What does it mean to say that a constraint is deferrable?
  28.	What are alternatives to SQL assertions? Why would you use an alternative to

an assertion?
  29.	What are the coding issues about which a DBA should be concerned?
  30.	How does a stored procedure or trigger depend on other database objects?
  31.	What are the responsibilities for a DBA for managing dependencies?
  32.	What is the difference between timestamp and signature dependency

maintenance?
  33.	List at least three ways that a DBA can control trigger interactions.
  34.	What kind of metadata does a data dictionary contain?
  35.	What are catalog tables? What kind of catalog tables are managed by DBMSs?
  36.	What is the difference between the Information_Schema and the Definition_

Schema in SQL:2016?
  37.	Why is it necessary to learn the catalog tables of a specific DBMS?
  38.	How does a DBA access catalog tables?
  39.	What is the purpose of an information resource dictionary?
  40.	What functions does an information resource dictionary system perform?
  41.	What are the purposes of information systems planning?
  42.	Why is the enterprise data model developed before the process model?
  43.	Why is the selection and evaluation process important for DBMSs?
  44.	What are some difficulties in the selection and evaluation process for a complex

product like a DBMS?
  45.	What are the steps in the selection and evaluation process?
  46.	How is the Analytic Hierarchy Process used in the selection and evaluation

process?

26008_ch16_p641-680.indd 676 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   677

  47.	What responsibilities does the database administrator have in the selection and
evaluation process?

  48.	What responsibilities does the data administrator have in the selection and
evaluation process?

  49.	What are the responsibilities of database administrators for transaction
processing?

  50.	What are responsibilities of database administrators for managing data
warehouses?

  51.	What are the responsibilities of database administrators for managing databases
in distributed environments?

  52.	What are the responsibilities of database administrators for managing object
databases?

  53.	What are the responsibilities of data administrators for transaction processing?
  54.	What are the responsibilities of data administrators for managing data

warehouses?
  55.	What are the responsibilities of data administrators for managing databases in

distributed environments?
  56.	What are the responsibilities of data administrators for managing object

databases?
  57.	What are the characteristics of a good benchmark?
  58.	Why does the Transaction Processing Performance Council publish total system

performance measures rather than component measures?
  59.	Why does the Transaction Processing Performance Council publish price/

performance results?
  60.	How does the Transaction Processing Performance Council ensure that

benchmark results are relevant and reliable?
  61.	What is the status of standards and implementations of the Information

Resource Dictionary?
  62.	Briefly describe the Model Driven Architecture (MDA) and its current status.
  63.	What are the choices for information resource tools beyond the dictionary tables

provided by an enterprise DBMS?
  64.	Briefly describe the advanced tools provided by Oracle for data security.
  65.	What is the TPC pricing specification?
  66.	What is the TPC energy efficiency specification?
  67.	What is a data steward? What role do data stewards play in data governance?
  68.	Briefly describe the types of controls and discuss the role of controls in the data

governance process.
  69.	How is the Risk-Gap Matrix used in Microsoft’s data governance framework?
  70.	How is the Capability Maturity Model used in Microsoft’s data governance

framework?
  71.	Provide two definitions for big data.
  72.	List the major sources of big data.
  73.	Briefly explain the ways that big data creates business opportunities.
  74.	Provide examples of the units of big data.
  75.	What is application level security? Why do enterprise DBMSs usually not

provide application level security?
  76.	What tools does Microsoft provide to support Data Governance for Privacy,

Confidentiality, and Compliance framework?
  77.	What is an open source license?

26008_ch16_p641-680.indd 677 3/2/18 10:56 PM

678   Part 7  Managing Database Environments

  78.	What is the open core license model?
  79.	Briefly compare the open source versus open core models for DBMS software.

PROBLEMS

Due to the nature of this chapter, the problems are more open-ended than other chap-
ters. More detailed problems appear at the end of the other chapters in Part 7.
  1.	Prepare a short presentation (6 to 12 slides) about the TPC-C benchmark. You

should provide details about its history, database design, application details,
and recent results.

  2.	Prepare a short presentation (6 to 12 slides) about the TPC-H benchmark. You
should provide details about its history, database design, application details,
and recent results.

  3.	Prepare a short presentation (6 to 12 slides) about the TPC-E benchmark. You
should provide details about its history, database design, application details,
and recent results.

  4.	Prepare a short presentation (6 to 12 slides) about the TPC-DS benchmark. You
should provide details about its history, database design, application details,
and recent results.

  5.	Compare and contrast the software licenses for MySQL and another open source
DBMS product.

  6.	Develop a list of detailed requirements for nonprocedural retrieval. You should
use Table 16-17 as a guideline.

  7.	Provide importance weights for your list of detailed requirements from problem
6 using the AHP criteria in Table 16-19.

  8.	Normalize the weights and compute the importance values for your detailed
requirements using the importance weights from problem 7.

  9.	Write named CHECK constraints for the following integrity rules. Modify the
CREATE TABLE statement to add the named CHECK constraints.
CREATE TABLE Customer
(CustNo	 CHAR(8),
 CustFirstName	� VARCHAR2(20) CONSTRAINT

CustFirstNameRequired NOT NULL,
 CustLastName	� VARCHAR2(30) CONSTRAINT

CustLastNameRequired NOT NULL,
 CustStreet	 VARCHAR2(50),
 CustCity	 VARCHAR2(30),
 CustState	 CHAR(2),
 CustZip	 CHAR(10),
CustBal	 DECIMAL(12,2) DEFAULT 0,
CONSTRAINT PKCustomer PRIMARY KEY (CustNo))

•	 Customer balance is greater than or equal to 0.
•	 Customer state is one of CO, CA, WA, AZ, UT, NV, ID, or OR.

  10.	Write named CHECK constraints for the following integrity rules. Modify the
CREATE TABLE statement to add the named CHECK constraints.
CREATE TABLE Purchase
(PurchNo 	 CHAR(8),
 	PurchDate	� DATE CONSTRAINT PurchDateRequired NOT

NULL,
	 SuppNo	� CHAR(8) CONSTRAINT SuppNo2Required NOT

NULL,

26008_ch16_p641-680.indd 678 3/2/18 10:56 PM

Chapter 16  Data and Database Administration   679

	 PurchPayMethod	 CHAR(6) DEFAULT 'PO',
 	 PurchDelDate	 DATE,
 CONSTRAINT PKPurchase PRIMARY KEY (PurchNo),
 CONSTRAINT SuppNoFK2 FOREIGN KEY �(SuppNo) REFERENCES

Supplier)

•	 Purchase delivery date is either later than the purchase date or null.
•	 Purchase payment method is not null when purchase delivery date is not null.
•	 Purchase payment method is PO, CC, DC, or null.

  11.	In this problem, you should create a view, several roles, and then grant specific
kinds of access of the view to the roles.
•	 Create a view of the Supplier table in the extended Order Entry Database

introduced in the problems section of Chapter 10. The view should include
all columns of the Supplier table for suppliers of printer products (Product.
ProdName column containing the word “Printer”). Your view should be
named “PrinterSupplierView.”

•	 Define three roles: PrinterProductEmp, PrinterProductMgr, and StoreMgr.
•	 Grant the following privileges of PrinterSupplierView to PrinterProductEmp:

retrieval of all columns except supplier discount.
•	 Grant the following privileges of PrinterSupplierView to PrinterProductMgr:

retrieval and modification of all columns of PrinterSupplierView except
supplier discount.

•	 Grant the following privileges of PrinterSupplierView to StoreMgr: retrieval
for all columns, insert, delete, and modification of supplier discount.

  12.	Identify important privileges in an enterprise DBMS for data warehouses and
database statistics. The privileges are vendor specific so you need to read the
documentation of an enterprise DBMS.

  13.	Identify and briefly describe dictionary tables for database statistics in an
enterprise DBMS. The dictionary tables are vendor specific so you need to read
the documentation of an enterprise DBMS.

  14.	Write a short summary (one page) about DBA privileges in an enterprise DBMS.
Identify predefined roles and/or user accounts with DBA privileges and the
privileges granted to these roles.

  15.	Investigate the data governance practices of a profit or government organization.
You will need to obtain permission to interview individuals with knowledge of
data governance practices at your chosen organization. You should investigate
the structure of the data governance organization, processes used by the
data governance organization, and projects in which the data governance
organization has attempted. You should prepare a slide show presentation to
communicate your findings. You may need to disguise the organization and
individuals interviewed for privacy considerations.

REFERENCES FOR FURTHER STUDY

The book by Jay Louise Weldon (1981) remains the classic book on database admin-
istration despite its age. Mullins (2012) provides a more recent comprehensive ref-
erence about database administration as well as a website (www.craigsmullins.com)
with many articles about database administration. The Database Trends and Appli-
cations website (www.dbta.com) contains current details about products and indus-
try developments. The Information Resource Management section of the online list
of web resources provides links to information resource management and knowl-
edge management sources. Numerous SQL books provide additional details about

26008_ch16_p641-680.indd 679 3/2/18 10:56 PM

680   Part 7  Managing Database Environments

security and integrity features in SQL. Inmon (1986) and Martin (1982) have written
detailed descriptions of information systems planning. Castano et al. (1995) is a good
reference for additional details about database security. Microsoft (www.microsoft.
com/privacy/datagovernance.aspx) and the Data Governance Institute (www.data
governance.com) provide whitepapers, case studies and other resources about data
governance. Gartner (www.gartner.com) and the McKinsey Global Institute (www.
mckinsey.com/insights/mgi.aspx) provide analysis of big data challenges and oppor-
tunities. For more details about the Analytic Hierarchy Process mentioned in Section
16.3.2, you should consult Saaty (1988) and Zahedi (1986). Some excellent online AHP
tutorials can be found by searching the Web using “Analytical Hierarchy Process
Tutorials”. Su et al. (1987) describe the Logic Scoring of Preferences, an alternative
approach to DBMS selection. The Transaction Processing Council (www.tpc.org) pro-
vides an invaluable resource about domain-specific benchmarks for DBMSs. Details
about the Model Driven Architecture (MDA) can be found in the website of the Object
Management Group at www.omg.org/mda.

26008_ch16_p641-680.indd 680 3/2/18 10:56 PM

681  

OVERVIEW
Chapter 16 presented a context for managing databases
and an overview of the different processing environ-
ments for databases. You learned about the responsibil-
ities of database specialists and the tools and processes
used by database specialists. The most prevalent and
important database environment is transaction process-
ing that supports the daily operations of an organization.
This chapter begins the details of Part 7 by describing
DBMS support for transaction processing.

This chapter presents a broad coverage of transac-
tion management. Before you can understand DBMS
support for transaction processing, you need a more

detailed understanding of transaction concepts. This
chapter describes properties of transactions, SQL
statements to define transactions, and properties of
transaction processing. After learning about transac-
tion concepts, you are ready to study concurrency con-
trol and recovery management, two major services to
support transaction processing. For concurrency con-
trol, this chapter describes the objective, interference
problems, and tools of concurrency control. For recov-
ery management, this chapter describes failure types,
recovery tools, and recovery processes.

Besides knowing the transaction management ser-
vices provided by a DBMS, you should understand the
issues of transaction design. This chapter describes

Learning Objectives

This chapter describes transaction management features to support
concurrent usage of a database and recovery from failures. After this
chapter, the student should have acquired the following knowledge
and skills:

•	 Describe transaction examples using the ACID properties

•	 Explain concepts of concurrency and recovery transparency

•	 Understand the role of locking to prevent interference problems
among multiple users

•	 Explain the two-phase locking protocol for applying locks

•	 Understand the role of recovery tools and processes to deal with
database failures

•	 Understand transaction design issues that affect performance

•	 Describe the relationship of workflow management to transaction
management

Transaction
Management

17
chapter

26008_ch17_p681-724.indd 681 3/2/18 10:59 PM

important issues of transaction design including hot
spots, transaction boundaries, isolation levels, and
integrity constraint enforcement. To broaden your
background, you should understand how database

transactions fit into the larger context of collaborative
work. The final section describes workflow manage-
ment and contrasts it with transaction management in
DBMSs.

Transaction processing involves the operating side of databases. Whereas operations
management involves the production of physical goods, transaction management
involves the control of information goods or transactions. Transaction management,
like management of physical goods, is enormously important to modern organiza-
tions. Organizations such as banks with automatic tellers, airlines with online reser-
vation systems, and universities with online registration could not function without
reliable and efficient transaction processing. Large organizations now conduct thou-
sands of transactions per minute. With continued growth in electronic commerce, the
importance of transaction processing will increase.

In common discourse, a transaction is an interaction among two or more parties
for the conduct of business such as buying a car from a dealership. Database transac-
tions have a more precise meaning. A database transaction involves a collection of
operations that must be processed as one unit of work. Transactions should be pro-
cessed reliably so that there is no loss of data due to multiple users and failures. To
help you grasp this more precise meaning, this section presents examples of transac-
tions and defines properties of transactions.

17.1.1  Transaction Examples
A transaction is a user-defined concept. For example, making an airline reservation
may involve reservations for the departure and return. To a traveler, the combina-
tion of the departure and the return is a transaction, not the departure and the return
separately. If a reservation system considers a departure and return separately, a trav-
eler may make a departure without obtaining a desired return flight. Thus, a DBMS
must support a transaction as a user defined set of database operations. A transaction
can involve any number of reads and writes to a database. To provide the flexibility
for user-defined transactions, a DBMS cannot restrict transactions to only a specified
number of reads and writes to a database.

An information system may have many different kinds of transactions. Table 17-1
depicts transactions of an order entry system. At any point in time, customers may
be conducting business with each of these transactions. For example, some customers
may be placing orders while other customers check on the status of their orders. As an
additional example of transactions in an information system, Table 17-2 depicts typical
transactions in a university payroll system. Some of the transactions are periodic while
others are one-time events.

SQL Statements to Define Transactions  To define a transaction, you can use
some additional SQL statements. Figure 17.1 depicts additional SQL statements to

Transaction
a unit of work processed
together in a reliable man-
ner. DBMSs provide recovery
and concurrency control ser-
vices to process transactions
efficiently and reliably.

17.1  BASICS OF DATABASE TRANSACTIONS

682   Part 7  Managing Database Environments

TABLE 17-1
Typical Transactions in an
Order Entry System

Transaction Description

Add order Customer places a new order.

Update order Customer changes details of an existing order.

Check status Customer checks the status of an order.

Payment Payment received from a customer.

Shipment Goods sent to a customer.

26008_ch17_p681-724.indd 682 3/2/18 10:59 PM

Chapter 17  Transaction Management   683

define the prototypical automatic teller machine (ATM) transaction. The START
TRANSACTION1 and COMMIT statements define the statements in a transaction.
Any other SQL statements between them are part of the transaction. Typically, a trans-
action involves a number of SELECT, INSERT, UPDATE, and DELETE statements. In
Figure 17.1, an actual transaction would have valid SQL statements for the lines begin-
ning with SELECT, UPDATE, and INSERT. Valid programming language statements
should be substituted for lines with pseudo code such as “Display greeting.”

Besides the START TRANSACTION and COMMIT statements, the ROLLBACK
statement may be used. ROLLBACK behaves like an undo command in a word pro-
cessor to remove effects of user actions. Unlike an undo command, ROLLBACK
applies to a sequence of actions not just a single action. Thus, a ROLLBACK statement
removes all actions of a transaction to restore a database to the state before execution
of the transaction.

You can use a ROLLBACK statement in several contexts. In one situation, you use
a ROLLBACK statement to allow a user to cancel a transaction. In a second situation,
you use a ROLLBACK statement to respond to errors. In this situation, the ROLL-
BACK statement appears as part of exception-handling statements such as the “On
Error” line in Figure 17.1. Exception-handling statements are part of programming
languages such as Java and Visual Basic. Exception handling supports separate pro-
cessing of unanticipated errors such as communication errors from the normal logic
of a transaction.

As you will learn later in this chapter, transactions should have short duration.
To shorten duration of the ATM transaction, a transaction designer should place user
interaction outside of the transaction. In the ATM transaction, the START TRANSAC-
TION statement should be moved after the first three lines to remove user interaction.
Long-running transactions can cause excessive waiting among concurrent users of a
database. However, the UPDATE and INSERT statements must remain in the same

1 SQL:2016 specifies the START TRANSACTION and COMMIT statements. Some DBMSs use the keyword
BEGIN instead of START. Other DBMSs such as Oracle do not use a statement to start a transaction. Rather,
a new transaction begins with the next SQL statement following a COMMIT statement.

TABLE 17-2
Typical Transactions in a
University Payroll System

Transaction Description

Hire employee Employee begins service with the university.

Pay employee Periodic payment made to employee for service.

Submit time record Hourly employees submit a record of hours worked.

Reappointment Assign employee to a new position.

Evaluation Periodic performance evaluation.

Termination Employee leaves employment at the university.

START TRANSACTION
Get account number, pin, type, and amount
SELECT account number, type, and balance
If balance is sufficient Then
  UPDATE account by posting debit
  UPDATE account by posting credit
  INSERT history row
  Display final message and issue cash
Else
  Write error message
End If
On Error: ROLLBACK

COMMIT

FIGURE 17.1
Pseudo Code for an ATM
Transaction

26008_ch17_p681-724.indd 683 3/2/18 10:59 PM

684   Part 7  Managing Database Environments

transaction because these statements are part of the same unit of work. Section 17.4.1
discusses issues related to removing user interaction time from a transaction. Some-
times, user interaction time should remain part of a transaction.

Other Transaction Examples  Figures 17.2 and 17.3 depict transactions for an air-
line reservation and online shopping purchase. In both examples, the transaction con-
sists of more than one database action (read or write). The airline reservation updates
two flight rows along with a reservation row. In a more complex airline reservation
involving multiple flights per part (departure or return), more flight rows must be
updated. In the online shopping purchase, product rows are updated and order detail
rows are inserted.

17.1.2  Transaction Properties
DBMSs ensure that transactions obey certain properties. The most important and
widely known properties are the ACID properties (atomic, consistent, isolated, and
durable) as presented in the following list.

•	 Atomic means that a transaction cannot be subdivided. Either all the work in the
transaction is completed or nothing is done. For example, the ATM transaction
will not debit an account without also crediting a corresponding account. The
atomic property implies that partial changes made by a transaction must be
undone if a transaction aborts.

•	 Consistent means that if applicable constraints are true before the transaction
starts, the constraints will be true after the transaction terminates. For example,
if a user’s account is balanced before a transaction, then the account is balanced
after the transaction. Otherwise, the transaction is rejected and no changes take
effect.

START TRANSACTION
Get reservation preferences
SELECT departure and return flight rows
If reservation is acceptable Then
  Get payment method and details
  UPDATE seats remaining of departure flight row
  UPDATE seats remaining of return flight row
  INSERT reservation row
  Send receipt to customer
  Send payment data to payment processor
End If
On Error: ROLLBACK

COMMIT

FIGURE 17.2
Pseudo Code for an Airline
Reservation Transaction

START TRANSACTION
Place product selections in shopping cart
If checking out Then
  Get account and payment details
  SELECT account row
  For each product row
   UPDATE QOH of product row
   INSERT order detail row
   Send message to shipping department
  End For
Send confirmation message to customer
Send payment data to payment processor
End If
On Error: ROLLBACK

COMMIT

FIGURE 17.3
Pseudo Code for an Online
Shopping Transaction

26008_ch17_p681-724.indd 684 3/2/18 10:59 PM

Chapter 17  Transaction Management   685

•	 Isolated means that transactions do not interfere with each other except in
allowable ways. A transaction should never overwrite changes made by another
transaction. In addition, a transaction may be restricted from interfering in other
ways such as not viewing the temporary changes made by other transactions. For
example, your significant other will not know that you are withdrawing money
until your ATM transaction completes.

•	 Durable means that any changes resulting from a transaction are permanent. No
failure will erase any changes after a transaction terminates. For example, if a
bank’s computer experiences a failure five minutes after a transaction completes,
the results of the transaction are still recorded on the bank’s database.

To ensure that transactions meet the ACID properties, DBMSs provide certain services
that are transparent to database developers (programmers and analysts). In common
usage, transparency means that you can see through an object, rendering its inner
details invisible. For DBMSs, transparency means that inner details of transaction ser-
vices are invisible. Transparency is very important because services that ensure ACID
transactions are difficult to implement. By providing these services, DBMSs improve
productivity of database programmers and analysts.

DBMSs provide two services, recovery transparency and concurrency transpar-
ency, to ensure that transactions obey the ACID properties. Recovery involves actions
to deal with failures such as communication errors and software crashes. Concur-
rency involves control of interference among multiple, simultaneous users of a data-
base. The following discussion provides details about transparency for recovery and
concurrency.

•	 Recovery transparency means that the DBMS automatically restores a database to
a consistent state after a failure. For example, if a communication failure occurs
during an ATM transaction, the DBMS removes effects of the transaction from
the database. On the other hand, if the DBMS crashes three seconds after an ATM
transaction completes, changes made by the transaction remain permanent.

•	 Concurrency transparency means that users perceive a database as a single-user
system even though there may be many simultaneous users. For example, even
though many users may try to reserve a popular flight using a reservation
transaction, the DBMS ensures that users do not overwrite each other’s work.

Even though the inner details of concurrency and recovery are invisible to users, these
services are not free. Recovery and concurrency control involve overhead that may
require additional resources and careful monitoring to reach an acceptable level of
performance. The DBA must be aware of resource implications of these services and
understand tools to monitor performance. More computing resources such as mem-
ory, disk space, and parallel processing may be necessary to improve performance.
Performance monitoring is required to ensure adequate performance. The DBA should
monitor key indicators of performance and change parameter settings to alleviate per-
formance problems.

In addition to resources and monitoring, the selection of a DBMS can be crucial to
achieve acceptable transaction processing performance. The purchase price of a DBMS
often depends on the level of transaction services provided. Most DBMSs have dif-
ferent editions to support workgroups to entire enterprises. DBMS editions can vary
by the number of concurrent transactions supported, parallel processing services pro-
vided, and recovery services available. DBMSs that support large numbers of concur-
rent users with very high availability can be costly.

Transaction design is another reason for understanding details of concurrency
control and recovery. Even with a high performance DBMS and adequate resources,
poor transaction design can lead to performance problems. To achieve a satisfac-
tory transaction design, you should have background about concurrency control and
recovery as well as understand transaction design principles, as discussed in the fol-
lowing sections.

26008_ch17_p681-724.indd 685 3/2/18 10:59 PM

686   Part 7  Managing Database Environments

Most organizations cannot function without multiuser databases. For example, airline,
retail, banking, and product support databases can have thousands of users simulta-
neously trying to conduct business. Multiple users can access these databases concur-
rently, that is, at the same time. If access was restricted to only one user at a time, little
work would be accomplished and most users would take their business elsewhere.
However, concurrent users cannot be permitted to interfere with each other. This sec-
tion defines the objective, problems, and tools of concurrency control.

17.2.1  Objective of Concurrency Control
The objective of concurrency control is to maximize transaction throughput while pre-
venting interference among multiple users. Transaction throughput, the number of
transactions processed per time unit, measures the amount of work performed by a
DBMS. Typically, transaction throughput is reported by transactions per minute. In a
high-volume environment such as electronic commerce, DBMSs may need to process
hundreds of thousands of transactions per minute. In 2013, the Transaction Processing
Council (www.tpc.org) reported top results for the TPC-C benchmark (an order entry
benchmark) ranging from 1.02 million to 8.55 million transactions per minute.

From a user’s perspective, transaction throughput relates to response time. Higher
transaction throughput means faster response times. Users are typically unwilling to
wait more than a few seconds for completion of a transaction.

If there is no interference, the result of executing concurrent transactions is the
same as executing the same transactions in some sequential order. Sequential execu-
tion means that one transaction completes before another one executes, thus ensuring
no interference. Executing transactions sequentially would result in low throughput
and high waiting times. Thus, DBMSs allow transactions to execute simultaneously
while ensuring the results are the same as though executed sequentially.

Transactions executing concurrently cannot interfere unless they are manipulat-
ing common data. Essentially, the concurrency control component must maintain the
same transaction order for each common database item. For example, if transaction i
writes database item A before transaction j writes database item A, then transaction
j cannot write item B before transaction i writes item B. If transaction j writes item B
before transaction i, a concurrency control violation has occurred. Section 17.2.2 clari-
fies this informal definition of correct concurrent execution with presentation of spe-
cific concurrency control problems.

Most concurrent transactions manipulate only small amounts of common data.
For example, in an airline reservation, two users can concurrently enter new reserva-
tion rows because the reservation rows are unique for each customer. However, inter-
ference can occur on the seats-remaining column of a flight table. For popular flights,
many users may want to decrement the value of the seats-remaining column. It is
critical that a DBMS control concurrent updating of this column in popular flight rows.

A hot spot is common data that multiple users try to change simultaneously.
Essentially, a hot spot represents a scarce resource that users must queue to access.
Typical hot spots are the seats-remaining for popular flights, the quantity-on-hand of
popular inventory items, and the seats-taken in popular course offerings. In an ideal
world, DBMSs would only track hot spots. Unfortunately, hot spots can be difficult to
predict so DBMSs track access to all parts of a database.

Interference on hot spots can lead to lost data and poor decision-making. The fol-
lowing sections describe interference problems and tools to prevent them.

17.2.2  Interference Problems
Interference among concurrent users of a database can cause three problems: (1) lost
update, (2) uncommitted dependency, and (3) inconsistent retrieval. This section
defines each problem and presents examples of their occurrence.

Transaction Throughput
the number of transactions
processed per time interval.
It is an important measure
of transaction processing
performance.

Hot Spot
common data that multiple
users try to change. Without
adequate concurrency con-
trol, users may interfere with
each other on hot spots.

17.2  CONCURRENCY CONTROL

26008_ch17_p681-724.indd 686 3/2/18 10:59 PM

Chapter 17  Transaction Management   687

Lost Update  Lost update is the most serious interference problem because changes
to a database are inadvertently lost. In a lost update, one user’s update overwrites
another user’s update, as depicted by the timeline of Figure 17.4. The timeline shows
two concurrent transactions trying to update the seats remaining (SR) column of
the same flight row. Assume that the value of SR is 10 before the transactions begin.
After time T2, both transactions have stored the value of 10 for SR in local buffers as
a result of the read operations. After time T4, both transactions have made changes to
their local copy of SR. However, each transaction changes the value to 9, unaware of
the activity of the other transaction. After time T6, the value of SR on the database is
9. However, the value after finishing both transactions should be 8, not 9! One of the
changes has been lost.

Some students become confused about the lost update problem because of the
actions performed on local copies of the data. The calculations at times T3 and T4 occur
in memory buffers specific to each transaction. Even though transaction A has changed
the value of SR, transaction B performs the calculation with its own local copy of SR
having a value of 10. The write operation performed by transaction A is not known to
transaction B unless transaction B reads the value again.

A lost update involves two or more transactions trying to change (write to) the
same part of a database. As you will see in the next two problems, two transactions can
also conflict if only one is changing the database.

Uncommitted Dependency  An uncommitted dependency occurs when one trans-
action reads data written by another transaction before the other transaction commits.
An uncommitted dependency is also known as a dirty read because it is caused by one
transaction reading dirty (uncommitted) data. In Figure 17.5, transaction A reads the
SR column, changes its local copy of the SR column, and writes the new value back to
the database. Transaction B then reads the changed value. Before transaction A com-
mits, however, an error is detected and transaction A issues a rollback. The rollback
could occur because the user canceled the transaction or the transaction failed. The
value used by transaction B is now a phantom value. The real SR value is now 10
because A’s change was not permanent. Transaction B may use its value (9) to make
an erroneous decision. For example, if SR’s value was 1 before transaction A began,
transaction B might be denied a reservation.

Because data are not permanent until a transaction commits, a conflict can occur
even though only one transaction writes to the database. An uncommitted dependency
involves one transaction writing and another transaction reading the same part of the

Lost Update
a concurrency control
problem in which one user’s
update overwrites another
user’s update.

Uncommitted Dependency
a concurrency control
problem in which one
transaction reads data writ-
ten by another transaction
before the other transac-
tion commits. If the second
transaction aborts, the first
transaction may rely on data
that will no longer exist.

FIGURE 17.4
Example Lost Update
Problem

Transaction A Time Transaction B

Read SR (10) T1

T2 Read SR (10)

If SR > 0 then SR = SR − 1 T3

T4 If SR > 0 then SR = SR − 1

Write SR (9) T5

T6 Write SR (9)

FIGURE 17.5
Example Uncommitted
Dependency Problem

Transaction A Time Transaction B

Read SR (10) T1

SR = SR − 1 T2

Write SR (9) T3

T4 Read SR (9)

Rollback T5

26008_ch17_p681-724.indd 687 3/2/18 10:59 PM

688   Part 7  Managing Database Environments

database. However, an uncommitted dependency cannot cause a problem unless a
rollback occurs. The third problem also involves conflicts when only one transaction
writes to a database.

Problems Involving Inconsistent Retrievals  The last problem involves situa-
tions in which interference causes inconsistency among multiple retrievals of a subset
of data. All inconsistent retrieval problems involve one transaction reading and the
second transaction changing the same part of the database. The incorrect summary
problem is the most significant problem involving inconsistent retrievals. An incorrect
summary2 occurs when a transaction calculating a summary function, reads some val-
ues before another transaction changes the values but reads other values after another
transaction changes the values. In Figure 17.6, transaction B reads SR1 after transaction
A changes the value but reads SR2 before transaction A changes the value. For con-
sistency, transaction B should read all values either before or after other transactions
change the values.

A second problem involving inconsistent retrievals, known as the phantom read
problem, occurs when a transaction executes a query with row conditions. Then,
another transaction inserts or modifies data that the query would retrieve. Finally,
the original transaction executes the same query again. The second query execution
retrieves different rows than the first execution. The new and changed rows seem
phantom because they did not exist in the result of the first query execution.

A third problem involving inconsistent retrievals, known as the nonrepeatable
read problem, occurs when a transaction reads the same value more than one time. In
between reading the data item, another transaction modifies the data item. The second
retrieval contains a different value than the first retrieval because of the change made
by the other transaction.

The nonrepeatable read and phantom read problems are slightly different. A non-
repeatable read problem would occur if another user changed the value of a column of
a query row so that the query returns a different value in the next execution. A phan-
tom read problem would occur if a new inserted row matches a condition so that the
query retrieves an additional row in the next execution. The key difference is the row
condition requirement for the phantom read problem.

17.2.3  Concurrency Control Tools
This section describes two tools, locks and the two-phase locking protocol, used by
most DBMSs to prevent the three interference problems discussed in the previous
section. In addition to the two tools, the deadlock problem is presented because a

2 An incorrect summary is also known as an inconsistent analysis.

Incorrect Summary
a concurrency control prob-
lem in which a transaction
reads several values, but
another transaction updates
some of the values while
the first transaction is still
executing.

FIGURE 17.6
Example Incorrect Summary
Problem

Transaction A Time Transaction B

Read SR1 (10) T1

SR1 = SR1 − 1 T2

Write SR1 (9) T3

T4 Read SR1 (9)

T5 Sum = Sum + SR1

T6 Read SR2 (5)

T7 Sum = Sum + SR2

Read SR2 (5) T8

SR2 = SR2 − 1 T9

Write SR2 (4) T10

26008_ch17_p681-724.indd 688 3/2/18 10:59 PM

Chapter 17  Transaction Management   689

deadlock can be a negative byproduct resulting from lock usage. This section closes
by briefly discussing optimistic concurrency control approaches that do not use locks.

Locks  Locks provide a way to prevent other users from accessing a database item
in use. A database item can be a row, block, a subset of rows, or even an entire table.
Before accessing a database item, a lock must be obtained. Other users must wait if
trying to obtain a conflicting lock on the same item. Table 17-3 shows conflicts for two
types of locks. A shared (S) lock must be obtained before reading a database item,
whereas an exclusive (X) lock must be obtained before writing. As shown in Table
17-3, any number of users can hold a shared lock on the same item. However, only
one user can hold an exclusive lock.

The concurrency control manager is the part of the DBMS responsible for manag-
ing locks. The concurrency control manager maintains a hidden3 table to record locks
held by various transactions. A lock record contains a transaction identifier, a row
identifier, a lock type, and a count, as explained in Table 17-4. In the simplest scheme,
the lock type is either shared or exclusive, as discussed previously. Most DBMSs have
other types of locks to improve efficiency and allow for more concurrent access. The
concurrency control manager performs two operations on lock records. The lock
operator adds a row to the lock table whereas the unlock operator or release operator
deletes a row from the lock table.

Locking Granularity  Locking granularity is a complication about locks. Granularity
refers to the size of the database item locked. Most DBMSs can hold locks for different
granularities, as depicted in Figure 17.7. The entire database is the coarsest lock that
can be held. If an exclusive lock is held on the entire database, no other users can access

3 Most DBMSs provide tools for DBAs to view the lock table.

Lock
a fundamental tool of con-
currency control. A lock on
a database item prevents
other transactions from per-
forming conflicting actions
on the same item.

Locking Granularity
the size of the database item
locked. Locking granularity is
a trade-off between waiting
time (amount of concurrency
permitted) and overhead
(number of locks held).

TABLE 17-3
Basic Lock Compatibility
MatrixUser 1 Holds

User 2 Requests

S Lock X Lock

S Lock Lock granted User 2 waits

X Lock User 2 waits User 2 waits

TABLE 17-4
Fields in a Lock RecordField Name Description

Transaction identifier Unique identifier for a transaction

Row identifier Identifies the row to be locked

Lock type Indicates the intended usage of the locked row

Count Number of other users holding this kind of lock

FIGURE 17.7
Typical Levels of Locking
Granularity

Database

Table

Block

Row

Column

Index

26008_ch17_p681-724.indd 689 3/2/18 10:59 PM

690   Part 7  Managing Database Environments

the database until the lock is released. On the other extreme, a column value is the fin-
est lock that can be held. Locks also can be held on parts of the database not generally
seen by users. For example, locks can be held on indexes and blocks (physical records).

Locking granularity is a trade-off between overhead and waiting. Holding locks
at a fine level decreases waiting among users but increases system overhead because
more locks must be obtained. Holding locks at a coarser level reduces the number of
locks but increases the amount of waiting. In some DBMSs, the concurrency control
manager tries to detect the pattern of usage and promotes locks if needed. For exam-
ple, a concurrency control manager initially can grant row locks to a transaction in
anticipation that only a few rows will be locked. If the transaction continues to request
locks, the concurrency control component can promote the row locks to a lock on a
subset of rows or the entire table.

To alleviate blocking caused by locking coarse items as shared or exclusive, intent
locks are often used. Intent locks support more concurrency on coarse items than
shared or exclusive locks. Intent locks also allow efficient detection of conflicts among
locks on items of varying granularity. Intent locks improve performance because lock-
ing conflicts can be detected by examining items on the same level, not items on finer
levels.

To support these goals, most DBMSs use three types of intent locks: (1) intent
shared (IS) when intending to read lower-level items, (2) intent exclusive (IX) when
intending to write lower-level items, and (3) shared with intent exclusive (SIX) when
intending to read all lower level items and write some lower-level items. For example,
a transaction should request an intent shared lock on a table for which it intends to
read some blocks of the table. A transaction should request a shared with intent exclu-
sive lock on a block when it will read all rows of a block and update some of the rows.

Intent locks require an expanded lock compatibility matrix as depicted in
Table 17-5. To interpret this table, you should remember that conflicts apply to items
on the same level of granularity but also prevent conflicts among lower level items. For
example, SIX conflicts with IX because the shared locks on all lower level items (SIX)
conflict with exclusive locks on some lower level items (IX). SIX conflicts with SIX
because shared locks on all lower level items conflicts with exclusive locks on some
lower level items.

Deadlocks  Using locks to prevent interference problems can lead to deadlocks.
A deadlock is a problem of mutual waiting. One transaction has a resource that a
second transaction needs, and the second transaction holds a resource that the first
transaction needs. Figure 17.8 depicts a deadlock among two transactions trying to
purchase two popular electronic goods (say a 2-1 laptop computer and a digital sty-
lus). Transaction A obtains an exclusive lock on the product row containing electronic
good 1. The second transaction obtains an exclusive lock on the product row contain-
ing electronic good 2. Transaction A then tries to obtain an exclusive lock on the row
containing electronic good 2 but is blocked because transaction B holds an exclusive
lock. Likewise, transaction B must wait to obtain an exclusive lock on the row con-
taining electronic good 1. Deadlocks can involve more than two transactions, but the
pattern is more complex.

Intent Lock
a lock on a large database
item (such as a table) indicat-
ing intention to lock smaller
items contained in the larger
item. Intent locks allevi-
ate blocking when locking
coarse items and allow effi-
cient detection of conflicts
among locks on items of
varying granularity.

Deadlock
a problem of mutual waiting
that can occur when using
locks. If a deadlock is not
resolved, the involved trans-
actions will wait forever. A
DBMS can control deadlocks
through detection or a time-
out policy.

TABLE 17-5
Expanded Lock Compatibility
Matrix

User 2 Requests

User 1 Holds IS lock IX lock SIX lock S lock X lock

IS Grant Grant Grant Grant Wait

IX Grant Grant Wait Wait Wait

SIX Grant Wait Wait Wait Wait

S Grant Wait Wait Grant Wait

X Wait Wait Wait Wait Wait

26008_ch17_p681-724.indd 690 3/2/18 10:59 PM

Chapter 17  Transaction Management   691

To control deadlocks, most enterprise DBMSs perform deadlock detection. Dead-
locks can be detected by looking for cyclic patterns of mutual waiting. In practice,
most deadlocks involve two or three transactions. Because deadlock detection can
involve significant computation time, deadlock detection is only performed at periodic
intervals or triggered by waiting transactions. For example, deadlock detection for
Figure 17.8 could be performed when transaction B is forced to wait. When a deadlock
is detected, the transaction with the latest start time (transaction B in Figure 17.8) is
usually forced to restart.

Some DBMSs use a simpler time-out policy to control deadlocks. In a time-out
policy, the concurrency control manager aborts (with a ROLLBACK statement) any
transaction waiting for more than a specified time. Note that a time-out policy may
abort transactions that are not deadlocked. The time-out interval should be set large
enough so that few non deadlocked transactions will wait that long.

Some DBMSs use update locks to reduce the number of deadlocks. An update lock
addresses the typical situation of initially acquiring a shared lock before promoting
the lock to exclusive before updating. This pattern can lead to deadlocks as transac-
tions are initially granted shared locks but then become unable to promote the locks
to exclusive because other transactions hold conflicting shared locks. Conflicts with
update locks are subtle. An update lock can be acquired on a row when other users
hold a read lock on the row. However, no other user can get another lock (shared,
exclusive, or update) on the row after a user obtains an update lock. Because an update
lock prevents subsequent read locks, it is easier to convert the update lock to an exclu-
sive lock. If a transaction modifies an item, the update lock is converted to an exclusive
lock. Otherwise, it is converted to a shared lock.

Two-Phase Locking Protocol  To ensure that lost update problems do not occur,
the concurrency control manager requires that all transactions follow the Two-Phase
Locking (2PL) protocol. In computing, a protocol defines a rule about group behavior.
A protocol binds all members of a group to behave in a specified manner. For human
communication, Robert’s Rules of Order require that all meeting participants follow
certain rules. For data communication, protocols ensure that messages have a com-
mon format that both sender and receiver can recognize. For concurrency control, all
transactions must follow the 2PL protocol to ensure that concurrency control problems
do not occur. Two-phase locking has three conditions as listed in the following note.

FIGURE 17.8
Example Deadlock ProblemTransaction A Time Transaction B

XLock Pr1 T1

T2 XLock Pr2

XLock Pr2 (wait) T3

T4 XLock Pr1 (wait)

Definition of 2PL

(1) � Before reading or writing a data item, the transaction must acquire the applicable
lock to the data item.

(2)  Wait if a conflicting lock is held on a data item.
(3)  After releasing a lock, the transaction does not acquire any new locks.

The first two conditions follow from the usage of locks as previously explained. The
third condition is subtle. If new locks are acquired after releasing locks, two transac-
tions can obtain and release locks in a pattern in which a concurrency control problem
occurs.

26008_ch17_p681-724.indd 691 3/2/18 10:59 PM

692   Part 7  Managing Database Environments

In practice, the concurrency control component of a DBMS simplifies the third
condition to hold exclusive locks until the end of the transaction. At commit time, the
concurrency control component releases all locks of a transaction. Figure 17.9 graphi-
cally depicts the 2PL protocol with the simplified third condition. At the beginning of
the transaction (BOT), a transaction has no locks. A growing phase ensues in which the
transaction acquires locks but never releases any locks. At the end of the transaction
(EOT), the shrinking phase occurs in which all locks are released together. Simplifying
the definition of 2PL makes the protocol easier to enforce and obviates the difficult
problem of predicting when a transaction may release locks.

For locking granularity with intent locks, the 2PL protocol is slightly extended.
Locking begins with the root (coarsest item) and proceeds to finer level items. To
obtain an S or IS lock on an item, a transaction must hold an IS or IX lock on the parent
item. To obtain an X, IX, or SIX lock on an item, a transaction must obtain an IX or SIX
lock on the parent item. Locks are released in the opposite order from finest to coars-
est. This revised protocol is equivalent to directly locking items at the lowest level but
much more efficient.

To provide flexibility between concurrency control problems permitted and poten-
tial waiting, most DBMSs relax the 2PL protocol to permit some locks to be released
before the end of a transaction. Section 17.4.2 presents the concept of isolation levels to
determine the level of interference tolerated.

Optimistic Approaches  The use of locks and 2PL is a pessimistic approach to con-
currency control. Locking assumes that every transaction conflicts. If contention only
involves relatively few hot spots, then locking may require excessive overhead.

Optimistic concurrency control approaches assume that conflicts are rare. If con-
flicts are rare, it is more efficient to check for conflicts rather than manage a large num-
ber of locks. In optimistic approaches, transactions are permitted to access a database
without acquiring locks. Instead, the concurrency control manager checks whether a
conflict has occurred. The check can be performed either just before a transaction com-
mits or after each read and write. By reviewing the relative time of reads and writes,
the concurrency control manager can determine whether a conflict has occurred. If
a conflict occurs, the concurrency control manager issues a rollback and restarts the
offending transaction.

Despite the appeal of optimistic approaches, most organizations used 2PL even
though some enterprise DBMSs supported optimistic approaches. The performance of
optimistic approaches depends on the frequency of conflicts. If conflicts increase, the
performance of optimistic approaches decreases. Even if conflicts are rare, optimis-
tic approaches can have more variability because the penalty for conflicts is larger in
optimistic approaches. Pessimistic approaches resolve conflicts by waiting. Optimistic
approaches resolve conflicts by rolling back and restarting. Restarting a transaction
may delay a transaction more than waiting for a resource to be released. Thus, optimis-
tic approaches may have more variability in transaction service times than pessimistic
approaches with locking.

Time

Growing phase

BOT EOT

Shrinking
phaseLo

ck
s

he
ld

FIGURE 17.9
Growing and Shrinking
Phases of 2PL

26008_ch17_p681-724.indd 692 3/2/18 10:59 PM

Chapter 17  Transaction Management   693

Recent advances in in-memory transaction processing have begun to change
the marketplace and organizational practices for mission critical applications. Most
enterprise DBMS vendors now offer high performance, in-memory transaction pro-
cessing using optimistic concurrency control at least in the highest product editions.
The optimistic concurrency control approach has been streamlined to reduce the prob-
ability of conflicts at commit time. Elimination or substantially reduced usage of locks
(just at transaction commit time) minimizes concurrency overhead. Distributed pro-
cessing of transactions on multiple CPU cores and main memory resident tables dra-
matically improves transaction throughput.

As a result of in-memory transaction processing technology, major organizations
with mission critical applications are increasingly considering optimistic concurrency
control. Enterprise DBMS vendors claim high potential (such as 10 times) performance
improvement. However these benefits have costs of larger levels of main memory,
effort to convert tables to utilize in-memory processing, redesign of transactions to
utilize in-memory processing, and sometimes increased product licensing costs. Orga-
nizations should investigate trade-offs on individual tables to determine viability of
in-memory transaction processing.

In-Memory Transaction
Processing
a high performance technol-
ogy utilizing distributed pro-
cessing with large amounts
of main memory and stream-
lined optimistic concurrency
control for mission critical
applications. Both enter-
prise relational DBMSs and
emerging NoSQL DBMSs
support in-memory transac-
tion processing.

17.3  RECOVERY MANAGEMENT
Recovery management is a service to restore a database to a consistent state after a
failure. This section describes the kinds of failures to prevent, the tools of recovery
management, and the recovery processes that use recovery tools.

17.3.1  Data Storage Devices and Failure Types
From the perspective of database failures, volatility is an important characteristic of
data storage devices. Main memory is volatile because it loses its state if power is lost.
In contrast, a disk drive (magnetic or solid state) is nonvolatile because it retains its
state if power is lost. This distinction is important because a DBMS cannot depend
on volatile memory to recover data after failures. Even nonvolatile devices are not
completely reliable. For example, certain failures make the contents of a disk drive
unreadable. To achieve high reliability, DBMSs may replicate data on several kinds of
nonvolatile storage media such as a hard disk, magnetic tape, and optical disk. Using
a combination of nonvolatile devices improves reliability because different kinds of
devices usually have independent failure rates.

Some failures affect main memory only, while others affect both volatile and non-
volatile memory. Table 17-6 shows four kinds of failures along with their effect and
frequency. The first two kinds of failures affect the memory of one executing transac-
tion. Transaction code should check for error conditions such as an invalid account
number or cancellation of the transaction by the user. A program-detected failure
usually leads to aborting the transaction with a specified message to the user. The
SQL ROLLBACK statement can abort a transaction if an abnormal condition occurs.
Recall that the ROLLBACK statement removes all changes made by the transaction.
Program-detected failures are usually the most common and least harmful.

Abnormal termination has a similar effect as a program-detected failure but a dif-
ferent cause. The transaction aborts, but the error message is often unintelligible to

TABLE 17-6
Failure Types, Effects, and
Frequency

Type Effect Frequency

Program-detected Local (1 transaction) Most frequent

Abnormal termination Local (1 transaction) Moderate frequency

System failure Global (all active transactions) Not frequent

Device failure Global (all active and past transactions) Least frequent

26008_ch17_p681-724.indd 693 3/2/18 10:59 PM

694   Part 7  Managing Database Environments

the user. Abnormal termination can be caused by events such as transaction time-out,
communication line failure, or programming error (for example, dividing by zero).
The ON ERROR statement in Figure 17.1 detects abnormal termination. A ROLLBACK
statement removes any effects of the terminated transaction on the database.

The last two kinds of failures have more serious consequences but are usually far
less common. A system failure is an abnormal termination of the operating system.
An operating system failure affects all executing transactions. A device failure such
as a disk crash affects all executing transactions and all committed transactions whose
work is recorded on the disk. A device failure can take hours to recover while a system
crash can take minutes.

17.3.2  Recovery Tools
The recovery manager uses redundancy and control of the timing of database writes to
restore a database after a failure. Three tools discussed in this section, transaction log,
checkpoint, and database backup, are forms of redundancy. The last tool (force writ-
ing) allows the recovery manager to control when database writes are recorded. This
section explains the nature of these tools, while the next section explains how these
tools are used in recovery processes.

Transaction Log  A transaction log provides a history of database changes. Every
change to a database is also recorded in the log. The log is a hidden table not available
to normal users. A typical log (Table 17-7) contains a unique log sequence number
(LSN), a transaction identifier, a database action, a time, a row identifier, a column
name, and values (old and new). For insert operations, the column name * denotes all
columns with the new value containing an entire row of values. The old and new val-
ues are sometimes called the before and after images, respectively. For insert actions,
the log only contains the new values. Similarly, for delete actions, the log only con-
tains the old values. Besides insert, update, and delete actions, log records are created
for the beginning and ending of a transaction.

The recovery manager can perform two operations on the log. In an undo opera-
tion, the database reverts to a previous state by substituting the old value for whatever
value is stored in the database. In a redo operation, the recovery component reestab-
lishes a new state by substituting the new value for whatever value is stored in the
database. To undo (redo) a transaction, the undo (redo) operation is applied to all log
records of a specified transaction except for the start and commit records.

A log can add considerable storage overhead. In an environment of large transac-
tion volumes, 100 gigabytes of log records can be generated each day. Because of this
large size, many organizations have both an online log stored on disk and an archive
log stored on tape or optical disk. The online log is usually divided into two parts (cur-
rent and next) to manage online log space. Given the role of the log in the recovery
process, the integrity of the log is crucial. Enterprise DBMSs can maintain redundant
logs to provide nonstop processing in case of a log failure.

Checkpoint  The purpose of a checkpoint is to reduce the time to recover from fail-
ures. At periodic times, a checkpoint record is written to the log to record all active
transactions. In addition, all log buffers as well as some database buffers are written

Transaction Log
a table that contains a his-
tory of database changes.
The recovery manager uses
the log table to recover from
failures.

Checkpoint
the act of writing a check-
point record to the log
and writing log and some
database buffers to disk. All
transaction activity ceases
while a checkpoint occurs.
The checkpoint interval
should be chosen to balance
restart time with checkpoint
overhead.

TABLE 17-7
Example Transaction Log for
an ATM Transaction

LSN TransNo Action Time Table Row Column Old New

1 101001 START 10:29

2 101001 UPDATE 10:30 Acct 10001 AcctBal 100 200

3 101001 UPDATE 10:30 Acct 15147 AcctBal 500 400

4 101001 INSERT 10:32 Hist 25045 * <1002, 500, …>

5 101001 COMMIT 10:33

26008_ch17_p681-724.indd 694 3/2/18 10:59 PM

Chapter 17  Transaction Management   695

to disk. At restart time, the recovery manager relies on the checkpoint log record and
knowledge of log and database page writes to reduce the amount of restart work.

The checkpoint interval is defined as the period between checkpoints. The interval
can be expressed as a time (such as five minutes) or as a size parameter such as the
number of committed transactions, the number of log pages, or the number of data-
base pages. The checkpoint interval is a design parameter. A small interval reduces
restart work but causes more overhead to record checkpoints. A large interval reduces
checkpoint overhead but increases restart work. A typical checkpoint interval might
be 10 minutes for large transaction volumes.

Recording a checkpoint may involve considerable disruption in transaction pro-
cessing as all transaction activity ceases while a checkpoint occurs. No new trans-
actions can begin and existing transactions cannot initiate new operations during a
checkpoint. The length of the disruption depends on the type of checkpoint used.
In a cache-consistent checkpoint, buffer pages (log pages and dirty database pages)
remaining in memory are written to disk and then the checkpoint record is written to
the log. A page is dirty if it has been changed by a transaction.

To reduce the disruption caused by cache-consistent checkpoints, some DBMSs
support either fuzzy checkpoints or incremental checkpoints. In a fuzzy checkpoint,
the recovery manager only writes dirty database pages older than the previous check-
point. Since most dirty database pages should have already been written to disk before
the checkpoint, a fuzzy checkpoint should write fewer database pages than a cache
consistent checkpoint. At restart time, the recovery manager uses the two most recent
fuzzy checkpoint records in the log. Thus, fuzzy checkpoints involve less overhead
than cache-consistent checkpoints but may require more restart work.

In an incremental checkpoint, no database pages are written to disk. Instead, dirty
database pages are periodically written to disk in ascending age order. At checkpoint
time, the log position of the oldest dirty data page is recorded to provide a starting
point for recovery. The amount of restart work can be controlled by the frequency of
writing dirty data pages.

Figure 17.10 provides a convenient summary of the three types of checkpoints.
Enterprise DBMSs may provide a choice among more than one type of checkpoint. The
trend is to use more resource efficient checkpoints (fuzzy and incremental) at the cost
of somewhat longer restart times.

Force Writing  The ability to control the timing of database page transfers to non-
volatile storage is known as force writing. Without the ability to control the timing of
write operations to nonvolatile storage, reliable recovery is not possible. Force writing

Force Writing
the ability to control the tim-
ing of database page trans-
fers to nonvolatile storage.
This ability is fundamental to
recovery management.

FIGURE 17.10
Summary of Checkpoint
Types

Log
Pages

Log
Pages

Log
Pages

All Dirty DB
Pages

Older Dirty
DB Pages

Log
Position

Cache Consistent
Checkpoint

Fuzzy Checkpoint

Incremental Checkpoint

26008_ch17_p681-724.indd 695 3/2/18 10:59 PM

696   Part 7  Managing Database Environments

means that the DBMS, not the operating system, controls when data are written to
nonvolatile storage. Normally, when a program executes a write procedure, the oper-
ating system puts the data in a buffer. For efficiency, the data are not written to disk
until the buffer is full. Typically, there is some small delay between arrival of data in
a buffer and transferring the buffer to disk. With force writing, the operating system
allows the DBMS to control when the buffer is written to disk.

The recovery manager uses force writing at checkpoint time and the end of a
transaction. At checkpoint time, in addition to inserting a checkpoint record, all log
and possibly some database buffers are force written to disk. This force writing can
add considerable overhead to the checkpoint process. At the end of a transaction, the
recovery manager force writes any log records of a transaction remaining in memory.

Database Backup  A backup is a copy of all or part of a disk. The backup is used
when the disk containing the database or log is damaged. For high reliability and
faster restart processing, backups can be made on independent disk drives as well
as sequential media such as magnetic tape. Periodically, a backup should be made
for both the database and the log. To save time, most backup schedules include less
frequent massive backups to copy the entire contents of a disk and more frequent
incremental backups to copy only the changed part.

17.3.3  Recovery Processes
The recovery process depends on the kind of failure. Recovery from a device failure is
simple but can be time-consuming, as listed below

•	 The database is restored from the most recent backup.
•	 Then, the recovery manager applies the redo operator to all committed

transactions after the backup. Because the backup may be several hours to days
old, the log must be consulted to restore transactions committed after the backup.

•	 The recovery process finishes by restarting incomplete transactions.

For local failures and system failures, the recovery process depends on when database
changes are recorded on disk. Database changes can be recorded before the commit
(immediate update) or after the commit (deferred update). The amount of work and
the use of log operations (undo and redo) depend on the timing of database updates.
The remainder of this section describes recovery processes for local and system fail-
ures under each scenario.

Immediate Update Approach  In the immediate update approach, database
updates are written to disk when they occur. Database writes may also occur at check-
point time depending on the checkpoint type. Database writes must occur after writes
of the corresponding log records. This usage of the log is known as the write ahead log
protocol. If log records were written after corresponding database records, recovery
would not be possible if a failure occurred between the time of writing the database
records and the log records. To support the write ahead log protocol, the recovery
manager maintains a table of log sequence numbers for each database page in a buf-
fer. A database page cannot be written to disk if its associated log sequence number is
larger than the sequence number of the last log record written to disk.

Recovery from a local failure is easy because only a single transaction is affected.
All log records of the transaction are found by searching the log backwards. The undo
operation is then applied to each log record of the transaction. If a failure occurs dur-
ing the recovery process, the undo operation is applied again. The effect of applying
the undo operator multiple times is the same as applying undo one time. After com-
pleting the undo operations, the recovery manager may offer the user the opportunity
to restart the aborted transaction.

Recovery from a system failure is more difficult because all active users are
affected. To help you understand recovery from a system failure, Figure 17.11 shows

Immediate Update
Approach
database updates are writ-
ten to disk when they occur
but after the corresponding
log updates. To restore a
database, both undo and
redo operations may be
needed.

26008_ch17_p681-724.indd 696 3/2/18 10:59 PM

Chapter 17  Transaction Management   697

the progress of transaction types with respect to the commit time, the most recent
checkpoint, and the failure. For example, transaction class T1 represents transactions
started and finished before the checkpoint (and the failure). No other transaction types
are possible.

The immediate update approach may involve both undo and redo operations, as
summarized in Table 17-8. To understand the amount of work necessary, remember
that log records are stable at checkpoint time and end of transaction and database
changes are stable at checkpoint time. Although other database writes occur when a
buffer fills, the timing of other writes is unpredictable. T1 transactions require no work
because both log and database changes are stable before the failure. T2 transactions
must be redone from the checkpoint because only database changes prior to the check-
point are stable. T3 transactions must be redone entirely because database changes are
not guaranteed to be stable even though some changes may be recorded on disk. T4
and T5 transactions must be undone entirely because some database changes after the
checkpoint may be recorded on disk.

Deferred Update Approach  In the deferred update approach, database updates are
written to disk only after a transaction commits. No database writes occur at check-
point time except for already committed transactions. The advantage of the deferred
update approach is that undo operations are not necessary. However, it may be neces-
sary to perform more redo operations than in the immediate update approach.

Local failures are handled without any restart work in the deferred update
approach. Because no database changes occur until after a transaction commits, the
transaction is aborted without any undo work. The recovery manager typically would
provide a user with the option of restarting an impacted transaction.

System failures also can be handled without undo operations as depicted in
Table 17-9. T4 and T5 transactions (not yet committed) do not require undo opera-
tions because no database changes are written to disk until after a transaction com-
mits. T2 and T3 transactions (committed after the checkpoint) require redo operations
because it is not known whether all database changes are stable. T2 transactions
(started before the checkpoint) must be redone from the first log record rather than
just from the checkpoint as in the immediate update approach. Thus, the deferred

Deferred Update Approach
database updates are writ-
ten only after a transaction
commits. To restore a data-
base, only redo operations
are used.

Time

T1

T5

T4

T3

T2

Checkpoint Failure FIGURE 17.11
Transaction Timeline

TABLE 17-8
Summary of Restart Work
for the Immediate Update
Approach

Class Description Restart Work

T1 Finished before CP None

T2 Started before CP; finished before failure Redo forward from the most recent checkpoint

T3 Started after CP; finished before failure Redo forward from the most recent checkpoint

T4 Started before CP; not yet finished Undo backwards from most recent log record

T5 Started after CP; not yet finished Undo backwards from most recent log record

26008_ch17_p681-724.indd 697 3/2/18 10:59 PM

698   Part 7  Managing Database Environments

update approach requires more restart work for T2 transactions than does the imme-
diate update approach. However, the deferred update approach requires no restart
work for T4 and T5 transactions, while the immediate update approach must undo T4
and T5 transactions.

Recovery Example  Tables 17-8 and 17-9, although depicting the kind of restart
work necessary, do not depict the sequence of log operations. To help you understand
the log operations generated at restart time, Table 17-10 shows an example log includ-
ing checkpoint records. The checkpoint action includes a list of active transactions
at the time of the checkpoint. To simplify the restart process, Table 17-10 uses cache
consistent checkpoints.

Table 17-11 lists the log operations for the immediate update approach. The imme-
diate update approach begins in the rollback phase. In step 1, the recovery manager
adds transaction 4 to the uncommitted list and applies the undo operator to LSN 20.
Likewise in step 4, the recovery manager adds transaction 3 to the uncommitted list
and applies the undo operator to LSN 17. In step 5, the recovery manager adds trans-
action 2 to the committed list because the log record contains the COMMIT action. In
step 6, the recovery manager takes no action because redo operations will be applied

TABLE 17-9
Summary of Restart Work
for the Deferred Update
Approach

Class Description Restart Work

T1 Finished before CP None

T2 Started before CP; finished before failure Redo forward from the first log record

T3 Started after CP; finished before failure Redo forward from the first log record

T4 Started before CP; not yet finished None

T5 Started after CP; not yet finished None

TABLE 17-10
Example Transaction Log LSN TransNo Action Time Table Row Column Old New

1 1 START 10:29

2 1 UPDATE 10:30 Acct 10 Bal 100 200

3 CKPT(1) 10:31

4 1 UPDATE 10:32 Acct 25 Bal 500 400

5 2 START 10:33

6 2 UPDATE 10:34 Acct 11 Bal 105 205

7 1 INSERT 10:35 Hist 101 * <1, 400,…>

8 2 UPDATE 10:36 Acct 26 Bal 100 200

9 2 INSERT 10:37 Hist 102 * <2, 200,…>

10 3 START 10:38

11 3 UPDATE 10:39 Acct 10 Bal 100 200

12 CKPT(1,2,3) 10:40

13 3 UPDATE 10:41 Acct 25 Bal 500 400

14 1 COMMIT 10:42

15 2 UPDATE 10:43 Acct 29 Bal 200 300

16 2 COMMIT 10:44

17 3 INSERT 10:45 Hist 103 * <3, 400,…>

18 4 START 10:46

19 4 UPDATE 10:47 Acct 10 Bal 100 200

20 4 INSERT 10:48 Hist 104 * <3, 200,…>

26008_ch17_p681-724.indd 698 3/2/18 10:59 PM

Chapter 17  Transaction Management   699

in the roll forward phase. In step 11, the roll backward phase ends because the START
record for the last transaction on the uncommitted list has been encountered. In the
roll forward phase, the recovery manager uses redo operations for each log record of
active transactions.

Table 17-12 lists the log operations for the deferred update approach. The recovery
manager begins by reading the log backwards as in the immediate update approach.
In step 1, the recovery manager ignores log records 20 through 17 because they involve
transactions that did not commit before the failure. In steps 2 and 4, the recovery man-
ager notes that transactions 1 and 2 have committed and will need to be redone during
the roll forward phase. In step 3, the recovery manager takes no action because a redo
operation will be taken later during the roll forward phase. The roll backward phase
continues until START records are found for all committed transactions. In the roll for-
ward phase, the recovery manager uses redo operations for each action of transactions
on the committed list. The roll forward phase ends when the recovery manager finds
the COMMIT record of the last transaction on the committed list.

Recovery Features in Oracle  To depict the recovery features used in an enterprise
DBMS, highlights of the recovery manager in Oracle are presented. Oracle uses the
immediate update process with incremental checkpoints. No database writes occur at
checkpoint time as database writes are periodically written to disk in ascending age
order. The log sequence number corresponding to the oldest dirty database page is
written to disk to identify the starting point for restart.

Incremental checkpoints involve a trade-off between the frequency of writing dirty
database pages versus restart time. More frequent writes slow transaction throughput
but decrease restart time. To control this trade-off, Oracle provides a parameter known
as the Mean Time to Recover (MTTR) defined as the expected time (in seconds) to
recover from a system failure. Decreasing this parameter causes more frequent writing
of database pages. To help a DBA set the MTTR parameter, Oracle provides the MTTR
Advisor to choose parameter values under various transaction workloads. The MTTR
Advisor also determines the log file size that is considered optimal based on the cur-
rent setting of the MTTR parameter. To monitor the recovery process, Oracle provides
a dynamic dictionary view that contains details about the state of the recovery process.

TABLE 17-11
Restart Work Using the
Immediate Update Approach

Step Number LSN Actions

1 20 Undo; add transaction 4 to the uncommitted list

2 19 Undo

3 18 Remove transaction 4 from the uncommitted list

4 17 Undo, add transaction 3 to the uncommitted list

5 16 Add transaction 2 to the committed list

6 15 No action

7 14 Add transaction 1 to the committed list

8 13 Undo

9 12 Note that transaction 3 remains uncommitted

10 11 Undo

11 10 Remove transaction 3 from the uncommitted list

12 Roll forward phase: begin reading the log at the most recent checkpoint record
(LSN = 12)

13 14 Remove transaction 1 from the committed list

14 15 Redo

15 16 Remove transaction 2 from the committed list; stop because the committed list
is empty

26008_ch17_p681-724.indd 699 3/2/18 10:59 PM

700   Part 7  Managing Database Environments

With recovery and concurrency services, it may be surprising that a transaction
designer still has important design decisions. A transaction designer can be a data-
base administrator, a programmer, or a programmer in consultation with a database
administrator. Design decisions can have a significant impact on transaction process-
ing performance. Knowledge of the details of concurrency control and recovery can
make you a better transaction designer. This section describes design decisions avail-
able to transaction designers to improve performance.

17.4.1  Transaction Boundary and Hot Spots
A transaction designer develops an application involving some database processing.
For example, a designer may develop an application to enable a user to withdraw
cash from an ATM, order a product, or register for classes. To build an application,
a designer uses the transaction defining statements of SQL and the concurrency con-
trol and recovery services of the DBMS. The designer has several alternatives for the
transaction boundary involving placement of transaction defining statements of
SQL in an application.

A transaction designer typically has the option of making one large transaction
containing all SQL statements or dividing SQL statements into multiple, smaller trans-
actions. For example, the SQL statements in the ATM transaction can be considered
one transaction, as shown in Figure 17.1. Another option is to make each SQL state-
ment a separate transaction. When transaction boundary statements (START TRANS-
ACTION and COMMIT) are not used, each SQL statement defaults to a separate
transaction.

Transaction Boundary
an important decision
in transaction design. A
transaction designer places
transaction defining SQL
statements to divide an
application consisting of
a collection of SQL state-
ments into one or more
transactions.

TABLE 17-12
Restart Work Using the
Deferred Update Approach

Step Number LSN Actions

1 20,19,18,17 No action because transactions 3 and 4 cannot be complete

2 16 Add transaction 2 to the committed and incomplete lists

3 15 No action; redo during the roll forward phase

4 14 Add transaction 1 to the committed and incomplete lists

5 13 No action because transaction 3 cannot be complete

6 12 Note that START records have not been found for transactions 1 and 2

7 11,10 No action because transaction 3 cannot be complete

8 9,8,7,6 No action; redo during the roll forward phase

9 5 Remove transaction 2 from the incomplete list (START record found)

10 4 No action; redo during the roll forward phase

11 3 Note that START record has not been found for transaction 1

12 2 No action. Redo during the roll forward phase

13 1 Remove transaction 1 from the incomplete list; begin the roll forward phase

14 2 Redo

15 4 Redo

16 6 Redo

17 7 Redo

18 8 Redo

19 9 Redo

20 14 Remove transaction 1 from the committed list

21 15 Redo

22 16 Remove transaction 2 from the committed list; end the roll forward phase

17.4  TRANSACTION DESIGN ISSUES

26008_ch17_p681-724.indd 700 3/2/18 10:59 PM

Chapter 17  Transaction Management   701

Trade-offs in Choosing Transaction Boundaries  When choosing a transaction’s
boundary, the objective is to minimize the duration of the transaction while ensuring
satisfaction of critical constraints. DBMSs are designed for transactions of short dura-
tion because locking can force other transactions to wait. The duration includes not
only the number of reads and writes to the database but the time spent waiting for
user responses. Generally, a transaction boundary should not involve user interaction.
In the ATM, airline reservation, and online shopping transactions (Figure 17.1, 17.2,
and 17.3, respectively), the START TRANSACTION and COMMIT statements could
be moved to surround just the SQL part of the pseudo code.

Duration should not compromise constraint checking. Because constraint check-
ing must occur by the end of a transaction, it may be difficult to check some constraints
if a transaction is decomposed into smaller transactions. For example, an important
constraint in accounting transactions is that debits equal credits. If the SQL statements
to post a debit and a credit are placed in the same transaction, then the DBMS can
enforce the accounting constraint at the end of the transaction. If they are placed in
separate transactions, constraint checking cannot occur until after both transactions
are committed.

Hot Spots  To understand the effects of transaction boundary choices, hot spots
should be identified. Recall that hot spots are common data that multiple users try to
change simultaneously. If a selected transaction boundary eliminates (creates) a hot
spot, it may be a good (poor) design.

Hot spots can be classified as either system independent or system dependent.
System-independent hot spots are parts of a table that many users simultaneously
may want to change. Rows, columns, and entire tables can be system-independent
hot spots. For example, in the airline reservation transaction (Figure 17.2), the seats-
remaining column of popular flight rows is a system-independent hot spot. The seats-
remaining column is a hot spot for every DBMS.

System-dependent hot spots depend on the DBMS. Usually, system-dependent hot
spots involve parts of the database hidden to normal users. Pages (physical records)
containing database rows or index records can often be system-dependent hot spots.
For example, some DBMSs lock the next available page when inserting a row into a
table. When inserting a new history row in the ATM transaction (Figure 17.1), the next
available page of the history table is a system-dependent hot spot. On DBMSs that lock
at the row level, no hot spot exists. There are also typically hot spots with commonly
accessed index pages.

Example Transaction Boundary Design  To depict a transaction boundary choice,
hierarchical forms provide a convenient context. A hierarchical form represents an
application that reads and writes to a database. For example, the registration form of
the university database (Figure 17.12) manipulates the Registration table in the main
form and the Enrollment and Offering tables in the subform. When using the registra-
tion form to enroll in courses, a record is inserted in the Registration table after com-
pleting the main form. After completing each line in the subform, a row is inserted
into the Enrollment table and the OffSeatsRemain column of the associated Offering row
is updated. Although the OffSeatsRemain column does not appear in the subform, it
must be updated after inserting each subform line.

When designing a hierarchical form, the transaction designer has three reasonable
choices for the transaction boundary:

	 (1) 	The entire form
	 (2) 	The main form as one transaction and all subform lines as a second transaction
	 (3) 	The main form as one transaction and each subform line as separate transactions.

The third choice is usually preferred because it provides transactions with the shortest
duration. However, constraint checking may force the choice to (1) or (2). The registra-
tion form involves constraints on an entire registration such as a minimum number

26008_ch17_p681-724.indd 701 3/2/18 10:59 PM

702   Part 7  Managing Database Environments

of hours for financial aid and prerequisites for a course. However, these constraints
are not critical to check at the end of a transaction. Most universities check these con-
straints at a later point before the next academic period begins. Thus, choice (3) is the
best choice for the transaction boundary.

Processing of operations on the registration form involve several hot spots com-
mon to each transaction boundary choice. The OffSeatsRemain column in popular
Offering rows is a system-independent hot spot in any transaction involving the sub-
form lines. The OffSeatsRemain column must be updated after each enrollment. The
next page in the Enrollment table is a system-dependent hot spot in some DBMSs.
After each subform line, a row is inserted in the Enrollment table. If a DBMS locks
the next available page rather than just the new row, all subform line transactions
must obtain an exclusive lock on the next available physical record. However, if a
DBMS locks at the row level, no hot spot exists because each transaction will insert
a different row.

Choice (3) provides another advantage due to reduced deadlock possibilities. In
choices (1) and (2), a deadlock may occur when a transaction involves multiple course
enrollments. For example, one transaction could obtain a lock on a data communica-
tions offering (IS470) and another transaction on a database offering (IS480). The first
transaction may then wait for a lock on the IS480 offering, and the second transac-
tion may wait for a lock on the IS470 offering. Choice (3) will be deadlock free if the
hot spots are always obtained in the same order by every transaction. For example, if
every transaction first obtains a lock on the next available page of Enrollment and then
obtains a lock on an Offering row, then a deadlock will not occur.

Avoiding User Interaction Time  Another issue of transaction boundary is user
interaction. Normally user interaction should be placed outside of a transaction.
Figure 17.13 shows the airline reservation transaction redesigned to place user interac-
tion outside of the transaction. The redesigned transaction will reduce waiting times
of concurrent users because locks will be held for less time. However, side effects
may occur as a result of removing user interaction. With user interaction outside of
a transaction, a seat on the flight may not be available even though the user was just
informed about the flight’s availability. A database analyst should monitor occurrence
of this side effect. If the side effect is rare, the interaction code should remain outside
of the transaction. If the side effect occurs with a reasonable frequency, it may be pref-
erable to retain the user interaction as part of the transaction.

FIGURE 17.12
Example Registration Form

26008_ch17_p681-724.indd 702 3/2/18 10:59 PM

Chapter 17  Transaction Management   703

Tennis Court Reservation Case  To demonstrate organizational impacts of trans-
action design choices, the last part of this section presents details about an actual
tennis court reservation case. This case depicts elements of transaction design (hot
spots, transaction boundary choices, and user waiting time) and impacts of transac-
tion design on business practices.

The Southside Athletic Club4 contracts for its online website from Tennis Systems
Unlimited, an organization serving many tennis clubs with information services. An
important part of the website is an online court reservation system. Although the ten-
nis club is relatively small with about 500 members, members have been experiencing
difficulty with making court reservations during peak reservation times. Reservations
can be made six days in advance beginning at 7AM. During winter months, indoor
tennis courts experience high demand especially during the period from 2:30PM until
closing (normally 10PM).

Making a reservation involves choosing a date and time (Figure 17.14), selecting
a duration (Figure 17.15), and choosing one to three partners (Figure 17.16). In Figure
17.14, a member can choose only an unreserved (white) time slot. After choosing an
available time slot and duration, the reservation is subject to partner availability. Mem-
bers can only appear on one reservation in each day. A small delay typically occurs
in the choice of a duration. Longer delays typically occur when choosing partners as
a partner must be selected from a list and the system must check partner availability.

The tennis reservation database has a predictable system independent hot spot.
Popular reservation times create contention for locks on the corresponding rows in
the reservation table. The reservation table contains columns for the unique reserva-
tion number, date, start time, duration, court, player1, player2, optional player3, and
optional player4.

In the transaction boundary decision, two options were considered. The minimal
duration choice involves no waiting time as it begins after selection of all reservation
details (date, time, duration, and partners). However, the minimal duration choice has
a side effect that a reservation may not be available after selecting all reservation parts.
The alternative choice is to begin the transaction after selection of the date, time, and
duration. The alternative choice involves wait time for partner selection, but the mem-
ber will obtain the court after selection of the date, time, and duration. In actual sys-
tem deployment, the alternative choice was selected due to the importance of stability
of court selection. With high contention for court reservations at initial reservation
times, member dissatisfaction became high when selected courts were not available
after partner selection. To limit transaction duration, a five minute limit was imposed
on partner selection time. The player selection window shows the remaining time
(Figure 17.16) for player selection to avoid surprises during the reservation process.

Despite careful design, the online reservation system had substantial problems
after deployment. Members had difficulty obtaining desired reservations during peak
reservation times. The system was unstable and slow with web pages sometimes tak-
ing minutes to load. After consultations among club members, club management, and

4 The names of the tennis club and external software provider have been changed.

Get reservation preferences
SELECT departure and return flight rows
If reservation is acceptable Then
  START TRANSACTION
  UPDATE seats remaining of departure flight row
  UPDATE seats remaining of return flight row
  INSERT reservation row
End If
On Error: ROLLBACK
COMMIT
Send receipt to customer

FIGURE 17.13
Pseudocode for Redesigned
Airline Reservation
Transaction

26008_ch17_p681-724.indd 703 3/2/18 10:59 PM

704   Part 7  Managing Database Environments

FIGURE 17.14
Web Page to Select Court
Date and Time

FIGURE 17.15
Web Page to Select Duration

vendor management, it was decided to divide the reservation period into two periods
(6AM to 2:30PM starting at 7AM and 2:30PM to 10PM starting at 8AM). In addition,
the current day’s reservation calendar was preloaded prior to the beginning of a res-
ervation period. System performance has improved as a result of these changes with
stable operation and much faster page loading.

17.4.2  Isolation Levels
Two-phase locking prevents the three concurrency control problems described in Sec-
tion 17.2.2 if all locks are held until the end of the transaction. However, some transac-
tions may not need this level of concurrency control. The lost update problem is the
most serious problem and should always be prevented. Some transactions may be
able to tolerate conflicts caused by the uncommitted dependency and the inconsistent
retrieval problems. Transactions that do not need protection from these problems can
release locks sooner and achieve faster execution speed.

26008_ch17_p681-724.indd 704 3/2/18 10:59 PM

Chapter 17  Transaction Management   705

The isolation level specifies the degree to which a transaction is separated from
the actions of other transactions. A transaction designer can balance concurrency con-
trol overhead with potential interference problems by specifying the appropriate isola-
tion level.

Table 17-13 summarizes the SQL:2016 isolation levels according to the duration
and type of locks held. The serializable level prevents all concurrency control prob-
lems but involves the most overhead and waiting. To prevent concurrency control
problems, predicate locks are used and all locks are long term (held until commit
time). Predicate locks that reserve rows specified by conditions in the WHERE clause
are essential to prevent phantom read problems. The repeatable read level uses short-
term predicate locks to prevent the incorrect summary and the nonrepeatable read
problems. The read committed level uses short-term shared locks to enable more con-
current access. However, it only prevents the uncommitted dependency problem and
the traditional lost update problem. Because the read uncommitted level does not use
locks, it is only appropriate for read-only access to a database.

A transaction designer can specify the isolation level using the SQL SET TRANS-
ACTION statement, as shown in Example 17.1. The SET TRANSACTION statement
is usually placed just before a START TRANSACTION statement to alter the default
settings for transactions. In Example 17.1, the isolation level is set to READ COM-
MITTED. The other keywords are SERIALIZABLE, REPEATABLE READ, and READ
UNCOMMITTED. Some DBMS vendors do not support all of these levels while other
vendors support additional levels.

Isolation Level
defines the degree to which
a transaction is separated
from actions of other
transactions. A transaction
designer can balance con-
currency control overhead
with interference problems
prevented by specifying the
appropriate isolation level.

FIGURE 17.16
Web Page to Select Partners

TABLE 17-13
Summary of Isolation LevelsLevel Exclusive

Locks
Shared
Locks

Predicate
Locks

Problems Permitted

Read
Uncommitted

None since
read-only

None None Only uncommitted dependencies
because transactions must be read-only

Read
Committed

Long-term Short-term None Scholar’s lost updates, incorrect sum-
mary, non repeatable reads

Repeatable
Read

Long-term Long-term Short-term read,
Long-term write

Phantom reads

Serializable Long-term Long-term Long-term None

26008_ch17_p681-724.indd 705 3/2/18 10:59 PM

706   Part 7  Managing Database Environments

In SQL:2016, SERIALIZABLE is the default isolation level. For most transactions,
this level is recommended because the REPEATABLE READ level provides only a
small performance improvement. The READ UNCOMMITTED level is recommended
for read-only transactions that can tolerate retrieval inconsistency.

Although SQL:2016 provides SERIALIZABLE as the default level, some DBMS
vendors such as Oracle and Microsoft SQL Server use READ COMMITTED as the
default level. READ COMMITTED can be a dangerous default level as it permits a
variation of the lost update problem known as the scholar’s lost update. The word
scholar is ironic in that the scholar’s lost update problem differs only slightly from the
traditional lost update problem. Figure 17.17 depicts the scholar’s lost update problem.
The only essential difference between the scholar’s lost update problem and the tradi-
tional lost update problem is that transaction A commits before transaction B changes
the common data. Thus, the scholar’s lost update is a serious potential problem that
should not be permitted for most transactions.

17.4.3  Timing of Integrity Constraint Enforcement
Besides setting the isolation level, SQL allows control of the timing of integrity con-
straint enforcement. By default, constraints are enforced immediately after each
INSERT, UPDATE, and DELETE statement. For most constraints such as primary and
foreign keys, immediate enforcement is appropriate. If a constraint is violated, a DBMS
issues a rollback operation on a transaction. The rollback restores the database to a
consistent state as the ACID properties ensure consistency at the end of a transaction.

Example 17.1 (SQL:2016)

SET TRANSACTION Statement to Set
the Isolation Level of a Transaction
SET TRANSACTION ISOLATION LEVEL READ COMMITTED
START TRANSACTION
…
COMMIT

FIGURE 17.17
Example Scholar’s Lost
Update Problem

Transaction A Time Transaction B

Obtain S lock on SR T1

Read SR (10) T2

Release S lock on SR T3

If SR > 0 then SR = SR − 1 T4

T5 Obtain S lock on SR

T6 Read SR (10)

T7 Release S lock on SR

T8 If SR > 0 then SR = SR − 1

Obtain X lock on SR T9

Write SR (9) T10

Commit T11

T12 Obtain X lock on SR

T13 Write SR (9)

26008_ch17_p681-724.indd 706 3/2/18 10:59 PM

Chapter 17  Transaction Management   707

For complex constraints, immediate enforcement may not be appropriate. For
example, a faculty workload constraint ensures that each faculty member teaches
between three and nine units each semester. If a transaction assigns an entire work-
load, checking the constraint should be deferred until the end of the transaction. For
these kinds of complex constraints, constraint timing should be specified.

Deferred Constraint Checking: enforcing integrity constraints at the end of a trans-
action rather than immediately after each manipulation statement. Complex con-
straints may benefit from deferred checking.

Constraint timing involves both constraint definition and transaction definition. SQL
provides an optional constraint timing clause that applies to primary key constraints,
foreign key constraints, uniqueness constraints, check constraints, and assertions.
A database administrator typically uses the constraint timing clause for constraints
that may need deferred checking. Constraints that never need deferred checking do
not need the timing clause as the default is NOT DEFERRABLE. The timing clause
defines the deferability of a constraint along with its default enforcement (deferred or
immediate), as shown in Examples 17.2 and 17.3.

Example 17.2 (SQL:2016)

Timing Clause for the
FacultyWorkLoad Assertion
The constraint is deferrable and the default enforcement is deferred.

CREATE ASSERTION FacultyWorkLoad
 CHECK (NOT EXISTS
 (SELECT Faculty.FacNo, OffTerm, OffYear
 FROM Faculty, Offering, Course
 WHERE Faculty.FacNo = Offering.FacNo
 AND Offering.CourseNo = Course.CourseNo
 GROUP BY Faculty.FacNo, OffTerm, OffYear
 HAVING SUM(CrsUnits) < 3 OR SUM(CrsUnits) > 9))
 DEFERRABLE INITIALLY DEFERRED

Example 17.3 (SQL:2016)

Timing Clause for the
OfferingConflict Assertion
The constraint is deferrable and the default enforcement is immediate.

CREATE ASSERTION OfferingConflict
 CHECK (NOT EXISTS
 (SELECT O1.OfferNo
 FROM Offering O1, Offering O2
 WHERE O1.OfferNo <> O2.OfferNo
 AND O1.OffTerm = O2.OffTerm
 AND O1.OffYear = O2.OffYear
 AND O1.OffDays = O2.OffDays
 AND O1.OffTime = O2.OffTime
 AND O1.OffLocation = O2.OffLocation))
DEFERRABLE INITIALLY IMMEDIATE

26008_ch17_p681-724.indd 707 3/2/18 10:59 PM

708   Part 7  Managing Database Environments

For each transaction, the transaction designer may specify whether deferrable con-
straints are deferred or immediately enforced using the SET CONSTRAINTS state-
ment. Normally the SET CONSTRAINTS statement is placed just after the START
TRANSACTION statement as shown in Example 17.4. The SET CONSTRAINTS state-
ment is not necessary for deferrable constraints with deferred default enforcement. For
example, if the FacultyWorkLoad assertion is deferred, no SET CONSTRAINTS state-
ment is necessary because its default enforcement is deferred.

Example 17.4 (SQL:2016)

SET CONSTRANTS Statements
for Several Transactions
START TRANSACTION
SET CONSTRAINTS FacultyWorkLoad IMMEDIATE
…
COMMIT

START TRANSACTION
SET CONSTRAINTS OfferingConflict DEFERRED
…
COMMIT

Implementation of the constraint timing part of SQL is highly variable. Most
DBMSs do not support the constraint timing part exactly as specified in the standard.
Many DBMSs have different syntax and proprietary language extensions for con-
straint timing.

17.4.4  Save Points
Some transactions have tentative actions that can be cancelled by user actions or other
events. For example, a user may cancel an item on an order after discovering that
the item is out of stock. Because the ROLLBACK statement removes all transaction
changes, it cannot be used to remove just a canceled item if a transaction involves
an entire order. A transaction designer can code statements to explicitly delete the
tentative parts of a transaction, but this coding can be tedious and involve excessive
overhead.

SQL:2016 provides the SAVEPOINT statement to allow partial rollback of a trans-
action. A transaction designer uses the SAVEPOINT keyword followed by the save
point name to establish an intermediate point in a transaction. To undo work since
a particular save point, the ROLLBACK TO SAVEPOINT keywords can be used fol-
lowed by the save point name. Figure 17.18 depicts the usage of a save point. Typically,
partial rollback is used conditionally depending on a user action or an external event.

Save points are also used internally by some enterprise DBMSs to resolve dead-
locks. Instead of rolling back an entire transaction, the DBMS rolls back a transaction
to its last save point. Implicit save points can be used by a DBMS after each SQL state-
ment to reduce the amount of lost work.

Commit
Safe

operations
Save point

Rollback to
save point

Tentative
operations

FIGURE 17.18
Transaction Flow with a Save
Point

26008_ch17_p681-724.indd 708 3/2/18 10:59 PM

Chapter 17  Transaction Management   709

17.4.5  Relaxed Transaction Consistency Model
Some high performance applications in ecommerce can tolerate eventual consistency
to increase availability. For example in ATM applications, the reconciliation of amount
withdrawn with the account balance may occur hours after an ATM transaction com-
pletes. A limit such as $400 is imposed on ATM withdrawals to control the exposure of
a financial institution to withdrawing more than an account balance. The application
can control the timing of the eventual reconciliation of the withdrawal amount and
account balance.

To relax the standard ACID consistency requirement and tradeoff consistency
against availability, many NoSQL database products use the BASE principle. NoSQL
database products use simplified database models5, less stringent transaction process-
ing models, and distributed processing to reduce bottlenecks for dealing with the
demands of big data. The BASE principle has three components as shown in the fol-
lowing list.

•	 Basically Available indicates that the system emphasizes availability over
consistency. Reduced consistency requirements combined with partitioning of
data across storage systems supports higher levels of availability for at least part
of the data.

•	 Soft state indicates that the state of the system may be partially inconsistent
at times across storage systems. Each application must be developed without
relying on standard ACID consistency levels for all replicated data that it may
use. With the BASE principle, data consistency is the developer’s problem, not
the responsibility of the database software.

•	 Eventual consistency indicates that distributed and replicated data copies will
become consistent over time typically without guarantees about the timing of
consistency. If a time limit is required, applications must enforce the constraint
using procedures outside the DBMS.

Message queuing can provide eventual consistency if messages are persistent or order
independent. Persistent messages must be guaranteed delivery as part of the transac-
tion performing an update. For the ATM transaction, a message to update the balance
would be part of the transaction performing the ATM action (withdrawal or payment).
If the overhead of persistent messages is unacceptable, messages can be made order
independent by tracking message completions. Additional overhead will occur when
processing messages but not during time-sensitive transactions.

Overall, the BASE transaction model puts the onus on applications to implement
the appropriate level of consistency possibly aided by tools provided by a DBMS. This
additional level of responsibility reduces productivity of application developers, but it
provides a mechanism to increase performance and availability. For some high value
applications, increased performance and availability may be more important than
reduced development productivity.

BASE Principle
a principle of relaxed data
consistency in distributed
transaction processing used
by NoSQL database prod-
ucts. The BASE (Basically
Available, Soft state, and
Eventual consistency) prin-
ciple forces some respon-
sibility for consistency on
applications with the benefit
of improved availability and
performance.

5 Chapter 19 covers data representation and manipulation aspects of NoSQL DBMSs.

17.5  WORKFLOW MANAGEMENT
Transaction management is part of a larger area known as workflow management.
Workflow management supports business processes, both automated and human per-
formed. In contrast, transaction management supports properties of automated data-
base processing. This section presents workflow management to provide a broader
perspective for transaction management. This section first describes workflows, a
broader notion than database transactions. This section then discusses enabling tech-
nologies for workflow management showing how transaction management is an
important component.

26008_ch17_p681-724.indd 709 3/2/18 10:59 PM

710   Part 7  Managing Database Environments

17.5.1  Characterizing Workflows
Workflows support business processes such as installing pay TV service, obtaining a
loan, and ordering custom products. Workflows consist of tasks that can be performed
by computers (software and hardware), humans, or a combination. For example, in
installing internet service, software determines the time of a service appointment
and updates a scheduling database, while a technician inspects the box to determine
whether a problem exists. A workflow defines the order of performing the tasks, the
conditions for tasks to be performed, and the results of performing tasks. For example,
providing internet service involves an initial customer contact, an optional service
visit, billing, and payment collection. Each of these tasks can have conditions under
which they are performed and may result in actions such as database updates and
invocation of other tasks.

Many different kinds of workflows exist. Sheth, Georgakopoulos, and Hornrick
(1995) classify workflows as human-oriented versus computer-oriented, as depicted
in Figure 17.19. In human-oriented workflows, humans provide most of the judg-
ment to accomplish work. The computer has a passive role to supply data to facilitate
human judgment. For example, in processing a loan, loan officers often determine the
status of loans when a customer does not meet standard criteria about income and
debt. Consultation with underwriters and credit personnel may be necessary. To sup-
port human-oriented workflows, electronic communication software such as email,
chat, and document annotation may be useful. In computer-oriented tasks, software
determines the processing of work. For example, software for an ATM transaction
determines whether a customer receives cash or is denied the request. To support
computer-oriented workflows, transaction management is a key technology.

Another way to classify workflows is by task complexity versus task structure
as depicted in Figure 17.20. Task complexity involves difficulty of performing indi-
vidual tasks. For example, the decision to grant a loan may involve complex reasoning
using many variables. In contrast, processing a product order may involve requesting
product data from a customer. Task structure involves the relationships among tasks.
Workflows with complex conditions have high structure. For example, processing an
insurance claim may have conditions about denying a claim, litigating a claim, and
investigating a claim.

Workflow
A collection of related tasks
structured to accomplish a
business process.

Human-oriented Computer-oriented

Communication
support

Transaction
support

FIGURE 17.19
Classification of Workflow by
Task Performance
(Adapted from Sheth,
Georgakopoulos, and
Hornrick (1995))

Task structure

Simple

Complex

Low High

Meeting
notification

Travel
request

Bid proposal

Insurance
claim

Utility service

Property sale

Ta
sk

 c
om

pl
ex

ity

FIGURE 17.20
Classification of Workflow
by Task Structure and
Complexity
(Adapted from Sheth,
Georgakopoulos, and
Hornrick (1995))

26008_ch17_p681-724.indd 710 3/2/18 10:59 PM

Chapter 17  Transaction Management   711

17.5.2  Enabling Technologies
To support the concept of a workflow discussed in the previous section, three enabling
technologies are important: (1) distributed object management, (2) workflow speci-
fication, and (3) customized transaction management. Transaction management as
described in previous sections fits as part of the third technology. The remainder of
this section elaborates on each technology.

Distributed Object Management  Workflows can involve many types of data in
remote locations. For example, data can include photos of an insurance claim, x-rays
supporting a diagnosis, and an appraisal documenting a property for a loan applica-
tion. These types of data are not traditionally managed by DBMSs. A new class of
DBMSs known as object DBMSs has been developed to manage diverse types of data.
Chapter 19 describes object DBMSs that manage diverse data types.

In addition to new data types, data are typically not stored at one location and
may be controlled by different DBMSs. For example, to support a loan application,
a loan officer uses a credit report from a credit bureau, an appraisal from a certified
appraiser, and loan processing guidelines from government agencies. Accessing and
controlling distributed data can be difficult. Chapter 18 describes important principles
of managing distributed data. Difficulties also can arise because the data may be con-
trolled by different systems, some of which may not support SQL.

Workflow Specification and Implementation  To support workflows, the struc-
ture of tasks must be properly represented and implemented. Representing a work-
flow involves identifying the tasks and specifying the relationships among tasks.
A complex task can involve a hierarchy of subtasks. A complex workflow can involve
many tasks with numerous relationships. Constraints, rules, and graphical notation
can be used to depict the task order and completion. One use of task relationships is
to define constraints among transactions. For example, workflow specification can
indicate that a student should be denied financial aid unless enrolling for a minimum
number of hours by a specified date.

After a workflow is specified, it must be efficiently implemented. The implemen-
tation may involve diverse hardware, software, and people. A major challenge is to
make diverse components communicate efficiently. Optimizing workflows through
reengineering has become an important concern in many organizations. Optimiza-
tion may involve removing duplicate tasks and increasing the amount of parallel
work.

A number of software systems have been developed to support workflow speci-
fication. The main function of software under the name workflow management is to
support workflow specification and implementation.

Customized Transaction Management  The earlier sections of this chapter
described how DBMSs support ACID transactions. The ACID properties are indeed
important and widely supported by DBMSs. However, to support workflows, the
ACID properties may not be sufficient. The following list identifies shortcomings of
traditional ACID transactions for workflow management:

•	 Some workflows involve tasks with a long duration because of user interaction.
Traditional transaction management may not work well for these conversational
transactions.

•	 Some tasks may involve subtasks, changing the notion of atomicity. The idea of
nested transactions (transactions inside transactions) has been proposed for tasks
with complex structures.

•	 Some tasks may be performed by legacy systems that do not support the ACID
properties.

•	 Some workflows may require tasks to be undone after they are complete. In
accounting systems, it is common for compensating transactions to correct

26008_ch17_p681-724.indd 711 3/2/18 10:59 PM

712   Part 7  Managing Database Environments

mistakes. For example, returning a defective product removes the effect of the
original product order.

Some DBMSs support some of these extensions now. For example, Microsoft SQL
Server provides nested transactions to support transactions that reside in procedures.
Oracle provides autonomous transactions to allow interruption of a transaction by
another transaction. In addition, SQL:2016 provides save points so that a ROLLBACK
statement can undo only part of a transaction. This extension can reduce the amount
of work lost when a long transaction fails.

To more fully support workflow management, transaction management should
be customized according to workflow requirements. The transaction properties sup-
ported for a workflow should be part of the workflow specification, not hardwired
into software supporting workflow management. DBMSs supporting workflow
management may need to be more flexible. DBMSs might support different kinds of
transactions or even allow transaction properties to be specified. Event processing in
DBMSs can be used to support some features such as compensating transactions. Most
DBMSs would need major extensions to support customized transaction management.
So far, market demand has not supported major extensions for custom transaction
management.

CLOSING THOUGHTS

This chapter has described concepts underlying database transactions, services pro-
vided by a DBMS to support transactions, and design skills for transaction designers.
A transaction is a user-defined unit of work with any number of reads and writes
to a database. To define a transaction, several new SQL statements were introduced
including START TRANSACTION, COMMIT, and ROLLBACK. DBMSs ensure that
transactions are atomic (all or nothing), consistent (satisfy integrity constraints after
completion), isolated (no interference from concurrent users), and durable (survive
failures). To ensure these properties of transactions, DBMSs provide services for con-
currency control (making a database seem like a single-user system) and recovery
management (automatically restoring a database after a failure). These powerful ser-
vices are not free as they can consume large amounts of computing resources and add
substantial cost for DBMS licensing.

Although the concurrency and recovery services provided by a DBMS are trans-
parent, you should understand some details of these services. Knowledge of these
services can help you allocate computing resources, select a DBMS that provides the
appropriate level of transaction support, and design efficient transactions. For concur-
rency control, you should understand the objective, interference problems, and the
two-phase locking protocol. For recovery management, you should understand the
kinds of failures, the redundant storage needed for recovery, and the amount of work
to restore a database after a failure.

To apply your knowledge of transaction management, this chapter demonstrated
principles of transaction design. The most important choice in transaction design is the
selection of a transaction boundary. The objective of choosing a transaction boundary
is to minimize duration subject to the need for constraint checking. Critical constraints
such as debit-credit in accounting systems may dictate that an application remains as
one transaction rather than be split into smaller transactions. A transaction boundary
can also be shortened by removing user interaction. Other important decisions involve
the isolation level, the timing of constraint enforcement, and save points for partial
rollback. SQL syntax for these elements was shown in the chapter. For even more
control for critical applications, the BASE principle used in NoSQL products allows
applications to balance availability, consistency, and performance at the cost of lower
software productivity.

26008_ch17_p681-724.indd 712 3/2/18 10:59 PM

Chapter 17  Transaction Management   713

As a transaction designer, you should remember that transactions are only one
kind of support for organizational work. Workflow management addresses issues
beyond transaction management such as dependencies among transactions, different
kinds of transactions, and annotation of work.

This chapter has described DBMS services to support transaction processing, the
operating side of databases. As described in Chapters 12 and 15, DBMSs also provide
extensive services for data warehouses that support for management decision making.
You should contrast the requirements to support transaction processing for opera-
tional decision making with the requirements to support data warehousing for tactical
and strategic decision making.

REVIEW CONCEPTS

•	 Transactions containing a user-specified collection of database reads and writes
•	 SQL statements to define transactions: START TRANSACTION, COMMIT,

ROLLBACK, and SAVEPOINT
•	 ACID properties of transactions: atomic, consistent, isolated, durable
•	 Transparent services to hide inner details of transaction management
•	 Concurrency control to support simultaneous usage of a database
•	 Recovery management to restore a database to a consistent state after a failure
•	 Concurrency control objective: maximizing transaction throughput while

preventing interference problems
•	 Interference on hot spots, common data manipulated by concurrent users
•	 Interference problems: lost update, uncommitted dependency, inconsistent

retrieval
•	 Concurrency control manager to grant, release, and analyze locks
•	 Compatibility among basic locks (shared and exclusive)
•	 Intent locks supporting more concurrency on coarse items than shared or

exclusive locks and efficient detection of conflicts among locks on items of
varying granularity

•	 Compatibility among intent locks (intent shared, intent exclusive, and shared
with intent exclusive)

•	 Growing and shrinking phases of two-phase locking (2PL)
•	 Resolution of deadlocks with either deadlock detection or timeout followed by

transaction restart
•	 Update locks to reduce the frequency of deadlocks
•	 Optimistic concurrency control approaches when interference is rare
•	 In-memory transaction processing using optimistic concurrency control for

mission critical applications
•	 Volatile versus nonvolatile storage
•	 Effect of local, system, and media failures
•	 Force writing to control timing of database writes
•	 Redundant storage for recovery: log, checkpoint, and backup
•	 Types of checkpoints: cache consistent, fuzzy, and incremental
•	 Tradeoff in frequency of checkpoints: transaction throughput versus restart time
•	 Amount of restart work in the immediate update and the deferred update

recovery approaches
•	 Selecting a transaction boundary to minimize duration while enforcing critical

integrity constraints

26008_ch17_p681-724.indd 713 3/2/18 10:59 PM

714   Part 7  Managing Database Environments

•	 Removing user interaction to reduce transaction duration except when resource
stability is important

•	 Identifying system-independent and system-dependent hot spots in transactions
•	 Isolation levels for balancing potential interference against the corresponding

overhead of concurrency control
•	 Potential for lost data when using the READ COMMITTED isolation level
•	 Constraint timing specification to defer enforcement of integrity constraints until

end of transaction
•	 Save points for partial rollback of a transaction
•	 BASE (Basically Available, Soft state, and Eventual consistency) principle used

by NoSQL database products forcing some responsibility for data consistency
on applications with the benefit of increased performance and availability

•	 Workflow management to support collaborative work

QUESTIONS

  1.	What does it mean to say that a transaction is a user-defined concept? Why is it
important that transactions are user-defined?

  2.	 Identify transactions with which you have interacted in the last week.
  3.	Explain the purpose of the SQL statements START TRANSACTION, COMMIT,

and ROLLBACK. How do these statements vary across DBMSs?
  4.	Briefly explain the meaning of the ACID properties. How do concurrency

control and recovery management support the ACID properties?
  5.	Briefly explain the meaning of transparency as it relates to computer processing.

Why is transparency important for concurrency control and recovery
management?

  6.	What costs are associated with concurrency control and recovery management?
In what role, database administrator or database programmer, would you assess
these costs?

  7.	What is the objective of concurrency control? How is the measure used in the
objective related to waiting time?

  8.	What is a hot spot? How are hot spots related to interference problems?
  9.	Discuss the consequences of each kind of interference problem. Which problem

seems to be the most serious?
  10.	What is a lock? Briefly explain the differences between shared (S) and exclusive

(X) locks.
  11.	What operations are performed by the lock manager?
  12.	What is a deadlock and how are deadlocks handled?
  13.	What is locking granularity? What are the trade-offs of holding locks at a finer

level versus a coarser level of granularity?
  14.	What is an intent lock? Why are intent locks used on items of coarse granularity?
  15.	Why is the third condition of 2PL typically simplified so that locks are released

at the end of a transaction?
  16.	What is the appeal of optimistic concurrency control approaches? Why might

optimistic concurrency control approaches not be used even if they provide
better expected performance?

  17.	Explain the difference between volatile and nonvolatile storage.
  18.	Explain the effects of local, system, and device failures on active and past

transactions.

26008_ch17_p681-724.indd 714 3/2/18 10:59 PM

Chapter 17  Transaction Management   715

  19.	Why is force writing the most fundamental tool of recovery management?
  20.	What kind of redundant data is stored in a log? Why is management of the log

critical to recovery?
  21.	What is the checkpoint interval? What is the trade-off in determining the

checkpoint interval?
  22.	What processing occurs when a cache-consistent checkpoint occurs?
  23.	What is a fuzzy checkpoint? What are the advantages of a fuzzy checkpoint as

compared to a cache-consistent checkpoint?
  24.	What is an incremental checkpoint? How can the amount of restart work be

controlled with incremental checkpoints?
  25.	What restart work is necessary for a media failure?
  26.	What restart work is necessary for local and system failures under the immediate

update approach?
  27.	What restart work is necessary for local and system failures under the deferred

update approach?
  28.	What is a transaction boundary? Why can an inappropriate choice for

transaction boundary lead to poor performance?
  29.	What criteria should be used in selecting a transaction boundary?
  30.	Why must constraints such as the debit-credit constraint be enforced as part of a

transaction rather than between transactions?
  31.	Explain the difference between system-independent and system-dependent hot

spots. Why is it useful to identify hot spots?
  32.	Explain the three choices for transaction boundary of a hierarchical form.
  33.	How can deadlock possibility be influenced by the choice of a transaction

boundary?
  34.	What side effect can occur by moving user interaction outside a transaction

boundary?
  35.	What is the purpose of the SQL isolation levels?
  36.	How do the isolation levels achieve more concurrent access?
  37.	What isolation level can be dangerous and why?
  38.	Provide an example of a constraint for which deferred enforcement may be

appropriate.
  39.	What SQL statements and clauses involve constraint timing specification?
  40.	What is the role of the DBA in specifying constraint timing?
  41.	What is the role of the database programmer in specifying constraint timing?
  42.	What is the purpose of a save point?
  43.	How can a save point be used in deadlock resolution?
  44.	What is a workflow and how is it related to database transactions?
  45.	What are the differences between human-oriented and computer-oriented

workflows?
  46.	Provide an example of a workflow with high task complexity and another

example with high task structure.
  47.	Discuss the enabling technologies for workflow management. What role does

transaction management play in workflow management?
  48.	What are limitations of transaction management to support workflows?
  49.	What is the relationship between incremental checkpoints and recovery

processes?
  50.	What level of involvement is necessary to utilize recovery and concurrency

control services provided by a DBMS?

26008_ch17_p681-724.indd 715 3/2/18 10:59 PM

716   Part 7  Managing Database Environments

  51.	Should a transaction design always eliminate user interaction? Please explain
your answer.

  52.	Briefly define the three types of intent locks.
  53.	Why does an intent shared (IS) lock not conflict with a shared with intent

exclusive (SIX) lock?
  54.	How does the 2PL protocol change for locking granularity with intent locks?
  55.	How do update locks reduce frequency of deadlock?
  56.	What are the components of the BASE principle?
  57.	Why do NoSQL database products support the BASE principle?
  58.	What is in-memory transaction processing?
  59.	What concurrency control approach is used by in-memory transaction

processing?
  60.	What costs occur to an organization using in-memory transaction processing?

PROBLEMS

The problems provide practice using transaction-defining SQL statements, testing
your knowledge of concurrency control and recovery management, and analyzing
design decisions about transaction boundaries and hot spots.
  1.	 Identify two transactions that you have encountered recently. Define pseudo

code for the transactions in the style of Figures 17.1, 17.2, and 17.3.
  2.	 Identify hot spots in your transactions from problem 1.
  3.	Using a timeline, depict a lost update problem using your transactions from

problem 1 if no concurrency control is used.
  4.	Using a timeline, depict an uncommitted dependency problem using your

transactions from problem 1 if no concurrency control is used.
  5.	Using a timeline, depict a nonrepeatable read problem using your transactions

from problem 1 if no concurrency control is used.
  6.	Explain whether deadlock would be a problem using your transactions

from problem 1 if locking is used. If a deadlock is possible, use a timeline to
demonstrate a deadlock with your transactions.

  7.	Use the following Accounting Database tables and the Accounting Register to
answer problems 7.1 to 7.7. Comments are listed after the tables and the form.

Account (AcctNo, Name, Address, Balance, LastCheckNo, StartDate)
Entry (EntryNo, AcctNo, Date, Amount, Desc)
Category (CatNo, Name, Description)
EntryLine (EntryNo, CatNo, Amount, Description)

Accounting Register for Wells Fargo Credit Line

Entry No. E101 Date: 3/11/2017

Description: Purchases at OfficeMax Amount: $442.00

Invoice No. I101

Category Description Amount

Office supplies Envelopes $25.00

Equipment Fax machine $167.00

Computer software MS Office upgrade $250.00

26008_ch17_p681-724.indd 716 3/2/18 10:59 PM

Chapter 17  Transaction Management   717

•	 The primary keys in the tables are underlined. The foreign keys are italicized.
•	 The Accounting Register records activities on an account, such as a line of credit

or accounts receivable. The Accounting Register is designed for use by the
accounting department of moderate-size businesses. The sample form shows
one recorded entry, but a register contains all recorded entries since the opening
of the account.

•	 The main form is used to insert a row into the Entry table and update the Balance
column of the Account table. Accounts have a unique name (Wells Fargo Line
of Credit) that appears in the title of the register. Accounts have other attributes
not shown on the form: a unique number (name is also unique), start date,
address, type (Receivable, Investment, Credit, Checking, etc.) and current
balance. The Amount field in the main form is not computed. It must be entered
by the user because the user is not required to allocate the amount to categories
in the subform.

•	 In the subform, the user optionally allocates the total amount of the entry
to categories. The Category field is a combo box. When the user clicks on the
category field, the category number and name are displayed. Entering a new
subform line inserts a row into the EntryLine table. If one or more subform rows
are entered, the sum of the amount on the subform rows must equal the amount
entered in the main form.

•	 The Description field in the subform describes a row in the EntryLine table rather
than the Category table.

7.1	 What are the possible transaction boundaries for the Accounting Register
form?

7.2	 Select a transaction boundary from your choices in problem 7.1. Justify your
choice using the criteria defined in Section 17.4.1.

7.3	 Identify system-independent hot spots that result from concurrent usage
(say, many clerks in the accounting department) of the Accounting Register.
For each hot spot, explain why it is a hot spot.

7.4	 Identify system-dependent hot spots that result from concurrent usage (say
many clerks in the accounting department) of the Accounting Register. You
may assume that the DBMS cannot lock finer than a database page.

7.5	 Describe a lost update problem involving one of your hot spots that could
occur with concurrent usage of the Accounting Register. Use a timeline to
depict your example.

7.6	 Describe a dirty read situation involving one of your hot spots that could
occur with concurrent usage of the Accounting Register. Use a timeline to
depict your example.

7.7	 Is deadlock likely to be a problem with concurrent usage of the
Accounting Register? Consider the case where locks are held until all
subform lines are complete. Why or why not? If deadlock is likely, provide
an example as justification. Would there still be a deadlock problem if
locks were held only until completion of each line on the subform? Why or
why not?

  8.	Use the following Patient Database tables and the Patient Billing Form to answer
problems 8.1 to 8.4. Comments are listed after the tables and the form.

Patient(PatSSN, PatName, PatCity, PatAge)
Doctor(DocNo, DocName, DocSpecialty)
Bill(BillNo, PatSSN, BillDate, AdmitDate, DischargeDate)
Charge(ChgNo, BillNo, ItemNo, ChgDate, ChgQty, DocNo)
Item(Itemno, ItemDesc, ItemUnit, ItemRate, ItemQOH)

26008_ch17_p681-724.indd 717 3/2/18 10:59 PM

718   Part 7  Managing Database Environments

•	 The main form is used to insert a record into the Bill table. Fields from the
Patient table are read-only in the main form.

•	 The subform can be used to insert a new row into the Charge table. Fields from
the Doctor and the Item tables are read-only.

•	 When a subform line is entered, the associated item row is updated. The form
field Qty affects the current value in the field ItemQOH (item quantity on hand).

8.1	 What are the possible transaction boundaries for the Patient Billing Form?
8.2	 Select a transaction boundary from your choices in problem 8.1. Justify your

choice using the criteria defined in Section 17.4.1.
8.3	 Identify system-independent hot spots that result from concurrent usage

(say many health providers) of the Patient Billing Form. For each hot spot,
explain why it is a hot spot.

8.4	 Identify system-dependent hot spots that result from concurrent usage of the
Patient Billing Form. You may assume that the DBMS cannot lock finer than
a database page.

  9.	Use the following Airline Reservation database tables and the Flight Reservation
Form to answer problems 9.1 to 9.4. Comments are listed after the tables and the
form.

Flight(FlightNo, DepCityCode, ArrCityCode, DepTime, ArrTime, FlgDays)
FlightDate(FlightNo, FlightDate, RemSeats)
Reservation(ResNo, CustNo, ResDate, Amount, CrCardNo)
ReserveFlight(ResNo, FlightNo, FlightDate)
Customer(CustNo, CustName, Custstreet, CustCity, CustState, CustZip)
City(CityCode, CityName, Altitude, AirportConditions)

•	 The primary keys in the tables are underlined. The foreign keys are italicized.
Note that the combination of ResNo, FlightNo, and FlightDate is the primary key
of the ReserveFlight table. The combination of FlightNo and FlightDate is a foreign
key in the ReserveFlight table referring to the FlightDate table.

•	 The Flight Reservation Form is somewhat simplified as it accommodates only a
single class of seating, no reserved seats, and no meals. However, commuter and
low-cost airlines often have these restrictions.

26008_ch17_p681-724.indd 718 3/2/18 10:59 PM

Chapter 17  Transaction Management   719

•	 The main form is used to insert a record into the Reservation table. The fields
from the Customer table are read-only.

•	 The subform is used to insert new rows in the ReserveFlight table and update the
field RemSeats in the FlightDate table. The fields from the Flight table are read-
only.

9.1	 Select a transaction boundary for the Flight Reservation Form. Justify your
choice using the criteria defined in Section 17.4.1.

9.2	 Identify system-independent hot spots that result from concurrent usage
(say many reservation agents) of the Flight Reservation Form. For each hot
spot, explain why it is a hot spot.

9.3	 Identify system-dependent hot spots that result from concurrent usage of the
Flight Reservation Form. You may assume that the DBMS cannot lock finer
than a database page.

9.4	 Is deadlock likely to be a problem with concurrent usage of the Flight
Reservation Form? If deadlock is likely, provide an example as justification.

  10.	The following timeline shows the state of transactions with respect to the most
recent backup, checkpoint, and failure. Use the timeline when solving the
problems in subparts of this problem (10.1 to 10.5).

10.1	 Describe the restart work if transaction T3 is aborted (with a ROLLBACK
statement) after the checkpoint but prior to the failure. Assume that the
recovery manager uses the deferred update approach.

10.2	 Describe the restart work if transaction T3 is aborted (with a ROLLBACK
statement) after the checkpoint but prior to the failure. Assume that the
recovery manager uses the immediate update approach.

10.3	 Describe the restart work if a system failure occurs. Assume that the
recovery manager uses the deferred update approach.

10.4	 Describe the restart work if a system failure occurs. Assume that the
recovery manager uses the immediate update approach.

10.5	 Describe the restart work if a device failure occurs.

Flight Reservation Form

Reservation No. R101 Today’s Date: 8/26/2017

Credit Card No. CC101 Amount: $442.00

Customer No. C101 Customer Name Jill Horn

Flight Schedule

Flight No. Date Dep City Dep Time Arr City Arr Time

F101 8/26/2017 DNV 10:30AM CHG 11:45AM

F201 8/31/2017 CHG 10:00AM DNV 1:20PM

Time

T1

T5

T6

T2

T3

Checkpoint FailureBackup

T4

T7
T8

T9

26008_ch17_p681-724.indd 719 3/2/18 10:59 PM

720   Part 7  Managing Database Environments

  11.	Use the Transaction Process Council website to review transaction processing
benchmarks. Why has the debit-credit benchmark been superseded by other
benchmarks? How many transactions per minute are reported for various
DBMSs? Inspect the code for one or more benchmark transactions. Can you
identify hot spots in the transactions?

  12.	Redesign the ATM transaction (Figure 17.1) to remove user interaction. Please
comment on any adverse side effects that may result from removing user
interaction.

  13.	Redesign the online shopping transaction (Figure 17.3) to remove user
interaction. Please comment on any adverse side effects that may result from
removing user interaction.

  14.	Why do some enterprise DBMSs use READ COMMITTED as the default
isolation level? Try to reason about the advantages and disadvantages about
using this level as the default isolation level. In your analysis, you should think
carefully about the significance of the scholar’s lost update problem.

  15.	Using the following transaction log, create a table to list the log operations for
the immediate update approach. You should use Table 17-10 as the format for
your answer.

  16.	Using the transaction log from problem 15, create a table to list the log
operations for the deferred update approach. You should use Table 17-11 as the
format for your answer.

LSN TransNo Action Time Table Row Column Old New

1 1 START 2:09:20

2 1 INSERT 2:09:21 Resv 1001 * <101, 400,…>

3 2 START 2:09:22

4 1 UPDATE 2:09:23 Flight 2521 SeatsRem 10 9

5 2 INSERT 2:09:24 Resv 1107 * <101, 400,…>

6 2 UPDATE 2:09:25 Flight 3533 SeatsRem 3 2

7 3 START 2:09:26

8 1 INSERT 2:09:27 Resv 1322 * <102, 225,…>

9 1 UPDATE 2:09:28 Flight 4544 SeatsRem 15 14

10 CKPT(1,2,3) 2:09:29

11 2 INSERT 2:09:30 Resv 1255 * <111, 500,…>

12 2 UPDATE 2:09:31 Flight 3288 SeatsRem 2 1

13 1 COMMIT 2:09:32

14 3 INSERT 2:09:33 Resv 1506 * <151, 159,…>

15 3 UPDATE 2:09:34 Flight 3099 SeatsRem 50 49

16 4 START 2:09:36

17 3 INSERT 2:09:37 Resv 1299 * <222, 384,…>

18 3 UPDATE 2:09:38 Flight 4522 SeatsRem 25 24

19 4 INSERT 2:09:39 Resv 1022 * <222, 384,…>

20 CKPT(2,3,4) 2:09:40

21 2 COMMIT 2:09:41

22 4 UPDATE 2:09:42 Flight 2785 SeatsRem 1 0

23 3 COMMIT 2:09:43

24 4 INSERT 2:09:44 Resv 1098 * <515,99,…>

25 4 UPDATE 2:09:45 Flight 3843 SeatsRem 15 14

26008_ch17_p681-724.indd 720 3/2/18 10:59 PM

Chapter 17  Transaction Management   721

  17.	Identify the concurrency control problem depicted in the following timeline.
Identify the least restrictive isolation level that eliminates the problem. Note that
SERIALIZABLE is the most restrictive isolation level. Redraw the timeline showing
the locks imposed by the least restrictive isolation level that eliminates the problem.

Transaction A Time Transaction B

T1 UPDATE QOH2 = QOH2 – 5 (20)

Read QOH2 (20) T2

Sum = Sum + QOH2 T3

Read QOH1 (15) T4

Sum = Sum + QOH1 T5

T6 UPDATE QOH1 = QOH1 – 5 (13)

T7 Commit

Transaction A Time Transaction B

T1 Read QOH1 (55)

T2 QOH1 = QOH1 – 10

T3 Write QOH1 (45)

Read QOH1 (45) T4

Read QOH2 (15) T5

T6 Read QOH2 (15)

T7 QOH2 = QOH2 – 5

T8 Write QOH2 (10)

T9 Rollback

Transaction A Time Transaction B

T1 Read QOH1 (10)

T2 If QOH1 > 10 then QOH1 = QOH1 + 30

Read QOH1 (10) T3

QOH1 = QOH1 – 3 T4

T5 Write QOH1 (40)

T6 Commit

Write QOH1 (7) T7

  18.	Identify the concurrency control problem depicted in the following timeline.
Identify the least restrictive isolation level that eliminates the problem. Note that
SERIALIZABLE is the most restrictive isolation level. Redraw the timeline showing
the locks imposed by the least restrictive isolation level that eliminates the problem.

  19.	Identify the concurrency control problem depicted in the following timeline.
Identify the least restrictive isolation level that eliminates the problem. Note
that SERIALIZABLE is the most restrictive isolation level. Redraw the timeline
showing the locks imposed by the least restrictive isolation level.

  20.	Identify the concurrency control problem depicted in the following timeline.
Identify the least restrictive isolation level that eliminates the problem. Note that
SERIALIZABLE is the most restrictive isolation level. Redraw the timeline showing
the locks imposed by the least restrictive isolation level that eliminates the problem.

26008_ch17_p681-724.indd 721 3/2/18 10:59 PM

722   Part 7  Managing Database Environments

  21.	Try to create a deadlock among more than two airline reservation transactions.
You should assume that locks are granted in the flight time order for a
reservation. Thus, a lock on a departing flight is granted before a lock on a return
flight for a given transaction. You can add complications such as reservations
with multiple legs per departure or return. With multiple legs, a lock on the first
leg should be granted before a lock on the second leg, however.

  22.	Use the extended 2PL protocol (locking granularity with intent locks) to list the
locks obtained by transaction Tr1 in the following scenario. Transaction Tr1
reads row R1 (located on block B150 in table T1), followed by writing row R2
(located on block B100 in table T2), followed by reading row R3 (located on block
B210 in table T1), and then writes row R4 (located on block B190 in table T2). The
tables are part of database DB1. You should also list the order of obtaining the
locks.

  23.	Using the scenario of problem 22, list the order of releasing the locks at end of
transaction following the extended 2PL protocol.

  24.	Use the extended 2PL protocol (locking granularity with intent locks) to list the
locks obtained by transaction T1 in the following scenario. Transaction T1 first
reads every row of block B95 of table T1, followed by writing every row of block
B135 of table T2, followed by reading every row of block B201 of table T2, and
finally writes rows R4 and R5 (located in block B201 of table T2). The tables are
part of database DB1. You should also list the order of obtaining the locks.

  25.	Using the scenario of problem 24, list the order of releasing the locks at end of
transaction following the extended 2PL protocol.

  26.	Identify the results (grant or wait) for the following lock requests given the
sample lock table below (Table 17-P1). Lock requests: IX lock on database DB1,
IS lock on database DB1, IX lock on table T1, IS lock on Table T1, SIX lock on
block B100 of table T1, S lock on row R1 of B100, X lock on row R2 of B100.

Transaction A Time Transaction B

Read QOH (10) T1

QOH = QOH + 30 T2

T3 Read QOH (10)

T4 QOH = QOH – 10

Write SR (40) T5

T6 Write SR (0)

Commit T7

T8 Commit

TABLE 17-P1
Sample Lock Table TransNo ObjId ObjectType Parent LockType Count

101001 DB1 Database - IX 30

101001 DB1 Database - IS 15

101001 T1 Table DB1 IX 10

101001 T2 Table DB1 IS 8

101001 B100 Block T1 IX 5

101001 B101 Block T2 IS 5

101001 R1 Row B100 S 3

101001 R2 Row B100 S 5

101001 R3 Row B101 X 1

101001 R4 Row B101 X 1

26008_ch17_p681-724.indd 722 3/2/18 10:59 PM

Chapter 17  Transaction Management   723

  27.	Investigate features of in-memory transaction processing in an enterprise
DBMS. What product version or edition supports in-memory transaction
processing? Summarize the vendor’s claims about benefits, reasons for improved
performance, and trade-offs for increased resource levels.

REFERENCES FOR FURTHER STUDY

This chapter, although providing a broad coverage of transaction management, has
only covered the basics. Transaction management is a detailed subject for which
entire books have been written. Specialized books on transaction management include
Bernstein and Newcomer (1997) and Gray and Reuter (1993). Harizopulous et al.
(2008) analyze shortcomings of traditional concurrency control with two phase lock-
ing. Tu et al. (2013) describe in-memory transaction processing using optimistic con-
currency control. Shasha and Bonnet (2003) provide more details about transaction
design and recovery tuning. Peinl, Reuter, and Sammer (1988) provide a stock-trading
case study on transaction design that elaborates on the ideas presented in Section 17.4.
For details about transaction processing performance, consult the website of the Trans-
action Processing Council (www.tpc.org).

26008_ch17_p681-724.indd 723 3/2/18 10:59 PM

26008_ch17_p681-724.indd 724 3/2/18 10:59 PM

OVERVIEW
Chapters 12 to 15 and 17 described database processing
for business intelligence and transactions. As explained
in these chapters, transaction and business intelli-
gence processing are vital to modern organizations.
In this chapter, you will learn about usage of computer

networks and distributed computing resources (proces-
sors, memory, communication networks, and data stor-
age) to improve reliability and performance for both
kinds of processing.

This chapter explains utilization of computer net-
works and distributed computing resources by DBMSs.
Before understanding the details, you should understand

Learning Objectives

This chapter describes ways that database management systems utilize
computer networks and distributed computing resources to support
client-server processing, parallel database processing, and distributed
databases. After this chapter, the student should have acquired the
following knowledge and skills:

•	 List reasons for client-server processing, parallel database
processing, and distributed data

•	 Describe basic tiered architectures for client-server database
processing

•	 Describe specialized client-server architectures for web services,
cloud computing, and extreme transaction processing

•	 Describe common architectures for parallel database processing and
big data processing

•	 Describe differences between technology for tightly integrated and
loosely integrated distributed databases

•	 Compare different kinds of distributed database transparency

•	 Understand the nature of query processing and transaction
processing for distributed databases

Client-Server
Processing, Parallel
Database Processing,
and Distributed
Databases

18
chapter

725  

26008_ch18_p725-766.indd 725 3/2/18 11:02 PM

the motivation for utilizing these resources. This chap-
ter discusses business reasons for client-server pro-
cessing, parallel database processing, and distributed
data along with deployment of these approaches in
cloud computing environments. After grasping the
motivation, you are ready to learn basic and special-
ized architectures for client-server database process-
ing and conceptual architectures for parallel database
processing. Description of parallel database processing
in Oracle and IBM DB2 along with big data approaches

in open source projects complement the conceptual
presentation. Distributing data in addition to distribut-
ing processing allows more flexibility but also involves
more complexity. To depict the trade-off between flex-
ibility and complexity, this chapter explains distributed
database architectures, levels of transparency for dis-
tributed data, and distributed database processing for
queries and transactions. Examples of transparency for
Oracle distributed databases complement the concep-
tual material.

To facilitate learning about conceptual issues, this section separates distributed pro-
cessing from distributed data. Both areas have distinct architectures, design problems,
and processing technologies. After learning them separately, you can understand ways
to combine them. This section begins your study by discussing motivations behind
two different kinds of distributed processing (client-server and parallel database pro-
cessing) and distributed databases as well as deploying distributed processing and
databases in cloud environments.

18.1.1  Motivation for Client-Server Processing
The client-server approach supports usage of remote computing resources for per-
forming complex business processes consisting of a variety of subtasks. For example,
electronic shopping is a complex process consisting of product selection, ordering,
inventory management, payment processing, shipping, and product returns. A client
is a program that makes requests to a server. A server performs requests and commu-
nicates results to clients. Computing architectures arrange clients and servers across
networked computers to divide complex work into more manageable units. The sim-
plest arrangement divides work between clients processing on personal computers
and a server processing on a separate computer as shown in Figure 18.1. Section 18.2
presents more powerful architectures for client-server processing along with typical
divisions of work among computers.

Distributed processing with the client-server approach offers a number of advan-
tages related to flexibility, scalability, and interoperability. Flexibility refers to the ease
of maintaining and adapting a system. Maintenance costs often dominate the cost of
initially developing an information system because of long life and system revisions.
The client-server approach promotes flexibility because volatile sections of code can be
isolated from more stable sections. For example, a developer can separate user inter-
face code from code for business rules and data access. If deploying a new interface,
other parts of the code remain unchanged. In addition, the client-server approach is
ideally suited for object-oriented programming to support reusability.

18.1 � OVERVIEW OF DISTRIBUTED PROCESSING AND DISTRIBUTED
DATA

726   Part 7  Managing Database Environments

FIGURE 18.1
Simple Client-Server
Architecture for Distributed
Processing

Database

Client

Client

Client

Server

26008_ch18_p725-766.indd 726 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   727

The client-server approach supports scalable growth of hardware and software
capacity. Scalability refers to the ability to add and remove capacity in small units.
Vertical scalability refers to the ability to add capacity on the server side. For example,
work from an overloaded server may be moved to a new server to alleviate a bottle-
neck or handle new demand from additional workstations. The new server can have
just the level of additional computing capacity necessary. Horizontal scalability refers
to the ability to add capacity on the client side through additional workstations and
movement of work between clients and servers. For example, work can be moved
from clients to a server to allow the use of inexpensive client hardware (thin clients).
Work also can move in the opposite direction (from server to client) to alleviate server
processing loads and take advantage of client computing capabilities.

Scalable growth also can lead to improved performance. For example, adding
middleware can reduce contention problems caused by many users accessing a data-
base. The next section describes middleware that can efficiently manage many simul-
taneous users accessing a database. In addition, specialized servers can be employed to
handle work that would otherwise slow all users. For example, multimedia servers can
handle requests for images, thus freeing other servers from this time-consuming task.

Client-server systems based on open standards support interoperability. Interop-
erability refers to the ability of two or more systems to exchange and use software and
data. Open standards promote a marketplace of suppliers, leading to lower costs and
higher quality. Software components in the marketplace are interoperable if they con-
form to the standards. The most heavily standardized areas are the Internet and Web,
where client-server databases are becoming increasingly important.

Despite the advantages of client-server processing, some significant pitfalls may
occur. Developing client-server software may be more complex because of architec-
tural choices. A client-server architecture specifies an arrangement of components and
a division of processing among the components. Section 18.2 presents several possible
architectures for client-server database processing. The choice of an inappropriate
architecture can lead to poor performance and maintenance problems. In addition to
architectural issues, the designer may face a difficult decision about building a client-
server database on proprietary methods versus open standards. Proprietary methods
allow easier resolution of problems because one vendor is responsible for all prob-
lems. Proprietary methods may also have better performance because they are not as
general as open standards. In the long term, proprietary methods can be expensive
and inflexible, however. If a vendor does not grow with the industry, a client-server
database may become outdated and expensive to upgrade.

18.1.2  Motivation for Parallel Database Processing
In contrast to the usage of client-server processing to distribute complex work among
networked computers, parallel database processing divides large tasks into many
smaller tasks and distributes the smaller tasks among interconnected computers. For
example, parallel database processing may be used to perform a join operation on
large tables. The usage of RAID architectures described in Chapter 8 is a simple form
of parallel database processing. Section 18.3 presents more powerful architectures for
parallel database processing.

Parallel database processing can improve performance through scaleup and
speedup. Scaleup involves additional work accomplished by increasing computing
capacity while holding completion time constant. Additional work means the increased
size of a job such as additional transactions completed. For ideal linear scaleup, increas-
ing computing capacity n times allows completion of n times the amount of work in
the same time. Due to coordination overhead, linear scaleup is not possible in most
situations. Scaleup is the ratio of the amount of work completed with a larger configu-
ration to the amount of work completed with an original configuration. For example,
scaleup increases to 1.75 for an original configuration processing 100 transactions per
minute and to a revised configuration with doubled computing capacity processing
175 transactions per minute.

26008_ch18_p725-766.indd 727 3/2/18 11:02 PM

728   Part 7  Managing Database Environments

Speedup involves decrease in time to complete a task rather than amount of work
performed. With added computing capacity, speedup measures time reduction while
holding the amount of work constant. For example, organizations typically need to
complete daily refresh processing in a timely manner to ensure availability for the
next business day. Organizations need to determine the amount of additional comput-
ing capacity that ensures completion of the work within an allowable time. Speedup
is the ratio of completion time with an original configuration to the completion time
with additional capacity. For example, speedup increases to 1.5 if doubling capacity
decreases refresh processing time from 6 hours to 4 hours.

Availability is the accessibility of a system often measured as the system’s uptime.
For highly available or fault-resilient computing, a system experiences little down-
time and recovers quickly from failures. Fault-tolerant computing takes resiliency to
the limit in that processing must be continuous without cessation. The cost of down-
time determines the degree of availability desired. Downtime cost can include loss of
sales, lost labor, and idle equipment. For a large organization, the cost of downtime
can be hundreds of thousands of dollars per hour. Parallel database processing can
increase availability because a DBMS can dynamically adjust to the level of available
resources. Failure of an individual computer will not stop processing on other avail-
able computers.

The major drawback to parallel database processing is cost. Parallel database pro-
cessing involves high costs for DBMS software and specialized coordination software.
There are possible interoperability problems because coordination is required among
DBMS software, operating system, and storage systems. DBMS vendors provide pow-
erful tools to deploy and manage the high complexity of parallel database process-
ing. Performance improvements if not predictable would be a significant drawback.
Predictable performance improvements enable organizations to plan for additional
capacity and dynamically adjust capacity depending on anticipated processing vol-
umes and response time constraints.

18.1.3  Motivation for Distributed Data
Distributed data offer a number of advantages related to data control, communication
costs, and performance. Distributing a database allows the location of data to match
an organization’s structure. For example, parts of a customer table can be located
close to customer processing centers. Decisions about sharing and maintaining data
can be set locally to provide control closer to the data usage. Often, local employ-
ees and management understand issues related to data better than management at
remote locations.

Distributed data can lead to lower communication costs and improved perfor-
mance. Data should be located so that 80 percent of the requests are local. Local
requests incur little or no communication costs and delays compared to remote
requests. Increased data availability also can lead to improved performance. Data
are more available because there is no single computer responsible for controlling
access. In addition, data can be replicated so that they are available at more than
one site.

Despite the advantages of distributed data, some significant pitfalls may occur.
Distributed database design issues are very difficult. A poor design can lead to higher
communication costs and poor performance. Distributed database design is diffi-
cult because of the lack of tools, the number of choices, and the relationships among
choices. Distributed transaction processing can add considerable overhead, especially
for replicated data. Distributed data involve more security concerns because many
sites can manage data. Each site must be properly protected from unauthorized access.

18.1.4  Motivation for Cloud Based Computing
The architectures presented in this section assume a traditional product licensing and
hosting approach. Cloud computing provides a new approach without initial product

26008_ch18_p725-766.indd 728 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   729

licensing costs and hosting requirements. Using web-based interfaces, organizations
can design and deploy databases with dynamic resource allocation provided by the
cloud. Cloud computing can lower costs through economies of scale and specializa-
tion achievable by deployments for large numbers of organizations. Some organiza-
tions may be reluctant to relinquish control over vital operations to a cloud vendor.
A cloud may restrict flexibility forcing an organization to use a standard environment.
Performance may suffer if a cloud cannot be tuned to match an organization’s process-
ing needs.

Internally, the cloud can use any distributed processing approach although the
internal details of the cloud are invisible to the cloud user. Figure 18.2 depicts a cloud
service using an internal client-server approach with replicated and distributed data.
Cloud computing environments can provide varying levels of support for database
development and operations including hosting the DBMS and computing infrastruc-
ture, providing platforms for development of database applications, and supporting
databases for operations and business intelligence.

18.1.5  Summary of Advantages and Disadvantages
Before moving forward, you should review the relative merits of client-server pro-
cessing, parallel database processing, distributed data, and cloud-based computing
as listed in Table 18-1. To gain maximum leverage, the technologies can be combined.

FIGURE 18.2
Cloud-Based Database
Architecture

TABLE 18-1
Summary of Distributed
Processing and Data

Technology Advantages Disadvantages

Client-server
processing

Flexibility, interoperability, scalability High complexity, high development
cost, possible interoperability problems

Parallel database
processing

Speedup, scaleup, availability, scalability
for predictive performance improvements

Possible interoperability problems, high
cost

Distributed
databases

Local control of data, improved
performance, reduced communication
costs, increased reliability

High complexity, additional security
concerns

Cloud computing No initial licensing costs, no hosting,
dynamic scalability, high availability,
economies of scale, specialization

Possible performance reductions and loss
of control and flexibility through reliance
on external organizations

26008_ch18_p725-766.indd 729 3/2/18 11:02 PM

730   Part 7  Managing Database Environments

Distributed processing with the client-server approach is the more mature technol-
ogy although parallel database processing has gained rapid acceptance and maturity.
As distributed database technology matures and gains acceptance, organizations will
deploy all three technologies. The impact of cloud computing on the DBMS market
has become substantial with major enterprise DBMS vendors offering mature prod-
ucts. Cloud DBMS services provided by Amazon and Microsoft are market leaders but
other vendors including Oracle, Google, and IBM are aggressively marketing cloud
DBMS products.

18.2  CLIENT-SERVER DATABASE ARCHITECTURES
The design of a client-server database affects the advantages and the disadvantages
cited in the previous section. A good design tends to magnify advantages and reduce
disadvantages relative to an organization’s requirements. A poor design may exacer-
bate disadvantages and diminish advantages. Proper design of a client-server database
may make the difference between success and failure of an information system project.
To help you achieve good designs, this section discusses design issues of client-server
databases and describes how these issues are addressed in various architectures.

18.2.1  Design Issues
Two design issues, division of processing and process management, affect the design
of a client-server database. Division of processing refers to the allocation of tasks to
clients and servers. Process management involves interoperability among clients and
servers and efficient processing of messages between clients and servers. Software for
process management is known as “middleware” because of its mediating role. This
section describes these issues so that you will understand how various architectures
address them in the next section.

Division of Processing  In a typical client-server database, there are a number of
tasks that can be performed locally on a client or remotely on a server. The following
list briefly describes these tasks.

•	 Presentation: code to maintain the graphical user interface. The presentation code
displays objects, monitors events, and responds to events. Events include user-
initiated actions with the mouse and the keyboard as well as external events
initiated by timers and other users.

•	 Validation: code to ensure the consistency of the database and user inputs.
Validation logic often is expressed as integrity rules that are stored in a
database.

•	 Business logic: code to perform business functions such as payroll calculations,
eligibility requirements, and interest calculations. Business logic may change as
the regulatory and the competitive environments change.

•	 Workflow: code to ensure completion of business processes. Workflow code may
route forms, send messages about a deadline, and notify users when a business
process is completed.

•	 Data access: code to extract data to answer queries and modify a database. Data
access code consists of SQL statements and translation code that is usually part of
the DBMS. If multiple databases are involved, some translation code may reside
in software separate from a DBMS.

Parts of these tasks can be divided between clients and servers. For example, some
validation can be performed on a PC client and some can be performed on a database
server. Thus, there is a lot of flexibility about the division of processing tasks. Section
18.2.2 describes several popular ways to divide processing tasks.

Client-Server Architecture
an arrangement of compo-
nents (clients and servers)
among computers con-
nected by a network. A
client-server architecture
supports efficient processing
of messages (requests for
service) between clients and
servers.

26008_ch18_p725-766.indd 730 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   731

Middleware  Interoperability is an important function of middleware. Clients and
servers can exist on platforms with different hardware, operating systems, DBMSs,
and programming languages. Figure 18.3 depicts middleware allowing clients and
servers to communicate without regard to the underlying platforms of the clients and
the servers. The middleware enables a client and a server to communicate without
knowledge of each other’s platform.

Efficient message control is another important function of middleware. In a typical
client-server environment, there are many clients communicating with a few servers.
A server can become overloaded just managing the messages that it receives rather
than completing the requests. Middleware allows servers to concentrate on com-
pleting requests rather than managing requests. Middleware can perform queuing,
scheduling, and routing of messages allowing clients and servers to perform work at
different speeds and times.

Based on the functions of interoperability and message control, several kinds of
middleware are commercially available, as described in the following list:

•	 Transaction-processing monitors are the oldest kind of middleware. Traditionally,
transaction-processing monitors relieve the operating system of managing
database processes. A transaction-processing monitor can switch control
among processes much faster than an operating system. In this role, a
transaction-processing monitor receives transactions, schedules them, and
manages them to completion. In the last decade, transaction-processing
monitors have taken additional tasks such as updating multiple databases in a
single transaction.

•	 Message-oriented middleware maintains a queue of messages. A client process
can place a message on a queue and a server process can remove a message
from a queue. Message-oriented middleware differs from transaction processing
monitors primarily in the intelligence of the messages. Transaction-processing
monitors provide built-in intelligence but use simple messages. In contrast,
message-oriented middleware provides much less built-in intelligence but
supports more complex messages.

•	 Object-request brokers provide a high level of interoperability and message
intelligence. To use an object-request broker, messages must be encoded in
a standard interface description language. An object-request broker resolves
platform differences between a client and a server. In addition, a client can
communicate with a server without knowing the location of the server.

•	 Data access middleware provide a uniform interface to relational and
nonrelational data using SQL. Requests to access data from a DBMS are sent
to a data access driver rather than directly to the DBMS. The data access driver
converts the SQL statement into the SQL supported by the DBMS and then
routes the request to the DBMS. The data access driver adds another layer
of overhead between an application and a DBMS. However, the data access
driver supports independence between an application and the proprietary SQL
supported by a DBMS vendor. The two leading data access middleware are
the Open Database Connectivity (ODBC) supported by Microsoft and the Java
Database Connectivity (JDBC) supported by Oracle.

Middleware
a software component in a
client-server architecture
that performs process man-
agement. Middleware allows
servers to efficiently process
messages from a large num-
ber of clients. In addition,
middleware can allow clients
and servers to communi-
cate across heterogeneous
platforms. To handle large
processing loads, middle-
ware often is located on a
dedicated computer.

FIGURE 18.3
Client-Server Computing with
Middleware

Middleware

26008_ch18_p725-766.indd 731 3/2/18 11:02 PM

732   Part 7  Managing Database Environments

18.2.2  Basic Architectures
The basic client-server database architectures provide clear choices for the design issues.
For each architecture, this section describes typical division of processing, message
management approaches, and trade-offs among architectures. The basic architectures
are the building blocks of specialized architectures described in the following section.

Two-Tier Architecture  The two-tier architecture features a PC client and a data-
base server as shown in Figure 18.4. The PC client contains the presentation code and
SQL statements for data access. The database server processes the SQL statements and
sends query results back to the PC client. In addition, the database server performs
process management functions. The validation and business logic code can be split
between the PC client and the database server. The PC client can invoke stored proce-
dures on the database server for business logic and validation. Typically, much of the
business logic code resides on the client. PC clients in a two-tier architecture are some-
times called “fat clients” because of the large amount of business logic in the client.

The two-tier architecture is a good approach for systems with stable requirements
and a moderate number of clients. On the positive side, the two-tier architecture is the
simplest to implement due to the number of good commercial development environ-
ments. On the negative side, software maintenance can be difficult because PC clients
contain a mix of presentation, validation, and business logic code. To make a signifi-
cant change in business logic, code must be modified on many PC clients. In addition,
utilizing new technology may be difficult because two-tier architectures often rely on
proprietary software rather than open standards. To lessen reliance on a particular
database server, the PC client can connect to intermediate database drivers such as the
Open Database Connectivity (ODBC) drivers instead of directly to a database server.
The intermediate database drivers then communicate with the database server.

Performance can be poor when a large number of clients submit requests because
the database server may be overwhelmed with managing messages. Several sources
report that two-tier architectures are limited to about 100 simultaneous clients. With
a larger number of simultaneous clients, a three-tier architecture may be necessary. In
addition, connecting to intermediate drivers rather than directly to a database server
can slow performance.

Three-Tier Architecture  To improve performance, the three-tier architecture adds
another server layer as depicted in Figure 18.5. One way to improve performance
is to add a middleware server (Figure 18.5(a)) to handle process management. The
middleware usually consists of a transaction-processing monitor or message-oriented
middleware. A transaction-processing monitor may support more simultaneous con-
nections than message-oriented middleware. However, message-oriented middle-
ware provides more flexibility in the kinds of messages supported. A second way to
improve performance is to add an application server for specific kinds of processing
such as report writing. In either approach, the additional server software can reside
on a separate computer, as depicted in Figure 18.5. Alternatively, the additional server
software can be distributed between the database server and PC clients.

Two-Tier Architecture
a client-server architecture
in which a PC client and a
database server interact
directly to request and
transfer data. The PC client
contains the user interface
code, the server contains
the data access logic, and
the PC client and the server
share the validation and
business logic.

Three-Tier Architecture
A client-server architecture
with three layers: a PC client,
a backend database server,
and either a middleware or
an application server.

Database

SQL statements

Query results

Database server

FIGURE 18.4
Two-Tier Architecture

26008_ch18_p725-766.indd 732 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   733

Although the three-tier architecture addresses performance limitations of the two-
tier architecture, it does not address division-of-processing concerns. The PC clients
and the database server still contain the same division of code although the tasks of
the database server are reduced. Multiple-tier architectures provide more flexibility on
division of processing.

Multiple-Tier Architecture  To improve performance and provide flexible divi-
sion of processing, multiple-tier architectures support additional layers of servers,
as depicted in Figure 18.6. The application servers can be invoked from PC clients,
middleware, and database servers. The additional server layers provide a finer divi-
sion of processing than a two- or a three-tier architecture. In addition, the additional
server layers can also improve performance because both middleware and application
servers can be deployed.

Multiple-tier architectures for electronic commerce involve a Web server to
process requests from Web browsers. The browser and the server work together to
send and receive Web pages written in the Hypertext Markup Language (HTML).
A browser displays pages by interpreting HTML code in the file sent by a server.

Multiple-Tier Architecture
a client-server architecture
with more than three layers:
a PC client, a backend data-
base server, an intervening
middleware server, and
application servers. The
application servers perform
business logic and manage
specialized kinds of data
such as images.

FIGURE 18.5
Three-Tier Architecture

Database

SQL statements

Query Results

Middleware server Database server

(a) Middleware server

(b) Application server
Database

SQL statements

Query results

Database server Application server

Database

Application server

Application server

Middleware server Database server

FIGURE 18.6
Multiple-Tier Architecture

26008_ch18_p725-766.indd 733 3/2/18 11:02 PM

734   Part 7  Managing Database Environments

The Web server can interact with a middleware and database server as depicted in
Figure 18.7. Requests for database access are sent to a middleware server and then
routed to a database server. Application servers can be added to provide additional
levels of client-server processing.

18.2.3  Specialized Architectures
The specialized client-server database architectures have been developed to meet spe-
cific market needs. The specialized architectures extend the basic architectures with
new server layers, message interfaces, transparency, and processing features.

Web Services Architecture  Web services extend multiple-tier architectures for
electronic business commerce using Internet standards to achieve high interoperabil-
ity. Electronic business commerce involves services provided by automated agents
among organizations. Web services allow organizations to reduce the cost of elec-
tronic business by deploying services faster, communicating new services in standard
formats, and finding existing services from other organizations. Web services operate
in the Internet, a network of networks built with standard languages and protocols for
high interoperability. Web services use general Internet standards and new standards
for electronic business commerce.

The Web Services Architecture supports interaction between a service provider,
service requestor, and service registry as depicted in Figure 18.8. The service provider
owns the service and provides the computing platform offering the service. The ser-
vice requestor application searches for a service and uses the service after it is discov-
ered. The service registry is the repository where the service provider publishes its
service description and the service requestor searches for available services. After a
service requestor finds a service, the service requestor uses the service description to
bind with the service provider and invoke the service implementation maintained by
the service provider.

To support interoperability, the Web Services Architecture uses a collection of
interrelated Internet standards. Table 18-2 summarizes the core web service standards.
XML (eXtensible Markup Language) is the underlying foundation for most of the stan-
dards. XML is a meta language that supports the specification of other languages.
In the Web Services Architecture, the WSFL, UDDI, WSDL, and SOAP standards are
XML-compliant languages. For a service requestor and provider, the WSDL is the stan-
dard directly used to request and bind a Web service. A WSDL document provides an
interface to a service enabling the service provider to hide the details of providing the
service. The core standards are augmented by a wide array of additional standards for
security, reliable messaging, transactions, meta data, and messaging.

To fulfill a Web service, a service provider may utilize client-server processing,
parallel database processing, and distributed databases. The details of the process-
ing are hidden from the service requestor. The Web Services Architecture provides

Web Services Architecture
an architecture that sup-
ports electronic commerce
among organizations. A set
of related Internet standards
supports high interoperabil-
ity among service request-
ors, service providers, and
service registries. The most
important standard is the
Web Service Description
Language used by service
requestors, service provid-
ers, and service registries.

Web server
Middleware

server
with listener

SQL

Results

SQL statements
and formatting requirements

Database

Database
server

Database
request

HTML

Page
request HTML

FIGURE 18.7
Web Server interacting with
Middleware Server and
Database Server

26008_ch18_p725-766.indd 734 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   735

another layer of middleware to publish, find, and execute services among electronic
businesses.

Cloud Computing Architectures  Cloud computing extends other client-server
architectures with an emphasis on transparency. According to the U.S. National
Institute of Standards and Technology office, “Cloud computing is a model for
enabling convenient, on-demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service
provider interaction.” This definition supports a variety of service and deployment
models that provide database services in a cloud.

Cloud service models provide varying levels of infrastructure, platform, and
software support. As depicted in Figure 18.9, cloud service models vary by the services
provided by the cloud vendor and organizations using the cloud. In the Infrastructure
as a Service (IaaS) model, the cloud vendor provides basic hardware and software
infrastructure possibly including servers, operating system, storage capacity, net-
work capacity, website hosting, and database software. Organizations use their own
development environments to build customized applications that operate in the infra-
structure cloud. In the Platform as a Service (PaaS) model, the cloud vendor provides
standard development environments deployed on the infrastructure cloud. Organiza-
tions use the standard development environments to build customized applications
that operate in the infrastructure cloud. In the Software as a Service (SaaS) model, the
cloud vendor provides standardized services that operate in the cloud. Organizations
do not need to host or monitor software operations. In all three service models, the

Cloud Service Model
provides varying levels of
infrastructure, platform, and
software support. The cloud
service models vary by the
services provided by the
cloud vendor and organiza-
tion using the cloud: Infra-
structure as a Service (IaaS)
with the vendor providing
infrastructure support, Plat-
form as a Service (PaaS) with
the vendor providing infra-
structure and development
platforms, and Software as
a Service (SaaS) with the
vendor providing complete
service solutions.

Registry
database

Service
requestor

Service
provider

Service
registry

Bind

Find Publish

Service
description

(WSDL)

Service
implementation

Service
description

WSDL)(

Service
description

WSDL)(

FIGURE 18.8
Web Services Architecture

TABLE 18-2
Summary of Core Standards
for Web Services

Standard Usage

Web Services Flow Language (WSFL) Specification of workflow rules for services

Universal Description, Discovery Integration (UDDI) Specification of a directory of Web services includ-
ing terminology and usage restrictions

Web Services Description Language (WSDL) Specification of Web services

Simple Object Access Protocol (SOAP) Sending and receiving XML messages

HTTP, FTP, TCP-IP Network and connections

26008_ch18_p725-766.indd 735 3/2/18 11:02 PM

736   Part 7  Managing Database Environments

cloud vendor provides logical control so that organizations can configure the cloud
without the responsibility to host and physically manage the cloud.

A cloud deployment model indicates variations of cloud availability and control
as demonstrated in Figure 18.10. A public cloud involves an external organization
providing resource sharing to an open number of organizations. In contrast, a private
cloud involves resource sharing controlled by a single organization often through a
private network. Private clouds may provide improved performance at a higher cost
than public clouds because private clouds may lack the economies of scale of public
clouds. A community cloud involves resource sharing among cooperating organiza-
tions. A community cloud increases economies of scale of a private cloud while provid-
ing opportunities for improved performance as compared to a public cloud. A hybrid
cloud combines a private cloud with aspects of a public or community cloud. Many
organizations utilize hybrid clouds to balance economies of scale with performance.

Infrastructure cloud services include specialized database products and relational
DBMSs under specialized licensing terms. Amazon Web Services (AWS) offers sev-
eral DBMSs to support a variety of requirements. AWS provides two NoSQL DBMSs
(DynamoDB and SimpleDBO), an open source relational DBMS (Amazon Aurora),
a data warehouse DBMS (Amazon Redshift), and enterprise DBMSs (Amazon RDS
hosting prominent enterprise DBMSs). To reduce product management complexity
and decrease ownership costs, AWS automates common administrative tasks such as
backup and software upgrades and provides flexible resource scalability.

Enterprise DBMS vendors also provide cloud DBMS services. For example, Micro-
soft Azure SQL Database is a cloud-based relational database platform built on SQL

Cloud Deployment Model
indicates variations of cloud
availability and control.
Cloud deployment can be
public (open to any organiza-
tion), community (open to
cooperating organizations),
private (open to a single
organization), or hybrid
(combination of a public or
community cloud and private
cloud). Typically, broader
cloud availability increases
economies of scale pos-
sibly at the cost of reduced
performance and more
restrictions on platforms and
infrastructure.

FIGURE 18.9
Cloud Service Models

Infrastructure
(IaaS)

Platform
(PaaS)

Application
(SaaS)

Cloud Vendor
Infrastructure

User
Organization
Development

FIGURE 18.10
Cloud Deployment Models

26008_ch18_p725-766.indd 736 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   737

Server technologies. Azure SQL Database provides a subset of SQL Server features
with limitations such as lack of distributed transactions, limited transaction isolation
levels, and connection restrictions. For SQL Server users, SQL Azure Database pro-
vides an alternative to the Amazon RDS for organizations that prefer a Microsoft ori-
ented cloud (Windows Azure).

Middleware for Extreme Transaction Processing  Extreme transaction process-
ing (XTP) is a client-server model to support applications with highly demanding
requirements for performance, scalability, availability, security, manageability and
dependability. The financial trading industry exemplifies XTP requirements with
processing volumes of tens of thousands of transactions per second in which millisec-
ond delays can be costly. Other industries embracing XTP include utilities for energy
trading, digital media firms for order processing, and telecommunications firms for
call connections and switching.

To meet the demands of extreme transaction processing, XTP middleware has
been developed. XTP middleware reduces the delay of disk-based updating using a
memory cache distributed among a cluster of servers. XTP middleware extends the
concept of in-memory transaction processing (see Chapter 17) with a grid computing
architecture to improve scalability and reliability. XTP middleware and in-memory
transaction processing are competing technologies with more recent product develop-
ment on in-memory transaction processing.

The key feature of XTP middleware is the write-behind cache that batches
updates to a database server within a specified time interval. The XTP middleware
performs updates in the cache and tracks the list of dirty records, periodically per-
forming database write operations on the set of dirty records. As an additional perfor-
mance improvement, the XTP middleware performs conflation on the dirty records.
Conflation means if the same record is updated multiple times within the buffering
period then the cache only keeps the last update. Conflation can significantly improve
performance in applications with rapidly changing values such as stock prices in
financial trading applications.

XTP middleware incurs some overhead to provide reliable transaction processing.
The cache at each server is replicated so that committed transactions survive failures. In
addition to replication overhead, the write-behind cache has a time delay between data-
base changes and the cache being updated (or invalidated) to reflect them. If all data access
occurs through the cache, the cache will always have the correct latest value. Thus, a com-
mon constraint on XTP middleware is that all transaction activity must use the cache.

XTP middleware, using a write-behind cache, provides the promise of linear scal-
ability. As transaction volumes increase, servers with cache are added to maintain
near constant processing times. XTP middleware with promises of linear scalability
are offered by both established DBMS vendors and emerging firms. Some of the major
XTP middleware products are Oracle Coherence, IBM WebSphere eXtreme Scale, and
Atomikos ExtremeTransactions.

Extreme Transaction
Processing (XTP)
a client-server model to sup-
port applications character-
ized by notably demanding
requirements for perfor-
mance, scalability, availabil-
ity, security, manageability,
and dependability.

Write-Behind Cache
a key feature of XTP
middleware supporting
batch updates to a database
server within a specified time
interval. The XTP middle-
ware performs updates in
the cache and tracks the list
of dirty records, periodically
performing database write
operations on the set of dirty
records.

18.3  PARALLEL DATABASE PROCESSING
In the last two decades, parallel database technology has gained commercial accep-
tance for large organizations. Most enterprise DBMS vendors and some open source
DBMSs support parallel database technology to meet market demand. Organizations
utilize these products to realize benefits of parallel database technology (scaleup,
speedup, and availability) while managing possible interoperability problems. This
section describes parallel database architectures to provide a framework to under-
stand commercial offerings by enterprise DBMS vendors. The last part of this section
presents parallel processing architectures for big data applications, developed in open
source projects. Enterprise DBMSs vendors are now integrating parallel processing
architectures for big data applications.

26008_ch18_p725-766.indd 737 3/2/18 11:02 PM

738   Part 7  Managing Database Environments

18.3.1  Architectures and Design Issues
A parallel DBMS uses a collection of resources (processors, disks, and memory)
to perform work in parallel. Given a fixed resource budget, work is divided among
resources to achieve desired levels of performance (scaleup and speedup) and avail-
ability. A parallel DBMS uses a high-speed network, operating system, and storage
system to coordinate division of work among resources. Thus, purchasing a parallel
DBMS involves decisions about all of these components, not just a DBMS.

The degree of resource sharing determines architectures for parallel database
processing. The standard architectures are known as shared everything (SE), shared
disks (SD), and shared nothing (SN) as depicted in Figure 18.11. In the SE approach,
memory and disks are shared among a collection of processors. The SE approach is
usually regarded as a single multiprocessing computer rather than a parallel database
architecture. In the SD architecture, each processor has its private memory, but disks
are shared among all processors. In the SN architecture, each processor has its own
memory and disks. Data must be partitioned among the processors in the SN architec-
ture. Partitioning is not necessary in the SD and SE architectures because each proces-
sor has access to all data.

For additional flexibility, the basic architectures are extended with clustering.
A cluster is a tight coupling of two or more computers so that they behave as a single
computer. Figure 18.12 extends Figure 18.11 with clustering to depict the clustered
disk (CD) and clustered nothing (CN) architectures. In the CD architecture, the pro-
cessors in each cluster share all disks, but nothing is shared across clusters. In the CN
architecture, the processors in each cluster share no resources, but each cluster can
be manipulated to work in parallel to perform a task. Figure 18.12 shows only two
clusters, but the clustering approach is not limited to two clusters. For additional flex-
ibility, the number of clusters and cluster membership can be dynamically configured.
Each processor node in a cluster can be a multiprocessing computer or an individual
processor.

Parallel DBMS
a DBMS capable of utilizing
tightly-coupled computing
resources (processors, disks,
and memory). Tight coupling
is achieved by networks with
data exchange time com-
parable to the time of the
data exchange with a disk.
Parallel database technol-
ogy promises performance
improvements and high
availability although interop-
erability problems may occur
if not properly managed.

Architectures for Parallel
Database Processing
the clustered disk (CD) and
clustered nothing architec-
tures dominate in commer-
cial DBMSs. A cluster is a
tight coupling of two or more
computers that behave as a
single computer. In the CD
architecture, the proces-
sors in each cluster share all
disks, but nothing is shared
across clusters. In the CN
architecture, the processors
in each cluster share no
resources, but each cluster
can be manipulated to work
in parallel to perform a task.

FIGURE 18.11
Basic Parallel Database
Architectures

M

P

M

N

P P...

... ...

P P P...

M M M

N

...

P P P...

M M

(a) SE (b) SD (c) SN

Legend
P: processor
M: memory
N: high-speed network
SE: shared everything
SD: shared disk
SN: shared nothing

M

N

...

P P P...

M M M

N

...

P P P...

M M

(a) Clustered disk (CD) (b) Clustered nothing (CN)

M

...

P P P...

M M M

...

P P P...

M M

FIGURE 18.12
Parallel Database
Architectures with Clustering

26008_ch18_p725-766.indd 738 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   739

In all parallel database architectures, resource sharing is transparent to applica-
tions. Application code (SQL and programming language statements) does not need to
be changed to take advantage of parallel database processing. In contrast, distributed
database architectures presented in Section 18.4 usually do not provide transparent
processing because of different goals for distributed databases.

The primary design issues that influence the performance of the parallel database
architectures are load balancing, cache coherence, and interprocessor communication.
Load balancing involves the amount of work allocated to different processors in a
cluster. Ideally, each processor has the same amount of work to fully utilize the cluster.
The CN architecture is most sensitive to load balancing because of the need for data
partitioning. It can be difficult to partition a subset of a database to achieve equal divi-
sion of work because data skew is common among database columns.

Cache coherence involves synchronization among local memories and common
disk storage. After a processor addresses a disk page, the image of this page remains
in the cache associated with the given processor. An inconsistency occurs if another
processor has changed the page in its own buffer. To avoid inconsistencies when a disk
page is accessed, a check of other local caches should be made to coordinate changes
produced in the caches of these processors. By definition, the cache coherence problem
is limited to shared disk architectures (SD and CD).

Interprocessor communication involves messages generated to synchronize
actions of independent processors. Partitioned parallelism as used for the shared noth-
ing architectures can create large amounts of interprocessor communication. In par-
ticular, partitioned join operations may generate a large amount of communication
overhead to combine partial results executed on different processors.

Research and development on parallel database technology has found reason-
able solutions to the problems of load balancing, cache coherence, and interprocessor
communication. Commercial DBMS vendors have incorporated solutions into parallel
DBMS offerings. Commercially, the CD and CN architectures are dominating. The
next subsection depicts enterprise DBMSs using the CD and CN architectures.

18.3.2  Commercial Parallel Database Technology
This section presents details of enterprise DBMSs that offer parallel DBMSs. Since
the classification discussed in section 18.3.1 is not sufficient to understand the dif-
ferences among actual products, this section provides details about two prominent
parallel DBMSs. Although both DBMSs promise high levels of performance, scalabil-
ity, and availability, trade-offs among the levels are inevitable given the contrasting
approaches of the two parallel DBMS approaches.

Oracle Real Application Clusters  Oracle Real Application Clusters (RAC)
requires an underlying hardware cluster, a group of independent servers that cooper-
ate as a single system. The primary cluster components are processor nodes, a cluster
interconnect, and a shared storage subsystem as depicted in Figure 18.13. Each server
node has its own database instance with a log writing process, a database writing
process, and a shared global area containing database blocks, redo log buffers, dic-
tionary information, and shared SQL statements. All database writing processes in a
cluster use the same shared storage system. Each database instance maintains its own
recovery logs.

Cache Fusion technology in RAC enables synchronized access to the cache across
all the nodes in a cluster, without incurring expensive disk I/O operations. The Global
Cache Service (GCS) is a RAC component that implements the Cache Fusion technol-
ogy. The GCS maintains a distributed directory of resources such as data blocks and
queues access to the resources. To optimize performance, a resource is assigned to the
node with the most frequent accesses to the resource. Access to a resource by other
nodes is controlled by its master node.

Oracle RAC supports a number of features as listed below. All of these features are
available without database or application partitioning.

26008_ch18_p725-766.indd 739 3/2/18 11:02 PM

740   Part 7  Managing Database Environments

•	 The query optimizer considers the number of processors, degree of parallelism of
the query, and CPU workload to distribute the workload across the nodes in the
cluster and to optimally utilize the hardware resources.

•	 Load balancing automatically distributes connections among active nodes in
a cluster based on node workload. Connection requests are sent to the least
congested node in a cluster.

•	 Automatic failover enables fast switching from a failing node to a surviving
node. Switching among nodes can be planned to allow for periodic maintenance.

•	 The high availability framework maintains components in a running state at all
times. High availability involves monitoring critical components and restarting
them if they stop. The framework enables clients to immediately react to changes,
enabling application developers to hide outages and reconfigurations from end
users.

•	 Oracle Clusterware provides a complete, integrated cluster management solution
on all Oracle platforms. Oracle Clusterware features include node membership,
group services, global resource management, session information for nodes in a
cluster, SQL statement tracing, and high availability functions.

•	 Service management supports the enterprise grid vision. Services are entities
that can be defined in Oracle RAC databases. Service management enables
grouping of database workloads and routing the work to the most appropriate
instance. In addition, resources can be assigned to services to process and
monitor workloads. Applications assigned to services acquire the workload
characteristics, including high availability and load balancing rules.

•	 In Oracle 12c, Oracle RAC supports three new features, multitenant databases,
application continuity, and transaction guard. Multitenant databases consist of a
container database holding pluggable databases. Oracle RAC provides local high
availability to support dynamic provisioning of pluggable databases. Application
continuity provides a replay capability to protect applications from instance and
session failures. The replay capability avoids the need to reboot servers after a
wave of logons, providing assurance that critical applications have completed.
Transaction guard prevents committing duplicate transactions and committing
transactions out of order after a database session failure.

IBM DB2 Enterprise Server Edition with the DPF Option  The Database
Partitioning Feature (DPF) option provides CN style parallel processing for DB2 data-
bases. DB2 without the DPF option supports transparent parallel database processing
for multiprocessor machines. DB2 access plans can exploit all CPUs and physical disks
on a multiprocessor server. The DPF option adds the ability to partition a database
across a group of machines. A single image of a database can span multiple machines
and still appear to be a single database image to users and applications. Partitioned

SGA

Redo
logs

LGWR

SGA

Legend
LGWR: Log writer process
DBWR: DB writer process
GCS: Global cache service
SGA: Shared global area

DBWR GCS

Cache fusion

Redo
logs

DB files

GCS DBWR LGWR

Shared storage system

FIGURE 18.13
Example Two-Node Oracle
Cluster

26008_ch18_p725-766.indd 740 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   741

parallelism available with the DPF option provides much higher scalability than mul-
tiprocessor parallelism alone.

Partitioning with the DPF option is transparent to users and applications. User
interaction occurs through one database partition, known as the coordinator node for
that user. Figure 18.14 depicts coordination in a partitioned database for multipro-
cessor server nodes. The database partition to which a client or application connects
becomes the coordinator node. Users should be distributed across servers to distribute
the coordinator function.

The DPF option supports automatic partitioning or DBA determined partition-
ing. With automatic partitioning, data is distributed among partitions using an updat-
able partitioning map and a hashing algorithm, which determine the placement and
retrieval of each row of data. For DBA determined partitioning, a column can be
selected as a partitioning key. With either approach, the physical placement of data is
transparent to users and applications.

The DPF option of DB2 supports a number of features as listed below. All of these
features require database partitioning.

•	 The query optimizer uses information about data partitioning to search for
access plans. While comparing different access plans, the optimizer accounts for
parallelism of different operations and costs associated with messaging among
database partitions.

•	 DPF provides a high degree of scalability through its support of thousands of
partitions. Near linear performance improvements have been reported for the
DPF option.

•	 Partitioned parallelism provides improved logging performance because each
partition maintains its own log files.

18.3.3  Big Data Parallel Processing Architectures
Scalable parallel processing for large data sets has been developed independent of
parallel processing architectures for DBMSs. Batch processing of large text data sets in
web search engines was the original impetus for big data parallel processing architec-
tures. A typical big data task involves parsing a web log into delimited components
such as request date, request time, web address, request action, and so on. A large
retail organization may generate individual log files of 15GB needing to combine thou-
sands of log files to analyze usage patterns of website visitors. These type of big data
tasks involve batch processing of semi-structured data using commodity hardware
and software. Scalability for big data processing remains an important requirement. In
contrast, parallel processing architectures for enterprise DBMSs support a different set
of requirements for optimized execution of SQL statements (mix of ad hoc and repeti-
tive queries) with lower limits on scalability.

In response to big data processing requirements, an open source project1 named
Hadoop was developed. Hadoop provides scalable parallel processing using commodity

1 Hadoop became an open source project of the Apache Software Foundation in 2005. Hadoop was the name
of the stuffed elephant belonging to the son of one of the original developers. The Apache Software Founda-
tion released Hadoop 2 in 2013.

FIGURE 18.14
Coordination for Partitioned
Parallelism in DPF

Coordinator

...

P P P...

M

Partition 1 Partition 2 Partition n

...

P P P...

M

...

P P P...

M...

26008_ch18_p725-766.indd 741 3/2/18 11:02 PM

742   Part 7  Managing Database Environments

hardware and software for large data sets. Hadoop 1, the original open source project,
contains two major components as shown in Figure 18.15. The Hierarchical Distrib-
uted File System (HDFS) provides reliable and scalable data storage using clusters of
commodity servers. Hadoop partitions large files into equal size blocks stored in files.
A large deployment in an HDFS cluster may involve 4,000 servers with 300 million
files addressing 60 PB of storage. HDFS2 in Hadoop 2 improves reliability, eliminating
the single point of failure of HDFS in Hadoop 1. MapReduce in Hadoop 1 combines
a parallel processing model and cluster resource management. Hadoop 2 generalizes
Hadoop 1 by separating parallel processing models and resource management.

MapReduce2, the original and still widely used parallel processing model, divides
a task into small parts for distributed execution. A mapping function converts input
(typically unstructured such as text) into sorted <key,value> pairs. A reduce func-
tion aggregates sorted <key,value> pairs through filtering and combining operations
such as counting occurrences of keys. An application developer provides customized
mapping and reduce functions to apply MapReduce. The Hadoop resource manage-
ment component (YARN) transparently allocates intermediate results to blocks in files
and coordinates distributed processing among clusters. Figure 18.16 depicts a simple
example of a MapReduce process. The MapReduce process splits text input, maps
the split input into <key,value> pairs, sorts the pairs, and reduces the sorted pairs by
counting the number of occurrences of each word. Twitter applies this type of MapRe-
duce process to text files containing hundreds of millions of tweets per day.

The big data parallel processing approach initially developed in Hadoop has been
extended for improved performance and new tasks. On the performance side, Apache

2 Google engineers developed the MapReduce algorithm in 2004.

Hadoop 1

Hadoop 2

HDFS

MapReduce
(Resource management
and batch processing)

HDFS 2

YARN
Resource management

MapReduce
with Pig

Others
Hive
(data

integration)

FIGURE 18.15
Architectures of Hadoop 1
and Hadoop 2

X Y Z Z Z R Y Y X

X Y Z

Input Split

Z Z R

Y Y X

Map

X, 1
Y, 1
Z, 1

Z, 1
Z, 1
R, 1

Y, 1
Y, 1
X, 1

Sort Reduce

R, 1
X, 1
X, 1

Y, 1
Y, 1
Y, 1

Z, 1
Z, 1
Z, 1

R, 1
X, 2
Y, 3
Z, 3

Note: each letter represents a word in a text file.

FIGURE 18.16
MapReduce Example to
Count Words in Text

26008_ch18_p725-766.indd 742 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   743

Spark, another open source project, provides distributed in-memory data sets (known
as Resilient Distributed Datasets) to reduce overhead of intermediate file operations
in Hadoop 2. Apache Hawq improves performance on analytic queries by reducing
storage of intermediate results and degradation due to disk failures. On the task side,
Hadoop 2, Spark, and Hawq provide programming interfaces to support SQL queries,
streaming analytics, data mining, data integration, and graph computations. A new
segment of the software industry has adopted and extended big data parallel architec-
tures, funded by large levels of investment capital.

Big data parallel processing largely complements parallel processing in DBMSs.
Big data parallel processing tools specialize in batch processing of large, unstruc-
tured data sets, tasks not well-suited to DBMS query components. Big data process-
ing results can be stored in a data warehouse. Even SQL query execution in big data
engines emphasizes queries on unstructured data, not well-suited to DBMS query
optimization and query workloads. In recognition of the importance of big data, some
enterprise DBMS vendors have integrated architectures for big data processing with a
standard DBMS architecture for parallel processing.

18.4 � ARCHITECTURES FOR DISTRIBUTED DATABASE
MANAGEMENT SYSTEMS

Distributed DBMSs involve different technology than client-server processing and
parallel database processing. Client-server processing emphasizes distribution of
functions among networked computers using middleware for process management.
A fundamental difference between parallel database processing and distributed data-
base processing is autonomy. Distributed databases provide site autonomy while par-
allel databases do not. Thus, distributed databases require a different set of features
and technology.

To support distributed database processing, fundamental extensions to a DBMS
are necessary. Underlying the extensions are a different component architecture that
manages distributed database requests and a different schema architecture that pro-
vides additional layers of data description. This section describes the component
architecture and schema architecture to provide a foundation for more details about
distributed database processing in following sections.

18.4.1  Component Architecture
Distributed DBMSs support global requests that use data stored at more than one
autonomous site. A site is any locally controlled computer with a unique network
address. Sites are often geographically distributed, although the definition supports
sites located in close proximity. Global requests are queries that combine data from
more than one site and transactions that update data at more than one site. A global
request can involve a collection of statements accessing local data in some statements
and remote data in other statements. Local data is controlled by the site in which a user
normally connects. Remote data involves a different site in which a user may not even
have an account to access. If all requests require only data from one site, distributed
database processing capabilities are not required.

To depict global requests, you need to begin with a distributed database. Distrib-
uted databases are potentially useful for organizations operating in multiple locations
with local control of computing resources. Figure 18.17 depicts a distributed database
for an electronic retail business. The company performs customer processing at Boise
and Tulsa and manages warehouses at Seattle and Denver. The distribution of the
database follows the geographical locations of the business. The Customer, OrderTbl,
and OrderLine tables (customer-order data) are split between Boise and Tulsa, while

26008_ch18_p725-766.indd 743 3/2/18 11:02 PM

744   Part 7  Managing Database Environments

the Product and Inventory tables (product data) are split between Seattle and Denver.
An example of a global query is to check both warehouse sites for sufficient quantity of
a product to satisfy a shipment invoice. An example of a global transaction is an order-
entry form that inserts rows into the OrderTbl and OrderLine tables at one location and
updates the Product table at the closest warehouse site.

To support global queries and transactions, distributed DBMSs contain additional
components as compared to traditional, nondistributed DBMSs. Figure 18.18 depicts
a possible arrangement of the components of a distributed DBMS. Each server with
access to the distributed database is known as a site. If a site contains a database, a
local data manager (LDM) controls it. The local data managers provide complete fea-
tures of a DBMS as described in other chapters. The distributed data manager (DDM)
optimizes query execution across sites, coordinates concurrency control and recovery
across sites, and controls access to remote data. In performing these tasks, the DDM
uses the global dictionary (GD) to locate parts of the database. The GD can be distrib-
uted to various sites similar to the way that data are distributed. Because of the com-
plexity of the distributed database manager, section 18.6 presents more details about
distributed query processing and transaction processing.

Customer-order data

Product data

Customer-order data

Product data

FIGURE 18.17
Distribution of Order-Entry
Data

DB

Site 1
DDM

LDM

DDM

DDM

LDM

DB

GD

GD

Site 2

Site 3

GD

FIGURE 18.18
Component Architecture of a
Distributed DBMS

26008_ch18_p725-766.indd 744 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   745

In the component architecture, the local database managers can be homogeneous
or heterogeneous. A distributed DBMS with homogeneous local DBMSs is tightly
integrated. The distributed database manager can call internal components and access
the internal state of local data managers. The tight integration allows the distributed
DBMS to efficiently support both distributed queries and transactions. However, the
homogeneity requirement precludes integration of existing databases.

A distributed DBMS with heterogeneous local data managers is loosely integrated.
The distributed database manager acts as middleware to coordinate local data manag-
ers. SQL often provides the interface between the distributed data manager and the
local data managers. The loose integration supports data sharing among legacy sys-
tems and independent organizations. However, the loosely integrated approach may
not be able to support transaction processing in a reliable and efficient manner.

18.4.2  Schema Architectures
To accommodate distribution of data, additional layers of data description are nec-
essary. However, there is no widely accepted schema architecture for distributed
databases like the widely accepted Three Schema Architecture for traditional DBMSs.
This section depicts possible schema architectures for tightly integrated distributed
DBMSs and loosely integrated distributed DBMSs. The architectures provide a refer-
ence about the kinds of data description necessary and the compartmentalization of
the data description.

The schema architecture for a tightly integrated distributed DBMS contains
additional layers for fragmentation and allocation as depicted in Figure 18.19. The
fragmentation schema contains the definition of each fragment while the allocation
schema contains the location of each fragment. A fragment can be defined as a vertical
subset (project operation), a horizontal subset (restrict operation), or a mixed fragment
(combination of project and restrict operations). A fragment is typically allocated to
one site. If the distributed DBMS supports replication, a fragment can be allocated to
multiple sites. Typically, one copy of a fragment is considered the primary copy and
the other copies are secondary. Only the primary copy is guaranteed to be current.

The schema architecture for a loosely integrated distributed DBMS supports more
autonomy of local database sites in addition to data sharing. Each site contains the tra-
ditional three schema levels, as depicted in Figure 18.20. To support data sharing, the
distributed DBMS provides a local mapping schema for each site. The local mapping
schemas describe the exportable data at a site and provide conversion rules to translate
data from a local format into a global format. The global conceptual schema depicts all

External
schema 1

External
schema 2

External
schema n...

Conceptual
schema

Fragmentation
schema

Allocation
schema

Internal
schema 1

Internal
schema 2

Internal
schema m...

m Sites

FIGURE 18.19
Schema Architecture for a
Tightly Integrated Distributed
DBMS

26008_ch18_p725-766.indd 745 3/2/18 11:02 PM

746   Part 7  Managing Database Environments

of the kinds of data and relationships that can be used in global requests. Some distrib-
uted DBMSs do not have a global conceptual schema. Instead, global external schemas
provide views of shared data in a common format.

There can be many differences among the local data formats. Local sites may use
different DBMSs, each with a different set of data types. The data models of the local
DBMSs can be different, especially if legacy systems are being integrated. Legacy sys-
tems might use file interfaces and navigational data models (network and hierarchical)
that do not support SQL. Even if local sites support a common SQL standard, there can
be many differences such as different data types, scales, units of measure, and codes.
The local mapping schemas resolve these differences by providing conversion rules
that transform data from a local format into a global format.

The commercial realization of loosely integrated distributed databases has been
partially eclipsed by XML document standards and information aggregators. XML
schemas provide a set of rules governing document types to facilitate data interchange
among independent organizations. An organization publishes XML documents con-
forming to a particular schema to provide access to a wide range of organizations.
Information aggregators use web pages, XML documents and schemas, and other data
gathering methods to provide access to a wide range of heterogeneous data including
public records, home sales, credit scores, and comparison shopping. In a sense, XML
schemas play the role of global conceptual schemas. Cooperating organizations pro-
vide the mapping to convert between local data stored in various formats and XML
documents conforming to the schema rules.

FIGURE 18.20
Schema Architecture for
a Loosely Integrated
Distributed DBMS

Global
external
schema 1

Global
external

schema 2

Global
external

schema n
...

Global
conceptual

schema

Site 1 local
mapping
schema

Site 1 local
schemas

(conceptual,
internal,
external) ...

m Sites

Site 2 local
schemas

(conceptual,
internal,
external)

Site m local
schemas

(conceptual,
internal,
external)

Site 2 local
mapping
schema

Site m local
mapping
schema

...

18.5  TRANSPARENCY FOR DISTRIBUTED DATABASE PROCESSING
Recall from Chapter 17 that transparency refers to the visibility (visible or hidden)
of internal details of a service. In transaction processing, concurrency and recovery
services are transparent, or hidden from database users. Parallel database processing
emphasizes transparency. In distributed database processing, transparency is related
to data independence. If database distribution is transparent, users can write que-
ries with no knowledge of the distribution. In addition, distribution changes will not
cause changes to existing queries and transactions. If the database distribution is not
transparent, users must reference some distribution details in queries and distribution
changes can lead to changes in existing queries.

26008_ch18_p725-766.indd 746 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   747

This section describes common levels of transparency and provides examples of
query formulation with each level. Before discussing transparency levels, a motivating
example is presented.

18.5.1  Motivating Example
To depict the levels of transparency, more details about the order-entry database are
provided. The order-entry database contains five tables, as shown in the relationship
diagram of Figure 18.21. You may assume that customers are located in two regions
(East and West) and products are stored in two warehouses (1: Denver, 2: Seattle).

One collection of fragments can be defined using the customer region column as
shown in Table 18-3. The Western-Customers fragment consists of customers with a
region equal to “West.” There are two related fragments: the Western-Orders fragment,
consisting of orders for western customers and the Western-OrderLines fragment, con-
sisting of order lines matching western orders. Similar fragments are defined for rows
involving eastern customers.

The order and order line fragments are derived from a customer fragment using
the semi-join operator. A semi-join is half of a join: the rows of one table that match
the rows of another table. For example, a semi-join operation defines the Western-
Orders fragment as the rows of the OrderTbl table matching customer rows with a
region of “West.” A fragment defined with a semi-join operation is sometimes called
a derived horizontal fragment. Because some fragments should have rows related to
other fragments, the semi-join operator is important for defining fragments.

Warehouse fragments are defined using the WarehouseNo column as shown in
Table 18-4. In the fragment definitions, warehouse number 1 is assumed to be located
in Denver and warehouse number 2 in Seattle. The Product table is not fragmented
because the entire table is replicated at multiple sites.

Fragmentation can be more complex than described in the order-entry database.
There can be many additional fragments to accommodate a business structure. For
example, if there are additional customer processing centers and warehouses, addi-
tional fragments can be defined. In addition, vertical fragments can be defined as

Semi-Join
an operator of relational
algebra that is especially
useful for distributed data-
base processing. A semi-join
is half of a join: the rows of
one table that match with
at least one row of another
table. Only the rows of the
first table appear in the
result.

FIGURE 18.21
Relationship Diagram for the
Order-Entry Database

CustName
CustCity
CustState
CustZip
CustRegion

Customer
CustNo

OrdDate
OrdAmt
CustNo

OrderTbl
OrdNo

ProdNo
OrdNo

OrderLine

OrdQty

ProdName
ProdColor
ProdPrice

Product
ProdNo

InvQOH
WarehouseNo
ProdNo

Inventory
InvNo

1

1

1

1

8

8

8 8

26008_ch18_p725-766.indd 747 3/2/18 11:02 PM

748   Part 7  Managing Database Environments

3 The syntax in Table 18-3 is hypothetical as standard SQL does not support fragment creation.

CREATE FRAGMENT Western-Customers AS
 SELECT * FROM Customer WHERE CustRegion = 'West'

CREATE FRAGMENT Western-Orders AS
 SELECT OrderTbl.* FROM OrderTbl, Customer
 WHERE OrderTbl.CustNo = Customer.CustNo AND CustRegion = 'West'

CREATE FRAGMENT Western-OrderLines AS
 SELECT OrderLine.* FROM Customer, OrderLine, OrderTbl
 WHERE OrderLine.OrdNo = OrderTbl.OrdNo
 AND OrderTbl.CustNo = Customer.CustNo AND CustRegion = 'West'

CREATE FRAGMENT Eastern-Customers AS
 SELECT * FROM Customer WHERE CustRegion = 'East'

CREATE FRAGMENT Eastern-Orders AS
 SELECT OrderTbl.* FROM OrderTbl, Customer
 WHERE OrderTbl.CustNo = Customer.CustNo AND CustRegion = 'East'

CREATE FRAGMENT Eastern-OrderLines AS
 SELECT OrderLine.* FROM Customer, OrderLine, OrderTbl
 WHERE OrderLine.OrdNo = OrderTbl.OrdNo
 AND OrderTbl.CustNo = Customer.CustNo AND CustRegion = 'East'

TABLE 18-3
Fragments Based on the
CustRegion Column3

CREATE FRAGMENT Denver-Inventory AS
 SELECT * FROM Inventory WHERE WarehouseNo = 1

CREATE FRAGMENT Seattle-Inventory AS
 SELECT * FROM Inventory WHERE WarehouseNo = 2

TABLE 18-4
Fragments Based on the
WareHouseNo Column

projection operations in addition to the horizontal fragments using restriction and
semi-join operations. A fragment can even be defined as a combination of projection,
restriction, and semi-join operations. The only limitation is that the fragments must be
disjoint. Disjointness means that horizontal fragments do not contain common rows
and vertical fragments do not contain common columns except for the primary key.

After fragments are defined, they are allocated to sites. Fragments are sometimes
defined based on where they should be allocated. The allocation of order-entry frag-
ments follows this approach as shown in Table 18-5. The Boise site contains the west-
ern customer fragments, while the Tulsa site contains the eastern customer fragments.
Similarly, the inventory fragments are split between the Denver and the Seattle sites.
The Product table is replicated at the Denver and the Seattle sites because each ware-
house stocks every product.

In practice, the design and the allocation of fragments is much more difficult than
depicted here. Designing and allocating fragments is similar to index selection. Data
about the distribution of queries, the distribution of parameter values in queries, and
the behavior of the global query optimizer are needed. In addition, data about the fre-
quency of originating sites for each query are needed. The originating site for a query
is the site in which the query is stored or submitted from. Just as for index selection,
optimization models and tools can aid decision making about fragment design and
allocation. The details of the optimization models and the tools are beyond the scope

TABLE 18-5
Allocation of Fragments of
the Order Entry Database

Fragments Site

Western-Customers, Western-Orders, Western-OrderLines Boise

Eastern-Customers, Eastern -Orders, Eastern-OrderLines Tulsa

Denver-Inventory, Product Denver

Seattle-Inventory, Product Seattle

26008_ch18_p725-766.indd 748 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   749

of this book. The references at the end of the chapter provide details about fragment
design and allocation.

18.5.2  Fragmentation Transparency
Fragmentation transparency provides the highest level of data independence. Users
formulate queries and transactions without knowledge of fragments, locations, or
local formats. If fragments, locations, or local formats change, queries and transactions
are not affected. In essence, users perceive the distributed database as a centralized
database. Fragmentation transparency involves the least work for users but the most
work for distributed DBMSs. Parallel database processing in shared nothing architec-
tures involves fragmentation transparency.

To contrast the transparency levels, Table 18-6 lists some representative queries
and transactions that use the order entry database. In these queries, the parameters $X
and $Y are used rather than individual values. With fragmentation transparency, que-
ries and transactions can be submitted without change regardless of the fragmentation
of the database.

18.5.3  Location Transparency
Location transparency provides a lesser degree of data independence than fragmenta-
tion transparency. Users need to reference fragments in formulating queries and trans-
actions. However, knowledge of locations and local formats is not necessary. Even
though site knowledge is not necessary, users are indirectly aware of a database’s dis-
tribution because many fragments are allocated to a single site. Users may make an
association between fragments and sites.

Location transparency involves more work in formulating requests as shown in
Table 18-7. In the “find” queries, the union operator collects rows from all fragments.
The Update Inventory query involves about the same amount of coding. The user
substitutes a fragment name in place of the condition on WarehouseNo because this
condition defines the fragment.

In the Customer Move request, much more coding is necessary. An update opera-
tion cannot be used because the column to update defines the fragment. Instead, rows
must be inserted in the new fragments and deleted from the old fragments. For the
customer fragment, the SELECT … INTO statement stores field values in variables
that are used in the subsequent INSERT statement. The deletions are performed in
the stated order if referenced rows must be deleted last. If deletions cascade, only one
DELETE statement on the Western-Customers fragment is necessary.

The SQL statements for the first two requests do not reveal the number of union
operations that may be required. With two fragments, only one union operation is
necessary. With n fragments, n-1 union operations are necessary, however.

Fragmentation
Transparency
a level of independence in
distributed DBMSs in which
queries can be formulated
without knowledge of
fragments.

Location Transparency
a level of independence in
distributed DBMSs in which
queries can be formulated
without knowledge of loca-
tions. However, knowledge
of fragments is necessary.

TABLE 18-6
Representative Requests
Using the Order-Entry
Database

Find Order

 SELECT * FROM OrderTbl, Customer
 WHERE OrderTbl.Custno = $X
 AND OrderTbl.CustNo = Customer.CustNo

Find Product Availability

 SELECT * FROM Inventory
 WHERE ProdNo = $X

Update Inventory

 UPDATE Inventory SET InvQOH = InvQOH - 1
 WHERE ProdNo = $X AND WarehouseNo = $Y

Customer Move

 UPDATE Customer SET CustRegion = $X
 WHERE CustNo = $Y

26008_ch18_p725-766.indd 749 3/2/18 11:02 PM

750   Part 7  Managing Database Environments

To some extent, views can shield users from some of the fragment details. For
example, using a view defined with union operations would obviate the need to write
the union operations in the query. However, views may not simplify manipulation
statements. If a DBMS does not support fragmentation transparency, it seems unlikely
that updatable views could span sites. Thus, the user would still have to write the SQL
statements for the Customer Move request.

18.5.4  Local Mapping Transparency
Local mapping transparency provides a lesser degree of data independence than loca-
tion transparency. Users need to reference fragments at sites in formulating queries
and transactions. However, knowledge of local formats is not necessary. If sites differ
in formats as in loosely integrated distributed databases, local mapping transparency
still relieves the user of considerable work.

Location transparency may not involve much additional coding effort from that
shown in Table 18-8. The only changes between Tables 18-7 and 18-8 are the addition

Local Mapping
Transparency
a level of independence in
distributed DBMSs in which
queries can be formulated
without knowledge of local
formats. However, knowl-
edge of fragments and frag-
ment allocations (locations)
is necessary.

Find Order

 SELECT * FROM Western-Orders, Western-Customers
 WHERE Western-Orders.CustNo = $X
 AND Western-Orders.CustNo = Western-Customers.CustNo
 UNION
 SELECT * FROM Eastern-Orders, Eastern-Customers
 WHERE Eastern-Orders.CustNo = $X
 AND Eastern-Orders.Custno = Eastern-Customers.CustNo

Find Product Availability

 SELECT * FROM Denver-Inventory
 WHERE ProdNo = $X
 UNION
 SELECT * FROM Seattle-Inventory
 WHERE ProdNo = $X

Update Inventory (Denver)

 UPDATE Denver-Inventory SET InvQOH = InvQOH - 1
 WHERE ProdNo = $X

Customer Move (West to East)

 SELECT CustName, CustCity, CustState, CustZip
 INTO $CustName, $CustCity, $CustState, $CustZip
 FROM Western-Customers WHERE CustNo = $Y

 INSERT INTO Eastern-Customers
 (CustNo, CustName, CustCity, CustState, CustZip, CustRegion)
 VALUES ($Y, $CustName, $CustCity, $CustState, $CustZip, 'East')

 INSERT INTO Eastern-Orders
 SELECT * FROM Western-Orders WHERE CustNo = $Y

 INSERT INTO Eastern-OrderLines
 SELECT * FROM Western-OrderLines
 WHERE OrdNo IN
 (SELECT OrdNo FROM Western-Orders WHERE CustNo = $Y)

 DELETE FROM Western-OrderLines
 WHERE OrdNo IN
 (SELECT OrdNo FROM Western-Orders WHERE CustNo = $Y)

 DELETE Western-Orders WHERE CustNo = $Y

 DELETE Western-Customers WHERE CustNo = $Y

TABLE 18-7
Requests Written with
Location Transparency

26008_ch18_p725-766.indd 750 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   751

of the site names in Table 18-8. If fragments are replicated, additional coding is neces-
sary in transactions. For example, if a new product is added, two INSERT statements
(one for each site) are necessary with local mapping transparency. With location trans-
parency, only one INSERT statement is necessary. The amount of additional coding
depends on the amount of replication.

From the discussion in this section, you may falsely assume that fragmentation
transparency is preferred to the other levels of transparency. Fragmentation transpar-
ency provides the highest level of data independence but is the most complex to imple-
ment. For parallel database processing in shared nothing architectures, fragmentation
transparency is a key feature. For distributed databases, fragmentation transparency
conflicts with the goal of site autonomy. Data ownership implies user awareness

TABLE 18-8
Requests Written with Local
Mapping Transparency

Find Order

 SELECT *
 FROM Western-Orders@Boise, Western-Customers@Boise
 WHERE Western-Orders@Boise.CustNo = $X
 AND Western-Orders@Boise.CustNo =
 Western-Customers@Boise.CustNo
 UNION
 SELECT *
 FROM Eastern-Orders@Tulsa, Eastern-Customers@Tulsa
 WHERE Eastern-Orders@Tulsa.CustNo = $X
 AND Eastern-Orders@Tulsa.CustNo =
 Eastern-Customers@Tulsa.CustNo

Find Product Availability

 SELECT * FROM Denver-Inventory@Denver
 WHERE ProdNo = $X
 UNION
 SELECT * FROM Seattle-Inventory@Seattle
 WHERE ProdNo = $X

Update Inventory (Denver)

 UPDATE Denver-Inventory@Denver SET InvQOH = InvQOH - 1
 WHERE ProdNo = $X

Customer Move (West to East)

 SELECT CustName, CustCity, CustState, CustZip
 INTO $CustName, $Custcity, $CustState, $CustZip
 FROM Western-Customers@Boise WHERE CustNo = $Y

 INSERT INTO Eastern-Customers@Tulsa
 (CustNo, CustName, CustCity, CustState, CustZip, CustRegion)
 VALUES ($Y, $CustName, $CustCity, $CustState, $CustZip, 'East')

 INSERT INTO Eastern-Orders@Tulsa
 SELECT * FROM Western-Orders@Boise WHERE CustNo = $Y

 INSERT INTO Eastern-OrderLines@Tulsa
 SELECT * FROM Western-OrderLines@Boise
 WHERE OrdNo IN
 (SELECT OrdNo FROM Western-Orders@Boise
 WHERE CustNo = $Y)

 DELETE FROM Western-OrderLines@Boise
 WHERE OrdNo IN
 (SELECT OrdNo FROM Western-Orders@Boise
 WHERE CustNo = $Y)

 DELETE Western-Orders@Boise WHERE CustNo = $Y

 DELETE Western-Customers@Boise WHERE CustNo = $Y

26008_ch18_p725-766.indd 751 3/2/18 11:02 PM

752   Part 7  Managing Database Environments

when combining local and remote data. In addition, fragmentation transparency may
encourage excessive resource consumption because users do not perceive the underly-
ing distributed database processing. With location and local mapping transparency,
users perceive the underlying distributed database processing at least to some extent.
The amount and complexity of distributed database processing can be considerable,
as described in section 18.6.

18.5.5  Transparency in Oracle Distributed Databases
Oracle provides two technologies for distributed databases. Oracle supports site
autonomy for distributed databases using database links. Oracle supports fragmen-
tation transparency through partitioning. This section provides an overview of both
technologies.

Oracle Distributed Database Technology for Site Autonomy  Oracle supports
site autonomy for homogeneous and heterogeneous distributed databases. In the
homogenous case, each site contains a separately managed Oracle database. The
requirement for separate management provides autonomy for each participating site.
Individual databases may utilize any supported Oracle version although functionality
in global requests is limited to the lowest version database. Oracle supports replication
in distributed databases through designated master sites and asynchronous process-
ing at secondary sites. Non-Oracle databases can also participate in global requests
using Heterogeneous Services and Gateway Agents. This section provides details
about transparency in pure (nonreplicated) homogeneous distributed databases.

Database links are a key concept for Oracle distributed databases. A database link
provides a one-way connection from a local database to a remote database. A local
database is the database in which a user connects. A remote database is another data-
base in which a user wants to access in a global request. Database links allow a user to
access another user’s objects in a remote database without having an account on the
remote site. When using a database link, a remote user is limited by the privilege set
of the object’s owner.

Table 18-9 demonstrates Oracle statements for creating links and synonyms as
well as using the links and synonyms in a global query. The first statement creates
a fixed link to the database “boise.acme.com” through the remote user “clerk1.” The
next statement uses the link to access the remote OrderTbl table. It is assumed that
the current user is connected to the Tulsa database and uses the link to access the
Boise database. In the FROM clause, the unqualified table names on both sites are the
same (OrderTbl and Customer). The CREATE SYNONYM statements create aliases for
remote tables using the remote table names and link names. The SELECT statements
can use the synonyms in place of table and link names.

As Table 18-9 demonstrates, database links provide local mapping transparency
to remote data. To create a link, a user must know the global database name. A global
database name usually contains information about an organization’s structure and
business locations. To use a link, a user must know the remote object names and details.
Local mapping transparency is consistent with an emphasis on site autonomy. Oracle
allows more transparency (location transparency) in remote data access through the
usage of synonyms and views.

Oracle provides more features for links than depicted in Table 18-9. The details
include link scopes (public, private, and global), link users, and administration of roles
and privileges for remote database access. The link scopes differ according to which
user groups are allowed to use the link to access to remote data. Table 18-10 provides
a summary of the link scopes. The link owner should determine who can use the link
to access remote data. Fixed users are the simplest to understand but connected users
and current users provide more flexibility as summarized in Table 18-11. The Oracle
Database Administrators Guide provides more details about managing database links
including security administration.

26008_ch18_p725-766.indd 752 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   753

Create Link

CREATE DATABASE LINK boise.acme.com CONNECT TO clerk1
 IDENTIFED BY clerk1

Find Order (using the link name)

 SELECT *
 FROM OrderTbl@boise.acme.com WO, Customer@boise.acme.com WC
 WHERE WO.CustNo = 1111111
 AND WO.CustNo = WC.CustNo
 UNION
 SELECT *
 FROM OrderTbl, Customer
 WHERE OrderTbl.CustNo = 1111111
 AND OrderTbl.CustNo = Customer.CustNo

Create Synonyms

CREATE PUBLIC SYNONYM BoiseOrder FOR OrderTbl@boise.acme.com;
CREATE PUBLIC SYNONYM BoiseCustomer FOR Customer@boise.acme.com;

Find Order (using the synonym names)

 SELECT *
 FROM BoiseOrder WO, BoiseCustomer WC
 WHERE WO.CustNo = 1111111
 AND WO.CustNo = WC.CustNo
 UNION
 SELECT *
 FROM OrderTbl, Customer
 WHERE OrderTbl.CustNo = 1111111
 AND OrderTbl.CustNo = Customer.CustNo

TABLE 18-9
Oracle Statements for a
Global Request using a Link

TABLE 18-10
Summary of Database Link
Scopes

Scope Details

Private More secure than a public or global link, because only the owner of the private link, or
subprograms within the same schema, can use the link to access the remote database

Public A database-wide link in which all users and PL/SQL subprograms in the database can use the
link to access database objects in the corresponding remote database

Global A network-wide link in which users and PL/SQL subprograms in any database can use the link
to access objects in the corresponding remote database; Simplifies link management

TABLE 18-11
Summary of Link User TypesUser Type Details

Connected User A local user accessing a database link in which no fixed username and password have
been specified; A user referencing the link connects to the remote database as the
same user. Credentials do not have to be stored in the data dictionary.

Current User Utilizes a global user who must be authenticated and be a user on both databases
involved in the link. However, the user invoking the current user link does not have to
be a global user if accessing a remote database through a stored procedure.

Fixed User A user whose username/password is part of the link definition; Connects a user in a
primary database to a remote database with the security context of the user specified
in the connect string.

Oracle Partitioning Technology for Fragmentation Transparency  Oracle par-
titioning technology provides a hybrid approach combining parallel and distrib-
uted database features. The goals of partitioning in Oracle are more performance
oriented rather than location oriented for distributed databases. Oracle partitioning

26008_ch18_p725-766.indd 753 3/2/18 11:02 PM

754   Part 7  Managing Database Environments

supports improved performance for large tables with high availability requirements.
Partitioning can improve query performance especially for large data warehouse
tables. Partitioning supports higher availability because individual partitions can
experience downtime while other partitions remain available. Backup, restore, and
load are faster to perform on partitions rather than on a single much larger table.
Storage options for partitions can vary providing flexibility for physical database
design.

Oracle provides fragmentation transparency for partitioned tables. A partitioned
table is similar to a horizontal fragment with a variety of fragmentation options.
Queries do not reference partitions. Oracle maps SQL statements on tables into SQL
statements referencing associated partitions, executes queries against partitions, and
collects results from partition operations.

Oracle provides a variety of partitioning options as summarized in Table 18-12.
Range, list, and hash partitioning are the basic partitioning options. Interval, compos-
ite, REF, and virtual column are secondary partition options often combining with
primary partition options.

Due to the complexity of selecting among varied partitioning options, Oracle
provides a partition advisor integrated with the SQL Access Advisor. The Partition
Advisor makes recommendations for partitions only or partitions as part of other per-
formance recommendations.

TABLE 18-12
Summary of Partitioning
Options in Oracle 12c

Partition Option Description Typical Usage

Range Consecutive ranges with catch all
provision

Time based partitioning for orders,
shipments, and reservations

List Enumeration of unordered values Country, region, or area code partitioning

Hash Oracle hash function to spread values
into groups

Hash on primary key such as order number

Interval Extension to range partitioning with
equal width ranges; On demand
partitions after first partition

Fixed time period such as day, month , or
year

REF Partition a child table consistent with
parent table partition

Partition details for orders, shipments, or
reservations consistent with partitioning on
parent such as by time period or region

Composite Combine range, list, and hash options Partition shipment table by region (list) and
then sub partitioned by hash on customer
number

Virtual column Partition by calculated column Partition shipment table on quarter
calculated from shipment date

18.6  DISTRIBUTED DATABASE PROCESSING
Just as distributed data adds complexity for query formulation, distributed data adds
considerable complexity to query processing and transaction processing. Distributed
database processing involves movement of data, remote processing, and site coordi-
nation that are absent from centralized database processing. Although the details of
distributed database processing can be hidden from programmers and users, perfor-
mance implications sometimes cannot be hidden. This section presents details about
distributed query processing and distributed transaction processing to make you
aware of complexities that can affect performance.

18.6.1  Distributed Query Processing
Distributed query processing is more complex than centralized query processing for
several reasons. Distributed query processing involves both local (intrasite) and global

26008_ch18_p725-766.indd 754 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   755

(intersite) optimization. Global optimization involves data movement and site selec-
tion decisions that are absent in centralized query processing. For example, to perform
a join of distributed fragments, one fragment can be moved, both fragments can be
moved to a third site, or just the join values of one fragment can be moved. If the frag-
ments are replicated, then a site for each fragment must be chosen.

Many of the complexities of distributed query processing also exist for parallel
databases with shared nothing architectures. The major difference is the much faster
and more reliable communication networks used in parallel database processing.

Distributed query processing is also more complex because multiple optimiza-
tion objectives exist. In a centralized environment, minimizing resource (input-output
and processing) usage is consistent with minimizing response time. In a distributed
environment, minimizing resources may conflict with minimizing response time
because of parallel processing opportunities. Parallel processing can reduce response
time but increase the overall amount of resources consumed (input-output, process-
ing, and communication). In addition, weighting of communication costs versus local
costs (input-output and processing) depends on network characteristics. For public
networks such as the Internet, communication costs can dominate local costs. For local
area networks and private networks, communication costs are more equally weighted
with local costs.

Increased complexity makes optimization of distributed queries even more impor-
tant than optimization of centralized queries. Because distributed query processing
involves both local and global optimization, there are many more possible access plans
for a distributed query than a corresponding centralized query. Variance in perfor-
mance among distributed access plans can be quite large. The choice of a bad access
plan can lead to extremely poor performance. In addition, distributed access plans
sometimes need to adjust for site conditions. If a site is unavailable or overloaded,
a distributed access plan should dynamically choose another site. Thus, some of the
optimization process may need to be performed dynamically (during run-time) rather
than statically (during compile time).

To depict the importance of distributed query optimization, access plans for a
sample query are presented. To simplify the presentation, a public network with
relatively slow communication times is used. Only communication times (CT) are
shown for each access plan. Communication time consists of a fixed message delay
(MD) and a variable transmission time (TT). Each record is transmitted as a separate
message.

CT = MD + TT

MD = Number of messages * Delay per message
TT = Number of bits / Data rate

Global Query: List the order number, order date, product number, product name,
product price, and order quantity for eastern orders with a specified customer num-
ber, date range, and product color. Table 18-13 lists statistics for the query and the
network.

SELECT EO.OrdNo, OrdDate, P.ProdNo, OrdQty,
 ProdName, ProdPrice
 FROM Eastern-Orders EO, Eastern-Orderlines EOL, Product P
 WHERE EO.CustNo = $X AND EO.OrdNo = EOL.OrdNo
 AND ProdColor = 'Red' AND EOL.ProdNo = P.ProdNo
 AND OrdDate BETWEEN $Y AND $Z

	 1. 	Move the Product table to the Tulsa site where the query is processed.
		 CT = 1,000 * 0.1 + (1,000 * 1,000) / 1,000,000 = 101 seconds
	 2. 	Restrict the Product table at the Denver site. Then move the result to Tulsa

where the remainder of the query is processed.
		 CT = 200 * 0.1 + (200 * 1,000) / 1,000,000 = 20.2 seconds

26008_ch18_p725-766.indd 755 3/2/18 11:02 PM

756   Part 7  Managing Database Environments

	 3. 	Perform join and restrictions of Eastern-Orders and Eastern-OrderLines
fragments at the Tulsa site. Move the result to the Denver site to join with the
Product table.

		 CT = 25 * 0.1 + (25 * 2,000) / 1,000,000 = 2.55 seconds
	 4. 	Restrict the Product table at the Denver site. Move only the resulting product

numbers (32 bits) to Tulsa. Perform joins and restrictions at Tulsa. Move the
results back to Denver to combine with the Product table.

		 CT (Denver to Tulsa) = 200 * 0.1 + (200 * 32) / 1,000,000 = 20.0064 seconds
		 CT (Tulsa to Denver) = 15 * 0.1 + (15 * 2,000) / 1,000,000 = 1.53 seconds
		 CT = CT (Denver to Tulsa) + CT (Tulsa to Denver) = 21.5364 seconds

These access plans show a wide variance in communication times. Even more variance
would be shown if the order fragments were moved from Tulsa to Denver. The third
access plan dominates the others because of its low message delay. Additional analysis
of the local processing costs would be necessary to determine the best access plan.

18.6.2  Distributed Transaction Processing
Distributed transaction processing follows the principles described in Chapter 17.
Transactions obey the ACID properties and the distributed DBMS provides concur-
rency and recovery transparency. However, a distributed environment makes the
implementation of the principles more difficult. Independently operating sites must
be coordinated. In addition, new kinds of failures exist because of a communication
network. To deal with these complexities, new protocols are necessary. This section
presents an introduction to the problems and solutions of distributed concurrency
control and commit processing.

Distributed Concurrency Control  Distributed concurrency control can involve
more overhead than centralized concurrency control because local sites must be
coordinated through messages over a communication network. The simplest scheme
involves centralized coordination, as depicted in Figure 18.22. At the beginning of
a transaction, the coordinating site is chosen and the transaction is divided into
subtransactions performed at other sites. Each site hosting a subtransaction submits
lock and release requests to the coordinating site using the normal two-phase locking
rules.

Centralized coordination involves the fewest messages and the simplest deadlock
detection. However, reliance on a centralized coordinator may make transaction pro-
cessing less reliable. To alleviate reliance on a centralized site, lock management can
be distributed among sites. The price for higher reliability is more message overhead
and more complex deadlock detection. The number of messages can be twice as much
in the distributed coordination scheme as compared to the centralized coordination
scheme.

Record length is 1,000 bits for each table.

The customer has 5 orders in the specified date range.

Each order contains an average of 5 products.

The customer has 3 orders in the specified date range and color.

There are 200 red products.

There are 10,000 orders, 50,000 order lines, and 1,000 products in the fragments.

Fragment allocation is given in Table 18-5.

Delay per Message is 0.1 second.

Data Rate is 1,000,000 bits per second.

TABLE 18-13
Statistics for the Query and
the Network

26008_ch18_p725-766.indd 756 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   757

With both centralized and distributed coordination, replicated data are a prob-
lem. Updating replicated data involves extra overhead because a write lock must be
obtained on all copies before any copy is updated. Obtaining write locks on multiple
copies can cause delays and even rollbacks if a copy is not available.

To reduce overhead with locking multiple copies, the primary copy protocol can
be used. In the primary copy protocol, one copy of each replicated fragment is desig-
nated as the primary copy, while the other copies are secondary. Write locks are neces-
sary only for the primary copy. After a transaction updates the primary copy, updates
are propagated to secondary copies. However, secondary copies may not be updated
until after the transaction commits. The primary copy protocol provides improved
performance but at the cost of noncurrent secondary copies. Because reduced over-
head is often more important than current secondary copies, many distributed DBMSs
use the primary copy protocol.

Distributed Commit Processing  Distributed DBMSs must contend with failures
of communication links and sites, failures that do not affect centralized DBMSs.
Detecting failures involves coordination among sites. If a link or site fails, any trans-
action involving the site must be aborted. In addition, the site should be avoided in
future transactions until the failure is resolved.

Failures can be more complex than just a single site or communication link.
A number of sites and links can fail simultaneously leaving a network partitioned. In
a partitioned network, different partitions (collections of sites) cannot communicate
although sites in the same partition can communicate. The transaction manager must
ensure that different parts of a partitioned network act in unison. It should not be pos-
sible for sites in one partition to decide to commit a transaction but sites in another
partition to decide not to commit a transaction. All sites must either commit or abort.

The most widely known protocol for distributed commit processing is the two-
phase commit protocol4. For each transaction, one site is chosen as the coordina-
tor and the transaction is divided into subtransactions performed at other participant
sites. The coordinator and the participant sites interact in a voting phase and a decision
phase. At the end of both phases, each participant site has acted in unison to either
commit or abort its subtransaction.

The voting and decision phases require actions on both the coordinator and the
participant sites as depicted in Figure 18.23. In the decision phase, the coordinator
sends a message to each participant asking if it is ready to commit. Before responding,
each participant forces all updates to disk when the local transaction work finishes. If
no failure occurs, a participant writes a ready-commit record and sends a ready vote
to the coordinator. At this point, a participant has an uncertain status because the coor-
dinator may later request the participant to abort.

The decision phase begins when the coordinator either receives votes from each
participant or a timeout occurs. If a timeout occurs or at least one participant sends an

Primary Copy Protocol
a protocol for concur-
rency control of distributed
transactions. Each replicated
fragment is designated as
either the primary copy or a
secondary copy. During dis-
tributed transaction process-
ing; only the primary copy
is guaranteed to be current
at the end of a transaction.
Updates may be propagated
to secondary copies after
end of transaction.

Two-Phase Commit
Protocol (2PC)
a rule to ensure that dis-
tributed transactions are
atomic. 2PC uses a voting
and a decision phase to
coordinate commits of local
transactions.

FIGURE 18.22
Centralized Concurrency
Control

Central
coordinator

Subtransaction 1
at Site x

......Subtransaction 2
at Site y

Subtransaction n
at Site z

Lock
request

Lock
status

4 Do not confuse two-phase commit with two-phase locking. The two-phase commit protocol is used only
for distributed transaction processing. Two-phase locking can be used for centralized and distributed con-
currency control.

26008_ch18_p725-766.indd 757 3/2/18 11:02 PM

758   Part 7  Managing Database Environments

abort vote, the coordinator aborts the entire transaction by sending abort messages to
each participant. Each participant then performs a rollback of its changes.

If all participants vote ready, the coordinator writes the global commit record and
asks each participant to commit its subtransaction. Each participant writes a commit
record, releases locks, and sends an acknowledgment to the coordinator. When the
coordinator receives acknowledgment from all participants, the coordinator writes the
global end-of-transaction record. If a failure occurs in either the voting or the decision
phase, the coordinator sends an abort message to all participating sites.

In practice, the two-phase commit protocol presented in Figure 18.23 is just the
basic protocol. Other complications such as a failure during recovery and timeouts
complicate the protocol. In addition, modifications to the basic protocol can reduce
the number of messages needed to enforce the protocol. Because these extensions are
beyond the scope of this book, you should consult the references at the end of the
chapter for more details.

The two-phase commit protocol can use a centralized or a distributed coordinator.
The trade-offs are similar to centralized versus distributed coordination for concur-
rency control. Centralized coordination is simpler than distributed coordination but
can be less reliable.

The two-phase commit protocol does not handle any conceivable kind of failure.
For example, the two-phase commit protocol may not work correctly if log records are
lost. There is no known protocol guaranteeing that all sites act in unison to commit
or abort in the presence of arbitrary failures. Because the two-phase commit protocol
efficiently handles common kinds of failures, it is widely used in distributed transac-
tion processing.

CAP Design Philosophy  The two-phase commit protocol demonstrates limits of
distributed transaction processing regarding failures. When failures partition a dis-
tributed system so that some parts of the system cannot communicate, the two-phase
commit protocol cannot ensure consistency of data across sites. The two-phase com-
mit protocol does not provide guidance about trade-offs among performance, consis-
tency, and system availability when dealing with failures.

The CAP (Consistency, Availability, Partition tolerance) design philosophy has
been developed to provide guidance about trade-offs among consistency, availability,
and partition tolerance. Underlying the CAP design philosophy is the CAP theorem,
devised by Professor Eric Brewer in 2000 as a conjecture and later proven by Profes-
sors Gilbert and Lynch of MIT in 2002. The CAP Theorem indicates that a distributed

Voting phase

Coordinator Participant

Write Begin-Commit to log.
Send Ready messages.
Wait for responses.

Force updates to disk.
If no failure,
 Write Ready-Commit to log.
 Send Ready vote.
Else send Abort vote.

If all sites vote ready before timeout,
 Write Global Commit record.
 Send Commit messages.
 Wait for Acknowledgments.
Else send Abort messages.

Decision phase

Write Commit to log.
Release locks.
Send acknowledgment.

Wait for acknowledgments.
Resend Commit messages if necessary.
Write global end of transaction.

1

2

3

4

5

FIGURE 18.23
Two-Phase Commit
Processing for Coordinator
and Participants

26008_ch18_p725-766.indd 758 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   759

database architecture for transaction processing can achieve any two of the following
three objectives.

•	 Consistency: all copies of data items have the same value after completion of
each transaction. This definition of consistency is similar to the notion of atomic
for concurrency control.

•	 Availability: Every operation terminates with an intended response as the system
is always available.

•	 Partition tolerance: Operations will complete even if individual components are
unavailable. Only a total system failure will stop operations.

Some obvious ways to deal with the CAP theorem are not practical. Partition toler-
ance can be eliminated by placing all processing for a transaction on a single site,
but scalability will be severely impacted. Availability can be eliminated so that any
partition stops related processing until the partition is restored. In today’s ecommerce
environment, eliminating availability is not feasible.

Typically, consistency is relaxed to preserve availability and partition tolerance.
With eventual consistency, a popular type of relaxed consistency, the storage system
ensures that accesses to all copies of an item will eventually return the last updated
value provided that no new updates occur. The BASE concurrency approach as pre-
sented in Chapter 17, uses messages and redundant storage at each site to control the
window of inconsistency.

Professor Brewer (2012) recommends a broader range of alternatives to the CAP
theorem, arguing that the 2 of 3 choice is misleading. He recommends managing the
partition detection interval with no trade-offs unless a partition is detected. When a
partition occurs, he recommends several alternatives including recovering a partition
and restoring consistency, blocking selected operations, performing compensating
operations to fix inconsistencies, and using causal consistency, a variation of eventual
consistency. In causal consistency, a write is guaranteed to supersede an earlier write
among processes notified about writes to an item. Access by non-notified processes are
subject to the normal eventual consistency rules.

CAP Theorem
a law about trade-offs
among consistency, availabil-
ity, and partition tolerance,
first proposed by Eric Brewer
in 2000. The law indicates
that a distributed database
architecture for transaction
processing can achieve any
two objectives but must
compromise on the third
objective. DBMS vendors
now provide a range of
alternatives to address the
CAP theorem limitations
with much innovation from
NoSQL database products.

This chapter has described motivation, architectures, and services of DBMSs that sup-
port distributed processing and distributed data. Utilizing distributed processing and
data can significantly improve DBMS services but at the cost of new design challenges.
Distributed processing can improve scalability, interoperability, flexibility, availabil-
ity, and performance while distributed data can improve data control, communication
costs, and system performance. To realize these benefits, significant challenges caused
by the complexity of distributed processing and data must be overcome.

Choosing an appropriate architecture is one way to manage additional complexity.
This chapter described client-server architectures and parallel database architectures
to utilize distributed processing. The basic tiered architectures provide alternatives
among cost, complexity, and flexibility for dividing tasks among clients and serv-
ers. Specialized client-server architectures including web service architectures, cloud
computing, and extreme transaction processing extend the basic tiered architectures
to meet specific market demands. Parallel database processing distributes a large
task among available resources. Parallel database technology of Oracle and IBM was
described to indicate the implementation of the clustered disk and clustered noth-
ing architectures. In addition, parallel processing architectures for big data were pre-
sented, complementing database parallel processing architectures.

The last part of the chapter described architectures and processing for distrib-
uted DBMSs. Architectures for distributed DBMSs differ in the integration of the local

CLOSING THOUGHTS

26008_ch18_p725-766.indd 759 3/2/18 11:02 PM

760   Part 7  Managing Database Environments

databases. Tightly integrated systems provide both query and transaction services
but require uniformity in the local DBMSs. Loosely integrated systems support data
sharing among a mix of modern and legacy DBMSs. An important part of the data
architecture is the level of data independence. This chapter described several levels of
data independence that differ by the level of data distribution knowledge required to
formulate global requests. Examples of transparency in Oracle distributed database
and partitioning technologies complemented the conceptual presentation. To provide
an introductory understanding to the complexity of distributed database processing,
this chapter described distributed query processing and transaction processing. Both
services involve complex issues not present in centralized DBMSs. The CAP design
philosophy provides guidance about trade-offs among consistency, availability, and
partition tolerance.

REVIEW CONCEPTS

•	 Motivations for client-server processing: scalability, interoperability, and
flexibility

•	 Motivations for parallel database processing: scaleup, speedup, high availability,
and predictable scalability

•	 Motivations for distributed data: increased local control, reduced
communication costs, and improved performance

•	 Motivations for cloud computing: no initial licensing costs, no hosting
requirements, dynamic scalability, high availability, economies of scale, and
specialization

•	 Design issues in distributed processing: division of processing and process
management

•	 Kinds of code to distribute between a client and a server
•	 Process management tasks performed by database middleware
•	 Differences between transaction-processing monitors, message-oriented

middleware, data access middleware, and object request brokers
•	 Characteristics of basic client-server database architecture: two-tier, three-tier,

and multiple-tier
•	 Web service architecture that extends multiple-tier architectures for electronic

business commerce using Internet standards to achieve high interoperability
•	 Differences among cloud service models (Infrastructure as a Service, Platform as

a Service, and Software as a Service) for cloud vendor and user organization
•	 Variations of cloud availability and control in cloud deployment models (public,

community, private, and hybrid)
•	 Requirements of extreme transaction processing and typical industries with

these processing requirements
•	 Middleware for extreme transaction processing using a write-behind cache to

utilize memories from distributed servers to achieve near linear scalability
•	 Characteristics of parallel database architectures: clustered disk and clustered

nothing
•	 Problems of parallel database processing: load balancing, cache coherence, and

interprocessor communication
•	 Oracle Real Application Clusters as a commercial DBMS supporting the

clustered disk architecture
•	 IBM DB2 with the Database Partitioning Feature as a commercial DBMS

supporting the clustered nothing architecture

26008_ch18_p725-766.indd 760 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   761

•	 Big data processing architectures supporting scalable parallel processing
on large data sets with unstructured data, complementing DBMS parallel
processing

•	 MapReduce, a parallel processing model, for batch processing of large data sets
•	 Apache open source projects for big data processing: Hadoop, Spark, and Hawq
•	 Global queries and transactions
•	 Role of the local database manager, the distributed database manager, and the

global dictionary in the component architecture of a distributed DBMS
•	 Schema architectures for tightly integrated and loosely integrated distributed DBMSs
•	 Relationship of distributed database transparency levels and data independence
•	 Kinds of fragmentation: horizontal, vertical, and derived horizontal
•	 Complexity of fragment design and allocation
•	 Query formulation for fragmentation transparency, location transparency, and

local mapping transparency
•	 Usage of database links in Oracle for providing remote data access with site

autonomy
•	 Usage of synonyms in Oracle to hide location details
•	 Oracle partitioning options providing improved performance and availability

with fragmentation transparency
•	 Performance measures and objectives for distributed query processing
•	 Use of two-phase locking for distributed concurrency control
•	 Use of the primary copy protocol to reduce update overhead with replicated data
•	 Additional kinds of failures in a distributed database environment
•	 Two-phase commit protocol for ensuring atomic commit of participant sites in a

distributed transaction
•	 Trade-offs between centralized and distributed coordination for distributed

concurrency control and recovery
•	 CAP design philosophy imposing trade-offs among consistency, availability,

and partition tolerance

QUESTIONS

  1.	What is the role of clients and servers in distributed processing?
  2.	Briefly define the terms flexibility, interoperability, and scalability. How does

client-server processing support interoperability, flexibility, and scalability?
  3.	Discuss some of the pitfalls of developing client-server systems.
  4.	Briefly define the terms scaleup and speedup and the measurement of these

terms.
  5.	Define high availability and indicate how parallel database processing supports

high availability.
  6.	How can a distributed database improve data control?
  7.	How can a distributed database reduce communication costs and improve

performance?
  8.	Discuss some of the pitfalls when developing distributed databases.
  9.	Discuss why distributed processing is more mature and more widely

implemented than distributed databases.
  10.	Why are division of processing and process management important in client-

server architectures?

26008_ch18_p725-766.indd 761 3/2/18 11:02 PM

762   Part 7  Managing Database Environments

  11.	Explain how two-tier architectures address division of processing and process
management.

  12.	Explain how three-tier architectures address division of processing and process
management.

  13.	Explain how multiple-tier architectures address division of processing and
process management.

  14.	What is a thin client? How does a thin client relate to division of processing in
client-server architectures?

  15.	List some reasons for choosing a two-tier architecture.
  16.	List some reasons for choosing a three-tier architecture.
  17.	List some reasons for choosing a multiple-tier architecture.
  18.	What is the Web Services Architecture?
  19.	How does the Web Services Architecture support interoperability?
  20.	Briefly describe the basic architectures for parallel database processing.
  21.	Briefly describe the clustering extensions to the basic distributed database

architectures.
  22.	What are the primary design issues for parallel database processing? Identify the

architecture most affected by the design issues.
  23.	What is the cache coherence problem?
  24.	What is load balancing?
  25.	What parallel database architecture is supported by Oracle Real Application

Clusters? What is a key technology in Oracle Real Application Clusters?
  26.	What parallel database architecture is supported by IBM DB2 DPF option? What

is a key technology in the DPF?
  27.	What is a global request?
  28.	How does the integration level of the distributed DBMS affect the component

architecture?
  29.	When is a tightly integrated distributed DBMS appropriate? When is a loosely

integrated distributed DBMS appropriate?
  30.	Discuss the differences in the schema architecture for tightly and loosely

integrated distributed DBMSs.
  31.	How is distributed database transparency related to data independence?
  32.	Is a higher level of distribution transparency always preferred? Briefly explain

why or why not.
  33.	What is a derived horizontal fragment and why is it useful? What is the

relationship of the semi-join operator and derived horizontal fragmentation?
  34.	What is the larger difference in query formulation: (1) fragmentation

transparency to location transparency or (2) location transparency to local
mapping transparency? Justify your answer.

  35.	Why is fragment design and allocation a complex task?
  36.	Why is global query optimization important?
  37.	What are differences between global and local optimization in distributed query

processing?
  38.	Why are there multiple objectives in distributed query processing? Which

objective seems to be more important?
  39.	What are the components of performance measures for distributed query

processing? What factors influence how these components can be combined into
a performance measure?

26008_ch18_p725-766.indd 762 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   763

  40.	How does two phase-locking for distributed databases differ from two-phase
locking for centralized databases?

  41.	Why is the primary copy protocol widely used?
  42.	What kinds of additional failures occur in a distributed database environment?

How can these failures be detected?
  43.	What is the difference between the voting and the decision phases of the two-

phase commit protocol?
  44.	Discuss the trade-offs between centralized and distributed coordination in

distributed concurrency control and recovery.
  45.	What level of transparency is provided by Oracle distributed databases?
  46.	What are database links in Oracle distributed database processing?
  47.	What is the difference between a current user and connected user when using an

Oracle link?
  48.	What is the motivation for cloud computing?
  49.	Briefly describe the cloud service models.
  50.	Briefly describe the cloud deployment models.
  51.	What types of DBMS products are available through cloud services?
  52.	What are the goals of Oracle partitioning technology?
  53.	Briefly describe the partitioning options available with Oracle 12c.
  54.	Briefly describe the requirements for extreme transaction processing and identify

industries with these requirements.
  55.	How does the key feature of middleware for extreme transaction processing

achieve near linear scalability?
  56.	Briefly explain the three components of the CAP Theorem.
  57.	What limitations does the CAP Theorem impose on transaction processing for

distributed databases?
  58.	What are typical ways that DBMSs deal with the limitations imposed by the

CAP Theorem?
  59.	What is the relationship of the BASE consistency principle as defined in Chapter

17 to the CAP Theorem?
  60.	What is Hadoop?
  61.	What is MapReduce? How is MapReduce related to Hadoop?
  62.	How do big data processing architectures complement parallel processing in

DBMSs?
  63.	What extensions have been made to Hadoop for improved performance and

tasks supported?

PROBLEMS

The problems provide practice with defining fragments, formulating queries at vari-
ous transparency levels, and defining strategies for distributed query processing. The
questions use the revised university database tables that follow. This database is simi-
lar to the database used in Chapter 4 except for the additional campus columns in the
Student, Offering, and Faculty tables.

Student(StdNo, StdName, StdCampus, StdCity, StdState, StdZip, StdMajor,
StdYear)

Course(CourseNo, CrsDesc, CrsCredits)

26008_ch18_p725-766.indd 763 3/2/18 11:02 PM

764   Part 7  Managing Database Environments

Offering(OfferNo, CourseNo, OffCampus, OffTerm, OffYear, OffLocation, OffTime,
OffDays, FacNo)

	 FOREIGN KEY CourseNo REFERENCES Course
	 FOREIGN KEY FacNo REFERENCES Faculty

Enrollment(OfferNo, StdNo, EnrGrade)
	 FOREIGN KEY OfferNo REFERENCES Offering
	 FOREIGN KEY StdNo REFERENCES Student

Faculty(FacNo, FacName, FacCampus, FacDept, FacPhone, FacSalary, FacRank)

  1.	Write SQL SELECT statements to define two horizontal fragments as students
who attend (1) the Boulder campus and (2) the Denver campus.

  2.	Write SQL SELECT statements to define two horizontal fragments as faculty
who teach at (1) the Boulder campus and (2) the Denver campus.

  3.	Write SQL SELECT statements to define two horizontal fragments as offerings
given at (1) the Boulder campus and (2) the Denver campus.

  4.	Write SQL SELECT statements to define two derived horizontal fragments as
enrollments associated with offerings given at (1) the Boulder campus and (2)
the Denver campus.

  5.	Write a SELECT statement to list the information systems courses offered in
spring quarter 2017. Information systems courses contain the string “IS” in
the course description. Include the course number, the description, the offer
number, and the time in the result. Assume fragmentation transparency in your
formulation.

  6.	Write a SELECT statement to list the information systems courses offered in
spring quarter 2017. Information systems courses contain the string “IS” in
the course description. Include the course number, the description, the offer
number, and the time in the result. Assume location transparency in your
formulation.

  7.	Write a SELECT statement to list the information systems courses offered in
spring quarter 2017. Information systems courses contain the string “IS” in
the course description. Include the course number, the description, the offer
number, and the time in the result. Assume local mapping transparency in your
formulation. The Offering fragments are allocated to the Boulder and the Denver
sites. The Course table is replicated at both sites.

  8.	Move offering number O1 from the Boulder to the Denver campus. In addition
to moving the offering between campuses, change its location to Plaza 112.
Assume fragmentation transparency in your formulation.

  9.	Move offering number O1 from the Boulder to the Denver campus. In addition
to moving the offering between campuses, change its location to Plaza 112.
Assume location transparency in your formulation.

  10.	Move offering number O1 from the Boulder to the Denver campus. In addition
to moving the offering between campuses, change its location to Plaza 112.
Assume local mapping transparency in your formulation.

  11.	For the following query, compute communication time (CT) for the distributed
access plans listed below. Use the formulas in section 18.6.1 and the query and
network statistics (Table 18-A1) in your calculations.

SELECT Course.CourseNo, CrsDesc, OfferNo, OffTime, FacName
 FROM BoulderOfferings BOF, Course, DenverFaculty DF
 WHERE Course.CourseNo = BOF.Course AND OffTerm = 'Spring'
 AND OffYear = 2017 AND DF.FacNo = BOF.FacNo
 AND FacDept = 'Information Systems'

26008_ch18_p725-766.indd 764 3/2/18 11:02 PM

Chapter 18  Client-Server Processing, Parallel Database Processing, and Distributed Databases   765

11.1	 Move the entire DenverFaculty fragment to the Boulder site and perform the
query.

11.2	 Move the entire BoulderOfferings fragment to the Denver site and perform
the query.

11.3	 Move the restricted BoulderOfferings fragment to the Denver site and
perform the query.

11.4	 Move the restricted DenverFaculty fragment to the Boulder site and perform
the query.

11.5	 Restrict the DenverFaculty fragment and move the join values (FacNo)
to the Boulder site. Join the FacNo values with the Course table and the
BoulderOfferings fragment at the Boulder site. Move the result back to the
Denver site to join with the DenverFaculty fragment.

  12.	Investigate the client-server, parallel database, and distributed database features
of a major DBMS. Identify the architectures used and important product
features.

Record length is 1,000 bits for each table.

32 bits for FacNo.

20 information systems faculty.

5,000 spring 2017 offerings

10 spring 2017 Boulder offerings taught by Denver faculty.

4,000 courses, 20,000 offerings, and 2,000 faculty in the fragments.

Course table is replicated at both the Denver and the Boulder sites.

BoulderOfferings fragment is located at the Boulder site.

DenverFaculty fragment is located at the Denver site.

Delay per message is 0.1 second.

Data rate is 100,000 bits per second.

TABLE 18-A1
Statistics for Problem 11

REFERENCES FOR FURTHER STUDY

This chapter, although providing a broad coverage of distributed processing and data,
has only covered the basics. Specialized books on distributed database management
include the classic by Ceri and Pelagatti (1984) and the more recent book by Ozsu
and Valduriez (1991). The book by Ceri and Pelagatti has a well-written chapter on
distributed database design. Date (1990) presents 12 objectives for distributed systems
with the most emphasis on distributed DBMSs. Bernstein (1996) provides a detailed
presentation of the role of middleware in client-server architectures. Brewer (2012)
describes the evolution of the CAP design philosophy over a 12 year period. Dean
and Ghemawat (2004) describe the MapReduce programming model, first deployed at
Google. Chang et al. (2014) describe the SQL engine in Apache Hawq.

26008_ch18_p725-766.indd 765 3/2/18 11:02 PM

26008_ch18_p725-766.indd 766 3/2/18 11:02 PM

767  

OVERVIEW
Chapter 18 described ways to utilize remote process-
ing capabilities and computer networks for client-server
processing, parallel database processing, and distrib-
uted databases. An increasing amount of distributed
database processing involves data representations that
DBMSs have not traditionally supported. Two opposite
approaches have emerged to extend database technol-
ogy for non-traditional data and operations. Object data-
base technology supports a richer data representation
for new kinds of data and operations. NoSQL database
technology supports a simplified, flexible representation
for big data processing, both batch and online. In this

chapter, you will learn about extensions to DBMSs for
both approaches.

The first part of this chapter provides a broad intro-
duction to object relational DBMSs. You will first learn
about the business reasons to extend database technol-
ogy for objects. This chapter discusses the increasing
usage of both traditional and complex data in business
applications and the mismatch between DBMSs and
programming languages as the driving forces behind
object database technology. After grasping the moti-
vation, you are ready to learn about object technology
and its impact on DBMSs. The second and third parts
of this chapter present object support in SQL:2016,
the standard for object-relational DBMSs and Oracle,

This chapter describes extensions to DBMSs for alternative database
representations, a richer object database representation and a simpler
NoSQL database representation. After this chapter, the student should
have acquired the following knowledge and skills:

•	 Explain business reasons for using object database technology

•	 Understand features in SQL:2016 for defining and manipulating user-
defined types, typed tables, and subtable families

•	 Write and document Oracle SQL statements for user-defined types
and typed tables

•	 Explain business reasons for using NoSQL technology

•	 Provide simple examples to depict data models used in NoSQL
databases

•	 Write and validate documents conforming to the JavaScript Object
Notation (JSON)

•	 Write and document Couchbase N1QL statements for manipulating
JSON databases

Learning Objectives

DBMS Extensions
for Object and
NoSQL Databases

19
chapter

26008_ch19_p767-828.indd 767 3/2/18 11:03 PM

a significant implementation of the SQL:2016 standard.
You will learn about data definition and data manipula-
tion features for object-relational databases.

The remaining parts of this chapter cover NoSQL
database technology, a more recent development than
object database technology. You will first learn about
the business reasons for using NoSQL databases.
After understanding the business case for NoSQL

databases, you will learn about alternative data models
in NoSQL databases. To provide practice with a promi-
nent NoSQL DBMS, the last part of this chapter covers
the N1QL query language provided by Couchbase. You
will learn about N1QL statements for data definition
and manipulation of document databases conforming
to the de facto standard, JavaScript Object Notation
(JSON).

This section discusses two forces driving the demand for object database management.
After a discussion of these forces, this section shows example applications to depict
business needs for object database management.

19.1.1  Complex Data
Most relational DBMSs support only a small number of traditional data types. Built-in
data types supported in SQL include whole numbers, real numbers, fixed-precision
numbers like currency representation, dates, times, logical (true/false) values, and
text. These data types are sufficient for many business applications, or at least major
parts of many applications. Many business databases contain columns for names,
prices, addresses, and transaction dates that readily conform to standard data types.

Hardware and software advances support capture and manipulation of complex,
unstructured data in a digital format. Almost any kind of complex data including
images, audio, video, maps, and three-dimensional graphics can be digitally stored.
For example, an image can be represented as a two-dimensional array of pixels (pic-
ture elements) in which each pixel contains a numeric property representing its color
or shade of gray. Digital storage provides lower costs and higher reliability than tra-
ditional storage such as paper, film, or slides. In addition, digital storage allows easier
retrieval and manipulation. For example, a medical professional can retrieve digital
images by content and similarity to other images. An image editor can manipulate
digital images with operations such as cropping, texturing, and color tuning.

The demand for object database technology does not come only from the ability
to store and manipulate complex. Rather, the need to store large amounts of com-
plex data and integrate complex data with simple data drives the demand for object
database technology. Many business applications require large amounts of complex
data. For example, insurance claims processing and medical records can involve large
amounts of image data. Storing images in separate files becomes tedious for a large
collection of images.

The ability to use standard and complex data together is increasingly important
in many business applications. For example, to review a patient’s condition, a physi-
cian may request X-rays along with vital statistics. Without integration, two separate
applications are required to display the data: an image editor to display the X-rays and
a DBMS to retrieve the vital statistics. The ability to retrieve both images and vital sta-
tistics in a single query is a large improvement. Besides retrieving complex data, new
operations also may be necessary. For example, a physician may want to compare the
similarity of a patient’s X-rays with X-rays that show abnormalities.

19.1.2  Type System Mismatch
Increasingly, software written in a procedural language needs to access a database.
Procedural languages support customized interfaces for data entry forms and reports,

19.1  MOTIVATION FOR OBJECT DATABASE MANAGEMENT

768   Part 7  Managing Database Environments

26008_ch19_p767-828.indd 768 3/2/18 11:03 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   769

operations beyond the capability of SQL, data intensive Web applications, and batch
processing. For example, writing procedural code in a programming language is
often necessary to develop consumer-oriented applications for electronic commerce.
Embedded SQL is often used to access a database from within a web page or code page
associated with a web page. After executing an embedded SQL statement, database
columns are stored in program variables that can be manipulated further.

A mismatch between the data types in a relational DBMS and the data types of a
programming language makes software more complex and difficult to develop. For
example, payroll processing can involve many kinds of benefits, deductions, and com-
pensation arrangements. A relational database may have one representation for bene-
fits, deductions, and compensation arrangements while a programming language may
have a rather different representation. Before coding complex calculations, data must
be transformed from the relational database representation (tables) into the program-
ming language representation (records, objects, and arrays). After the calculations, the
data must be transformed back into the relational database representation.

Complex data exacerbates data type mismatch. Programming languages usually
have richer data type systems than DBMSs. For example, relational databases provide
a tedious representation of geometric shapes in a building’s floor plan. Objects such
as points, lines, and polygons may be represented as one text column or as several
numeric columns such as X and Y coordinates for points. In contrast, a programming
language may have custom data types for points, lines, and polygons. There may be
considerable coding to transform between the relational database representation and
the programming language representation.

In addition, a relational DBMS cannot perform elementary operations on complex
data. Thus, a computer program must be written instead of using a query language.
For example, a complex program must be written to compute the similarity between
two images. The program will probably contain 10 to 100 times the amount of code
found in a query. In addition, the program must transform between the database and
the programming language representations.

19.1.3  Application Examples
This section depicts several applications that involve a mix of simple and complex data
as well as ad hoc queries. These applications have features increasingly found in many
business applications. As you will see, object DBMSs support requirements of these
kinds of applications.

Mapping Websites and GPS Devices  Mapping websites and Global Positioning
System (GPS) devices are the most prominent applications involving a mix of simple
and complex data. Millions of individuals use mapping websites and GPS devices
every day. Mapping websites provide several different kinds of maps (street, aerial,
and hybrid), complex data types involving coordinates, graphics, and text. The major
services provided by a mapping website are maps and directions, queries combin-
ing complex data (maps) and simple data (addresses, locations, and directions).
Directions involve the fundamental operation of shortest distance calculation between
two points on a map. Mapping websites and GPS devices provide additional services
including points of interest, gas price locators, and traffic conditions. These addi-
tional services involve queries combining maps along with traditional business data.
GPS devices use voice, another complex data type, to guide individuals to specified
locations.

Dental Office Support  Dental offices use a mix of simple and complex data to
make appointments, conduct examinations, and generate bills. Setting appointments
requires a calendar with time blocks for service providers (dentists and hygienists). In
conducting examinations, service providers use dental charts (graphic of mouth with
each tooth identified), X-rays, patient facts, and dental histories. After an examination,

26008_ch19_p767-828.indd 769 3/2/18 11:03 PM

770   Part 7  Managing Database Environments

bill preparation uses the list of services in the examination and patient insurance data.
Queries involving both simple and complex data are showing a dental chart with
recent dental problems highlighted and comparing X-rays for symptoms of gum loss.

Real Estate Listing Service  Real estate listing services increasingly use complex
data to facilitate customer searches. A real estate listing includes a mix of simple and
complex data. The simple data include numerous facts about homes such as the num-
ber of bedrooms, the square feet, and the listing price. Complex data include photo-
graphs of homes, floor plans, video tours, and area maps. Queries can involve a mix of
simple and complex data. Customers want to see homes in a specified neighborhood
with selected features. Some customers may want to see homes with the closest match
to a set of ideal features in which a customer assigns a weight to each feature. After
selecting a set of homes, a customer wants to explore the appearance, floor plan, and
facts about the homes.

Auto Insurance Claims  Auto insurance companies use complex data to settle
claims. Analyzing claims involves complex data such as photographs, street maps,
accident reports, and witness statements as well as simple data such as driver and
vehicle descriptions. Settling claims involves a map showing service providers as well
as service provider rates and service history. Queries for accident data and a list of ser-
vice providers in close proximity to a customer involve both simple and complex data.

19.2  OBJECT DATABASE FEATURES IN SQL:2016
As a response to these needs, commercial firms and university research teams
developed object database technology. These efforts led to a variety of commercial
approaches to support object database technology and a major extension to the SQL
standard. Over time, the SQL standard has eclipsed other approaches for object fea-
tures in enterprise DBMSs. Enterprise DBMS vendors have implemented substantial
parts of the object database features in the SQL standard. Collectively, the object data-
base features have changed relational databases to object-relational databases.

User-defined data types are the most salient part of the object database features in
the SQL standard. Almost any kind of complex data can be added as a user-defined
type. Image data, spatial data, time series, and video are just a few of the possible data
types. Major DBMS vendors provide a collection of prebuilt user-defined types and the
ability to extend the prebuilt types as well as to create new user-defined types. Table 19-1
lists pre-built data types supported by major enterprise DBMSs. For each user-defined
type, a collection of functions can be defined and used in SQL statements. For prebuilt
types, specialized storage structures have been created to improve performance. For
example, multidimensional Btrees can be provided for accessing spatial data.

Although user-defined types are the most salient feature of object-relational data-
bases, the SQL standard contains other prominent features. Enterprise DBMS vendors
have implemented some of these object features including subtable families (general-
ization hierarchies for tables), arrays, and the reference and row data types.

To clarify object database concepts, this section presents examples using the
SQL:2016 syntax for object-relational databases. The examples demonstrate SQL:2016
features for user-defined data types, table definitions with typed tables, subtable fami-
lies, and usage of typed tables. All examples were checked for correct syntax using the

TABLE 19-1
Pre-Built User-Defined Data
Types in Object-Relational
DBMSs

Product User-Defined Types

IBM DB2 Extenders Audio, Image, Video, XML, Spatial, Geodetic, Text, Net Search

Oracle Data Cartridges Text, Video, Image, Spatial, XML, Medical Images, RFID

Informix Data Blades Text, Spatial, Geodetic, Web, Time Series, Binary, Hierarchical Node

26008_ch19_p767-828.indd 770 3/2/18 11:03 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   771

Mimer SQL-2003 validator (developer.mimer.com/validator/index.htm). Section 19.3
presents the object features in Oracle, a significant implementation of the SQL:2016
standard.

19.2.1  User-Defined Types
The user-defined type, the most fundamental object feature in SQL:2016, allows bun-
dling of data and procedures. User-defined types support the definition of new struc-
tured data types as well as the refinement of the standard data types. A structured data
type has a collection of attributes and methods. In SQL-92, the CREATE DOMAIN
statement supports refinements to standard data types but not the definition of new
structured types. A method is the object-oriented term for a procedure or function
associated with an object.

Example 19.1 shows the Point type to depict the basic syntax of user-defined types.
The first part of a user-defined type contains the attribute definitions. The double
hyphen denotes a comment. For methods, the first parameter is implicit meaning that
its specification is not needed. For example, the Distance method lists only one Point
parameter (P2) because the other Point parameter is implicit. In SQL:2016, methods
only use input parameters and should return values. The body of methods is not shown
in the CREATE TYPE statement but rather in the CREATE METHOD statement.

Example 19.1

Point type in SQL:2016

CREATE TYPE Point AS
(X FLOAT, -- X coordinate
 Y FLOAT) -- Y coordinate
 METHOD Distance(P2 Point) RETURNS FLOAT,
 -- Computes the distance between 2 points
 METHOD Equals (P2 Point) RETURNS BOOLEAN
 -- Determines if 2 points are equivalent
;

SQL:2016 methods are somewhat limited in that they must return single values and
only use input parameters. In addition, the first parameter of a method is implicitly an
instance of the type in which it is associated. SQL:2016 provides functions and proce-
dures that do not have the restrictions of methods. Because functions and procedures
are not associated with a specific type, SQL:2016 provides separate definition state-
ments (CREATE FUNCTION and CREATE PROCEDURE). Procedures can use input,
output, and input-output parameters whereas functions only use input parameters.

Example 19.2 shows the ColorPoint type, a subtype of Point. The UNDER keyword
indicates the parent type. Because SQL:2016 does not support multiple inheritance,
only a single type name can follow the UNDER keyword. In the method definitions,
the OVERRIDING keyword indicates that the method overrides the definition in a
parent type.

Besides the explicit methods listed in the CREATE TYPE statement, user-defined
types have implicit methods that can be used in SQL statements and stored proce-
dures, as listed below:

•	 Constructor method: creates an empty instance of the type. The constructor
method has the same name as the data type. For example, Point() is the
constructor method for the Point type.

•	 Observer methods: retrieve values from attributes. Each observer method uses
the same name as its associated attribute. For example, X() is the observer
method for the X attribute of the Point type.

26008_ch19_p767-828.indd 771 3/2/18 11:03 PM

772   Part 7  Managing Database Environments

•	 Mutator methods: change values stored in attributes. Each mutator method uses
the same name as its associated attribute with one parameter for the value. For
example, X(45.0) changes the value of the X attribute.

SQL:2016 features the ARRAY and MULTISET collection types to support types
with more than one value such as time-series and geometric shapes. Arrays support
bounded ordered collections, while multisets support unbounded, unordered collec-
tions. Example 19.3a defines a triangle type with an array of three points. The number
following the ARRAY keyword indicates the maximum size of the array. Example
19.3b defines a polygon with a multiset of points. You should observe that maximum
length cannot be specified for MULTISET attributes.

Example 19.2

ColorPoint type

CREATE TYPE ColorPoint UNDER Point AS
(Color INTEGER)
 METHOD Brighten (Intensity INTEGER) RETURNS INTEGER,
 -- Increases color intensity
 OVERRIDING METHOD Equals (CP2 ColorPoint)
 RETURNS BOOLEAN
 -- Determines equivalence of 2 ColorPoint objects
;

Example 19.3a

Triangle Type Using an ARRAY type

CREATE TYPE Triangle AS
 (Corners Point ARRAY[3], -- Array of Corner Points
 Color INTEGER)
 METHOD Area() RETURNS FLOAT,
 -- Computes the area
 METHOD Scale (Factor FLOAT) RETURNS Triangle
 -- Computes a new triangle scaled by Factor
;

Example 19.3b

Polygon Type using a MULTISET type

CREATE TYPE Polygon AS
 (Corners Point MULTISET, Color INTEGER)
 METHOD Area() RETURNS FLOAT,
 -- Computes the area
 METHOD Scale (Factor FLOAT) RETURNS Polygon
 -- Computes a new polygon scaled by Factor
;

User-defined types are integrated into the heart of SQL:2016. User-defined types
can be used as data types for columns in tables, passed as parameters, and returned
as values. User-defined methods can be used in expressions in the SELECT, WHERE,
and HAVING clauses.

26008_ch19_p767-828.indd 772 3/2/18 11:03 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   773

19.2.2  Table Definitions
The examples in the remainder of Chapter 19 are based on a simple property database
with properties and agents as depicted by the ERD in Figure 19.1. For the presentation
here, the most important aspect of the ERD is the generalization hierarchy for properties.
SQL:2016 provides direct support of generalization hierarchies rather than indirect sup-
port as indicated by the generalization hierarchy conversion rule presented in Chapter 6.

SQL:2016 supports two styles of table definitions. The traditional SQL-92 style
uses foreign keys to link two tables. Example 19.4 depicts the Property table using a
foreign key to reference the agent representing the property. The PView column uses
the binary large object (BLOB) type. As an alternative to a BLOB data type for images,
some DBMSs provide prebuilt user-defined types for prominent image formats.

Example 19.4

Agent and Property tables using
the traditional SQL-92 style
CREATE TABLE Agent
(AgentNo INTEGER,
 AName VARCHAR(30),
 Street VARCHAR(50),
 City VARCHAR(30),
 State CHAR(2),
 Zip CHAR(9),
 Phone CHAR(13),
 Email VARCHAR(50),
 CONSTRAINT AgentPK PRIMARY KEY(AgentNo));

CREATE TABLE Property
(PropNo INTEGER,
 Street VARCHAR(50),
 City VARCHAR(30),
 State CHAR(2),
 Zip CHAR(9),
 SqFt INTEGER,
 PView BLOB,
 AgentNo INTEGER,
 Location Point,
 CONSTRAINT PropertyPK PRIMARY KEY(PropNo),
 CONSTRAINT AgentFK FOREIGN KEY(AgentNo) REFERENCES Agent);

FIGURE 19.1
ERD for the Property
DatabaseAgentNo

AName
Street
City
State
Zip
Phone
Email

Agent

Industrial
Zoning
AccessDesc
RailAvailable
Parking

PropNo
City
State
Zip
SqFt
PView
Location

Property

Represents

Residential
Bedrooms
Bathrooms
Assessments

26008_ch19_p767-828.indd 773 3/2/18 11:03 PM

774   Part 7  Managing Database Environments

SQL:2016 supports the row type constructor to allow rows of a table to be stored
as variables, used as parameters, and returned by functions. A row type is a sequence
of name/value pairs. One use of a row type is to collect related columns together so
that they can be stored as a variable or passed as a parameter. Example 19.5 depicts
the Property table using a row type for the address columns (Street, City, State, and Zip).

Example 19.5

Revised Property table
definition with a ROW type
CREATE TABLE Property
(PropNo INTEGER,
 Address ROW (Street VARCHAR(50),
 City VARCHAR(30),
 State CHAR(2),
 Zip CHAR(9)),
 SqFt INTEGER,
 PView BLOB,
 AgentNo INTEGER,
 Location Point,
 CONSTRAINT PropertyPK PRIMARY KEY(PropNo),
 CONSTRAINT AgentFK FOREIGN KEY(AgentNo) REFERENCES Agent);

SQL:2016 provides an alternative style of table definition known as typed tables
to support object identifiers and object references. With typed tables, a table definition
references a user-defined type rather than providing its own list of columns. Example
19.6 depicts the AgentType user-defined type and the Agent table referring to Agent-
Type. In addition, the AddressType (a named structured type) is used in place of the
unnamed ROW type in Example 19.5. The REF clause defines an object identifier for
the table. The SYSTEM GENERATED keywords indicate that the object identifiers are
generated by the DBMS, not the user application (USER GENERATED keywords).

Example 19.6

Definition of AddressType and
AgentType followed by the typed
Agent table based on AgentType

CREATE TYPE AddressType AS
 (Street VARCHAR(50),
 City VARCHAR(30),
 State CHAR(2),
 Zip CHAR(9));
CREATE TYPE AgentType AS
(AgentNo INTEGER,
 AName VARCHAR(30),
 Address AddressType,
 Phone CHAR(13),
 Email VARCHAR(50));

CREATE TABLE Agent OF AgentType
(REF IS AgentOId SYSTEM GENERATED,
 CONSTRAINT AgentPK PRIMARY KEY(AgentNo));

26008_ch19_p767-828.indd 774 3/2/18 11:03 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   775

Other tables can reference tables based on user-defined types. Object references
provide an alternative to value references of foreign keys. Example 19.7 depicts a defi-
nition of the PropertyType type with a reference to the AgentType. The SCOPE clause
limits a reference to the rows of a table rather than objects of the type.

Example 19.7

Definition of PropertyType and
the typed Property table
CREATE TYPE PropertyType AS
(PropNo INTEGER,
 Address AddressType,
 SqFt INTEGER,
 PView BLOB,
 Location Point,
 AgentRef REF(AgentType) SCOPE Agent);

CREATE TABLE Property OF PropertyType
(REF IS PropertyOId SYSTEM GENERATED,
 CONSTRAINT PropertyPK PRIMARY KEY(PropNo));

As these examples demonstrate, SQL:2016 provides a variety of ways to define
tables (typed versus untyped tables, references versus traditional foreign keys, ROW
types versus columns versus named structured types). For productivity of application
developers, consistent usage of table definition styles is important. A reasonable rule
of thumb is to use either the traditional table definitions (untyped tables with unstruc-
tured columns and foreign keys) or typed tables with named structured types and
reference types. Mixing table definition styles can burden application programmers
because the definition style influences the coding used in retrieval and manipulation
statements.

SQL:2016 supports nested tables using the MULTISET type with the ROW type
for elements of a multiset. Nested tables are useful at the application level especially
for complex business rules involving stored procedures. In addition, nested tables can
be useful to reduce the type system mismatch between a DBMS and a programming
language as discussed in section 19.1.2. At the table design level, the usage of nested
tables is not clear for business databases. Although some design theory exists for
nested tables, the theory is not widely known or practiced. Because of the immaturity
of nested table practice, no examples of nested tables are presented for table design.

19.2.3  Subtable Families
Inheritance applies to tables in a similar way as it applies to user-defined types. A table
can be declared as a subtable of another table. A subtable inherits the columns of its
parent tables. SQL:2016 limits inheritance for tables to single inheritance. A poten-
tially confusing part of table inheritance involves type inheritance. Tables involved
in subtable relationships must be typed tables with the associated types also partici-
pating in subtype relationships as demonstrated in Example 19.8. Note that the REF
clauses and primary key constraints are inherited from the Property table so they are
not specified for the Residential and the Industrial tables.

Set inclusion determines the relationship of rows of a parent table to rows in its
subtables. Every row in a subtable is also a row in each of its ancestor (direct parents
and indirect parents) tables. Each row of a parent table corresponds to at most one row
in direct subtables. This set inclusion relationship extends to an entire subtable family,
including the root table and all subtables directly or indirectly under the root table. For

26008_ch19_p767-828.indd 775 3/2/18 11:03 PM

776   Part 7  Managing Database Environments

example, a subtable family includes security as the root, bond and stock under invest-
ment, and corporate, municipal, and federal under bond. The root of a subtable family
is known as the maximal table. Security is the maximal table in this example.

Data manipulation operations on a row in a subtable family affect related rows in
parent tables and subtables. The following is a brief description of side effects when
manipulating rows in subtable families.

•	 If a row is inserted into a subtable, then a corresponding row (with the same
values for inherited columns) is inserted into each ancestor table. The insert
cascades upward in the subtable family until it reaches the maximal table.

•	 If a column is updated in a parent table, then the column is also updated in all
direct and indirect subtables that inherit the column.

•	 If an inherited column is updated in a subtable, then the column is changed in
the corresponding rows of direct and indirect parent tables. The update cascade
stops in the parent table in which the column is defined, not inherited.

•	 If a row in a subtable family is deleted, then every corresponding row in both
parent and subtables is also deleted.

19.4.4  Manipulating Complex Objects and Subtable Families
The richer data definition capabilities of SQL:2016 lead to new features when using
row type columns and reference type columns in data manipulation and data retrieval
statements. When inserting data into a table with a row type column, the keyword
ROW must be used as demonstrated in Example 19.9. If a column uses a user-defined
type instead of the ROW type, the type name must be used as depicted in Example
19.10.

When inserting data into a table with a reference type column, the object identi-
fier can be obtained with a SELECT statement. If object identifiers for a referenced
table are user-generated (such as primary key values), a SELECT statement may not
be necessary. Even with user-generated object identifiers, a SELECT statement may be
necessary if the object identifier is not known when the row is inserted. Example 19.11
demonstrates a SELECT statement to retrieve the object identifier (AgentOID) from the
related row of the Agent table. In the SELECT statement, the other values to insert are
constant values. For the Assessments column, the constant value is an array of values
denoted by the ARRAY keyword along with the square brackets that surround the
array element values.

Example 19.8

Subtypes and subtables for Residential
and Industrial properties
CREATE TYPE ResidentialType UNDER PropertyType
(BedRooms INTEGER,
 BathRooms INTEGER,
 Assessments DECIMAL(9,2) ARRAY[6]);

CREATE TABLE Residential OF ResidentialType UNDER Property;

CREATE TYPE IndustrialType UNDER PropertyType
(Zoning	 VARCHAR(20),
 AccessDesc	 VARCHAR(20),
 RailAvailable	 BOOLEAN,
 Parking	 VARCHAR(10));

CREATE TABLE Industrial OF IndustrialType UNDER Property;

26008_ch19_p767-828.indd 776 3/2/18 11:03 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   777

Example 19.9

Using the ROW keyword when
inserting a row in a table with a ROW
type column. This example assumes
that the Address column of the AgentType
type was defined with the ROW type

INSERT INTO Agent
(AgentNo, AName, Address, Email, Phone)
VALUES (999999, 'Sue Smith',
 ROW('123 Any Street', 'Denver', 'CO', '80217'),
 'sue.smith@anyisp.com', '13031234567');

Example 19.10

Using the type name when inserting two
rows in a table with a structured type
column. This example corresponds to the
AgentType type defined in Example 19.6

INSERT INTO Agent
(AgentNo, AName, Address, Email, Phone)
VALUES (999999, 'Sue Smith',
 AddressType('123 Any Street', 'Denver', 'CO', '80217'),
 'sue.smith@anyisp.com', '13031234567');

INSERT INTO Agent
(AgentNo, AName, Address, Email, Phone)
VALUES (999998, 'John Smith',
 AddressType('123 Big Street', 'Boulder', 'CO', '80217'),
 'john.smith@anyisp.com', '13034567123');

Example 19.11

Using a SELECT statement to retrieve the
object identifier of the related Agent row
INSERT INTO Residential
(PropNo, Address, SqFt, AgentRef, BedRooms, BathRooms, Assessments)
SELECT 999999, AddressType('123 Any Street', 'Denver', 'CO', '80217'),
 2000, AgentOID, 3, 2, ARRAY[190000, 200000]
FROM Agent
WHERE AgentNo = 999999;

26008_ch19_p767-828.indd 777 3/2/18 11:03 PM

778   Part 7  Managing Database Environments

Example 19.11 also demonstrates several aspects about subtypes and subtables.
First, the INSERT statement can reference the columns in both types because of the
subtype relationship involving ResidentialType and PropertyType. Second, inserting a
row into the Residential table automatically inserts a row into the Property table because
of the subtable relationship between the Residential and Property tables.

Reference columns can be updated using a SELECT statement in a manner similar
to that used in Example 19.11. Example 19.12 demonstrates an UPDATE statement
using a SELECT statement to retrieve the object identifier of the related agent.

Example 19.12

Using a SELECT statement to retrieve the
object identifier of the related Agent row
UPDATE Residential
 SET AgentRef =
 (SELECT AgentOID FROM Agent WHERE AgentNo = 999998)
 WHERE PropNo = 999999;

Path expressions using the dot operator and the dereference operator provide an
alternative to the traditional value-based joins in SQL-92. Example 19.13 depicts the
use of the dot and the dereference operators in path expressions. For columns with
a row or user-defined type, you should use the dot operator in path expressions.
The expression Address.City references the city component of the Address row
column. For columns with a reference type, you should use the dereference operator
(−>) in path expressions. The expression, AgentRef->Name, retrieves the Name col-
umn of the related Agent row. The dereference operator (−>) must be used instead of
the dot operator because the column AgentRef has the type REF(AgentType). The
distinction between the dot and dereference operators is one of the more confusing
aspects of SQL:2016. Other object-oriented languages such as Java do not have this
distinction.

Sometimes there is a need to test membership in a specific table without being a
member of other subtables. Example 19.14 retrieves residential properties where the
square feet column is greater than 3,000. The FROM clause restricts the scope to rows
whose most specific type is the ResidentialType. Thus, Example 19.14 does not retrieve
any rows of the Industrial table, a subtable of the Property table.

Example 19.13

SELECT statement with path
expressions and the dereference
operator

SELECT PropNo, P.Address.City, P.AgentRef->Address.City
 FROM Property P
 WHERE AgentRef->AName = 'John Smith'

26008_ch19_p767-828.indd 778 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   779

19.3  OBJECT DATABASE FEATURES IN ORACLE

Example 19.14

Using ONLY to restrict the range
of a table in a subtable family
SELECT PropNo, Address, Location
 FROM ONLY (Residential)
 WHERE Sqft > 1500

The most widely implemented part of the SQL:2016 object packages is the user-defined
type. The major relational DBMS vendors including IBM and Oracle have imple-
mented user-defined types that provide similar features as the SQL:2016 standard.
User-defined types are important for storage and manipulation of complex data in
business databases.

Beyond user-defined types, the object features in the SQL:2016 standard have
gained some commercial acceptance. As an example of commercial implementation
of the object features in SQL:2016, this section presents the most important object fea-
tures of Oracle 12c1 using the examples from the previous section. Although Oracle
12c does not claim complete conformance with the object features, it supports most of
the features of the SQL:2016 object packages as well as some additional object features.
Even if you do not use Oracle 12c, you can gain insight about the complexity of the
SQL:2016 object features and the difficulty of ensuring enhanced conformance with
the SQL:2016 standard.

19.3.1  Defining User-Defined Types and Typed Tables in Oracle
Oracle supports user-defined types with a syntax close to the SQL:2016 syntax. As
depicted in Example 19.15, most of the differences are cosmetic such as the different
placement of the parentheses, the reserved word RETURN instead of RETURNS in
SQL:2016, the reserved word OBJECT for root-level types, and the keywords FINAL
and INSTANTIABLE. The keywords NOT FINAL mean that subtypes can be defined.
The keyword INSTANTIABLE2 means that instances of the type can be created. Dif-
ferences in methods are more significant. Oracle supports functions and procedures
as methods compared to only method functions in SQL:2016. Thus, the Print proce-
dure in Example 19.15 is not used in Example 19.1 because SQL:2016 does not support
method procedures. In addition, Oracle supports order methods for direct object to
object comparisons, map methods for indirect object comparisons, and static methods
for global operations that do not need to reference the data of an object instance.

Before methods can be used, a body for each method must be created in a CREATE
TYPE BODY statement. Example 19.16 contains an implementation for each method
in the Point type definition. Oracle uses the keyword SELF to refer to the implicit
parameter for a method. However, the usage of SELF is optional as shown in each
of the method bodies. Example 19.17 demonstrates usage of the methods of the Point
type. Before demonstrating method usage, a table of points is created and points are
inserted into the table.

1 For the material presented in this section, Oracle 12c does not provide new object relational features
beyond Oracle 11.2g.

2 The keywords NOT INSTANTIABLE mean that the type is abstract without instances. Abstract types
contain data and code but no instances. Abstract types have been found to enhance code sharing in object-
oriented programming.

26008_ch19_p767-828.indd 779 3/2/18 11:04 PM

780   Part 7  Managing Database Environments

Example 19.15

Point type in Oracle (corresponds
to Example 19.1 for SQL:2016)
CREATE TYPE Point AS OBJECT
(x FLOAT(15),
 y FLOAT(15),
 MEMBER FUNCTION Distance(P2 Point) RETURN NUMBER,
 -- Distance between implicit point and P2 point parameters
 MEMBER FUNCTION Equals (P2 Point) RETURN BOOLEAN,
 -- Determines if P2 and implicit parameter are equivalent
 MEMBER PROCEDURE Print)
NOT FINAL
INSTANTIABLE;

Example 19.16

CREATE TYPE BODY statement
for Point type in Oracle
CREATE TYPE BODY Point AS
 MEMBER FUNCTION Distance(P2 Point) RETURN NUMBER IS
 BEGIN
 RETURN sqrt(power(x - P2.x,2) + power(y - P2.y,2));
 -- Equivalent to previous line using SELF
 -- RETURN sqrt(power(SELF.x - P2.x,2) + power(SELF.y - P2.y,2));
 END;
 MEMBER FUNCTION Equals(P2 Point) RETURN BOOLEAN IS
 BEGIN
 IF x = P2.x AND y = P2.y THEN
 RETURN TRUE;
 ELSE
 RETURN FALSE;
 END IF;
 END;
 MEMBER PROCEDURE Print IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('x: ' || to_char(x) || ' - ' || 'y: ' ||
 to_char(y));
 END;
 END;

Example 19.17

Script to create points and use
point methods
CREATE TABLE PointTbl of Point;

INSERT INTO PointTbl VALUES(10, 10);
INSERT INTO PointTbl VALUES(3, 4);
SELECT * FROM PointTbl;

SET SERVER OUTPUT ON;
-- Anonymous block to use point methods

26008_ch19_p767-828.indd 780 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   781

Oracle supports inheritance for user-defined types similar to SQL:2016. An impor-
tant difference involves the overriding of methods. In Oracle, overriding methods
have the same name and signature in the parent type and subtype. A signature con-
sists of the method’s name and the number, data types, and order of the parameters.
If two methods have different signatures, there is no overriding as both methods exist
in the subtype. As in SQL:2016, the OVERRIDING keyword should be used when
overriding a method. In Example 19.18, there is no overriding as the Equals method in
ColorPoint has a different signature than the Equals method in Point. The Equals method
in ColorPoint uses a ColorPoint argument whereas the Equals method in Point uses a
Point argument. However, the Print method in ColorPoint overrides the Print method
in Point as both methods have the same signature.

3 The recyclebin must be purged (purge recyclebin) before creating the ColorPoint type in Example
19.18. The text file with the examples for Chapter 19 contains the purge statement.

DECLARE
 P1 Point;
 P2 Point;
BEGIN
 SELECT VALUE(p) INTO P1 FROM PointTbl p WHERE p.x = 10;
 P1.Print();
 SELECT VALUE(p) INTO P2 FROM PointTbl p WHERE p.x = 3;
 P2.Print();
 DBMS_OUTPUT.PUT_LINE('Distance: ' || to_char(P1.Distance(P2)));
 IF P1.Equals(P2) THEN
 DBMS_OUTPUT.PUT_LINE('Same Point');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Different Point');
 END IF;
END;
-- PointTbl is not used in the remainder of the examples.
DROP TABLE PointTbl;3

Example 19.18

ColorPoint type in Oracle (corresponds
to Example 19.2 for SQL:2016)
CREATE TYPE ColorPoint UNDER Point
(Color INTEGER,
 MEMBER FUNCTION Brighten (Intensity INTEGER) RETURN INTEGER,
 -- Increases color intensity
 MEMBER FUNCTION Equals (CP2 ColorPoint) RETURN BOOLEAN,
 -- Determines if 2 ColorPoints are equivalent
 -- No overriding: two Equals methods have different signatures.
OVERRIDING MEMBER PROCEDURE Print)
NOT FINAL
INSTANTIABLE;

Oracle supports row types and typed tables similarly to SQL:2016, as depicted
in Example 19.19. Like SQL:2016, Oracle supports the ROW type and user-defined
types for structuring subsets of columns. For example, in AgentType, the address attri-
bute could use the ROW type instead of the user-defined AddressType. For the CRE-
ATE TABLE statement, Oracle specifies object identifiers differently than SQL:2016. In
Oracle, the OBJECT IDENTIFIER clause defines an object identifier as system-generated

26008_ch19_p767-828.indd 781 3/2/18 11:04 PM

782   Part 7  Managing Database Environments

or user-generated. System-generated object identifiers do not have a name as SQL:2016
requires. However, Oracle provides functions to manipulate system-generated object
identifiers so a column name is not necessary.

Example 19.19

Oracle definition of AddressType and
AgentType followed by the typed Agent
table based on AgentType (corresponds
to Example 19.6 for SQL:2016)

CREATE TYPE AddressType AS OBJECT
(Street VARCHAR(50),
 City VARCHAR(30),
 State CHAR(2),
 Zip CHAR(9))
NOT FINAL;

CREATE TYPE AgentType AS OBJECT
(AgentNo INTEGER,
 AName VARCHAR(30),
 Address AddressType,
 Phone CHAR(13),
 Email VARCHAR(50))
 NOT FINAL;

CREATE TABLE Agent OF AgentType
(CONSTRAINT AgentPK PRIMARY KEY(AgentNo))
 OBJECT IDENTIFIER IS SYSTEM GENERATED ;

Oracle supports reference types for columns similar to SQL:2016 as depicted in
Example 19.20. The usage of the SCOPE clause is somewhat different in Oracle, how-
ever. In Oracle, the SCOPE clause cannot be used in a user-defined type as it can in
SQL:20164. To compensate, you can define a referential integrity constraint to limit the
scope of a reference as shown for the Property table in Example 19.20.

Example 19.21 shows the user-defined types for residential and industrial prop-
erties along with the table definitions. The constraint and object identifier clauses
are repeated in the Residential and Industrial tables because Oracle does not support
subtables.

Example 19.21 also shows differences between the declaration of array columns
in Oracle and SQL:2016. In Oracle, the VARRAY constructor cannot be used directly
with columns of a table or attributes of a user-defined type. Instead, the VARRAY con-
structor must be used in a separate user-defined type as shown in the AssessType type
in Example 19.21. In addition, Oracle uses parentheses for the array size instead of the
square brackets used in SQL:2016.

19.3.2  Using Typed Tables in Oracle
We begin this section with manipulation statements to insert and modify objects in the
typed tables. Example 19.22 demonstrates an INSERT statement using a type name

4 The SCOPE clause can be used in a column definition of a CREATE TABLE statement. However, the table
is no longer a typed table when using the SCOPE clause as part of a column definition.

26008_ch19_p767-828.indd 782 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   783

Example 19.20

Oracle definition of PropertyType
with a reference to AgentType and
the typed Property table (corresponds
to Example 19.7 for SQL:2016)

CREATE TYPE PropertyType AS OBJECT
(PropNo INTEGER,
 Address AddressType,
 SqFt INTEGER,
 AgentRef REF AgentType,
 Location Point)
 NOT FINAL
 INSTANTIABLE;

CREATE TABLE Property OF PropertyType
 (CONSTRAINT PropertyPK PRIMARY KEY(PropNo),
 CONSTRAINT AgentRefFK FOREIGN KEY(AgentRef) REFERENCES Agent)
 OBJECT IDENTIFIER IS SYSTEM GENERATED ;

Example 19.21

CREATE TYPE and CREATE TABLE
statements for residential and
industrial properties (corresponds
to Example 19.8 for SQL:2016)

CREATE TYPE AssessType AS VARRAY(6) OF DECIMAL(9,2);

CREATE TYPE ResidentialType UNDER PropertyType
(BedRooms INTEGER,
 BathRooms INTEGER,
 Assessments AssessType)
 NOT FINAL
 INSTANTIABLE;

CREATE TABLE Residential OF ResidentialType
 (CONSTRAINT ResidentialPK PRIMARY KEY(PropNo),
 CONSTRAINT AgentRefFK1 FOREIGN KEY(AgentRef) REFERENCES Agent)
 OBJECT IDENTIFIER IS SYSTEM GENERATED ;

CREATE TYPE IndustrialType UNDER PropertyType
(Zoning	 VARCHAR(20),
 AccessDesc	 VARCHAR(20),
 RailAvailable	 CHAR(1),
 Parking	 VARCHAR(10))
 NOT FINAL
 INSTANTIABLE;

CREATE TABLE Industrial OF IndustrialType
(CONSTRAINT IndustrialPK PRIMARY KEY(PropNo),
 CONSTRAINT AgentRefFK2 FOREIGN KEY(AgentRef) REFERENCES Agent)
 OBJECT IDENTIFIER IS SYSTEM GENERATED ;

26008_ch19_p767-828.indd 783 3/2/18 11:04 PM

784   Part 7  Managing Database Environments

for the structured Address column. If the Address column was defined with the ROW
type constructor, the Oracle syntax would be identical to Example 19.9 with the ROW
keyword replacing AddressType.

Example 19.22

Inserting two rows into the typed
Agent table (corresponds to
Example 19.10 for SQL:2016)

INSERT INTO Agent
(AgentNo, AName, Address, Email, Phone)
VALUES (999999, 'Sue Smith',
 AddressType('123 Any Street', 'Denver', 'CO', '80217'),
 'sue.smith@anyisp.com', '13031234567');

INSERT INTO Agent
(AgentNo, AName, Address, Email, Phone)
VALUES (999998, 'John Smith',
 AddressType('123 Big Street', 'Boulder', 'CO', '80217'),
 'john.smith@anyisp.com', '13034567123');

Example 19.23

INSERT statements to add an object into
the Property and Residential tables
(corresponds to Example 19.11 for SQL:2016)

INSERT INTO Residential
(PropNo, Address, SqFt, AgentRef, BedRooms, BathRooms, Assessments)
SELECT 999999, AddressType('123 Any Street', 'Denver', 'CO', '80217'),
 2000, REF(A), 3, 2, AssessType(190000, 200000)
FROM Agent A
WHERE AgentNo = 999999;

-- This INSERT statement maintains set inclusion between the Property
-- and the Residential tables.
INSERT INTO Property
(PropNo, Address, SqFt, AgentRef)
SELECT 999999, AddressType('123 Any Street', 'Denver', 'CO', '80217'),
 2000, REF(A)
FROM Agent A
WHERE AgentNo = 999999;

Because Oracle does not support subtables, additional manipulation statements
are used to simulate set inclusion among subtables. In Example 19.23, INSERT state-
ments are used for both the parent table and subtable. Ideally, triggers could be defined
to hide the additional manipulation statements.

Example 19.23 also demonstrates the REF function to obtain a system-generated
object identifier. When using the REF function, you must use a correlation variable
(table alias) as the parameter. You cannot use the table name instead of the correlation
variable. The REF statement can also be used in UPDATE statements, as demonstrated
in Example 19.24.

26008_ch19_p767-828.indd 784 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   785

Oracle supports path expressions containing the dot operator and the DEREF
function. The DEREF function can also be used in SQL:2016 in place of the -> opera-
tor. The DEREF function uses an object identifier as a parameter as shown in Example
19.25. When using columns that have an object type such as Address, a correlation vari-
able must be used.

Example 19.24

Using a SELECT statement with the
REF Function to retrieve the object
identifier of the related Agent row
(corresponds to Example 19.12 for SQL:2016)

UPDATE Residential
 SET AgentRef =
 (SELECT REF(A) FROM Agent A WHERE AgentNo = 999998)
 WHERE PropNo = 999999;

-- Maintain consistency between the Property and Residential tables.
UPDATE Property
 SET AgentRef =
 (SELECT REF(A) FROM Agent A WHERE AgentNo = 999998)
 WHERE PropNo = 999999;

Example 19.25

Oracle SELECT statement with path
expressions containing the dot operator
and the DEREF function (corresponds
to Example 19.13 for SQL:2016)

SELECT PropNo, P.Address.City, DEREF(AgentRef).Address.City
 FROM Property P
 WHERE DEREF(AgentRef).AName = 'John Smith';

Although Oracle supports the DEREF function, it does not seem necessary to use
it. The dot operator can be used in path expressions even when a column has a refer-
ence type as shown in Example 19.26. Note that a correlation variable is necessary
when using REF columns in a path expression with the dot operator.

Like SQL:2016, Oracle supports the ONLY keyword in the FROM clause. How-
ever, the ONLY keyword applies to views not tables in Oracle. Thus, Example 19.14
will not work in Oracle unless object views are used instead of tables.

In place of testing subtable membership, Oracle supports testing the associated
type using the IS OF operator. In some situations, the IS OF operator can provide a
capability similar to subtable membership testing in SQL:2016. Example 19.27 demon-
strates the IS OF operator to test membership in a subtype. The REF operator converts
the object type into a reference and the DEREF operator converts a reference into a
value so that its type can be tested using the IS OF operator. Example 19.27 does not
produce the same result as Example 19.14 because the Property rows were not inserted

26008_ch19_p767-828.indd 785 3/2/18 11:04 PM

786   Part 7  Managing Database Environments

using the ResidentialType type. The Oracle syntax for using subtypes does not cover
INSERT statements such as Example 19.23 involving reference types.

Example 19.26

Oracle SELECT statement with path
expressions containing the dot operator
instead of the DEREF function (corresponds
to Example 19.13 for SQL:2016)

SELECT PropNo, P.Address.City, P.AgentRef.Address.City
 FROM Property P
 WHERE P.AgentRef.AName = 'John Smith';

Example 19.27

Using IS OF to test type membership
of a reference type. This example
does not produce the same result
as Example 19.14 for SQL:2016

SELECT PropNo, Address, Location
 FROM Property P
 WHERE Sqft > 1500 AND DEREF(REF(P)) IS OF (ResidentialType)

The VALUE function takes a correlation variable as a parameter and returns
instances of the object table associated with the correlation variable. Thus, the VALUE
function can be used to retrieve all columns from typed tables instead of using the * for
untyped tables, as shown in Example 19.28.

Example 19.28

Using the VALUE function to retrieve
all columns from a typed table
SELECT VALUE(A) FROM Agent A;

19.3.3  Dependencies among Types and Typed Tables
Object relational representations involve additional dependencies beyond traditional
table designs. User defined types can be referenced in typed tables, columns, and other
user defined types. A typed table references its associated type. An attribute or col-
umn definition references its associated user-defined type. A subtype references its
associated parent type. Figure 19.2 depicts a dependency diagram with subtype refer-
ences, column usage of types, typed table references, and foreign key references for the
objects in the property database.

26008_ch19_p767-828.indd 786 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   787

The usage of user defined types and typed tables introduces dependencies that
must be respected when creating and dropping database objects. When creating
objects, referenced objects should be created before referencing objects. Thus, a par-
ent type should be created before its related subtypes, a type should be created before
columns that reference it, and a type should be created before it is referenced in table
definitions. When dropping objects, referencing objects should be dropped before
the referenced object. Thus, a subtype should be dropped before its related parent
type, a column should be dropped before its related type, and a typed table should be
dropped before its related type.

Object orders (list of object names) that respect dependencies are known as topo-
logical orders. A topology is a structure with relationships such as a dependency
diagram. There are usually many possible orderings that preserve object dependen-
cies. Table 19-2 lists orders consistent with the dependency diagram in Figure 19.2 for
CREATE and DROP statements. For CREATE statements, a topological order moves
from the top of the diagram to the bottom. For DROP statements, a topological order
moves from the bottom of the diagram to the top.

19.3.4  Other Object Features in Oracle
Oracle provides additional object features, some of which extend object features in
SQL:2016. Type substitutability and object views provide limited alternatives for
subtables. The TABLE collection type corresponding to the multiset type of SQL:2016
supports nested tables. Oracle XML DB provides efficient storage and manipulation
of large repositories of XML documents. This section provides an overview of these
object features. For more details about these object features, you should consult the
Oracle online documentation.

Type Substitution and Object Views  The Oracle documentation suggests the
use of type substitutability to manage extents of parent tables and related subtables.
Type substitutability means that a column or row defined to be of type X can contain
instances of X and any of its subtypes. When using type substitutability to support
subtables, user-defined types are defined with subtype relationships, but only one
typed table (the root table) is defined. All manipulation operations are performed on
the root table using type substitution for set inclusion relationships. However, the
syntax for using reference types and subtype columns in manipulation statements
is not clear. Certain INSERT and UPDATE statements do not work with substituted

Point ColorPoint AddressType

AgentTypePropertyType

PropertyResidentialType IndustrialType

Residential Industrial

Agent

U U

U
U

T T

ST

ST
ST

T
FK

Point

PropertyType

U

U

T T

ST

ST
ST

FK: foreign key reference

ST: subtype reference

T: typed table reference
U: usage of type

AssessType
U

FIGURE 19.2
Dependency Diagram for the
Property Database Objects

TABLE 19-2
Topological Orders for the
Property Database Objects

SQL Statement Type Sample Object Ordering

CREATE Point, ColorPoint, AddressType, AgentType, PropertyType, AssessType,
IndustrialType, ResidentialType, Agent, Property, Residential, Industrial

DROP Residential, Industrial, Property, Agent, ResidentialType, IndustrialType,
PropertyType, AssessType, AgentType, AddressType, ColorPoint, Point

26008_ch19_p767-828.indd 787 3/2/18 11:04 PM

788   Part 7  Managing Database Environments

types. For managing set inclusion relationships, type substitution does not support
overlapping subtypes. Thus, type substitutability does not provide a satisfactory
solution for subtable families due to limited syntax and incomplete support for set
inclusion relationships.

The Oracle documentation also suggests the use of object view hierarchies to man-
age extents of parent tables and related subtables. An object view is a virtual object
table in which each row in the view is an object rather than a table row. An object view
hierarchy is a set of object views each of which is based on a different type in a type
hierarchy. Unlike subtable families, several storage models are possible to store object
view hierarchies. The database administrator must choose the best storage model
and ensure that users understand usage of object views in retrieval and manipulation
statements. Although object view hierarchies may be useful, they do not provide a sat-
isfactory substitute for subtable families because the DBMS does not manage extents
of related tables.

Nested Tables  Oracle provides extensive support for multiple levels of nested
tables corresponding to the multiset feature of SQL:2016. As previously stated, the
usage of nested tables is not clear for business databases. Until theory and practice
provide more insight, nested table usage is appropriate for specialized situations. To
indicate the features for nested tables, the following list summarizes Oracle support
for nested tables.

•	 The TABLE and NESTED TABLE type constructors support CREATE TABLE
statements with nested tables. A user-defined type can be specified with the
TABLE constructor and then used in a CREATE TABLE statement using the
NESTED TABLE constructor.

•	 Columns with nested table types can appear in query results. The TABLE
operator flattens nested tables if a user wants to see flat rather than nested
results.

•	 Comparison operators support equality, subset, and membership comparisons
among nested tables.

•	 Set operators support union, intersection, and difference operations on nested
tables as well as duplicate removal and nested table cardinality.

•	 Object views support multiple levels of nested tables.

The strongest case for nested tables is support for XML documents. XML documents
have a hierarchical structure, fitting with the representation of nested tables. How-
ever, the SQL:2016 standard and most enterprise DBMS products provide a separate
collection of tools for XML document support as presented in the last part of this
section.

XML Document Support  The eXtensible Markup Language (XML) has emerged
as a foundation for electronic commerce for consumers and organizations. XML is
a meta language that supports the specification of other languages. To restrict XML
documents, XML schemas can be defined. An XML schema specifies the structure,
content, and meaning of a set of XML documents. XML schemas support improved
data interchange, Internet searching, and data quality. Many application domains
have developed XML schemas as an essential element of electronic commerce.

As a result of the growing importance of XML, support for storage and manipu-
lation of XML documents has become a priority for DBMSs. Part 14 of SQL:2016 is
devoted to XML document storage and manipulation. Oracle and other commercial
DBMS vendors have devoted large amounts of research and development to support-
ing the Part 14 specification and additional features. The most prominent feature is a
new XML data type that most enterprise DBMS vendors support as a prebuilt data
type. To provide insight about the extensive XML support available in commercial
DBMSs, the following list summarizes features in Oracle XML DB.

26008_ch19_p767-828.indd 788 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   789

•	 The XMLType data type allows XML documents to be stored as tables and
columns of a table.

•	 Variables in PL/SQL procedures and functions can use the XMLType data type.
An application programming interface for XMLType supports a full range of
operations on XML documents.

•	 XML documents can be stored in a structured format using the XMLType data
type or in an unstructured format using the CLOB type. Storage as XMLType
data allows indexing and specialized query optimization.

•	 XML schema support applies to both XML documents and relational tables.
Oracle can enforce constraints in an XML schema on both tables and XML
documents stored in a database.

•	 XML/SQL duality allows the same data to be manipulated as tables and XML
documents. Relational data can be converted into XML and displayed as HTML.
XML documents can be converted into relational data.

•	 Oracle supports the majority of XML operators in the SQL:2016 standard. In
particular, Oracle supports the XML traversal operators existsNode(), extract(),
extractValue(), updateXML(), and XMLSequence() in the SQL/XML standard.

•	 Query rewrite transforms operations that traverse XML documents into standard
SQL statements. The Oracle query optimizer processes the rewritten SQL
statement in the same manner as other SQL statements.

The remainder of this section depicts the basic syntax of the XMLType data type
to demonstrate integration of relational databases with hierarchical XML docu-
ments. Examples 19.29 and 19.30 demonstrate usage of XMLType columns as well as
XMLType tables. Examples 19.31 and 19.32 demonstrate insertion of a row into the
AccountXML1 and AccountXML2 tables. XMLType values are internally stored using
the CLOB (Character Large Object) data type.

Example 19.29

Creating a table with an XMLType column

CREATE TABLE AccountXML1 (
 AcctId INTEGER PRIMARY KEY,
 AcctDetails XMLType,
 AcctBal NUMBER(9,2));

Example 19.30

Creating a table of XMLType

CREATE TABLE AccountXML2 OF XMLType;

Oracle implements the standard XQuery language using XPath expressions to
retrieve data from an XML document. XPath represents an XML document as a tree of
nodes. An XPath expression is evaluated to yield an object, which is either a node-set
(an unordered collection of nodes without duplicates) or a leaf node value (Boolean,
number, or string). The existsNode(), extract(), and extractValue() functions use an
XPath expression to retrieve data in an XML document. The existsNode() function
is used in a WHERE clause to test the existence of a node in an XML document. The
extract() function returns nodes that match its XPath expression. The extractValue()
function takes an XPath expression and returns the corresponding leaf node value.

26008_ch19_p767-828.indd 789 3/2/18 11:04 PM

790   Part 7  Managing Database Environments

Examples 19.33 to 19.35 demonstrate usage of the existsNode(), extract(), and extract-
Value() functions as applied to XMLType columns. Example 19.36 depicts retrieval of
the CLOB rows from an XMLType table.

Example 19.31

Inserting a row into a table
with an XMLType column
INSERT INTO AccountXML1 VALUES (1,
 '<Account>
 <AcctFName>John</AcctFName>
 <AcctLName>Smith</AcctLName>
 <AcctStreet>1234567 Quebec St.</AcctStreet>
 <AcctCity>Denver</AcctCity>
 <AcctState>CO</AcctState>
 <AcctZip>80237</AcctZip>
 </Account>',
 1000);

Example 19.32

Inserting a row into a table of XMLType

INSERT INTO AccountXML2 VALUES (
 '<Account>
 <AcctFName>John</AcctFName>
 <AcctLName>Smith</AcctLName>
 <AcctStreet>1234567 Quebec St.</AcctStreet>
 <AcctCity>Denver</AcctCity>
 <AcctState>CO</AcctState>
 <AcctZip>80237</AcctZip>
 </Account>');

Example 19.33

Selecting the number of rows with a
WHERE condition using the existsNode()
function. existsNode() returns 1 if the
node is found in the XPath expression

SELECT COUNT(*)
 FROM AccountXML1
 WHERE existsNode(AcctDetails, '/Account/AcctFName') = 1;

Oracle also supports an alternative XQuery notation for retrieval known as
FLWOR (pronounced flower; acronym incorporates the five main clauses of For,
Let, Where, Order By, and Return). The FLWOR notation is somewhat similar to
the SQL SELECT statement with the FLWOR FOR clause corresponding to the SQL

26008_ch19_p767-828.indd 790 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   791

Example 19.34

Selecting a row using the
extractValue() function
SELECT extractValue(AcctDetails, '/Account/AcctStreet') "Street"
 FROM AccountXML1
 WHERE extractValue(AcctDetails, '/Account/AcctStreet') LIKE '%St%';

Example 19.35

Selecting a row using the existsNode()
and extractValue() functions; The
existsNode() function uses a condition
as part of the XPath expression

SELECT extractValue(AcctDetails, '/Account/AcctCity')
 FROM AccountXML1
 WHERE existsNode(AcctDetails, '/Account[AcctZip="80237"]') = 1;

Example 19.36

Retrieving rows from an XMLType table.
The result is identical to retrieving
all columns using the * in place
of the getClobVal() function

SELECT a.getClobVal() FROM AccountXML2 a;

FROM clause, the FLWOR WHERE clause corresponding to the SQL WHERE clause,
the FLWOR ORDER BY clause corresponding to the SQL ORDER BY clause, and the
FLWOR RETURN clause corresponding to the SQL SELECT clause. Example 19.37
demonstrates a simple example to retrieve first names of Denver accounts.

Example 19.37

Retrieving rows using the FLWOR notation

SELECT AcctId, XMLQuery(
'for $i in /Account
 where $i /AcctCity = "Denver"
 order by $i/AcctFName
 return $i/AcctFName'
passing by value AcctDetails
RETURNING CONTENT) XMLData
FROM AccountXML1;

26008_ch19_p767-828.indd 791 3/2/18 11:04 PM

792   Part 7  Managing Database Environments

Object database features extend database definition and manipulation of SQL. The
need for object features in database technology was a logical extension of object fea-
tures for programming languages. Almost every modern programming language has
object features in its core design. Object features for databases have not had this level of
acceptance, however. Despite decades of research and development along with a care-
ful standards effort, object feature usage in enterprises DBMSs seems moderate. Under
the radar at first, the marketplace has demanded a new set of features leading to the
development of a new class of DBMSs and extensions to existing enterprise DBMSs.

This section provides an overview of NoSQL database technology, a major
recent extension of database technology. NoSQL, meaning Not only SQL, provides a
broad umbrella of database products and technologies. In November 2017, the nosql-
database.org website indicated that more than 225 products are labeled as NoSQL.
The first part of this section covers motivation and features for NoSQL database tech-
nology, comparing NoSQL to relational DBMSs adhering to the SQL standard. The
second part of this section presents data models used in NoSQL DBMSs. These data
models provide simplicity and flexibility compared to the rich data representation and
strictness of the relational data model.

19.4.1  Motivation and Features
Performance for big data processing is the major driver of NoSQL database technol-
ogy. Big data applications make high demands on either volume in batch processing
or velocity in online processing. Batch processing applications involve high volume as
typified by major web vendors such as Google and Facebook with huge amounts of
semi-structured data to analyze. Online processing applications involve high velocity
as typified by weather stations and satellites, generating enormous levels of sensor
data in frequent time intervals. Existing database technology did not meet these per-
formance needs so innovative firms and open source projects created NoSQL database
technology.

Use cases depict applications with performance requirements that were not met
by enterprise relational DBMSs. Table 19-3 provides a convenient summary of several
use cases. Financial trading, cell network monitoring, and environmental monitoring
place enormous demands for high velocity on transaction throughput requirements.
Enterprise DBMSs using ACID transaction principles could not handle these demands.
Database technology using BASE principles (see Chapter 17) and the CAP design
philosophy (see Chapter 18) support tradeoffs among consistency, performance, and
availability to meet demands from these applications. Enterprise DBMSs with parallel
processing architectures are not well-suited for batch applications with huge volumes
of semi-structured data such as indexing websites, weather forecasting, and customer
profile construction. Big data parallel processing architectures (see Chapter 18) were
designed to handle batch processing of huge amounts of semi-structured data. These
types of cases motivated organizations to develop specialized solutions that eventu-
ally were generalized into NoSQL database technology.

19.4  OVERVIEW OF NOSQL DATABASE MANAGEMENT

TABLE 19-3
Summary of Use Cases
for NoSQL Database
Technology

Application Processing Type Details

Financial trading Online Algorithmic trading based on price and volume
movements along with other market activity

Environmental monitoring Online and batch Real-time capture of weather sensor data and analysis
using complex forecasting models

Cell network monitoring Online Monitor cell traffic for bottlenecks and failures

Building customer profiles Batch Analyze web logs for customer preferences and
recommendations

26008_ch19_p767-828.indd 792 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   793

To meet these demands, NoSQL DBMSs have been developed over the last 15
years. The feature comparison in Table 19-4 indicates an emphasis on flexibility and
simplicity for data modeling and high performance on specialized applications in
NoSQL database technology. NoSQL DBMSs lack schemas (schema-less) for flexibility
and simplicity. NoSQL DBMSs provide improved performance on specialized applica-
tions through in-memory transaction processing, lack of constraint checking, relaxed
ACID properties with the BASE principle, big data parallel processing, and horizontal
scaling across distributed servers. NoSQL DBMSs support automatic sharding, trans-
parent partitioning of data across servers to scale efficiently for increased workloads.

Schema-less data model: does not provide data definition statements such as
CREATE TABLE. Data is stored without conformance to a data definition statement.

These advantages involve sharp tradeoffs, however. Developers using a NoSQL
DBMS have lower productivity because database manipulation is often performed
using an application programming interface rather than a standard query language
with a cost-based optimizing compiler. Complex software developed using a NoSQL
DBMS may have more faults because of the lack of safety features such as static type
checking, schema definition, and constraint checking. To overcome lack of safety fea-
tures, applications developed with NoSQL technology may require more testing and
validation using external schemas. Organizations using a relational DBMS face migra-
tion difficulties when moving to a NoSQL DBMS due to major differences in database
representation and manipulation. Organizations switching between NoSQL DBMSs
face switching difficulties because of lack of standards, especially a query language
standard.

The distinction between SQL and NoSQL DBMSs has reduced over time as SQL
DBMSs have implemented NoSQL technology. Major enterprise DBMSs now support
in-memory transaction processing, columnstore indexes, and big data parallel pro-
cessing. For flexibility, some major DBMSs now support simplified data models either
as an alternative to tables or as an extension. For example, Oracle supports the XML
data type allowing flexibility for data representation as part of a table. Oracle and

TABLE 19-4
Comparison of Features of
NoSQL and SQL DBMSsFeature

DBMS Technology

SQL Database NoSQL Database

Data model SQL CREATE TABLE statement Schema-less data models emphasizing
simplicity and flexibility; external
schemas with validation for some
data models

Transaction support ACID transactions sometimes with
in-memory processing

BASE approach with in-memory
processing

Query Language SQL SELECT, INSERT, UPDATE, and
DELETE statements

Some proprietary query languages and
open source projects

Data types Standard and extended data types
with static type checking

No data types and no static type
checking

Constraint checking Primary key, foreign key, CHECK, and
trigger

None or very limited

Optimizing compiler Cost based optimizing compiler Lacks cost-based optimization; Load
balancing with indexes

Performance Dependent on optimizing compiler, table
partitioning, and parallel processing

Dependent on hardware cluster size and
network latency

Scalability Designed to scale vertically with faster
hardware and parallel processing

Designed to scale horizontally through
automatic sharding

26008_ch19_p767-828.indd 793 3/2/18 11:04 PM

794   Part 7  Managing Database Environments

Microsoft also provide a NoSQL database as a separate product competing directly
with NoSQL DBMSs. In the Gartner 2016 analysis of DBMSs5, the authors indicate that
“the NoSQL label will cease to distinguish DBMSs.”

Consistent with the blurring between SQL and NoSQL database technology,
this textbook provides coverage of NoSQL database technology in various chapters.
Table 19-5 summarizes chapter coverage of NoSQL technology and application to
relational DBMSs. Chapter 8 presents columnstore indexes, a storage technology first
deployed in some NoSQL DBMSs. Chapter 17 presents in-memory transaction pro-
cessing and the BASE principle, cornerstone technology of NoSQL DBMSs. Chapter
18 presents big data parallel processing architectures and the CAP design philoso-
phy. Although big data parallel processing was not originally designed as part of a
DBMS, this technology has acquired DBMS capabilities for analytical queries and data
integration. Some enterprise DBMS vendors now integrate architectures for big data
parallel processing with standard DBMS parallel processing architectures. The CAP
design approach provides tradeoffs that dominate in distributed systems emphasized
in NoSQL database technology.

The next subsection covers data models used in NoSQL DBMSs. These data mod-
els can be incorporated into relational DBMSs as user defined types, similar to the
XMLType in SQL:2016 and Oracle.

19.4.2  Data Models in NoSQL DBMSs
Data models supported in NoSQL DBMSs emphasize simplicity and flexibility. The
data models were designed for high performance using relatively simple database
structures. For flexibility, the data models are schema-less although some NoSQL
DBMSs provide optional schema definition and validation features. This subsection
provides an overview of three prominent data models used in NoSQL DBMSs, key-
value, document, and graph. This subsection also covers columnar DBMSs, a variation
of relational DBMSs, using a different storage model.

Key-Value Data Model  The key-value data model supports a set of key-value pairs
in a structure known as an associative array, dictionary, or hash table. In a key-value
pair, the key identifies a pair item and the value provides content about the item. The
key must be unique in the structure so hash lookup can used to retrieve a key-value
element using a key. The value can contain any content including text, numbers,
lists, web addresses, and binary data such as images. Typically, the value part has a
text data type so no type checking occurs on the content. This schema-less approach
provides flexibility without restrictions on keys and values. However, this flexibility
lacks a mechanism to define types of key-value elements or relationships among key-
value elements. Thus, the key-value model is most appropriate for simple databases
representing only a small number of entity types.

TABLE 19-5
Summary of Chapter
Coverage of NoSQL
Database Technology

Chapter NoSQL Technology Relational DBMS Usage

Chapter 8 Columnstore storage for some NoSQL
DBMSs

Columnstore indexes for summary queries

Chapter 17 In-memory transaction processing, BASE
principle

In-memory transaction processing with
optimistic concurrency control

Chapter 18 Big data parallel processing architectures,
CAP design philosophy

Some usage of big data parallel processing
for data integration tasks

Chapter 19 Data models with simplicity and flexibility Possible usage as a new data type

5 Heudecker, N. et al. “Magic Quadrant for Operational Database Management Systems,” Gartner Report,
October 2016.

26008_ch19_p767-828.indd 794 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   795

To depict basic ideas of key-value databases, examples show variations for keys
and values. For the initial example, Table 19-6 contains a simple representation with a
person’s email address as the key and a person’s age as the value.

To represent attributes or properties in a key-value database, a key can contain a
property name along with a unique entity identifier. Table 19-7 contains a collection of
computer models with CPU and memory. The key representation contains the identi-
fier followed by a colon and property name. The key representation can be extended
for additional properties such as screen, color, and storage.

A key-value database can also contain lists as values to represent 1-M relation-
ships. Table 19-8 contains a list of products in a shopping cart. The value part contains
a variable number of products with each product separated by a comma.

To demonstrate key-value databases for more complex data requirements, the next
example compares a key-value database with a relational database. The table design
contains two tables, Agent (Table 19-9) and Home (Table 19-10), with each agent listing
one or more homes. The key-value database (Table 19-11) contains key-value pairs for
agents and listings. Each key contains an entity, identifier, and property. For example,
the key, Agent:A9999:AgFirstName, indicates the Agent entity with identifier A9999
and AgFirstName property. The relationship between agent and listing is encoded
with the AgentId label in a key. Note that the key-value database does not support ref-
erential integrity and data type compliance. However, the key-value database ensures
uniqueness of keys.

TABLE 19-6
Example Key-Value Pairs for
Email Address Key and Age
Value

Key (email address) Value (age)

William.Smith@StateUniversity.edu 50

Monique5555@hotmail.com 42

AnimeeFan121@gmail.com 22

Lisa.Lee@AnyCompany.com 35

TABLE 19-7
Example Key-Value Pairs for
Computer Models

Key (computer model and feature) Value (feature value)

HP ProBook 455:CPU AMD A10-9600P Quad Core 2.4 GHz

HP ProBook 455:Memory 16 GB DDR4 SDRAM

MSI GL62M 7RDX-NE 1050i7:CPU Intel Core i7-7700HQ 2.80 GHz

MSI GL62M 7RDX-NE 1050i7:Memory 8 GB DDR4

TABLE 19-8
Example Key-Value Pairs for
Shopping Cart

Key (shopping cart identifier) Value (list of products)

S111111 PPP101, DFG256, GHI100

X991111 XYZ191, DFG256

S999222 ABC123

R225598 GH100, ABC999, XQZ234, GGG101

TABLE 19-9
Sample Agent TableAgentId AgFirstName AgLastName AgPhone

A871111 Willie Jones (720)555-1212

A991111 Jorge Lopez (303)435-9999

A999222 Aimee Chan (303)555-8888

26008_ch19_p767-828.indd 795 3/2/18 11:04 PM

796   Part 7  Managing Database Environments

TABLE 19-10
Sample Home Table HomeId HomeNoBdrms HomeNoBathrms HomeAge AgentId

H111111 3 2 15 A871111

H222222 4 3 25 A871111

H333333 2 2   3 A991111

H444444 5 3 10 A999222

TABLE 19-11
Key-Value Pairs for Agents
and Homes

Key (entity:id:property) Value

Agent:A871111:AgFirstName Willie

Agent:A871111:AgLasttName Jones

Agent:A871111:AgPhone (720)555-1212

Agent:A991111:AgFirstName Jorge

Agent:A991111:AgLasttName Lopez

Agent:A991111:AgPhone (303)435-9999

Agent:A9991111:AgFirstName Aimee

Agent:A991111:AgLasttName Chan

Agent:A991111:AgPhone (303)555-8888

Home:H111111:HomeNoBdrms 3

Home:H111111:HomeNoBathrms 2

Home:H111111:HomeAge 15

Home:H222222:AgentId A871111

Home:H222222:HomeNoBdrms 4

Home:H222222:HomeNoBathrms 3

Home:H222222:HomeAge 25

Home:H222222:AgentId A871111

Home:H333333:HomeNoBdrms 2

Home:H333333:HomeNoBathrms 2

Home:H333333:HomeAge 3

Home:H333333:AgentId A991111

Home:H444444:HomeNoBdrms 5

Home:H444444:HomeNoBathrms 3

Home:H444444:HomeAge 10

Home:H444444:AgentId A999222

DBMSs using the key-value data model emphasize memory caching of large
amounts of simple data. Key-value databases support read-intense applications with
simple data requirements such as social networking, gaming, and media sharing. In-
memory storage improves retrieval performance of vital data especially in applications
with heavy computational requirements. Many NoSQL DBMSs use the key-value data
model including Redis, Memcached, and Amazon ElastiCache.

Document Data Model  The document data model extends the key-value data
model with structure. A document database contains collections of documents in
which each document consists of a collection of key-value pairs. A value may be a
scalar such as text, number, or date as well as a nested document. Thus, the document
data model provides convenient representation of entity types (collections of docu-
ments) and relationships (nested documents). In contrast, the key-value data model
lacks both features, collections of documents and nesting.

26008_ch19_p767-828.indd 796 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   797

The most prominent specification of the document data model is the JavaScript
Object Notation (JSON). JSON is a similar to the XML data type specified in the SQL
standard and implemented in Oracle. The next section on Couchbase N1QL provides
precise details about JSON documents and their usage in Couchbase N1QL. This sub-
section informally depicts JSON documents through extensions to examples depicting
the key-value data model.

The first example6 replicates the key-value representation in Table 19-11. Figures
19.3 and 19.4 show collections of documents for agents and homes, respectively. In
these examples, Agent and Home are collections of documents with the square brackets
[] enclosing a set of documents. The curly brackets {} enclose an individual document
in a set of documents. The only essential difference in data representation is the single
set of key-value pairs in the key-value representation (Table 19-11) versus two sets of
documents in Figures 19.3 and 19.4.

The document data model supports nesting of documents, another feature lack-
ing in the key-value data model. Figure 19.5 shows an alternative representation for
agents and homes with related homes nested inside an agent. Square brackets sur-
round nested home documents inside an agent document. For example, the agent
document with AgentId A871111 contains two nested home documents with HomeId
H111111 and H222222.

Nesting is a specialized representation because nesting makes a set of documents
exist only inside another document. The nested table feature in Oracle is specialized
because retrieval of a nested table requires retrieval of the parent row.

The document data model has an optional schema feature, another difference with
the key-value data model. The JSON schema feature provides documentation as well
as structural validation for automated testing and constraint checking of input data.
A schema specifies components of a document, data types, cardinalities for nested
documents, and other constraints. Unlike SQL, JSON schemas are optional providing
flexibility if a schema is not needed.

JavaScript Object Notation
(JSON)
the most prominent specifi-
cation of the document data
model. JSON, a schema-less
notation, supports specifica-
tion of document collections
consisting of key-value pairs
with optional nesting of
documents.

FIGURE 19.5
Home Documents Nested
Inside Agent Documents

Agent: [

{AgentId: A871111, AgFirstName: Willie, AgLastName: Jones, AgPhone: (720)555-1212}, Home:[

{HomeId: H111111, HomeNoBdrms: 3, HomeNoBathrms: 2, HomeAge:15},

{HomeId: H222222, HomeNoBdrms: 4, HomeNoBathrms: 3, HomeAge:25}],

{AgentId: A991111, AgFirstName: Jorge, AgLastName: Lopez, AgPhone: (303)435-9999},Home:[

{HomeId: H333333, HomeNoBdrms: 2, HomeNoBathrms: 2, HomeAge:3}],

{AgentId: A999222, AgFirstName: Aimee, AgLastName: Chan, AgPhone: (303)555-8888}, Home: [

{HomeId: H444444, HomeNoBdrms: 5, HomeNoBathrms: 3, HomeAge:10}]]

FIGURE 19.4
Home Documents

Home: [

{HomeId: H111111, HomeNoBdrms: 3, HomeNoBathrms: 2, HomeAge:15, AgentId: A871111},

{HomeId: H222222, HomeNoBdrms: 4, HomeNoBathrms: 3, HomeAge:25, AgentId: A871111},

{HomeId: H333333, HomeNoBdrms: 2, HomeNoBathrms: 2, HomeAge:3, AgentId: A991111},

{HomeId: H444444, HomeNoBdrms: 5, HomeNoBathrms: 3, HomeAge:10, AgentId: A999222}]

Agent: [

{AgentId: A871111, AgFirstName: Willie, AgLastName: Jones, AgPhone: (720)555-1212},

{AgentId: A991111, AgFirstName: Jorge, AgLastName: Lopez, AgPhone: (303)435-9999},

{AgentId: A999222, AgFirstName: Aimee, AgLastName: Chan, AgPhone: (303)555-8888}]

FIGURE 19.3
Agent Documents

6 The document examples in this section use notation similar to JSON. Section 19.5.1 presents precise JSON
notation used in Couchbase Server and many other products.

26008_ch19_p767-828.indd 797 3/2/18 11:04 PM

798   Part 7  Managing Database Environments

Similar to DBMSs supporting the key-value data model, DBMSs using the docu-
ment data model emphasize memory caching of large amounts of simple data. The
document data model extends the range of applications through document collections
and nested documents. Prominent NoSQL DBMSs supporting the document data
model are MongoDB, Couchbase, and Amazon DynamoDB.

Graph Data Model  The graph data model extends the document data model with
relationships. A graph database contains a collection of graphs. Each graph contains
nodes and relationships as depicted in Figure 19.6. Nodes and relationships can both
contain properties involving a list of key-value pairs. Like the document data model,
values can be nested in nodes and relationships. Relationships organize nodes so that
nesting values is not necessary. Relationships allow all nodes to participate in relation-
ships, providing the ability to retrieve nodes without reference to parent nodes. The
graph data model has an important integrity rule requiring no broken links in a graph.
All relationships in a graph have a start and end node.

The graph representation for agents and homes directly shows relationships
between agents and homes, eliminating indirect representation through nesting.
Figure 19.7 depicts a graph for agent A871111 connected to two homes (H111111 and
H222222) via Lists relationships. The nodes contain key-value pairs for agents and
homes. The graph data model uses directional relationships with each Lists relation-
ship from an agent (start node) to a home (end node) in Figure 19.7. However, rela-
tionships support bidirectional retrieval of start and end nodes. Relationships can also
have properties such as an On property indicating the listing date in Figure 19.7. The
entire graph database contains 3 graphs with each agent in a separate graph. Across
all graphs, the graph database contains 7 nodes (3 agent nodes and 4 home nodes) and
4 relationships connecting agents and homes.

Although the graph data model can be augmented with a schema, commercial
vendors and open-source projects have not produced the same schema features
compared to the JSON schema for the document data model. The Structr platform
provides a visual data modeling tool to create types for nodes, relationships, and
properties. The visual data modeling tool lacks constraint and validation features
of the JSON schema tools, however. The graph data model supports a level of ref-
erential integrity without a schema validation tool. The graph data model ensures

FIGURE 19.6
Components of the Graph
Data Model Graph

Node Relationship

Property

Organizes

26008_ch19_p767-828.indd 798 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   799

that all relationships have a start and end node so a graph database does not contain
incomplete links.

NoSQL DBMSs using the graph data model support large graphs with billions
of nodes and relationships for computationally intensive applications. Important use
cases for graph databases are fraud detection involving real-time analysis of pur-
chase patterns, recommender systems generating personalized product suggestions,
and social network analysis inferring relationships among individuals. Prominent
NoSQL DBMSs supporting the graph data model are Neo4j, Titan, OrientDB, and
GraphDB.

Columnar DBMS  A columnar DBMS is a relational DBMS with a different stor-
age model. Because most columnar DBMSs support SQL and some columnar DBMSs
substantially predate NoSQL, designation of columnar DBMSs as NoSQL is question-
able. The NoSQL label stems from the different storage model supported by columnar
DBMSs rather than the data model.

Columnar DBMSs provide column-oriented storage exclusively or as the major
storage approach. Chapter 8 (section 8.3.5) provides details about column-oriented
storage and columnstore indexes so details are not repeated here. In review, the
column-oriented approach reverses the basic method of storing data. The traditional
storage approach, known as a row store, places entire rows in physical records. In con-
trast, the column-oriented approach places columns in physical records. A column-
store index compresses all or a subset of columns of a table. Since major enterprise
DBMSs now support columnstore indexes, the distinguishing feature of columnar
DBMSs is the exclusive or major usage of column-oriented storage.

Columnar DBMSs emphasize business intelligence queries often involving group-
ing and aggregate calculations on tables with large number of rows. In addition to
column-oriented storage, columnar DBMSs provide horizontal scaling using distrib-
uted clusters of low cost hardware and automatic sharding to distribute data across
clusters. The combination of column-oriented storage and horizontal scaling makes
columnar DBMSs ideal for data warehouses. Amazon promotes its columnar DBMS,
Amazon Redshift, as a data warehouse solution. Early columnar databases were
developed many decades ago with Teradata Database in 1979, MonetDB in 1993, and
Sybase IQ in 1994.

Apache Cassandra is a prominent open source project supporting a columnar
approach. Unlike other columnar DBMSs, Cassandra provides the Cassandra Query
Language as it does not fully support SQL. In addition, Cassandra is schema-less
unlike other columnar DBMSs. Cassandra supports column families in which rows of
a table may have different columns and columns may be nested.

AgentId: A871111
AgFirstName: Willie
AgLastName: Jones
AgPhone: (720)555-1212

HomeId: H111111
HomeNoBedrms:3
HomeNoBathrms:2
HomeAge:15

HomeId: H222222
HomeNoBedrms:4
HomeNoBathrms:3
HomeAge:25

FIGURE 19.7
Graph for an Agent with Two
Home Listings

26008_ch19_p767-828.indd 799 3/2/18 11:04 PM

800   Part 7  Managing Database Environments

As the previous section indicated, NoSQL DBMSs have wide variation in data
models. These variations have impeded development of standardized tools, espe-
cially query languages. Development of query languages for document databases
has much activity because of the importance of JavaScript and JSON as well as
the close link between document representation and XML. A variety of query lan-
guages have been developed for document databases in commercial products and
open source projects. Some of the notable query languages for document databases
are Couchbase N1QL, Microsoft Azure DocumentDB, the open source JSONiq
project (www.jsoniq.org), and the open source JMESPath (jmespath.org). Some of
these languages extend XQuery, an emerging W3C standard for XML document
databases.

This section provides a flavor for query languages for document databases. Since
document databases typically use JSON objects, the first section provides syntax for
JSON. The second section presents N1QL (pronounced nickel), the document query
language for Couchbase. Syntax and examples of important N1QL statements are
depicted.

19.5.1  JavaScript Object Notation (JSON)
Section 19.4 introduced basic ideas behind the JavaScript Object Notation (JSON), but
did not provide precise details about its syntax. This section provides precise syntax
and more examples to depict the syntax. Couchbase N1QL, covered in the next subsec-
tion, manipulates JSON databases so a clear understanding of JSON is a prerequisite to
understanding Couchbase N1QL.

JSON is not JavaScript, an important programming language for web applications.
Rather JSON provides a language independent, data interchange format for objects.
JSON format is text so it can be used by web servers and parsed by programming
languages. Since JSON is based on the syntax of objects in JavaScript, it can be easily
parsed into JavaScript objects. Thus, the JSON name involves JavaScript as the first
two parts of the acronym.

The basic syntax for JSON involves key-value pairs. Keys must be enclosed in
double quotes. Values can use data types as summarized in Table 19-12. In an object,
key-value pairs are separated by commas. Curly braces contain objects, while square
brackets contain arrays.

The power of JSON involves objects and arrays as values. Figures 19.9 and 19.10
recast Figures 19.3 and 19.4 using precise JSON syntax. Figure 19.9 contains an object
with key Agent and value containing an array of three objects. Likewise, Figure 19.10
contains an object with key Home and value containing an array of four objects. Note
that curly braces surround key-value pairs inside an object, while square brackets sur-
round values inside an array.

19.5 � DATABASE DEFINITION AND MANIPULATION WITH
COUCHBASE N1QL

TABLE 19-12
JSON Data Types Data Type Notes Value Examples

String Enclosed in double quotes "abc", "text example"

Number Integer, decimal, or floating point format 10, 10.1, 3.1415e8

Object Enclosed in curly braces { } {"age":10, "name":"John"}

Array Enclosed in square brackets [ ] [1,2,3,4], ["abc", "text example"]

Boolean Two states (true or false) true, false

Null Absence of a value null

26008_ch19_p767-828.indd 800 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   801

JSON supports nesting of homes in agents as shown in Figure 19.11, an extension
of Figure 19.5 with precise JSON syntax. Figure 19.11 contains an object with key
Agent and value containing an array of three objects. The last key-value pair in each
object contains an array as a value. For the first object, the key Home contains two
objects. For the second and third objects, the key “Home” contains an array with one
object. The nesting of curly braces and square brackets makes JSON tedious to read
and write7.

JSON is a schema-less notation so additional key-value pairs can be added. In
addition, values with different data types can be provided for key-value pairs with the
same key for flexibility. Figure 19.12 extends Figure 19.11 with additional key-value
pairs and different data types. The object with HomeId “H555555” contains the null
value for HomeAge instead of an integer value in other objects. The object with HomeId
“H666666” contains the HomeSold key but not the HomeAge key.

Many external tools, programming languages, and DBMSs support JSON. Exter-
nal tools provide parsing, validation, conversion, and formatted display of JSON. For
example, the JSON Viewer provides features for hierarchical display, alignment of
objects (known as beautify), minimizing display (knowns as minify), validation, and
conversion to XML and CSV. Many programming languages provide functions to
parse JSON into internal representation and convert internal objects into JSON. For
example, JavaScript provides the parse function to convert JSON text (typically from a
web server) into JavaScript objects. The stringify function converts a JavaScript object
into JSON. Both relational DBMSs and NoSQL DBMSs support JSON. Many rela-
tional DBMSs provide a JSON data type (such as MySQL and IBM Informix) or native

7 JSON examples in Figures 19.9 to 19.12 were validated using the JSON validator at jsonlint.com.

{"Agent: ["

{"AgentId":"A871111", "AgFirstName":"Willie", "AgLastName":"Jones", "AgPhone":"(720)555-1212"},

{"AgentId": "A991111", "AgFirstName":"Jorge","AgLastName":"Lopez", "AgPhone":"(303)435-9999"},

{"AgentId":"A999222", "AgFirstName":"Aimee", "AgLastName":"Chan", "AgPhone":"(303)555-8888"}] }

FIGURE 19.9
Agent Object in JSON Syntax

{"Home": [

{"HomeId":"H111111","HomeNoBdrms":3,"HomeNoBathrms":2,"HomeAge":15,"AgentId": "A871111"},

{"HomeId":"H222222","HomeNoBdrms":4,"HomeNoBathrms":3,"HomeAge":25,"AgentId": "A871111"},

{"HomeId":"H333333","HomeNoBdrms":2,"HomeNoBathrms":2,"HomeAge":3,"AgentId": "A991111"},

{"HomeId":"H444444","HomeNoBdrms":5,"HomeNoBathrms":3,"HomeAge":10,"AgentId": "A999222"}]}

FIGURE 19.10
Home Object in JSON Syntax

{"Agent": [

{"AgentId":"A871111", "AgFirstName":"Willie", "AgLastName":"Jones", "AgPhone":"(720)555-1212",

"Home":[{"HomeId":"H111111","HomeNoBdrms":3,"HomeNoBathrms":2,"HomeAge":15},

{"HomeId":"H222222","HomeNoBdrms":4,"HomeNoBathrms":3,"HomeAge":25}] },

{"AgentId": "A991111", "AgFirstName":"Jorge","AgLastName":"Lopez", "AgPhone":"(303)435-9999",

"Home":[{"HomeId":"H333333","HomeNoBdrms":2,"HomeNoBathrms":2,"HomeAge":3}] },

{"AgentId":"A999222", "AgFirstName":"Aimee", "AgLastName":"Chan", "AgPhone":"(303)555-8888",

"Home": [{"HomeId":"H444444","HomeNoBdrms":5,"HomeNoBathrms":3,"HomeAge":10}] }] }

FIGURE 19.11
Home Objects Nested Inside
Agent Objects in JSON

26008_ch19_p767-828.indd 801 3/2/18 11:04 PM

802   Part 7  Managing Database Environments

support for JSON with transactions, views, and queries (such as Oracle and Microsoft
SQL Server). The next subsection demonstrates query language statements for JSON
documents in Couchbase Server.

19.5.2  Couchbase N1QL Statements
Couchbase Server, available under an open core license, supports key-value stores and
JSON document databases with a NoSQL architecture. An organization can use the
free community edition or the subscription commercial edition. Although Couchbase
Server supports both key-value stores and document databases, this section only cov-
ers JSON-style document databases. Couchbase N1QL was designed for document
databases, not key-value stores. As a NoSQL DBMS, Couchbase Server provides a
cluster manager, document indexes, and scalability for data, indexes, and query ser-
vices. To support data scalability, Couchbase Server provides automatic sharding
across clusters.

This section provides an overview of N1QL (pronounced nickel) statements for
JSON documents in Couchbase Server. N1QL statements look similar to SQL state-
ments, but important differences involve nested documents. This section covers basics
of the SELECT statement to manipulate a fully nested document design (Figure 19.11),
flat document design (Figures 19.9 and 19.10), and partially nested document design
with a parent document just containing unique identifiers of child documents.

Storage of JSON Documents in Buckets  Couchbase buckets8 store collections of
documents (JSON objects). A bucket differs from a table in that a bucket can contain
documents with varying structure. As bucket examples, Figures 19.9 to 19.11 show
documents in the Agent bucket, Home bucket, and AgentHome bucket. The Agent and
Home buckets represent a traditional table design with a foreign key in home docu-
ments. The AgentHome bucket represents a fully nested design with homes nested
inside agent documents.

After creating a bucket, a collection of documents can be stored in the bucket using
the N1QL INSERT statement. Examples 19.38 to 19.40 show INSERT statements to store
documents in the Agent, Home, and AgentHome buckets. The INTO clause identifies the
bucket name before the keywords (KEY, VALUE). The first part of the VALUES clause
is the document identifier (“A871111” in Example 19.38) required by N1QL. The first
key (AgentId in Example 19.38) repeats the document identifier although not required
by N1QL. After the document identifier, the INSERT statement contains a JSON object.
Appendix 19.A contains the complete set of INSERT statements for all three buckets.

{"Agent": [

{"AgentId":"A871111", "AgFirstName":"Willie", "AgLastName":"Jones", "AgPhone":"(720)555-1212",

"Home":[{"HomeId":"H111111","HomeNoBdrms":3,"HomeNoBathrms":2,"HomeAge":15},

{"HomeId":"H222222","HomeNoBdrms":4,"HomeNoBathrms":3,"HomeAge":25 }] },

{"AgentId": "A991111", "AgFirstName":"Jorge","AgLastName":"Lopez", "AgPhone":"(303)435-9999",

"Home": [{"HomeId":"H333333","HomeNoBdrms":2,"HomeNoBathrms":2,"HomeAge":3}] },

{"AgentId":"A999222", "AgFirstName":"Aimee", "AgLastName":"Chan", "AgPhone":"(303)555-8888",

"Home": [{"HomeId":"H444444","HomeNoBdrms":5,"HomeNoBathrms":3,"HomeAge":10},

{"HomeId":"H555555","HomeNoBdrms":3,"HomeNoBathrms":2,"HomeAge":null},

{"HomeId":"H666666","HomeNoBdrms":4,"HomeNoBathrms":2,"HomeSold":false}] }] }

FIGURE 19.12
Home Objects with Additions
to Key-Value Pairs

8 Although Couchbase documentation refers to both keyspaces and buckets, this section uses only buckets.
Buckets are created using the Couchbase Web Console.

26008_ch19_p767-828.indd 802 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   803

Example 19.38

INSERT statement for the Agent bucket

INSERT INTO Agent (KEY, VALUE)
VALUES ("A871111",
 {"AgentId":"A871111", "AgFirstName":"Willie",
 "AgLastName":"Jones", "AgPhone":"(720)555-1212"});

Example 19.39

INSERT statement for the Home bucket with
a foreign key representation using an agent
identifier in a home document. HomeAddr
is an additional key with an object value
beyond the keys shown in Figure 19.10

INSERT INTO Home (KEY, VALUE)
VALUES ("H111111",
 {"HomeId":"H111111","HomeNoBdrms":3,
 "HomeNoBathrms":2,"HomeAge":15,"AgentId":"A871111",
 "HomeAddr":{"City":"Denver","State":"CO","ZipCode":80113} });

Example 19.40

INSERT statement for the AgentHome
bucket with a fully nested representation
of homes inside agents. The document
inserted into the AgentHome bucket
contains an additional key (HomeAddr)
beyond the keys shown in Figure 19.11

INSERT INTO AgentHome (KEY, VALUE)
 VALUES 871111",
 {"AgentId":"A871111", "AgFirstName":"Willie",
 "AgLastName":"Jones", "AgPhone":"(720)555-1212",
 "Home":[
 {"HomeId":"H111111","HomeNoBdrms":3,
 "HomeNoBathrms":2,"HomeAge":15,
 "HomeAddr":{"City":"Denver","State":"CO","ZipCode":80110}},
 {"HomeId":"H222222","HomeNoBdrms":4,
 "HomeNoBathrms":3,"HomeAge":25,
 "HomeAddr":{"City":"Denver","State":"CO","ZipCode":80113}}] }
);

26008_ch19_p767-828.indd 803 3/2/18 11:04 PM

804   Part 7  Managing Database Environments

SELECT Statements using Fully Nested Documents  The N1QL SELECT state-
ment has the same basic clauses (SELECT, FROM, WHERE, GROUP BY, HAVING) as
the SQL SELECT statement. However, the N1QL SELECT statement uses and gener-
ates JSON documents rather than tables. Since document databases emphasize nested
documents, many queries involve a single bucket9. Thus, the first set of SELECT state-
ments involve the AgentHome bucket, a fully nested representation.

Example 19.41 depicts a simple example with a WHERE condition and uniform
result. In a uniform result, all result documents contain the same key-value pairs.
Example 19.42 extends Example 19.41 with a non-uniform result using the * opera-
tor, generating all key-value pairs for each document including nested documents.
Because JSON documents are schema-less, some documents may contain different sets
of key-value pairs as well as arrays of nested objects. The Couchbase Query Work-
bench provides options to view a query result as JSON, table, tree, or plain text.

Example 19.41

Retrieve selected agent key-value pairs
for first names equal to Willie. The
double slash indicates a comment

SELECT AgLastName, AgPhone
 FROM AgentHome
 WHERE AgFirstName = "Willie";
// JSON result
[
 {
 "AgLastName": "Jones",
 "AgPhone": "(720)555-1212"
 }
]

9 Couchbase Server has a default limit of 10 buckets per cluster showing a difference between tables and
buckets.

Example 19.42

Retrieve all agent key-value pairs
for first names equal to Willie
SELECT *
 FROM AgentHome
 WHERE AgFirstName = "Willie";
// JSON result
 [
 {
 "AgentHome": {
 "AgFirstName": "Willie",
 "AgLastName": "Jones",
 "AgPhone": "(720)555-1212",
 "AgentId": "A871111",
 "Home": [
 {
 "HomeAddr": {

26008_ch19_p767-828.indd 804 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   805

To test conditions on collections, N1QL provides a variety of comparison opera-
tors. The ANY operator returns true if one member in a collection satisfies the condi-
tion following the SATISFIES keyword. The identifier following the ANY keyword
provides an index for the array object. In Example 19.43, the identifier (“h”)10, indexes
elements of the Home array. The END keyword terminates the ANY operator.

 "City": "Denver",
 "State": "CO",
 "ZipCode": 80110
 },
 "HomeAge": 15,
 "HomeId": "H111111",
 "HomeNoBathrms": 2,
 "HomeNoBdrms": 3
 },
 {
 "HomeAddr": {
 "City": "Centennial",
 "State": "CO",
 "ZipCode": 80112
 },
 "HomeAge": 25,
 "HomeId": "H222222",
 "HomeNoBathrms": 3,
 "HomeNoBdrms": 4
 }
]
 }
 }
]

10 Identifiers in N1QL are case sensitive.

Example 19.43

Retrieve first name, last name, and homes
of agents for agents listing at least one
home with number of bedrooms greater
than 3. The last document contains
a key (HomeSold) not contained
in other documents

SELECT AgFirstName, AgLastName, Home
 FROM AgentHome
 WHERE ANY h IN Home SATISFIES h.HomeNoBdrms > 4 END;
// JSON result
[
 {
 "AgFirstName": "Aimee",
 "AgLastName": "Chan",
 "Home": [
 {
 "HomeAddr": {
 "City": "Aurora",

26008_ch19_p767-828.indd 805 3/2/18 11:04 PM

806   Part 7  Managing Database Environments

To retrieve an element of an array, an index can be used inside square brackets.
To retrieve all array members, the * should be used inside square brackets as shown
in Example 19.44.

The EVERY operator returns true if all members in an array satisfy a specified
condition. The syntax for the EVERY operator closely follows the syntax of the ANY
operator except for the different keywords as shown in Example 19.45.

 "State": "CO",
 "ZipCode": 80107
 },
 "HomeAge": 10,
 "HomeId": "H444444",
 "HomeNoBathrms": 3,
 "HomeNoBdrms": 5
 },
 {
 "HomeAddr": {
 "City": "Centennial",
 "State": "CO",
 "ZipCode": 80112
 },
 "HomeAge": null,
 "HomeId": "H555555",
 "HomeNoBathrms": 2,
 "HomeNoBdrms": 3
 },
 {
 "HomeAddr": {
 "City": "Aurora",
 "State": "CO",
 "ZipCode": 80109
 },
 "HomeId": "H666666",
 "HomeNoBathrms": 2,
 "HomeNoBdrms": 4,
 "HomeSold": false
 }
]
 }
]

Example 19.44

Retrieve first and last names of agents and
addresses and ages of homes for agents with
at least one home having age less than 10

SELECT AgFirstName, AgLastName, Home[*].HomeAddr, Home[*].HomeAge
 FROM AgentHome
 WHERE ANY h IN Home SATISFIES h.HomeAge < 10 END;
// JSON result
[
 {
 "AgFirstName": "Jorge",
 "AgLastName": "Lopez",
 "HomeAddr": [

26008_ch19_p767-828.indd 806 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   807

 {
 "City": "Denver",
 "State": "CO",
 "ZipCode": 80104
 }
],
 "HomeAge": [
 3
]
 }
]

Example 19.45

Retrieve first and last names of
agents and addresses and ages of
listed homes for agents with all
homes with age greater than 10

SELECT AgFirstName, AgLastName, Home[*].HomeAddr, Home[*].HomeAge
 FROM AgentHome
 WHERE EVERY member IN Home SATISFIES member.HomeAge > 10 END;
// JSON result
[
 {
 "AgFirstName": "Willie",
 "AgLastName": "Jones",
 "HomeAddr": [
 {
 "City": "Denver",
 "State": "CO",
 "ZipCode": 80110
 },
 {
 "City": "Centennial",
 "State": "CO",
 "ZipCode": 80112
 }
],
 "HomeAge": [
 15,
 25
]
 }
]

A summary calculation over an array of objects is a subtle part of N1QL. N1QL
provides a limited collection of functions to summarize arrays. Examples 19.46
and 19.47 demonstrate the ARRAY_COUNT and ARRAY_SUM functions to sum-
marize the Home array. With array summary functions, the GROUP BY clause is
not used.

For summary calculations beyond the limited functions for arrays, nested objects
(arrays of objects) should be unnested using the UNNEST operator. The UNNEST
operator appears immediately after the FROM clause as depicted in Example 19.48.

UNNEST operator
flattens an array of objects
into a tabular representa-
tion by repeating parent
details for each object in an
array. The UNNEST operator
appears immediately after
the FROM clause in an N1QL
SELECT statement.

26008_ch19_p767-828.indd 807 3/2/18 11:04 PM

808   Part 7  Managing Database Environments

Example 19.46

Retrieve first and last names of agents
and count of listed homes by the agent
SELECT AgFirstName, AgLastName, ARRAY_COUNT(Home) AS HomeCount
 FROM AgentHome;
// JSON result
[
 {
 "AgFirstName": "Willie",
 "AgLastName": "Jones",
 "HomeCount": 2
 },
 {
 "AgFirstName": "Jorge",
 "AgLastName": "Lopez",
 "HomeCount": 1
 },
 {
 "AgFirstName": "Aimee",
 "AgLastName": "Chan",
 "HomeCount": 3
 }
]

Example 19.47

Retrieve first and last names of agents and
average age of listed homes by the agent
SELECT AgFirstName, AgLastName,
 ARRAY_AVG(Home[*].HomeAge) AS HomeAgeAvg
 FROM AgentHome;
// JSON result
[
 {
 "AgFirstName": "Willie",
 "AgLastName": "Jones",
 "HomeAgeAvg": 20
 },
 {
 "AgFirstName": "Jorge",
 "AgLastName": "Lopez",
 "HomeAgeAvg": 3
 },
 {
 "AgFirstName": "Aimee",
 "AgLastName": "Chan",
 "HomeAgeAvg": 10
 }
]

The UNEST operator uses a key (Home) containing an array of objects. The alias fol-
lowing the Home key is optional. The result contains two documents with the same last
name (“Jones”) in each document.

26008_ch19_p767-828.indd 808 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   809

The UNNEST operator combines with the GROUP BY clause and summary func-
tions for nested objects. Examples 19.49 and 19.50 combine the UNNEST operator
and the GROUP BY clause. The AVG function in Example 19.50 requires a key name
(h.HomeNoBdrms). The HAVING clause as shown in Example 19.50 applies to sum-
mary functions, similar to the HAVING clause in the SQL SELECT statement.

Example 19.48

Retrieve the last name and home address
properties of agent with last name “Jones”.
Unnest the list of home addresses

SELECT AgentHome.AgLastName, h.HomeAddr
 FROM AgentHome
 UNNEST Home h
 WHERE AgentHome.AgLastName = "Jones";
// JSON result
[
 {
 "AgLastName": "Jones",
 "HomeAddr": {
 "City": "Denver",
 "State": "CO",
 "ZipCode": 80110
 }
 },
 {
 "AgLastName": "Jones",
 "HomeAddr": {
 "City": "Centennial",
 "State": "CO",
 "ZipCode": 80112
 }
 }
]

Example 19.49

Retrieve the count of homes by
zip code for homes in Denver
SELECT h.HomeAddr.ZipCode, COUNT(*) AS HomeCount
 FROM AgentHome
 UNNEST Home h
 WHERE h.HomeAddr.City = "Denver"
 GROUP BY h.HomeAddr.ZipCode;
//JSON result
[
 {
 "HomeCount": 1,
 "ZipCode": 80104
 },
 {
 "HomeCount": 1,
 "ZipCode": 80110
 }
]

26008_ch19_p767-828.indd 809 3/2/18 11:04 PM

810   Part 7  Managing Database Environments

JOIN Operator for Tabular Document Representation  N1QL provides the JOIN
operator to combine documents from different buckets. Most databases have mul-
tiple buckets even if with document nesting so the JOIN operator is still important
for document databases. The N1QL JOIN operator is not symmetric as the bucket
containing join keys must be placed before the JOIN keyword. In Example 19.51, Home
(child bucket) precedes the JOIN keyword. The foreign key in Home documents fol-
lows the ON KEYS keywords. In Example 19.51, Home.AgentId is the foreign key in
Home documents.

N1QL JOIN operator
combines documents in
different buckets using a key
to match documents. The
bucket containing join keys
must be placed before the
JOIN keyword followed by
the second bucket after the
JOIN keyword.

Example 19.50

Retrieve the average number of beds by
city for homes with more than 1 bathroom.
Only include cities with average
number of bedrooms greater than 3

SELECT h.HomeAddr.City, AVG(h.HomeNoBdrms) AS AvgHomeBeds
 FROM AgentHome
 UNNEST Home h
 WHERE h.HomeNoBathrms > 1
 GROUP BY h.HomeAddr.City
 HAVING AVG(h.HomeNoBdrms) > 3;
// JSON Result
[
 {
 "AvgHomeBeds": 4.5,
 "City": "Aurora"
 },
 {
 "AvgHomeBeds": 3.5,
 "City": "Centennial"
 }
]

Example 19.51

Retrieve agent and home details with agent
first name equal to “Willie”. Example 19.51
generates the same result as Example 19.42
except for formatting differences (nested in
Example 19.42 and flat in Example 19.51)

SELECT *
 FROM Home JOIN Agent ON KEYS Home.AgentId
 WHERE Agent.AgFirstName = "Willie";
// JSON result
[
 {
 "Agent": {
 "AgFirstName": "Willie",

26008_ch19_p767-828.indd 810 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   811

Other examples indicate that N1QL SELECT statements look similar to SQL
SELECT statements for a document representation matching a table design with for-
eign keys. Examples 19.52 to 19.54 recast previous examples using a document rep-
resentation with foreign keys. Array functions, array references, and unnesting are
not needed in these examples because of the foreign key representation of document
relationships.

JOIN and NEST Operators for Partial Document Nesting  Previous examples
in this subsection demonstrated a fully nested document representation (AgentHome
buckets) and a tabular representation (Agent and Home). A partially nested representa-
tion uses an array of document identifiers in a parent document. Examples 19.55 and
19.56 show INSERT statements for a partial nested representation with an array of
home identifiers in an agent document and a home document without a reference to
an agent document. A partial nested representation provides an independent repre-
sentation for each type of document in a 1-M relationship.

The N1QL JOIN operator can combine two buckets with a partially nested repre-
sentation. Example 19.57 demonstrates the JOIN operator in which the parent bucket
contains matching document identifiers. The parent bucket (Agent2) appears before
the child bucket (Home2) because agent documents contain home identifiers. The JOIN
operator requires qualification of a key name with a bucket name or alias (Agent2.
AgFirstName).

 "AgLastName": "Jones",
 "AgPhone": "(720)555-1212",
 "AgentId": "A871111"
 },
 "Home": {
 "AgentId": "A871111",
 "HomeAddr": {
 "City": "Denver",
 "State": "CO",
 "ZipCode": 80113
 },
 "HomeAge": 15,
 "HomeId": "H111111",
 "HomeNoBathrms": 2,
 "HomeNoBdrms": 3
 }
 },
 {
 "Agent": {
 "AgFirstName": "Willie",
 "AgLastName": "Jones",
 "AgPhone": "(720)555-1212",
 "AgentId": "A871111"
 },
 "Home": {
 "AgentId": "A871111",
 "HomeAddr": {
 "City": "Centennial",
 "State": "CO",
 "ZipCode": 80112
 },
 "HomeAge": 25,
 "HomeId": "H2222222",
 "HomeNoBathrms": 3,
 "HomeNoBdrms": 4
 }
 }
]

26008_ch19_p767-828.indd 811 3/2/18 11:04 PM

812   Part 7  Managing Database Environments

Example 19.52

Retrieve first and last names of agents and
addresses and ages of homes for agents
with at least one home with age less than
10. Example 19.52 generates the same result
as Example 19.44 except for nesting in
Example 19.42 and tabular in Example 19.51

SELECT A.AgFirstName, A.AgLastName, H.HomeAddr, H.HomeAge
 FROM Home H JOIN Agent A ON KEYS H.AgentId
 WHERE H.HomeAge < 10;
// JSON result
[
 {
 "AgFirstName": "Jorge",
 "AgLastName": "Lopez",
 "HomeAddr": {
 "City": "Denver",
 "State": "CO",
 "ZipCode": 80104
 },
 "HomeAge": 3
 }
]

Example 19.53

Retrieve first and last names of agents and count
of listed homes by the agent. The JSON result
follows the N1QL SELECT statement. Example
19.53 generates the same result as Example 19.46
SELECT A.AgFirstName, A.AgLastName, COUNT(*) as HomeCount
 FROM Home H JOIN Agent A ON KEYS H.AgentId
 GROUP BY A.AgFirstName, A.AgLastName;
// JSON result
[
 {
 "AgFirstName": "Jorge",
 "AgLastName": "Lopez",
 "HomeCount": 1
 },
 {
 "AgFirstName": "Aimee",
 "AgLastName": "Chan",
 "HomeCount": 3
 },
 {
 "AgFirstName": "Willie",
 "AgLastName": "Jones",
 "HomeCount": 2
 }
]

26008_ch19_p767-828.indd 812 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   813

Example 19.54

Retrieve the average number of beds by city
for homes with more than 1 bathroom. Only
include cities with average number of
bedrooms greater than 3. Example 19.54
generates the same result as Example 19.50

 SELECT H.HomeAddr.City, AVG(H.HomeNoBdrms) AS AvgHomeBeds
 FROM Home H JOIN Agent A ON KEYS H.AgentId
 WHERE H.HomeNoBathrms > 1
 GROUP BY H.HomeAddr.City
 HAVING AVG(H.HomeNoBdrms) > 3;
// JSON result
[
 {
 "AvgHomeBeds": 3.5,
 "City": "Centennial"
 },
 {
 "AvgHomeBeds": 4.5,
 "City": "Aurora"
 }
]

Example 19.56

INSERT statement for the Home2
bucket without an identifier refer-
ring to a home document

INSERT INTO Home2 (KEY, VALUE)
VALUES ("H111111",
 {"HomeId":"H111111","HomeNoBdrms":3,
 "HomeNoBathrms":2,"HomeAge":15,
 "HomeAddr":{"City":"Denver","State":"CO","ZipCode":80113} });

Example 19.55

INSERT statement for the Agent2
bucket with nested home identifiers
INSERT INTO Agent2 (KEY, VALUE)
VALUES ("A871111",
 {"AgentId":"A871111", "AgFirstName":"Willie",
 "AgLastName":"Jones", "AgPhone":"(720)555-1212",
 "HomeId":["H111111","H222222"] });

26008_ch19_p767-828.indd 813 3/2/18 11:04 PM

814   Part 7  Managing Database Environments

Example 19.57

Retrieve agent and home details with agent
first name equal to “Willie”. Example 19.57
generates the same result as Example
19.51 except for different bucket names

SELECT *
 FROM Agent2 JOIN Home2 ON KEYS Agent2.HomeId
 WHERE Agent2.AgFirstName = "Willie";
// JSON result
[
 {
 "Agent2": {
 "AgFirstName": "Willie",
 "AgLastName": "Jones",
 "AgPhone": "(720)555-1212",
 "AgentId": "A871111",
 "HomeId": [
 "H111111",
 "H222222"
]
 },
 "Home2": {
 "HomeAddr": {
 "City": "Denver",
 "State": "CO",
 "ZipCode": 80113
 },
 "HomeAge": 15,
 "HomeId": "H111111",
 "HomeNoBathrms": 2,
 "HomeNoBdrms": 3
 }
 },
 {
 "Agent2": {
 "AgFirstName": "Willie",
 "AgLastName": "Jones",
 "AgPhone": "(720)555-1212",
 "AgentId": "A871111",
 "HomeId": [
 "H111111",
 "H222222"
]
 },
 "Home2": {
 "HomeAddr": {
 "City": "Centennial",
 "State": "CO",
 "ZipCode": 80112
 },
 "HomeAge": 25,
 "HomeId": "H2222222",
 "HomeNoBathrms": 3,
 "HomeNoBdrms": 4
 }
 }
]

26008_ch19_p767-828.indd 814 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   815

Example 19.57 demonstrates a fundamental difference between the N1QL JOIN
operator and SQL JOIN operator. The N1QL JOIN operator uses document identi-
fiers in either a parent document or child document. Conditions in a SQL JOIN opera-
tion only use a foreign key in a child table. However, the N1QL JOIN operator is not
symmetric like the SQL JOIN operator because the bucket order matters. The FROM
clauses in Examples 19.52 to 19.54 can be rewritten for the partially nested representa-
tion in the Agent2 and Home2 buckets.

The NEST operator provides another way to combine buckets with a partially
nested design. Conceptually, the NEST operator yields the opposite of UNNEST.
NEST creates an array of child objects inside a parent object, while UNNEST flattens
an array of objects, repeating each parent object with a child object. Example 19.58
demonstrates the NEST operator as an alternative to the JOIN operator. The result of
Example 19.57 contains two flat objects, each combining an agent and a home object. In
contrast, the result of Example 19.58 contains one nested object consisting of an agent
object and an array of home objects. The NEST operator requires qualification of a key
name with a bucket name or alias (Agent2.AgFirstName).

NEST operator
combines documents in
different buckets as an alter-
native to the JOIN operator.
Like the JOIN operator, the
NEST operator requires a
key to link parent and child
documents. NEST creates an
array of child objects inside a
parent object.

Example 19.58

Retrieve agent and home details with agent
first name equal to “Willie”. Nest home
documents inside agent documents.
Example 19.58 generates the same result
as Example 19.57 except for nesting of
home objects inside agent objects

SELECT *
 FROM Agent2 NEST Home2 ON KEYS Agent2.HomeId
 WHERE Agent2.AgFirstName = "Willie";
// JSON result
[
 {
 "Agent2": {
 "AgFirstName": "Willie",
 "AgLastName": "Jones",
 "AgPhone": "(720)555-1212",
 "AgentId": "A871111",
 "HomeId": [
 "H111111",
 "H222222"
]
 },
 "Home2": [
 {
 "HomeAddr": {
 "City": "Denver",
 "State": "CO",
 "ZipCode": 80113
 },
 "HomeAge": 15,
 "HomeId": "H111111",
 "HomeNoBathrms": 2,
 "HomeNoBdrms": 3
 },

26008_ch19_p767-828.indd 815 3/2/18 11:04 PM

816   Part 7  Managing Database Environments

 {
 "HomeAddr": {
 "City": "Centennial",
 "State": "CO",
 "ZipCode": 80112
 },
 "HomeAge": 25,
 "HomeId": "H2222222",
 "HomeNoBathrms": 3,
 "HomeNoBdrms": 4
 }
]
 }
]

This subsection covered basic parts of N1QL. To master N1QL, you need extended
study about array functions and referencing, chaining operators for combining buck-
ets (JOIN, NEST, and UNNEST), subqueries, set operators, one-sided outer joins, and
other statements (DELETE, UPDATE, and UPSERT). To master document databases,
you need study about more complex data modeling patterns, particularly M-N rela-
tionships with attributes. The coverage in this subsection should provide a strong
foundation for your extended study.

CLOSING THOUGHTS

This chapter described DBMS extensions for two alternative database representations
to support applications with non-traditional data and big data requirements. Object
database technology supports applications that integrate complex and simple data
and software productivity problems due to type mismatches between DBMSs and
programming languages. NoSQL (Not only SQL) database technology supports appli-
cations processing huge levels of relatively simple data. Object database technology
has been developed for decades in industry and universities resulting in a detailed
specification in the SQL standard. NoSQL database technology is a more recent devel-
opment, spurred by big data demands in ecommerce, finance, medicine, engineering,
and science.

To provide a more concrete view of object databases, Section 19.2 presented the
object database definition and manipulation features of SQL:2016. User-defined types
support new kinds of complex data. Expressions in queries can reference columns
based on user-defined types and use methods of user-defined types. SQL:2016
supports inheritance for user-defined types as well as set inclusion relationships for
subtable families. Due to the complexity of SQL:2016, few DBMSs conform to all object
features in the SQL standard. Object features in Oracle were presented to demonstrate
the implementation of many SQL:2016 object features. Section 19.3 provided many
examples of Oracle SQL statements for definition and retrieval involving user-
defined-types and typed tables. Oracle supports all major object features except
subtable families as well as additional features for nested tables and the XML data
type.

The last two sections of this chapter covered features common to many NoSQL
DBMSs as well as details about Couchbase Server, a prominent NoSQL DBMS. NoSQL
DBMSs provide schema-less data models emphasizing simplicity and flexibility to
achieve high performance. Section 19.4 depicted common features in NoSQL DBMSs
and an overview of data models supported by NoSQL DBMSs. The first part of Sec-
tion 19.5 provided precise details about the JavaScript Object Notation (JSON) as a

26008_ch19_p767-828.indd 816 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   817

prerequisite to the N1QL query language provided by Couchbase Server. The second
part of Section 19.5 depicted the INSERT and SELECT statements of N1QL with exam-
ples using nested and tabular JSON documents.

Object database and NoSQL technology have extended rather than disrupted
the market for database products and services. Relational database technology dis-
rupted the database market in the 1980s. The dominate DBMSs in the 1970s only
survived as legacy products after the onslaught of relational database technology.
However, relational DBMSs have maintained dominance partially by integrating
object and NoSQL database features. The new class of object-oriented DBMSs devel-
oped in the 1990s have almost entirely been swept away by lack of demand for some
object features and extension of the SQL standard with object features. Many fea-
tures initially developed for NoSQL DBMSs have been implemented in relational
DBMSs so the distinction between NoSQL and relational DBMSs has blurred over
time.

REVIEW CONCEPTS

•	 Examples of complex data that can be stored in digital format
•	 Applications needing to integrate simple and complex data as a motivation for

object database technology
•	 Type mismatches as a motivation for object database technology
•	 User-defined types in SQL:2016 for defining complex data and operations
•	 Subtable families in SQL:2016: inheritance and set inclusion
•	 Relationship of subtable families and user-defined types
•	 Use of the SQL:2016 row type and reference type in object tables
•	 Use of path expressions and the dereference operator (→) in SQL:2016 SELECT

statements
•	 Referencing subtables in SELECT statements
•	 Defining and using user-defined types and typed tables in Oracle
•	 Differences in object features between Oracle and SQL:2016
•	 XMLType data type to store XML documents in columns and rows
•	 XQuery functions and notation for manipulating XML documents in a SELECT

statement
•	 Use cases in financial trading, environmental monitoring, cell network

monitoring, and customer profiles for NoSQL database technology
•	 NoSQL database technology emphasizing simplicity and flexibility in data

modeling and performance on specialized applications
•	 Prominent features of NoSQL DBMSs: schema-less data models, in memory

transaction processing, proprietary query languages, automatic sharding, and
load balancing

•	 Data models for NoSQL DBMSs: key-value, document, and graph
•	 Columnar DBMS, relational DBMS with a different storage model
•	 JavaScript Object Notation (JSON) providing a language independent, data

interchange format for objects
•	 Representation of documents in JSON: fully nested, flat, and partially nested
•	 Couchbase N1QL for manipulating JSON nested objects
•	 Couchbase buckets for storage of JSON objects
•	 N1QL SELECT statement for retrieval of JSON objects

26008_ch19_p767-828.indd 817 3/2/18 11:04 PM

818   Part 7  Managing Database Environments

•	 Clauses in the N1QL SELECT statement: SELECT, FROM, WHERE, GROUP BY,
HAVING, and ORDER BY clauses

•	 ANY and EVERY operators for testing conditions on nested objects
•	 N1QL array functions for summary calculations on arrays of objects
•	 N1QL UNNEST operator to flatten nested objects
•	 N1QL JOIN operator to combine objects with flat or partially nested

representation
•	 N1QL NEST operator to combine objects with a partially nested representation

QUESTIONS

  1.	How does the use of complex data drive the need for object database
technology?

  2.	What problems are caused by mismatches between the types provided by a
DBMS and a programming language?

  3.	Present an example application that uses both simple and complex data. Use a
different application than discussed in Section 19.1.3.

  4.	What are the components of a user-defined type in SQL:2016?
  5.	What are the differences between SQL:2016 methods, functions, and

procedures?
  6.	How are SQL:2016 user-defined types used in table definitions and expressions?
  7.	What is a row type? How are row types used in SQL:2016 table definitions?
  8.	Explain the differences in encapsulation for user-defined types versus typed

tables in SQL:2016.
  9.	What is a typed table?

  10.	How do you define a subtable?
  11.	Discuss the relationship of subtable families and set inclusion.
  12.	What side effects occur when a row is inserted in a subtable?
  13.	What side effects occur when a subtable row is updated?
  14.	What side effects occur when a subtable row is deleted?
  15.	What is the difference between a foreign key and a reference?
  16.	When should you use a SELECT statement as part of an INSERT statement when

adding objects to a typed table?
  17.	What is the difference in notation between combining tables that are linked by a

foreign key versus a column with a reference type?
  18.	What is a path expression? When do you use a path expression?
  19.	When do you need to use the dereference operator (→) in a path expression?
  20.	What is the purpose of the ONLY keyword in a SQL:2016 SELECT statement?
  21.	Compare and contrast methods in SQL:2016 with methods in Oracle.
  22.	What are criteria for overriding a method in Oracle?
  23.	What is the most significant limitation for object databases in Oracle as

compared to SQL:2016?
  24.	Briefly discuss the importance of object features in Oracle that are not part of

SQL:2016.
  25.	Briefly indicate the uses of the XMLType data type in Oracle.

26008_ch19_p767-828.indd 818 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   819

  26.	In SQL:2016, what is the difference between the ARRAY and MULTISET
collection types?

  27.	What are the Oracle counterparts of the SQL:2016 collection types?
  28.	What is the role of nested tables in table design and database application

development?
  29.	What are common prebuilt user-defined data types that are commercially

available in enterprise DBMSs?
  30.	What is XML/SQL duality in Oracle?
  31.	Evaluate the usage of type substitution as a means of supporting subtable

families in Oracle.
  32.	Evaluate the usage of object view hierarchies as a means of supporting subtable

families in Oracle.
  33.	Evaluate the business case for nested tables.
  34.	What is the meaning of NoSQL?
  35.	What is the major driver of NoSQL database technology?
  36.	Indicate a use case depicting applications with performance requirements not

met by enterprise relational DBMSs.
  37.	What is a schema-less data model?
  38.	Is the distinction between SQL and NoSQL DBMSs likely to persist over the next

10 years?
  39.	Briefly describe the key-value data model.
  40.	Briefly describe the document data model.
  41.	What is the JavaScript Object Notation (JSON)?
  42.	Briefly describe the graph data model.
  43.	What is a columnar DBMS?
  44.	Is a columnar DBMS properly classified as a NoSQL DBMS?
  45.	Identify a columnar DBMS that is properly classified as NoSQL.
  46.	How is JSON related to JavaScript?
  47.	Briefly explain data types supported in JSON.
  48.	Briefly explain the syntax of JSON objects.
  49.	What is a JSON schema?
  50.	Briefly describe support for JSON in external tools, programming languages, and

DBMSs.
  51.	What is a bucket in Couchbase Server?
  52.	What is fully nested document design?
  53.	What is flat or tabular document design?
  54.	What is partially nested document design?
  55.	What are the major clauses in the N1QL SELECT statement?
  56.	Briefly describe the N1QL JOIN operator.
  57.	How does the N1QL JOIN operator differ from the SQL JOIN operator?
  58.	Briefly describe the N1QL UNNEST operator.
  59.	Briefly describe the N1QL NEST operator.
  60.	Briefly describe the N1QL ANY and EVERY operators.
  61.	In N1QL, how are elements of arrays referenced?
  62.	In N1QL, what is the difference between a summary function for arrays and an

aggregate function used with the GROUP BY clause?

26008_ch19_p767-828.indd 819 3/2/18 11:04 PM

820   Part 7  Managing Database Environments

The Part 1 problems provide practice with using SQL:2016 and Oracle (either 11.2g or
12c) to define user-defined types and typed tables as well as to use typed tables. The
Part 2 problems provide practice with JSON documents and Couchbase N1QL.

Part 1 Problems for Object Database Manipulation  Problems 1 to 26 involve
SQL:2016, while problems 27 to 57 involve Oracle. The problems involve the financial
database as depicted in Figure 19.P1 except for problems 55 to 58.
  1.	Using SQL:2016, define a user-defined type for a time series. The variables of a

time series include an array of floating point values (maximum of 365), the begin
date, the duration (maximum number of data points in the time series), the
calendar type (personal or business), and the period (day, week, month, or year).
Define methods as listed in Table 19-P1. You need to define the parameters for
the methods, not the code to implement the methods. The TimeSeries parameter
refers to the implicit TimeSeries object.

  2.	Using SQL:2016, define a security type and a typed security table. A security
has fields for the unique symbol, the security name, and a time series of closing
prices. Both the security type and table have no parent.

PROBLEMS

FIGURE 19.P1
ERD for the Financial
Database

CustNo
CustName
Street
City
State
Zip
Phone
Email

Customer

Bond
IntRate
Maturity

Symbol
SecName
ClosingPrices

Security

Makes

Stock
IssuedShares
OutShares

CommonStock
PERatio
LastDiv

PreferredStock
CallPrice
DivArr

TradeNo
TrdQty
TrdDate
TrdPrice
TrdType
TrdStatus

Trade

Shares

Holding

Owns
OwnedBy

TradedBy

TABLE 19-P1
List of Methods for the
TimeSeries Type

Name Parameters Result

WeeklyAvg TimeSeries TimeSeries

MonthlyAvg TimeSeries TimeSeries

YearlyAvg TimeSeries TimeSeries

MovingAvg TimeSeries, Start Date, Number of Values Float

RetrieveRange TimeSeries, Start Date, Number of Values TimeSeries

26008_ch19_p767-828.indd 820 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   821

  3.	Using SQL:2016, define a stock type and a typed stock table. A stock has fields
for the number of issued shares, the number of outstanding shares, and the time
series of closing prices. The stock table inherits from the security table, and the
stock type inherits from the security type.

  4.	Using SQL:2016, define a bond type and a typed bond table. A bond has fields
for the interest rate and the maturity date. The bond table inherits from the
security table, and the bond type inherits from the security type.

  5.	Using SQL:2016, define a common stock type and a typed common stock table.
A common stock has fields for the price earnings ratio and the last dividend
amount. The common stock table inherits from the stock table, and the common
stock type inherits from the stock type.

  6.	Using SQL:2016, define a preferred stock type and a typed preferred stock
table. A preferred stock has fields for the call price and dividend in arrears. The
preferred stock table inherits from the stock table, and the preferred stock type
inherits from the stock type.

  7.	Using SQL:2016, define a customer type and a typed customer table. A
customer has fields for the unique customer number, the name, the address, the
phone, and the e-mail address. The address field is a row type with fields for
street, city, state, and zip. The phone field is a row type with fields for country
code, area code, and local number. You should define types for the address and
phone so that the types can be reused. Both the customer type and table have no
parent.

  8.	Using SQL:2016, define a portfolio holding type and a typed portfolio holding
table. A holding has fields for the customer (reference data type), the security
(reference data type), and the shares held. The primary key of the Holding table
is a combination of the CustNo field of the related customer and the Symbol field
of the related security. Define referential integrity or SCOPE constraints to limit
the range of the customer reference and the security reference. Both the holding
type and table have no parent.

  9.	Using SQL:2016, define a trade type and a typed trade table. A trade has
fields for the unique trade number, customer (reference data type), security
(reference data type), trade date, quantity, unit price, type (buy or sell), and
status (pending or complete). The primary key of the Trade table is the trade
number. Define referential integrity or SCOPE constraints to limit the range of
the customer reference and the security reference. Both the trade type and table
have no parent.

  10.	Using SQL:2016, insert an object into the typed CommonStock table for Microsoft
common stock.

  11.	Using SQL:2016, insert an object into the typed CommonStock table for Dell
Corporation common stock.

  12.	Using SQL:2016, insert an object into the typed CommonStock table for IBM
common stock. Enter a value in the closing prices (time series type) column by
specifying the array of values, the period, the calendar type, the begin date, and
the duration.

  13.	Using SQL:2016, insert an object into the typed Bond table for an IBM corporate
bond.

  14.	Using SQL:2016, insert an object into the typed Customer table. Use 999999 as the
customer number, John Smith as the customer name, and Denver as the city.

  15.	Using SQL:2016, insert an object into the typed Customer table. Use 999998 as the
customer number and Sue Smith and Boulder as the city.

  16.	Using SQL:2016, insert an object into the typed Holding table. Connect the
holding object to the Microsoft Security object and the Sue Smith Customer object.
Use 200 as the number of shares held.

26008_ch19_p767-828.indd 821 3/2/18 11:04 PM

822   Part 7  Managing Database Environments

  17.	Using SQL:2016, insert an object into the typed Holding table. Connect the
holding object to the IBM Security object and the Sue Smith Customer object. Use
100 as the number of shares held.

  18.	Using SQL:2016, insert an object into the typed Trade table. Connect the trade
object to the IBM common stock object and the Sue Smith Customer object. Use
100 as the quantity of shares traded, “buy” as the trade type, and other values of
your choice for the other columns.

  19.	Using SQL:2016, insert an object into the typed Trade table. Connect the trade
object to the Microsoft common stock object and the Sue Smith Customer object.
Use 200 as the quantity of shares traded, “buy” as the trade type, and other
values of your choice for the other columns.

  20.	Using SQL:2016, insert an object into the typed Trade table. Connect the trade
object to the IBM corporate bond object and the John Smith Customer object. Use
150 as the quantity of shares traded, “buy” as the trade type, and other values of
your choice for the other columns.

  21.	Using SQL:2016, update the customer reference column of the Holding object
from problem 17 to the John Smith Customer object.

  22.	Using SQL:2016, update the customer reference column of the Trade object from
problem 19 to the John Smith Customer object.

  23.	Using SQL:2016, write a SELECT statement to list the securities held by Denver
customers. Only list the securities with more than 100 shares held. Include the
customer name, symbol, and shares held in the result.

  24.	Using SQL:2016, write a SELECT statement to list securities purchased by
Boulder customers. Include the customer name, security symbol, trade number,
trade date, trade quantity, and unit price in the result.

  25.	Using SQL:2016, write a SELECT statement to list the customer name, security
symbol, and the closing prices for each stock held by Denver customers.

  26.	Using SQL:2016, write a SELECT statement to list the customer name, security
symbol, trade number, trade date, trade quantity, and unit price for common
stock purchases by Boulder customers.

  27.	Using Oracle (either 11.2g or 12c), define a user-defined type for a time
series. The variables of a time series include an array of floating point values
(maximum of 365), the begin date, the duration (maximum number of data
points in the time series), the calendar type (personal or business), and the
period (day, week, month, or year). Define methods as previously listed in
Table 19-P1. You need to define the parameters for the methods, not the code
to implement the methods. The TimeSeries parameter refers to the implicit
TimeSeries object.

  28.	Using Oracle (either 11.2g or 12c), define a security type and a typed security
table. A security has fields for the unique symbol, the security name, and a time
series of closing prices. Both the Security type and table have no parent.

  29.	Using Oracle (either 11.2g or 12c), define a stock type and a typed stock
table. A stock has fields for the number of issued shares and the number of
outstanding shares. The Stock table inherits from the Security table, and the Stock
type inherits from the Security type.

  30.	Using Oracle (either 11.2g or 12c), define a bond type and a typed bond table.
A bond has fields for the interest rate and the maturity date. The Bond table
inherits from the Security table, and the Bond type inherits from the Security type.

  31.	Using Oracle (either 11.2g or 12c), define a common stock type and a typed
common stock table. A common stock has fields for the price earnings ratio and
the last dividend amount. The common stock table inherits from the stock table,
and the common stock type inherits from the stock type.

26008_ch19_p767-828.indd 822 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   823

  32.	Using Oracle (either 11.2g or 12c), define a preferred stock type and a typed
preferred stock table. A preferred stock has fields for the call price and dividend
in arrears. The preferred stock table inherits from the stock table, and the
preferred stock type inherits from the stock type.

  33.	Using Oracle (either 11.2g or 12c), define a customer type and a typed customer
table. A customer has columns for the unique customer number, the name, the
address, the phone, and the e-mail address. The address field is a row type with
fields for street, city, state, and zip. The phone field is a row type with fields for
country code, area code, and local number. You can define types for the address
and phone so that the types can be reused. Both the Customer type and table
have no parent.

  34.	Using Oracle (either 11.2g or 12c), define a portfolio holding type and a typed
portfolio holding table. A holding has fields for the customer (reference data
type), the security (reference data type), and the shares held. The primary key of
the Holding table is a combination of the CustNo column of the related customer
and the Symbol field of the related security. Define referential integrity or
SCOPE constraints to limit the range of the customer reference and the security
reference. Both the Holding type and table have no parent.

  35.	Using Oracle (either 11.2g or 12c), define a trade type and a typed trade table.
A trade has fields for the unique trade number, customer (reference data type),
security (reference data type), trade date, quantity, unit price, type (buy or
sell), and status (pending or complete). The primary key of the Trade table is
the trade number. Define referential integrity or SCOPE constraints to limit
the range of the customer reference and the security reference. Define CHECK
constraints for the type and status columns. Both the trade type and table have
no parent.

  36.	Using Oracle (either 11.2g or 12c), insert an object into the typed CommonStock
table for Microsoft common stock. To manage subtables, you should also insert
the same object into the typed Stock and Security tables.

  37.	Using Oracle (either 11.2g or 12c), insert an object into the typed CommonStock
table for Dell Corporation common stock. To manage subtables, you should also
insert the same object into the typed Stock and Security tables.

  38.	Using Oracle (either 11.2g or 12c), insert an object into the typed CommonStock
table for IBM common stock. To manage subtables, you should also insert the
same object into the typed Stock and Security tables. Enter a value in the closing
prices (time-series type) column by specifying the array of values, the period, the
calendar type, the begin date, and the duration.

  39.	Using Oracle (either 11.2g or 12c), insert an object into the typed Bond table for
an IBM corporate bond.

  40.	Using Oracle (either 11.2g or 12c), insert an object into the typed Customer table.
Use 999999 as the customer number, John Smith as the customer name, and
Denver as the city.

  41.	Using Oracle (either 11.2g or 12c), insert an object into the typed Customer table.
Use 999998 as the customer number, Sue Smith as the customer name, and
Boulder as the city.

  42.	Using Oracle (either 11.2g or 12c), insert an object into the typed Holding table.
Connect the holding object to the Microsoft Security object and the Sue Smith
Customer object. Use 200 as the number of shares held.

  43.	Using Oracle (either 11.2g or 12c), insert an object into the typed Holding table.
Connect the holding object to the IBM Security object and the Sue Smith Customer
object. Use 100 as the number of shares held.

  44.	Using Oracle (either 11.2g or 12c), insert an object into the typed Trade table.
Connect the trade object to the IBM common stock object and the Sue Smith

26008_ch19_p767-828.indd 823 3/2/18 11:04 PM

824   Part 7  Managing Database Environments

Customer object. Use 100 as the quantity of shares traded, “buy” as the trade
type, and other values of your choice for the other columns

  45.	Using Oracle (either 11.2g or 12c), insert an object into the typed Trade table.
Connect the trade object to the Microsoft common stock object and the Sue Smith
Customer object. Use 200 as the quantity of shares traded, “buy” as the trade
type, and other values of your choice for the other columns.

  46.	Using Oracle (either 11.2g or 12c), insert an object into the typed Trade table.
Connect the trade object to the IBM corporate bond object and the John Smith
Customer object. Use 150 as the quantity of shares traded, “buy” as the trade
type, and other values of your choice for the other columns.

  47.	Using Oracle (either 11.2g or 12c), update the customer reference column of the
Holding object from problem 42 to the John Smith Customer object.

  48.	Using Oracle (either 11.2g or 12c), update the customer reference column of the
Trade object from problem 44 to the John Smith Customer object.

  49.	Using Oracle (either 11.2g or 12c), write a SELECT statement to list the securities
held by Denver customers. Only list the securities with more than 100 shares
held. Include the customer name, the symbol, and the shares held in the result.

  50.	Using Oracle (either 11.2g or 12c), write a SELECT statement to list securities
purchased by Boulder customers. Include the customer name, security symbol,
trade number, trade date, trade quantity, and unit price in the result.

  51.	Using Oracle (either 11.2g or 12c), write a SELECT statement to list the customer
name, security symbol, and the number of shares held for each stock held by
Denver customers.

  52.	Using Oracle (either 11.2g or 12c), write a SELECT statement to list the customer
name, security symbol, trade number, trade date, trade quantity, and unit price
for common stock purchases by Boulder customers.

  53.	Write DROP statements in a topological order to delete the types and tables
created in problems 27 to 52. You might want to create a dependency diagram to
help you determine a topological ordering for object removal.

  54.	Change the order of the DROP statements in problem 53 to another topological
order for object removal.

  55.	Create a table for orders consisting of a unique order number, order details, and
order amount. The order details column should use the Oracle XMLType.

  56.	Insert two rows into the order table. The order details should have XML data for
the customer identifier, first name, last name, city, state, zip, and a list of order
lines with product identifier, product name, unit price, and quantity for each
order line. Insert one order with one order line and a second order with two
order lines.

  57.	Retrieve the first and last name of orders with order amount greater than $100.
  58.	Retrieve the first and last name of orders with order amount greater than $100

with the order city of Denver.

Part 2 Problems for JSON Objects and Couchbase N1QL  These problems
provide practice with creating JSON objects and writing Couchbase N1QL state-
ments. Tables 19-P2 to 19-P5 show sample rows used in these problems, a subset
of the Order Entry Database tables in Chapter 4. For N1QL problems, you need
to install the community edition of Couchbase Server. Problems 1 to 15 involve a
tabular design. Problems 16 to 31 involve a nested design with both partial and full
nesting. Problems 28, 30, and 31 involve N1QL queries on an M-N relationship in a
nested design, a concept not covered in Section 19.5.2. These problems (28, 30, and
31) depict query formulation difficulties with a nested design for complex data mod-
eling requirements.

26008_ch19_p767-828.indd 824 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   825

TABLE 19-P2
Sample Customer Rows

CustNo CustFirstName CustLastName CustStreet CustCity CustState CustZip CustBal

C0954327 Sheri Gordon 336 Hill St. Littleton CO 80129-5543 230.00

C1010398 Jim Glussman 1432 E. Ravenna Denver CO 80111-0033 200.00

C2388597 Beth Taylor 2396 Rafter Rd Seattle WA 98103-1121 500.00

OrdNo OrdDate CustNo EmpNo OrdName OrdStreet OrdCity OrdState OrdZip

O1116324 01/23/2017 C0954327 E8544399 Sheri Gordon 336 Hill St. Littleton CO 80129-5543

O1231231 01/23/2017 C1010398 Jim Glussman 1432 E. Ravenna Denver CO 80111-0033

O1241518 02/10/2017 C0954327 E9954302 Sheri Gordon 336 Hill St. Littleton CO 80129-5543

O2334661 01/14/2017 C2388597 E1329594 Beth Taylor 2396 Rafter Rd Seattle WA 98103-1121

TABLE 19-P3
Sample OrderTbl Rows

TABLE 19-P4
Sample Product RowsProdNo ProdName ProdMfg ProdQOH ProdPrice ProdNextShipDate

P0036566 17 inch Color
Monitor

ColorMeg, Inc. 12 169.00 2/20/2017

P0036577 19 inch Color
Monitor

ColorMeg, Inc. 10 319.00 2/20/2017

P1445671 8-Outlet Surge
Protector

Intersafe 33 14.99

P1556678 CVP Ink Jet Color
Printer

Connex 8 99.00 1/22/2017

P6677900 Black Ink Jet
Cartridge

Connex 44 25.69

P9995676 Battery Back-up
System

Cybercx 12 89.00 2/1/2017

TABLE 19-P5
Sample OrdLine RowsOrdNo ProdNo Qty

O1116324 P1445671 1

O1231231 P0036566 1

O1231231 P1445671 1

O1241518 P0036577 1

O2334661 P6677900 1

O2334661 P9995676 1

O2334661 P1556678 1

  1.	Write JSON documents for the customer rows in Table 19-P2 using appropriate
data types. Use a JSON validation tool such as JSONLint or JSON Viewer to
ensure valid JSON documents.

  2.	Create a Customer bucket in Couchbase Server. Write an N1QL statement
to create a primary index on the Customer bucket (see Appendix 19.A) for
examples. Write N1QL INSERT statements to add the JSON documents to the
bucket. Appendix 19.A shows INSERT syntax for adding multiple documents to
a bucket in one INSERT statement.

  3.	Write JSON documents for the product rows in Table 19-P4 using appropriate
data types. Use the null value for missing values. For the next shipment date,

26008_ch19_p767-828.indd 825 3/2/18 11:04 PM

826   Part 7  Managing Database Environments

use an object with three components for the month, day, and year. Use a
JSON validation tool such as JSONLint or JSON Viewer to ensure valid JSON
documents.

  4.	Create a Product bucket in Couchbase Server. Write an N1QL statement to create
a primary index on the Product bucket (see Appendix 19.A) for examples. Write
N1QL INSERT statements to add the JSON documents to the bucket. Appendix
19.A shows INSERT syntax for adding multiple documents to a bucket in one
INSERT statement.

  5.	Write JSON documents for the order rows in Table 19-P3 using appropriate
data types. Use the null value for missing values. For the order date, use an
object with three components for the month, day, and year. Use a tabular design
for the relationship from customer to order. Use a JSON validation tool Use a
JSON validation tool such as JSONLint or JSON Viewer to ensure valid JSON
documents.

  6.	Create an OrderTbl bucket in Couchbase Server. Write an N1QL statement
to create a primary index on the OrderTbl bucket (see Appendix 19.A) for
examples. Write N1QL INSERT statements to add the JSON documents to the
bucket. Appendix 19.A shows INSERT syntax for adding multiple documents to
a bucket in one INSERT statement.

  7.	Write JSON documents for the order line rows in Table 19-P3 using appropriate
data types. Use the tabular design for the relationships from order to order line
and product to order line. Use a JSON validation tool Use a JSON validation tool
such as JSONLint (jsonlint.com) or JSON Viewer (codebeautify.org/jsonviewer)
to ensure valid JSON documents.

  8.	Create an OrdLine bucket in Couchbase Server. Write an N1QL statement to
create a primary index on the OrdLine bucket (see Appendix 19.A) for examples.
Write N1QL INSERT statements to add the JSON documents to the bucket.
Appendix 19.A shows INSERT syntax for adding multiple documents to a
bucket in one INSERT statement. For the document key, concatenate the order
number and product number of an order line such as (“O1116324-P1445671”).

  9.	Write an N1QL SELECT statement to list the customer number, name (first and
last), and balance of customers.

  10.	Write an N1QL SELECT statement to list the customer number, name (first and
last), and balance of customers who reside in Colorado (CustState is CO).

  11.	Write an N1QL SELECT statement to list all columns of the Product table for
products costing more than $50. Order the result by product manufacturer
(ProdMfg) and product name.

  12.	Write an N1QL SELECT statement to list the customer number, name (first and
last), city, and balance of customers who reside in Denver with a balance greater
than $150 or who reside in Seattle with a balance greater than $300.

  13.	Write an N1QL SELECT statement to list the order number, order date, customer
number, and customer name (first and last) of orders placed in January 2017 sent
to Colorado recipients.

  14.	Write an N1QL SELECT statement to list the average customer balance and
order count by customer city. Include only customers residing in Colorado (CO).

  15.	Write an N1QL SELECT statement to list the product name, sum of the
quantity sold, and sum of cost (quantity sold times product price) of products
manufactured by “ColorMeg, Inc.” or “Connex”. Only include products in the
result with a sum of cost greater than $50.

  16.	Revise the JSON representation of customers from problem 1. Add an array
of order numbers with key “OrdNo” in each customer. Remove the customer
number key in the order documents. Use a JSON validation tool such as
JSONLint or JSON Viewer to ensure valid JSON documents.

26008_ch19_p767-828.indd 826 3/2/18 11:04 PM

Chapter 19  DBMS Extensions for Object and NoSQL Databases   827

  17.	Revise the N1QL INSERT statements for customers from problem 2. Use the
JSON documents from problem 16. You can create a new bucket for customers
(Customer2) or delete documents11 in the existing customer bucket before
inserting new documents. If you create a new bucket, you need to create a
primary index for the bucket before inserting documents.

  18.	Revise the representation of orders from problem 5. Remove the customer
number key in order documents. Add another key (OrdLine) to contain an array
of order lines with each order line containing a product number and quantity
ordered. Use a JSON validation tool such as JSONLint or JSON Viewer to ensure
valid JSON documents.

  19.	Revise the N1QL INSERT statements for orders from problem 6. Use the
JSON documents from problem 18. You can create a new bucket for orders
(OrderTbl2) or delete documents in the existing order bucket before inserting
new documents. If you create a new bucket, you need to create a primary index
for the bucket before inserting documents.

  20.	Revise the representation of products from problem 3. Add another key (OrdNo)
to contain an array of order numbers for a partially nested design. Use a JSON
validation tool such as JSONLint or JSON Viewer.

  21.	Revise the N1QL INSERT statements for products from problem 4. Use the
JSON documents from problem 20 in the INSERT statements. You can create a
new bucket for products (Product2) or delete documents in the existing product
bucket before inserting new documents. If you create a new bucket, you need to
create a primary index for the bucket before inserting documents.

  22.	Write an N1QL SELECT statement to list all details about customers in Colorado
(CO). The result should show the related order numbers nested in a customer.
Use the partially nested design starting in problem 16.

  23.	Write an N1QL SELECT statement to list all details about customers in Colorado
(CO) along with all details of related orders. The result should nest the related
orders for each customer. Use the partially nested design starting in problem 16.

  24.	Write an N1QL SELECT statement to list the order number, date, and order line
details of orders in January 2017. The result should show the product numbers
and quantities nested inside an order. Use the partially nested design starting in
problem 16.

  25.	Write an N1QL SELECT statement to list the order number, date, and order line
details of orders in January 2017. The result should unnest order lines product
numbers and quantities nested inside an order. Use the partially nested design
starting in problem 16.

  26.	Write an N1QL SELECT statement to list the order number, order date, and
count of products ordered for orders in February 2017. Use the partially nested
design starting in problem 16.

  27.	Write an N1QL SELECT statement to list the average customer balance and
order count by customer city. Include only customers residing in Colorado (CO).
Use the partially nested design starting in problem 16.

  28.	Write an N1QL SELECT statement to list the product name, product price, order
number, and order date for products and related orders. Only include products
manufactured by “ColorMeg, Inc.” or “Connex”. Use the nested design starting
in problem 16. Hint: use a join key from the order line array with the notation
array[*].joinkey.

  29.	Write an N1QL SELECT statement to list the order number, order date, and
count of the products ordered for orders in January 2017. Use the nested design
starting in problem 16.

11 To delete all customer documents, you should use the syntax DELETE FROM Customer.

26008_ch19_p767-828.indd 827 3/2/18 11:04 PM

828   Part 7  Managing Database Environments

  30.	Write an N1QL SELECT statement to list the product name, order number, order
date, and quantity ordered. Only include products manufactured by “ColorMeg,
Inc.” or “Connex”. Use the nested design starting in problem 16. This problem
goes a beyond material covered in Section 19.5.2. Hint: in the FROM clause, use
the UNNEST operator on the order line array in order. Then, join the unnest
result with product using the product number in the unnested array of order
lines.

  31.	Write an N1QL SELECT statement to list the product name, sum of quantity
sold, and sum of cost (quantity sold times product price) of products ordered.
Only include orders in January 2017. Only include products in the result with a
sum of cost greater than $50. Use the nested design starting in problem 16. This
problem goes a beyond material covered in Section 19.5.2. Hint: in the FROM
clause, use the UNNEST operator on the order line array in order. Then, join the
unnest result with product using the product number in the unnested array of
order lines.

REFERENCES FOR FURTHER STUDY

The most definitive sources about SQL:2016 are the standards documents available
from the InterNational Committee for Information Technology Standards (www.incits.
org). The Whitemarsh SQL Standards page (www.wiscorp.com/SQLStandards.html)
provides a good summary about the current and historical development of SQL stan-
dards. Mimer Developer (developer.mimer.se) provides validation tools for historical
SQL standards (1992, 1999, and 2003). Because the standards documents are rather
difficult to read, you may prefer books about SQL:1999 by Gulutzan and Pelzer (1999)
and Melton and Simon (2001). The major object database features have not changed
much since the SQL:1999 standard. For more details about object-relational features in
Oracle, you should consult the online database documentation in the Oracle technol-
ogy network (www.oracle.com/technetwork).

Many sources contain details about NoSQL technology because of the diversity
of technology and products. The NoSQL Database page (nosql-database.org) pro-
vides a good overview of NoSQL DBMSs. The Couchbase website (couchbase.com)
contains documentation and downloads for Couchbase Server. The W3 Schools
website contains a well-written tutorial about JSON at https://www.w3schools.
com/js/js_json_intro.asp. Validation tools for JSON are JSONLint (jsonlint.com) and
JSON Viewer (codebeautify.org/jsonviewer). Alternative query languages for JSON
document databases are JSONiq (jsoniq.org), JMESPath (jmespath.org), and Micro-
soft SQL for DocumentDB (https://docs.microsoft.com/en-us/azure/cosmos-db/
documentdb-sql-query).

26008_ch19_p767-828.indd 828 3/2/18 11:04 PM

829  

Abadi, D., Madden, S., and Hachem, N. “Column-Stores
vs. Row-Stores: How Different Are They Really,” in
Proceedings of the 2008 ACM SIGMOD Conference, June 9
to 12, 2008, Vancouver, BC, Canada, 2008, pp. 967–980.

Abudali, A. and Abu-Addose, H. “Data Warehouse Critical
Success Factors,” European Journal of Scientific Research
42 (2), 2010, 326–335.

Armstrong, W. “Dependency Structures of Data Base
Relationships,” IFIP Congress, pp. 580–583, 1974.

Batini, C., Ceri, S., and Navathe, S. Conceptual Database
Design, Redwood City, CA, Benjamin/Cummings,
1992.

Batra, D. “A Method for Easing Normalization of User
Views,” Journal of Management Information Systems 14, 1
(Summer 1997), 215–233.

Bernstein, P. “Middleware: A Model for Distributed
Services,” Communications of the ACM 39, 2 (February
1996), 86–97.

Bernstein, P. “Repositories and Object-Oriented Databases,”
in Proceedings of BTW 97, Ulm, Germany, Springer-Verlag,
(1997), pp. 34–46 (reprinted in ACM SIGMOD Record 27
(1), March 1998).

Bernstein, P. and Dayal, U. “An Overview of Repository
Technology,” in Proceedings of the 20th Conference on Very
Large Data Bases, Morgan Kaufman, San Francisco, CA,
August 1994, pp. 705–713.

Bernstein, P. and Newcomer, E. Principles of Transaction
Processing, Morgan Kaufmann, 1997.

Bonifati, A., Cattanco, F., Ceri, S., Fuggetta, A., and
Paraboschi, S. “Designing Data Marts for Data
Warehouses,” ACM Transactions on Software Engineering
and Methodolgoy 10, 4 (2001), 452–483.

Booch, G., Jacobson, I., and Rumbaugh, J. The Unified
Modeling Language User Guide, Addison-Wesley, Reading,
MA, 1998.

Bouzeghoub, M., Fabret, F., and Matulovic-Broque, M.
“Modeling Data Warehouse Refreshment Process as a
Workflow Application,” in Proceedings on the International
Workshop on Design and Management of Data Warehouses,
Heidelberg, Germany, (June 1999).

Bowman, J., Emerson, S., and Darnovsky, M. The Practical
SQL Handbook, Reading, MA, Addison-Wesley, 4th
Edition, 2001.

Brewer, E. “CAP Twelve Years Later: How the “Rules” Have
Changed” IEEE Computer, 23–29, February 2012.

Carlis, J. and Maguire, J. Mastering Data Modeling,
Addison-Wesley, 2001.

Castano, S., Figini, M., Giancarlo, M. and Pierangela, M.
Database Security, Addison-Wesley, ISBN 0-201-59375-0,
1995.

Celko, J. Joe Celko’s SQL Puzzles & Answers, San Francisco,
CA, Morgan Kaufmann, 1997.

Ceri, S. and Pelagatti, G. Distributed Databases: Principles and
Systems, New York, NY, McGraw-Hill, 1984.

Chang, L., Wang, Z., Ma, T., Jian, L., Ma, L., Goldshuv,
A., Lonegran, L., Cohen, J. Welton, C., Sherry, G.,
and Bhandarkar, M. “HAWQ: A Massively Parallel
Processing SQL Engine in Hadoop,” in Proceedings of the
14th ACM SIGMOD Conference, Snowbird, UT, USA, June
2014.

Chaudhuri, S. “An Overview of Query Optimization in
Relational Systems,” in Proceedings of the ACM Symposium
on Principles of Database Systems, Seattle, WA, 1998,
pp. 34–43.

Chaudhuri, S. and Narasayya, V. “An Efficient, Cost-Driven
Index Selection Tool for Microsoft SQL Server,” in
Proceedings of the 23rd VLDB Conference, Athens, Greece,
1997, pp. 146–155.

Chaudhuri, S. and Narasayya, V. “Automating Statistics
Management for Query Optimizers,” IEEE Transactions
on Knowledge and Data Engineering 13, 1 (January/
February 2001), 7–28.

Choobineh, J., Mannino, M., Konsynski, B., and Nunamaker,
J. “An Expert Database Design System Based on
Analysis of Forms,” IEEE Trans. Software Engineering 14, 2
(February 1988), 242–253.

Choobineh, J., Mannino, M., and Tseng, V. “A Form-
Based Approach for Database Analysis and Design,”
Communications of the ACM, 35, 2 (February 1992),
108–120.

Choudhary, R. “Key organizational factors in data
warehouse architecture selection,” Vivekanada Journal of
Research (24), 2010, 24–32.

Codd, T. “A Relational Model for Large Shared Data
Banks,” Communications of the ACM 13, 6 (June 1970).

Date, C. “What is a Distributed Database System,” in
Relational Database Writings 1985 – 1989, C. J. Date (ed.)
Addison-Wesley, Reading, MA, 1990.

Date, C. Introduction to Database Systems, Reading, MA,
Addison-Wesley, 8th Edition, 2003.

BIBLIOGRAPHY

26008_bib_p829-832.indd 829 3/2/18 11:05 PM

830   Bibliography

Date, C. and Darwen, H. A Guide to the SQL Standard,
Addison-Wesley, Reading, MA, 1997.

Dean, J. and Ghemawat, S. “MapReduce: Simplified
Data Processing on Large Clusters,” in Proceedings
of Sixth Symposium on Operating System Design and
Implementation, San Francisco, CA, USA, December
2004.

Elmasri, R. and Navathe, S. Fundamentals of Database
Systems, Pearson Education Unlimited, Seventh Edition,
ISBN 13: 978-1-292-09761-9, 2017.

Eckerson, W. “TDWI Benchmark Guide,” TDWI Research
Report, July 2007, tdwi.org.

Fagin, R “A Normal Form for Relational Databases That
is Based on Domains and Keys,” ACM Transactions on
Database Systems 6, 3 (September 1981), 387–415.

Finkelstein, S., Schkolnick, M., and Tiberio, T. “Physical
Database Design for Relational Databases,” ACM
Transactions on Database Systems 13, 1 (March 1988),
91–128.

Fisher, J. and Berndt, D. “Creating False Memories:
Temporal Reconstruction Errors in Data Warehouses,” in
Proceedings Workshop on Technologies and Systems (WITS
2001), New Orleans, (December 2001).

Fowler, M. and Scott, K. UML Distilled, Addison-Wesley,
Reading, MA, 1997.

Friedman, T., Beyer, M., and Thoo, E. “Magic Quadrant for
Data Integration Tools,” Gartner RAS Core Research Note
G00171986, November 2009.

Graefe, G. “Options for Physical Database Design,” ACM
SIGMOD Record 22, 3 (September 1993), 76–83.

Gray, J. and Reuter, A. Transaction Processing: Concepts and
Techniques, Morgan Kaufmann, 1993.

Groff, J. and Weinberg, P. SQL: The Complete Reference, 2nd
Edition, New York, NY, Osborne McGraw Hill, 2002.

Gulutzan, P. and Pelzer, T. SQL-99 Complete, Really, R & D
Books, Lawrence, Kansas, 1999.

Hawryszkiewycz, I. Database Analysis and Design, New York,
NY, SRA, 1984.

Harizolpulos, S., Abadi, D., Madden, S., and Stonebraker,
M. “OLTP Through the Looking Glass, and What We
Found There,” in Proceedings of the ACM SIGMOD 08
Conference, Vancouver, BC Canada (June 9–12, 2008),
ACM 978-1-60558-102-6/08/06.

Imhoff, C. “Intelligent Solutions: Oper Marts: An Evolution
in the Operational Data Store,” DM Review 11, 9
(September 2001), 16–18.

Inmon, W. Information Systems Architecture, New York, NY,
John Wiley & Sons, 1986.

Jarke, M. and Koch, J. “Query Optimization in Database
Systems,” ACM Computing Surveys 16, 2 (June 1984),
111–152.

Kent, W. “A Simple Guide to the Five Normal Forms in
Relational Database Theory,” Communications of the ACM
26, 2 (February 1983), 120–125.

Kimball, R. “Slowly Changing Dimensions,” DBMS 9, 4
(April 1996) 18–22.

Kimball, R. The Data Warehouse Lifecycle Toolkit: Expert
Methods for Designing, Developing, and Deploying Data
Warehouses, John Wiley and Sons, 2003.

Kimball, R. “The Soul of the Data Warehouse, Part 3:
Handling Time,” Intelligent Enterprise Magazine, April
2003, http://www.intelligententerprise.com.

Laney, D. “3D Data Management: Controlling Data Volume,
Velocity and Variety,” META Group (now Gartner),
February 2001.

Loshin, D. The Practitioner’s Guide to Data Quality
Improvement, Elsevier, Inc., 2011, ISBN: 978-0-12-
373717-5.

Mannino, M., Chu, P., and Sager, T. “Statistical Profile
Estimation in Database Systems,” ACM Computing
Surveys 20, 3 (September 1988), 191–221.

Martin, J. Strategic Data-Planning Methodologies, Prentice-
Hall, Englewood Cliffs, NJ, 1982.

Mazon, J., Lechtenbörger, J. and Trujillo, J. “A survey on
summarizability issues in multidimensional modeling,”
Data and Knowledge Engineering 68 (12), December 2009,
1452–1469.

McKinsey Global Institute, “Big data: The next frontier for
innovation, competition, and productivity, May 2011.

Melton, J. and Simon, A. Understanding the New SQL:
A Complete Guide, Morgan-Kaufman Publishers, San
Mateo, CA, 1992.

Melton, J. and Simon, A. SQL:1999 Understanding
Relational Language Components, Morgan-Kaufman
Publishers, San Mateo, CA, 2001.

Moody, D. and Kortink, M. “From ER Models to
Dimensional Models,” Business Intelligence Journal,
2003, 7–24.

Muller, R. Database Design for Smarties: Using UML for
Data Modeling, San Francisco, CA, Morgan Kaufmann
Publishers, San Francisco, CA, February 1999.

Mullins, C. Database Administration: The Complete
Guide to Practices and Procedures, Addison Wesley
Professional, Second Edition, ISBN 978-0321822949,
June 2012.

Nelson, M. and DeMichiel, L. “Recent Trade-Offs in SQL3,”
ACM SIGMOD Record 23, 4 (December 1994), 84–89.

Nijssen, G. and Halpin, T. Conceptual Schema and
Relational Database Design, Prentice Hall of Australia,
1989.

Olson, J. Data Quality: The Accuracy Dimension, Morgan
Kaufmann, New York, ISBN 1-55860-891-5, 2002.

Orfali, R., Harkey, D., and Edwards, J. The Essential Client/
Server Survival Guide, John Wiley and Sons, 2nd Edition,
1996.

Ozsu, T. and Valduriez, P. Principles of Distributed
Database Systems, Englewood Cliffs, NJ, Prentice-Hall,
1991.

Park, C., Kim, M., and Lee, Y. “Finding an Efficient
Rewriting of OLAP Queries Using Materialized Views in
Data Warehouses” Decision Support Systems 32, 12 (2002),
379–399.

26008_bib_p829-832.indd 830 3/2/18 11:05 PM

Bibliography   831

Peinl, P., Reuter, A., and Sammer, H. “High Contention in a
Stock Trading Database: A Case Study,” in Proceedings
of the ACM SIGMOD Conference, Chicago, IL, (May
1988), pp. 260–268.

Redman, T. Data Quality: The Field Guide, Digital Press, New
York, ISBN 1-55558-251-6, 2001.

Romero, O and Abello, A. “A Survey of Multidimensional
Modeling Methodologies,” International Journal of Data
Warehousing and Mining 5 (2), April 2009, 1–23.

Saaty, T. The Analytic Hierarchy Process, McGraw-Hill, New
York, 1988.

Salido, J. and Voon, P. “A Guide to Data Governance for
Privacy, Confidentiality, and Compliance (Part 2): People
and Process,” Microsoft Corporation, www.microsoft.
com/privacy/datagovernance.aspx, Whitepaper,
January 2010.

Salido, J. and Voon, P. “A Guide to Data Governance for
Privacy, Confidentiality, and Compliance (Part 3):
Managing Technological Risk,” Microsoft Corporation,
www.microsoft.com/privacy/datagovernance.aspx,
Whitepaper, March 2010.

Salido, J. and Voon, P. “A Guide to Data Governance for
Privacy, Confidentiality, and Compliance (Part 4): A
Capability Maturity Model,” Microsoft Corporation,
www.microsoft.com/privacy/datagovernance.aspx,
Whitepaper, April 2010.

Sen, A., Ramamurthy, K., and Sinha, P. “A Model of Data
Warehousing Process Maturity,” IEEE Transactions on
Software Engineering (38:2), 2012, 336–353.

Shasha, D. and Bonnet, P. Database Tuning: Principles,
Experiments, and Troubleshooting Techniques, Morgan
Kaufmann, San Francisco, ISBN 1-55860-753-6, 2003.

Sheth, A., Georgakopoulos, D., and Hornrick, M. “An
Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure,”
Distributed and Parallel Databases 3, (1995), 119–153,
Kluwer Academic Publishers.

Shilling, L., Kwan, B., Drolshagen, C., and Hosokawa,
P. “Scalable Architecture for Federated Translational
Inquiries Network (SAFTINet) Technology Infrastructure
for a Distributed Data Network,” PubMed eGEMS 1, 1,
(October 2013), US National Library of Medicine, https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC4371513/.

Sigal, M. “A Common Sense Development Strategy,”
Communications of the ACM 41, 9 (September 1998),
42–48.

Su, S., Dujmovic, J., Batory, D., Navathe, S., and Elnicki, R.
“A Cost-Benefit Decision Model: Analysis, Comparison,
and Selection of Data Management Systems,” ACM
Transactions on Database Systems 12, 3 (September 1987),
472–520.

Sutter, J. “Project-Based Warehouses,” Communications of the
ACM 41, 9 (September 1998), 49–51.

Teorey, T., Lightstone, S., Nadeau, T., and Jagadish, H.
Database Modeling and Design, Elsevier Science and
Technology Books, 5th Edition, ISBN 13: 978-0-12-685352-
0, 2005.

Thomas, G. “The DGI Data Governance Framework,”
Data Governance Institute Whitepaper, www.
DataGovernance.com, 2012.

Thomas, G. “Preventative and Detective Controls,”
Data Governance Institute Whitepaper, www.
DataGovernance.com, 2012.

Tu, S., Zheng, W., Kohler, E., Liskov, B., and Madden,
S. “Speedy Transactions in Multicore In-Memory
Databases,” in Proceedings ACM SOSP 13 Conference,
Nov. 3–6, 2013, Farmington, PA, USA, ACM
978-1-4503-2388-8/13/11, http://dx.doi.
org/10.1145/2517349.2522713.

Westerman, P. Data Warehousing: Using the Wal-Mart
Model, Morgan Kaufmann, 2000.

Zahedi, F. “The Analytic Hierarchy Process: A Survey of
the Method and Its Applications,” Interfaces 16, 4, (1986),
96–108.

26008_bib_p829-832.indd 831 3/2/18 11:05 PM

26008_bib_p829-832.indd 832 3/2/18 11:05 PM

833  

%Found, 437
%IsOpen, 437
%RowCount, 435, 437
%TYPE keyword, 421
1-1 Relationship Rule, 205
1-1 relationships, 147, 197, 205, 302
1-M relationships, 57, 147, 149–152, 158, 166,

184, 185, 188, 195, 197–201, 207, 213, 224,
238, 248, 251, 252, 290, 294, 302, 338,
392–394, 396, 403, 406, 517–519, 522, 527,
528, 532, 537, 538, 544, 625, 795, 811

1-M relationships with attributes, 149
1-M updatable query, 386–391
1NF, see first normal form (1NF)
2NF, 239, 240
3NF, 239, 240, 245, 518
5NF, see fifth normal form (5NF)

A
abnormal termination, 693, 694
access control approaches, 650
access plan

execution, 292
growth, 291
obsolescence, 657

accumulating fact table, 522
ACID properties, 684, 685, 706, 711,

756, 793
actions on referenced rows, 57, 464, 465
additional choices in physical database

design, 301–306
additive measures, 513, 517, 521, 620
ADDM, see Automatic Database Diagnostic

Monitor (ADDM)
Advanced Encryption Standard (AES), 650
advanced matching problems, 321
AES, see Advanced Encryption Standard

(AES)
AFTER ROW trigger, 445, 451, 452,

464, 466
aggregate

expression, 93, 99
functions, 68, 93–96, 99, 102, 104, 114, 294,

338, 339, 343, 607, 608, 612, 614
match, 625

aggregation properties, 521
Agile development methodology, 28
alias names, 36, 99, 112, 442, 574
ALL keyword, 117, 577
allocation schema, 745
ALTER TABLE statement, 79
alternative terminology for relational

database, 51

Amazon Relational Data Services (Amazon
RDS), 13, 736, 737

Amazon SimpleDB, 736
ambiguous query, 327
American National Standards Institute

(ANSI), 15, 78
analysis guidelines for narrative problems,

183
analytic function, 606–620, 631
Analytic Hierarchy Process, 666, 668
ANALYZE ANY, 652
anchor, 359, 557
anchored data type, 428, 657
AND condition with a null value, 347
AND truth table, 347
anonymous block, 426
ANSI 92 query model in Microsoft Access,

87
Apache Hawq, 743
Apache Spark, 742–743
application

buffers, 268
DBA, 648
profiles, 270, 271, 274–275, 298
server, 571, 732, 733, 734

Aqua Data Studio, 35, 37–40,
161–163, 208

architecture
database management systems, 13–17
parallel database processing, 303, 727,

738
ARRAY type, 772
assignment (:=) symbol, 420
assignment statement, 420, 421
associations in the UML, 166
associative table, 57, 200, 249, 338
ATM transaction, 683–685, 700, 701, 709,

710
atomic property, 684
ATTRIBUTE clause, 526
attribute name rule, 157
attribute to entity type transformation, 187
audit trail, 441
authentication, 650
Automatic Data Optimization, 305
Automatic Database Diagnostic Monitor

(ADDM), 295
automatic failover, 740
automatic partitioning, 741
Automatic Workload Repository (AWR),

274, 298
autonomous transaction, 712
AutoNumber data type, 181
AVG function, 102, 348, 615, 616, 809

AWR, see Automatic Workload Repository
(AWR)

axis, 272, 291, 485, 486, 587–589, 592

B
B+tree, 281–282, 288, 296, 298
back-end CASE tool, 35
backup, 663, 669, 694, 696, 736, 754
balanced tree, 278
BASE, 709, 712, 759, 792–794
basic conversion rule, 197–200
Basically Available, 709
batch processing, 416, 417, 467, 741, 743,

769, 792
Bayer, Rudolph, 278
BCNF, see Boyce-Codd Normal Form

(BCNF)
BEFORE ROW trigger, 445, 447, 463–465
BEFORE ROW trigger for constraint

checking, 445
BEGIN keyword, 426
benchmark, 227, 497, 498, 519–521, 668–669,

686
BETWEEN-AND operator, 89
big data, 11, 12, 305, 565, 568, 648–649, 672,

709, 737, 741–743, 792, 793, 794
big Data Parallel Processing Architectures,

741, 792, 794
binding, 295, 418, 419
bitmap index, 282–285, 286, 299, 629
block, 60, 61, 278, 287, 359, 426–428, 437, 442,

577, 578, 597, 626, 627, 653, 689, 690, 722
BOOLEAN, 347, 381, 420, 789
borrows all or part of its primary key, 148
Boyce-Codd Normal Form (BCNF), 239–247,

252–254, 301, 302, 483
Btree, 278–282, 285–287, 289, 290, 292, 770
buffer, 268, 269, 271, 426, 687, 694–697, 737,

739
business rules, 29, 156–157, 168, 180, 193,

465, 468, 559, 726, 775
business rules in an ERD, 156–157
business systems planning, 661
business value learning curve, 486

C
cache coherence, 739
Cache Fusion technology, 739
cache-consistent checkpoint, 695
call-level interface (CLI), 418–419
candidate key, 51–53, 59, 156, 181, 187, 237,

238, 241–243, 245, 250, 251, 253, 625, 653

INDEX

26008_ind_p833-842.indd 833 3/2/18 11:05 PM

834   Index

CAP theorem, 758, 759
Capability Maturity Model, 492, 664
cardinality, 39, 145–148, 153, 158–161,

164–167, 180, 182–184, 193–195, 197,
200, 201, 528, 529–532, 653, 788

cardinality classifications, 146–147
Cartesian product, 60
CASCADE, 58, 203, 464–466, 749, 776
case sensitive/sensitivity, 86, 420
CASE statement, 422, 424
CASE tool, 35, 36, 38, 197, 660
catalog tables

Oracle, 659
in SQL:2016, 659

causal consistency, 759
CD architecture, see clustered disk (CD)

architecture
centralized coordination, 756, 758
change data

capture, 565, 573
classification, 551

CHAR, 48, 86
CHECK clause, 654
CHECK constraint, 208, 655, 657, 707
checkpoint, 694–699
checkpoint interval, 695
Chen ERD, 151
child node, 278
CHILD OF keywords, 525
child table, 57, 104, 284, 285, 294, 298, 301,

327, 386–395, 397, 398, 456, 457, 460, 466,
519, 815

ciphertext, 650
class diagram, 160, 165–168
class diagram notation, 160, 165–168
classification in the Entity Relationship

Model, 153–155
classifications for minimum cardinalities, 146
client, 15–17, 32, 417, 428, 484, 586, 587, 590,

592, 725–759
client-server architecture, 15–17, 727
cloud computing, 12, 13, 17, 728–730, 735
cloud deployment model, 736
cloud service model, 735–736
cluster

file, 287, 288
index, 295–299

clustered disk (CD) architecture, 738
clustered nothing (CN) architecture, 738, 739
CN architecture, see clustered nothing (CN)

architecture
Codd, T., 78
coding practices, 120–124, 293–294, 295, 657
collision, 276, 277
column, 6, 8, 14, 31, 32, 39, 48–55 passim
column name, 6, 39, 48, 50, 59, 61, 80, 84, 92,

97, 100, 115, 117, 354, 377, 420, 421, 573,
694, 782

columnar DBMS, 794, 799
column-expression, 294, 345
columnstore, 285, 286
columnstore index, 285–286, 288, 629, 793,

794, 799
combined measure of performance, 273
combined primary key, 198, 200, 246, 247,

249, 517
COMMIT statement, 683, 701

common vocabulary, 28–29, 538
community cloud, 736
comparison operator, 83, 86, 89, 90, 237, 282,

328, 331, 338, 345, 401, 422, 788, 805
completeness check, 553
completeness constraint, 154–156, 165
completeness rule, 158, 165
complex integrity constraint, 441, 445, 653
component architecture, 743–745
composite column, 604–605
composite index, 282
composition relationship, 167–168
compound attribute, 185
compression, 285, 302, 303, 305, 513
conceptual data modeling, 31, 33–36, 251
conceptual design, 32–33, 509–538
conceptual evaluation process, 99–103, 104,

113, 114, 125, 333
conceptual schema, 14, 15, 31, 33, 376, 660,

745, 746
concurrency control, 465, 670, 685, 686–693,

700, 704, 705, 744, 756–759
concurrency control manager, 689–692
concurrency transparency, 685
conditional statements, 422
conditions in the HAVING clause, 103
conflation, 737
conflict resolution, 33
conformance, 79, 779
CONNECT BY PRIOR clause, 349, 351, 359
CONNECT role, 652
CONNECT statement, 419
CONNECT_BY_ISLEAF, 354, 358
CONNECT_BY_ROOT, 354, 355–358
connection between two tables, 57
consistency dimension, 645
consistency rules, 157–159, 759
consistency rules for relationship

cardinalities, 158–159
constant values, 117, 282, 420, 776
constellation schema, 518, 519, 537
constraint checking, 442, 445, 451, 464, 672,

701, 793, 797
CONSTRAINT clause, 52, 54
CONSTRAINT keyword, 52
constraint timing clause, 707
conversion rules, 31, 147, 197, 199, 200, 205,

251, 745, 746
converting an ERD, 197–209, 238, 252
converting optional 1-M relationships,

200–202
cooperative change data, 550, 551
correlated subqueries, 334
correlation variable, 784–786
cost formula, 270, 286, 291
Couchbase bucket, 802
Couchbase N1QL, 797, 800–816
COUNT function, 94, 102, 105, 339, 341, 347,

400
CPU usage, 269, 274
CREATE ASSERTION, 79
CREATE DIMENSION, 517, 524–526, 625
CREATE DOMAIN, 654, 771
CREATE INDEX, 282, 301, 649
CREATE MATERIALIZED VIEW, 79, 622
CREATE ROLE, 651
CREATE SEQUENCE, 451

CREATE TABLE, 48, 52–56, 58, 78–80, 156,
197–207, 301, 441, 524, 655, 659, 781,
782, 788

CREATE TABLE statement in Oracle, 659
CREATE TRIGGER, 79
CREATE TYPE, 771, 779, 798
CREATE TYPE BODY, 779
CREATE USER, 652
CREATE VIEW, 79, 376, 377, 385, 395, 622,

627, 649
critical questions for query formulation,

104–105
cross product operator, 59–61, 100
cross product style, 105, 112, 119, 322, 324
cross-checking with application

development, 33
Crow’s Foot notation, 144, 145, 147, 151, 155,

158, 161, 164, 165, 166, 180
CUBE operator, 514–516, 593–598, 600, 601,

603, 604, 627
CUME_DIST, 617–620
cumulative distribution, 617–620
cursor attribute, 434, 435
CURSOR statement, 435
Cursor_Already_Open exception, 431
customized transaction management, 711,

712
cycles in an ERD, 196–197

D
data

integration, 30, 489, 491, 497, 502, 529, 531,
532, 533, 535, 536, 549–579, 647, 671,
743, 794

integration tool, 536, 553, 555, 558, 561,
562–579

mining, 483–484, 497, 518, 535, 547, 559,
561, 743

model/modeling, 11, 28, 31, 33–36, 47–70,
144, 158, 160–161, 163, 180–185, 188, 191,
192, 194, 245, 251, 254, 483, 488, 502, 503,
510, 516–526, 572, 536, 647–649, 661, 671,
792–794, 796–799, 816

placement, 32, 270
planning, 647, 660, 661–662
profiling, 565, 665
quality, 29, 30, 180, 485–487, 492, 493, 499,

501, 553, 555, 561, 563, 565, 645–647,
663, 665

requirements, 9, 31, 104, 182, 382, 392,
393–402, 480, 644, 795–796

sources, 480–482, 486–488, 493–497,
500–502, 532, 533, 535–537, 550, 551,
553–555, 559–562, 564–567, 569, 572,
573, 644

specialist, 644, 647–648, 649, 660, 670–672
storage device, 693–694
types, 6, 11, 36, 39, 48, 52, 67, 86, 89, 97,

104, 160, 163, 166, 250, 289, 294, 295, 302,
324, 418–421, 428, 431, 513, 514, 522, 561,
566, 568, 573, 614, 653, 654, 657, 672, 711,
746, 768–773, 781, 788, 789, 793–795, 797,
800, 801

data access middleware, 731
data administrator, 19, 647–648, 660, 661,

665, 669–672

26008_ind_p833-842.indd 834 3/2/18 11:05 PM

Index   835

data cube, 510–517, 524, 527, 586, 587–590,
592, 593, 628, 629

data dictionary, 36, 39, 194, 289, 533, 649,
658–660

data governance, 19, 30, 499, 644, 646, 647,
660–665

data independence, 13–15, 20, 376, 746, 749,
750, 751

data mart, 488–491, 502, 503, 536, 537, 553,
554, 586, 628

data mart architecture, 488, 491, 536
data mart bus architecture, 488, 491
data steward, 499, 662, 665
data transformation learning curve, 486
data warehouse administrator, 554, 555, 565,

572, 630, 648
data warehouse maturity model, 491–492
data warehouse refresh, 671
database

architect, 15, 648, 730–739, 759
backup, 694, 696
characteristics, 4–6
connection, 49, 418, 419, 568
control statement, 79
definition, 6–7, 10, 11, 13, 14, 79, 376, 428,

792, 800–816
development process, 30–36, 251–253
environments, 670–672
link, 752
manipulation statement, 79
programming language, 80, 416–428
security, 649, 650
server, 13, 15, 571, 730, 732–734, 737
specialist, 14, 648, 650, 660–670
transactions, 682–685, 709

database administration (DBA), 38, 293, 295,
643– 672, 685, 699, 741

database partitioning feature (DPF), 740–741
DATE/TIME, 49, 225, 498
DB2, 12, 740–741, 770
DBA, see database administration (DBA)
DBMS buffer, 268, 269, 271
DECIMAL(W,R), 49
DECLARE keyword, 420, 426
DEFAULT keyword, 420
default value, 29, 58, 156, 193, 383, 386, 388,

420, 536, 548, 559
DEFERRABLE, 655
deferred constraint checking, 464, 707
deferred update approach, 697–699
defining user-defined types and typed

tables in Oracle, 779–782
Definition_Schema, 659
DELETE ANY, 652
DELETE CASCADE, 464–466
DELETE statement, 119, 297, 330, 382, 384,

442, 444, 683, 706, 749
deletion anomaly, 236
demand-driven data warehouse design

methodology, 536–537
denormalization, 253, 254, 301–302
DENSE_RANK, 610
DENSE_RANK function, 610
dependencies among types and typed

tables, 786–787
dependency management, 468, 657
DEREF function, 785

derived data, 302–303, 305–306
derived measures, 513
derived tables, 376
design documentation, 187–188, 192–193,

194
design error, 192–193, 194–195
desktop DBMS, 6, 10, 80
detail line, 183, 185, 399–401, 403
determinant, 237–239, 241, 242, 244, 246,

273, 403
DETERMINES clause, 526, 625
determining primary keys, 181–182
device failure, 694, 696
DGPC Framework, 662–663
diagram rule, 155–160, 165, 194
difference operator, 66–68, 331, 332
difference problem, 331–338
difficulties of index selection, 297–298
dimension hierarchy, 528, 537, 603
dimension table, 517–520, 522, 523, 525–527,

529, 531, 535, 537, 538, 550, 553, 554, 556,
572–573, 623, 624, 628–630

dirty data page, 695
dirty read, 687
discretionary access control, 650
disjointness constraint, 154, 457
disk mirroring, 304–305
distance measure, 561
DISTINCT keyword, 94, 98, 106, 339, 343,

344, 383, 386, 388, 626
DISTINCT keyword inside aggregate

functions, 94, 339
distributed access plans, 755
distributed commit processing, 757, 758
distributed concurrency control, 756–757
distributed coordination, 756–758
distributed database design, 31–36,

671, 728
distributed DBMS, 743–746, 749, 756, 757
distributed query processing, 744, 754–756,

760
distributed transaction processing, 728, 754,

756–760
divide operator, 69–70, 340
division problem, 125, 340–345
DKNF, see domain key normal

form (DKNF)
document data model, 796–798
domain key normal form (DKNF), 240,

250–251
dot operator, 778, 785
DOUBLE PRECISION, 49
DPF, see database partitioning

feature (DPF)
drill-down, 515, 527, 528, 529, 559
drill-down incompleteness, 527–529
DROP ROLE, 651
DROP TABLE, 781
duplicate row, 59, 98, 106, 117, 352, 389
dynamic binding, 419
dynamic hash file, 277
dynamic sampling, 293

E
edit distance, 561, 562
EDM, see enterprise data model (EDM)

ELT architecture, see extraction, loading, and
transformation (ELT) architecture

embedded DBMS, 10, 13
embedded SQL, 80, 418, 419, 468, 769
Emerge2Maturity, 492–496
encryption, 650–651
end of transaction (EOT), 692, 697, 757, 758
energy metric system, 669
enterprise data model (EDM), 488, 647, 661,

671
enterprise data warehouse architecture, 488,

491
entity

identification, 156, 181, 481, 561
integrity, 51–54
matching, 560–562
name rule, 157

entity participation rule, 157, 158
entity relationship diagram (ERD), 10, 31,

33, 36, 143–168, 180–185, 192–198, 201,
203, 205, 208, 236, 238, 245, 246, 251, 252,
517, 519, 522, 529, 533, 537, 538, 773

Entity Relationship Model, 31, 153–155, 197,
200, 251

entity type
associative, 147, 148, 151, 152, 164, 165,

187, 188, 246–248, 250, 522, 532
expanding/expansion, 185–187
M-way associative, 150, 151, 152, 161, 195,

196
rule, 197, 200, 252

EOT, see end of transaction (EOT)
equal-height histogram, 272, 273, 292
equal-width histogram, 272, 273, 292
equi-join, 61, 291
ER Modeler, 37–39
ERD, see entity relationship diagram (ERD)
ERD variations, 160–161
ERWin Data Modeler, 37
escape character, 556, 557
ETL architecture, see extraction,

transformation, and loading (ETL)
architecture

event-condition-action rule, 441
eventually consistent, 709, 759
evolution of database technology, 11–12
exabyte, 649
exact matching, 86–87
EXCEPTION keyword, 426, 445
exception-handling statement, 683
excessive redundancies, 236
exclusive lock, 689–692, 702
EXECUTE statement, 419
executing PL/SQL statements, 426–427
existence dependency/dependent, 146–148
EXISTS operator, 335, 337
existsNode(), 789–791
EXIT statement, 425
explicit PL/SQL cursor, 435
expression, 59, 80, 83–86, 102, 115, 338, 351,

401, 421, 424, 431, 573, 772, 778
extended cross product operator, 59, 60–61
extended order entry database, 405–406
extended statistics, 293, 294
eXtensible markup language (XML), 12, 417,

586, 734, 788
extent, 61, 168, 287, 513, 750, 752, 787, 788

26008_ind_p833-842.indd 835 3/2/18 11:05 PM

836   Index

external level, 14, 376
external schema, 31, 746, 793
external view, 14, 15, 18
extract(), 789, 790
extraction, loading, and transformation

(ELT) architecture, 563, 565, 571
extraction, transformation, and loading

(ETL) architecture, 563, 565, 569
extractValue(), 789, 791
extreme programming, 28
extreme transaction processing (XTP), 737

F
fact table, 517–523, 529–533, 535, 537, 538,

552, 554, 566, 568, 576, 621, 629
factless table, 517
false match, 561
false non match, 561
falsifying potential FDs, 239
FD, see functional dependency (FD)
FDs for 1-M relationships, 238
features of database management systems,

6–10
Federal Information Processing Standard,

140, 651
federated data warehouse architecture,

489–490
FETCH statement, 435
fifth normal form (5NF), 240, 249–250
file structure, 270, 271, 275–288, 290, 292,

306
finalizing an ERD, 192–197
first generation, 11
first normal form (1NF), 239, 240
FLWOR, 790–791
FOR LOOP statement, 425
FOR statement, 419, 434–435
force writing, 694, 695–696
foreign key constraint, 54, 58, 203, 204, 208,

237, 253, 429, 464–466, 707
form field, 394, 395
forward engineering, 36
fourth normal form (4NF), 240, 246,

249, 250
fourth-generation, 11–12, 15
fragment, 745, 747–751, 754, 755–757
fragmentation schema, 745
fragmentation transparency, 749–754
FROM clause, 83, 84, 92, 93, 99, 100, 104, 105,

107, 109, 111, 112, 322, 328, 338–340, 343,
344, 379, 381, 386, 388, 452, 588, 619, 627,
752, 778, 785, 791, 807, 815

full functional dependence, 238
FULL JOIN keyword, 322, 323
full outer join operator, 322, 323
fully-qualified, 421
function index, 288, 294
functional dependency (FD), 236–239, 241–

246, 249, 251–254, 301, 526, 565, 625
functional dependency list, 237
fuzzy checkpoint, 695

G
GCS, see Global Cache Service (GCS)
generalization

hierarchy, 153, 154, 155, 158, 161, 162, 165,
190, 191, 196, 205, 302, 441, 456, 457,
653, 773

hierarchy participation rule, 157, 158
hierarchy rule, 203, 205, 441, 454

GENERATED clause, Appendix 3.C
generation of unique values for primary

keys, 52
Global Cache Service (GCS), 739, 740
global conceptual schema, 745, 746
global database name, 752
global dictionary, 744
global transaction, 744
goals of database development, 28–30, 33
grain, 533, 535, 537, 544, 547, 548
GRANT statement, 651, 653
graph data model, 798–799
graphical representation of referential

integrity, 56–57
group condition, 99
group metacharacter, 557
GROUP BY clause, 93, 94, 96, 102–104, 294,

348, 386, 388, 396, 481, 592, 593, 594, 598,
604–606, 608, 609, 613, 626, 807, 809

GROUPING_ID function, 606
GROUPING SETS operator, 593, 602–604,

606
grouping with row conditions, 95
guidelines for controlling trigger complexity,

658

H
Hadoop, 741–743
hash file, 276–278, 282, 286
hash function, 276, 278, 288
hash join, 291
HAVING clause, 93–95, 99, 102–105, 294,

328, 338, 341, 343, 619, 772, 809
HDFS, see Hierarchical Distributed File

System (HDFS)
heading part, 48, 183, 185
heading row, 6, 574, 576
heap file, 275
Heat Map, 305
Hierarchical Distributed File System

(HDFS), 742
hierarchical form, 386, 387, 391–399, 400,

401, 701
hierarchical query, 349, 351–355, 359
hierarchical report, 399–401
high reliability, 693, 696
hints, 292, 293
histogram, 272, 273, 291, 292, 299
historical integrity, 517, 520, 522–524
HOLAP, see Hybrid OLAP (HOLAP)
homogeneous distributed databases, 752
horizontal fragment, 747, 748, 754
horizontal scaling, 793, 799
hot spot, 686, 692, 700–703
HTML, see Hypertext Markup Language

(HTML)
human-oriented workflow, 710
hybrid cloud, 736
hybrid data warehouse design methodology,

537–538
hybrid histogram, 272

Hybrid OLAP (HOLAP), 629–630
Hypertext Markup Language (HTML), 417,

586, 733, 789

I
IaaS, see Infrastructure as a Service (IaaS)
ICD-10, 501
IDC, 648
IDE, see integrated development

environment (IDE)
IDEF1X, 164
identification

dependency, 147–148, 156, 158, 167, 186,
187, 198, 199

dependency cardinality rule, 157, 158, 159
identifying relationships, 147, 148, 151, 152,

156, 158, 159, 161, 163, 187, 251
IF statement, 422, 445
IF-THEN-ELSE statement, 422, 423
ILM, see Information Lifecycle Management

(ILM)
immediate update approach, 696–699
implicit PL/SQL cursor, 434
implicit type conversion, 294
IN operator, 95
incomplete dimension-fact relationship, 531
inconsistent retrieval, 686, 688, 704
incorrect summary, 688, 705
incremental checkpoint, 695
index

matching, 281–283
selection, 32, 35, 36, 295–301, 748
selection rules, 295, 299
set, 281

index-organized file, 287
inexact matching, 83, 86–89, 556
information life cycle, 645
Information Lifecycle Management (ILM),

305
information resource dictionary (IRD),

658–660
information resource management, 19, 644,

645, 647
information systems development, 26–28,

30, 33, 35, 658
information systems life cycle, 660
information systems planning, 660, 661
information systems professional, 18, 35,

51, 660
Information_Schema, 659
Infrastructure as a Service (IaaS), 735
inheritance, 153, 154, 162, 165, 771, 775, 781
inheritance in generalization hierarchies,

153–154
inherited attribute name rule, 157
in-memory transaction processing, 693, 737,

793, 794
Inmon, 482
INNER JOIN keywords, 100, 387
INNER JOIN operation, 110, 324, 330–331
input-output parameter, 428, 771
inputs of physical database design,

271–275
INSERT ANY, 652
INSERT statement, 78, 117, 118, 444, 456, 574,

683, 749, 751, 778, 782, 786, 802, 811

26008_ind_p833-842.indd 836 3/2/18 11:05 PM

Index   837

instance diagram, 145, 146, 150
INSTANTIABLE, 779
INSTEAD OF trigger, 441, 442, 454–456, 460,

466
integrated development environment (IDE),

562–565, 568
intent exclusive, 690
intent lock, 690, 692
intent shared, 690
internal schema, 14, 15, 268
International Classification of Diseases, 501
International Standards Organization (ISO),

78, 660
interoperability, 726–728, 730, 731, 734, 737
intersection operator, 629
Invalid_Cursor, 431
involving a weak entity and one or more

identifying relationships, 148
IRD, see information resource dictionary

(IRD)
IRDS, 660
IS NULL comparison operator, 90, 331
IS NULL condition, 332, 334
ISA, 153
ISO, see International Standards

Organization (ISO)
isolation level, 692, 704–706, 737
iteration metacharacter, 557
iteration statement, 425

J
Java Database Connectivity (JDBC),

418, 731
JavaScript Object Notation (JSON), 797, 798,

800–802, 804
JDBC, see Java Database Connectivity

(JDBC)
job management, 564
join algorithm, 289–290, 292, 293, 569, 629
join conditions in the WHERE clause, 105,

111, 322
JOIN KEY clause, 525
join operator, 50, 59–64, 66, 100, 302, 323,

324, 589, 747, 810, 811, 815
join operator style, 109–112, 119, 322, 324,

330, 386–388
join simplification, 289
join view, 386, 441, 459, 460
JSON, see JavaScript Object

Notation (JSON)

K
key preserving table, 460
key-value data model, 794–798
keyword DESC, 97
knowledge management, 644–646

L
law of transitivity, 244
leaf, 351, 354
leaf node, 278, 279, 281, 289, 789
learning curve, 485–487
LEFT JOIN keyword, 322

left-hand side (LHS), 237–239, 241, 243, 246,
251, 252, 341

legacy system, 493, 551, 553, 711, 745, 746
level of historical integrity, 523
LEVEL pseudo column, 351
LHS, see left-hand side (LHS)
LIKE operator, 87, 90
limited history, 190, 524
linear probe procedure, 276, 277
linking column, 393, 394, 396, 398
literal, 556, 557
load balancing, 739, 740
load time lag, 554
local data manager, 744, 745
local database, 745, 752
local mapping transparency, 750–752
location transparency, 749–752
lock management, 756
lock operator, 689
lock record, 689
lock table, 689
locking granularity, 689–690, 692
log operation, 696, 698, 699
log sequence number (LSN), 694, 696, 698,

699
log writing process, 739
logged change data, 551, 552
logical database design phase, 31, 33–36, 270
logical expression, 59, 83, 90, 91, 273, 289,

422
logical record (LR), 268, 269, 275, 277, 278,

279, 303
logical window, 611, 612, 614, 616
LONG data type, 49
LOOP statement, 425–426
loosely integrated distributed DBMS, 745,

746
lower function, 86
LR, see logical record (LR)
LSN, see log sequence number (LSN)

M
main form, 391–398, 701
main memory, 4, 32, 268–270, 281, 286, 693
maintenance phase, 27
management decision making, 644, 645, 666,

670
management of triggers, 657–658
mandatory access control, 650–651
mandatory relationship, 146, 148, 163, 531
mapping schema, 745, 746
MapReduce, 742
matching requirements for query rewriting,

625
materialization properties, 621
materialized view, 380, 553, 554, 621, 624–

626, 628, 629
materialized view in Oracle, 621–623
maturity model, 491, 492
maximum cardinality, 145–147, 158, 161, 182,

528, 531
MDX, see Multidimensional Expressions

(MDX)
mean time between failures, 304
Mean Time to Recover (MTTR), 699
measure details, 513

memory access, 269
MERGE statement, 573–575
message-oriented middleware, 731, 732
metacharacter, 556–558
metadata, 565, 573, 658–660
Microsoft Access, 6, 8, 12, 13, 56, 63, 66, 80,

86, 94, 112, 115, 119, 147, 251, 323, 327,
330, 349, 376, 386, 387, 391, 393, 395, 398,
459, 653, 659

Microsoft Access SQL, 111
Microsoft SQL Server, 9, 12, 13, 442, 565, 586,

591, 706, 712, 802
middleware, 15, 727, 730–735, 743, 745
minimal determinant, 238
minimal superkey, 51, 53
minimize response time, 269
minimum cardinality, 146, 148, 182, 184, 193,

195, 197, 200, 201, 528, 529, 531
minimum cardinality symbol, 145
mirrored disks, 304
misplaced and missing relationships, 195
misplaced relationship, 195
missing relationship, 195
M-N relationship, 56, 57, 146, 150, 152, 156,

161, 163–166, 188, 190, 195, 197, 198, 238,
248, 251, 252, 340, 518, 522, 527, 529–532,
544

M-N Relationship Rule, 197, 198, 200
M-N relationships with attributes, 148, 149,

161, 816
modification anomaly, 236
modification statements, 117–119, 382, 460
MOLAP, see Multidimensional OLAP

(MOLAP)
motivation and classification of triggers,

441–442
motivation for object database management,

768–770
motivation for parallel database processing,

727–728
MTTR, see Mean Time to Recover (MTTR)
MTTR Advisor, 699
multidimensional data cube, 510–512, 517
Multidimensional Expressions (MDX), 510,

516, 586–592
Multidimensional OLAP (MOLAP), 628–630
multidimensional representation, 510–516
multiple candidate keys, 245
multiple parent tables in 1-M relationships,

291
multiple table INSERT statement, 576–579
multiple-table updatable view, 382, 386–391
multiple-tier architecture, 733–734
MULTISET type, 772, 775
multivalued dependency (MVD), 249
multiway tree, 278–282
mutating tables, 465–467
mutator method, 772
MVD, see multivalued dependency (MVD)
M-way relationship, 145, 147, 148, 151, 152,

161, 166, 187, 196, 240, 246–249, 251
MySQL, 12, 13, 670, 801

N
N1QL, 797, 800–816
name qualification, 811, 815

26008_ind_p833-842.indd 837 3/2/18 11:05 PM

838   Index

narrative problem analysis, 180
natural join operator, 61, 62
nested aggregates, 338
nested loops algorithm, 291
nested queries in the WHERE clause, 338
nested query, 294, 295, 328–331, 334–336,

338, 339, 341, 343, 344, 356, 372, 619, 627
nested rollup, 605
NESTED TABLE constructor, 788
nested tables, 240, 775, 787, 788, 797
nested transaction, 711, 712
n-gram distance, 561
No_Data_Found, 431–433
non additive measures, 513
non strict dimension-fact relationship,

530–532
non strict dimensions, 527, 529–532
nonclustering index, 295–299
nonkey column, 253
nonprocedural access, 7–9, 11, 18, 416
nonprocedural database language, 7
nonrepeatable read, 688, 705
nontrivial MVD, 249
normalization, 31, 36, 235–254, 301, 302, 518,

653
normalization process, 237, 245, 252, 254, 653
NOT EXISTS operator, 335, 337
NOT FINAL, 779
NOT IN operator, 331
NOT INSTANTIABLE, 779
NOT NULL constraint, 54
NOT truth table, 347
NTILE, 610
NTILE function, 610
null value, 51, 52, 54, 55, 58, 63, 65, 83, 90,

117, 156, 163, 191, 193, 197, 200–202, 204,
205, 236, 237, 241, 299, 302, 345–349,
369–372, 373, 420, 444, 453, 511, 548, 565,
566, 568, 573, 574, 583, 601, 801

null value considerations, 345–349
nullify action, 58
number of physical record accesses, 269, 271,

277, 278, 280
numeric constants, 420

O
object database features in Oracle, 779–791
object database features in SQL:2016,

770–779
object identifier, 774, 776, 778, 781, 782, 784,

785
OBJECT IDENTIFIER clause, 781, 782
object privileges, 652
object view, 785, 787, 788
object-relational database, 770
Observational Medical Outcomes

Partnership (OMOP), 502, 521, 522, 532
observer method, 771
ODBC, see Open Database Connectivity

(ODBC)
Office 365 Advanced Data Governance, 665
OLAP, see online analytic processing (OLAP)
OLD keyword, 452, 453
OMOP, see Observational Medical Outcomes

Partnership (OMOP)
OMOP Common Data Model, 502, 503, 521

ON DELETE CASCADE action
ON DELETE clause, 58
ON ERROR statement, 694
ON UPDATE clause, 58
one-sided outer join operator, 64
online analytic processing (OLAP), 586–592,

629
open core license, 669–670, 802
Open Database Connectivity (ODBC), 418,

731, 732
open source DBMS, 12, 13, 15, 669, 670, 737
open source license, 565, 669, 670
oper mart, 489
operating system failure, 694
operational database, 30, 305, 481–483, 485,

488, 489, 519, 535, 536, 552, 554, 621, 623,
644, 645, 647, 661, 665, 670–671

optimistic concurrency control, 689,
692, 693

optional cardinality, 155
optional 1-M relationship, 197, 200–202, 207
optional relationship, 146, 163, 200, 531
OR condition with a null value, 347
OR keyword, 442, 443
OR operator, 95, 422, 629
OR truth table, 347
Oracle Data Integrator, 562, 565, 570–573
Oracle Data Pump, 573
Oracle Enterprise Manager, 659
Oracle partitioning, 753
Oracle RAC, see Oracle Real Application

Cluster (RAC)
Oracle Real Application Cluster (RAC), 739,

740
Oracle sequences, 653
Oracle SQL Developer, 161, 163
Oracle system and object privileges, 674
Oracle triggers, 441, 442, 452, 454, 463
Oracle upper, 86
Oracle Warehouse Builder, 570
ORDER BY clause, 97, 99, 103, 373, 607, 608,

791
order entry database, 38, 369, 372, 406, 679,

747, 749
ordered sequential file, 275, 286, 297
ORGANIZATION INDEX clause, 301
orphaned transaction, 553
other object features in Oracle, 787–791
OTHERS exception, 429
outer join operator, 63–66, 302, 322, 323
output parameter, 428, 429, 771
overlapping trigger, 463–465
OVERRIDING keyword, 771, 781

P
PaaS, see Platform as a Service (PaaS)
package body, 438
package interface, 437, 438
pairwise weight, 666, 668
parallel database

architecture, 15, 737, 738, 739
processing, 15, 17, 288, 303, 306, 630,

725–759
parallel DBMS, 738, 739
parallel query execution, 629
parent node, 281, 798

parent table, 57, 104, 106, 284, 285, 290, 294,
298, 299, 301, 327, 386–389, 392–394, 398,
452, 453, 456, 457, 460, 465, 466, 775, 776,
784, 787, 788

parity pages, 305
parsing, 55–558, 741, 801
partial cube, 604, 605
partial rollback, 708
partial rollup, 604
participant sites, 757
partition advisor, 754
PARTITION BY keyword, 609, 610
partition tolerance, 758, 759
partitioned join operations, 739
path exception query, 356
path expression, 778, 785
pattern-matching character, 87, 88
PCTFREE, 287
PCTUSED, 287
Pentaho Data Integration, 562, 565, 568–570
percent symbol %, 87
PERCENT_RANK, 617, 618
performance DBA, 648
periodic reorganization, 275, 277, 278
persistent data, 6
Persistent Stored Modules, 418
pessimistic approach to concurrency control,

692
petabyte, 649
phantom read problem, 688, 705
phases of database development, 30–35
phonetic distance, 561
physical record, 268, 269, 271, 273, 275–281,

285–287, 291, 295, 296, 303, 304, 690, 701,
702, 799

physical window, 612, 614, 615
pivot table, 516, 586, 589–592
Pivot4J, 586, 587, 590–592
PL/SQL, see Programming Language/

Structured Query language (PL/SQL)
block, 426, 437, 442
data types, 420
functions, 431–433
packages, 437–440
procedures, 428, 789
statements, 420–426
triggers, 420

plaintext, 650
Platform as a Service (PaaS), 735
pointer, 279, 281, 286, 296
portability, 79, 416–418, 646
position metacharacter, 557
positional correspondence, 67
PostgreSQL, 12, 13, 669
potential candidate keys, 237
power user, 18, 79, 492
PowerDesigner, 37
practical concerns about normalization,

251–254
prebuilt user-defined type, 770, 773
predicate lock, 705
preliminary investigation phase, 27
preparation phase, 553
Prepare() procedure, 419
presentation code, 730, 732
pricing specification, 668, 669
primary copy protocol, 757

26008_ind_p833-842.indd 838 3/2/18 11:05 PM

Index   839

primary file structure, 281, 286
primary key constraint, 429, 526, 707, 775
primary key rule, 157
primitive data type, 421
PRIOR operator, 356
private cloud, 736
problem statement into a database

representation, 104
problem statement into an ERD, 180
procedural language interface, 8–9
procedures versus functions, 431
process management, 492, 623, 730, 732, 743
process model, 28, 33, 661
production learning curve, 485–487
program variables, 419, 769
program-detected failures, 693
Programming Language/Structured Query

language (PL/SQL), 420
properties of entity types or relationships, 145
pseudo column, 351, 354, 373
public cloud, 736
publish and subscribe model, 565, 573

Q
qualified (prefixed), 92
qualitative skills, 34
quantifier metacharacter, 557
quasi identifier, 561
Query Design window, 63, 66
query

binding, 295
optimization, 15, 270, 271, 288–296, 298,

304, 526, 743, 755, 789
rewriting, 524, 621, 623–627, 629
transformation, 289

query formulation skills for hierarchical
forms, 398
reports, 401

queryable change data, 550–552
question mark (?), 88

R
RAID architecture, 304, 727
RAID controller, 304
RANGE keyword, 611, 614
range metacharacter, 557
RANK function, 608–610
rapid application development

methodologies, 28
RATIO_TO_REPORT function, 617, 620
read committed isolation level, 705
read uncommitted, 705, 706
read-only views, 382, 403
ready-commit record, 757
Real Application Clusters, 739
reasonableness check, 553
record formatting decisions, 302
record-oriented terminology, 51
recovery

features in Oracle, 699
management tools, 693
processes, 693, 694, 696–700
transparency, 685, 756

recursive common table expression, 113,
349, 359

recursive CTE, 359
redo operations, 694, 697–699
Redundant Arrays of Independent Disks

(RAID), 304, 305, 727
redundant foreign key rule, 158–160
redundant relationships, 196–197
REF function, 784, 785
reference type, 775, 776, 778, 782, 785, 787
referencing clause, 442, 443
referential integrity constraint, 54–57, 244,

245, 251, 466, 782
referential integrity for self-referencing

(unary) relationships, 55
referential integrity rule, 52
refinement approach, 251
refinements to an ERD, 185–192
refresh constraint, 555
refresh frequency, 554
refresh process, 553–555, 562, 563, 623, 630,

728
regex, 556
regular dimension pattern, 528
regular dimension-fact pattern, 531
regular expression, 555–559
relational algebra operators, 59, 70, 105
relational data model, 47–70, 158, 483, 516–

526, 572, 792
relational database design, 236–239,

251, 517
relational database diagrams, 144, 147, 152,

251
relational DBMS, 11, 31, 48, 286, 288, 481,

516, 517, 524, 563, 586, 621, 628, 672, 736,
768, 769, 779, 792–794, 799, 801

relationship cycle, 519
Relationship Definition window, 6, 7
relationship equivalence, 152
relationship independence, 246–249
relationship patterns, 147–152, 531
relationships among tables, 6, 7, 49
relationships with attributes, 147–149, 161,

816
remote database, 15, 752
renamed columns, 377, 401
repeatable read level, 705, 706
repeating groups, 239, 240, 301–302
replicated data, 709, 728, 757
RESOURCE role, 652
restart time, 695, 698, 699
restart work, 695, 697, 698
RESTRICT clause, 652
reusability, 726
reversed cardinalities, 195
REVOKE statement, 651, 652
RIGHT JOIN keyword, 322
risk-gap matrix, 664
ROLAP (Relational OLAP), 628–630
role names, 166
ROLLBACK statement, 429, 683, 693, 694,

708, 712
ROLLBACK TO SAVEPOINT, 708
rollup incompleteness, 528
ROLLUP operator, 598–602, 604
root node, 278, 279
row condition match, 624
row conditions, 99, 577, 655, 688
ROW keyword, 442

row type column, 776
row type constructor, 774, 784
ROW_NUMBER function, 610, 618, 619
ROWS keyword, 611, 614
rule about allowable dependencies, 239
rules for referenced rows, 71, 667
run-time error, 452

S
SaaS, see Software as a Service (SaaS)
SAFTINet, see Scalable Architecture for

Federated Translational Inquiries
Network (SAFTINet)

SAVEPOINT statement, 708
scalability, 555, 630, 671, 726, 727, 736, 737,

739, 741, 759, 802
Scalable Architecture for Federated

Translational Inquiries Network
(SAFTINet), 502–503

scaleup, 15, 727, 737, 738
schema architectures, 13–15, 376, 743,

745–746
schema conversion, 171, 256
schema integration process, 532, 533,

542
schema mappings, 15
schema-less, 793, 794, 799, 801, 804
scholar’s lost update, 706, 720
second-generation, 11
second normal form, 239
secondary file structure, 281, 286, 290
security policies, 652, 653
SELECT ANY, 652
SELECT clause, 84, 93, 96, 99, 102, 103, 588,

608
self-join, 112, 113, 351
self-referencing relationships, 55, 57, 147,

149, 150, 198, 349
semantic errors, 120, 289
semi-additive measures, 513, 517, 521
semicolon at the end of the statement or

command, 83, 420
semi-join, 747, 748
senior DBA, 648
sequence set, 281, 295, 296
sequential file, 275–276, 278, 285, 286, 292,

297
serializable level, 705
SET command, 427
SET CONSTRAINTS statement, 708
SET DEFAULT, 58, 464
set inclusion, 775, 784, 787, 788
SET NULL, 58, 464
SET TRANSACTION statement, 705
set-oriented terminology, 51
sharding, 793, 799, 802
shared disk architecture, 739
shared everything, 738
shared global area, 739
shared locks, 689–691, 705
shared nothing architecture, 739, 749, 751,

755
shared with intent exclusive, 690
sharing of attributes, 153
SHOW ERRORS, 426
SIBLINGS keyword, 353

26008_ind_p833-842.indd 839 3/2/18 11:05 PM

840   Index

side effects when updating a view, 386
signature dependency maintenance, 657
simple synthesis procedure, 243–246, 251, 253
single-table updatable views, 382–386
skill learning curve, 485
slash (/), 513, 556, 557
slice operator, 514, 515
slicer, 587–589, 592
SMALLINT data type, 49
snapshot change data, 550, 552
snapshot table, 517
snowflake schema, 518, 525, 539, 540, 542, 548,

629
Social Security number, 52, 181, 212
soft constraint, 451
Soft state, 709
Software as a Service (SaaS), 735
solid state drive, 269, 305
solid state storage, 269
sort merge, 291
source access constraint, 555
source data, 482, 518, 532, 535, 550, 552, 553,

555, 565, 587, 588, 621, 647
source systems, 487, 550–555
sparsity, 513, 531, 535, 628
specialized data modeling constructs, 195
speedup, 15, 727, 728, 737, 738
spiral development methodologies, 28
SPOOL command, 426
SQL

Access Advisor, 295, 298, 754
Azure Database, 737
data types, 418–420, 653
Tuning Advisor, 295, 298

SQL *Loader, 573
SQL:1999, 79, 338, 349, 359, 418, 441, 442, 593,

607
SQL:2016

assertions, 655
CLI, 418, 419
GENERATED clause, 774
isolation levels, 705
privileges, 652
security statements, 651, 652
triggers, 441

SQL-92, 79, 113, 376, 771, 773, 778
stable columns, 285, 299
stable storage, 4, 268
staging area, 488, 493, 553
stand-alone context, 79
star join, 285, 290, 629
star schema, 483, 516–518, 524, 537, 538, 547,

548, 628
START TRANSACTION statement, 683,

705, 708
START WITH clause, 352, 355
statement triggers, 441, 442, 466
statement-level interface, 418–420
static binding, 419
static cursors, 434
static hash file, 277
statistical independence, 247
Storage Area Network, 305
storage level of databases, 268–269
stored procedures, 295, 415–467, 648, 649,

652, 655, 657–658, 732, 771, 775
stored queries, 338, 376, 653

strategic view, 490, 491
string constants, 87, 420
stripe, 304, 305
striping, 304, 305, 629
structured data types, 421, 771
subclasses, 168
subform, 391–398, 403, 701, 702
subform query, 396
subquery, 328–329
subset match, 341
subtable families, 204, 770, 775–778, 788
subtypes, 153, 154, 158, 162, 164, 165, 168,

191, 196, 197, 203, 204, 207, 454, 455, 771,
775, 778, 779, 781, 785–788

summarize operator, 68–69, 93, 515
summary storage advisor, 629
superkey, 51, 53
supertype, 153, 154, 162, 191
supply-driven data warehouse design

methodology, 537
syntax error, 79, 115, 120, 157, 289, 424, 453
syntax notation, 157, 357, 359, 800
SYS_CONNECT_BY_PATH, 354
system DBA, 648
system failures, 694, 696, 697, 699, 759
SYSTEM GENERATED keywords, 774
system privilege, 652
System R project, 78
system-dependent hot spot, 701, 702
system-independent hot spot, 701, 702
systems development life cycle, 26

T
TABLE collection type, 787
table definition styles, 775
Table Definition window, 6, 7, 659
TABLE operator, 66, 67, 788
table profile, 271–273, 291, 292–293, 295, 296,

299
table profile deficiencies, 292–293
tablespace, 287
TALEND Open Studio, 562, 565–568
task complexity, 710
task structure, 710
TDE, see Transparent Data Encryption (TDE)
TDWI, see The Data Warehouse Institute

(TDWI)
terabyte, 649
terminology for relational databases, 51
ternary relationship, 151
TEXT data type, 561, 794
The Data Warehouse Institute (TDWI), 491,

492
third normal form, 518
third-generation, 11
Three Schema Architecture, 13–15, 376, 745
three-tier architecture, 732–733
tiering, 305
tightly integrated distributed DBMS, 745
time dimension table, 522
time series, 513–514, 672, 770, 772
time stamps, 482, 551
timeliness, 29, 30, 555, 645
time-out policy, 691
TIMESTAMP, 49
timestamp data type, 522

timestamp maintenance, 657
to_char function, 115
To_Date function, 420
to_number function, 85
Too_Many_Rows, 453
tools of database development, 25, 40
TPC, see Transaction Processing

Performance Council (TPC)
TPC benchmark, 668
TPC-DI, 668
TPC-DS, 497, 519
TPC-E, 668
TPC-Energy, 669
TPC-H, 668
traditional set operators, 59, 66, 67, 68, 105,

115–117, 125
traditional systems development life, 26
transaction

boundaries, 701
design issues, 700–709
designer, 683, 700, 701, 705, 708
log, 551, 694
properties, 684–686, 712
table, 517, 621
throughput, 686, 693, 699, 792

Transaction Processing Performance
Council (TPC), 227, 497, 519, 668,
669, 686

transaction processing versus decision
support, 519

transaction-processing monitor, 731, 732
transferring physical record, 268
transforming a weak entity, 187
transition constraint, 441, 447
transitive dependencies, 244, 246
transitivity, 244, 245
transparency for distributed database

processing, 746–754
transparency in Oracle distributed

databases, 752–754
Transparent Data Encryption (TDE), 651
tree-structured queries, 113
trigger events, 441, 443, 447, 452
trigger execution procedure, 441, 447,

463–465, 657
triggers on tables affected by actions on

referenced rows, 465
Triple Data Encryption Standard (Triple

DES), 650
Triple DES, see Triple Data Encryption

Standard (Triple DES)
true match, 561
true non match, 561
truth table, 347
two-phase commit protocol, 758
two-phase locking, 688, 691–692, 704, 756
two-tier architecture, 732
Type I nested query, 328–331, 334, 372
Type I Nested Query for a Difference

Problem, 331, 372
Type I subquery, 329
Type II nested query, 295, 328, 334–335
type checking, 654, 793, 794
TYPE statement, 420, 771
type substitution, 787–788
type system mismatch, 768–769, 775
typed tables in Oracle, 779–786

26008_ind_p833-842.indd 840 3/2/18 11:05 PM

Index   841

U
UDDI, 734
UML, 160, 165–168, 660
UML class diagrams, 168
unary relationship, 55, 113, 145, 148, 149–

150, 161, 166
UNDER keyword, 771
underscore character, 88
undo operation, 694, 696, 697
unexpected side effects, 236
uniform distribution, 272
uniform value assumption, 272, 273, 292
union compatibility, 67–68
union operator, 66, 324, 601, 626, 629, 749
UNION query, 116
unique column values, 94
UNIQUE keyword, 53
university database tables, 69, 80, 342
unlock operator, 689
UNNEST operator, 807, 809
unordered sequential files, 275, 297
unqualified name, 61
unusual dimension pattern, 528
unusual dimension-fact pattern, 531
updatable join views, 386, 441, 459
updatable views, 382–391, 395, 403, 750
update anomalies, 236
UPDATE ANY, 652
update lock, 691
update propagation, 441, 445
UPDATE triggers, 442, 458, 461, 464
updateXML(), 789
updating using views, 382–391
USER GENERATED keywords, 774
user-defined exception, 429, 445
user-defined type, 654, 770–776, 778, 779,

781, 782, 786–788
USING clause, 419
using views

in hierarchical forms, 391–399

in reports, 399–402
for retrieval, 378–382
in SELECT statements, 379

V
valid time, 554
VALUE function, 786, 789, 790
value-based constraint, 237
value-neutral constraint, 237
VALUES clause, 117, 802
VARCHAR(L), 49
variable declaration, 420–421
variable part of a hierarchical form, 391
variations to the star schema, 518–519
VARRAY constructor, 782
vertical fragment, 747, 748
view

definition, 376–377, 385
design, 33
integration, 33
materialization, 379, 380
modification, 380, 381
updates, 385, 441, 454, 459–460

Visible Analyst, 37
Visio Professional, 10, 160, 161,

164–165, 208
Visual Paradigm, 161, 165
volatile storage, 268, 693, 695, 696
voting phase, 757

W
waiting time, 686, 702, 703
waterfall model, 27
weak entity, 147–148, 158, 159, 161, 164, 165,

187, 197
Web log, 551, 571, 741
Web Services Architecture, 734
Web Services Description Language, 735

Web Services Flow Language, 735
WebPivotTable, 590–592
WHEN clause, 442, 445, 447, 453, 578, 579
WHERE vs. HAVING, 95
WHILE LOOP statement, 425
wildcard character *, 84, 87, 88, 92, 102
WITH ADMIN clause, 651
WITH CHECK OPTION, 385, 386
WITH GRANT OPTION, 651, 652
WITH RECURSIVE clause, 464–465
workflow management, 709–712
workflow specification, 550, 711, 712
write ahead log protocol, 696
write-behind cache, 737

X
X lock, 689, 692
XML, see eXtensible markup language

(XML)
document support, 788–789
enabled, 11
traversal operators, 789

XML/SQL duality, 789
XMLSequence(), 789
XMLType data type, 789
XPath, 789
XQuery, 789, 790, 800
XTP, see extreme transaction processing

(XTP)

Y
YARN, 742
year function, 115
yottabyte, 649

Z
zettabyte, 649

26008_ind_p833-842.indd 841 3/2/18 11:05 PM

26008_ind_p833-842.indd 842 3/2/18 11:05 PM

	MANNINO DATABASE 7E COVER for VitalSource
	Mannino 7e ebook master reduced file size
	Table of Contents + Preface
	Part One - Introduction to Database Environments
	Chapter 1 Introduction to Database Management
	Chapter 2 Introduction to Database Development
	Part Two - Understanding Relational Databases
	Chapter 3 The Relational Data Model
	Chapter 4 Query Formulation with SQL
	Part Three - Data Modeling
	Chapter 5 Understanding Entity Relationship Diagrams
	Chapter 6 Developing Data Models for Business Databases
	Part Four Relational Database Design
	Chapter 7 Normalization Concepts and Processes
	Chapter 8 Physical Database Design
	Part Five - Application Development with Relational Databases
	Chapter 10 Application Development with Views
	Chapter 11 Stored Procedures and Triggers
	Part Six - Data Warehouse Processing
	Chapter 12 Data Warehouse Concepts and Management
	Chapter 13 Conceptual Design of Data Warehouses
	Chapter 14 Data Integration Concepts and Practices
	Chapter 15 Query Formulation for Data Warehouses
	Part Seven - Managing Database Environments
	Chapter 16 Data and Database Administration
	Chapter 17 Transaction Management
	Chapter 18 Client-Server Processing, Parallel Database Processing, and Distributed Databases
	Chapter 19 DBMS Extensions for Object and NoSQL Databases
	Bibliography
	Index

