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PREFACE

Why Fundamentals of Data Structures in C? There are several answers. The first, and 
most important, is that instructors are moving to C as the language of choice. This is not 
surprising as C has become the main development language both on personal computers 
(PCs and Macs) as well as on UNIX-based workstations. Another reason is that the qual
ity of C compilers and C programming development environments has improved to the 
point where it makes sense to provide instruction to beginners in a C environment. 
Finally, many of the concepts that need to be taught in the programming systems areas of 
computer science, such as virtual memory, file systems, automatic parser generators, lex
ical analyzers, networking, etc. are implemented in C. Thus, instructors are now teach
ing students C early in their academic life so that these concepts can be fully explored 
later on.

We have chosen to present our programs using ANSI C. ANSI C, adopted in 1983, 
has attempted to strengthen the C programming language by permitting a variety of 
features not allowed in earlier versions. Some of these features, such as typing informa
tion in the function header, improve readability as well as reliablity of programs. The 
alternative to ANSI C is Kemighan and Ritchie C (abbreviated as K&R C) which derives 
from their book The C Programming Language, Prentice-Hall, 1978. For those instruc
tors who are using a K&R version of C we have provided an Appendix that discusses the 
changes required to get the programs working in that environment. The changes are 
quite simple and are easily made, so the distinctions between the two should not bother 
the student.

xi



xii Preface

All programs and algorithms in this text have been compiled and tested. We have 
exercised the programs on an Intel/386 under DOS using Turbo C and Turbo C++ com
pilers. We have also run the programs using the C compiler on a SUN Sparcstation 
under SUNOS 4.1. We have directly imported the compiled programs into the body of 
the book, and we have avoided changing the appearance of the programs, via typeset
ting, so as not to inject any errors.

For those instructors who have used Fundamentals of Data Structures in Pascal, 
you will find that this book retains the in-depth discussion of the algorithms and comput
ing time analyses. In addition we have attempted to preserve the chapter organization 
and the presentation style of the earlier book whenever it was desirable. But this has not 
kept us from making improvements, especially when dictated by the use of C rather than 
Pascal. For example, the discussion of strings is now found in the chapter on arrays. 
Also found there is a discussion of pointers, as pointer manipulation of arrays is quite 
common in C. Error messages are written to stderr. Programs that use system function 
calls, such as malloc, check that they return successfully. We use exit(O) and exit(}) for 
normal and abnormal program termination.

Non-C related changes include the placement of exercises immediately after the 
relevant section. Exercises which have a section marker, §, next to the exercise number 
denote difficult exercises. Exercises which are suitable for programming projects are 
labeled as such. In addition, we have rearranged the sections in each chapter so that the 
basic material appears early in the chapter and the difficult or optional material appears 
at the end of the chapter.

One of the major new features in this book, compared to its earlier version, is the 
inclusion of abstract data types. The major idea is to separate out the issue of data type 
specification from implementation. Languages such as Ada provide direct support for 
such a split, but in C there is no equivalent construct. Therefore, we have devised a 
straightforward notation in which we express an abstract data type. Basically, we pro
vide a description of the objects of the type followed by the names and arguments of the 
functions of the type. Instructors can discuss with the students the specification of the 
data type before moving on to implementation issues and concerns for efficiency of the 
algorithms.

Over the past decade the field of data structures has not stood still, but has matured 
significantly. New and useful data structures have been devised and new forms of com
plexity measures have been introduced. In this new edition we attempt to keep up with 
these developments. For example, Chapter 9 is entirely devoted to heaps. Special forms 
are discussed including the min-max heap and the deap, both of which are forms of dou
ble ended priority queues. We also discuss a data structure that supports the combining 
of priority queues, leftist trees. These also have min and max forms. A Fibonacci heap is 
introduced as a data structure that supports all leftist tree operations. We introduce bino
mial trees, of which Fibonacci heaps are a special case.

A more thorough treatment of 2-3 trees now can be found in Chapter 10. In addi
tion, we have included a section on 2-3-4 trees. The 2-3-4 tree has some advantages over 
the 2-3 tree, thereby supporting its presentation in this chapter. Red-black trees are a 
binary tree representation of a 2-3-4 tree. All of these data structures are important 
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special cases of the B-tree. They are emphasized here because the insertion and deletion 
algorithms that maintain the tree’s balance are substantially simpler than for AVL trees, 
while the O(log n) bounds are maintained.

Another issue treated more thoroughly in this edition is amortized complexity. 
Most of the algorithms have their best, worst, and occasionally their average computing 
time analyzed. Amortized complexity considers how efficiently a sequence of operations 
is carried out. This form of complexity measure was popularized by R. Tarjan and in 
many cases it is a more accurate measure of a data structure’s performance than the more 
traditional ones.

The discussion of symbol tables and hashing is now in Chapter 8. We have 
updated the hashing material with a discussion of dynamic hashing. This method extends 
the traditional method with the ability to handle files that grow unpredictably large, 
without having to recompile or reset the size of a table.

USING THIS TEXT FOR A COURSE

For the instructor who intends to use this book and is teaching on a semester basis we 
present the following two possibilities, a medium pace and a rigorous pace. The medium 
pace is recommended when the course is for begining computer science majors, possibly 
their second or third course of the curriculum. Most people, including the authors, have 
taught according to the medium pace. The outline below corresponds to the curriculum 
recommended by the ACM, in particular course C2, (Curriculum ’78, CACM 3/79, and 
CACM 8/85).

SEMESTER SCHEDULE - MEDIUM PACE

Week
1
2
3
4
5
6
7
8
9

10
11

12
13

Subject
Intro, to Algorithms and Data Organization
Arrays
Arrays (strings)
Stacks and Queues
Linked Lists (singly and doubly linked)
Linked Lists
Trees (basic facts, binary trees)
Trees (search, heap)
Mid Term
Graphs (basic facts, representations)
Graphs (shortest paths, spanning trees, 
topological sorting)
Internal Sorting (insertion, quick, and merge)
Internal Sorting (heap, radix)

Reading Assignment
Chapter 1
Chapter 2
First program due
Chapter 3
Chapter 4
Second program due
Chapter 5

Chapter 6
Third program due

Chapter 7
Fourth program due
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14
15
16

Hashing
Heap Structures (Selected Topics)
Search Structures (Selected Topics)

Chapter 8
Chapter 9
Chapter 10

We recommend that several programming assignments be given, spaced somewhat 
evenly thoughout the semester. The aim of the first program is primarily to get the stu
dents familiar with the computing environment. The second program should emphasize 
list structures, as discussed in Chapter 4. There are several suggestions for projects at the 
end of the exercises of Chapter 4. One topic we have chosen to skip is external sorting. 
This leaves time to cover one of the most important of techniques, hashing. This topic is 
used in several courses later on in the curriculum, so it is important to cover it this 
semester. The instructor will likely not have time to cover the material in the Search 
Structures chapter. Perhaps one or two topics can be selectively chosen.

The more rigorous pace would be appropriate when the book is used for a first year 
graduate course, or for an advanced undergraduate course. Our suggested outline fol
lows.

SEMESTER SCHEDULE - RIGOROUS PACE

Week 
r~ 
2 
3

Subject
Intro, to Algorithms and Data Organization
Arrays
Stacks and Queues

4
5
6
7
8
9

10
11
12
13

Linked Lists
Trees
Trees continued
Mid Term
Graphs
Graphs continued
Internal Sorting
External Sorting 
Hashing
Heap Structures

Reading Assignment
Chapter 1
Chapter 2
Chapter 3
First program due
Chapter 4
Chapter 5
Second program due

14
15
16

Heap Structures
Search Structures
Search Structures

Chapter 6
Third program due
Chapter 7
Chapter 7
Chapter 8
Chapter 9
Fourth program due
Chapter 9
Chapter 10
Chapter 10

The programming assignments and midterm exam are paced exactly as in the 
medium case. However, the lectures proceed at a faster rate. For the rigorous pace, two 
weeks are allotted for Chapters 9 and 10. This allows the coverage of only a few 
topics selected from each chapter.
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Finally we present a curriculum for an advanced Data Structures course. This 
presupposes that the student has already encountered the basic material, in particular the 
material on lists, trees, and graphs. Four weeks on advanced data structures gives the 
instructor enough time to cover all of the relevant topics in depth.

SEMESTER SCHEDULE - ADVANCED DATA STRUCTURES COURSE

Week
1
2
3
4
5

Subject
Review of Basic Material on Algorithms
Review of Basic List structures
Review of Trees
Review of Graphs
Review of Internal Sorting

External Sorting
External Sorting (continued)
Hashing

Reading Assignment
Chapters 1-2
Chapters 3-4
Chapter 5
Chapter 6
Chapter 7
First program due
Chapter 7

10
11
12

13

14

15
16

Heap Structures (min-max heaps, deaps, 
leftist trees)
Mid Term
Heaps Structures (Fibonacci heaps)
Search Structures (Optimal
binary search trees)
Search Structures (AVL trees,
2-3 trees, 2-3-4 trees)
Search Structures (Red-black trees, 
splay trees, digital trees)
Search Structures (B-trees, tries)
Search Structures

Chapter 8
Second program due
Chapter 9

Chapter 9
Chapter 10

Third program due

Fourth program due

6
7
8

9

For schools on the quarter system, the following two quarter sequence is possible. 
It assumes prior exposure to algorithm analysis and elementary data structures at the 
level obtained from an advanced programming course.
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QUARTER I

Week
1
2
3
4
5

Subject
Review of algorithms and arrays
Stacks and Queues
Linked Lists (stacks, queues, polynomials)
Linked Lists
Trees (traversal, set representation)

Reading Assignment
Chapters 1-2
Chapter 3
Chapter 4

Chapter 5
First program due

7
8
9

10

Trees (heaps, search)
Mid Term
Graphs (traversal, components)
Graphs (minimum spanning trees)
Graphs (shortest paths)
Graphs

Chapter 6

Second program due 
(activity networks)

6

QUARTER 2

Week 
T”

2
3
4
5
6

10

Subject
Internal Sorting (insertion, quick, 
bound, 0(1) space merging, merge sort) 
Sorting (heap, radix, list, table) 
External Sorting
Hashing
Mid Term
Heap Structures (deaps, 
Min-Max heaps. Leftist trees) 
Heap Structures (Fibonacci Heaps) 
Search Structures (AVL trees, 
2-3 trees, 2-3-4 trees)
Search Structures (Red-black trees, 
splay trees, digital trees)
Search Structures (B-Trees, tries)

Reading Assignment
Chapter 7

Chapter 7
Chapter 8
First program due
Chapter 9

Chapter 10

Second program due

7
8

9

Once again we would like to thank the people who have assisted us in preparing 
this edition. Thanks go to Professor Lisa Brown, Illinois Wesleyan University, and the 
students in her Programming III class, as well as to Dr. Dinesh Mehta, University of 
Florida, for their assistance in the debugging of this edition, and to Trey Short and Curtis 
Kelch of the Computer Services staff at Illinois Wesleyan University for providing 
technical assistance. Thanks also to Narain Gehani, AT&T Bell Laboratories, Tomasz 
Muldner, Arcadia University, and Ronald Prather, Trinity University, who reviewed 
early drafts of the manuscript. Special thanks go to Barbara and Art Friedman, our first 
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publishers who nurtured the book through its early years. Thanks also to the staff at W.H. 
Freeman for their support and encouragement. We especially wish to thank Acquisitions 
Editor, Nola Hague and Associate Managing editior, Penny Hull. Their enthusiasm 
really helped the project along.

Ellis Horowitz
Sartaj Sahni
Susan Anderson-Freed
June 1992



<4

-1

• - 4- •

j!i ><1* I'M ilL-i0 I 
JiJft'j ,/?|tn ,- I.

<»'. 1^-* - 4 ■-
U . Vr ‘

I

I

'l^^

IJ I 

■3
■ I - ’/Ik".

A

d

J

c ‘

> -C”

• . *»» 01 . I

• * ^i'_ . r
. / I ■

■ ■.

7'
rj _

I I

, • -'ll..
J pJi ■
I Mi .

' <1. *

I
" •!

,1 

»‘-'l 

,,'f

I 11- fl ■

W* \p ’

•I.* ,

.cA
< Zij V

l{



CHAPTER 1

BASIC CONCEPTS

1.1 OVERVIEW: SYSTEM LIFE CYCLE

We assume that our readers have a strong background in structured programming, typi
cally attained through the completion of an elementary programming course. Such an 
initial course usually emphasizes mastering a programming language’s syntax (its gram
mar rules) and applying this language to the solution of several relatively small prob
lems. These problems are frequently chosen so that they use a particular language con
struct. For example, the programming problem might require the use of arrays or while 
loops.

In this text we want to move you beyond these rudiments by providing you with 
the tools and techniques necessary to design and implement large-scale computer sys
tems. We believe that a solid foundation in data abstraction, algorithm specification, and 
performance analysis and measurement provides the necessary methodology. In this 
chapter, we will discuss each of these areas in detail. We also will briefly discuss recur
sive programming because many of you probably have only a fleeting acquaintance with 
this important technique. However, before we begin we want to place these tools in a 
context that views programming as more than writing code. Good programmers regard 
large-scale computer programs as systems that contain many complex interacting parts. 
As systems, these programs undergo a development process called the system life cycle. 
We consider this cycle as consisting of requirements, analysis, design, coding, and 
verification phases. Although we will consider them separately, these phases are highly 

1



2 Basic Concepts

interrelated and follow only a very crude sequential time frame. The Selected Readings 
and References section lists several sources on the system life cycle and its various 
phases that will provide you with additional information.

(1) Requirements. All large programming projects begin with a set of specifications 
that define the purpose of the project. These requirements describe the information that 
we, the programmers, are given (input) and the results that we must produce (output). 
Frequently the initial specifications are defined vaguely, and we must develop rigorous 
input and output descriptions that include all cases.

(2) Analysis. After we have delineated carefully the system’s requirements, the analysis 
phase begins in earnest. In this phase, we begin to break the problem down into manage
able pieces. There are two approaches to analysis; bottom-up and top-down. The 
bottom-up approach is an older, unstructured strategy that places an early emphasis on 
the coding fine points. Since the programmer does not have a master plan for the project, 
the resulting program frequently has many loosely connected, error-ridden segments. 
Bottom-up analysis is akin to constructing a building from a generic blueprint. That is, 
we view all buildings identically; they must have walls, a roof, plumbing, and heating. 
The specific purpose to which the building will be put is irrelevant from this perspective. 
Although few of us would want to live in a home constructed using this technique, many 
programmers, particularly beginning ones, believe that they can create good, error-free 
programs without prior planning.

In contrast, the top-down approach begins with the purpose that the program will 
serve and uses this end product to divide the program into manageable segments. This 
technique generates diagrams that are used to design the system. Frequently, several 
alternate solutions to the programming problem are developed and compared during this 
phase.

(3) Design. This phase continues the work done in the analysis phase. The designer 
approaches the system from the perspectives of both the data objects that the program 
needs and the operations performed on them. The first perspective leads to the creation 
of abstract data types, while the second requires the specification of algorithms and a 
consideration of algorithm design strategies. For example, suppose that we are design
ing a scheduling system for a university. Typical data objects might include students, 
courses, and professors. Typical operations might include inserting, removing, and 
searching within each object or between them. That is, we might want to add a course to 
the list of university courses, or search for the courses taught by some professor.

Since the abstract data types and the algorithm specifications are language
independent, we postpone implementation decisions. Although we must specify the 
information required for each data object, we ignore coding details. For example, we 
might decide that the student data object should include name, social security number, 
major, and phone number. However, we would not yet pick a specific implementation 
for the list of students. As we will see in later chapters, there are several possibilities 
including arrays, linked lists, or trees. By deferring implementation issues as long as 
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possible, we not only create a system that could be written in several programming 
languages, but we also have time to pick the most efficient implementations within our 
chosen language.

(4) Refinement and coding. In this phase, we choose representations for our data 
objects and write algorithms for each operation on them. The order in which we do this 
is crucial because a data object’s representation can determine the efficiency of the algo
rithms related to it. Typically this means that we should write those algorithms that are 
independent of the data objects first.

Frequently at this point we realize that we could have created a much better sys
tem. Perhaps we have spoken with a friend who has worked on a similar project, or we 
realize that one of our alternate designs is superior. If our original design is good, it can 
absorb changes easily. In fact, this is a reason for avoiding an early commitment to cod
ing details. If we must scrap our work entirely, we can take comfort in the fact that we 
will be able to write the new system more quickly and with fewer errors. A delightful 
book that discusses this "second system" phenomenon is Frederick Brooks’s, The Mythi
cal Man-Month cited in the Selected Readings and References section.

(5) Verification. This phase consists of developing correctness proofs for the program, 
testing the program with a variety of input data, and removing errors. Each of these 
areas has been researched extensively, and a complete discussion is beyond the scope 
of this text. However, we want to summarize briefly the important aspects of each area.

Correctness proofs: Programs can be proven correct using the same techniques that 
abound in mathematics. Unfortunately, these proofs are very time-consuming, and 
difflcult to develop for large projects. Frequently scheduling constraints prevent the 
development of a complete set of proofs for a large system. However, selecting algo
rithms that have been proven correct can reduce the number of errors. In this text, we 
will provide you with an arsenal of algorithms, some of which have been proven correct 
using formal techniques, that you may apply to many programming problems.

Testing: We can construct our correctness proofs before and during the coding phase 
since our algorithms need not be written in a specific programming language. Testing, 
however, requires the working code and sets of test data. This data should be developed 
carefully so that it includes all possible scenarios. Frequently beginning programmers 
assume that if their program ran without producing a syntax error, it must be correct. 
Little thought is given to the input data, and usually only one set of data is used. Good 
test data should verify that every piece of code runs correctly. For example, if our pro
gram contains a switch statement, our test data should be chosen so that we can check 
each case within the switch statement.

Initial system tests focus on verifying that a program runs correctly. While this is 
a crucial concern, a program’s running time is also important. An error-free program that 
runs slowly is of little value. Theoretical estimates of running time exist for many algo
rithms and we will derive these estimates as we introduce new algorithms. In addition. 
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we may want to gather performance estimates for portions of our code. Constructing 
these timing tests is also a topic that we pursue later in this chapter.

Error removal. If done properly, the correctness proofs and system tests will indicate 
erroneous code. The ease with which we can remove these errors depends on the design 
and coding decisions made earlier. A large undocumented program written in 
"spaghetti" code is a programmer’s nightmare. When debugging such programs, each 
corrected error possibly generates several new errors. On the other hand, debugging a 
well-documented program that is divided into autonomous units that interact through 
parameters is far easier. This is especially true if each unit is tested separately and then 
integrated into the system.

1.2 ALGORITHM SPECIFICATION

1.2.1 Introduction

The concept of an algorithm is fundamental to computer science. Algorithms exist for 
many common problems, and designing efficient algorithms plays a crucial role in 
developing large-scale computer systems. Therefore, before we proceed further we need 
to discuss this concept more fully. We begin with a definition.

Definition: An algorithm is a finite set of instructions that, if followed, accomplishes a 
particular task. In addition, all algorithms must satisfy the following criteria:

(1)
(2)
(3)
(4)

(5)

Input. There are zero or more quantities that are externally supplied.
Output. At least one quantity is produced.
Definiteness. Each instruction is clear and unambiguous.
Finiteness. If we trace out the instructions of an algorithm, then for all cases, the 
algorithm terminates after a finite number of steps.
Effectiveness. Every instruction must be basic enough to be carried out, in princi
ple, by a person using only pencil and paper. It is not enough that each operation 
be definite as in (3); it also must be feasible. □

In computational theory, one distinguishes between an algorithm and a program, the 
latter of which does not have to satisfy the fourth condition. For example, we can think 
of an operating system that continues in a wait loop until more jobs are entered. Such a 
program does not terminate unless the system crashes. Since our programs will always 
terminate, we will use algorithm and program interchangeably in this text.
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We can describe an algorithm in many ways. We can use a natural language like 
English, although, if we select this option, we must make sure that the resulting instruc
tions are definite. Graphic representations called flowcharts are another possibility, but 
they work well only if the algorithm is small and simple. In this text we will present 
most of our algorithms in C, occasionally resorting to a combination of English and C for 
our specifications. Two examples should help to illustrate the process of translating a 
problem into an algorithm.

Example 1.1 [Selection sort]'. Suppose we must devise a program that sorts a set of 
n > 1 integers. A simple solution is given by the following:

From those integers that are currently unsorted, find the smallest and place it next 
in the sorted list.

Although this statement adequately describes the sorting problem, it is not an algo
rithm since it leaves several unanswered questions. For example, it does not tell us 
where and how the integers are initially stored, or where we should place the result. We 
assume that the integers are stored in an array, list, such that the /th integer is stored in 
the /th position, list [Z], 0 < i < n. Program 1.1 is our first attempt at deriving a solution. 
Notice that it is written partially in C and partially in English.

n;for (i = 0; i < n; i++) {
Examine list[i] to list[n-l] and suppose that the 
smallest integer is at list[min];

Interchange list[i] and list[min];
}

Program 1.1: Selection sort algorithm

To turn Program 1.1 into a real C program, two clearly defined subtasks remain: finding 
the smallest integer and interchanging it with list[i ]. We can solve the latter problem 
using either a function (Program 1.2) or a macro. The function's code is easier to read 
than that of the macro but the macro works with any data type. Using the function, sup
pose a and b are declared as ints. To swap their values one would say:

swap (&a, &;b) ;

passing to swap the addresses of a and h. The macro version of swap is:

ttdefine SWAP{x,y,t) {(t) M, (X) (Y)z {y} (t) }
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void swap(int *x,  int
both parameters are pointers to ints

X, *y)
/* */

*x; /*  declares temp as an int and assigns
to it the contents of what x points to 
stores what y points to into the location 

where x points 
temp; /*places  the contents of temp in location 

pointed to by y

int temp =

*x *y; /

/*

*/

*/

*/

★

*

}

Program 1.2: Swap function

We can solve the first subtask by assuming that the minimum is list[i], checking 
list[i] with ZZ5r[Z+l], ZZ5t[Z+2], • • • , list[n-l]. Whenever we find a smaller number 
we make it the new minimum. When we reach list[n-].] we are finished. Putting all 
these observations together gives us sort (Program 1.3). Program 1.3 contains a com
plete program which you may run on your computer. The program uses the rand func
tion defined in math.h to randomly generate a list of numbers which are then passed into 
sort. This program has been successfully compiled and run on several systems including 
Turbo C and Turbo C++ under DOS 5.0. All programs in this book follow the rules of 
ANSI C, which are slightly different from those of Kemighan & Ritchie C (K&R C). 
Appendix A shows you the changes required to transform our ANSI C programs into 
K&R C. At this point, we should ask if this function works correctly.

Theorem 1.1: Function sort(list,n) correctly sorts a set of n > 1 integers. The result 
remains in list [0], • • • , list [n -1] such that list [0] < ZZ5? [1] < ■ • • < list [n-1].

Proof: When the outer for loop completes its iteration for i = q, we have list [q ] < 
list [r <r <n. Further, on subsequent iterations, i > q and list [0] through ] are 
unchanged. Hence following the last iteration of the outer for loop (i.e., i = n - 2), we 
have list [0] < ZZ^t [1] < • • • < list [n-1]. □

Example 1.2 {Binary search}". Assume that we have n > 1 distinct integers that are 
already sorted and stored in the array list. That is, ZZ^zfO] < ZZ^rfl] < • • • < list[n-\]. 
We must figure out if an integer searchnum is in this list. If it is we should return an 
index, Z, such that list[i] = searchnum. If searchnum is not present, we should return -1. 
Since the list is sorted we may use the following method to search for the value.

Let left and right, respectively, denote the left and right ends of the list to be 
searched. Initially, left = 0 and right = n~l. Let middle = (left+right)/2 be the middle 
position in the list. If we compare list [middle ] with searchnum, we obtain one of three 
results:
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stdio.h>#include
#include <math.h> 
#define MAX-SIZE 101 
#define SWAP(x,y,t) ((t)
void sort(int [],int); /*selection  sort 
void main(void) 
{

(X), {x)= (y), (y) (t) )

int i,n;
int list[MAX-SIZE] ;
printf("Enter the number of numbers to generate: 
scanf("%d", &n) ; 
if ( n

fprintf(stderr, 
exit(1);

Ilin MAX-SIZE) {
"Improper value of n\n");

")

for (i 
list[i] - randO % 1000; 
printf ('’%d

0; i < n; i++) {/*randomly  generate numbers*/

", 1 i s t [ i ] ) ;

i++) /
", 1 i s t [ i ] ) ;

}
sort(list,n);
printf("\n Sorted array:\n ");
for (i =0; i < n; i++) /★ print out sorted numbers 

printf("%d
printf("in") ;

}
void sort(int list[],int n) 
{

j, min, temp;
= 0; i < n-1;
= i I

i + +)

: n; j++) 
list[min])

int i, 
for (i 

min 
for (j

if (list[j] 
min = j;

SWAP(list[i],list[min],temp);

i {

i + 1; :

}
}

Program 1.3: Selection sort
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(1)

(2)

(3)

searchnum < list[middle]. In this case, if searchnum is present, it must be in the 
positions between 0 and middle - 1. Therefore, we set right to middle - 1.
searchnum = list[middle]. In this case, we return middle.
searchnum > list[middle]. In this case, if searchnum is present, it must be in the 
positions between middle + 1 and n - 1. So, we set left to middle + 1.

If searchnum has not been found and there are still integers to check, we recalculate 
middle and continue the search. Program 1.4 implements this searching strategy. The 
algorithm contains two subtasks: (1) determining if there are any integers left to check, 
and (2) comparing searchnum to list[middle].

(left + right) / 2; 
list[middle])

while (there are more integers to check ) { 
middle 
if (searchnum

right = middle - 1;
else if (searchnum == list[middle]) 

return middle;
else left = middle + 1;

}

Program 1.4: Searching a sorted list

We can handle the comparisons through either a function or a macro. In either 
case, we must specify values to signify less than, equal, or greater than. We will use the 
strategy followed in C’s library functions:
• We return a negative number (-1) if the first number is less than the second.
• We return a 0 if the two numbers are equal.
• We return a positive number (1) if the first number is greater than the second.
Although we present both a function (Program 1.5) and a macro, we will use the macro 
throughout the text since it works with any data type. The macro version is:

ttdefine COMPARE(x,y) {((x) < (y)) 7 -1: ((x) (y))? 0: 1)

We are now ready to tackle the first subtask: determining if there are any elements 
left to check. You will recall that our initial algorithm indicated that a comparison could 
cause us to move either our left or right index. Assuming we keep moving these indices, 
we will eventually find the element, or the indices will cross, that is, the left index will 
have a higher value than the right index. Since these indices delineate the search boun
daries, once they cross, we have nothing left to check. Putting all this information 
together gives us binsearch (Program 1.6).
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int compare(int x, int y) 
{ 
/* compare x and y, return -1 for less than, 0 for equal, 
1 for greater 

if (X 
else if (x == y) return 0;

else return 1;

*/
y) return -1;

)

Program 1.5: Comparison of two integers

int binsearch{int list[], int searchnum, int left, 
int right)

search list[0]

*/ 
middle;

<= right)
(left + right)/2;

{

{
/★ search list[0] <- list[l] <= - - - <- list[n-l] for
searchnum. Return its position if found. Otherwise 
return -1 

int 
while (left 

middle = 
switch (COMPARE(list[middle], searchnum)) { 

case -1; left = middle + 1;
break;

case 0 : return middle;
case 1 : right = middle - 1;

}
}
return -1;

}

Program 1.6: Searching an ordered list

The search strategy just outlined is called binary search. □
The previous examples have shown that algorithms are implemented as functions 

in C. Indeed functions are the primary vehicle used to divide a large program into 
manageable pieces. They make the program easier to read, and, because the functions 
can be tested separately, increase the probability that it will run correctly. Often we will 
declare a function first and provide its definition later. In this way the compiler is made 
aware that a name refers to a legal function that will be defined later. In C, groups of 
functions can be compiled separately, thereby establishing libraries containing groups of
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logically related algorithms.

1.2.2 Recursive Algorithms

Typically, beginning programmers view a function as something that is invoked (called) 
by another function. It executes its code and then returns control to the calling function. 
This perspective ignores the fact that functions can call themselves {direct recursion) or 
they may call other functions that invoke the calling function again {indirect recursion). 
These recursive mechanisms are not only extremely powerful, but they also frequently 
allow us to express an otherwise complex process in very clear terms. It is for these rea
sons that we introduce recursion here.

Frequently computer science students regard recursion as a mystical technique that 
is useful for only a few special problems such as computing factorials or Ackermann's 
function. This is unfortunate because any function that we can write using assignment, 
if-else, and while statements can be written recursively. Often this recursive function is 
easier to understand than its iterative counterpart.

How do we determine when we should express an algorithm recursively? One 
instance is when the problem itself is defined recursively. Factorials and Fibonacci 
numbers fit into this category as do binomial coefficients where:

n 
m

n ! 
m \{n — mf.

can be recursively computed by the formula:
n - 1
m - 1

n 
m

n - 1 
m +

We would like to use two examples to show you how to develop a recursive algo
rithm. In the first example, we take the binary search function that we created in Exam
ple 1.2 and transform it into a recursive function. In the second example, we recursively 
generate all possible permutations of a list of characters.

Example 1.3 [Binary search]: Program 1.6 gave the iterative version of a binary search. 
To transform this function into a recursive one, we must (1) establish boundary condi
tions that terminate the recursive calls, and (2) implement the recursive calls so that each 
call brings us one step closer to a solution. If we examine Program 1.6 carefully we can 
see that there are two ways to terminate the search: one signaling a success (list[fniddle] 
= searchnum), the other signaling a failure (the left and right indices cross). We do not 
need to change the code when the function terminates successfully. However, the while 
statement that is used to trigger the unsuccessful search needs to be replaced with an 
equivalent if statement whose then clause invokes the function recursively.

Creating recursive calls that move us closer to a solution is also simple since it 
requires only passing the new left or right index as a parameter in the next recursive call. 
Program 1.7 implements the recursive binary search. Notice that although the code has 
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changed, the recursive function call is identical to that of the iterative function. □

int binsearch(int list[], int searchnum, int left, 
int right)

search list [0]

= right) {
- (left + right)/2;

{
/'^ search list[0] <- list[l] <- • • •
searchnum. Return its position if found, 
return -1 

int middle; 
if (left 

middle 
switch (COMPARE(list[middle], searchnum)) { 

case -1: return
binsearch(list, searchnum, middle + 1, right); 

case 0 : return middle; 
case 1 : return 

binsearch(list, searchnum.

= list[n-l] for 
Otherwise

left, middle - 1);
}

}
return -1;

}

Program 1.7: Recursive implementation of binary search

Example 1.4 [Permutations}*,  Given a set of n > 1 elements, print out all possible permu
tations of this set. For example, if the set is [a, b. c), then the set of permutations is {(^z, 
b, c), (a, c, b}, (b, a, c), {b, c, d}, {c, a, b\ (c, b, «)). It is easy to see that, given n ele
ments, there are n! permutations. We can obtain a simple algorithm for generating the 
permutations if we look at the set [a, b, c, J). We can construct the set of permutations 
by printing: 

(1) 
(2) 
(3) 
(4)

a followed by all permutations of (b, c, d) 
b followed by all permutations of (a, c, d} 
c followed by all permutations of {a, b, d} 
d followed by all permutations of (6Z, b, c}

The clue to the recursive solution is the phrase "followed by all permutations." It implies 
that we can solve the problem for a set with n elements if we have an algorithm that 
works on n - 1 elements. These considerations lead to the development of Program 1.8. 
We assume that list is a character array. Notice that it recursively generates permuta
tions until i = n. The initial function call is perm(list. 0, n-J);
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void perm{char 
/*  
{

int i, int n) 
generate all the permutations of listti] to list[n3

int j, temp;
if (i == n) {

for (j
printf (’’%c", 

printf("

0; j zi++) 
list [ j] ) ;

n;

) ;

/*

}
else {

list[i] to list[n] has more than one permutation, 
generate these recursively

for (j
SWAP{list[i]zlist[j],temp);
perm(list,i+l,n);
SWAP(list[i],list[j],temp);

*/ 
j <= n; j++) {i;

}
}

)

Program 1.8: Recursive permutation generator

Try to simulate Program 1.8 on the three-element set (a, b, c}. Each recursive call 
of perm produces new local copies of the parameters list, i, and n. The value of i will 
differ from invocation to invocation, but n will not. The parameter list is an array pointer 
and its value also will not vary from call to call. □

We will encounter recursion several more times since many of the algorithms that 
appear in subsequent chapters are recursively defined. This is particularly true of algo
rithms that operate on lists (Chapter 4) and binary trees (Chapter 5).

EXERCISES
In the last several examples, we showed you how to translate a problem into a program. 
We have avoided the issues of data abstraction and algorithm design strategies, choosing 
to focus on developing a function from an English description, or transforming an itera
tive algorithm into a recursive one. In the exercises that follow, we want you to use the 
same approach. For each programming problem, try to develop an algorithm, translate it 
into a function, and show that it works correctly. Your correctness "proof" can employ 
an analysis of the algorithm or a suitable set of test runs.
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1. Consider the two statements:
Is n = 2 the largest value of n for which there exist positive integers x, y, and 
2 such that x" + y” = z” has a solution?

(b) Store 5 divided by zero into x and go to statement 10.

(a)

Both fail to satisfy one of the five criteria of an algorithm. Which criterion do they 
violate?

2. Homer’s rule is a strategy for evaluating a polynomial A (x) =

+ a^-xxn-\ + ' • ' + a [ + gq

at point xq using a minimum number of multiplications. This rule is:

(^o) - ( ■ ■ ■ ^n-l) -^0+ ■■■ + ^l)-’^o + ^o)

3. 1,

4.
5.

6.

Write a C program to evaluate a polynomial using Homer’s rule.
Given n Boolean variables X], • • • ,Xn,v^c wish to print all possible combinations 
of truth values they can assume. For instance, if n = 2, there are four possibilities: 
<true, true>. <false, true>, <true, false>, and <false, false>. Write a C program to 
do this.
Write a C program that prints out the integer values of x, y, z in ascending order.
The pigeon hole principle stales that if a function f has n distinct inputs but less 
than n distinct outputs then there are two inputs a and b such that a-^b and/(a) = 
f {b}. Write a C program to find the values a and b for which the range values are 
equal.
Given n, a positive integer, determine if n is the sum its divisors, that is, if n is the 
sum of all t such that 1 < r < n and t divides zt.

7.

8.

9.

10.

The factorial function n ! has value 1 when n < 1 and value n*(n-l) ’ when n > 1. 
Write both a recursive and an iterative C function to compute n !.
The Fibonacci numbers are defined as: /q = 0, f\ - 1, and = fj_x ■\-fi-2 for z > 1. 
Write both a recursive and an iterative C function to compute /.
Write an iterative function to compute a binomial coefficient, then transform it into 
an equivalent recursive function.
Ackerman’s function A {m, n} is defined as:

n + 1
z4 (m, n) = (m — 1, 1)

, if m = 0
, if A? = 0

A (w - 1, A (/M, « - 1)) , otherwise

This function is studied because it grows very quickly for small values of m and n. 
Write recursive and iterative versions of this function.
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11.

12.

Only one disk can be moved at any time.
No disk can be placed on top of a disk with a smaller diameter.

[Towers of Hanoi} There are three towers and 64 disks of different diameters 
placed on the first tower. The disks are in order of decreasing diameter as one 
scans up the tower. Monks were reputedly supposed to move the disk from tower 
1 to tower 3 obeying the rules:

(a)
(b)
Write a recursive function that prints out the sequence of moves needed to accom
plish this task.
If S is a set of n elements the powerset of S is the set of all possible subsets of S. 
For example, if S= [a, b, c), then powerset (S) = { {), {cf), {Z?), {c}, [a, b], [a, cj, 
{b, c}, [a, b, c)}. Write a recursive function to compute powerset(S).

1.3 DATA ABSTRACTION

The reader is no doubt familiar with the basic data types of C. These include char, int, 
float, and double. Some of these data types may be modified by the keywords short, 
long, and unsigned. Ultimately, the real world abstractions we wish to deal with must 
be represented in terms of these data types. In addition to these basic types, C helps us 
by providing two mechanisms for grouping data together. These are the array and the 
structure. Arrays are collections of elements of the same basic data type. They are 
declared implicitly, for example, int list[5] defines a five-element array of integers whose 
legitimate subscripts are in the range 0 • • • 4. Structs are collections of elements whose 
data types need not be the same. They are explicitly defined. For example,

struct student { 
char last—name; 
int student—id; 
char grade;
}

defines a structure with three fields, two of type character and one of type integer. The 
structure name is student. Details of C structures are provided in Chapter 2.

C also provides the pointer data type. For every basic data type there is a 
corresponding pointer data type, such as pointer-to-an-int, pointer-to-a-real, pointer-to- 
a-char, and pointer-to-a-float. A pointer is denoted by placing an asterisk, *,  before a 
variable’s name. So, 

int i, *pi;

declares i as an integer and pi as a pointer to an integer.
All programming languages provide at least a minimal set of predefined data 

types, plus the ability to construct new, or user-defined types. It is appropriate to ask the 
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question, "What is a data type?"

Definition: A data type is a collection of objects and a set of operations that act on those 
objects. □

Whether your program is dealing with predefined data types or user-defined data types, 
these two aspects must be considered: objects and operations. For example, the data 
type int consists of the objects {0, +1,-1, +2, -2, ■ • • , IN I'- MAX. INT-MIN), where 
INT-MAX and INT-MIN are the largest and smallest integers that can be represented 
on your machine. (They are defined in limits.h.) The operations on integers are many, 
and would certainly include the arithmetic operators +, *,!,  and %. There is also test
ing for equality/inequality and the operation that assigns an integer to a variable. In all 
of these cases, there is the name of the operation, which may be a prefix operator, such as 
atoi, or an infix operator, such as +. Whether an operation is defined in the language or 
in a library, its name, possible arguments and results must be specified.

In addition to knowing all of the facts about the operations on a data type, we 
might also want to know about how the objects of the data type are represented. For 
example on most computers a char is represented as a bit string occupying 1 byte of 
memory, whereas an int might occupy 2 or possibly 4 bytes of memory. If 2 eight-bit 
bytes are used, then INT-MAXis 2*̂  - 1 = 32,767.

Knowing the representation of the objects of a data type can be useful and 
dangerous. By knowing the representation we can often write algorithms that make use 
of it. However, if we ever want to change the representation of these objects, we also 
must change the routines that make use of it. It has been observed by many software 
designers that hiding the representation of objects of a data type from its users is a good 
design strategy. In that case, the user is constrained to manipulate the objects solely 
through the functions that are provided. The designer may still alter the representation 
as long as the new implementations of the operations do not change the user interface. 
This means that users will not have to recode their algorithms.

Definition: An abstract data type (ADT) is a data type that is organized in such a way 
that the specification of the objects and the specification of the operations on the objects 
is separated from the representation of the objects and the implementation of the opera
tions. □

Some programming languages provide explicit mechanisms to support the distinction 
between specification and implementation. For example, Ada has a concept called a 
package, and C++ has a concept called a class. Both of these assist the programmer in 
implementing abstract data types. Although C does not have an explicit mechanism for 
implementing ADTs, it is still possible and desirable to design your data types using the 
same notion.

How does the specification of the operations of an ADT differ from the implemen
tation of the operations? The specification consists of the names of every function, the 
type of its arguments, and the type of its result. There should also be a description of
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what the function does, but without appealing to internal representation or implementa
tion details. This requirement is quite important, and it implies that an abstract data type 
is implementation-independent. Furthermore, it is possible to classify the functions of a 
data type into several categories:

(1)

(2)

(3)

Creator/constructor: These functions create a new instance of the designated 
type.
Transformers: These functions also create an instance of the designated type, 
generally by using one or more other instances. The difference between construc
tors and transformers will become more clear with some examples.
Observers/reporters: These functions provide information about an instance of 
the type, but they do not change the instance.

Typically, an ADT definition will include at least one function from each of these three 
categories.

Throughout this text, we will emphasize the distinction between specification and 
implementation. In order to help us do this, we will typically begin with an ADT 
definition of the object that we intend to study. This will permit the reader to grasp the 
essential elements of the object, without having the discussion complicated by the 
representation of the objects or by the actual implementation of the operations. Once the 
ADT definition is fully explained we will move on to discussions of representation and 
implementation. These are quite important in the study of data structures. In order to 
help us accomplish this goal, we introduce a notation for expressing an ADT.

Example 1.5 [Abstract data type Natural-Number}*.  As this is the first example of an 
ADT, we will spend some time explaining the notation. Structure 1.1 contains the ADT 
definition of Natural-Number. The structure definition begins with the name of the 
structure and its abbreviation. There are two main sections in the definition: the objects 
and the functions. The objects are defined in terms of the integers, but we make no 
explicit reference to their representation. The function definitions are a bit more compli
cated. First, the definitions use the symbols x and y to denote two elements of the set of 
Natural-Numbers, while TRUE and FALSE are elements of the set of Boolean values. In 
addition, the definition makes use of functions that are defined on the set of integers, 
namely, plus, minus, equals, and less than. This is an indication that in order to define 
one data type, we may need to use operations from another data type. For each function, 
we place the result type to the left of the function name and a definition of the function 
to the right. The symbols

The first function. Zero, has no arguments and returns the natural number zero. 
This is a constructor function. The function Successor(x) returns the next natural 
number in sequence. This is an example of a transformer function. Notice that if there is 
no next number in sequence, that is, if the value of x is already INT-MAX, then we 
define the action of Successor to return INT-MAX. Some programmers might prefer that 
in such a case Successor return an error flag. This is also perfectly permissible. Other 
transformer functions are Add and Subtract. They might also return an error condition.

" should be read as "is defined as."rt
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structure Natural-Number is
objects: an ordered subrange of the integers starting at zero and ending at the
maximum integer {INT-MAX} on the computer
functions:

for all X, y g Nat-Number\ TRUE, FALSE e Boolean
and where +, <, and == are the usual integer operations

Nat-No Zero()
Boolean Is-Zero(x)

Nat-No AddU, y)

Boolean Equal(x, y)

Nat-No Successor(x)

Nat-No Subtract(.T, y)

0
if (x) return FALSE
else return TRUE
if ({x + y) <= INT-MAX) return x + y
else return INT-MAX
if (x == y) return TRUE
else return FALSE
if (x == INT-MAX) return x
else return x + 1
if (x < y) return 0
else return x - y

end Natural-Number

Structure 1.1: Abstract data type Natural-Number 

although here we decided to return an element of the set Natural-Number. □
Structure 1.1 shows you the general form that all ADT definitions will follow. 

However, we will not often be able to provide a definition of the functions that is so 
close to C functions. In fact, the nature of an ADT argues that we avoid implementation 
details. Therefore, we will usually use a form of structured English to explain the mean
ing of the functions.

EXERCISES
For each of these exercises, provide a definition of the abstract data type using the form 
illustrated in Structure 1.1.

1. Add the following operations to the Natural-Number ADT: Predecessor, 
Is-Greater, Multiply, Divide.
Create an ADT, Set. Use the standard mathematics definition and include the fol
lowing operations: Create, Insert, Remove, Is-ln, Union, Intersection, Difference.
Create an ADT, Bag. In mathematics a bag is similar to a set except that a bag may 
contain duplicate elements. The minimal operations should include: Create, 
Insert, Remove, and Is-In.

2.

3.
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4. Create an ADT, Boolean. The minimal operations are And, Or, Not, Xor (Exclusive 
or), Equivalent, and Implies.

1.4 PERFORMANCE ANALYSIS

One of the goals of this book is to develop your skills for making evaluative judgments 
about programs. There are many criteria upon which we can judge a program, including:

(1)
(2)

(3)

(4)
(5)

Does the program meet the original specifications of the task?
Does it work correctly?
Does the program contain documentation that shows how to use it and how it 
works?
Does the program effectively use functions to create logical units?
Is the program’s code readable?

Although the above criteria are vitally important, particularly in the development of 
large systems, it is difficult to explain how to achieve them. The criteria are associated 
with the development of a good programming style and this takes experience and prac
tice. We hope that the examples used throughout this text will help you improve your 
programming style. However, we also can judge a program on more concrete criteria, 
and so we add two more criteria to our list.

(6) Does the program efficiently use primary and secondary storage?

(7) Is the program’s running time acceptable for the task?

These criteria focus on performance evaluation, which we can loosely divide into 
two distinct fields. The first field focuses on obtaining estimates of time and space that 
are machine independent. We call this field performance analysis, but its subject matter 
is the heart of an important branch of computer science known as complexity theory. 
The second field, which we call performance measurement, obtains machine-dependent 
running times. These times are used to identify inefficient code segments. In this section 
we discuss performance analysis, and in the next we discuss performance measurement. 
We begin our discussion with definitions of the space and time complexity of a program.

Definition: The space complexity of a program is the amount of memory that it needs to 
run to completion. The time complexity of a program is the amount of computer time 
that it needs to run to completion. □



Performance Analysis 19

1.4.1 Space Complexity

The space needed by a program is the sum of the following components: 

(1) Fixed space requirements: This component refers to space requirements that do not 
depend on the number and size of the program’s inputs and outputs. The fixed require
ments include the instruction space (space needed to store the code), space for simple 
variables, fixed-size structured variables (such as structs), and constants.

(2) Variable space requirements: This component consists of the space needed by 
structured variables whose size depends on the particular instance, /, of the problem 
being solved. It also includes the additional space required when a function uses recur
sion. The variable space requirement of a program P working on an instance / is denoted 
Sp(I). Sp(l) is usually given as a function of some characteristics of the instance 1. 
Commonly used characteristics include the number, size, and values of the inputs and 
outputs associated with I. For example, if our input is an array containing n numbers 
then n is an instance characteristic. If n is the only instance charcteristic we wish to use 
when computing Sp{l), we will use Sp(n) to represent Sp(I).

We can express the total space requirement S (F) of any program as:

S(P) = c + Sp(I)

where c is a constant representing the fixed space requirements. When analyzing the 
space complexity of a program we are usually concerned with only the variable space 
requirements. This is particularly true when we want to compare the space complexity 
of several programs. Let us look at a few examples.

Example 1.6 : We have a function, abc (Program 1.9), which accepts three simple vari
ables as input and returns a simple value as output. According to the classification 
given, this function has only fixed space requirements. Therefore, SabcU) = 0. □

float abc(float a, float b, float c) 
{

return a+b+b*c  +(a+b-c)/(a+b)+4.00;
}

Program 1.9: Simple arithmetic function

Example 1.7 : We want to add a list of numbers (Program 1.10). Although the output is a 
simple value, the input includes an array. Therefore, the variable space requirement 
depends on how the array is passed into the function. Programming languages like
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Pascal may pass arrays by value. This means that the entire array is copied into tem
porary storage before the function is executed. In these languages the variable space 
requirement for this program is = n, where n is the size of the array. C
passes all parameters by value. When an array is passed as an argument to a function, C 
interprets it as passing the address of the first element of the array. C does not copy the 
array. Therefore, = 0. □

float sum(float list[], int n) 
{

i0; n;

float tempsum = 0;
int i;
for (i =0; i < n; i++) 

tempsum += list[i];
return tempsum;

}

Program LIO: Iterative function for summing a list of numbers

Example 1.8 : Program 1.11 also adds a list of numbers, but this time the summation is 
handled recursively. This means that the compiler must save the parameters, the local 
variables, and the return address for each recursive call.

float rsum(float list[], int n) 
{

if (n) return rsum(list,n-1) + list[n-l]; 
return 0;

}

Program 1.11: Recursive function for summing a list of numbers

In this example, the space needed for one recursive call is the number of bytes 
required for the two parameters and the return address. We can use the sizeof function to 
find the number of bytes required by each type. On an 80386 computer, integers and 
pointers require 2 bytes of storage and floats need 4 bytes. Figure 1.1 shows the number 
of bytes required for one recursive call.

If the array has n = MAX-SIZE numbers, the total variable space needed for the 
recursive version is S,,^^{MAX-SIZE) = e^MAX-SIZE. If MAX-SIZE = 1000, the vari
able space needed by the recursive version is 6*1000  = 6,000 bytes. The iterative ver
sion has no variable space requirement. As you can see, the recursive version has a far 
greater overhead than its iterative counterpart. □
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Type_______________________
parameter: float 
parameter: integer 
return address: (used internally) 
TOTAL per recursive call

Name 
/w/[] 
n

Number of bytes
2
2
2 (unless a far address)
6

Figure 1.1: Space needed for one recursive call of Program 1.11

EXERCISES

1.

2.

3.

4.

5.

Determine the space complexity of the iterative and recursive factorial functions 
created in Exercise 7, Section 1.2.
Determine the space complexity of the iterative and recursive Fibonacci number 
functions created in Exercise 8, Section 1.2.
Determine the space complexity of the iterative and recursive binomial coefficient 
functions created in Exercise 9, Section 1.2.
Determine the space complexity of the function created in Exercise 5, Section 1.2 
(pigeon hole principle).
Determine the space complexity of the function created in Exercise 12, Section 1.2 
(powerset problem).

1.4.2 Time Complexity

The time, T{P\ taken by a program, P, is the sum of its compile time and its run (or exe
cution) time. The compile time is similar to the fixed space component since it does not 
depend on the instance characteristics. In addition, once we have verified that the pro
gram runs correctly, we may run it many times without recompilation. Consequently, we 
are really concerned only with the program’s execution time, Tp.

Determining Tp is not an easy task because it requires a detailed knowledge of the 
compiler’s attributes. That is, we must know how the compiler translates our source pro
gram into object code. For example, suppose we have a simple program that adds and 
subtracts numbers. Letting n denote the instance characteristic, we might express Tp{n) 
as:

a ■’

Tp{n) = CaADD{n) + c,SUB(n) + CiLDA(n) + c,,STA{n)

where c^, Q, q, c^-i are constants that refer to the time needed to perform each operation, 
and ADD., SUB, LDA, STA are the number of additions, subtractions, loads, and stores 
that are performed when the program is run with instance characteristic n.
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Obtaining such a detailed estimate of running time is rarely worth the effort. If we 
must know the running time, the best approach is to use the system clock to time the pro
gram. We will do this later in the chapter. Alternately, we could count the number of 
operations the program performs. This gives us a machine-independent estimate, but we 
must know how to divide the program into distinct steps.

Definition: A program step is a syntactically or semantically meaningful program seg
ment whose execution time is independent of the instance characteristics. □

Note that the amount of computing represented by one program step may be 
different from that represented by another step. So, for example, we may count a simple 
assignment statement of the form a = 2 as one step and also count a more complex state
ment such as a = 2*b+3=^c/d~e+f/g/a/b/c  as one step. The only requirement is that the 
time required to execute each statement that is counted as one step be independent of the 
instance characteristics.

We can determine the number of steps that a program or a function needs to solve 
a particular problem instance by creating a global variable, count, which has an initial 
value of 0 and then inserting statements that increment count by the number of program 
steps required by each executable statement.

Example 1.9 [Iterative summing of a list of numbers]'. We want to obtain the step count 
for the sum function discussed earlier (Program 1.10). Program 1.12 shows where to 
place the count statements. Notice that we only need to worry about the executable 
statements, which automatically eliminates the function header, and the second variable 
declaration from consideration.

Since our chief concern is determining the final count, we can eliminate most of 
the program statements from Program 1.12 to obtain a simpler program Program 1.13 
that computes the same value for count. This simplification makes it easier to express 
the count arithmetically. Examining Program 1.13, we can see that if counfs initial 
value is 0, its final value will be 2n + 3. Thus, each invocation of sum executes a total of 
2/14-3 steps. □

Example 1.10 [Recursive summing of a list of numbers]'. We want to obtain the step 
count for the recursive version of the summing function. Program 1.14 contains the ori
ginal function (Program 1.11) with the step counts added.

To determine the step count for this function, we first need to figure out the step 
count for the boundary condition of n = 0. Looking at Program 1.14, we can see that 
when n = 0 only the if conditional and the second return statement are executed. So, the 
total step count for n = 0 is 2. For n > 0, the if conditional and the first return statement 
are executed. So each recursive call with n > 0 adds two to the step count. Since there 
are n such function calls and these are followed by one with n = 0, the step count for the 
function is 2n 4- 2.
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float sum(float list[], int n) 
{

★ for assignmentfloat tempsum = 0;
int i ; 
for (i

count++; /*  for the for loop
tempsum += list[i]; count++; /*  for assignment

count++; / */

0; i n; i + +)
/* */

/* */
}
count++; /
count++; /

last execution of for
for return */  return tempsum;

*/
*/

*

{

}

Program 1.12: Program 1.10 with count statements

float sum (float list[], int n) 
{

float tempsum = 0; 
int i; 
for {i

count += 2;
count +=3;
return 0;

0; i n; i + +)

}

Program 1.13: Simplified version of Program 1.12

Surprisingly, the recursive function actually has a lower step count than its itera
tive counterpart. However, we must remember that the step count only tells us how 
many steps are executed, it does not tel! us how much time each step takes. Thus, 
although the recursive function has fewer steps, it typically runs more slowly than the 
iterative version as its steps, on average, take more time than those of the iterative ver
sion. □

Example 1.11 [Matrix addition]: We want to determine the step count for a function 
that adds two-dimensional arrays (Program 1.15). The arrays a and h are added and the 
result is returned in array c. All of the arrays are of size rows x cols. Program 1.16 
shows the add function with the step counts introduced. As in the previous examples, we 
want to express the total count in terms of the size of the inputs, in this case rows and 
cols. To make the count easier to decipher, we can combine counts that appear within a 
single loop. This operation gives us Program 1.17.
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float rsum(float list[], int n) 
{

/* for if conditional */count++; 
if (n) {

count++; /*  for return and rsum invocation 
return rsum(list,n-1) + list[n-l];

/* */

}
count++;
return list[0] ;

}

Program 1.14: Program 1.11 with count statements added

For Program 1.17, we can see that if count is initially 0, it will be 2rows • cols + 
2rows -I- 1 on termination. This analysis suggests that we should interchange the 
matrices if the number of rows is significantly larger than the number of columns. □

By physically placing count statements within our functions we can run the func
tions and obtain precise counts for various instance characteristics. Another way to 
obtain step counts is to use a tabular method. To construct a step count table we first 
determine the step count for each statement. We call this the steps/execution, or s/e for 
short. Next we figure out the number of times that each statement is executed. We call 
this the frequency. The frequency of a nonexecutable statement is zero. Multiplying s/e 
by the frequency, gives us the total steps for each statement. Summing these totals, 
gives us the step count for the entire function. Although this seems like a very compli
cated process, in fact, it is quite easy. Let us redo our three previous examples using the 
tabular approach.

Example 1.12 [Iterative function to sum a list of numbers]: Figure 1.2 contains the 
step count table for Program 1.10. To construct the table, we first entered the 
steps/execution for each statement. Next, we figured out the frequency column. The for 
loop at line 5 complicated matters slightly. However, since the loop starts at 0 and ter
minates when i is equal to n, its frequency is n + 1. The body of the loop (line 6) only 
executes n times since it is not executed when i = n. We then obtained the total steps for 
each statement and the final step count. □

Example 1.13 [Recursive function to sum a list of numbers]: Figure 1.3 shows the step 
count table for Program 1.12. □

Example 1.14 [Matrix addition]: Figure 1.4 contains the step count table for the matrix 
addition function. □
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void add{int a[][MAX-SIZE], int b[][MAX-SIZE], 
int c[] [MAX—SIZE] , int rows, int cols)

{
3 ;

1 <
0; j

rows;
< cols;

int i,
for (i = 0; i < rows; i++)

for (j = 0; j < cols; j++)
c[i] [j] = a[i] [j] + b[i] [j] ;

}

Program 1.15: Matrix addition

void add(int a[][MAX-SIZE], int b[][MAX-SIZE], 
int c[] [MAX—SIZE], int rows, int cols)

{
i ;
= 0; i

0; j

i++) {rows;
for i for loop 

; cols; j++) { 
for j for loop

int i, 
for (i

count++;
for (j =

count++; ! 
c[i][j] =a[i][j] +b[i][j]; 
count+ +; /'^

*/

for assignment statement
}
count++; / last time of j for loop

)
count++; / last time of i for loop */

■^ /

★

■^/

*

★

}

Program 1.16: Matrix addition with count statements

EXERCISES

2.

3.

1. Redo Exercise 2, Section 1.2 (Homer’s rule for evaluating polynomials), so that 
step counts are introduced into the function. Express the total count as an equation. 
Redo Exercise 3, Section 1.2 (truth tables), so that steps counts are introduced into 
the function. Express the total count as an equation.
Redo Exercise 4, Section 1.2 so that step counts are introduced into the function. 
Express the total count as an equation.
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void add(int a [ HMAX-SIZE] , int b [ HMAX-SIZE] , 
int c[] [MAX—SIZE] , int rows, int cols)

{
j ;int i, 

for (i - 0;
for (j =

count += 2;
count += 2;

i <
0; j

rows ;
< cols;

i++) {
3++)

}
count++;

}

Program 1.17: Simplification of Program 1.16

Statement s/e

float sum(float list[], int n) 
{

float tempsum = 0;
int i;
for (i = 0; i < n; i++) 

tempsum += list[il;
return tempsum;

2
Total

0 
0
1
0
1
1
1
0

Frequency

0
0
1
0
n+1
n
1
0

Total steps

0
0
1
0
n+1
n
1
0

2rt+3

Figure 1.2: Step count table for Program 1.10

Rewrite Program 1.18 so that step counts are introduced into the function.
Simplify the resulting function by eliminating statements.
Determine the value of count when the function ends.
Write the step count table for the function.

4. (a) 
(b) 
(c) 
(d)

5. Repeat Exercise 5 with Program 1.19.
6. Repeat Exercise 5 with Program 1.20



Performance Analysis 27

Statement s/e

float rsumffloat list[], int n) 
{

if (n)
return rsum(list,n-l) + listfn—1 ];

return listfO];
}
Total

0 
0
1
1
1 
0

Frequency

0
0
n -1-1
n
1
0

Total steps

0
0
n -1-1
n
1
0

2n +2

Figure 1.3 : Step count table for recursive summing function

Statement s/e

void add(int a[][MAX-SIZE] ••• )

int i,j;
for (i=0; i<rows; i++)

for (j = 0; j < cols; ]++)
c(i]U] =a[i]0] + b[i]Ul;

j
Total

0 
0
0
1
1
1 
0

Frequency

0
0
0
rows+l
rows • (cols+\) 
rows • cols
0

Total Steps

0
0
0
r<7W5-l-l
rows • cols + rows 
rows • cols
0

2rows • cols + 2rows+i

Figure 1.4 : Step count table for matrix addition

7. Repeat Exercise 5 with Program 1.21

Summary

The time complexity of a program is given by the number of steps taken by the program 
to compute the function it was written for. The number of steps is itself a function of the 
instance characteristics. While any specific instance may have several characteristics 
(e.g., the number of inputs, the number of outputs, the magnitudes of the inputs and out
puts, etc.), the number of steps is computed as a function of some subset of these. Usu
ally, we choose those characteristics that are of importance to us. For example, we might 
wish to know how the computing (or run) time (i.e., time complexity) increases as the
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void print—matrix{int matrix[][MAX-SIZE], int rows, 
int cols)

j ;
= 0;

int i, 
for (1=0; i < rows; i++) {

for (j =0; j < cols; j-i-+) 
printf("%d",matrix[i][j]);

printf("\n");

i < rows 
0; j

Program 1.18: Printing out a matrix

void mult(int a[][MAX-SIZE], int b[][MAX-SIZE], 
int c[][MAX-SIZE])

j, k;
= 0; i < MAX-SIZE; 

0; j - 
1=0;

int i, 
for {i 

for (j - I 
c[i] [ j ] 
for (k - 0; k

c[i] [j] a[i] [k]

i + +) 
MAX-SIZE; j-n-) {

MAX-SIZE; k++) 
b[k] [j] ;

{

}
}

{

*

}
}

Program 1.19: Matrix multiplication function 

number of inputs increase. In this case the number of steps will be computed as a func
tion of the number of inputs alone. For a different program, we might be interested in 
determining how the computing time increases as the magnitude of one of the inputs 
increases. In this case the number of steps will be computed as a function of the magni
tude of this input alone. Thus, before the step count of a program can be determined, we 
need to know exactly which characteristics of the problem instance are to be used. 
These define the variables in the expression for the step count. In the case of sum, 
chose to measure the time complexity as a function of the number, n, of elements being 
added. For function add the choice of characteristics was the number of rows and the 
number of columns in the matrices being added.

Once the relevant characteristics (n, m, p, q, f\ . ..) have been selected, we can 
define what a step is. A step is any computation unit that is independent of the charac
teristics (n, m, p. q, r,. . .). Thus, 10 additions can be one step; 100 multiplications can
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void prod(int a[] [MAX—SIZE] , int b[] [MAX-SIZE] , 
int c[][MAX—SIZE], int rowsa, int colsb, int colsa)

{
3, k;
= 0; i < rowsa;

0; 3 '
1=0;

int i, 
for (i 

for (j - I 
c[i] [ j ] 
for (k - 0; k

c[i] [j] += a[i] [k]

i + +} 
colsb; 3++) {

colsa; k++} 
b[k] [j] ;•k

}
}

Program 1.20: Matrix product function

void transpose(int a[j [MAX-SIZE]} 
{

j, temp;
= 0; i <

i + 1;
MAX-SIZE-1; i++) 
j

int i, 
for (i

for (j - i+1; j < MAX-SIZE; j++} 
SWAP(a[i][j], a[j][i], temp);

}

Program 1.21: Matrix transposition function 

also be one step; but n additions cannot. Nor can m/2 additions, p +q subtractions, etc., 
be counted as one step.

The examples we have looked at so far were sufficiently simple that the time com
plexities were nice functions of fairly simple characteristics like the number of elements, 
and the number of rows and columns. For many programs, the time complexity is not 
dependent solely on the number of inputs or outputs or some other easily specified 
characteristic. Consider the function binsearch. (Program 1.6). This function searches an 
ordered list. A natural parameter with respect to which you might wish to determine the 
step count is the number, n, of elements in the list. That is, we would like to know how 
the computing time changes as we change the number of elements n. The parameter n is 
inadequate. For the same n, the step count varies with the position of the element 
searchnum that is being searched for. We can extricate ourselves from the difficulties 
resulting from situations when the chosen parameters are not adequate to determine the 
step count uniquely by defining three kinds of steps counts: best case, worst case and 
average.
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The best case step count is the minimum number of steps that can be executed for 
the given paramenters. The worst case step count is the maximum number of steps that 
can be executed for the given paramenters. The average step count is the average 
number of steps executed on instances with the given parameters.

1.4.3 Asymptotic Notation (O, Q, 0)

Our motivation to determine step counts is to be able to compare the time complexities 
of two programs that compute the same function and also to predict the growth in run 
time as the instance characteristics change.

Determining the exact step count (either worst case or average) of a program can 
prove to be an exceedingly difficult task. Expending immense effort to determine the 
step count exactly isn’t a very worthwhile endeavor as the notion of a step is itself inex
act. (Both the instructions x = y and x = y -I- z + {x/y) -I- (jc *y  *z  -x/z) count as one step.) 
Because of the inexactness of what a step stands for, the exact step count isn’t very use
ful for comparative purposes. An exception to this is when the difference in the step 
counts of two programs is very large as in 3n+3 versus 100a7+10. We might feel quite 
safe in predicting that the program with step count l>n +3 will run in less time than the 
one with step count lOOn +10. But even in this case, it isn’t necessary to know that the 
exact step count is lOOn +10. Something like, “it’s about 80n, or 85rt, or 75n,’’ is ade
quate to arrive at the same conclusion.

For most situations, it is adequate to be able to make a statement like c^n^ < Tp{n} 
< C'yn^ or rg(Az,m) = C\n + c^.^ where Cj and c^ are nonnegative constants. This is so 
because if we have two programs with a complexity of c^n^ + C2.n and c^n, respectively, 
then we know that the one with complexity c^n will be faster than the one with complex
ity C\n^ + c^n for sufficiently large values of n. For small values of n, either program 
could be faster (depending on Cj, c^, and C3). If Ci = 1, C2 = 2, and c^ = 100 then C]n^ 
+ C2n < c^n for n < 98 and + C2n > c^n for n > 98. If cj = 1, C2 = 2, and C3 = 1000, 
then + C2n < c^n for n < 998.

No matter what the values of Ci, C2, and C3, there will be an n beyond which the 
program with complexity C2,n will be faster than the one with complexity c^n^ + C2n. 
This value of n will be called the break even point. If the break even point is 0 then the 
program with complexity €3^ is always faster (or at least as fast). The exact break even 
point cannot be determined analytically. The programs have to be run on a computer in 
order to determine the break even point. To know that there is a break even point it is 
adequate to know that one program has complexity Cin + C2n and the other c^^n for 
some constants cj, C2, and C3. There is little advantage in determining the exact values 
of C], C2, and C3.

With the previous discussion as motivation, we introduce some terminology that 
will enable us to make meaningful (but inexact) statements about the time and space 
complexities of a program. In the remainder of this chapter, the functions f and g are 
nonnegative functions.
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Definition; [Big “oh”]/(«) = O(g(A2)) (read as “/of n is big oh of g of n”) iff (if and 
only if) there exist positive constants c and Hq such that/(n) < eg («) for all n, n > Hq. □

Example 1.15: 3m + 2 = O(m) as 3m + 2 < 4m for all m > 2. 3m + 3 = O(m) as 3m + 3 < 4m 
for all M > 3. 100m + 6 = as 100m + 6 < 101m for n > 10. IOm^ + 4m + 2 = O(n^) as 
IOm^ + 4m + 2 < 1 Im^ for m > 5. IOOOm^ + 100m - 6 = O(m2) as IOOOm^ + 100m - 6 < 
IOOIm^ for M > 100. 6*2"  + M^ = 0(2”) as 6*2'^  + M^ < 7*2' ’for M > 4. 3M + 3 = O(M2)as 
3m + 3 < 3m2 for m > 2. IOm^ + 4m + 2 = ©(m*̂)  as IOm^ + 4m + 2 < IOm"^ for m > 2. 3n + 2 
7^: 0(1) as 3m + 2 is not less than or equal to c for any constant c and all m, m > mq. IOm^^- 
4« + 2 5feO(n). □

We write 0(1) to mean a computing time which is a constant. O(m) is called 
linear, O(m2) is called quadratic, O(m^) is called cubic, and 0(2") is called exponential. 
If an algorithm takes time O(Iog m) it is faster, for sufficiently large m, than if it had taken 
O(m). Similarly, O(m logM) is better than O(m2) but not as good as O(m). These seven 
computing times, 0(1), O(logM), O(m), O(m log m), O(m2), O(m^), and 0(2") are the 
ones we will see most often in this book.

As illustrated by the previous example, the statement/(m) = O(g(M)) only states 
that g (m) is an upper bound on the value of/(M) for all m, m > mq. It doesn’t say anything 
about how good this bound is. Notice that n = n = n = O(m^), m = 0(2"), 
etc. In order for the statement /(m) = 0(g (m)) to be informative, g (n) should be as small 
a function of m as one can come up with for which/(m) = O(g(M)). So, while we shall 
often say 3m + 3 = 0(m), we shall almost never say 3m + 3 = O(m2) even though this 
latter statement is correct.

From the definition of O, it should be clear that/(M) = O(g(M)) is not the same as 
O(g (m)) = /(m). In fact, it is meaningless to say that O(g (m)) =f{n}. The use of the sym
bol is unfortunate as this symbol commonly denotes the “equals” relation. Some 
of the confusion that results from the use of this symbol (which is standard terminology) 
can be avoided by reading the symbol “=” as “is” and not as “equals.”

Theorem 1.2 obtains a very useful result concerning the order of/(M) (i.e., the 
g {n} in/(m) = O(g (m))) when/(M) is a polynomial in m.

Theorem 1.2: If/(M)= m^m"' + . . . + a^n + Aq, then/(n) = O(zi"').

m

Proof:/(m)< 2 I My |m' 
z=0

m

1^/1^
0

I-tn

m

< I «,■ I , for M > 1
0
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So,/(n) = O(rt'"). □

Definition: [Omega] /(«) = O(g (n)) (read as “/ of n is omega of g of n”) iff there exist 
positive constants c and riQ such that/(rt) >cg(n) for all h, n > mq- □

Example 1.16: 3n + 2 = £l(n) as 3n + 2> 3n forn> 1 (actually the inequality holds for 
n > 0 but the definition of Q. requires an no>O). 3« + 3 = as 3n + 3 > 3n for n > 1. 
lOOn + 6 = O(n) as lOOn + 6 > lOOn for n > 1. lOn^ + 4n + 2 = as 10«^ + 4/1 + 2 > 

for /I > 1. 6*2"  + = 0(2") as 6*2"  + >2^ for n > 1. Observe also that 3/1 + 3 =
0(1); 10/1^ + 4/1 + 2 = O(/i); lO/i^ + 4^ + 2 = 0(1); 6*2"  + = O(/i**^);  6^2'^ + =

6^2^ +n^ = 6^2^ + = Q.(n); and 6*2"  + /i^ = 0(1). □

As in the case of the “big oh’’ notation, there are several functions g (n) for which 
/(/i) = O(g (/i)). g (n) is only a tower bound on/(/i). For the statement/(/i) = O(g (/i)) to 
be informative, g(/2) should be as large a function of n as possible for which the state
ment /(/i) = O(g(/i)) is true. So, while we shall say that 3n + 3 - and that 
6*2"  + /i^ = 0(2"), we shall almost never say that 3n + 3 = 0(1) or that 6*2"  + /i^ = 
0(1) even though both these statements are correct.

Theorem 1.3 is the analogue of Theorem 1.2 for the omega notation.

Theorem 1.3: If/(/i) = + . .. + a J n + aQ and > 0, then/(n) = Q.{n^').

Proof: Left as an exercise. □

Definition: [Theta]/(n) = Q(g(n)) (read as “/of n is theta of g of n"') iff there exist 
positive constants c j, c » and n o such that c j (n) <f(n) < c 2g («) for all n, n > n o. □

Example 1.17: 3n + 2 = 0(n) as 3n + 2 > 3n for all n > 2 and 3n + 2 < 4n for all n > 2, so 
Cl 3, C2 = 4, and «o = 2. 3n + 3 = 0(n); lOn^ + 4n + 2 = ©(n^); 6*2"  + = 0(2"); and
10*log  n + 4 = 0(log n). 3n + 2 0(1); 3n + 3 + 4n + 2 0(n); lOn^ +
4n + 2 0(1); 6*2"  + 6*2"  '“); and 6*2"  + 0(1). □

The theta notation is more precise than both the “big oh” and omega notations. 
/(«) = 0(g (n)) iff g (n) is both an upper and lower bound on/(/i).

Notice that the coefficients in all of the g(/i)’s used in the preceding three exam
ples has been 1. This is in accordance with practice. We shall almost never find our
selves saying that 3n + 3 = O(3n), or that 10 = 0(100), or that lO/i^ + 4^2 + 2 = 0(4/12), 
or that 6*2"  + /i^ = 0(6*2"),  or that 6*2"  + = 0(4*2"),  even though each of these
statements is true.

Theorem 1.4: If/(n) = 6Z^« m + . . . + + tio and > 0, then/(rt) = 0(n"').

Proof: Left as an exercise. □
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Let us reexamine the time complexity analyses of the previous section. For func
tion sum (Program 1.11) we had determined that T^umM = 2n+3. So, ^^^^(h) = 0(z7). 
T rsum (z?) = 2n + 2 = ©(«) and Taddk^ows, cols') = Irows.cols + Irows + 1 = ^{rows.cols}.

While we might all see that the O, Q, and 0 notations have been used correctly in 
the preceding paragraphs, we are still left with the question: “Of what use are these 
notations if one has to first determine the step count exactly?” The answer to this ques
tion is that the asymptotic complexity (i.e., the complexity in terms of O, O, and 0) can 
be determined quite easily without determining the exact step count. This is usually 
done by first determining the asymptotic complexity of each statement (or group of state
ments) in the program and then adding up these complexities.

Example 1.18 [Complexity of matrix addition}'. Using a tabular approach, we construct 
the table of Figure 1.5. This is quite similar to Figure 1.4. However, instead of putting 
in exact step counts, we put in asymptotic ones. For nonexecutable statements, we enter 
a step count of 0. Constructing a table such as the one in Figure 1.5 is actually easier 
than constructing the one is Figure 1.4. For example, it is harder to obtain the exact step 
count of row5.(coZ5 + l) for line 5 than it is to see that line 5 has an asymptotic complex
ity that is Q{rows.cols}. To obtain the asymptotic complexity of the function, we can add 
the asymptotic complexities of the individual program lines. Alternately, since the 
number of lines is a constant (i.e., is independent of the instance characteristics), we may 
simply take the maximum of the line complexities. Using either approach, we obtain 
Q{rows.cols} as the asymptotic complexity. □

Statement

void add(int a[][MAX_SIZE] • • • )

int i,j;
for (i=0; i<rows; i++)

for (j = 0; j < cols; j++) 
c[ilU] = a[i]UJ +b[i]|j];

}
Total

Asymptotic complexity 

0
0 
0 
Q(rows) 
Q(rows.cols) 
Q^rows.cols) 
0

Q(rows.cols)

Figure 1.5: Time complexity of matrix addition

Example 1.19 [Binary search}'. Let us obtain the time complexity of the binary search 
function hinseareh (Program 1.6). The instance characteristic we shall use is the number 
n of elements in the list. Each iteration of the while loop takes ©(1) time. We can show 
that the while loop is iterated at most [ log2(n + l) ] times (see the book by S. Sahni 
cited in the references). Since an asymptotic analysis is being performed, we don't need 
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such an accurate count of the worst case number of iterations. Each iteration except for 
the last results in a decrease in the size of the segment of list that has to be searched by a 
factor of about 2. That is, the value of right - left + 1 reduces by a factor of about 2 on 
each iteration. So, this loop is iterated 0(log n) times in the worst case. As each itera
tion takes 0(1) time, the overall worst case complexity of binsearch is 0(log n). Notice 
that the best case complexity is 0(1) as in the best case searchnum is found in the first 
iteration of the while loop. □

(i -I-1, n))) when i < n. Since, Tp^rm
(z, n) = 0((z2 -i -I- i)Tp^rm(i + Solv-

(1,«) = 0(zi (rt !)), > 1. n

Example 1.20 [Permutations]'. Consider function perm (Program 1.8). When i = n, the 
time taken is 0(n). When i < n, the else clause is entered. The for loop of this clause is 
entered n - i + 1 times. Each iteration of this loop takes 0(az + Tp^nn 
T'pertn^h uf =■ 0((zi — Z + l)(n + Tpgf.ff^ 
least n when i + 1 < n, we get Tp^rm 
ing this recurrence, we obtain Tp^rm

(/ -I-1, n)) time. So, 
(/ -I- 1, n), is at

Example 1.21 [Magic square]'. As our last example of complexity analysis, we use a 
problem from recreational mathematics, the creation of a magic square.

A magic square is an n x n matrix of the integers from 1 to n^ such that the sum of 
each row and column and the two major diagonals is the same. Figure 1.6 shows a magic 
square for the case n = 5. In this example, the common sum is 65.

8 115 24 17

16 14 23

22 20 13

21 19 12 10

25 18 11

7 5

6 4

3

9 2

Figure 1.6: Magic square for n = 5

Coxeter has given the following simple rule for generating a magic square when n 
is odd:

Put a one in the middle box of the top row. Go up and left assigning numbers in 
increasing order to empty boxes. If your move causes you to jump off the square (that is, 
you go beyond the square's boundaries), figure out where you would be if you landed on 
a box on the opposite side of the square. Continue with this box. If a box is occupied, go 
down instead of up and continue.
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We created Figure 1.6 using Coxeter’s rule. Program 1.22 contains the coded 
algorithm. Let n denote the size of the magic square (i.e., the value of the variable size 
in Program 1.22. The if statements that check for errors in the value of n take 0(1) time. 
The two nested for loops have a complexity ©(n^). Each iteration of the next for loop 
takes 0(1) time. This loop is iterated ©(n^) time. So, its complexity is ©(n^). The 
nested for loops that output the magic square also take ©(n^) time. So, the asymptotic 
complexity of Program 1.22 is ©(n^). □

stdio.h>#include
#define MAX-SIZE 
void main(void) 
/*  
{

15 /* maximum size of square

construct a magic square, iteratively */

Static int square[MAX-SIZE][MAX-SIZE]; 
int i, j, row, column; /*  indices 
int count ; /counter
int size; /*  Square size

j Z column; /■^

*/

/*  
/*

■^ /
*/

printf("Enter the size of the square: 
scanf("%d", 

if (size
fprintf(stderr, 
exit(1);

Scsize) ; 
check for input errors 

MAX-SIZE +1) {
"Error 1

1 I I size
Size is out of rangeXn");

}
if (!(size 

fprintf(stderr, 
exit(1);

Q,
•Q 2) ) {

Error! Size is evenin'');

}
for (i = 0; i

for (j
square[i][j]

0; j
i++) 

j++)

★1; / 
i and j are current position
0;

middle of first row
*/

s 1 z e ;
< size;

0;
square[0][(size-1) / 2] 
/*  
i
j = (size-1) / 2;
for (count = 2; count <= size

row = (i-1 < 0) ? (size - 1) : 
column = (j-1 < 0) ? (size - 1) 
if (square[row][column]) 

i = 
else { 

i =

2; count 
(i-1 < 0) ? (

0) ?(j-i

(++i) % size;

row;

size; count++) {
(i - 1); /*up*/

: (j - 1) ; /*left*/  
I*down* /

*

/* square is unoccupied
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j (j-1 0) ? (size - 1) —j ;
}
square[i][j] count;

} 
/*  
printf(" Magic Square of size %d : 
for (i = 0; i < size;

for (j = 0; j < size;
printf ( "%5d'’, square[i] [j] ) ; 

printf("\n");

output the magic square */
\n\n", size);

Q; 1 <
0; j

i + +) < 
j++)

}
printf("\n\n");

}

Program 1.22: Magic square program

When we analyze programs in the following chapters, we will normally confine 
ourselves to providing an upper bound on the complexity of the program. That is, we will 
normally use only the big oh notation. We do this because this is the current trend in 
practice. In many of our analyses the theta notation could have been used in place of the 
big oh notation as the complexity bound obtained is both an upper and a lower bound for 
the program.

EXERCISES

1. Show that the following statements are correct:

(a)
(b)
(c)

(d)

(e)

(f)
(g)
(h)

(i)

5n^ -6n =

2^2 + n log n = 
n

i=Q 
n

i=Q
2" n
3

+ 6-2" = 0(^2") 
n-" + lO^n^ =

! (log n + 1) = O(n^)
+A7 log/i = 0(n^-^*n )
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+ n + n = 0(«^logz2) for all > 1. 
lOn^ + 15n4 H-lOOn^?” = O(n^2^) 

(j)
(k)
Show that the following statements are incorrect:

(a)
(b)

(c)
(d)
(e)

2.
lOn^ + 9 = O(n)
M^log n =

/io^n- Q(n^)
n^2^ + 6n^3^ = O(n^2'^}

3" =0(2'^)
3. Prove Theorem 1.3.
4. Prove Theorem 1.4.
5. Determine the worst case complexity of Program 1.18.
6. Determine the worst case complexity of Program 1.21.
7. Compare the two functions and 20z2 +4 for various values of n. Determine 

when the second function becomes smaller than the first.
8. Write an equivalent recursive version of the magic square program (Program 

1,22).

1.4.4 Practical Complexities

Wq have seen that the time complexity of a program is generally some function of the 
instance characteristics. This function is very useful in determining how the time 
requirements vary as the instance characteristics change. The complexity function may 
also be used to compare two programs P and Q that perform the same task. Assume that 
program P has complexity 0(n) and program Q is of complexity We can assert 
that program P is faster than program Q for “sufficiently large” n. To see the validity of 
this assertion, observe that the actual computing time of P is bounded from above by cn 
for some constant c and for all n, n > n i, while that of Q is bounded from below by dn^ 
for some constant d and all n, « > n2. Since cn < dn^ for n > c/d, program P is faster 
than program Q whenever n > max{n ।, n2, c/d}.

You should always be cautiously aware of the presence of the phrase “sufficiently 
large” in the assertion of the preceding discussion. When deciding which of the two 
programs to use, we must know whether the n we are dealing with is, in fact, 
“sufficiently large.” If program P actually runs in milliseconds while program Q 
runs in n^ milliseconds and if we always have n < 10^, then, other factors being equal, 
program Q is the one to use, other factors being equal.

To get a feel for how the various functions grow with n, you are advised to study 
Figures 1.7 and 1.8 very closely. As you can see, the function 2" grows very rapidly 
with n. In fact, if a program needs 2" steps for execution, then when n = 40, the number 
of steps needed is approximately 1.1*  10^^. On a computer performing 1 billion steps per 
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second, this would require about 18.3 minutes. If n = 50, the same program would run 
for about 13 days on this computer. When n = 60, about 310.56 years will be required to 
execute the program and when n = 100, about 4*10^^  years will be needed. So, we may 
conclude that the utility of programs with exponential complexity is limited to small n 
(typically n < 40).

Instance characteristic n

1 2 4 8Time Name 16 32

1
log n 

n 
n log n

Constant 
Logarithmic 
Linear 
Log linear 
Quadratic 
Cubic

Exponential 
Factorial

1
0 
I
0
1
1

1
1
2
2
4
8

1
2
4
8

16
64

16
24

1
3
8

24
64

512

1
4

16
64

256
4096

1
5

32
160

1024
32768

256
40326

65536
20922789888000

4294967296
26313 X 10^^

2” 
n!

2
1

4
2

Figure 1.7 Function values

Programs that have a complexity that is a polynomial of high degree are also of 
limited utility. For example, if a program needs steps, then using our 1 billion steps 
per second computer we will need 10 seconds when n = 10; 3,171 years when n = 100; 
and 3.17*10^^  years when n = 1000. If the program’s complexity had been steps 
instead, then we would need 1 second when n = 1000; 110.67 minutes when n = 10,000; 
and 11.57 days when n = 100,000.

Figure 1.9 gives the time needed by a 1 billion instructions per second computer to 
execute a program of complexity f(n) instructions. You should note that currently only 
the fastest computers can execute about 1 billion instructions per second. From a practi
cal standpoint, it is evident that for reasonably large n (say n > 100), only programs of 
small complexity (such as n, nlogn, n^, are feasible. Further, this is the case even if 
one could build a computer capable of executing 10^^ instructions per second. In this 
case, the computing times of Figure 1.9 would decrease by a factor of 1000. Now, when 
n = 100 it would take 3.17 years to execute instructions, and 4*10^^  years to execute 
2" instructions.

instructions, and 4*10

1.5 PERFORMANCE MEASUREMENT

Although performance analysis gives us a powerful tool for assessing an algorithm’s 
space and time complexity, at some point we also must consider how the algorithm exe
cutes on our machine. This consideration moves us from the realm of analysis to that of
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Figure 1.8 Plot of function values 

measurement. We will concentrate our discussion on measuring time.
The functions we need to time events are part of C’s standard library, and are 

accessed through the statement: ^include <time.h>. There are actually two different 
methods for timing events in C. Figure 1.10 shows the major differences between these 
two methods.

Method 1 uses clock to time events. This function gives the amount of processor 
time that has elapsed since the program began running. To time an event we use clock 
twice, once at the start of the event and once at the end. The time is returned as a built-in 
type, clock-t. The total time required by an event is its start time subtracted from its 
stop time. Since this result could be any legitimate numeric type, we type cast it to
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Figure 1.9 Times on a 1 billion instruction per second computer



Performance Measurement 41

Start timing
Stop timing 
Type returned 
Result in seconds

Method 1 
start = clockO; 
stop = clockO; 
clock-t 
duration = 
((double) (stop-start)) / 
CLK-TCK;

Method 2 
start = time(NULL); 
stop = time(NULL); 
time-t 
duration = 
(double) difftime(stop,start);

Figure 1.10: Event timing in C 

double. In addition, since this result is measured as internal processor time, we must 
divide it by the number of clock ticks per second to obtain the result in seconds. On our 
compiler the ticks per second is held in the built-in constant, CLK-TCK. We found that 
this method was far more accurate on our machine. However, the second method does 
not require a knowledge of the ticks per second, which is why we also present it here.

Method 2 uses time. This function returns the time, measured in seconds, as the 
built-in type time-t. Unlike clock, time has one parameter, which specifies a location to 
hold the time. Since we do not want to keep the time, we pass in a NULL value for this 
parameter. As was true of Method 1, we use time at the start and the end of the event we 
want to time. We then pass these two times into diffiime, which returns the difference 
between two times measured in seconds. Since the type of this result is time-t, we type 
cast it to double before printing it out.

The exact syntax of the timing functions varies from computer to computer and 
also depends on the operating system and compiler in use. For example, the constant 
CLK-TCK does not exist on a SUN Sparcstation running SUNOS 4.1 Instead, the 
clock() function returns the time in microseconds. Similarly, the function difliime() is 
not available and one must use (stop-start) to calculate the total time taken.

We now want to look at two examples of event timing. In each case, we analyze 
the worst case performance.

Example 1.22 case performance of the selection function}”. The worst case for 
selection sort occurs when the elements are in reverse order. That is, we want to sort 
into ascending order an array that is currently in descending order. To conduct our tim
ing tests, we varied the size of the array from 0, 10, 20 , • • • ,90, 100, 200 , ■ • ■ , 1600. 
Program 1.23 contains the code we used to conduct the timing tests. (We have not 
included the sort function code again since it is found in Program 1.3).

To conduct the timing tests, we used a for loop to control the size of the array. At 
each iteration, a new reverse ordered array of sizelist [/1 was created. We called clock 
immediately before we invoked sort and immediately after it returned. The results of the 
tests are displayed in Figures 1.11 and 1.12. The tests were conducted on an IBM
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#include <stdio.h> 
#include <time.h> 
#define MAX_SIZE 1601 
#define ITERATIONS 26 
#define SWAP(x, y, t) ((t) 
void main(void) 
{

(X) (y), (y) (t))(x) ,

{0, 10, 20, 30, 40, 50, 60, 70, 80, 90,

time\n");

- j;
clock(};

int i,j,position;
int list[MAX_SIZE]; 
int sizelist[]
100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100,
1200, 1300, 1400, 1500, 1600};
clock_t start, stop;
double duration;
printf {’’ n
for (i = 0; i < ITERATIONS; i++) { 

for {j = 0; j < sizelist[i]; j++) 
list[j] = sizelist[i] 

start
sort(list,sizelist[i]); 
stop = clock ();

CLK_TCK = number of clock ticks per second */  
((double) (stop-start)) / CLK_TCK; 

%f\n",sizelist[i], duration);

/*  
duration = 
printf ('’%6d

}
}

Program 1.23: Timing program for the selection sort function 

compatible PC with an 80386 cpu, an 80387 numeric coprocessor, and a turbo accelera
tor. We used Borland’s Turbo C compiler.

What confidence can we have in the results of this experiment? The measured 
time for n < 100 is zero. This cannot be accurate. The sort time for all n must be larger 
than zero as some nonzero amount of work is being done. Furthermore, since the value 
of CLK -TCK is 18 on our computer, the number of clock ticks measured for n < 500 is 
less than 10. Since there is a measurement error of ±1 tick, the measured ticks for n < 
500 are less than 10% accurate. In the next example, we see how to obtain more accu
rate times.

The accuracy of our experiment is within 10% for n 500. We may regard this as 
acceptable. The curve of Figure 1.12 resembles the curve displayed in Figure 1.8. 
This agrees with our analysis of selection sort. The times obtained suggest that while 
selection sort is good for small arrays, it is a poor sorting algorithm for large arrays. □
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n
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Figure 1.11 : Worst case performance of selection sort (in seconds)
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Figure 1.12 : Graph of worst case performance for selection sort

Example 1.23 [WorsZ case performance of sequential search]'. As pointed out in the 
last example, the straightforward timing scheme used to time selection sort isn't ade
quate when we wish to time a function that takes little time to complete. In this exam
ple, we consider a more elaborate timing mechanism. To illustrate this, we consider 
obtaining the worst case time of a sequential search function seqsearch (Program 1.24). 
This begins at the start of the array and compares the number it seeks, searchnum-, with 
the numbers in the array until it either finds this number or it reaches the end of the array. 
The worst case for this search occurs if the number we seek is not in the array. In this 
case, all the numbers in the array are examined, and the loop is iterated n •+• I times.
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int seqsearch(int list[], 
{ 
/^search an array, 
if list[i] 
the list ■ 

int i; 
list[n] 
for (i = 0; list[i]

int searchnum,

list, 
searchnum. Return —1,

int n)

that has n numbers. Return i, 
if searchnum is not in

*/

searchnum;
searchnum; i++)

return ((i < n ) ? i : -1);

I =

}

Program 1.24: Sequential search function

Since searching takes less time than sorting, the timing strategy of Program 1.23 is 
inadequate even for small arrays. So, we needed another method to obtain accurate 
times. In this case, the obvious choice was to call the search function many times for 
each array size. Since the function runs more quickly with the smaller array sizes, we 
repeated the search for the smaller sizes more times than for the larger sizes. Program 
1.25 shows how we constructed the timing tests. It also gives the array sizes used and 
the number of repetitions used for each array size. Note the need to reset element 
/ist [sizeiist [Z ]] after each invocation of seqsearch.

The number of repetitions is controlled by numtimes. We started with 30,000 
repetitions for the case n = 0 and reduced the number of repetitions to 200 for the largest 
arrays. Picking an appropriate number of repetitions involved a trial and error process. 
The repetition factor must be large enough so that the number of elapsed ticks is at least 
10 (if we want an accuracy of at least 10%). However, if we repeat too many times the 
total computer time required becomes excessive. Figure 1.13 shows the results of our 
timing tests. These were conducted on an IBM PS/2 Model 50 using Turbo C. The 
linear dependence of the times on the array size becomes more apparent for larger values 
of n. This is because the effects of the constant additive factor is more dominant for 
small n. □

Generating Test Data

Generating a data set that results in the worst case performance of a program isn’t always 
easy. In some cases, it is necessary to use a computer program to generate the worst case 
data. In other cases, even this is very difficult. In these cases, another approach to 
estimating worst case performance is taken. For each set of values of the instance 
characteristics of interest, we generate a suitably large number of random test data. The 
run times for each of these test data are obtained. The maximum of these times is used
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stdio.h 
time.h>

#include
#include
#define MAX-SIZE 1001
#define ITERATIONS 16
int seqsearch(int [], int, int); 
void main(void)
{

int i, j, position; 
int list[MAX-SIZE]; 
int sizelist[]

int numtimes[]

{0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 
100, 200, 400, 600, 800, 1000};

{30000, 12000, 6000, 5000, 4000, 4000, 
4000, 3000, 3000, 2000, 2000, 
1000, 500, 500, 500, 200};

clock—t start, stop; 
double duration,total; 
for (i = 1 

list [ i] 
for (i = 0; i 

start = clock();
for (j = 0; j < numtimes[i]; j++) 

position - seqsearch(list, -1, 
stop = clock();
total 
duration = total/numtimes[i]; 
printf("%5d %d %d %f %f\n''.

0; i < MAX-SIZE; 
I = i;

0; j

i++)

ITERATIONS; i++) {

numtimes[i];
sizelist[i]};

((double)(stop-start))/CLK—TCK;

%d %f sizelist[i], numtimes[i], 
(int)(stop-start), total,

duration);
list [sizelist[i]] = sizelist[i]; /* reset value */

}

Program 1.25: Timing program for sequential search 

as an estimate of the worst case time for this set of values of the instance characteristics.
To measure average case times, it is usually not possible to average over all possi

ble instances of a given characteristic. While it is possible to do this for sequential and 
binary search, it is not possible for a sort program. If we assume that all keys are dis
tinct, then for any given n ! different permutations need to be used to obtain the aver
age time.
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0.004945

n
0

Figure 1.13 : Worst case performance of sequential search

Obtaining average case data is usually much harder than obtaining worst case 
data. So, we often adopt the strategy outlined above and simply obtain an estimate of the 
average time.

Whether we are estimating worst case or average time using random data, the 
number of instances that we can try is generally much smaller than the total number of 
such instances. Hence, it is desirable to analyze the algorithm being tested to determine 
classes of data that should be generated for the experiment. This is a very algorithm 
specific task and we shall not go into it here.

EXERCISES
For each of the exercises that follow we want to determine the worst case performance. 
Create timing programs that do this. For each program, pick arrays of appropriate sizes 
and repetition factors, if necessary. Present you results in table and graph form, and 
summarize your findings.
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1. Repeat the experiment of Example 1.23. This time make sure that all measured 
times have an accuracy of at least 10%. Times are to be obtained for the same 
values of n as in the example. Plot the measured times as a function of n.
Plot the run times of Figure 1.14 as a function of n.2.

3. Compare the worst case performance of the iterative (Program 1.10) and recursive 
(Program 1.11) list summing functions.

4. Compare the worst case performance of the iterative (Program 1.6) and recursive 
(Program 1.7) binary search functions.

5. (a)

(b)
(c)

Translate the iterative version of sequential search (Program 1.24) into an 
equivalent recursive function.
Analyze the worst case complexity of your function.
Measure the worst case performance of the recursive sequential search func
tion and compare with the results we provided for the iterative version.

6. Measure the worst case performance of the matrix addition function (Program 
1.15).

7. Measure the worst case performance of the matrix multiplication function (Pro
gram 1.19).
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CHAPTER 2

ARRAYS AND STRUCTURES

2.1 THE ARRAY AS AN ABSTRACT DATA TYPE

We begin our discussion by considering an array as an ADT. This is not the usual per
spective since many programmers view an array only as "a consecutive set of memory 
locations." This is unfortunate because it clearly shows an emphasis on implementation 
issues. Thus, although an array is usually implemented as a consecutive set of memory 
locations, this is not always the case. Intuitively an array is a set of pairs, <index, 
value>, such that each index that is defined has a value associated with it. In mathemati
cal terms, we call this a correspondence or a mapping. However, when considering an 
ADT we are more concerned with the operations that can be performed on an array. 
Aside from creating a new array, most languages provide only two standard operations 
for arrays, one that retrieves a value, and a second that stores a value. Structure 2.1 
shows a definition of the array ADT.

The Creaie(j, list) function produces a new, empty array of the appropriate size. 
All of the items are initially undefined. Retrieve accepts an array and an index. It 
returns the value associated with the index if the index is valid, or an error if the index is 
invalid. Store accepts an array, an index, and an item, and returns the original array aug
mented with the new <index, value> pair. The advantage of this ADT definition is that it 
clearly points out the fact that the array is a more general structure than "a consecutive 
set of memory locations."

49
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Array Create(7, list)

structure Array is
objects: A set of pairs <mdex, value> where for each value of index there is a value 
from the set item. Index is a finite ordered set of one or more dimensions, for example, 
{0, • • ■ , n-1} for one dimension, {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 
1), (2, 2)) for two dimensions, etc.
functions:

for all A G Array, i g index, x g item, j, size g integer

return an array of j dimensions where list 
is a y-tuple whose zth element is the the size of 
the zth dimension. Items are undefined.
if (z G index) return the item associated 
with index value z in array A 
else return error 
if (z in index) 
return an array that is identical to array 
A except the new pair <z, x> has been 
inserted else return error.

Item Retrieve(A, /)

Array Store(A,z,x)

end Array

Structure 2.1: Abstract Data Type Array

Now let’s examine arrays in C. We restrict ourselves initially to one-dimensional 
arrays. A one-dimensional array in C is declared implicitly by appending brackets to the 
name of a variable. For example, 

int list [5], *plist[5];

declares two arrays each containing five elements. The first array defines five integers, 
while the second defines five pointers to integers. In C all arrays start at index 0, so 
/z5?[0], ZZ^rfl], /z5r[2], /z5Z[3], and /z\f[4] are the names of the five array elements, each of 
which contains an integer value. Similarly, plist[Q], plist[}.], plistl?.], plist[3], and 
plist[4] are the names of five array elements, each of which contains a pointer to an 
integer.

We now consider the implementation of one-dimensional arrays. When the com
piler encounters an array declaration such as the one used above to create list, it allocates 
five consecutive memory locations. Each memory location is large enough to hold a sin
gle integer. The address of the first element /z5Z[0], is called the base address. If the size 
of an integer on your machine is denoted by sizeofiint), then we get the following 
memory addresses for the five elements of list[]-.
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Variable
to[0] 
Z^dl] 
/Z5?[2] 
/Z5?[3] 
/wr[4]

Memory Address 
base address = a 
a + sizeof( int) 
a + 2-sizeof(int) 
a + 3'sizeof(int) 
a + 4-sizeof(mt)

In fact, when we write list[i] in a C program, C interprets it as a pointer to an integer 
whose address is the one in the table above. Observe that there is a difference between a 
declaration such as

int listl;★

and
int list2 [5];

The variables list\ and list'2 are both pointers to an int, but in the second case five 
memory locations for holding integers have been reserved, list'2 is a pointer to /z5r2[0] 
and list2+i is a pointer to Ust2[i]. Notice that in C, we do not multiply the offset i with 
the size of the type to get to the appropriate element of the array. Thus, regardless of the 
type of the array list2, it is always the case that (to2 + /) equals &list2[i}. So, 
*({ist2 + z) equals list2[i ].

It is useful to consider the way C treats an array when it is a parameter to a func
tion. All parameters of a C function must be declared within the function. However, the 
range of a one-dimensional array is defined only in the main program since new storage 
for an array is not allocated within a function. If the size of a one-dimensional array is 
needed, it must be either passed into the function as an argument or accessed as a global 
variable.

Consider Program 2.1. When sum is invoked, input = &input [0] is copied into a 
temporary location and associated with the formal parameter list. When /z5r[zj occurs on 
the right-hand side of the equals sign, a dereference takes place and the value pointed at 
by (list + z) is returned. If list[i} appears on the left-hand side of the equals sign, then the 
value produced on the right-hand side is stored in the location (list 4- z). Thus in C, array 
parameters have their values altered, despite the fact that the parameter passing is done 
using call-by-value.

Example 2.1 [One-dimensional array addressing}’. Assume that we have the following 
declaration:

int one[] { 0 , 1, 2 , 3 , 4 } ;

We would like to write a function that prints out both the address of the zth ele
ment of this array and the value found at this address. To do this, print\ {Program 2.2) 
uses pointer arithmetic. The function is invoked as print}(&one |()],5). As you can see 
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#define MAX-SIZE 100 
float sum(float [], int); 
float input[MAX—SIZE], answer; 
int i;
void main(void)

0; i < MAX-SIZE; i++)for (i 
input[i]

answer sum(input, MAX—SIZE);
printf("The sum is: %f\n", answer);

1;

}
float sum(float list[], int n) 
{

0; i

int i ;
float tempsum = 0;
for (i = 0; i < n;

tempsum += list[i];
return tempsum;

}

Program 2.1: Example array program

from the printf statement, the address of the ith element is simply ptr + i. To obtain the 
value of the /th element, we use the dereferencing operator, *.  Thus, "^{ptr + /) indicates 
that we want the contents of the ptr 4- i position rather than the address.

void printl(int 
{ 
/■^

*ptr, int rows)

print out a one-dimensional array using a pointer 
int i;
printf("Address Contents\n");
for (i = 0; i < rows;

printf(
printf("\n") ;

*/

II Q.
i

%8u%5d\n'',
i + +) 
ptr + i, (ptr + i));*

}

Program 2.2: One-dimensional array accessed by address

Figure 2.1 shows the results we obtained when we ran print 1. Notice that the
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Address
1228
1230
1232
1234

Contents 
0
1 
2
3 
4

Figure 2.1: One-dimensional array addressing

addresses increase by two. This is what we would expect on an Intel 386 machine. □

2.2 STRUCTURES AND UNIONS

2.2.1 Structures

Arrays are collections of data of the same type. In C there is an alternate way of group
ing data that permits the data to vary in type. This mechanism is called the struct, short 
for structure. A structure (called a record in many other programming languages) is a 
collection of data items, where each item is identified as to its type and name. For exam
ple,

struct {
char name[10];
int age;
float salary;
} person;

creates a variable whose name is person and that has three fields:

a name that is a character array
an integer value representing the age of the person
a float value representing the salary of the individual

We may assign values to these fields as below. Notice the use of the . as the structure 
member operator. We use this operator to select a particular member of the structure.
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10;
strcpy(person.name,"james") ;
person.age
person.salary = 35000;

We can create our own structure data types by using the typedef statement as 
below:

typedef struct human—being { 
char name[10 3;
int age; 
float salary; 
};

or typedef struct {
char name[10];
int age;
float salary;
} human-being;

This says that human-being is the name of the type defined by the structure definition, 
and we may follow this definition with declarations of variables such as:

human—being personl, person2;

We might have a program segment that says:

if (strcmp(personl.name, person2.name))
printf{"The two people do not have the same nameXn"); 

else
printf("The two people have the same name\n");

It would be nice if we could write if (personl == person2 ) and have the entire 
structure checked for equality, or if we could write personl = person2 and have 
that mean that the value of every field of the structure of person! is assigned as the 
value of the corresponding field of person 1. ANSI C permits structure assignment, but 
most earlier versions of C do not. For older versions of C, we are forced to write the 
more detailed form:

strcpy(personl.name, person2.name);
personl.age = person2.age;
personl.salary = person2.salary;

While structures cannot be directly checked for equality or inequality, we can 
write a function (Program 2.3) to do this. We assume that TRUE and FALSE are defined 
as:

ttdefine FALSE 0 
ttdefine TRUE 1

A typical function call might be:
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int humans—equal(human—being personl,
human—being person2)

{ 
/*  
being otherwise return FALSE

if (strcmp(personl.name, person2.name)) 
return FALSE;

if (personl.age != person2.age) 
return FALSE;

if (personl.salary 1= person2.salary) 
return FALSE;

return TRUE;

return TRUE if personl and person2 are the same human
*/

}

Program 2.3: Function to check equality of structures

if (humans—equal(personl,person2))
printf("The two human beings are the same\n"); 

else
printf{"The two human beings are not the same\n");

We can also embed a structure within a structure. For example, associated with 
our human-being structure we may wish to include the date of his or her birth. We can 
do this by writing:

typedef struct { 
int month; 
int day; 
int year; 
} date;

typedef struct human—being { 
char name[10];
int age;
float salary; 
date dob;
};

A person born on February 11, 1944, would have the values for the date struct set as: 
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personl.dob.month = 2;
personl.dob.day = 11; 
personl.dob.year = 1944;

2.2.2 Unions

Continuing with our human-being example, it would be nice if we could distinguish 
between males and females. In the case of males we might ask whether they have a 
beard or not. In the case of females we might wish to know the number of children they 
have borne. This gives rise to another feature of C called a union. A union declaration 
is similar to a structure, but the fields of a union must share their memory space. This 
means that only one field of the union is "active" at any given time. For example, to add 
different fields for males and females we would change our definition of human-being 
to:

typedef struct sex—type {
enum tag—field {female, male} sex; 
union {

int children;
int beard ;
} u;

};
typedef struct human—being { 

char name[10];
int age;
float salary;
date dob;
sex—type sex—info;
};

human—being personl, person2;

We could assign values to person! and person2 as:

personl.sex—info.sex = male;
personl.sex—info.u.beard = FALSE;

and
person2.sex—info.sex = female;
person2.sex—info.u.children - 4;

Notice that we first place a value in the tag field. This allows us to determine which field 
in the union is active. We then place a value in the appropriate field of the union. For 
example, if the value of sex-info.sex was male, we would enter a TRUE or a FALSE in 
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the sex-info.u.beard field. Similarly, if the person was a female, we would enter an 
integer value in the sex-info.u.children field. C does not check to make sure that we use 
the appropriate field. For instance, we could place a value of female in the sex-info.sex 
field, and then proceed to place a value of TRUE in the sex-info.u.beard field. Although 
we know that this is not appropriate, C does not check to make sure that we have used 
the correct fields of a union.

2.2.3 Internal Implementation of Structures

In most cases you need not be concerned with exactly how the C compiler will store the 
fields of a structure in memory. Generally, if you have a structure definition such as:

struct {int i,j; float a, b;};
or

struct {int i; int j; float a; float b; };

these values will be stored in the same way using increasing address locations in the 
order specified in the structure definition. However, it is important to realize that holes 
or padding may actually occur within a structure to permit two consecutive components 
to be properly aligned within memory.

The size of an object of a struct or union type is the amount of storage necessary 
to represent the largest component, including any padding that may be required. Struc
tures must begin and end on the same type of memory boundary, for example, an even 
byte boundary or an address that is a multiple of 4, 8, or 16.

2.2.4 Self-Referential Structures

A self-referential structure is one in which one or more of its components is a pointer to 
itself. Self-referential structures usually require dynamic storage management routines 
(malloc and free) to explicitly obtain and release memory. Consider as an example:

★ link ;

typedef struct list { 
char data; 
list 
} ;

Each instance of the structure list will have two components, data and link, data is a sin
gle character, while link is a pointer to a list structure. The value of link is either the 
address in memory of an instance of list or the null pointer. Consider these statements, 
which create three structures and assign values to their respective fields:
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list iteml/ 
iteml.data 
item2.data 
item3.data 
iteml.link

item2,
'Si' ;

'c' ;
item2.link

item3;

item3.link NULL ;

Structures item 1, item 2, and z7em3 each contain the data item a, b, and c, respectively, 
and the null pointer. We can attach these structures together by replacing the null link 
field in item 2 with one that points to item 3 and by replacing the null link field in item 1 
with one that points to item 2.

&i tem2;iteml.link 
iteml.link = &:item3;

We will see more of this linking in Chapter 4.

EXERCISES

1.

2.

3.

Develop a structure to represent the planets in the solar system. Each planet has 
fields for the planet’s name, its distance from the sun (in miles), and the number of 
moons it has. Place items in each the fields for the planets: Earth and Venus.
Modify the human-being structure so that we can include different information 
based on marital status. Marital status should be an enumerated type with fields: 
single, married, widowed, divorced. Use a union to include different information 
based on marital status as follows:
• Single. No information needed.
• Married. Include a marriage date field.
• Widowed. Include marriage date and death of spouse date fields.
• Divorced. Include divorce date and number of divorces fields.

Assign values to the fields for some person of type human-being.
Develop a structure to represent each of the following geometric objects:
• rectangle
• triangle
• circle.
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2.3 THE POLYNOMIAL ABSTRACT DATA TYPE

Arrays are not only data structures in their own right, we can also use them to implement 
other abstract data types. For instance, let us consider one of the simplest and most com
monly found data structures: the ordered, or linear, list. We can find many examples of 
this data structure, including:

• Days of the week: (Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, 
Saturday)

♦ Values in a deck of cards: (Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King)
• Floors of a building: (basement, lobby, mezzanine, first, second)
• Years the United States fought in World War II: (1941, 1942, 1943, 1944, 1945)
• Years Switzerland fought in World War II: ()

Notice that the years Switzerland fought in World War II is different because it 
contains no items. It is an example of an empty list, which we denote as ( ). The other 
lists all contain items that are written in the form (itemQ, item j, • • • , itemn-i).

We can perform many operations on lists, including:
♦ Finding the length, n, of a list.
♦ Reading the items in a list from left to right (or right to left).
• Retrieving the /th item from a list, 0 < i < n.
• Replacing the item in the /th position of a list, 0 < /
• Inserting a new item in the /th position of a list, 0 < i < n. The items previously num

bered /, i 4-1, • • • , n-1 become items numbered / 4-1, / 4-2, • • • , n.
• Deleting an item from the /th position of a list, 0 < / < n. The items numbered / 4-1,

• • • , «-l become items numbered /, /4-1, • • • , n~2.

n.

Rather than state the formal specification of the ADT list, we want to explore 
briefly its implementation. Perhaps, the most common implementation is to represent an 
ordered list as an array where we associate the list element, itemj, with the array index i. 
We call this a sequential mapping because, assuming the standard implementation of an 
array, we are storing itenti, itemj + \ into consecutive slots i and i + 1 of the array. Sequen
tial mapping works well for most of the operations listed above. Thus, we can retrieve 
an item, replace an item, or find the length of a list, in constant time. We also can read 
the items in the list, from either direction, by simply changing subscripts in a controlled 
way. Only insertion and deletion pose problems since the sequential allocation forces us 
to move items so that the sequential mapping is preserved. It is precisely this overhead 
that leads us to consider nonsequential mappings of ordered lists in Chapter 4.
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Let us jump right into a problem requiring ordered lists, which we will solve by 
using one-dimensional arrays. This problem has become the classical example for 
motivating the use of list processing techniques, which we will see in later chapters. 
Therefore, it makes sense to look at the problem and see why arrays offer only a partially 
adequate solution. The problem calls for building a set of functions that allow for the 
manipulation of symbolic polynomials. Viewed from a mathematical perspective, a poly
nomial is a sum of terms, where each term has a form ax^, where x is the variable, a is 
the coefficient, and e is the exponent. Two example polynomials are:

A (x) = + + 4 and B (x) = + lOx^ + 3x^ + 1

The largest (or leading) exponent of a polynomial is called its degree. Coefficients that 
are zero are not displayed. The term with exponent equal to zero does not show the vari
able since x raised to a power of zero is 1. There are standard mathematical definitions 
for the sum and product of polynomials. Assume that we have two polynomials, A (x) = 

and B(x) = J^h/x' then:

A (x) + B (x) = '^(ai + bi)x'

A (x) • B(x') =

Similarly, we can define subtraction and division on polynomials, as well as many other 
operations.

We begin with an ADT definition of a polynomial. The particular operations in 
part are a reflection of what will be needed in our subsequent programs to manipulate 
polynomials. The definition is contained in Structure 2.2.

We are now ready to make some representation decisions. A very reasonable first 
decision requires unique exponents arranged in decreasing order. This requirement con
siderably simplifies many of the operations. Using our specification and this stipulation, 
we can write a version of Add that is closer to a C function (Program 2.4), but is still 
representation-independent.

This algorithm works by comparing terms from the two polynomials until one or 
both of the polynomials becomes empty. The switch statement performs the comparis
ons and adds the proper term to the new polynomial, d. If one of the polynomials 
becomes empty, we copy the remaining terms from the nonempty polynomial into d. 
With these insights, suppose we now consider the representation question more care
fully.

One way to represent polynomials in C is to use typedef to create the type poly no 
mial as below:

#define 
typedef

MAX—DEGREE 101 /*Max  degree of polynomial + 1*/  
struct { 
int degree;
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fl + - - ' + a„x en
structure Polynomial is

objects: /?(x) = a^x^' + • • • + a„x^''; a set of ordered pairs of <ej, ai> where fly in
Coefficients and c, in Exponents, e^ are integers >= 0
functions:

for all poly,poly\, poly2 e Polynomial, coefe Coefficients, expon e Exponents 

Polynomial Zero()

Coefficient Coef{poly,expon)

Exponent Lead-Exp(po/y)

Polynomial Attach(pe>/y, coef, expon)

Polynomial Remove(p<?Zy, expon)

Polynomial SingleMult(p<9/y, coef, expon)

Polynomial Add(p<?Zyl, poly2)

Polynomial Mult(poZyl» poly2)

return the polynomial,
p(%) = 0
if (poly) return FALSE
else return TRUE
if {expon e poly) return its 
coefficient else return zero 
return the largest exponent in 
po/y
if {expon e poly) return error 
else return the polynomial poly 
with the term <coef, expon> 
inserted
if {expon e poly)
return the polynomial poly with 
the term whose exponent is 
expon deleted
else return error
return the polynomial
poly -coef-x^^P^^
return the polynomial
polyi + poly2
return the polynomial
poly\ • poly2

Boolean }.s7.QXQ{poly}

end Polynomial

Structure 2.2: Abstract data type Polynomial

float coef[MAX-DEGREE]; 
} polynomial;

n
Now if fl is of type polynomial and n < MAX-DEGREE, the polynomial A (x) = ^aix'

i=0

would be represented as:

a.degree = n
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d
Zero()

a + b, where a, b, and d are polynomials *//*  
d 
while (! IsZero(a) && ! IsZero(b)) do {

switch COMPARE(Lead—Exp(a), Lead—Exp(b)) { 
case -1: d -

Attach(d,Coef(b,Lead—Exp(b) ) ,Lead—Exp(b)) ; 
b = Remove(b,Lead—Exp(b));
break;

0 : Coef ( Lead—Exp(a))case 0: sum 
Lead—Exp(b)); 

if (sum) {
Attach(d,sum,Lead—Exp(a));
a = Remove(a,Lead—Exp(a));
b = Remove(b,Lead—Exp(b)); 
}

break;
case 1: d =

Attach(d,Coef(a,Lead—Exp(a)), Lead—Exp(a)); 
a - Remove(a,Lead—Exp(a));

a, Coef(b.+

}
}
insert any remaining terms of a or b into d

Program 2.4: Initial version of padd function

a . coef[1] 0 < z <n=

In this representation, we store the coefficients in order of decreasing exponents, 
provided a term with exponent n-i exists;n—isuch that a . coef [z ] is the coefficient of x

otherwise, a . coef [z ] = 0. Although this representation leads to very simple algorithms 
for most of the operations, it wastes a lot of space. For instance, if a. degree « 
MAX-DEGREE, (the double "less than" should be read as "is much less than"), then we 
will not need most of the positions in a. coef [MAX-DEGREE]. The same argument 
applies if the polynomial is sparse, that is, the number of terms with nonzero coefficient 
is small relative to the degree of the polynomial. To preserve space we devise an alter
nate representation that uses only one global array, terms, to store all our polynomials. 
The C declarations needed are:

MAX—TERMS 100 /*size  of terms array*/  
typedef struct { 

float coef; 
int expon;
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} polynomial;
polynomial terms[MAX—TERMS]; 
int avail 0;

Consider the two polynomials A (x) = 2x'^^
Figure 2.2 shows how these polynomials are stored in the array terms. The index of the 
first term of A and B is given by starta and startb, respectively, while finisha and finishb 
give the index of the last term of A and B. The index of the next free location in the 
array is given by avail. For our example, starta = 0, finisha = 1, startb = 2, finishb = 5, 
and avail = 6.

+ 1 and B(x) = + 10%^ + 3x^ + 1.

starta

4.
finisha

4
startb finishb

4
avail

4
1 1 1 10 13

exp 1000 40 3 2 0

0 1 1 3 4 5 6

Figure 2.2: Array representation of two polynomials

This representation does not impose any limit on the number of polynomials that 
we can place in terms. The only stipulation is that the total number of nonzero terms 
must be no more than MAX-TERMS. It is worth pointing out the difference between our 
specification and our representation. Our specification used poly to refer to a polyno
mial, and our representation translated poly into a <start, finish > pair. Therefore, to use 
A (x) we must pass in starta and finisha. Any polynomial A that has n nonzero terms has 
starta and finisha such that finisha = starta + n - 1.

Before proceeding, we should evaluate our current representation. Is it any better 
than the representation that uses an array of coefficients for each polynomial? It cer
tainly solves the problem of many zero terms since A (x) = 2x 
of storage: one for starta, one for finisha, two for the coefficients, and two for the 
exponents. However, when all the terms are nonzero, the current representation requires 
about twice as much space as the first one. Unless we know before hand that each of our 
polynomials has few zero terms, our current representation is probably better.

We would now like to write a C function that adds two polynomials, A and B, 
represented as above to obtain D = A 4- B. To produce D(x), padd (Program 2.5) adds 
A (x) and B(x) term by term. Starting at position avail, attach (Program 2.6) places the 
term.s of D into the array, terms. If there is not enough space in terms to accommodate 
D, an error message is printed to the standard error device and we exit the program with

4- 1 uses only six units



64 Arrays And Structures

an error condition.

int finishb,
*finishd)*int

void padd(int starta,int finisha,int startb, 
startd,int

{
/* */add A(x) and B(x) to obtain D(x) 

float coefficient;
*startd = avail;
while (starta <= finisha && startb <= finishb) 

switch(COMPARE(terms[starta].expon, 
terms[startb].expon)) { 
a expon

case 0: /*

-1: /*  a expon < b expon
attach(terms[startb].coef,terms[startb].expon); 
startb++;
break;

equal exponents
coefficient

★

terms[starta].coef + 
terms[startb].coef;

if (coefficient)
attach(coefficient,terms[starta].expon);

starta++; 
startb++; 
break;

case 1: /*  a expon > b expon
attach(terms[starta].coef,terms[starta].expon); 
starta++;

a expon

}
1^ add in remaining terms of A(x) 
for(; starta <= finisha; starta++)

attach(terms[starta].coef,terms[starta].expon);
add in remaining terms of B{x)

for( ; startb <= finishb; startb++) 
attach(terms[startb].coef, terms[startb].expon); 

finishd = avail-1;

/* ■^ /

*

}

Program 2.5: Function to add two polynomials

Analysis of padd-. Since the number of nonzero terms in A and in B are the most impor
tant factors in the time complexity, we will carry out the analysis using them. Therefore, 
let tn and n be the number of nonzero terms in A and B, respectively. If tn > 0 and n > 0, 
the while loop is entered. Each iteration of the loop requires 0(1) time. At each
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void attach(float coefficient, int exponent) 
{ 
/* add a new term to the polynomial 

if (avail
fprintf(stderr,"Too many terms in the polynomial\n"); 
exit(1};

= MAX-TERMS) {
*/

}
terms[avail1.coef = coefficient;
terms[avail++].expon = exponent;

}

Program 2.6: Function to add a new term 

iteration, we increment the value of starta or startb or both. Since the iteration ter
minates when either starta or startb exceeds finisha or finishb, respectively, the number 
of iterations is bounded by m + n - 1. This worst case occurs when:

n

A(x) = 2 X 
z=o

2i
n

and S(x) = x 

i=Q

2Z + 1

The time for the remaining two loops is bounded by O(n + m) because we cannot 
iterate the first loop more than m times and the second more than n times. So, the asymp
totic computing time of this algorithm is O(a2 +m). □

Before proceeding let us briefly consider a few of the problems with the current 
representation. We have seen that, as we create polynomials, we increment avail until it 
equals MAX-TERMS. When this occurs, must we quit? Given the current representa
tion, we must unless there are some polynomials that we no longer need. We could write 
a compaction function that would remove the unnecessary polynomials and create a 
large, continuous available space at one end of the array. However, this requires data 
movement which takes time. In addition, we also must change the start and end indices 
for each polynomial moved, that is, we change the values of starti and finishi for all 
polynomials moved. In Chapter 3, we let you experiment with some "simple" compact
ing routines.

EXERCISES

1. Write functions readpoly and printpoly that allow the user to create and print poly
nomials.
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2«-2 + X + ■ * ' + X+ X

2. Write a function, pmult, that multiplies two polynomials. Figure out the comput
ing time of your function.

3. Write a function, peval, that evaluates a polynomial at some value, xq. Try to 
minimize the number of operations.

4. Let A(x) = -I- x^"”^ -i- • • • + x^ -i- x® and B(x) = x^"^  -i- x^" -h • • • -i- x^ -t- x.*
For these polynomials, determine the exact number of times each statement of 
padd is executed.

5. The declarations that follow give us a third representation of the polynomial ADT. 
terms [/ ][0].expon gives the number of nonzero terms in the /th polynomial. These 
terms are stored, in descending order of exponents, in positions /emw[Z][l], 
terms . Create the functions readpoly. printpoly, padd, and pmult for
this representation. Is this representation better or worse than the representation 
used in the text? (You may add declarations as necessary.)

ttdefine MAX-TERMS 101 / 
ttdefine MAX-POLYS 15 /

*
*

■ maximum number of terms + 1*/  
maximum number of 
polynomials*/

typedef struct { 
float coef; 
int expon; 
} polynomial;

polynomial terms[MAX—POLYS] [MAX—TERMS];

2.4 THE SPARSE MATRIX ABSTRACT DATA TYPE

2.4.1 Introduction

We now turn our attention to a mathematical object that is used to solve many problems 
in the natural sciences, the matrix. As computer scientists, our interest centers not only 
on the specification of an appropriate ADT, but also on finding representations that let us 
efficiently perform the operations described in the specification.

In mathematics, a matrix contains m rows and n columns of elements as illustrated 
in Figure 2.3. In this figure, the elements are numbers. The first matrix has five rows and 
three columns; the second has six rows and six columns. In general, we write m x n 
(read "m by n") to designate a matrix with m rows and n columns. The total number of 
elements in such a matrix is mn. If m equals n, the matrix is square.

The standard representation of a matrix in computer science is a two-dimensional 
array defined as a[MAX~ROWS][MAX-COLS]. With this representation, we can locate 
quickly any element by writing a[Z][y], where i is the row index and j is the column 
index. However, there are some problems with the standard representation. For
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row 0

row 1

row 2

row 3

row 4

col 0 col 1 col 2

-27

109

12

48

82 -2
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47

(a)

row 0

row 1

row 2

row 3

row 4

row 5

col 0 col 1

15
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91

col 2 col 3 col 4 col 5

22

-6

28

(b)

-15

6

3

8

4

9

0 0 0

0

0 0

3

0

0 0

0

0 0

0 0 0

0 0

0

0

0 0 0

0 0 0

0 0 0

Figure 2.3; Two matrices 

instance, if you look at Figure 2.3(b), you notice that it contains many zero entries. We 
call this a sparse matrix. Although it is difficult to determine exactly whether a matrix is 
sparse or not, intuitively we can recognize a sparse matrix when we see one. In Figure 
2.3(b), only 8 of 36 elements are nonzero and that certainly is sparse.

Since a sparse matrix wastes space, we must consider alternate forms of represen
tation. The standard two-dimensional array implementation simply does not work when 
the matrices are large since most compilers impose limits on array sizes. For example, 
consider the space requirements necessary to store a 1000 x 1000 matrix. If this matrix 
contains mostly zero entries we have wasted a tremendous amount of space. Therefore, 
our representation of sparse matrices should store only nonzero elements.

Before developing a particular representation, we first must consider the opera
tions that we want to perform on these matrices. A minimal set of operations includes 
matrix creation, addition, multiplication, and transpose. Structure 2.3 contains our 
specification of the matrix ADT.

Before implementing any of these operations, we must establish the representation 
of the sparse matrix. By examining Figure 2.3, we know that we can characterize 
uniquely any element within a matrix by using the triple <row, col, value >. This means 
that we can use an array of triples to represent a sparse matrix. Since we want our tran
spose operation to work efficiently, we should organize the triples so that the row indices 
are in ascending order. We can go one step further by also requiring that all the triples 
for any row be stored so that the column indices are in ascending order. In addition, to 
ensure that the operations terminate, we must know the number of rows and columns, 
and the number of nonzero elements in the matrix. Putting all this information together 
suggests that we implement the Create operation as below:
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structure Sparse-Matrix is
objects: a set of triples, <row, column, value>, where row and column are integers and 
form a unique combination, and value comes from the set item.
functions:

for all a,be Sparse-Matrix, x e item, i, j, max-col, max-row g index

Sparse-Matrix Crcate(max-row, max-col) ::=
return a Sparse-Matrix that can hold up to 
max—items = max—row x max-col and whose 
maximum row size is max-row and whose 
maximum column size is max-col.

Sparse-Matrix Transpose(a) ::=
return the matrix produced by interchanging 
the row and column value of every triple.

Sparse-Matrix Add(fl, b} ::=
if the dimensions of a and b are the same
return the matrix produced by adding 
corresponding items, namely those with 
identical row and column values.
else return error

Sparse-Matrix Multiply(a, b)
if number of columns in a equals number of 
rows in b
return the matrix d produced by multiplying o 
by b according to the formula: t/[/][7] = 
5^(13 [/][/:]• ^ ]) where d{i, j) is the (/, 7)th
element
else return error.

Structure 2.3: Abstract data type Sparse-Matrix

Sparse-Matrix CreatQ^max-row, max-cot)

^define MAX-TERMS 101 /*  
typedef struct { 

int col; 
int row; 
int value; 
} term;

term a[MAX-TERMS];

maximum number of terms +1*/
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Since MAX-TERMS is greater than eight, these statements can be used to 
represent the second sparse matrix from Figure 2.3. Figure 2.4(a) shows how this matrix 
is represented in the array a. Thus, a [0].row contains the number of rows; a [Oj.coZ con
tains the number of columns; and a [0].vaZwe contains the total number of nonzero 
entries. Positions 1 through 8 store the triples representing the nonzero entries. The row 
index is in the field row\ the column index is in the field col\ and the value is in the field 
value. The triples are ordered by row and within rows by columns.

row col value row col value

fl[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

6
0
0
0
1
1
2
4
5
(a)

6 
0
3
5
1
2
3 
0
2

8
15
22

-15
11

3
-6
91
28

h[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]

6
0
0
1
2
2
3
3
5
(b)

6 
0
4
1
1
5 
0
2 
0

8
15
91
11

3 
28 
22 
-6

-15

Figure 2.4: Sparse matrix and its transpose stored as triples

2.4.2 Transposing a Matrix

Figure 2.4(b) shows the transpose of the sample matrix. To transpose a matrix we must 
interchange the rows and columns. This means that each element <2[Z][y] in the original 
matrix becomes element A>L/][/] in the transpose matrix. Since we have organized the 
original matrix by rows, we might think that the following is a good algorithm for tran
sposing a matrix:

for each row i 
take element <1, j, value> and store it 
as element <j, i, value> of the transpose;j / i, value

Unfortunately, if we process the original matrix by the row indices we will not 
know exactly where to place element <7, /, value> in the transpose matrix until we have 
processed all the elements that precede it. For instance, in Figure 2.4, we have:
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(0,0, 15), 
(0, 3, 22), 
(0,5,-15),

which becomes 
which becomes 
which becomes

(0,0, 15) 
(3, 0, 22) 
(5, 0,-15)

If we place these triples consecutively in the transpose matrix, then, as we insert 
new triples, we must move elements to maintain the correct order. We can avoid this data 
movement by using the column indices to determine the placement of elements in the 
transpose matrix. This suggests the following algorithm:

1,

for all elements in column j 
place element <i, j, value 
element <j, i, value>

in

The algorithm indicates that we should "find all the elements in column 0 and store 
them in row 0 of the transpose matrix, find all the elements in column 1 and store them in 
row 1, etc." Since the original matrix ordered the rows, the columns within each row of 
the transpose matrix will be arranged in ascending order as well. This algorithm is 
incorporated in transpose (Program 2.7). The first array, a, is the original array, while 
the second array, b, holds the transpose.

It is not too difficult to see that the function works correctly. The variable, 
currentb, holds the position in b that will contain the next transposed term. We generate 
the terms in b by rows, but since the rows in b correspond to the columns in a, we collect 
the nonzero terms for row i of b by collecting the nonzero terms from column i of a.

Analysis of transpose: Determining the computing time of this algorithm is easy since 
the nested for loops are the decisive factor. The remaining statements (two if statements 
and several assignment statements) require only constant time. We can see that the outer 
for loop is iterated a [0].cc»/ times, where a [0].co/ holds the number of columns in the 
original matrix. In addition, one iteration of the inner for loop requires a [Oj.vaZwe time, 
where a [Q].value holds the number of elements in the original matrix. Therefore, the 
total bme for the nested for loops is columns • elements. Hence, the asymptotic time 
complexity is Q(columns • elements). □

We now have a matrix transpose algorithm with a computing time of 
O(columns • elements). This time is a little disturbing since we know that if we 
represented our matrices as two-dimensional arrays of size rows x columns, we could 
obtain the transpose in O(rows • columns) time. The algorithm to accomplish this has the 
simple form:
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b is set to the transpose of a
void transpose(term a[], term b[]) 

{
*/

/*
★

a[0].row; / 
= n;

{ /
= 1;
0; i

total number of elements 
rows in b = 
columns in b

columns in a 
= rows in a

*/
/

*/

non zero matrix */

int n,i,j, currentb;
n = a[0].value;
b[0].row - a[0].col; / 
b[0] .col = 
b[0].value 
if (n

currentb
for (i = 0; i < a[01.col; i++) 

transpose by the columns in a 
for (j = 1; j <= n;
/*

/* */
1; j

find elements from the current column 
if (a.[ j ] .col == i) { 
/*

n;
*/

element is in current column, add it to b 
b[currentb].row = a[j].col;
b[currentb].col = a[j].row;
b[currentb].value = a[j].value;
currentb++;

*/

0 ) ★

*

*

}
}

}

Program 2.7: Transpose of a sparse matrix

0; j 
= 0; i i++)

for (j =0; j < columns; j++) 
for (i = 0; i < rows;

b [ j ] [ i ] - a [ i ] [ j ] ;

becomes
rows) when the number of elements is of the order columns ■ rows.

The O{columns • elements) time for our transpose function 
O(columns^ •
Perhaps, to conserve space, we have traded away too much time. Actually, we can 
create a much better algorithm by using a little more storage. In fact, we can transpose a 
matrix represented a.s a sequence of triples in O{columns + elements) time. This algo
rithm, fast-transpose (Program 2.8), proceeds by first determining the number of ele
ments in each column of the original matrix. This gives us the number of elements in 
each row of the transpose matrix. From this information, we can determine the starting 
position of each row in the transpose matrix. We now can move the elements in the origi
nal matrix one by one into their correct position in the transpose matrix. We assume that 
MAX-COL is defined as follows, and that the number of columns in the original matrix 
never exceeds it.
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ttdefine MAX—COL 50 /*maximum  number of columns + 1*/

void fast—transpose(term a[], term b[]) 
{

the transpose of a is placed in b
int row—terms[MAX—COL], starting—pos[MAX—COL];
int i,j, num—cols = a[0].col, num—terms = a[0].value;
b[0] .row = num—cols;
b [ 0] .value
if (num—terms >0) { / 

for {i
row—terms[i]

for (i = 1; i <= num—terms;
row—terms [a [i] .col] 4-+;

starting—pos[Q]
for {i

starting—pos[i] =
starting—pos[i-1] + row—terms[i-1];

num—terms;

num—cols = a[0].col, num—terms = 
a[0].row;b [ 0] .col 

num—terms;
nonzero matrix 

0; i < num—cols;
0;

i++)

1; i++)

*/

1; i
= 1;
num—cols ; i++)

for (i = 1; i <= num—terms; i-n-) { 
j = starting—pos [a [ i ]. col ]-n-; 
b[j].row = a[i].col; 
b[j].value = a[i].value;

b[j].col = a[i].row;

i

}

}
}

Program 2.8: Fast transpose of a sparse matrix

Analysis of fast-transpose: We can verify fast-transpose works correctly from the 
preceding discussion and the observation that the starting point of row i, i > 1 of the tran
spose matrix is row-terms[i—l] + where row-rerw5[z-l] is the
number of elements in row z-1 and starting-pos[i-l] is the starting point of row z-1. 
The first two for loops compute the values for row-terms, the third for loop carries out 
the computation of starting-pos, and the last for loop places the triples into the tran
spose matrix. These four loops determine the computing time of fast-transpose. The 
bodies of the loops are executed num-cols, num-terms, num-cols - 1, and num-terms 
times, respectively. Since the statements within the loops require only constant time, the 
computing time for the algorithm is O(columns + elements). The time becomes 
O(columns • rows) when the number of elements is of the order columns • rows. This 
time equals that of the two-dimensional array representation, although fast-transpose 
has a larger constant factor. However, when the number of elements is sufficiently small 
compared to the maximum of columns • rows, fast-transpose is much faster. Thus, in 
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this representation we save both time and space. This was not true of transpose since the 
number of elements is usually greater than m£Lx[columns, rows} and columns • elements 
is always at least columns ■ rows. In addition, the constant factor for transpose is bigger 
than that found in the two-dimensional array representation. However, transpose 
requires less space than fast-transpose since the latter function must allocate space for 
the row-terms and starting-pos arrays. We can reduce this space to one array if we put 
the starting positions into the space used by the row terms as we calculate each starting 
position. □

If we try the algorithm on the sparse matrix of Figure 2.4(a), then after the execu
tion of the third for loop, the values of row-terms and starting-pos are:

row-terms =
starting-pos =

[0]
1
1

[11
2
2

[21 
2
4

[3]
2
6

[41 
0
8

[5]
1
8

The number of entries in row i of the transpose is contained in row-terms[i\. The start
ing position for row i of the transpose is held by starting-pos[i].

2.4.3 Matrix Multiplication

A second operation that arises frequently is matrix multiplication, which is defined 
below.

Definition: Given A and B where A is m x n and B is n x p, the product matrix D has 
dimension m xp. Its <i, j> element is :

zi-l

~ S ^ik ^kj
k=()

for 0 < i < m and 0 < j < p. □

The product of two sparse matrices may no longer be sparse, as Figure 2.5 shows.

n 0 01 fl 1 11 n 1 11
1 0 0
1 0 0

0 0 0
0 0 0

1 1 1
1 1 1

Figure 2.5: Multiplication of two sparse matrices
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We would like to multiply two sparse matrices represented as an ordered list (Fig
ure 2.4). We need to compute the elements of D by rows so that we can store them in 
their proper place without moving previously computed elements. To do this we pick a 
row of A and find all elements in column j of B for j = 0, 1, • • • , cols-b - 1. Normally, 
we would have to scan all of B to find all the elements in column j. However, we can 
avoid this by first computing the transpose of B. This puts all column elements in con
secutive order. Once we have located the elements of row i of A and column j of B we 
just do a merge operation similar to that used in the polynomial addition of Section 2.2. 
(We explore an alternate approach in the exercises at the end of this section.)

To obtain the product matrix D, mmult (Program 2.9) multiplies matrices A and B 
using the strategy outlined above. We store the matrices A, B, and D in the arrays a, b, 
and d, respectively. To place a triple in d and to reset sum to 0, mmult uses storesum 
(Program 2.10). In addition, mmult uses several local variables that we will describe 
briefly. The variable row is the row of A that we are currently multiplying with the 
columns in B. The variable row-begin is the position in a of the first element of the 
current row, and the variable column is the column of B that we are currently multiplying 
with a row in A. The variable totald is the current number of elements in the product 
matrix D. The variables i and j are used to examine successively elements from a row of 
A and a column of B. Finally, the variable new-b is the sparse matrix that is the tran
spose of b. Notice that we have introduced an additional term into both a 
(a[foZaZfl-i-l].row = rows-a;) and new-b (new-b[totalb+i].TO'w = cols-b;). These 
dummy terms serve as sentinels that enable us to obtain an elegant algorithm.

*/multiply two sparse matrices
void mmult{term a[], term b[], term d[]) 
/*  
{

int i, j, column, totalb = bLO].value, totald 
int rows 
totala - a[0].value; int 
int row-begin - 1, row = 
int new-b[MAX-TERMS][3]; 
if (cols—a != b[0].row) {

fprintf(stderr,"Incompatible matrices\n"); 
exit(1);

a[0].row, cols—a = a[0].col, 
cols—b = b[0].col, 
a[1].row, sum = 0;sum

0;

} 
fast—transpose(b,new—b);

set boundary condition 
a[totala+l].row = rows-a; 
new—b[totalb+1].row = cols—b; 
new—b [totalb+1] .col 
for (i = 1; i <= totala; ) { 

column = new—b[1].row;
for (j = 1; j <= totalb+1;) {

/* */

0;
1; i

1; j
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multiply row of a by column of b 
if (a[i].row != row) {

storesum(d,&totald,row,column,&sum);
i = row—begin;
for {; new—b[j].row == column; j++)

column = new—b[j].row;
}
else if (new—b[j].row != column) {

storesum (d, Sctotald, row, column, &sum) ;
1 = row—begin;
column = new—b[j].row;

}
else switch (COMPARE(a[i] .col, new—b[j] .col)) { 

case -1: /'^ go to next term in a */  
i + +; 

case 0: /*  
sum + = 
break; 

case 1 : /*  
D++;

go to next term in a 
break;
add terms, go to next term in a and b*/  

( a[i++].value new—b[j++].value);

advance to next term in b

} /*  end of for j
for {; a[i].row == row;

•jk totalb+1 
i + +)

*/

row—begin = i;
end of for i<=totala}

d[0].row = rows
d[0].col cols—b; d[0].value totald;

}
/

row = a [ i ] .

■k

}

Program 2.9: Sparse matrix multiplication

Analysis of mmult: We leave the correctness proof of mmult as an exercise and consider 
only its complexity. Besides the space needed for a, /?, d, and a few simple variables, we 
also need space to store the transpose matrix new-b. We also must include the addi
tional space required by fast-transpose. The exercises explore a strategy for mmult that 
does not explicitly compute new-h.

We can see that the lines before the first for loop require only O{cols-b + totalb) 
time, which is the time needed to transpose b. The outer for loop is executed totala 
times. At each iteration either i or j or both increase by 1, or i and column are reset. The 
maximum total increment in j over the entire loop is totalb + 1. If termsrow is the total 
number of terms in the current row of A, then i can increase at most termsrow times 
before i moves to the next row of A. When this happens, we reset / to row-begin, and. at
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void storesum(term d[], int *totald, int row, int column, 
int *sum)★

{
/*  if *sum  != 0, then it along with its row and column 
position is stored as the 

if (*sum)
if (*totald  

d[++*totald] .row = row; 
d[*totaldl.col  - 
d[*totald].value  
*sum

if

0;

*totald+l entry in d

MAX-TERMS) {

column; 
= *sum;

*/
I -

}
else {

fprintf(stderr,"Numbers of terms in product 
exceeds %d\n",MAX-TERMS) ;

exit(1);
}

}

Program 2.10: storesum function 

+

the same time, advance column to the next column. Thus, this resetting takes place at 
most cols-b time, and the total maximum increment in i is cols-b^termsrow. There
fore, the maximum number of iterations of the outer for loop is cols-b 
cols -b^termsrow + totalb. The time for the inner loop during the multiplication of the 
current row is O{cols-b^termsrow -I- totalb}, and the time to advance to the next row is 
Q){termsrow}. Thus, the time for one iteration of the outer for loop is 
Q{cols-b'^termsrow -I- totalb}. The overall time for this loop is:

O('^(cols-b ■ terms row + totalb}} = O{cols^b • total-a + rows-a • totalb) □ 
row

Once again we can compare this time with the computing time required to multi 
ply matrices using the standard array representation. The classic multiplication algo 
rithm is:
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0; i < 
- 0; j
= 0;

for (i = 
for (j 

sum 
for {k 0; k

sum += (a[i][k] 
a[i] [j]

i++)rows—a;
< cols—b; j++} {

cols—a; k++) 
b[k] [3 ] ) ;

sum;
★

}

This algorithm takes O(r67W5-<3 • cols-a - cols~b) time. Since totala < cols~a ■ rows-a 
and totalb < cols~a ■ cols-b, the time for mmult is at most:

Q{rows-a ■ cols-a • cols-b)

However, its constant factor is greater than that of the classic algorithm. In the worst 
case, when totala = cols-a ■ rows-a or totalb = cols-a • cols-b, mmult is slower by a 
constant factor. However, when totala and totalb are sufficiently smaller than their max
imum value, that is, A and 3 are sparse, mmult outperforms the classic algorithm. The 
analysis of mmult is not trivial. It introduces some new concepts in algorithm analysis 
and you should make sure that you understand the analysis.

This representation of sparse matrices permits us to perform operations such as 
addition, transpose, and multiplication efficiently. However, there are other considera
tions that make this representation undesirable in certain applications. Since the number 
of terms in a sparse matrix is variable, we would like to represent all our sparse matrices 
in one array as we did for polynomials in Section 2.2. This would enable us to make 
efficient utilization of space. However, when this is done we run into difficulties in allo
cating space from the array to any individual matrix. These difficulties also occur with 
the polynomial representation and will become even more obvious when we study a 
similar representation for multiple stacks and queues in Section 3.4.

EXERCISES

Write C functions read-matrix, print-matrix, and search that read triples into a 
new sparse matrix, print out the terms in a sparse matrix, and search for a value in 
a sparse matrix. Analyze the computing time of each of these functions.
Rewrite fast-transpose so that it uses only one array rather than the two arrays 
required to hold row-terms and starting-pos.

3. Develop a correctness proof for the mmult function.
Analyze the time and space requirements of fast-transpose. What can you say 
about the existence of a faster algorithm?

1.

2.

4.
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5. Use the concept of an array of starting positions found va fast-transpose to rewrite 
mmult so that it multiplies sparse matrices A and B without transposing B. What is 
the computing time of your function?

6. As an alternate sparse matrix representation we keep only the nonzero terms in a 
one-dimensional array, value, in the order described in the text. In addition, we 
also maintain a two-dimensional array, bits [raw }[columns ], such that bits[i][j] 
= 0 if «[/][/■] - 0 and ^zV^Cz'lL/] = 1 if «[/][/] 0. Figure 2.6 illustrates the
representation for the sparse matrix of Figure 2.4(b).

151
r 1 0 0 1 0 11

0 110 0 0
0 0 0 10 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0

22 
-15

11
3 

-6 
91 
28

Figure 2.6: Alternate representation of a sparse matrix

(a)

(b)

(c)

On a computer with w bits per word, how much storage is needed to 
represent a sparse matrix. A, with t nonzero terms?
Write a C function to add two sparse matrices A and B represented as in Fig
ure 2.6 to obtain D - A + B. How much time does your algorithm take?
Discuss the merits of this representation versus the one used in the text. 
Consider the space and time requirements for such operations as random 
access, add, multiply, and transpose. Note that we can improve the random 
access time by keeping another array, ra, such that ra [/ ] = number of 
nonzero terms in rows 0 through z - 1.

2.5 REPRESENTATION OF MULTIDIMENSIONAL ARRAYS

The internal representation of multidimensional arrays requires more complex address
ing formulas. If an array is declared a [upper<^}[upperJ • • • [uppern^^}, then it is easy 
to see that the number of elements in the array is:

rt-i

/=0

where H is the product of the upperi's. For instance, if we declare a as a [10][ 10][ 10], 
then we require 10 • 10 ■ 10 = 1000 units of storage to hold the array. There are two 



Representation Of Multidimensional Arrays 79

common ways to represent multidimensional arrays: row major order and column major 
order. We consider only row major order here, leaving column major order for the exer
cises.

As its name implies, row major order stores multidimensional arrays by rows. For 
instance, we interpret the two-dimensional array A [upperQ][upperi ] as upper^ rows, 
row-’o, raw J, • • • , raWypp^^Q_i, each row containing upper y elements.

If we assume that a is the address of A [0][0], then the address of A [Z ][0] is oc + 
i • upper X because there are Z rows, each of size upper j, preceding the first element in 
the Zth row. Notice that we haven’t multiplied by the element size. This follows C con
vention in which the size of the elements is automatically accounted for. The address of 
an arbitrary element, a [Zfij], is a + Z • upper j + j.

To represent a three-dimensional array, A[upperQ\[uppery}[upper2}. we interpret 
the array as upper0 two-dimensional arrays of dimension upper 1 y. upper2- To locate 
u [Z ][7 J[^ ], we first obtain a -1- i • upper 1 • upper! as the address of a [Z ][0][0] because 
there are i two-dimensional arrays of size upper 1 • upper2 preceding this element. Com
bining this formula with the formula for addressing a two-dimensional array, we obtain:

a + i • upper I • upper 2 + j ‘ upper 2 + k

as the address of a [z ] [7 ] .
Generalizing on the preceding discussion, we can obtain the addressing formula 

for any element A [ZolU i ] • • • [Z„_i ] in an n-dimensional array declared as:

A [upperQ][upperx} . . . [upper^.^]

If a is the address forX [0J[0]. . . [0] then the address of a [/o](O][O]... [0] is:

a+ z'o upperupper2 . . upper n-i

The address of a • • • [0] is:

a+z'o upper \ upper2 • . ■ upper^-] + z'l upper2 upper3 . . . upper^-}

Repeating in this way the address for A [/o][/1 ]. . . [Z„_i ] is:

a + iQupper iupper2 ■ • ■ upper^-i 
+ i\upper2upper2 . . . upper„_\ 
+ i2Upper2Upper^ . . . uppern_i

+ i„_2upper^-i
+

"y =
= a-i- ijaj where: 

j=() '

n-l
n upper,, 0<j<n-\

k = i + \
Un-\ = 1
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Notice that aj may be computed from 0 < j < «-!, using only one multiplication as

upper0 , .. . , upperfi-\ and use them to compute the constants using n-2
multiplications. The address of a [zq] ■ • ■ cnn be computed using the formula, 
requiring n-1 more multiplications and n additions and n subtractions.

■ ^7 + 1 • Thus, a compiler will initially take the declared bounds

EXERCISES

1.

2.

3.

Assume that we have a one-dimensional array, a[MAX-SlZE\. Normally, the sub
scripts for this array vary from 0 to MAX-SIZE - 1. However, by using pointer 
arithmetic we can create arrays with arbitrary bounds. Indicate how to create an 
array, and obtain subscripts for an array, that has bounds between -10 to 10. That 
is, we view the subscripts as having the values -10, -9, -8, • • • , 8, 9, 10.
Extend the results from Exercise 1 to create a two-dimensional array where row 
and column subscripts each range from -10 to 10.
Obtain an addressing formula for the element a [/’olCG] • • • in nn array 
declared as a [uppers]. .. a Assume a column major representation of
the array with one word per element and a the address of a [0] [0]... [0]. In 
column major order, the entries are stored by columns first. For example, the array 
a [3][3] would be stored as a [0][0], a [l][0], a [2][0], a [0][l], a [1][1], a [2][1], 
a[0][2], a[l][2], a [2][2].

2.6 THE STRING ABSTRACT DATA TYPE

2.6.1 Introduction

Thus far, we have considered only ADTs whose component elements were numeric. For 
example, we created a sparse matrix ADT and represented it as an array of triples 
<row, col, value >. In this section, we turn our attention to a data type, the string, whose 
component elements are characters. As an ADT, we define a string to have the form, 5 = 
5o, .. . , where Si are characters taken from the character set of the programming 
language. If n = 0, then S is an empty or null string.

There are several useful operations we could specify for strings. Some of these 
operations are similar to those required for other ADTs: creating a new empty string, 
reading a string or printing it out, appending two strings together (called concatenation), 
or copying a string. However, there are other operations that are unique to our new 
ADT, including comparing strings, inserting a substring into a string, removing a sub
string from a string, or finding a pattern in a string. We have listed the essential opera
tions in Structure 2.4, which contains our specification of the string ADT. Actually there 
are many more operations on strings, as we shall see when we look at part of C’s string 
library in Figure 2.7.
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structure String is
objects: a finite set of zero or more characters.
functions:

for all 5, t G String, i, j, m E non-negative integers

String Null(m)

Integer Compare(5, z)

Boolean IsNull(5)

Integer Length(5)

String Concat(5, t)

String Substr(s, z, 7)

return a string whose maximum length is 
m characters, but is initially set to NULL 
We write NULL as 
if 5 equals t 
return 0 
else if .y precedes t 

return -1 
else return +1

if (Compare(5, NULL)) 
return FALSE
else return TRUE
if (Compare(5, NULL))
return the number of characters in 5 
else return 0.
if (Compare(z, NULL))
return a string whose elements are those 
of 5 followed by those of t 
else return 5.
if ({7 > 0) && (z +7-I) < Length(5)) 
return the string containing the characters 
of 5 at positions z, i + 1, • • • , z +7-I.
else return NULL.

1111

Structure 2.4: Abstract data type String

In C, we represent strings as character arrays terminated with the null character \0. 
For instance, suppose we had the strings:

{"dog"};
{"house"};

#define MAX—SIZE 100 /*maximum  size of string 
char s[MAX-SIZE] 
char t[MAX-SIZE]

*/

Figure 2.8 shows how these strings would be represented internally in memory. 
Notice that we have included array bounds for the two strings. Technically, we could 
have declared the arrays with the statements:

char s[] {"dog"};
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Function 
char ^strcat(char ^dest, char *src)

char *stmcat(char  ^'dest, char *src,  intn)

char ^strcmp(char *strl,  char *str2)

char *strncmp(char  *strl,  char ^str2, int n)

char ^strcpy(char "^dest, char "^src)
char '^strncpy(char "^dest, char ^src, int n)

size~-t strlen(char *5)
char '^strchr(char *5,  intc)

char '^strrchr(char *5,  int c)

char '^strtok(char *5,  char ^delimiters)

char ^strstr(char *5,  char *pat)

size—tstrspn(char *s,  char ^spanset)

size-t strcspn(char *s,  char *spanset)

char "^strpbrkichar *5,  char ^spanset)

Description 
concatenate dest and strings; 
return result in dest 
concatenate dest and « characters 
from 5rc; return result in dest 
compare two strings;
return < 0 if strl < str2\

if 5Zr7 = str2-, 
> 0 if 5rr7 > str2
compare first n characters 
return < 0 if 5Zr7 < str2;
0 if 5Zr7 = str2‘, 
> 1 if strl > str2
copy src into dest; return 
copy n characters from src 
string into dest; return Jc^z;
return the length of a 5 
return pointer to the first 
occurrence of c in s;
return NULL if not present 
return pointer to last occurrence of 
c in 5; return NULL if not present 
return a token from s; token is 
surrounded by delimiters 
return pointer to start of 
pat in 5
scan 5 for characters in spanset; 
return length of span
scan 5 for characters not in spanset; 
return length of span
scan 5 for characters in spanset; 
return pointer to first occurrence 
of a character from spanset

Figure 2.7: C string functions
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sEO] sEl] sEZ] sE31 tEOl tElJ tEZl trai t[4] tE51

a o 9 \0 o u eh \0s

Figure 2.8: String representation in C

char t[] {"house"}

Using these declarations, the C compiler would have allocated just enough space to hold 
each word including the null character. Now suppose we want to concatenate these 
strings together to produce the new string, "doghouse." To do this we use the C function 
strcat (See Figure 2.7). Two strings are joined together by strcat {s, t}, which stores the 
result in 5. Although 5 has increased in length by five, we have no additional space in 5 
to store the extra five characters. Our compiler handled this problem inelegantly: it sim
ply overwrote the memory to fit in the extra five characters. Since we declared t immedi
ately after 5, this meant that part of the word "house" disappeared.

We have already seen that C provides a built-in function to perform concatenation. 
In addition to this function, C provides several other string functions which we access 
through the statement ttinclude <string.h>. Figure 2.7 contains a brief summary of these 
functions (we have excluded string conversion functions such as atoi). For each func
tion, we have provided a generic function declaration and a brief description. Rather 
than discussing each function separately, we next look at an example that uses several of 
them. For further information on string functions, including examples, look at the books 
by Keminghan and Ritchie or Harbison and Steele cited in the References and Selected 
Readings section.

Example 2.2 [String insertion]: Assume that we have two strings, say string i and 
string 2, and that we want to insert string 2 into string 1 starting at the /th position of 
string 1. We begin with the declarations:

string.h>

s = stringl;
t = string2;

*

★

ttinclude
#define MAX-SIZE 100 /*size  of largest string*/  
char stringl[MAX-SIZE], 
char Strings[MAX-SIZE],

In addition to creating the two strings, we also have created a pointer for each string.
Now suppose that the first string contains "amobile" and the second contains "uto" 

(Figure 2.9). We want to insert "uto" starting at position 1 of the first string, thereby pro
ducing the word "automobile." We can accomplish this using only three function calls, 
as Figure 2.9 illustrates. Thus, in Figure 2.9(a), we assume that we have an empty string 
that is pointed to by temp. We use strncpy to copy the first / characters from 5 into temp.
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Since i = 1, this produces the string "a." In Figure 2.9(b), we concatenate temp and t to 
produce the string "auto." Finally, we append the remainder of 5 to temp. Since strncat 
copied the first i characters, the remainder of the string is at address (5 + /). The final 
result is shown in Figure 2.9(c).

\0

\0

temp

temp

temp

temp

\0

initially

\0

(a) after strncpy {temp,s,i)

\Q

(b) after strcat (temp.t)

(c) after strcat {temp, {s

Figure 2.9: String insertion example

\0

Program 2.11 inserts one string into another. This particular function is not nor
mally found in <string.h.>. Since either of the strings could be empty, we also include 
statements that check for these conditions. It is worth pointing out that the call 
strnins{s, t, 0) is equivalent to strcat {t, 5). Program 2.11 is presented as an example of 
manipulating strings. It should never be used in practice as it is wasteful in its use of 
time and space. Try to revise it so the string temp is not required. □

2.6.2 Pattern Matching

5

t

a

u

a

a

m o b i 1 e

t

u

u

t

t

o

o m 0 b i 1 e

Now let us develop an algorithm for a more sophisticated application of strings. Assume 
that we have two strings, string and pat, where pat is a pattern to be searched for in 
string. The easiest way to determine if pat is in string is to use the built-in function strstr. 
If we have the following declarations:
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void strnins(char 
{ 
/*

*s, char *t. int i)

insert string t into string s at position i 
char string[MAX-SIZE] , ★ temp = string;

0 && i > strlen(s)) {

*/

if (i
fprintf(stderr,"Position is out of bounds \n"); 
exit(1);

}
if (!strlen(s)) 

strcpy(s,t);
else if {strlen(t)) { 

strncpy(temp, s,i); 
strcat(temp,t); 
strcat(temp,
strcpy(s, temp);

(s+i));

}
}

Program 2.11: String insertion function

char pat[MAX—SIZE], string[MAX—SIZE], *t ;

then we use the following statements to determine if pat is in string:

if (t = strstr(string,pat))
printf("The string from strstr is: 

else
printfC’The pattern was not found with strstr\n");

%s\n",t);

The call (t = strstr (string,pat)) returns a null pointer if pat is not in string. If pat is in 
string, t holds a pointer to the start of pat in string. The entire string beginning at posi
tion t is printed out.

Although strstr seems ideally suited to pattern matching, there are two reasons 
why we may want to develop our own pattern matching function:

(1)

(2)

The function strstr is new to ANSI C. Therefore, it may not be available with the 
compiler we are using.
There are several different methods for implementing a pattern matching function. 
The easiest but least efficient method sequentially examines each character of the 
string until it finds the pattern or it reaches the end of the string. (We explore this 
approach in the Exercises.) If pat is not in string, this method has a computing
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time of O(n ■ m) where n is the length of pat and w is the length of string. We can 
do much better than this, if we create our own pattern matching function.

We can improve on an exhaustive pattern matching technique by quitting when 
strlen {pat} is greater than the number of remaining characters in the string. Checking 
the first and last characters of pat and string before we check the remaining characters is 
a second improvement. These changes are incorporated in nfind (Program 2.12).

*string, char *pat)

match the last character of pattern first, and
*/

int nfind(char 
{ 
/*
then match from the beginning

int i,j,start = 0;
int lasts
int lastp = strlen(pat)-1;
int endmatch = lastp;

strlen(string)-1;

for (i - 0; endmatch <= lasts; endmatch++, start++) { 
if (string[endmatch] == pat[lastp])

for (j = 0, i = start; j < lastp &&
string[i] == pat[j]; i + +,j-i--i-)

0; endmatch

0, start; j

if (j == lastp) 
return start; / successful */*

}
return —1;

}

Program 2.12: Pattern matching by checking end indices first

Example 2.3 [Simulation of nfind}*.  Suppose pat = "aab" and string = "ababbaabaa." 
Figure 2.10 shows how nfind compares the characters from pat with those of string. The 
end of the string and pat arrays are held by lasts and lastp, respectively. First nfind com
pares string [endmatch} and pat [lastp}. If they match, nfind uses i and 7 to move 
through the two strings until a mismatch occurs or until all of pat has been matched. The 
variable start is used to reset i if a mismatch occurs. □

Analysis of nfind-. If we apply nfind to string = "aa • • • a" and pat = "a • • • ab", then the 
computing time for these strings is linear in the length of the string O(m), which is cer
tainly far better than the sequential method. Although the improvements we made over 
the sequential method speed up processing on the average, the worst case computing 
time is still O(« • m). n
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Figure 2.10: Simulation of nftnd
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Ideally, we would like an algorithm that works in O(strlen (string) + strlen(pat)) 
time. This is optimal for this problem as in the worst case it is necessary to look at all 
characters in the pattern and string at least once. We want to search the string for the 
pattern without moving backwards in the string. That is, if a mismatch occurs we want 
to use our knowledge of the characters in the pattern and the position in the pattern 
where the mismatch occurred to determine where we should continue the search. Knuth, 
Morris, and Pratt have developed a pattern matching algorithm that works in this way 
and has linear complexity. Using their example, suppose

pat = 'abcabcacab'

Let 5 = 5o 52 • • • 5^-1 be the string and assume that we are currently determining 
whether or not there is a match beginning at 5/. If s^^a then, clearly, we may proceed by 
comparing and a. Similarly if 5/ = a and 5j + | b then we may proceed by compar
ing and a. If 5,-5,+ i = ab and Si+2 then we have the situation:

b 
b

?
c

9
a

9 
b

5 =
pat =

a
'a

?’
Z?’c a c a

The ? implies that we do not know what the character in 5 is. The first ? in 5 represents 
5,-+2 and 5j+2 c. At this point we know that we may continue the search for a match by 
comparing the first character in pat with 5,-+2- There is no need to compare this character 
of pat with 5,+i as we already know that 5, + i is the same as the second character of pat, 
b, and so 5,+i a. Let us try this again assuming a match of the first four characters in 
pat followed by a nonmatch, i.e., 5^+4 b. We now have the situation:

b 
b

c
c

a
a

9
b

7 
c

5 =
pat -

a
"a

?’ 
h’a c a

We observe that the search for a match can proceed by comparing 5,-+4 and the second 
character in pat, b. This is the first place a partial match can occur by sliding the pattern 
pat towards the right. Thus, by knowing the characters in the patterm and the position in 
the pattern where a mismatch occurs with a character in 5 we can determine where in the 
pattern to continue the search for a match without moving backwards in 5. To formalize 
this, we define a failure function for a pattern.

Definition: If p = pop j ■ • ■ p„_| is a pattern, then its failure function, f is defined as:

/(/■) =
largest i < j such that PoPi " ' Pi- Pj-iPj-i+2 '' ' Pj if such an Z > 0 exists
-1 otherwise □
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For the example pattern, pat - abcabcacab, we have:

0 
tz

3 
a 
0

4 
b
1

J 
pat
f -1

1 
b

-1

1 
c 

-1

1 
c 

-1

5 
c
1

6 
tz
3

8 
a
0

9 
b
1

From the definition of the failure function, we arrive at the following rule for pat
tern matching; If a partial match is found such that Si^j • • • ’ Pj-\
Si Pj then matching may be resumed by comparing s^ and if j 0. If j =
then we may continue by comparing azzt/ po. This pattern matching rule translates 
into function pmatch (Program 2.13). The following declarations are assumed:

linclude <stdio.h>
#include <string.h>
#define max_string_size 100
#define max_pattern_si2e 100 
int pmatch();
void fail{);
int failure[max_pattern_size]; 
char string[max_string_size]t 
char pat[max_pattern_size];

int pmatch(char 
{ 
/*

*string, char *pat)

Pratt string matching algorithm 
0, j = 0;

Knuth, Morris, 
int i 
int lens = strlen(string) ; 
int lenp = strlen(pat);
while ( i < lens && j < lenp ) { 

if (stringli] == pat[j]) {
i + + ;

else if (j == 0) i++;
else j = fallure[j-1]+1;

j++; }

*/

}
return { (j == lenp) ? (i-lenp) : -1);

}

Program 2.13: Knuth, Morris, Pratt pattern matching algorithm
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Note that we do not keep a pointer to the start of the pattern in the string. Instead 
we use the statement:

return ( (j == lenp) ? (i - lenp) : -1);

This statement checks to see whether or not we found the pattern. If we didn’t find the 
pattern, the pattern index index j is not equal to the length of the pattern and we return 
-1. If we found the pattern, then the starting position is / - the length of the pattern.

Analysis of pmatch: The while loop is iterated until the end of either the string or the 
pattern is reached. Since i is never decreased, the lines that increase i cannot be exe
cuted more than m = strlen (string) times. The resetting of j to failure[j~l] + l decreases 
the value of j. So, this cannot be done more times than j is incremented by the statement 
j ++ as otherwise, j falls off the pattern. Each time the statement j ++ is executed, i is 
also incremented. So, j cannot be incremented more than m times. Consequently, no 
statement of Program 2.13 is executed more than m times. Hence the complexity of 
function pmatch is O(m) = O(strlen (string)). □

From the analysis of pmatch, it follows that if we can compute the failure function 
in O(strlen (pat)) time, then the entire pattern matching process will have a computing 
time proportional to the sum of the lengths of the string and pattern. Fortunately, there is 
a fast way to compute the failure function. This is based upon the following restatement 
of the failure function:

if 7 = 0
f<J) =

-1
f”(j - 1) + 1 where m is the least integer k for which = pj
-1 if there is no k satisfying the above

(note that f' (j) = f (j) and /"O') (j}}')-

This definition yields the function in Program 2.14 for computing the failure function of 
a pattern.

Analysis of fail: In each iteration of the while loop the value of i decreases (by the 
definition of/). The variable i is reset at the beginning of each iteration of the for loop. 
However, it is either reset to -1 (initially or when the previous iteration of the for loop 
goes through the last else clause) or it is reset to a value 1 greater than its terminal value 
on the previous iteration (i.e., when the statement failure[j] = Z + 1 is executed). Since 
the for loop is iterated only n-[ (n is the length of the pattern) times, the value of i has a 
total increment of at most n-1. Hence it cannot be decremented more than n~l times. 
Consequently the while loop is iterated at most n-\ times over the whole algorithm and 
the computing time onfall is O(n) = O(strlen (pat)}. □
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void fail(char *pat)  
{ 
/* ■ compute the pattern's failure function 
int n = strlen(pat);
failure[0]
for (j=l; j

i = failure[j-1] ;
while ((patlj] != pat[i+1]) && (i 

i
if (pat[j] == pat[i+1]) 
failure[j]

else failure[j] = -1;

-1;
n; j++) {

failure[i];

i + 1;

*/

0) )

} 
}

Program 2.14: Computing the failure function

Note that when the failure function is not known in advance, the time to first compute 
this function and then perform a pettern match is 0{strlen (pat) + strlen (string)).

EXERCISES

1.

2.

3.

4.

5.

Write a function that accepts as input a string and determines the frequency of 
occurrence of each of the distinct characters in string. Test your function using 
suitable data.
Write a function, strndel, that accepts a string and two integers, start and length. 
Return a new string that is equivalent to the original string, except that length 
characters beginning at start have been removed.
Write a function, strdeh that accepts a string and a character. The function returns 
string with the first occurrence of character removed.
Write a function, strpos}, that accepts a string and a character. The function 
returns an integer that represents the position of the first occurrence of character 
in string. If character is not in string, it returns -1. You may not use the function 
strpos which is part of the traditional <string.h> library, but not the ANSI C one.
Write a function, strchr 1, that does the same thing as strpos 1 except that it returns 
a pointer to character. If character is not in the list it returns NULL. You may not 
use the built-in function strchr.
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8.

6. Modify Program 2.11 so that it does not use a temporary string temp. Compare the 
complexity of your new function with that of the old one.

7. Write a function, strsearch, that uses the sequential method for pattern matching. 
That is, assuming we have a string and a pattern, strsearch examines each charac
ter in string until it either finds the pattern or it reaches the end of the string.
Show that the computing time for nfind is O(/i • w) where n and m are, respec
tively, the lengths of the string and the pattern. Find a string and a pattern for 
which this is true.

9. Compute the failure function for each of the following patterns:

(a)
(b)
(c)

10. Show the equivalence of the two definitions for the failure function.

aaaab 
ababa a 
ab aab aab

2.7 REFERENCES AND SELECTED READINGS

Several texts discuss array representation in C, including T. Plum, Reliable Data Struc
tures in C, Plum Hall, Cardiff, N.J., 1985 (Chapter 3), and R. Jaesche, Solutiofis in C, 
Addison-Wesley, Reading, Mass., 1986 (Chapter 2). The Jaesche text includes a detailed 
discussion of array bounds, including altering array bounds, and pointer addressing.

Strings are discussed in B. Kemighan and K. Ritchie, The C Programming 
Language, ANSI C, Second Edition, Prentice-Hall, Englewood Cliffs, N.J., 1988, and S. 
Harbison and G. Steele, C: A Reference Manual, Third Edition, Prentice-Hall, Engle
wood Cliffs, N.J., 1991 (Chapter 13). A discussion of string pointers can be found in R. 
Traister, Mastering C Pointers, Academic Press, San Diego, Calif., 1990. The Knuth, 
Morris, Pratt pattern matching algorithm is found in "Fast pattern matching in strings," 
SIAM Journal on Computing, vol. 6, no. 2, 1977.

2.8 ADDITIONAL EXERCISES

2.

I. Given an array a[n] produce the array z[n] such that ^[0] = a [n—l],z[l] = 
a[n~2], ••• ,z[n-2] =a[l],z[«-13 = <7[0]. Use a minimal amount of storage.
An m X n matrix is said to have a saddle point if some entry a [Z Jlj ] is the smallest 
value in row i and the largest value in column j. Write a C function that deter
mines the location of a saddle point if one exists. What is the computing time of 
your method?

Exercises 3 through 8 explore the representation of various types of matrices that 
are frequently used in the solution of problems in the natural sciences.
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3. A triangular matrix is one in which either all the elements above the main diago
nal or all the elements below the main diagonal of a square matrix are zero. Figure 
2.11 shows a lower and an upper triangular matrix. In a lower triangular matrix, 
a, with n rows, the maximum number of nonzero terms in row i is i +1. Thus, the 
total number of nonzero terms is

n-l
^(Z+ l)=n (n-i-])/2.
i=Q

Since storing a triangular matrix as a two dimensional array wastes space, we 
would like to find a way to store only the nonzero terms in the triangular matrix. 
Find an addressing formula for the elements ajj so that they can be stored by rows 
in an array b [«(n •+• 1 )/2-1 ], with a [0] [0] being stored in b [0].

X X XX 

X

X

X 

X

X 

X

X 

X

X

non
zero

zero
X

X

XXX

X

X

XXX

XXX

X

X

zero

XXX

non 
zero

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X X

X

X

X

lower triangular upper triangular

Figure 2.11 : Lower and upper triangular matrices

4.

5.

Let a and b be two lower triangular matrices, each with n rows. The total number 
of elements in the lower triangles is «(zi -h 1). Devise a scheme to represent both 
triangles in an array ). [Hint: Represent the triangle of a in the lower tri
angle of d and the transpose b in the upper triangle of d.] Write algorithms to 
determine the values of a [i ][/ ], b [i ][/ ], 0 < i, J < n.
A tridiagonal matrix is a square matrix in which all elements that are not on the 
major diagonal and the two diagonals adjacent to it are zero (Figure 2.12). The 
elements in the band formed by these three diagonals are represented by rows in 
an array, b, with a [0]f0] being stored in Z?[0]. Obtain an algorithm to determine 
the value of a [Z ][7 ], 0 < i. j < n from the array b.
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X X

XXX

XXX

. X

zero

zero X X

XXX

XXX

XXX

Figure 2.12 : Tridiagonal matrix

is an n x n matrix in which all the nonzero terms lie in6. A square band matrix
a band centered around the main diagonal. The band includes the main diagonal 
and <3-1 diagonals below and above the main diagonal (Figure 2.13).

^4,3

upper band

a diagonals

n
rows

0

lower 
band

n columns 
main diagonal

Figure 2.13 : Square band matrix
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(a)

(b) 
(c)

I 7 
n,a •How many elements are there in the band £),

What is the relationship between i and j for elements d/y in the band

Assume that the band of is stored sequentially in an array b by diago
nals, starting with the lowermost diagonal. For example, the band matrix, 
D4 3 of Figure 2.13 would have the following representation.

b[0]

9
b[l]

<^31

b[2]

8

10

b[3]

3 
d2i

b[4]

6 

^32

b[5]

6
<^00

b[6] 

0 
dll

b(7]

2 

^22

b[8]

8 
9^33

b[9]

<^01

b[l0]

4

dn

bill]

9 
^23

b[12]

8 
^02

b[13] 

4
^13

Obtain an addressing formula for the location of an element, d/j, in the lower band of 
(location(d lo) = 2 in the example above).

7. A generalized band matrix D^ a^b is an az x n matrix in which all the nonzero terms 
lie in a band made up of <3-1 diagonals below the main diagonal, the main diago
nal, and b-i bands above the main diagonal (Figure 2.14).

a

b

n
rows

n columns
main diagonal

^n.a,h

Figure 2.14 : Generalized band matrix
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How many elements are there in the band of
What is the relationship between i and j for the elements dij in the band of

Obtain a sequential representation of the band D^^a^b in the one dimensional 
array e. For this representation, write a C function value (n, a, b, i, j, e) 
that determines the value of element da in the matrix D, 
^n.a,.

(a)
(b)

(c)

'n,a.b. The band of

8.
7, is represented in the array e.

A complex-valued matrix X is represented by a pair of matrices <a, b>, where a 
and b contain real values. Write a function that computes the product of two 
complex-valued matrices <a, b > and <d, e >, where <a, /? > * <J, e > = (a + ib) 
* (d + ie) = (ad - be) + i (ae + bd). Determine the number of additions and mul
tiplications if the matrices are all nxn.

9. § [Programming project] There are a number of problems, known collectively as 
"random walk" problems, that have been of longstanding interest to the mathemati
cal community. All but the most simple of these are extremely difficult to solve, 
and, for the most part, they remain largely unsolved. One such problem may be 
stated as:

A (drunken) cockroach is placed on a given square in the middle of a tile floor in a 
rectangular room of size n x m tiles. The bug wanders (possibly in search of an 
aspirin) randomly from tile to tile throughout the room. Assuming that he may 
move from his present tile to any of the eight tiles surrounding him (unless he is 
against a wall) with equal probability, how long will it take him to touch every tile 
on the floor at least once?

Hard as this problem may be to solve by pure probability techniques, it is quite 
easy to solve using a computer. The technique for doing so is called "simulation." 
This technique is widely used in industry to predict traffic flow, inventory control, 
and so forth. The problem may be simulated using the following method:

An n X m array count is used to represent the number of times our cockroach has 
reached each tile on the floor. All the cells of this array are initialized to zero. 
The position of the bug on the floor is represented by the coordinates (ibug, jbug). 
The eight possible moves of the bug are represented by the tiles located at 
(ibug + imove [k ], jbug + jmove [k j), where 0 < k < 7, and
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zwove[0) = -1
=

zm6)v^[2] =
imove[3] =
zm(9v^[4] =
zm(9v^[5] =
imove[6] = -1
zm<?v^[7] = -1

0
1
1
1 
0

1
1
1
0

7m<?ve[0] =
/move[l] =
jmove[2] =
jmovel3] =
7move’[4] = -1
ym<7ve[5] = -1 
jmovel6] = -1 
7m€>v^[7] = 0

A random walk to any one of the eight neighbor squares is simulated by generat
ing a random value for k, lying between 0 and 7. Of course, the bug cannot move 
outside the room, so that coordinates that lead up a wall must be ignored, and a 
new random combination formed. Each time a square is entered, the count for that 
square is incremented so that a nonzero entry shows the number of times the bug 
has landed on that square. When every square has been entered at least once, the 
experiment is complete.

Write a program to perform the specified simulation experiment. Your program 
MUST:

(a)
(b)

(c)

handle all values of n and m, 2 < n< 40, 2 < m < 20;
perform the experiment for (1) n = 15, m = 15, starting point (10, 10), and 
(2) n = 39, m = 19, starting point (1, 1);
have an iteration limit, that is, a maximum number of squares that the bug 
may enter during the experiment. This ensures that your program will ter
minate. A maximum of 50,000 is appropriate for this exercise.

For each experiment, print (1) the total number of legal moves that the cockroach 
makes and (2) the final count array. This will show the "density" of the walk, that 
is, the number of times each tile on the floor was touched during the experiment. 
This exercise was contributed by Olson.

10. § [Programming project] Chess provides the setting for many fascinating diver
sions that are quite independent of the game itself. Many of these are based on the 
strange "L-shaped" move of the knight. A classic example is the problem of the 
"knight’s tour," which has captured the attention of mathematicians and puzzle 
enthusiasts since the beginning of the eighteenth century. Briefly stated, the prob
lem requires us to move the knight, beginning from any given square on the chess
board, successively to all 64 squares, touching each square once and only once. 
Usually we represent a solution by placing the numbers 0, 1, • • •, 63 in the 
squares of the chess board to indicate the order in which the squares are reached. 
One of the more ingenious methods for solving the problem of the knight’s tour 
was given by J. C. Warnsdorffin 1823. His rule stated that the knight must always 
move to one of the squares from which there are the fewest exits to squares not 
already traversed.
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The goal of this programming project is to implement Warnsdorff s rule. The 
ensuing discussion will be easier to follow, however, if you try to construct a solu
tion to the problem by hand, before reading any further.

The crucial decision in solving this problem concerns the data representation. Fig
ure 2.15 shows the chess board represented as a two-dimensional array.

40 1 2 3 5 6 7

0

1

2 7 0

13 6

4 K

25 5

4 3

1

Figure 2.15: Legal moves for a knight

The eight possible moves of a knight on square (4, 2) are also shown in this figure. 
In general, a knight may move to one of the squares (i - 2, 7 4- 1), (/ -1,74- 2), 
(/ + 1,7 + 2), {i + 2,7 + 1), (z + 2,7 - 1), (z + 1,7 - 2), (z - 1,7 - 2), (z -2J- 1). 
However, notice that if (z, j) is located near one of the board’s edges, some of 
these possibilities could move the knight off the board, and, of course, this is not 
permitted. We can represent easily the eight possible knight moves by two arrays 
ktmove 1 and ktmove 2 as:
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ktmove 1
-2
-1

1
2
2
1

-1
-2

ktmove 2
1
2
2
1

-I
-2
-2
-1

Then a knight at (/, 7) may move to (i + ktmove [/:], 7 + ktrnovellk]), where Z: is 
some value between 0 and 7, provided that the new square lies on the chess board. 
Below is a description of an algorithm for solving the knight’s tour problem using 
Wamsdorffs rule. The data representation discussed in the previous section is 
assumed.

(a)
(b)
(c)
(d)

(e)

(0

[Initialize chessboard] For 0 < i, j < 7 set board [/ ][7 ] to 0.
[Set starting position] Read and print (/, j) and then set board [z ][7 ] to 0.
[Loop] For 1 < m < 63, do steps (d) through (g).
[Form a set of possible next squares] Test each of the eight squares one 
knight’s move away from (/, 7) and form a list of the possibilities for the 
next square (nexti[l], nextj [I]). Let npos be the number of possibilities. 
(That is, after performing this step we have nexti [/] = / + ktmove 1 [k ] and 
nexlj [/ ] = j + ktmove ^[k ], for certain values of k between 0 and 7. Some of 
the squares (z + ktmove 1[^], j + /cZznove 2[/:]) may be impossible because 
they lie off the chessboard or because they have been occupied previously 
by the knight, that is, they contain a nonzero number. In every case we will 
have 0 < npos < 8.)
[Test special cases] If npos = 0, the knight’s tour has come to a premature 
end; report failure and go to step (h). If npos = 1, there is only one next 
move; set min to 1 and go to step (g).
[Find next square with minimum number of exits] For 1 < I < npos, set 
exits [Z] to the number of exits from square (nexti [/], nextj[l ]). That is, for 
each of the values of Z, examine each of the next squares 
(nexti [Z] + ktmove 1[^], nexzy [Z ] + 2[A: ]) to see if it is an exit from
(nexti [I ], nextj [I ]), and count the number of such exits in exits [I ]. (Recall 
that a square is an exit if it lies on the chessboard and has not been occupied 
previously by the knight.) Finally, set min to the location of the minimum 
value of exits. (If there is more than one occurrence of the minimum value, 
let min denote the first such occurrence. Although this does not guarantee a 
solution, the chances of completing the tour are very good.)
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(g) [Move knight] Set i = nexti[mm], j = nextj [min], and [/][/] = m. 
Thus, (/, j) denotes the new position of the knight, and board [/][/] records 
the move in proper sequence.

(h) [Print] Print out the board showing the solution to the knight’s tour, and 
then terminate the algorithm.

Write a C program that corresponds to the algorithm. This exercise was contri
buted by Legenhausen and Rebman.



CHAPTER 3

STACKS AND QUEUES

3.1 THE STACK ABSTRACT DATA TYPE

In this chapter we look at two data types that are frequently found in computer science. 
These data types, the stack and the queue, are special cases of the more general data 
type, ordered list, that we discussed in Chapter 2. Recall thatA = oq, tzi, ••• ,tz„_iisan 
ordered list of n > 0 elements. We refer to the ai as atoms or elements that are taken 
from some set. The null or empty list, denoted by (), has n = 0 elements. In this section 
we begin by defining the ADT Stack and follow with its implementation. In the next 
section we look at the queue.

A stack is an ordered list in which insertions and deletions are made at one end 
called the top. Given a stack S = {a^, • ■ • , ), we say that aq is the bottom element,

is the top element, and a^ is on top of element 6Z/_i , 0 < i < n. The restrictions on 
the stack imply that if we add the elements A, B, C, D, E to the stack, in that order, then E 
is the first element we delete from the stack. Figure 3.1 illustrates this sequence of 
operations. Since the last element inserted into a stack is the first element removed, a 
stack is also known as a Last-In-Eirst-Out (LlEO) list.

Example 3.1 [System stack}*.  Before we discuss the stack ADT, we look at a special 
stack, called the system stack, that is used by a program at run-time to process function 
calls. Whenever a function is invoked, the program creates a structure, referred to as an 
activation record or a stack frame, and places it on top of the system stack. Initially, the
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Figure 3.1: Inserting and deleting elements in a stack 

activation record for the invoked function contains only a pointer to the previous stack 
frame and a return address. The previous stack frame pointer points to the stack frame of 
the invoking function, while the return address contains the location of the statement to 
be executed after the function terminates. Since only one function executes at any given 
time, the function whose stack frame is on top of the system stack is chosen. If this func
tion invokes another function, the local variables, except those declared static, and the 
parameters of the invoking function are added to its stack frame. A new stack frame is 
then created for the invoked function and placed on top of the system stack. When this 
function terminates, its stack frame is removed and the processing of the invoking func
tion, which is again on top of the stack, continues. A simple example illustrates this pro
cess. (We refer the reader who wants a more detailed discussion of stack frames to 
Holub’s book on compiler design cited in the References and Selected Readings section.)

Assume that we have a main function that invokes function al. Figure 3.2(a) 
shows the system stack before al is invoked; Figure 3.2(b) shows the system stack after 
al has been invoked. Frame pointer fp is a pointer to the current stack frame. The sys
tem also maintains separately a stack pointer, sp, which we have not illustrated.

Since all functions are stored similarly in the system stack, it makes no difference 
if the invoking function calls itself. That is, a recursive call requires no special strategy; 
the run-time program simply creates a new stack frame for each recursive call. How
ever, recursion can consume a significant portion of the memory allocated to the system 
stack; it could consume the entire available memory. □

Our discussion of the system stack suggests several operations that we include in 
the ADT specification (Structure 3.1).

The easiest way to implement this ADT is by using a one-dimensional array, say, 
stack [MAX-STACK-SIZE\, where MAX STACK SIZ.E is the maximum number of 
entries. The first, or bottom, element of the stack is stored in the second in
5'facA; [1], and the zth in stack [z-1]. Associated with the array is a variable, top, which 
points to the top element in the stack. Initially, top is set to -1 to denote an empty stack. 
Given this representation, we can implement the operations in Structure 3.1 as follows. 
Notice that we have specified that element is a structure that consists of only a key field. 
Ordinarily, we would not create a structure with a single field. However, we use element 
in this and subsequent chapters as a template whose fields we may add to or modify to
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old frame pointer fp

return address al

local uariables

old frame pointer fp old frame pointer

return address main return address

(a) (b)

Figure 3.2: System stack after function call

meet the requirements of our application.

Stack CrQateS(max-stack-size') ::=

#define MAX—STACK—SIZE 100 /*maximum  stack size*/  
typedef struct { 

int key; 
other fields *//*

} element;
element stack[MAX—STACK—SIZE]; 
int top - -1;

Boolean IsEmpty(Stack) ::= top 0;

Boolean IsFulI(Stack) ::= top = MAX-STACK-SIZE-l;

The IsEmpty and IsFull operations are simple, and we will implement them 
directly in the add (Program 3.1) and delete (Program 3.2) functions. In each of these 
functions we have passed in the top of the stack as a parameter. The stack is kept global 
and "hidden" because we want to reinforce the concept that the only access to the stack 
is through the pointer to the top. The functions are short and require little explanation. 
Function add checks to see if the stack is full. If it is, it calls stack-full. Although we 
haven’t implemented stack-full, minimally it should print an error message to the stan
dard error device (stderr). If the stack is not full, we increment top and add item to the 
stack. Implementation of the delete operation parallels that of the add operation. For
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structure Stack is
objects: a finite ordered list with zero or more elements.
functions:

for all stack e Stack, item e element, max-stack-size e positive integer
Stack CrQ£itQS(max-stack-size)

create an empty stack whose maximum size is max-stack-size
Boolean IsFulI(5/£/cZ:, inaxstack-size) ;; =

if (number of elements in stack == max-stack-size)
return TRUE
else return FALSE

Stack A(i6(stack, item) ::=
if (IsFull(5fac^)) stack -full
else insert item into top of stack and return

Boolean IsEmptyC^rac/:) ::=
if (stack == CrQSitQS(max-stack-size))
return TRUE

else return FALSE
Element DQiete(stack) ::=

if (IsEmpty(5?ac^)) return
else remove and return the item on the top of the stack.

Structure 3.1: Abstract data type Stack

deletion, the stack-empty function should print an error message and return an item of 
type element with a key field that contains an error code. Typical function calls would be 
add(&top, item); and item = deletef&top);. Notice that in both function calls we pass in 
the address of top. If we do not pass in the address the changes made to top by add or 
delete will not percolate back to the main program.

void add(int 
{ 
/*

*top, element item)

add an item to the global stack 
if (*top

stack—full() ;
return;

= MAX-STACK-SIZE-l) {

}
stack[++*top] item;

*/

}

Program 3.1: Add to a stack
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element delete(int 
{ 
/*

top)

return the top element from the stack
if {*top  == -1)

return stack—empty(); /
return stack[(*top) —];

*/

returns an error key */

}

Program 3.2: Delete from a stack

EXERCISES

1. Implement the stack-empty and stack-full functions.
2. Using Figures 3.1 and (3.2) as examples, show the status of the system stack after 

each function call for the iterative and recursive functions to compute binomial 
coefficients (Exercise 9, Section 1.2). You do not need to show the stack frame 
itself for each function call. Simply add the name of the function to the stack to 
show its invocation and remove the name from the stack to show its termination.

3. The Fibonacci sequence is; 0, 1, 1,2, 3, 5, 8, 13, 21, 34, ■ ■ ■

It is defined as Fq = 0, Fj = 1, and F, = F,-_i + Fj_2, i > 2

4.

3.2

Write a recursive function, fibon (n), that returns the nth fibonacci number. Show 
the status of the system stack for the call fibon (4) (see Exercise 2). What can you 
say about the efficiency of this function?
Consider the railroad switching network given in Figure 3.3. Railroad cars num
bered 0, 1, • • • , n-\ are at the right. Each car is brought into the stack and 
removed at any time. For instance, if n = 3, we could move in 0, move in 1. move 
in 2, and then take the cars out, producing the new order 2, 1,0. For n = 3 and n = 
4, what are the possible permutations of the cars that can be obtained? Are any 
permutations not possible?

THE QUEUE ABSTRACT DATA TYPE

A queue is an ordered list in which all insertions take place at one end and all deletions 
take place at the opposite end. Given a queue Q = (<7(), Oi, • • • , is the front
element, is the rear element, and «, + ] is behind 0< i < n-}. The restrictions on 
a queue imply that if we insert A, B, C, D, in that order, then A is the first element deleted 
from the queue. Figure 3.4 illustrates this sequence of events. Since the first element 
inserted into a queue is the first element removed, queues are also known as First-In- 
First-Out (FIFO) lists. The ADT specification of the queue appears in Structure 3.2.
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4 4 4 4

4 0, 1, 2, n-1

Figure 3.3 : Railroad switching network
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Figure 3.4 : Inserting and deleting elements in a queue

The representation of a queue in sequential locations is more difficult than that of 
the stack. The simplest scheme employs a one-dimensional array and two variables, 
front and rear. Given this representation, we can define the queue operations in Struc
ture 3.2 as:

Queue CTQa.tQQ(max-queue-size) ::=
#define MAX-QUEUE—SIZE 100 /*Maximum  queue size*/  

typedef struct { 
int key;

other fields
} element; 

element queue[MAX—QUEUE—SIZE]; 
int rear = -1; 
int front = -1 ;

Boolean IsEmptyQC^wewe) ::= front

/* */

rear
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structure Queue is
objects: a finite ordered list with zero or more elements.
functions:

for all queue g Queue, item G element, max-queue-size G positive integer
Queue CrQateQ^max—queue—size) ::=

create an empty queue whose maximum size is max-queue-size
Boolean IsFullQ(^wewe, max-queue-size) :; =

if (number of elements in queue == max-queue-size)
return TRUE
else return FALSE

Queue AddQ(queue, item) ::=
if (IsFullQ(^M^Mc)) queue - full
else insert item at rear of queue and return queue

Boolean IsEmptyQ(^Mewc) ::=
if {queue == CreateQ^max—queue—size))
return TRUE
else return FALSE

Element DeleteQ(^MeMc) ::=
if (IsEmptyQ(^MCMe)) return
else remove and return the item at front of queue.

Structure 3.2: Abstract data type Queue

Boolean IsFullQ(^MeMe) ::= rear == MAX—QUEUE—SIZE-1

Since the IsEmptyQ and IsFullQ operations are quite simple, we again implement 
them directly in the addq (Program 3.3) and deleteq (Program 3.4) functions. Functions 
addq and deleteq are structurally similar to add and delete on stacks. While the stack 
uses the variable top in both add and delete, the queue increments rear in addq and front 
in deleteq. Typical function calls would be addq(&rear, item); and item = 
deleteq(&front, rear);. Notice that the call to addq passes in the address of rear. We do 
this so that the modification to rear is permanent. Similarily, in the call to deleteq we 
pass in the address of front so that the modification to front is peimanent. We do not 
pass in the address of rear since deleteq does not modify rear, but it does use rear to 
check for an empty queue.

This sequential representation of a queue has pitfalls that are best illustrated by 
example.

Example 3.2 [Job scheduling]'. Queues are frequently used in computer programming, 
and a typical example is the creation of a job queue by an operating system. If the 
operating system does not use priorities, then the jobs are processed in the order they 
enter the system. Figure 3.5 illustrates how an operating system might process jobs if it
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used a sequential representation for its queue.

void addq(int 
{ 
/*

*rear, element item)

add an item to the queue
if (*rear  MAX-QUEUE-SIZE-1) { 

queue—full() ;
return;

}
queue[++*rear]

Program 3.3: Add to a queue

element deleteq(int 
{ 
/*

front, int rear)

remove element at the front of the queue 
if (*front  == rear)

return queue—empty{); /*return  an error key 
return queue[++*front] ;

*/

Program 3.4: Delete from a queue

front
-1
-1
-1
-1
0
1

rear
-I
0
1
2
2
2

2(0] e[i] era era
JI
JI
JI

J2
J2
J2

J3
J3
J3

Comments 
queue is empty 
Job 1 is added 
Job 2 is added 
Job 3 is added 
Job 1 is deleted 
Job 2 is deleted

11 em ;
}

}

★

Figure 3.5 : Insertion and deletion from a sequential queue

It should be obvious that as jobs enter and leave the system, the queue gradually 
shifts to the right. This means that eventually the rear index equals MAX-QUEVESIZE 
- I, suggesting that the queue is full. In this case, queue-full should move the entire 
queue to the left so that the first element is again at queue [0] and front is at - 1. It 
should also recalculate rear so that it is correctly positioned. Shifting an array is very 
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time-consuming, particularly when there are many elements in it. In fact, queue-full has 
a worst case complexity of O^MAX-QUEUESIZE). □

We can obtain a more efficient queue representation if we regard the array 
queue[MAX-QUEUE~SIZE^ as circular. In this representation, we initialize front and 
rear to 0 rather than -1. The front index always points one position counterclockwise 
from the first element in the queue. The rear index points to the current end of the 
queue. The queue is empty front - rear. Figure 3.6 shows empty and nonempty cir
cular queues for MAX-QUEUESIZE = 6. Figure 3.7 illustrates two full queues for 
MAX-QUEUE-SIZE = 6. While these have space for one more element, the addition of 
such an element will result in/ronr = rear and we won’t be able to distinguish between 
an empty and a full queue. So, we adopt the convention that a circular queue of size 
MAX-QUEUE-SIZE will be permitted to hold at most MAX-QUEUE-SIZE - 1 ele
ments.

EMPTY QUEUE

[21 [31

[11 [41

[01 [51

[11

[21

Ml

LOl

3
front = 0 
rear

front = 0 
rear 0

Figure 3.6: Empty and nonempty circular queues

Implementing addq and deleteq for a circular queue is slightly more difficult since 
we must assure that a circular rotation occurs. This is attained by using the modulus 
operator. The circular rotation of the rear index in addq (Program 3.5) occurs in the 
statement:

*rear = (* *rear+l) % MAX-QUEUE-SIZE;

Notice that we rotate rear before we place the item in queue[rear]. Similarly, in deleteq 
(Program 3.6), we rotate front with the statement:

*front = (*front+l) % MAX-QUEUE-SIZE;
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Figure 3.7: Full circular queues

and then we remove the item.

void addq(int front, int 
{ 
/*

Program 3.5: Add to a circular queue

Observe that the test for a full queue in addq and the test for an empty queue in 
deleteq are the same. In the case of addq, however, when front = *rear is evaluated and 
found to be true, there is actually one space free {queue[rear}} since the first element in 
the queue is not at queue[front} but is one position clockwise from this point. As 
remarked earlier, if we insert an item here, then we will not be able to distinguish 
between the cases of full and empty, since the insertion would leave front equal to rear. 
To avoid this we signal queue -full, thus permitting a maximum of MAX-QUEUE-SIZE 
~ 1 rather than MAX-QUEUE-SIZE elements in the queue at any time. We leave the 
implementation of queue-full as an exercise.

rear, element item)

add an item to the queue
*rear - f*rear+l)  % MAX—QUEUE—SIZE; 
if (front 

queue_full(rear); /*  
return;

(*rear+l ) Q,
*rear) {

*/

reset rear and print error*/

*

}
queue[*rear  ] i t em ;

}
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element deleteq(int 
{

*front, int rear)

element item;
/*  

item
remove front element from the queue and put 
*/

if (*front  = 
return < 

error key
*front - (*front+l)  %
return queue[*  front];

rear) 
queue_empty(); 
• */

(*  front + 1)

/*

it in

queue_emptY returns

MAX—QUEUE—SIZE ;

an

}

Program 3.6: Delete from a circular queue

The queue-full and queue-empty functions have been used without explanation. 
Their implementation depends on the particular application. If the intention is to keep 
processing and to next delete an element, queue-full should restore the rear pointer to its 
previous value. We have suggested this strategy in our call to queue-full. Similarly, 
queue-empty should return an item with an error key that can be checked by the main 
program.

EXERCISES

4.

5.

1. Implement the queue-full and queue-empty functions for the noncircular queue.
2. Implement the queue-full and queue-empty functions for the circular queue.
3. Using the noncircular queue implementation, produce a series of adds and deletes 

that requires Q{MAX-QUEUE-SIZEA) for each add. (Hint: Start with a full 
queue.)
A double-ended queue (deque) is a linear list in which additions and deletions may 
be made at either end. Obtain a data representation mapping a deque into a one
dimensional array. Write functions that add and delete elements from either end 
of the deque.
We can maintain a linear list circularly in an array, circle [MAX-SIZE]. We set up 
front and rear indices similar to those used for a circular queue.
(a) Obtain a formula in terms of front, rear, and MAX-SIZE for the number of 

elements in the list.
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(b)

(c)

(d)

Write a function that deletes the Uh element in the list.
Write a function that inserts an element, item, immediately after the hh ele
ment.
What is the time complexity of your functions for (b) and (c)?

3.3 A MAZING PROBLEM

Mazes have been an intriguing subject for many years. Experimental psychologists train 
rats to search mazes for food, and many a mystery novelist has used an English country 
garden maze as the setting for a murder. We also are interested in mazes since they 
present a nice application of stacks. In this section, we develop a program that runs a 
maze. Although this program takes many false paths before it finds a correct one, once 
found it can correctly rerun the maze without taking any false paths.

In creating this program the first issue that confronts us is the representation of the 
maze. The most obvious choice is a two dimensional array in which zeros represent the 
open paths and ones the baiTiers. Figure 3.8 shows a simple maze. We assume that the 
rat starts at the top left and is to exit at the bottom right. With the maze represented as a 
two-dimensional array, the location of the rat in the maze can at any time be described 
by the row and column position. If X marks the spot of our current location, 
maze[row}[col], then Figure 3.9 shows the possible moves from this position. We use 
compass points to specify the eight directions of movement: north, northeast, east, 
southeast, south, southwest, west, and northwest, or N, NE, E, SE, S, SW, W, NW.

We must be careful here because not every position has eight neighbors. If 
[row,col} is on a border then less than eight, and possibly only three, neighbors exist. To 
avoid checking for these border conditions we can surround the maze by a border of 
ones. Thus an m x p maze will require an (m +2) x (p +2) array. The entrance is at posi
tion r 1][1 ] and the exit at [w][p].

Another device that will simplify the problem is to predefine the possible direc
tions to move in an array, move, as in Figure 3.10. This is obtained from Figure 3.9. We 
represent the eight possible directions of movement by the numbers from 0 to 7. For 
each direction, we indicate the vertical and horizontal offeet. The C declarations needed 
to create this table are:

typedef struct {
short int vert; 
short int horiz; 
} offsets;

offsets move[8]; /*array  of moves for each direction*/

We assume that move is initialized according to the data provided in Figure 3.10. 
This means that if we are at position, maze[row}[col}, and we wish to find the position of 
the next move, maze[next-row\[next~col\, we set:
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entrance I
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Figure 3.8: An example maze
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Figure 3.9: Allowable moves



114 Stacks And Queues

Name
N 
NE 
E 
SE
S 
SW 
W 
NW

Dir 
IT

1 
2
3 
4
5 
6
7

move [dir], vert 
-1 
-1

0 
1
I
1
0

-1

move[dir].horiz

1
1
1 
0

-1
-1
-1

Figure 3.10 : Table of moves

next—row = row + move[dir].vert;
next—col = col + move[dir] .horiz;

As we move through the maze, we may have the choice of several directions of 
movement. Since we do not know which choice is best, we save our current position and 
arbitrarily pick a possible move. By saving our current position, we can return to it and 
try another path if we take a hopeless path. We examine the possible moves starting from 
the north and moving clockwise. Since we do not want to return to a previously tried 
path, we maintain a second two-dimensional array, mark, to record the maze positions 
already checked. We initialize this array’s entries to zero. When we visit a position, 
maze[raw][col], we change mark[row][cal] to one. Program 3.7 is our initial attempt at a 
maze traversal algorithm. EXIT_ROW and EXIT_COL give the coordinates of the maze 
exit.

Although this algorithm describes the essential processing, we must still resolve 
several issues. Our first concern is with the representation of the stack. Examining Pro
gram 3.7, we see that the stack functions created in Section 3.2 will work if we redefine 
element as:

#define 
typedef

MAX-STACK-SIZE 100 /*maximum  stack size*/  
struct { 
short 
short 
short
} element;
stack[MAX-STACK-SIZE];

int 
int 
int

row; 
col; 
dir;

element
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initialize a stack to the maze's entrance coordinates and 
direction to north;
while (stack is not empty) {

move to position at top of stack/*  move to position at top of stack */
<row,col,dir> - delete from top of stack;
while (there are more moves from current position) { 

<next—row, next—col 
dir = direction of move;
if ( (next—row == EXIT—ROW) && (next—col 

success;
if (maze[next—row][next—col] == 0 && 

mark[next—row][next—col] 
legal move and haven't been there 
mark[next—row] [next—col] = 1; 
/*  : 
add 
row 
col 
dir = north;

= coordinates of next move;

EXIT-COL))

0) {
/* */

save current position and direction 
<row,col,dir 
= next—row;
= next—col;

*/ 
to the top of the stack;

}
}

}
printf ("No path foundin’’);

Program 3.7: Initial maze algorithm

We also need to determine a reasonable bound for the stack size. Since each posi
tion in the maze is visited no more than once, the stack need have only as many positions 
as there are zeroes in the maze. The maze of Figure 3.11 has only one entrance to exit 
path. When searching this maze for an entrance to exit path, all positions (except the 
exit) with value zero will be on the stack when the exit is reached. Since, an m x p 
maze, can have at most mp zeroes, it is sufficient for the stack to have this capacity.

Program 3.8 contains the maze search algorithm. We assume that the arrays, maze, 
mark, move, and stack, along with the constants EXIT-ROW, EXIT-COL, TRUE, and 
EALSE, and the variable, top, are declared as global. Notice that path uses a variable 
found that is initially set to zero (i.e., EALSEf. If we find a path through the maze, we set 
this variable to TRUE, thereby allowing us to exit both while loops gracefully.

Analysis of path: The size of the maze determines the computing time of path. Since 
each position within the maze is visited no more than once, the worst case complexity of 
the algorithm is O(mp) where m and p are, respectively, the number of rows and columns 
of the maze. □
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r 0 0 0 0 0 11
111110
I 0 0 0 0 1 
0 11111 
10 0 0 0 1 
111110 
1 0 0 0 0 1 
0 1 1 1 1 I 
10 0 0 0 0

Figure 3.11 : Simple maze with a long path

EXERCISES

1. Describe how you could model a maze with horizontal and vertical walls by a 
matrix whose entries are zeroes and ones. What moves are permitted in your 
matrix model? Provide an example maze together with its matrix model.

2. Do the previous exercise for the case of mazes that have walls that are at 45 and 
135 degrees in addition to horizontal and vertical ones.

3. What is the maximum path length from start to finish for any maze of dimensions 
rows X columns?

4. (a)
(b) Trace the action of function path on the maze of Figure 3.8. Compare this to 

your own attempt in (a).
5. § [Programming project] Using the information provided in the text, write a com

plete program to search a maze. Print out the entrance to exit path if successful.

Find a path through the maze of Figure 3.8.

3.4 EVALUATION OF EXPRESSIONS

3.4.1 Introduction

The representation and evaluation of expressions is of great interest to computer scien
tists. As programmers, we write complex expressions such as:

{{rear + 1 = =front} I I {{rear==MAX-QUEUE^SIZE - 1) && ! from}} (3.1) 

or complex assignment statements such as:

x-a/b-c -\-d^e-a*c (3.2)

If we examine expression (3.1), we notice that it contains operators (==, II, 
&&, !), operands {rear, front, MAX QUEUE SIZE), and parentheses. The same is true 
of the statement (3.2), although the operands and operators have changed, and there are
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void path(void)

output a path through the maze if such a path exists 
int i, row, col, next—row, next—col, dir, found = FALSE; 
element position; 
mark[l][1] 
stack[0].row = 1; 
while (top 

position = delete(&top); 
row = position.row; 
dir = position.dir; 
while (dir < 8 && !found) {

move in direction dir ■ 
next—row 
next—col 
if (next-row -- EXIT-ROW && next-col == EXIT-COL) 

found : 
else if ( 
! mark[next—row] [next—col]) { 

mark[next—row] [next—col] = 
position.row = row; position.col = col; 
position.dir = ++dir; 
add(S£top, position) ; 
row = next—row; col = next—col; dir

col, next—row, next—col, dir, found

= 0;
stack[0].col

-1 && 'found) {

1; top
1; stack[0] .dir = 1;

col = position.col;

/■^ */ 
row + move[dir].vert; 
col + move[dir].horiz;

TRUE ;
'maze[next—row][next—col] &&

next—row;
}
else ++dir;

1;

0;

col\n");

if (found) {
printf("The path is:\n");
printf("row
for (i = 0; i <= top; i++)

printf("%2d%5d", stack[i] .row, stack[i] .col) ;
printf (" %2d%5d\n", rov!, col) ;
printf("%2d%5d\n", EXIT-ROW,EXIT-COL) ;

else printf("The maze does not have a path\n");
}

Program 3.8: Maze search function
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no parentheses.
The first problem with understanding the meaning of these or any other expres

sions and statements is figuring out the order in which the operations are performed. For 
instance, assume that a = 4, b = c = 2, t/=e = 3in statement (3.2). We want to find the 
value of X. Is it

((4/2) -2) + (3 * 3) - (4 * 2)
=0+9-8
= 1

or
(4/(2-2 + 3)) * (3 - 4) * 2
= (4/3) *(-!)*  2
= —2.66666 ' •'

Most of us would pick the first answer because we know that division is carried out 
before subtraction, and multiplication before addition. If we wanted the second answer, 
we would have written (3.2) differently, using parentheses to change the order of evalua
tion:

x=((a/(b -c +J))*(e  -a)*c 03)

Within any programming language, there is a precedence hierarchy that deter
mines the order in which we evaluate operators. Figure 3.12 contains the precedence 
hierarchy for C. We have arranged the operators from highest precedence to lowest. 
Operators with the same precedence appear in the same box. For instance, the highest 
precedence operators are function calls, array elements, and structure or union members, 
while the comma operator has the lowest precedence. Operators with highest pre
cedence are evaluated first. The associativity column indicates how we evaluate opera
tors with the same precedence. For instance, the multiplicative operators have left-to- 
right associativity. This means that the expression a^blc%dle is equivalent to 
)lc)%d)le). In other words, we evaluate the operator that is furthest to the left first. With 
right associative operators of the same precedence, we evaluate the operator furthest to 
the right first. Parentheses are used to override precedence, and expressions are always 
evaluated from the innermost parenthesized expression first.

3.4.2 Evaluating Postfix Expressions

The standard way of writing expressions is known as infix notation because in it we 
place a binary operator in-between its two operands. We have used this notation for all 
of the expressions written thus far. Although infix notation is the most common way of 
writing expressions, it is not the one used by compilers to evaluate expressions. Instead 
compilers typically use a parenthesis-free notation referred to as postfix. In this notation, 
each operator appears after its operands. Figure 3.13 contains several infix expressions 
and their postfix equivalents.
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Token

0 
[]

++
I

- +
& * 
sizeof

(type)

* ! %

+

!-

&

I

&«&

II

+= -= /= *=  %= 
= »= &= 1=

Operator 

function call 
array element 
struct or union member 

increment, decrement 
decrement, increment'^ 
logical not 
one’s complement 
unary minus or plus 
address or indirection 
size (in bytes)

type cast 

multiplicative 

binary add or subtract 

shift

relational

equality

bitwise and

bitwise exclusive or

bitwise or

logical and 

logical or 

conditional

assignment

comma

Precedence 1

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

Associativity 

left-to-right

left-to-right

right-to-left

right-to-left 

left-to-right 

left-to-right 

left-to-right 

left-to-right

left-to-right 

left-to-right 

left-to-right 

left-to-right 

left-to-right 

left-to-right 

right-to-left 

right-to-left

left-to-right

1. The precedence column is taken from Harbison and Steele.
2. Postfix form
3. Prefix form

Figure 3.12: Precedence hierarchy for C
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Before writing a function that translates expressions from infix to postfix, we 
tackle the easier task of evaluating postfix expressions. This evaluation process is much 
simpler than the evaluation of infix expressions because there are no parentheses to con
sider. To evaluate an expression we make a single left-to-right scan of it. We place the 
operands on a slack until we find an operator. We then remove, from the stack, the 
correct number of operands for the operator, perform the operation, and place the result 
back on the stack. We continue in this fashion until we reach the end of the expression. 
We then remove the answer from the top of the stack. Figure 3.14 shows this processing 
when the input is the nine character string 6 2/3-4 2*+.

Infix
2+3*4
a^b+5

a*b/c
{{a/(b -c +d')Y{e -a^^c 
a/b-c -\-d*e-a^c

Postfix
2 3 4*  + 
f2Z?*5  +
1 2+7*  
ab^c/ 
abc ~d+/ea-^c^ 
ab/c-de*+ac^-

Figure 3.13: Infix and postfix notation

Token

6
2 
/
3

4 
2 
*
+

10]_____ _
6
6
6/2
6/2
6/2-3
6/2-3
6/2-3
6/2-3 
6/2-3+4*2

Stack
[1]

Top
[2]

4
4
4*2

0
1
0
1
0
1
2
1
0

2

3

2

Figure 3.14: Postfix evaluation

We now consider the representation of both the stack and the expression. To sim
plify our task we assume that the expression contains only the binary operators +, -, *,  I, 
and % and that the operands in the expression are single digit integers as in Figure 3.14. 
This permits us to represent the expression as a character array. The operands are stored 
on a stack of type int until they are needed. The stack is represented by a global array 
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accessed only through top. The complete declarations are:

#define MAX—STACK—SIZE 100 /*maximuTn  stack size*/
#define MAX—EXPR—SIZE 100 /*max  size of expression*/  
typedef enum {Iparen ,rparen, plus, minus, times, divide, 

mod, eos, operand} precedence;
int stack[MAX—STACK—SIZE]; /*  
char expr[MAX-EXPR-SIZE]; /*

global stack 
input string

*/
*/

The declarations include an enumerated type, precedence, that lists the operators 
by mnemonics. Although we will use it to process tokens (operators, operands, and 
parentheses) in this example, its real importance becomes evident when we translate 
infix expressions into postfix ones. Besides the usual operators, the enumerated type also 
includes an end-of-string {eos} operator.

The function eval (Program 3.9) contains the code to evaluate a postfix expression. 
Since an operand {symbol} is initially a character, we must convert it into a single digit 
integer. We use the statement, symbol - ’O’, to accomplish this task. The statement 
takes the ASCII value of symbol and subtracts the ASCII value of ’O’, which is 48, from 
it. For example, suppose symbol = ’1’. The character, ’I’, has an ASCII value of 49. 
Therefore, the statement symbol - ’0’ produces as result the number 1.

We use an auxiliary function, get-token (Program 3.10), to obtain tokens from the 
expression string. If the token is an operand, we convert it to a number and add it to the 
stack. Otherwise, we remove two operands from the stack, perform the specified opera
tion, and place the result back on the stack. When we have reached the end of expres
sion, we remove the result from the stack.

3.4.3 Infix To Postfix

We can describe an algorithm for producing a postfix expression from an infix one as fol
lows:

(1)
(2)

Fully parenthesize the expression.
Move all binary operators so that they replace their corresponding right 
parentheses.
Delete all parentheses.(3)

For example, a/b-c +d*e-a*c  when fully parenthesized becomes:

Performing steps 2 and 3 gives:

ah/c~de^^ac^-
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int eval(void) 
{

evaluate a postfix expression, expr, maintained as a 
global variable. '\0' is the the end of the expression. 
The stack and top of the stack are global variables, 
get—token is used to return the tokentype and 
the character symbol. Operands are assumed to be single 
character digits

precedence token; 
char symbol; 
int opl, op2; 
int n = 0; /*  
int top = -1; 
token - get—token(^symbol, &n); 
while (token != eos) { 

if (token == operand) 
add(&:top, symbol-'O'); ! 

else { 
/*

0; / counter for the expression string

stack insert

remove two operands, perform operation, and 
return result to the stack 
op2 = delete(&top); /*stack  delete 
opl = delete(&top);
switch(token) {

case plus: add{&top,opl+op2);
break;

case minus: add(&top, opl-op2);
break;

case times: add(&top, opl*op2);
break;

case divide: add(&top,opl/op2);
break;

case mod: add(&top, opl%op2);

*/
*/

}
}
token = get—token (Scsymbol, &n) ;

}
return delete(&top); / return result

■^ /

* * /

*
}

Program 3.9: Function to evaluate a postfix expression
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precedence get—token(char *symbol, int 
{ 
/*

*n)

get the next token, symbol is the character 
representation, which is returned, the token is 
represented by its enumerated value, which 
is returned in the function name

*symbol = expr[(*n) ++]; 
switch (* symbol) { 

case ' (' : return Iparen; 
case ')' : return rparen; 
case 
case 
case '/' 
case 
case 
case 
default

*/

: return plus;
: return minus;
: return divide;
: return times;
: return mod;
: return eos;
: return operand; /*

default is operand
no error checking.

*/

' +'

' * >
/ Q, ! 'O

}
}

Program 3.10: Function to get a token from the input string

Although this algorithm works well when done by hand, it is inefficient on a com
puter because it requires two passes. The first pass reads the expression and 
parenthesizes it, while the second moves the operators. Since the order of operands is 
the same in infix and postfix, we can form the postfix equivalent by scanning the infix 
expression left-to-right. During this scan, operands are passed to the output expression 
as they are encountered. However, the order in which the operators are output depends 
on their precedence. Since we must output the higher precedence operators first, we save 
operators until we know their correct placement. A stack is one way of doing this, but 
removing operators correctly is problematic. Two examples illustrate the problem.

Example 3.3 [Simple expression]: Suppose we have the simple expression a+b^c, 
which yields abc*+  in postfix. As Figure 3.15 illustrates, the operands are output 
immediately, but the two operators need to be reversed. In general, operators with 
higher precedence must be output before those with lower precedence. Therefore, we 
stack operators as long as the precedence of the operator at the top of the stack is less 
than the precedence of the incoming operator. In this particular example, the unstacking 
occurs only when we reach the end of the expression. At this point, the two operators 
are removed. Since the operator with the higher precedence is on top of the stack, it is 
removed first. □
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Token
[0]

Slack 
[1]

Top Output
[2]

a 
+ 
b 
*
c
eos

+

+
4-

-1
0
0
1
1

-1

a 
a 
ab 
ab 
abc 
abc^-\-

*
*

Figure 3.15 : Translation of a +b^c to postfix

Example 3.4 [Parenthesized expression}*.  Parentheses make the translation process 
more difficult because the equivalent postfix expression will be parenthesis-free. We use 
as our example the expression which yields in postfix. Figure
3.16 shows the translation process. Notice that we stack operators until we reach the 
right parenthesis. At this point we unstack until we reach the corresponding left 
parenthesis. We then delete the left parenthesis from the stack. (The right parenthesis is 
never put on the stack.) This leaves us with only the remaining in the infix expres
sion. Since the two multiplications have equal precedences, one is output before the J, 
the second is placed on the stack and removed after the d is output. □

Token
[0]

Stack 
[13

Top Output
[2]

a 
*

( 
b
+
c 
) 
*
d
eos

*
*
*
*
*
*
*
*
*

( 
( 
(
(

-1
0
1
1
2
2 
0
0
0
0

a 
a 
a 
ab 
ab 
abc 
abc + 
abc +*  
abc +^d 
abc

+ 
+

Figure 3.16 : Translation of a^{h to postfix
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The analysis of the two examples suggests a precedence-based scheme for stack
ing and unstacking operators. The left parenthesis complicates matters because it 
behaves like a low-precedence operator when it is on the stack, and a high-precedence 
one when it is not. It is placed in the stack whenever it is found in the expression, but it 
is unstacked only when its matching right parenthesis is found. Thus, we have two types 
of precedence, an in-stack precedence {isp} and an incoming precedence (icp}. The 
declarations that establish these precedences and the stack are:

precedence stack[MAX—STACK—SIZE];
isp and icp arrays -- index is value of precedence 

eos
/*
Iparen, rparen, plus, minus, times, divide, mod, 
static int isp{] 
static int icp{}

{0,19,12,12,13,13,13,0};
{20,19,12,12,13,13,13,0};

Notice that we are now using the stack to store the mnemonic for the token. Since 
the value of a variable of an enumerated type is simply the integer corresponding to the 
position of the value in the enumerated type, we can use the mnemonic as an index into 
the two arrays. For example, isp[plus] is translated into /5p[2], which gives us an in
stack precedence of 12. The precedences are taken from Figure 3.12, but we have added 
precedences for the left and right parentheses and the eos marker. We give the right 
parenthesis an in-stack and incoming precedence (19) that is greater than the precedence 
of any operator in Figure 3.12. We give the left parenthesis an instack precedence of 
zero, and an incoming precedence (20) greater than that of the right parenthesis. In addi
tion, because we want unstacking to occur when we reach the end of the string, we give 
the eos token a low precedence (0). These precedences suggest that we remove an 
operator from the stack only if its instack precedence is greater than or equal to the 
incoming precedence of the new operator.

The function postfix (Program 3.11) converts an infix expression into a postfix one 
using the process just discussed. This function invokes a function, print-token, to print 
out the character associated with the enumerated type. That is, print-token reverses the 
process used in get-token.

Analysis of postfix: Let n be the number of tokens in the expression. 0(n) time is spent 
extracting tokens and outputting them. Besides this, time is spent in the two while loops. 
The total time spent here is 0{n) as the number of tokens that get stacked and unstacked 
is linear in n. So, the complexity of function postfix is 0(«). □

EXERCISES

]. Write the postfix form of the following expressions:
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output the postfix of the expression. The expression
*/

0;

eos ;
/*  place eos on stack

void postfix(void) 
{ 
/*  
string, the stack, and top are global

char symbol; 
precedence token; 
int n 
int top = 0; 
stack[0]
for (token = get—token(^symbol, &n); token != eos;

token = get—token (Scsymbol, &n) ) {
if (token == operand) 

printf("%c", symbol) ;
else if (token == rparen) {

unstack tokens until left parenthesis *//*
while (stack[top] != Iparen) 

print—token(delete(&top));
delete (Sctop) ; /★ discard the left parenthesis/■^ ■^ !

}

remove and print symbols whose isp is greater
*/

}
else {

than or equal to the current token's icp
while(isp[stack[top]]

print—token(delete{&top));
add(&:top, token) ;

= icp[token])

}

while ( (token=delete(&top)) != eos) 
print—token(token);

printf("\n");

Program 3.11: Function to convert from infix to postfix

(a)
(b) 
(c) 

(d)

a * b * c
-a-^-b- c + d
a — b c
{a + b}^ d-^ e I c
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2.
3.

4.
5.

6.

a 8l8l b II c ||! {e > f) (assuming C precedence) 
!(a && !((Z? < c) II (c > (7))) II ( c < e)

(e)

(f) 
Write the print-token function used in postfix (Program 3.11).
Use the precedences of Figure 3.12 together with those for ’(’, ’)’, and \0 to answer 
the following;

(a) In the postfix function, what is the maximum number of elements that can be 
on the stack at any time if the input expression, expr, has n operators and an 
unlimited number of nested parentheses?

(b) What is the answer to (a) if expr has n operators and the depth of the nesting 
of parentheses is at most six?

Rewrite the eval function so that it evaluates the unary operators + and -.
§ Rewrite the postfix function so that it works with the following operators, 
besides those used in the text: &&, !!, «, », <=, !=, <, >, <=, and >=. (Hint: 
Write the equation so that the operators, operands, and parentheses are separated 
with a space, for example, a + b > c. Then review the functions in <string.h>.)
Another expression form that is easy to evaluate and is parenthesis-free is known 
as prefix. In prefix notation, the operators precede their operands. Figure 3.17 
shows several infix expressions and their prefix equivalents. Notice that the order 
of operands is the same in infix and prefix.

1=

Infix 
a^b/c 
a/b-c +d^e-a^c 
a*{b  +c)/d-g

Prefix
/^abc
-+-/abc^de^ac
—/*a  +bcdg

Figure 3.17 : Infix and postfix expressions

(a)

(b)

(c)

Write the prefix form of the expressions in Exercise 1.
Write a C function that evaluates a prefix expression, expr. (Hint: Scan expr 
from right to left.)
Write a C function that transforms an infix expression, expr^ into its prefix 
equivalent.

7.

What is the time complexity of your functions for (b) and (c)? How much space is 
needed by each of these functions?
Write a C function that transforms a prefix expression into a postfix one. Carefully 
state any assumptions you make regarding the input. How much time and space 
does your function take?
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8.

9.

10.

11.

Write a C function that transforms a postfix expression into a prefix one. How 
much time and space does your function take?
Write a C function that transforms a postfix expression into a fully parenthesized 
infix expression. A fully parenthesized expression is one in which all the subex
pressions are surrounded by parentheses. For example, a +b +c becomes 
((a +b)+c}. Analyze the time and space complexity of your function.
Write a C function that transforms a prefix expression into a fully parenthesized 
infix expression. Analyze the time and space complexity of your function.
§ Repeat Exercise 5, but this time transform the infix expression into prefix.

3.5 MULTIPLE STACKS AND QUEUES

Until now we have been concerned only with the representations of a single stack or a 
single queue. In both cases, we have seen that it is possible to obtain efficient sequential 
representations. We would now like to examine the case of multiple stacks. (We leave 
the consideration of multiple queues as an exercise.) We again examine only sequential 
mappings of stacks into an array, memory[MEMORY-SIZE]. If we have only two stacks 
to represent, the solution is simple. We use memory [0] for the bottom element of the 
first stack, and memory[MEMORY-SlZE - 7] for the bottom element of the second stack. 
The first stack grows toward memory[MEMORY-SIZE - 7] and the second grows toward 
memory [0]. With this representation, we can efficiently use all the available space.

Representing more than two stacks within the same array poses problems since we 
no longer have an obvious point for the bottom element of each stack. Assuming that we 
have n stacks, we can divide the available memory into n segments. This initial division 
may be done in proportion to the expected sizes of the various stacks, if this is known. 
Otherwise, we may divide the memory into equal segments.

Assume that stack-no refers to the stack number of one of the n stacks. To estab
lish this stack, we must create indices for both the bottom and top positions of this stack. 
The bottom element, boundary[stack-no], 0 < stack-no < MAX-STACKS, always points 
to the position immediately to the left of the bottom element, while top[stack-no], 0 < 
stack-no < MAX-STACKS points to the top element. A stack is empty iff 
boundary[stack-no] = toplstack-no]. The relevant declarations are:

#define MEMORY-SIZE 100 /
#define MAX-STACKS 10 /*  : 
/*

'*  size of memory
max number of stacks plus 1 

global memory declaration 
element memory[MEMORY—SIZE];
int top[MAX—STACKS] ;
int boundary[MAX—STACKS] ;
int n; /*  number of stacks entered by the user */  
To divide the array into roughly equal segments we use the following code:

*/

*/
*/

/*
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top[0] = boundary[0] 
for (i = 1;

top[i] = boundary[i]
boundary[n] = MEMORY_SIZE-1;

i < n;i++)
-1;

(MEMORY_SIZE/n)*i;

Figure 3.18 shows this initial configuration. In the figure, n is the number of stacks 
entered by the user, n < MAX-STACKS, and m MEMORY SIZE. Stack stack-no can 
grow from boundary[stack-no} + 1 to boundary [stack-no + 1] before it is full. Since 
we need a boundary for the last stack, we set boundary [n ] to MEMORY SIZE- 1. Pro
grams 3.12 and 3.13 implement the add and delete operations for this representation.

0 1 2n/n m/n m-1

t
boundary[01 
top[01

t 
boundary[11 
toplll

t 
boundary[21 
topC2]

t
boundary[nl

All stacks are empty and divided into roughly equal segments.

Figure 3.18 : Initial configuration for n stacks in memory [m ].

void add (int i, element item) 
{

add an item to the ith stack 
if (top[i] == boundary[i+1])

stack_full(i) ;
memory[++top[i]] item;

}

Program 3.12: Add an item to the stack stack_no

The add (Program 3.12) and delete (Program 3.13) functions for multiple stacks 
appear to be as simple as those we used for the representation of a single stack. How
ever, this is not really the case because the = houndary[i+i} condition in add 
implies only that a particular stack ran out of memory, not that the entire memory is full. 
In fact, there may be a lot of unused space between other stacks in array memory (see 
Figure 3.19). Therefore, we create an error recovery function, stackwhich deter
mines if there is any free space in memory. If there is space available, it should shift the
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stacks so that space is allocated to the full stack.

element delete(int i) 
{ 
/* remove top element from the ith stack 

if (top[i] == boundary[i])
return stack—empty{i);

return memory[top[i]—];

*/

}

Program 3.13: Delete an item from the stack stack-no

tt
bCQ]

t
tlOl

T T T T
bill till blil till tti+ll 

bCi+ll bCi+Z:
t
tlj]

t t 
btj+ll bln]

b = boundary, t = top

Figure 3.19 : Configuration when stack i meets stack i + 1, but the memory is not full

There are several ways that we can design stack-full so that we can add elements 
to this stack until the array is full. We outline one method here. Other methods are dis
cussed in the exercises. We can guarantee that stack-full adds elements as long as there 
is free space in array memory if we;

(1)

(2)

(3)

Determine the least, j, stack-no < j < n, such that there is free space between 
stacks j and j + 1. That is, top[j] < boundary[J+l]. If there is such a j, then move 
stacks stack-no+li, stack-no+2, • • • , j one position to the right (treating 
we/?R?n'[0] as leftmost and memory[MEMORY-SIZE - 7] as rightmost). This 
creates a space between stacks stack-no and stack-no+i.
If there is no j as in (1), then look to the left of stack stack-no. Find the largest j 
such that 0 < 7 < stack-no and there is space between stacks j and 7+I. That is, 
^op[J] < ^owAzJflzy'lj+l]. If there is such a j, then move stacks 7+I, j+2, • • , 
stack-no one space to the left. This also creates a space between stacks stack-no 
and stack-no-^i.
If there is no 7 satisfying either condition (1) or condition (2), then all 
MEMORY-SIZE spaces of memory are utilized and there is no free space. In this 
case stack -full terminates with an error message.
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We leave the implementation of stack-full as an exercise. However, it should be 
clear that the worst case performance of this representation for the n stacks together will 
be poor. In fact, in the worst case, the function has a time complexity of 
O^MEMORYSIZE).

EXERCISES

1.

2.

3.
4.

5.

6.

We must represent two stacks in an array, memory[MEMORY-SlZE\. Write C 
functions that add and delete an item from stack stack-no, 0 < stack-no < 1. Your 
functions should be able to add elements to the stacks as long as the total number 
of elements in both stacks is less than MEMORY SIZE - 1.

Obtain a data representation that maps a stack and a queue into a single array, 
memory[MEMORY SIZE]. Write C functions that add and delete elements from 
these two data objects. What can you say about the suitability of your data 
representation?
Write a C function that implements the stack-full strategy discussed in the text.
Using the add and delete functions discussed in the text and stack-full from Exer
cise 3, produce a sequence of additions/deletions that requires 0{MEM0RY-SIZE} 
time for each add. Assume that you have two stacks and that your are starting 
from a configuration representing a full utilization of memory[MEMORY-SlZE\.
Rewrite the add and stack-full functions so that the add function terminates if 
there are fewer than cj free spaces left in memory. The empirically determined 
constant, C| shows when it is futile to move items in memory. Substitute a small 
constant of your choice.
Design a data representation that sequentially maps n queues into an array 
memory[MEMORYSIZE]. Represent each queue as a circular queue within 
memory. Write functions addq, deleteq, and queue-full for this representation.

3.6 REFERENCES AND SELECTED READINGS

You will find an excellent discussion of the system stack and activation records in A. 
Holub, Compiler Design in C,Prentice-Hall, Englewood ClifTs, N.J., 1990. The structure 
of our activation record (Figure 3.2) is based on Holub’s discussion.

Several texts discuss the precedence hierarchy used in C. Among the references 
you might like to look at are S. Harbison and G. Steele, C: A Reference Manual, Third 
Edition, Prentice-Hall, Englewood Cliffs, N.J., 1991, and B. Kernighan and D. Ritchie, 
The C Programming Language, Second Edition, Prentice-Hall, Englewood Clifts, N.J., 
1988.



132 Stacks And Queues

3.7 ADDITIONAL EXERCISES

1. § [Programming project] [Landweber] People have spent so much time playing 
solitaire that the gambling casinos are now capitalizing on this human weakness. 
A form of solitaire is described below. You must write a C program that plays this 
game, thus freeing hours of time for people to return to more useful endeavors.

To begin the game, 28 cards are dealt into seven piles. The leftmost pile has one 
card, the next pile has two cards, and so forth, up to seven cards in the rightmost 
pile. Only the uppermost card of each of the seven piles is turned face-up. The 
cards are dealt left-to-right, one card to each pile, dealing one less pile each time, 
and turning the first card in each round face-up. You may build descending 
sequences of red on black or black on red from the top face-up card of each pile. 
For example, you may place either the eight of diamonds or the eight of hearts on 
the nine of spades or the nine of clubs. All face-up cards on a pile are moved as a 
unit and may be placed on another pile according to the bottom face-up card. For 
example, the seven of clubs on the eight of hearts may be moved as a unit onto the 
nine of clubs or the nine of spades.

Whenever a face-down card is uncovered, it is turned face-up. If one pile is 
removed completely, a face-up king may be moved from a pile (together with all 
cards above it) or the top of the waste pile (see below) into the vacated space. 
There are four output piles, one for each suite, and the object of the game is to get 
as many cards as possible into the output piles. Each time an ace appears at the top 
of a pile or the top of the stack it is moved into the appropriate output pile. Cards 
are added to the output piles in sequence, the suit for each pile being determined 
by the ace on the bottom.

From the rest of the deck, called the stock, cards are turned up one by one and 
placed face-up on a waste pile. You may always play cards olTthe top of the waste 
pile, but only one at a time. Begin by moving a card from the stock to the top of 
the waste pile. If you can ever make more than one possible play, make them in 
the following order: 

(a)

(b)

(c)

Move a card from the top of a playing pile or from the top of the waste pile 
to an output pile. If the waste pile becomes empty, move a card from the 
stock to the waste pile.
Move a card from the top of the waste pile to the leftmost playing pile to 
which it can be moved. If the waste pile becomes empty, move a card from 
the stock to the waste pile.
Find the leftmost playing pile that can be moved and place it on top of the 
leftmost playing pile to which it can be moved.
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(e)

(d) Try (a), (b), and (c) in sequence, restarting with (a) whenever a move is 
made.
If no move is made via (a) through (d), move a card from the stock to the 
waste pile and retry (a).

Only the top card of the playing piles or the waste pile may be played to an output 
pile. Once placed on an output pile, a card may not be withdrawn to help else
where. The game is over when either all the cards have been played to the output 
piles, or the stock pile has been exhausted and no more cards can be moved.

When played for money, the player pays the house $52 at the beginning, and wins 
$5 for every card played to the output piles. Write your program so that it will 
play several games and determine your net winnings. Use a random number gen
erator to shuffle the deck. Output a complete record of two games in easily under
standable form. Include as output the number of games played and the net win
nings (-1- or -).

2. § [Programming project] [Landweber] We want to simulate an airport landing and 
takeoff pattern. The airport has three runways, runway 0, runway 1, and runway 2. 
There are four landing holding patterns, two for each of the first two runways. 
Arriving planes enter one of the holding pattern queues, where the queues are to 
be as close in size as possible. When a plane enters a holding queue, it is assigned 
an integer identification number and an integer giving the number of time units the 
plane can remain in the queue before it must land (because of low fuel level). 
There is also a queue for takeoffs for each of the three runways. Planes arriving in 
a takeoff queue are assigned an integer identification number. The takeoff queues 
should be kept approximately the same size.

For each time period, no more than three planes may arrive at the landing queues 
and no more than three planes may enter the takeoff queues. Each runway can 
handle one takeoff or landing at each time slot. Runway 2 is used for takeoffs 
except when a plane is low on fuel. During each time period, planes in either 
landing queue whose air time has reached zero must be given priority over other 
landings and takeoffs. If only one plane is in this category, runway 2 is used. If 
there is more than one plane, then the other runways are also used.

Use successive even(odd) integers for identification numbers of the planes arriving 
at takeoff (landing) queues. At each time unit assume that arriving planes are 
entered into queues before takeoffs or landings occur. Try to design your algo
rithm so that neither landing nor takeoff queues grow excessively. However, arriv
ing planes must be placed at the ends of queues and the queues cannot be reor
dered.

Your output should label clearly what occurs during each lime unit. Periodically
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you should also output:

(a)

(b)

(c)
(d)

the contents of each queue
the average takeoff waiting time
the average landing waiting time
the number of planes that have crashed (run out of fuel and there was no 
open runway) since the last time period.



CHAPTER 4

LISTS

4.1 POINTERS

In the previous chapters we studied the representation of simple data structures using an 
array and a sequential mapping. These representations stored successive elements of the 
data object a fixed distance apart. Thus,

If the /th element in a queue was at location LoCi then the (i + 1 )th element was at 
location (Loci + c) % MAX-QUEUE-SIZE for the circular representation.
If the top element of a stack was at location, Loct^p, then the element beneath it 
was at location Loc^op - c.

These sequential representations were adequate for many operations including insertion 
or deletion of elements from a stack or queue. However, when we use a sequential map
ping for ordered lists, operations such as insertion and deletion of arbitrary elements 
become expensive. For example, consider the following alphabetized list of three-letter 
English words ending in at:

(bat, cat, sat, vat)

We would like to add the word mat to this list. If we store this list in an array, then we 
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must move sat and vat one position to the right before we insert mat. Similarly, if we 
want to remove the word cat from the list, we must move sat and vat one position to the 
left to maintain our sequential representation. In the general case, arbitrary insertion and 
deletion from arrays can be very time-consuming.

We encountered an additional difficulty with sequential representations when we 
used several ordered lists of varying sizes. By storing each list in a different array of 
maximum size, we could waste storage. However, by maintaining the lists in a single 
array, we might need to move data frequently. We observed this dilemma when we 
represented multiple stacks, queues, polynomials, and sparse matrices. These data types 
are examples of ordered lists. Polynomials are ordered by exponent, while matrices are 
ordered by rows and columns. In this chapter, we present an alternate representation for 
ordered lists that reduces the time needed for arbitrary insertion and deletion.

We can attain an elegant solution to the problem of data movement in sequential 
representations by using linked representations. Unlike a sequential representation 
where successive items of a list are located a fixed distance apart, in a linked representa
tion these items may be placed anywhere in memory. In other words, in a sequential 
representation the order of elements is the same as in the ordered list, while in a linked 
representation these two sequences need not be the same. To access elements of the list 
in the correct order with each element, we store the address, or location, of the next ele
ment in that list. Thus, associated with each list element is a node which contains both a 
data component and a pointer to the next item in the list. The pointers are often called 
links.

C provides extensive support for pointers. In Chapter 2 we observed that an array 
element, a[Z], is viewed as a pointer to the location containing the zth element of array a. 
Actually, for any type Tin C there is a corresponding type pointer-to-T. The actual value 
of a pointer type is an address of memory. The two most important operators used with 
the pointer type are:

& the address operator
* the dereferencing (or indirection) operator

If we have the declaration: 

int i, *pi ;

then i is an integer variable and pi is a pointer to an integer. If we say:

pi = &i;

then &i returns the address of i and assigns it as the value of pi. To assign a value to i we 
can say:

1 10;
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or
*pi 10;

In both cases the integer 10 is stored as the value of i. In the second case, the * in front 
of the pointer pi causes it to be dereferenced, by which we mean that instead of storing 
10 into the pointer, 10 is stored into the location pointed at by the pointer pi.

There are other operations we can do on pointers. We may assign a pointer to a 
variable of type pointer. Since a pointer is just a nonnegative integer number, C allows 
us to perform arithmetic operations such as addition, subtraction, multiplication, and 
division, on pointers. We also can determine if one pointer is greater than, less than, or 
equal to another, and we can convert pointers explicitly to integers.

The size of a pointer can be different on different computers. In some cases the 
size of a pointer on a computer can vary. For example, the size of a pointer to a char can 
be longer than a pointer to a float. C has a special value that it treats as a null pointer. 
The null pointer points to no object or function. Typically the null pointer is represented 
by the integer 0. There is a macro called NULL which is defined to be this constant. The 
macro is defined either in stddefh for ANSI C or in stdio.h for K&R C. The null pointer 
can be used in relational expressions, where it is interpreted as false. Therefore, to test 
for the null pointer in C we can say:

if (pi == NULL)
or more simply:

if dpi)

4.1.1 Pointers Can Be Dangerous

In this chapter we will see that by using pointers we can attain a high degree of flexibil
ity and efficiency. But pointers can be dangerous as well. When programming in C, it is 
a wise practice to set all pointers to NULL when they are not actually pointing to an 
object. This makes it less likely that you will attempt to access an area of memory that is 
either out of range of your program or that does not contain a pointer reference to a legi
timate object. On some computers, it is possible to dereference the null pointer and the 
result is NULL, permitting execution to continue. On other computers, the result is what
ever the bits are in location zero, often producing a serious error.

Another wise programming tactic is to use explicit type casts when converting 
between pointer types. For example:

) pi?(float
pi = malloc(sizeof(int) ); /*assign  to pi a pointer to int*/  
pf = (float *)  pi? /*casts  an int pointer to a float pointer*/

Another area of concern is that in many systems, pointers have the same size as 
type int. Since int is the default type specifier, some programmers omit the return type 
when defining a function. The return type defaults to int which can later be interpreted 
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as a pointer. This has proven to be a dangerous practice on some computers and the pro
grammer is urged to define explicit return types for functions.

4.1.2 Using Dynamically Allocated Storage

In your program you may wish to acquire space in which you will store infoiTnation. 
When you write your program you may not know how much space you will need, nor do 
you wish to allocate some very large area that may never be required. To solve this 
problem C provides a mechanism, called a heap, for allocating storage at run-time. 
Whenever you need a new area of memory, you may call a function, malloc, and request 
the amount you need. If the memory is available, a pointer to the start of an area of 
memory of the required size is returned. At a later time when you no longer need an area 
of memory, you may free it by calling another function, free, and return the area of 
memory to the system. Once an area of memory is freed, it is improper to use it. Pro
gram 4.1 shows how we might allocate and deallocate storage to pointer variables.

int i, 
float f, 
pi = (int 
pf - (float 
*pi 1024;
*pf = 3.14;
printf("an integer = %d, a float 
free(pi); 
free(pf);

pi;
*pf ; 

★ ) malloc(sizeof(int));
*) malloc(sizeof(float));

pi, *pf) ;

*

★

Program 4.1: Allocation and deallocation of pointers

The call to malloc includes a parameter that determines the size of storage 
required to hold the int or the float. The result is a pointer to the first address of a 
storage area of the proper size. The type of the result can vary. On some systems the 
result of malloc is a char *,  a pointer to a char. However, those who use ANSI C will 
find that the result is void *.  The notation {int *)  and (float *)  are type cast expressions. 
They transform the resulting pointer into a pointer to the correct type. The pointer is 
then assigned to the proper pointer variable. The free function deallocates an area of 
memory previously allocated by malloc. In some versions of C, free expects an argu
ment that is a char *,  while ANSI C expects void *.  However, the casting of the argu
ment is generally omitted in the call to free.

In Program 4.1 if we insert the line:

*pf = (float ) malloc(sizeof(float));
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immediately after the printf statement, then the pointer to the storage used to hold the 
value 3.14 has disappeared. Now there is no way to retrieve this storage. This is an 
example of a dangling reference. Whenever all pointers to a dynamically allocated area 
of storage are lost, the storage is lost to the program. As we examine programs that 
make use of pointers and dynamic storage, we will make it a point to always return 
storage after we no longer need it.

4.2 SINGLY LINKED LISTS

Linked lists are drawn as an ordered sequence of nodes with links represented as arrows 
(Figure 4.1). The name of the pointer to the first node in the list is the name of the list. 
Thus, the list of Figure 4.1 is called ptr. Notice that we do not explicitly put in the 
values of the pointers, but simply draw arrows to indicate that they are there. We do this 
to reinforce the facts that;

the nodes do not reside in sequential locations(1)
(2) the locations of the nodes may change on different runs

When we write a program that works with lists, we almost never look for a specific 
address except when we test for the end of the list.

ptr

L
>bat cat sat uat NULL

Figure 4.1 : Usual way to draw a linked list

Let us now see why it is easier to make arbitrary insertions and deletions using a 
linked list rather than a sequential list. To insert the word mat between cat and sat, we 
must:

(1)
(2)

(3)

(4)

Get a node that is currently unused; let its address be paddr.
Set the data field of this node to mat.
Set paddr's link field to point to the address found in the link field of the node con
taining cat.

Set the link field of the node containing cat to point to paddr.
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Figure 4.2 shows how the list changes after we insert mat. The dashed line out of 
the node containing cat is the old link, while the solid line shows the new link. Notice 
that when we insert mat we do not move any elements that are already in the list. Thus, 
we have overcome the need to move data, but we have the additional storage needed for 
the link field. As we will see, this is not too severe a penalty.

ptr
L

bat cat sat uat NULL*c
mat

Figure 4.2 : Insert mat after cat

Now suppose that we want to delete mat from the list. We only need to find the 
element that immediately precedes mat, which is cat, and set its link field to point to 
mat's link field (Figure 4.3). We have not moved any data, and although the link field of 
mat still points to sat, mat is no longer in the list.

ptr
L 1

bat cat nat sat uat NULL

Figure 4.3 : Delete mat from list

From this brief discussion of linked lists, we see that we need the following capabilities 
to make linked representations possible:

A mechanism for defining a node’s structure, that is, the fields it contains. We use 
self-referential structures, discussed in Section 2.2, to do this.
A way to create new nodes when we need them. The malloc function handles this 
operation.
A way to remove nodes that we no longer need. The free function handles this 
operation.

We will present several small examples to show how to create and use linked lists in C.

(1)

(2)

(3)

Example 4.1 [List of words ending in at}: To create a linked list of words, we first 
define a node structure for the list. This structure specifies the type of each of the fields.
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From our previous discussion we know that our structure must contain a character array 
and a pointer to the next node. The necessary declarations are:

*typedef struct list—node 
typedef struct list—node { 

char data[4];
list—pointer link; 
};

list—pointer;

list—pointer ptr = NULL;

These declarations contain an example of a self-referential structure. Notice that we 
have defined the pointer fist - pointer) to the struct before we defined the struct 
fist - node). C allows us to create a pointer to a type that does not yet exist because oth
erwise we would face a paradox: we cannot define a pointer to a nonexistent type, but to 
define the new type we must include a pointer to the type.

After defining the node’s structure, we create a new empty list. This is accom
plished by the statement:

list—pointer ptr = NULL;

This statement indicates that we have a new list called ptr. Remember that ptr 
contains the address of the start of the list. Since the new list is initially empty, its start
ing address is zero. Therefore, we use the reserved word NULL to signify this condition. 
We also can use an IS-EMPTY macro to test for an empty list:

#define IS—EMPTY(ptr) {!(ptr))

To create new nodes for our list we use the malloc (memory allocation) function 
provided in <alloc.h>. We would apply this function as follows to obtain a new node 
for our list:

ptr (list—pointer)malloc(sizeof(list—node));

From the available memory, malloc obtains a storage block large enough to hold 
struct list-node. We use sizeof to furnish malloc with the required block size. Since our 
only access to this block is through its starting address, we type cast the address to type 
pointer to list -node. (The type cast is unnecessary in ANSI C, but we include it here 
for portability.) We then assign this pointer to the variable ptr.

We are now ready to assign values to the fields of the node. This introduces a new 
operator, ->. If e is a pointer to a structure that contains the field name, then e->name 
is a shorthand way of writing the expression f^e).name. The -> operator is referred to 
as the structure member operator, and its use is preferred when one has a pointer to a 
struct rather than the * and dot notation.
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To place the word bat into our list we use the statements:

strcpy (ptr->data, "bat" ) ; 
ptr->link NULL;

These statements create the list illustrated in Figure 4.4. Notice that the node has a null 
link field because there is no next node in the list. □

^-address of -*  
first node

|«- p'tr->data ■» | *■  ptr->linl<

ptr

> b a t \0 NULL

Figure 4.4: Referencing the fields of a node

Example 4.2 [Two-node linked list]’. We want to create a linked list of integers. The 
node structure is defined as:

typedef 
typedef

struct list—node *list —pointer; 
struct list—node { 
int data;
list—pointer link;
} ;

list—pointer ptr = NULL;

A linked list with two nodes is created by function create2 (Program 4.2). We set 
the data field of the first node to 10 and that of the second to 20. The variable first is a 
pointer to the first node; second is a pointer to the second node. Notice that the link field 
of the first node is set to point to the second node, while the link field of the second node 
is bilJLL. The variable first, which is the pointer to the start of the list, is returned by 
create2. Figure 4.5 shows the resulting list structure. □

Example 4.3 [List insertion]’. Let ptr be a pointer to a linked list as in Example 4.2. 
Assume that we want to insert a node with a data field of 50 after some arbitrary node. 
Function insert (Program 4.3) accomplishes this task. In this function, we pass in two 
pointer variables. The first variable, ptr, is the pointer to the first node in the list. If this 
variable contains a null address (i.e., there are no nodes in the list), we want to change 
ptr so that it points to the node with 50 in its data field. This means that we must pass in 
the address of ptr. This is why we use the declaration list-pointer "^ptr. Since the 
address of the second pointer, node, does not change, we do not need to pass in its 
address as a parameter. A typical function call would be insert {&ptr, node); where ptr 
points to the start of the list and node points to the new node.
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list—pointer create2() 
{ 
/* */

second;
(list—pointer)malloc(sizeof(list—node)); 
(list—pointer)malloc(sizeof(list—node));

create a linked list with two nodes 
list—pointer first, 
first 
second
second->link = NULL; 
second->data 
first->data = 
first->link = 
return first;

20;
10; 
second;

}

Program 4.2: Create a two-node list

ptr

u 10 20 NULL

Figure 4.5 : A two-node list

The function insert uses an if • • • else statement to distinguish between empty and 
nonempty lists. For an empty list, we set temp's link field to NULL and change the value 
of ptr to the address of temp. For a nonempty list, we insert the temp node between node 
and the node pointed to by its link field. Figure 4.6 shows the list from Figure 4.5 after 
we insert temp between the first and second nodes.

Notice that we have added a new macro, IS-FULL, that allows us to determine if 
we have used all available memory. This macro is used in conjunction with malloc, 
which returns NULL if there is no more memory. It is defined as;

#define IS—FULL(ptr) {!(ptr)) □

Example 4.4 [List deletion}-. Deleting an arbitrary node from a list is slightly more com
plicated than insertion because deletion depends on the location of the node. Assume 
that we have three pointers; ptr points to the start of the list, node points to the node that 
we wish to delete, and trail points to the node that precedes it. Figures 4.7 and 4.8 show 
two examples. In Figure 4.7, the node to be deleted is the first node in the list. This 
means that we must permanently change the starting address of ptr. In Figure 4.8, since 
node is not the first node, we simply change the link field in trail to point to the link field
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*ptr, list—pointer node)

insert a new node with data 50 into the list
*/

void insert(list—pointer 
{ 
/*  
ptr after node

list—pointer temp;
temp = (list—pointer)malloc{sizeof(list—node)); 
if (IS_FULL(temp)){

fprintf{stderr, "The memory is full\n"); 
exit(1);

}
temp->data = 50;
if (*ptr)  { 

temp->link 
node->link

node—>link; 
temp;

}
else { 

temp->link - 
*ptr = temp;

NULL ;

}
}

Program 4.3: Simple insert into front of list

ptr 
h 

r*

node

10 20 MULL

r 
tenp

50►

>

Figure 4.6 : Two node list after the function call insert(&ptr, ptr);

in node.
An arbitrary node is deleted from a linked list by function delete (Program 4.4). In 

addition to changing the link fields, or the value of delete also returns the space that 
was allocated to the deleted node to the system memory. To accomplish this task, we use 
free. □

Example 4.5 [Printing out a list}". Program 4.5 prints the data fields of the nodes in a
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ptr node

11
trail NULL ptr 

i

10 50 20 NULL 50 20 NULL

(a) before deletion (b) after deletion

Figure 4.7 : List after the function call deleTe(&ptr, NULL, ptr);

ptr tra i1 node 
i

ptr 
i

10 50 20 NULL 10 20 NULL

11

(a) before deletion (b) after deletion

Figure 4.8 : List after the function call delete(&ptr, ptr, ptr->link);

void delete{list—pointer

{ 
/*  
ptr is the head of the list 

if (trail)

*ptr, list—pointer trail, 
list—pointer node)

trail->link = node->link; 
else

*ptr
free(node);

delete node from the list, trail is the preceding node

(*ptr )->link;

*/

}

Program 4.4: Deletion from a list 

list. To do this we first print out the contents of ptr's data field, then we replace ptr with 
the address in its link field. We continue printing out the data field and moving to the 
next node until we reach the end of the list. □
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void print—list(list—pointer ptr) 
{

printf{"The list contains:
for (; ptr; ptr = ptr->link) 

printf(
printf("\n") ;

•’) ;

II Q.•€4d", ptr->data) ;

}

Program 4.5: Printing a list

EXERCISES

1.
2.

3.

4.
5.

6.

7.

8.

Rewrite delete (Program 4.4) so that it uses only two pointers, ptr and trail.
Assume that we have a list of integers as in Example 4.2. Create a function that 
searches for an integer, num. If num is in the list, the function should return a 
pointer to the node that contains num. Otherwise it should return NULL.
Write a function that deletes a node containing a number, num, from a list. Use the 
search function (Exercise 2) to determine if num is in the list.
Write a function, length, that counts the number of nodes in a list.
Let p be a pointer to the first node in a singly linked list. Write a procedure to 
delete every other node beginning with node p (i.e., the first, third, fifth, etc. nodes 
of the list are deleted). What is the time complexity of your algorithm?

Let X = (xi,X2, • . •,.x„) and y = (yi,y2’ • • ‘^ym) be two linked lists. Assume that 
in each list, the nodes are in nondecreasing order of their data field values. Write 
an algorithm to merge the two lists together to obtain a new linked list z in which 
the nodes are also in this order. Following the merge, x and y do not exist as indi
vidual lists. Each node initially in x or y is now in z. No additional nodes may be 
used. What is the time complexity of your algorithm?

Let list I = (xy, X2, • • • , x„) and list 2 = (yi, y 2^ ' ’ ’ , ym)- Write a function to 
merge the two lists together to obtain the linked list, list^ - (x ।, y 1, X2, y2^ ' ’'

+ H • ,x„) if m < n; and ^3 = (xi,yi,X2,y2, ‘ ‘ + h ,
x^) if AH > n.

It is possible to traverse a linked list in both directions (i.e., left to right and res
tricted right-to-left) by reversing the links during the left-to-right traversal. A pos
sible configuration for the list, ptr, under this scheme is given in Figure 4.9. The 
variable ptr points to the node currently being examined and left to the node on its 
left. Note that all nodes to the left of ptr have their links reversed.
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NULL

left ptr

1 I
> NULL

Figure 4.9: Configuration for reversing links

(a)

(b)

Write a function to move ptr to the right n nodes from a given position 
p?r).
Write a function to move ptr to the left n nodes from any given position 
(left, ptr).

4.3 DYNAMICALLY LINKED STACKS AND QUEUES

Previously we represented stacks and queues sequentially. Such a representation proved 
efficient if we had only one stack or one queue. However, when several stacks and 
queues coexisted, there was no efficient way to represent them sequentially. Figure 4.10 
shows a linked stack and a linked queue. Notice that the direction of links for both the 
stack and the queue facilitate easy insertion and deletion of nodes. In the case of Figure 
4.10(a), we can easily add or delete a node from the top of the stack. In the case of Fig
ure 4.10(b), we can easily add a node to the rear of the queue and add or delete a node at 
the front, although we normally will not add items to the front of a queue.

top

I element link

—K NULL

(a) Linked Stack

front

1
rear

e lenent link i
MULL

(b) linked queue

Figure 4.10 : Linked stack and queue

If we wish to represent n stacks simultaneously, we begin with the declarations:
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#define MAX—STACKS 10 /*maximum  number of stacks*/  
typedef struct { 

int key; 
/* other fields 
} element;

typedef struct stack 
typedef struct stack { 

element item; 
stack—pointer link; 
};

*/

*stack—pointer;

stack—pointer top[MAX—STACKS];

We assume that the initial condition for the stacks is:

top [z ] = NUm Q<i < MAX-STACKS

and the boundary conditions are:

fo/? [/ ] = NULL iff the zth stack is empty
and

IS - FULL (temp) iff the memory is full

Functions add (Program 4.6) and delete (Program 4.7) add and delete items 
to/from a stack. The code for each is straightforward. In both functions, we pass in the 
address of top so that top will point to the element that resides at the top of the stack. 
Function add creates a new node, temp, and places item in the item field and top in the 
link field. The variable top is then changed to point to temp. A typical function call 
would be add(&top [stack-no },item}. Function delete returns the item and changes top 
to point to the address contained in its link field. The removed node is then returned to 
system memory. A typical function call would be item = delete (&top [stack-no ]);

To represent m queues simultaneously, we begin with the declarations:

#define MAX-QUEUES 10 / 
typedef struct queue 
typedef struct queue { 

element item; 
queue—pointer link; 
};

★

*queue—pointer;
maximum number of queues */

queue—pointer front[MAX—QUEUES] , rear[MAX—QUEUES];

We assume that the initial condition for the queues is:

front[i] = NULL, ()<i< MAX-QUEUES
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void add{stack—pointer 
{ 
/*

•k top, element item)

add an element to the top of the stack 
stack-pointer temp =

(stack—pointer) malloc(sizeof (stack));
if (IS-FULL(temp)) { 

fprintf(stderr, 
exit(1);

*/

"The memory is full\n");

}

}
temp->item = item; 
temp->link = 
*top t emp ;

* top;

Program 4.6: Add to a linked stack

*element delete{stack—pointer 
delete an element from the stack 
stack—pointer temp = 
element item;
if (IS-EMPTY(temp)) { 

fprintf(stderr, 
exit(1);

top) {
/* */

* top;

"The stack is empty\n");

}

} 
item
*top = temp->link; 
free(temp);
return item;

temp->Item;

Program 4.7: Delete from a linked stack

and the boundary conditions are:

front[i] = NULL iff the /th queue is empty
and

IS-FVLL{temp} iff the memory is full
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Functions addq (Program 4.8) and deleteq (Program 4.9) implement the add and 
delete operations for multiple queues. Function addq is more complex than add because 
we must check for an empty queue. If the queue is empty, we change front to point to 
the new node; otherwise we change rear's link field to point to the new node. In either 
case, we then change rear to point to the new node. Function deleteq is similar to delete 
since we are removing the node that is currently at the start of the list. Typical function 
calls would be addq{&front, &rear, itemf and item = deleteq{&front};.

The solution presented above to the n-stack, m-queue problem is both computa
tionally and conceptually simple. We no longer need to shift stacks or queues to make 
space. Computation can proceed as long as there is memory available. Although we 
need additional space for the link field, the use of linked lists makes sense because the 
overhead incurred by the storage of the links is overridden by (1) the ability to represent 
lists in a simple way, and (2) the reduced computing time required by linked representa
tions.

EXERCISES

1.

2.

3.

A palindrome is a word or phrase that is the same when spelled from the front or 
the back. For example, "reviver" and "Able was 1 ere I saw Elba" are both palin
dromes. We can determine if a word or phrase is a palindrome by using a stack. 
Write a C function that returns TRUE if a word or phrase is a palindrome and 
FALSE if it is not.
We can use a stack to determine if the parentheses in an expression are properly 
nested. Write a C function that does this.
Consider the hypothetical data type X2. X 2 is a linear list with the restriction that 
while additions to the list may be made at either end, deletions can be made at one 
end only. Design a linked list representation for X 2. Write addition and deletion 
functions for X2. Specify initial and boundary conditions for your representation.

4.4 POLYNOMIALS

4.4.1 Representing Polynomials As Singly Linked Lists

Let us tackle a reasonably complex problem using linked lists. This problem, the mani
pulation of symbolic polynomials, has become a classic example of list processing. As 
in Chapter 2, we wish to be able to represent any number of different polynomials as 
long as memory is available. In general, we want to represent the polynomial:

A(x) = a^_iX ^0
+ * ' * +62

where the are nonzero coefficients and the e, are nonnegative integer exponents such 
that em-\ > ^m-2 > ' '' > ^1 > ^0 - 0. We represent each term as a node containing
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★void addq(queue—pointer front, queue—pointer 
element item)

*rear,

{
/* add an element to the rear of the queue 

queue—pointer temp =
(queue—pointer) malloc(sizeof(queue));

if (IS—FULL(temp)) {
fprintf(stderr, "The memory is full\n");
exit(1);

*/

}
temp->item = item;
temp->link = NULL;
if (*front)  (*rear )->link = temp;
else *front  = temp;
*rear

front = 
= t emp;

Program 4.8: Add to the rear of a linked queue

element deleteq(queue—pointer 
{ 
/*

front)

delete an element from the queue 
queue—pointer temp = *front;
element item;
if (IS—EMPTY(* front)) { 

fprintf(stderr, 
exit(1);

*/

"The queue is emptyXn");

}

★

*

temp->item;
★

} 
item
front= temp->link; 
free(temp);
return item;

}

Program 4.9: Delete from the front of a linked queue 

coefficient and exponent fields, as well as a pointer to the next term. Assuming that the 
coefficients are integers, the type declarations are:
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typedef struct poly—node *poly —pointer; 
typedef struct poly—node {

int coef;
int expon;
poly—pointer link;
};

poly—pointer a,b,d;

We draw poly-nodes as:

coef expon link

Figure 4.11 shows how we would store the polynomials

a = 3x“* + 2x^ + 1
and

b = 8x‘‘* -3x“’ + lOx*̂

ak
3

b

1
8

14

14 -3

(a)

10

>■

10

NULL

NULL

>

>

2 8 1 0

> 6

(b)

Figure 4.11 : Polynomial representation

4.4.2 Adding Polynomials

To add two polynomials, we examine their terms starting at the nodes pointed to by a and 
b. If the exponents of the two terms are equal, we add the two coefficients and create a 
new term for the result. We also move the pointers to the next nodes in a and b. If the 
exponent of the current term in a is less than the exponent of the current term in b, then 
we create a duplicate term of b, attach this term to the result, called d, and advance the 
pointer to the next term in b. We take a similar action on a if a->expon > b—>expon. 
Figure 4.12 illustrates this process for the polynomials represented in Figure 4.11.

Each time we generate a new node, we set its coef and expon fields and append it 
to the end of d. To avoid having to search for the last node in d each time we add a new 
node, we keep a pointer, rear, which points to the current last node in d. The complete



Polynomials 153

3

11

14

t 
a

14

t 
b

14

-3 10 10

NULL

t 
d

(a) a — > export == b — > export

14

14 -3

T 
a

10 10

11 14 -3 10

t 
d

NULL

NULL

NULL

NULL

NULL

(b) a —> export < b —> export

14 NULL

14 -3

t
a

10 10 NULL

11 14 -3 10 NULL

2 8 1 0

8 6

3 2 8 > 1 0

8

3

8

t 
b

6

> 2 8 1

2

0

6

t 
b

8

t 
d

(c) a -> export > b -> export

Figure 4.12 : Generating the first three terms of d = a +b 

addition algorithm is specified by padd (Program 4.10). To create a new node and 
append it to the end of J, padd uses attach (Program 4.11). To make things work out 
neatly, initially we give d a single node with no values, which we delete at the end of the 
function. Although this is somewhat inelegant, it avoids more computation.

This is our first complete example of list processing, so you should study it care
fully. The basic algorithm is straightforward, using a streaming process that moves 
along the two polynomials, either copying terms or adding them to the result. Thus, the
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poly—pointer padd(poly—pointer a, poly—pointer b) 
{ 
/* return a polynomial which is the sum of a and b 

poly—pointer front, rear, temp;
int sum; 
rear
if (IS-FULL(rear)) {

fprintf (stderr, "The memory is fullin'’); 
exit(1);

(poly—pointer)malloc(sizeof(poly—node));

} 
front 
while (a && b)

switch (COMPARE(a->expon,b->expon)) { 
case -1: /a->expon < b->expon /

rear;

a—>expon < b—>expon 
attach(b->coef,b->expon,&rear) ; 
b 
break;

case 0: /*  
sum = 
if (sum) attach(sum,a->expon,&rear); 
a = a—>link; b 

case 1: /'^

b->link;

a->expon = b->expon 
a->coef + b->coef;

•>link; b = b—>link; break; 
a->expon > b->expon */

attach(a->coef,a->expon,&rear) ; 
a a->link;

}

*/

}
copy rest of list a and then list b 

for (; a; a 
for (; b; b = b->link) attach(b->coef,b->expon,&rear); 
rear->link 
/*

a“>link) attach(a->coef,a->expon,&rear) ;

NULL;
delete extra initial node 

temp = front; front 
return front;

■^ /
front->link; free(temp);

Program 4.10: Add two polynomials

while loop has three cases depending on whether the next pair of exponents are =, < , or 
>. Notice that there are five places where we create a new term, justifying our use of 
function attach.

Analysis of padd\ To determine the computing time of padd, we first determine which 
operations contribute to the cost. For this algorithm, there are three cost measures:
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void attach(float coefficient, int exponent, poly—pointer 
ptr)★

{

/* create a new node with coef = coefficient and expon = 
exponent, attach it to the node pointed to by ptr. 
updated to point to this new node 

poly—pointer temp; 
temp
if (IS-FULL(temp)) { 

fprintf(stderr, 
exit(1);

*/

(poly—pointer)malloc(sizeof(poly—node));

"The memory is fullin’’);

}
temp->coef = coefficient; 
temp->expon = exponent; 
(*ptr)->link  = temp;
*ptr temp;

Program 4.11: Attach a node to the end of a list

(1)
(2)
(3)

coefficient additions
exponent comparisons
creation of new nodes for d

ptr is

If we assume that each of these operations takes a single unit of time if done once, 
then the number of times that we perform these operations determines the total time 
taken by padd. This number clearly depends on how many terms are present in the poly
nomials a and b. Assume that a and b have m and n terms, respectively:

1-^

B{x') = ' -h ■ • ■ -I- b^x^''

where bi 0 and > • • • 
of coefficient additions varies as:

^0 > 0, /„_i > • • • > /o 0. Then clearly the number

0 < number of coefficient additions < min{w,z2)

The lower bound is achieved when none of the exponents are equal, while the upper is 
achieved when the exponents of one polynomial are a subset of the exponents of the 
other.

}

— I + ■ ■ ■ +
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As for the exponent comparisons, we make one comparison on each iteration of 
the while loop. On each iteration, either a or b or both move to the next term. Since the 
total number of terms is m + n, the number of iterations and hence the number of 
exponent comparisons is bounded by m -i- n. You can easily construct a case when m 4- n 
— 1 comparisons will be necessary, for example, m = n and

Jm-1 > ’m-2 > fm-2 >

The maximum number of terms in J is m -i- n, and so no more than m -i- n new terms are 
created (this excludes the additional node that is attached to the front of d and later 
removed).

In summary, the maximum number of executions of any statement in padd is 
bounded above by m + n. Therefore, the computing time is O(m -i- n). This means that if 
we implement and run the algorithm on a computer, the time it takes will be c j m -i- C2n + 

where C|, C2, C3 are constants. Since any algorithm that adds two polynomials must 
look at each nonzero term at least once, padd is optimal to within a constant factor. □

4.4.3 Erasing Polynomials

The use of linked lists is well suited to polynomial operations. We can easily imagine 
writing a collection of functions for input, output, addition, subtraction, and multiplica
tion of polynomials using linked lists as the means of representation. A hypothetical 
user who wishes to read in polynomials £z(r), /?(%), and d{x) and then compute e(x) = 
a (x) * b (x) + d (x) would write his or her main function as:

poly—pointer a, b, d. e

a = read—poly();
b = read—poly();
d = read—poly(); 
temp = pmult{a,b); 
e = padd(temp,d); 
print—poly(e);

If our user wishes to compute more polynomials, it would be useful to reclaim the nodes 
that are being used to represent temp (r) since we created temp (x) only to hold a partial 
result for d {x}. By returning the nodes of temp {x\ we may use them to hold other poly
nomials. One by one, erase (Program 4.12) frees the nodes in temp.
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void erase(poly—pointer 
{ 
/*

ptr)

erase the polynomial pointed to by ptr 
poly—pointer temp;
while (*ptr)  { 

temp = 
*ptr =
free(temp);

*/

Program 4.12: Erasing a polynomial

4.4.4 Representing Polynomials As Circularly Linked Lists

We can free all the nodes of a polynomial more efficiently if we modify our list structure 
so that the link field of the last node points to the first node in the list (See Figure 4.13). 
We call this a circular list. A singly linked list in which the last node has a null link is 
called a chain.

ptr —► 14

*ptr;
(*ptr)->link;

}
}

c
3 > 2 8 > 1 0

Figure 4.13 : Circular representation of ptr = 3x + 2%^ + 1

As we indicated earlier, we free nodes that are no longer in use so that we may 
reuse these nodes later. We can meet this objective, and obtain an efficient erase algo
rithm for circular lists, by maintaining our own list (as a chain) of nodes that have been 
"freed." When we need a new node, we examine this list. If the list is not empty, then 
we may use one of its nodes. Only when the list is empty do we need to use malloc to 
create a new node.

Let avail be a variable of type poly -pointer that points to the first node in our list 
of freed nodes. Henceforth, we call this list the available space list or avail list. Ini
tially, we set avail to NULL. Instead of using malloc and free, we now use get-node 
(Program 4.13) and ret-node (Program 4.14).
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poly—pointer get—node(void) 
/*  provide a node for use 
{

*/

poly—pointer node;
if (avail) { 

node = avail; 
avail = avail->link;

}
else {

node
if (IS-FULL(node)) {

fprintf(stderr, 
exit(1);

(poly—pointer) malloc(sizeof(poly—node));

"The memory is full\n");

)
return node;

Program 4.13: get-node function

void ret—node(poly—pointer ptr) 
{ 
/* return a node to the available list 

ptr->link = avail;
avail = ptr;

*/

Program 4.14: ret-node function

We may erase a circular list in a fixed amount of time independent of the number 
of nodes in the list using cerase (Program 4.15). Figure 4.14 shows the changes involved 
in erasing a circular list.

A direct changeover to the structure of Figure 4.13 creates problems when we 
implement the other polynomial operations since we must handle the zero polynomial as 
a special case. To avoid this special case, we introduce a head node into each polyno
mial, that is, each polynomial, zero or nonzero, contains one additional node. The expon 
and coef fields of this node are irrelevant. Thus, the zero polynomial has the representa
tion of Figure 4.15(a), while a(x) = 
4.15(b).

+ 2x^ + 1 has the representation of Figure

}

}

}



Polynomials 159

void cerase(poly—pointer *ptr)

erase the circular list ptr 
poly—pointer temp;
if (*ptr)  { 

temp
(*ptr)->link  = avail; 
avail = temp;
*ptr - NULL;

*/

Program 4.15: Erasing a circular list

aua i 1

------

ptr

tenp

NULL

(*ptr)->link;

}

c r
*

t

r
auail

Figure 4,14 : Returning a circular list to the avail list

For the circular list with head node representation, we may remove the test for 
{'^ptr} from cerase. The only changes that we need to make to padd are:

(1)
(2)
(3)

Add two variables, starta = a and startb = b.
Prior to the while loop, assign a ~ a->link and b = b—>link.

Change the while loop to while {a ’= starta && b ’= startb}.
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3 14

(a) Zero polynomial

2 8 1 0

(b)3x’‘‘+2!e« + l

Figure 4.15 : Polynomial representations

(4)
(5)
(6)

(7)

Change the first for loop to for (; a != starta', a = a->Unk).
Change the second for loop to for (; b ’= startb; b = b->linkf
Delete the lines:

rear-> link = NULL;
/*  delete extra initial node

Change the lines:

temp = front;
front =front->link; 
free{tempf.

to
rear->link - front;

Thus, the algorithm stays essentially the same, and we now handle zero polynomials in 
the same way as nonzero polynomials.

We may further simplify the addition algorithm if we set the expon field of the 
head node to -1. Now after we have examined all the nodes of a, starta = a and 
starta->expon = -1. Since -1 < b->expon, we can copy the remaining terms of b by 
further executions of the switch statement. The same is true if we examine all the nodes 
of b before those of a. This means that we no longer need the additional code to copy 
the remaining terms. The final algorithm, cpadd, takes the simple form given in Program 
4.16.
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poly—pointer cpadd(poly—pointer a, poly—pointer b) 
{ 
/ polynomials a and b are singly linked circular lists 
with a head node. Return a polynomial which is the sum 
of a and b 

poly—pointer starta, d, 
int sum, done 
starta - a; 
a 
b
d = get—node() ; 
d->expon = -1; lastd 
do { 

switch (COMPARE(a->expon, b->expon)) { 
* a->expon < b->expon */

*/
lastd;

FALSE;
/*

a->link; 
b->link;

record start of a 
skip head node for a and b*/

/*  
d;

get a head node for sum

}

case -1: /*  a->expon < b->expon
attach (b->coef , b“>expon, Selastd) ; 
b
break;

/*

b->link;

b->expon 
done

case 0: /*  a->expon -
if (starta == a) 
else { 

sum = a->coef + b->coef; 
if (sum) attach(sum,a—>expon,&lastd); 
a = a->link; b = b->link;a->link; b

TRUE;

} 
break;

b->expon */case 1: /*  a->expon
attach(a->coef, a->expon,&lastd); 
a = a—>link;

}
} while (!done); 
lastd->link = d; 
return d;

Program 4.16: Adding circularly represented polynomials

4.4.5 Summary

Let us review what we have done so far. We have introduced the concepts of a singly 
linked list, a chain, and a singly linked circular list. Each node on one of these lists
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consists of exactly one link field and at least one other field.
In dealing with polynomials, we found it convenient to use circular lists. Another 

concept we introduced was an available space list. This list consisted of all nodes that 
had been used at least once and were not currently in use. By using the available space 
list and get-node, ret-node, and cerase, it became possible to erase circular lists in con
stant time, and also to reuse all nodes not currently in use. As we continue, we shall see 
more problems that call for variations in node structure and list representation because of 
the operations we wish to perform.

EXERCISES

1.

2.

3.

4.
5.
6.
7.

I ’Write a function, pread, that reads in n pairs of coefficients and exponents, (coefi, 
expofti), 0< i < n of a polynomial, x. Assume that exporij^i > expotii, < n-2. 
and that Q, Q < i < n. Show that this operation can be performed in O(n) 
time.
Let a and be pointers to two polynomials. Write a function to compute the pro
duct polynomial d = a^b. Your function should leave o and b unaltered and 
create J as a new list. Show that if n and m are the number of terms in a and b, 
respectively, then this multiplication can be carried out in or time.
Let (3 be a pointer to a polynomial. Write a function, peval, to evaluate the polyno
mial a at point x, where x is some floating point number.
Rewrite Exercise 1 using a circular representation for the polynomial.
Rewrite Exercise 2 using a circular representation for the polynomial.
Rewrite Exercise 3 using a circular representation for the polynomial.
§ [Programming project] Design and build a linked allocation system to represent 
and manipulate polynomials. You should use circularly linked lists with head 
nodes. Each term of the polynomial will be represented as a node, using the fol
lowing structure:

coef expon link

In order to erase polynomials efficiently, use the available space list and associated 
functions discussed in this section.

Write and test the following functions:

(a) pread. Read in a polynomial and convert it to its circular representation. 
Return a pointer to the head node of this polynomial.
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(b) 
(c) 
(d) 
(e) 

(f)

(g)

pwrite. Output the polynomial using a form that clearly displays it.
padd. Compute d = a + b. Do not change either a or b.
psub. Compute d = a-b. Do not change either a or b.

pmult. Compute d = a'^b. Do not change either a or b.
eval. Evaluate a polynomial at some point, tz, where a is a floating point con
stant. Return the result as a floating point.
perase. Return the polynomial represented as a circular list to the available 
space list.

4.5 ADDITIONAL LIST OPERATIONS

4.5.1 Operations For Chains

It is often necessary, and desirable, to build a variety of functions for manipulating 
singly linked lists. Some that we have seen already are get-node and ret-node, which 
get and return nodes to the available space list. Inverting (or reversing) a chain (Program 
4.17) is another useful operation. This routine is especially interesting because we can 
do it "in place” if we use three pointers. We use the following declarations:

typedef struct list—node 
typedef struct list—node { 

char data;
list—pointer link; 
) ;

★ list—pointer;

Try out this function with at least three examples, an empty list and lists of one and 
two nodes, so that you understand how it works. For a list of length > 1 nodes, the while 
loop is executed length times and so the computing time is linear or O(length).

Another useful function is one that concatenates two chains, ptr\ and ptr2 (Pro
gram 4.18). The complexity of this function is O(length of list ptri). Since this function 
does not allocate additional storage for the new list, ptri also contains the concatenated 
list. (The exercises explore a concatenation function that does not alter ptri.)

4.5.2 Operations For Circularly Linked Lists

Now let us take another look at circular lists like the one in Figure 4.16. Suppose we 
want to insert a new node at the front of this list. We have to change the link field of the 
node containing This means that we must move down the entire length of a until we 
find the last node. It is more convenient if the name of the circular list points to the last 
node rather than the first (Figure 4.16). Now we can write functions that insert a node at 
the front (Figure 4.17) or at the rear of a circular list in a fixed amount of time. To insert
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list—pointer invert(list—pointer lead) 
{ 
/* invert the list pointed to by lead 

list-pointer middle,trail;
middle
while (lead) { 

trail = middle; 
middle 
lead -
middle->link

NULL ;

= lead; 
lead->link;

trail;

*/

}
return middle;

}

Program 4.17: Inverting a singly linked list

list—pointer concatenate(list—pointer ptrl, 
list—pointer ptr2)

produce a new list that contains the list ptrl followed
{ 
/*  
by the list ptr2. The list pointed to by ptrl is changed 
permanently */

list—pointer temp;
if (IS—EMPTY(ptrl)) return ptr2; 
else {

if (!IS—EMPTY(ptr2)) { 
for (temp = ptrl; temp->link; temp temp->link)

temp->link = ptr2;
)
return ptrl;

}
}

Program 4.18: Concatenating singly linked lists 

node at the rear, we only need to add the additional statement = node to the else 
clause of insert-front (Program 4.19).
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a
>

X 1 > *2 > X 3

Figure 4.16: Example circular list

>
X 1 > *2 X 3 4 a

Figure 4.17: Pointing to the last node of a circular list

As a last example of a simple function for circular lists, we write a function (Pro
gram 4.20) that determines the length of such a list.

void insert—front(list—pointer 
/*
where ptr is the last node in the list 
{

*ptr, list—pointer node) 
insert node at the front of the circular list ptr,

*/

if (IS—EMPTY(*ptr )) { 
/* list is empty, change ptr to point to new entry

*ptr = node;
node->link = node;

*/

}

}
else { 
/*

}

list is not empty, add new entry at front 
node->link
(*ptr)->link  = node;

(*ptr)->link;

Program 4.19: Inserting at the front of a list

*/
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int length(list—pointer ptr) 
{ 
/* find the length of the circular list ptr 

list—pointer temp;
int count = 0;
if (ptr) {

temp = ptr;
do {

count++;
temp = temp“>link;

} while {temp != ptr);

*/

}
return count;

)

Program 4.20: Finding the length of a circular list

EXERCISES

1. Create a function that searches for an integer, num, in a circularly linked list. The 
function should return a pointer to the node that contains num if num is in the list 
and NULL otherwise.

2. Write a function that deletes a node containing a number, num, from a circularly 
linked list. Your function should first search for num.

3. Write a function to concatenate two circular lists together. Assume that the 
pointer to each such list points to the last node. Your function should return a 
pointer to the last node of the concatenated circular list. Following the concatena
tion, the input lists do not exist independently. What is the time complexity of 
your function?

4. Write a function to reverse the direction of pointers in a circular list.

4.6 EQUIVALENCE RELATIONS

Let us put together some of the concepts on linked and sequential representations to 
solve a problem that arises in the design and manufacture of very large-scale integrated 
(VLSI) circuits. One of the steps in the manufacture of a VLSI circuit involves exposing 
a silicon wafer using a series of masks. Each mask consists of several polygons. 
Polygons that overlap electrically are equivalent and electrical equivalence specifies a 
relationship among mask polygons. This relation has several properties that it shares 
with other equivalence relations, such as the standard mathematical equals. Suppose that 
we denote an arbitrary equivalence relation by the symbol = and that:
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(1)

(2)

(3)

For any polygon x, x that is, x is electrically equivalent to itself. Thus, = is 
reflexive.
For any two polygons, x and y, if x =y then y =x. Thus, the relation = is sym
metric.
For any three polygons, x, and z, if x = y and y = z then x = z. For example, if x 
and y are electrically equivalent and y and are also equivalent, then x and z are 
also electrically equivalent. Thus, the relation = is transitive.

Definition: A relation, =, over a set, S, is said to be an equivalence relation over S iff\\. is 
symmetric, reflexive, and transitive over S. □

Examples of equivalence relations are numerous. For example, the "equal to" (=) 
relationship is an equivalence relation since

(1)
(2)
(3)

X = X

X = y implies y = x
X = y and y = z implies that x = z

We can use an equivalence relation to partition a set S into equivalence classes 
such that two members x and y of S are in the same equivalence class iffx y. For exam
ple, if we have twelve polygons numbered 0 through 11 and the following pairs overlap:

0 = 4, 3= 1, 6= 10, 8 = 9. 7 = 4, 6 = 8, 3 = 5, 2= 11, 11 =0

then, as a result of the reflexivity, symmetry, and transitivity of the relation s, we can 
partition the twelve polygons into the following equivalence classes:

{0, 2,4,7, 11); {1,3,5); {6, 8,9, 10)

These equivalence classes are important because they define a signal net that we can use 
to verify the correctness of the masks.

The algorithm to determine equivalence works in two phases. In the first phase, 
we read in and store the equivalence pairs <z, j >. In the second phase we begin at 0 and 
find all pairs of the form <0, j>, where 0 and j are in the same equivalence class. By 
transitivity, all pairs of the form <j, k> imply that k is in the same equivalence class as 
0. We continue in this way until we have found, marked, and printed the entire 
equivalence class containing 0. Then we continue on.

Our first design attempt appears in Program 4.21. Let m and n represent the 
number of related pairs and the number of objects, respectively. We first must figure out 
which data structure we should use to hold these pairs. To determine this, we examine 
the operations that are required. The pair <Z, j > is essentially two random integers in the 
range 0 to n-1. Easy random access would dictate an array, say pairs[n][m]. The /th 
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row would contain the elements, 7, that are paired directly to / in the input. However, this 
could waste a lot of space since very few of the array elements would be used. It also 
might require considerable time to insert a new pair, <i, k>, into row i since we would 
have to scan the row for the next free location or use more storage.

void equivalence() 
{

i, j > ;

initialize;
while (there are more pairs) { 

read the next pair 
process this pair;

}
initialize the output;
do

output a new equivalence class; 
while (not done);

}

Program 4.21: First pass at equivalence algorithm

These considerations lead us to a linked list representation for each row. Our node 
structure requires only a data and a link field. However, since we still need random 
access to the /th row, we use a one-dimensional array, seq [n J, to hold the head nodes of 
the n lists. For the second phase of the algorithm, we need a mechanism that tells us 
whether or not the object, /, has been printed. We use the array out [n ] and the constants 
TRUE and FALSE for this purpose. Our next refinement appears in Program 4.22.

Let us simulate this algorithm, as we have developed it thus far, using the previous 
data set. After the while loop is completed the lists resemble those appearing in Figure 
4.18. For each relation / = 7, we use two nodes. The variable seq [/] points to the list of 
nodes that contains every number that is directly equivalent to / by an input relation.

In phase two, we scan the seq array for the first /, 0 < / < n, such that outli] = 
TRUE. Each element in the list seq [/] is printed. To process the remaining lists which, 
by transitivity, belong in the same class as /, we create a stack of their nodes. We do this 
by changing the link fields so that they point in the reverse direction. Program 4.23 con
tains the complete equivalence algorithm.

#include <stdio.h>
#include <alloc.h>
#define
#define
#define
#define

MAX-SIZE 24
IS—FULL(ptr) (!(ptr))
FALSE 0
TRUE 1
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void equivalence() 
{

i, j > ;

initialize seq to NULL and out to TRUE; 
while (there are more pairs) { 

read the next pair, 
put j on the seq[i] list;
put i on the seq[j] list;

}
for (i = 0; i < 

if (out [i]) { 
out[i] 
output this equivalence class;

0; n; i++)

FALSE;

}
}

Program 4.22: A more detailed version of the equivalence algorithm

[0] ti) [21 C3] [41 [51 [6] [71 C81 19] [10] til]

seq

data

link

11 11

MULL MULL NULL NULL NULL

6

NULL

3 5 7 3 8 4 6 8 0

data 104 1 0 9 2

link NULL NULL NULL NULL NULL NULL

Figure 4.18 : Lists after pairs are input

typedef struct node *node —pointer; 
typedef struct node {

int data;
node—pointer link; 
};

void main(void) 
{

short int out[MAX—SIZE];
node—pointer seq[MAX—SIZE];
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node—pointer x,y,top; 
int i,j,n;

printf("Enter the size ( 
scanf( 
for (i = 0; i 
/*

%d) ", MAX-SIZE) ;
II Q.•«d", &n) ;

i + +) { 
initialize seq and out 
out[i] = TRUE; seq[i]

n;

TRUE ; NULL ;
}

/★ Phase 1: Input the equivalence pairs: */  
printf("Enter a pair of numbers (-1 -1 to quit): 
scanf("%d%d", &i , &j ) ;
while (i

X
if (IS-FULL(x)) {

fprintf(stderr,"The memory is full\n");
exit(1);

Phase 1: Input the equivalence pairs:

0) {
(node—pointer)malloc(sizeof(node));

x->link = seq[i];

}

seqEi]
(node—pointer)malloc(sizeof(node));

} 
x->data = j;
X
if (IS-FULL(x)) {

fprintf(stderr, "The memory is full\n"); 
exit(1);

}
x->data = i; x->link = seq[j];
printf("Enter a pair of numbers (-1 -1 to quit): 
scanf("%

1 ; seq[j]
") ;

d%d",&i,&j);

Phase 2: output the equivalence classes 
for (i =0; i < n; i++)
/■^

i < 
if (out[i]) { 

printf("\nNew class: 
out[i] - FALSE; /*  
X = seq[i]; 
for {;;} { 

while (x) { 
j 
if (out[j]) {

printf("%5d",j); 
y = x->link; x-;

n;

%5d",i) ;
FALSE; /*  set class to false 

top = NULL; /

/
x->data;

•k

•k initialize stack 
find rest of class 
process list

■^ /

x->link;
out[j]

link = 1
I = FALSE; 
top; top : X y;

else X X—■ link;
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}
if (1 top) break;
X = seq[top->data]; top top->link; /*unstack* /

}
}

}

Program 4.23: Program to find equivalence classes

Analysis of the equivalence program: The initialization of seq and out takes O(n) time. 
Inputting the equivalence pairs in phase 1 takes a constant amount of time per pair. 
Hence, the total time for this phase is O(m +n) where m is the number of pairs input. In 
phase 2, we put each node onto the linked stack at most once. Since there are only 2m 
nodes, and we execute the for loop n times, the time for this phase is 0{m + n\ Thus, 
the overall computing time is O(m + m). Any algorithm that processes equivalence rela
tions must look at all m equivalence pairs and at all n polygons at least once. Thus, there 
is no algorithm with a computing time less than O(m+H). This means that the 
equivalence algorithm is optimal to within a constant factor. Unfortunately, the space 
required by the algorithm is also O(m 4- n). In Chapter 5, we look at an alternate solu
tion to this problem that requires only Q{n} space. □

4.7 SPARSE MATRICES

In Chapter 2, we saw that we could save space and computing time by retaining only the 
nonzero terms of sparse matrices. When the nonzero terms did not form a "nice" pattern, 
such as a triangle or a band, we devised a sequential scheme in which we represented 
each nonzero term by a node with three fields: row, column, and value. We organized 
these nodes sequentially. However, we found that when we performed matrix operations 
such as addition, subtraction, or multiplication, the number of nonzero terms varied. 
Matrices representing partial computations, as in the case of polynomials, were created 
and later destroyed to make space for further matrices. Thus, the sequential representa
tion of sparse matrices suffered from the same inadequacies as the similar representation 
of polynomials. In this section, we study a linked list representation for sparse matrices. 
As we have seen previously, linked lists allow us to efficiently represent structures that 
vary in size, a benefit that also applies to sparse matrices.

In our data representation, we represent each column of a sparse matrix as a circu
larly linked list with a head node. We use a similar representation for each row of a 
sparse matrix. Each node has a tag field, which we use to distinguish between head 
nodes and entry nodes. Each head node has three additional fields: down, right, and ne.xt 
(Figure 4.19(a)). We use the down field to link into a column list and the right field to 
link into a row list. The next field links the head nodes together. The head node for row 
i is also the head node for column i, and the total number of head nodes is max {number 
of rows, number of columns).
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Each entry node has five fields in addition to the tag field: row, col, down, right, 
value (Figure 4.19(b)). We use the down field to link to the next nonzero term in the 
same column and the right field to link to the next nonzero term in the same row. Thus, 
if aij 0, there is a node with tag field = entry, value = a^j, row - i, and col = j (Figure 
4.19(c)). We link this node into the circular linked lists for row i and column j. Hence, 
it is simultaneously linked into two different lists.

down head 

next

right doun head rou

value

col right entry

ij

I
a .

j

(a) head node (b) entry node (c) set up for a ■ ■ * J

Figure 4.19 : Node structure for sparse matrices

As we indicated earlier, each head node is in three lists: a list of rows, a list of 
columns, and a list of head nodes. The list of head nodes also has a head node that has 
the same structure as an entry node (Figure 4.19(b)). We use the row and col fields of 
this node to store the matrix dimensions.

Suppose that we have the sample sparse matrix, a, shown in Figure 4.20. Figure 
4.21 shows the linked representation of this matrix. Although we have not shown the 
value of the tag fields, we can easily determine these values from the node structure. For 
each nonzero term of a, we have one entry node that is in exactly one row list and one 
column list. The head nodes are marked H()-H3. As the figure shows, we use the right 
field of the head node list header to link into the list of head nodes. Notice also that we 
may reference the entire matrix through the head node, a, of the list of head nodes.

0
0
0

0 
12

0 
0

0 
0

-4 
0

11 
0
0
0 -15

Figure 4.20 : 4x4 sparse matrix a

If we wish to represent a num-rows x num-cols matrix with num-terms nonzero 
terms, then we need max {num-rows, num-cols] + num-terms + 1 nodes. While each 
node may require several words of memory, the total storage will be less than num-rows 
• num-cols when num-terms is sufficiently small.

Having chosen our sparse matrix representation, we may now translate it into C 
declarations. Since we have two different types of nodes in our representation, we use a 
union to create the appropriate data structure. This means that our data structure is more 
complex than any structure we have created previously. The necessary declarations are
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r I

HO

Hl

H2

HO Hl H2 H3

0 2
11

1 0
12

2 1 
-4

> A 4 >

>

> 4 >

>H3

t
3 3 
-15

NOTE: The tag field of a node is not shown; its value for each node should be clear from 
the node structure.

Figure 4.21 : Linked representation of the sparse matrix a 

as follows:

*matrix—pointer;

#define MAX-SIZE 50 /*size  of largest matrix*/  
typedef enum {head,entry} tagfield;
typedef struct matrix—node 
typedef struct entry—node { 

int row; 
int col; 
int value; 
} ;

typedef struct matrix—node { 
matrix—pointer down; 
matrix—pointer right; 
tagfield tag; 
union {

matrix—pointer next; 
entry—node entry; 
} u;

} ;
matrix-pointer hdnode[MAX—SIZE];
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The first operation we implement is that of reading in a sparse matrix and obtain
ing its linked representation. We assume that the first input line consists of the number 
of rows (num-rows), the number of columns (num~cols'), and the number of nonzero 
terms (num-terms). This line is followed by num-terms lines of input, each of which is 
of the form: row, col, value. We assume that these lines are ordered by rows and within 
rows by columns. For example, Figure 4.22 shows the input for the 4 x 4 matrix of Fig
ure 4.20.

[0]
[1]
[2]
[3]
[4]

[0]
4
0
1
2
3

[1]
4
2
0
1
3

[2]
4

11
12 
-4 

-15

Figure 4.22 : Sample input for sparse matrix

The function mread (Program 4.24) uses an auxiliary array, hdnode. which we 
assume is at least as large as the largest-dimensioned matrix to be input. The variable 
hdnode{i\ is a pointer to the head node for column i and row i. This allows us to access 
efficiently columns at random, while we are setting up the input matrix. The function 
mread first sets up all the head nodes and then sets up each row list while simultaneously 
building the column lists. The next field of head node, i, is initially used to keep track of 
the last node in column i. The last for loop of the function links the head nodes together 
through this field.

matrix—pointer mread(void) 
{ 
/*
An auxiliary global array hdnode is used 

int num—rows, num—cols, num—terms, 
int row, col, value, current—row; 
matrix—pointer temp,last,node;

read in a matrix and set up its linked representation.

num—cols,
*/

num—heads, i;

printf("Enter the number of rows, columns 
and number of nonzero terms: 

Snum-cols, &num-terms);
num—rows) ? num—cols : num—rows;

*/

scanf("%d%d%d",&num—rows, 
num—heads = (num—cols > num—rows) ? num—cols :

set up head node for the list of head nodes 
node - new—node(); node->tag

(num—cols
/*

entry;
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}

node->u.entry.row = num-rows; 
node->u.entry.col = num—cols;

if (!num-heads) node->right = node; 
else { /★ 

for (i = 0;
initialize the head nodes 

num—heads; i++) { 
temp = new—node; 
hdnode[i]
hdnode[i]->right = temp;

1

temp; hdnode[i]->tag = head;
hdnode[i]->u.next t emp;

}
current—row
last = hdnode[0]; /*
for (i = 0; i < num—terms; i++) { 

printf("Enter row, column and value: 
scanf (" %d%d%d'', &row, &col, &value) ;
if {row > current—row) {/*  close current row 

last->right = hdnode[current—row];
current—row

0; i

0;
last node in current 

num—terms;

current—row) {/*

row; last = hdnode[row];

entry;

*/

^1

temp—>u.entry,row = row; 
col ;

}
temp = new—node() ;
temp->tag
temp->u.entry.col
temp->u.entry.value = value; 
last->right = temp; / 
last 
/*

★ link into row list
t emp;

link into column list 
hdnode[col]->u.next->down 
hdnode[col]->u.next

*/

t emp ;
t emp ;

}
/*close  last row
last->right = hdnode[current—row];
/*
for (i - 0; i

hdnode[i]—>u.next->down = hdnode[i]; 
link all head nodes together

num—heads—1;

* /

close all column lists 
0; i < num—cols;

^1

/*
for (i = 0; i < num—heads-1; i++)

hdnode[i]->u.next = hdnode[i+1];
hdnode[num—heads—1]->u.next = node; 
node->right = hdnode[0];

0; i

}
return node;

Program 4.24: Read in a sparse matrix

*/
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matrix—pointer new—node(void) 
{

matrix—pointer temp; 
temp
if (IS—FULL(temp)) { 

fprintf(stderr, 
exit(1);

(matrix—pointer) malloc(sizeof(matrix—node));

"The memory is full\n");

}
return temp;

}

Program 4.25: Get a new matrix node

Analysis of mreadx Since malloc works in a constant amount of time, we can set up all 
of the head nodes in O(max {num -rows,num-cols}) time. We can also set up each 
nonzero term in a constant amount of time because we use the variable last to keep track 
of the current row, while next keeps track of the current column. Thus, the for loop that 
inputs and links the entry nodes requires only 0{num-terms) time. The remainder of 
the function takes O(max [num-rows,num-colsj) time. Therefore, the total time is:

O(max [num -rows,num-cols] + num-terms) 

- O(num-rows + num-cols + num-terms).

Notice that this is asymptotically better than the input time of O(num-rows • num-cols) 
for a num-rows x num-cols matrix using a two-dimensional array. However it is 
slightly worse than the sequential method used in Section 2.4. □

We would now like to print out the contents of a sparse matrix in a form that 
resembles that found in Figure 4.22. The function mwrite (Program 4.26) implements 
this operation.

Analysis of mwritez The function mwrite uses two for loops. The number of iterations 
of the outer for loop is num-rows. For any row, i, the number of iterations of the inner 
for loop is equal to the number of entries for row Z. Therefore, the computing time of the 
mwrite function is O{num-rows + num-terms). □

Before closing this section we want to look at an algorithm that returns all nodes 
of a sparse matrix to the system memory. We return the nodes one at a time using free, 
although we could develop a faster algorithm using an available space list (see Section 
4.4). The function merase (Program 4.27) implements the erase operation.

Analysis of merase'. First, merase returns the entry nodes and the row head nodes to the
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void mwrite(matrix—pointer node) 
{ 
/* print out the matrix in row major form 

int i;
matrix—pointer temp, head 
/*  matrix dimensions */  

Q.

*/

node->right;
matrix dimensions 

printf(" \n num—rows %d \n",isd, num—cols 
node->u.entry.row, node->u.entry.col); 

printf(" The matrix by row, column, and value: \n\n"); 
for (i = 0; i < node—>u.entry.row; i++) { 
/*  print out the entries in each row */

0; i < node—>u.entry.row;
print out the entries in each row 
for (temp = head->right; temp != head;

temp
printf(

temp->right)
"%5d%5d%5d \n",temp->u.entry.row, 

temp->u.entry.col, temp->u.entry.value);
next rowhead = head->u.next; /

}
}

Program 4.26: Write out a sparse matrix 

system memory. It uses a nested loop structure that resembles the structure found in 
mwrite. Thus, the computing time for the nested loops is Q{num~rows + num-terms}. 
After these nodes are erased the remaining head nodes are erased. This requires 
O{num-rows + num-cols) time. Hence, the computing time for merase is O(num-rows 
+ num-cols + num—terms}. □

EXERCISES

1.

2.

Let a and Z? be two sparse matrices. Write a function, madd, to create the matrix d 
~ a + b. Your function should leave matrices a and b unchanged, and set up ^7 as a 
new matrix. Show that if a and b are num-rows y. num-cols matrices with 
num-termSa and num-termsnonzero terms, then we can perform this addition in 
O(num-rows + num—cols + num-terms^ + num-termsfj} time.
Let a and Z? be two sparse matrices. Write a function, mmult, to create the matrix d 
= a*b.  Show that if « is a num-rows^ x num-cols^ matrix with num-termSa 
nonzero terms and Z? is a num-cols^ x num-cols^ matrix with num-terms/j 
nonzero terms, then we can compute d in O(nz/m-c<?/57, • num-terms^ 
num-rowSa
{num-colsiy • num-terms^.

+
• num-termsfy} time. Can you think of a way to compute d in O(min 

num-rowSa • num-termsiy}) time?
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void merase(matrix—pointer *node)  
{ 
/* erase the matrix, return the nodes to the heap 

matrix—pointer x,y, head 
int i, 
/*
for (i 

y = 
while (y != head) {

X = y; y = y->right; free(x);

(*node)->right ;
num—heads ;

free the entry and head nodes by row 
{*node)->u .entry.row; i++) {= 0; i 

head—>right;

y; Y
}
X = head; head head->u.next; free(x);

*/

* /

}
1^ free remaining head nodes*/  
y = head; 
while (y !=

X
*node) {

y; y = y->u.next; free(x);
}
free(*node);  *node  = NULL;

}

Program 4.27: Erase a sparse matrix

3. (a)

4.

Rewrite merase so that it places the erased list into an available space list 
rather than returning it to system memory.

(b) Rewrite mread so that it first attempts to obtain a new node from the avail
able space list rather than the system memory.

Write a function, mtranspose, to compute the matrix b = a the transpose of the 
sparse matrix a. What is the computing time of your function?

5. Design a function that copies a sparse matrix. What is the computing time of your 
function?

6. § [Programming project] want to implement a complete linked list system to 
perform arithmetic on sparse matrices using our linked list representation. Create 
a user-friendly, menu-driven system that performs the following operations. (The 
matrix names are used only for illustrative purposes. The functions are specified 
as templates to which you must add the appropriate parameters.) 
(a) mread. Read in a sparse matrix.
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(b) 
(c) 
(d) 
(e) 

(f)

mwrite. Write out the contents of a sparse matrix. 
me rase. Erase a sparse matrix.
madd. Create the sparse matrix d = a + b 
mmult. Create the sparse matrix J = a^b. 
mtranspose. Create the sparse matrix b = .

4.8 DOUBLY LINKED LISTS

Singly linked lists pose problems because we can move easily only in the direction of the 
links. For example, suppose that we are pointing to a specific node, say ptr, and we want 
to find the node that precedes ptr. We can only do this by starting at the beginning of the 
list and searching until we find the node whose link field points to ptr. Since we must 
know the preceding node for the deletion operation, we obviously cannot perform this 
operation efficiently with singly linked lists. Whenever we have a problem that requires 
us to move in either direction, it is useful to have doubly linked lists.

A node in a doubly linked list has at least three fields, a left link field (llink), a data 
field (item), and a right link field (rlink). The necessary declarations are:

typedef struct node *node —pointer; 
typedef struct node {

node—pointer llink;
element item;
node—pointer rlink;
};

A doubly linked list may or may not be circular. A sample doubly linked circular 
list with three nodes is given in Figure 4.23. Besides these three nodes, we have added a 
head node. As was true in previous sections, a head node allows us to implement our 
operations more easily. The item field of the head node usually contains no information.

Now suppose that ptr points to any node in a doubly linked list. Then:

ptr = ptr-> llink-> rlink = ptr-> rlink-> llink

This formula reflects the essential virtue of this structure, namely, that we can go back 
and forth with equal ease. An empty list is not really empty since it always has a head 
node whose structure is illustrated in Figure 4.24.

To use these lists we must be able to insert and delete nodes. Insertion into a dou
bly linked list is fairly easy. Assume that we have two nodes, node and newnode, node 
may be either a head node or an interior node in a list. The function dinsert {Program 
4.28) performs the insertion operation in constant time. Figure 4.25 shows this insertion 
process when node represents the head node of an empty list.
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Head Mode
iten rl ink

L

11 ink

Figure 4.23: Doubly linked circular list with head node

ptr > r
Figure 4.24: Empty doubly linked circular list with head node

void dinsert{node-pointer node, node—pointer newnode) 
{ 
/* insert newnode to the right of node 

newnode->llink = node;
newnode-> r1ink
node->rlink->llink = newnode;
node—>rlink = newnode;

node->rlink;

*/

}

Program 4.28: Insertion into a doubly linked circular list

Deletion from a doubly linked list is equally easy. The function ddelete (Program 
4.29) deletes the node deleted from the list pointed to by node. To accomplish this dele
tion, we only need to change the link fields of the nodes that precede 
{deleted->llink->rlink) and follow (deleted—>rlink—> Il ink] the node we want to 
delete. Figure 4.26 shows the deletion in a doubly linked list with a single node.
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node node

newnode

Figure 4.25 : Insertion into an empty doubly linked circular list

void ddelete(node—pointer node, node—pointer deleted) 
{ 
/* delete from the doubly linked list 

if (node == deleted)
printf("Deletion of head node not permitted.\n") ; 

else {
deleted->llink->rlink 
deleted->rlink->llink 
free(deleted);

*/

deleted->rlink; 
deleted->llink;

}
)

Program 4.29: Deletion from a doubly linked circular list

EXERCISES

1.

2.
3.

Assume that we have a doubly linked list, as represented in Figure 4.23, and that 
we want to add a new node between the second and third nodes in the list. Redraw 
the figure so that it shows the insertion. Label the fields of the affected nodes so 
that you show how each statement in the dinsert function is executed. For exam
ple, label newnode->llmk, newnode->rlink, and node->rlink->Uink.
Repeat Exercise 1, but delete the second node from the list.
§ [Programming project] Assume that we have information on the employees of a 
computing firm as illustrated in Figure 4.27. For each employee, in addition to the 
employee’s name, we have an occupational title, an identification number, and a 
location. We would like to be able to access quickly the information for any of the 
categories. For example, we might want to quickly retrieve the list of all
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node node

^-1
◄-

*— deleted

Figure 4.26 : Deletion from a doubly linked circular list

employees who work in New York, or the list of all programmers. One way of 
doing this is to the create a data structure known as a multilist. This data structure 
contains an index table for each field, excluding the name. For instance, there is 
an occupation index that divides the employees into each of the occupational 
categories. For each category, we create a linked list. The index entry for the 
category contains a field that holds the identifying information for the category 
and a pointer to the first node in the list for that category. Figure 4.28 shows the 
organization for our sample data using singly linked lists. Since we want to be 
able to remove employees that leave the company easily, the singly linked struc
ture appearing in Figure 4.28 is inadequate. Instead we actually want to represent 
the multilist as doubly linked circular lists. Write a program that creates this struc
ture and implements the following operations:

(a)
(b)
(c)

insert a new employee record into the multilist
remove an employee record from the multilist
change the information for any field of the multilist, and relink the employee 
record properly
Query the multilist on any of the fields as described above.(d)

4.9 REFERENCES AND SELECTED READINGS

For more information on pointers in C, consult R. Traister. Mastering C Pointers, 
Academic Press, San Diego, Calif., 1990.
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Node ID Number Name
30 Hawkins
25 Smith
60 Jones
55 Austin
80 Messer

Occupation 
Programmer 
Analyst 
Programmer 
DataEntry 
Analyst

Location
Minneapolis
New York
New York
Minneapolis 
Minneapolis

Figure 4.27: Sample set of employee data

Id Index Occupation Index

Max Ualue 30 60 90 Job Title Analyst Progranner DataEntry

Pointer Pointer

Ident if icat ion

Occupat ion

Locat ion

Location

Pointer

NULL

NULL

NULL

NULL NULL

NULL |-k
-►

NULL

NULL

M inneapo1 is NeuVork

A
B
C
D
E

> >

Location Index

Figure 4.28: Multilist structure represented as singly linked lists

4.10 ADDITIONAL EXERCISES

1.
In this

We can obtain a simpler and more efficient representation for sparse matrices if we 
restrict our operations to addition, subtraction, and multiplication.
representation, nodes have down, right, row, col, and value fields. We represent 
each nonzero term with a separate node and link these nodes together to form two 
circular lists. We make the first list, the row list, by linking nodes by rows and 
within rows by columns. This is done through the right field. We make the second 
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list, the column list, by linking nodes by columns and within columns by rows. 
This is done through the down field. These two lists share a common head node. In 
addition, we add a node that contains the dimensions of the matrix. Matrix a of 
Figure 4.20 is shown in Figure 4.29.

Using the same assumptions as mread, write a function that reads in a sparse 
matrix and sets up its internal representation. How much time does your function 
take? How much additional space is needed?

a head node

0 2 1 0 2 1 3 3

11 12 -4
4

-15
4

solid lines = row links 
broken lines = column links

Figure 4.29: Alternate sparse matrix representation

2. For the representation of Exercise 1, write functions that:
(a)
(b)
(c)
(d)

erase a matrix 
add two matrices 
multiply two matrices 
print out a matrix.

For each of these operations, determine the computing time and compare these 
times with those obtained using the representation found in Figure 4.21.

3. Compare the sparse matrix representations found in Figure 4.29 and Figure 4.21 
with respect to the following operations:
(a) copy a matrix
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transpose a matrix
output the entries in an arbitrary row 
output the entries in an arbitrary column.

(b)
(c)
(d)

4. § [Programming project] We want to implement a complete linked list system to 
perform arithmetic on sparse matrices using the linked list representation found in 
Figure 4.29. Create a user-friendly, menu-driven system that performs the follow
ing operations:

(a)
(b) 
(c) 
(d) 

(e) 

(f) 

(g)
Test your system using suitable test data.

reads in a sparse matrix
writes out the contents of a sparse matrix 
erases a sparse matrix 
adds two sparse matrices 
subtracts two sparse matrices 
multiplies two sparse matrices 
transposes a sparse matrix.



CHAPTER 5

TREES

5.1 INTRODUCTION

5.1.1 Terminology

In this chapter we study a very important data structure, trees. Intuitively, the concept of 
a tree implies that we organize the data so that items of information are related by the 
branches. For example, we use a tree structure whenever we investigate genealogies. 
Typically, we could use either of two genealogical charts to present our data, the pedi
gree or the lineal chart. As Figure 5.1 shows, each chart has a characteristic treelike 
structure.

The pedigree chart of Figure 5.1(a) shows someone’s ancestors, in this case those 
of Dusty. As we can see, Dusty’s parents are Honey Bear and Brandy. Her maternal 
grandparents are Brunhilde and Terry, while her paternal grandparents are Coyote and 
Nugget. If we prohibit inbreeding, the pedigree chart always displays a two-way branch
ing. Such trees, referred to as binary trees, have many important applications.

Although the lineal chart of Figure 5.1(b) has nothing to do with people, it is still a 
genealogy since it describes, in abbreviated form, the ancestry of modern European 
languages. Thus, this is a chart of descendants rather than ancestors. In addition, each 
item can have several, rather than just two, descendants. For example, Latin has as its 
descendants Spanish, French, and Italian. Although the lineal tree does not have the reg
ular structure of the pedigree chart, it is a tree nonetheless.

186
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Dust^

Honey Bear Brandy

BrunbiIde Terry Coyote
—I 
Nucrgret

GiTT Tansey Tweed
—I 
Zoe Crocus Primrose Nous Belle

r

1

r

r

1 r

1

1 r 1 1 r i 1

(a) Pediqree

Proto Indo-European

r i 1
Ita1ic He 1lenic Gernan ic

Osco—Unbri an Latin Greek
North 
Gernan ic

Uesb 
Gernanic

I ' IT
Osco Unbrian Spanish French Italian Icelandic Norwegian Swedish Low High Viddish

r

1 r T

1

1

I r 1

r 1 1 1

(b) Lineal

Figure 5.1 : Two types of genealogical charts

Using our genealogical charts as examples, let us define formally what we mean 
by a tree.

Definition: A tree is a finite set of one or more nodes such that:

(1) There is a specially designated node called the root.
(2) The remaining nodes are partitioned into n > 0 disjoint sets T], • • • , where 

• • • the subtrees of the root. □each of these sets is a tree. We call T],

Notice that we have an instance of a recursive definition since we define the sub
trees as trees. If we return to Figure 5.1, we see that the root of tree (a) is Dusty, while 
that of tree (b) is Proto Indo-European. Tree (a) has two subtrees whose roots are Honey 
Bear and Brandy, while tree (b) has three subtrees with roots, Italic, Hellenic, and Ger
manic. Since Tj, • • •, must be disjoint sets, we prohibit subtrees from ever connect
ing together, that is, we forbid crossbreeding. Our definition also indicates that every 
node in the tree is the root of some subtree. For instance. West Germanic is the root of a 
subtree of Germanic, and it has three subtrees with the following roots: Low German, 
High German, and Yiddish.
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There are many terms that we use when referring to trees. A node stands for the 
item of information and the branches to other nodes. For example, the tree in Figure 5.2 
has 13 nodes, with each item of information represented as a letter for convenience. The 
root of the tree is A. Normally we draw trees with the root at the top.

Leuel

1A

B 2D

E HGF J 3

M 4LK

Figure 5.2 : A sample tree

The degree of a node is the number of subtrees of the node. For example, the 
degree of A is 3, of C is 1, and of F is zero. The degree of a tree is the maximum degree 
of the nodes in the tree. For example, the tree of Figure 5.2 has degree 3. A node with 
degree zero is a leaf or terminal node. For instance, K, L, F, G, M, f and J are all leaf 
nodes.

A node that has subtrees is the parent of the roots of the subtrees, and the roots of 
the subtrees are the children of the node. For instance, node B is the parent of nodes E 
and F, which conversely are the children of B. Children of the same parent are siblings. 
For instance, H, f and J are siblings. We can extend this familial terminology to 
grandparents and grandchildren. Thus, we can say that D is the grandparent of M, and A 
is the grandparent of E, F, G. H, I, and J. The ancestors of a node are all the nodes along 
the path from the root to the node. For example, the ancestors of M are A, D, and H. 
Conversely, the descendants of a node are all the nodes that are in its subtrees. For 
example, £, F, K, and E are the descendants of B.
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We define the level of a node by initially letting the root be at level one. For all 
subsequent nodes, the level is the level of the node’s parent plus one. The height or 
depth of a tree is the maximum level of any node in the tree. Thus, the depth of the tree 
in Figure 5.2 is 4.

5.1.2 Representation Of Trees

List Representation

There are several ways that we can draw a tree in addition to the one presented in Figure 
5.2. For example, we can write the tree of Figure 5.2 as a list in which each of the sub
trees is also a list. Using this notation, the tree of Figure 5.2 is written as:

(A (B (E (K, L), F), C(G), D( H (M),

Notice that the information in the root node comes first, followed by a list of the subtrees 
of that node.

We must now consider the representation of a tree in memory. If we wish to use 
linked lists, then a node must have a varying number of fields depending on the number 
of branches. Figure 5.3 shows a possible structure for a list representation. Each link 
field represents a child of the node.

data link } link 2 link n

Figure 5.3 : Possible list representation for trees

Left Child-Right Sibling Representation

Since it is often easier to work with nodes of a fixed size, we explore such representa
tions for trees. Both the representations we consider require exactly two link or pointer 
fields per node. Figure 5.4 shows the node structure used in one of these, the left child
right sibling representation.

To convert the tree of Figure 5.2 into this representation, we first note that every 
node has only one leftmost child and one closest right sibling. For example, in Figure 
5.2, the leftmost child of A is B, and the leftmost child of D is H. Similarly, the closest 
right sibling of B is C, and the closest right sibling of H is /. Strictly speaking, since the 
order of children in a tree is not important, any of the children of a node could be its left
most child and any of its siblings could be the closest right sibling. For the sake of 
definiteness, we choose the nodes based on how the tree is drawn. Figure 5.5 shows the 
tree of Figure 5.2 redrawn using the left child-right sibling representation.
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data
left child right sibling

Figure 5.4 : Left child-right sibling node structure

A

B C D

E H I J

K M

Figure 5.5 : Left child-right sibling representation of a tree

Representation As A Degree Two Tree

To obtain the degree two tree representation of a tree we simply rotate the left child-right 
sibling tree clockwise by 45 degrees. This gives us the degree two tree displayed in Fig
ure 5.6. We shall refer to the two children of a node as the left and right children. 
Notice that the right child of the root node of the tree is empty. This is always the case 
since the root of the tree we are transforming can never have a sibling. Figure 5.7 shows 
two additional examples of trees represented as left child-right sibling trees and as left 
child-right child (or degree two) trees. Left child-right child trees are also known as
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Figure 5.6 : Left child-right child tree representation of a tree

binary trees.

5.2 BINARY TREES

5.2.1 The Abstract Data Type

We have seen that we can represent any tree as a binary tree. In fact, binary trees are an 
important type of tree structure that occurs very often. The chief characteristic of a 
binary tree is the stipulation that the degree of any given node must not exceed two. For 
binary trees, we also distinguish between the left subtree and the right subtree, while for 
trees the order of the subtrees is irrelevant. In addition, a binary tree may have zero 
nodes. Thus, a binary tree is really a different object than a tree.

Definition: A binary tree is a finite set of nodes that is either empty or consists of a root 
and two disjoint binary trees called the left subtree and the right subtree. □
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tree

tree

Left chi Id-Right sibling tree

Left child—Right sibling tree

binary tree

binary "tree

A

B

A A

B C B

Figure 5.7 : Tree representations

Structure 5.1 contains the specification for the binary tree ADT. This structure 
defines only a minimal set of operations on binary trees which we use as a foundation on 
which to build additional operations.

Let us carefully review the distinctions between a binary tree and a tree. First, 
there is no tree having zero nodes, but there is an empty binary tree. Second, in a binary 
tree we distinguish between the order of the children while in a tree we do not. Thus, the 
two binary trees of Figure 5.8 are different since the first binary tree has an empty right 
subtree, while the second has an empty left subtree. Viewed as trees, however, they are 
the same, despite the fact that they are drawn slightly differently.

Figure 5.9 shows two special types of binary trees. Tree (a) is a skewed tree. In 
this particular case, it is skewed to the left since each node is the left child of its parent. 
There is a corresponding tree that skews to the right. Tree (b) is a complete binary tree. 
Although we will formally define this tree structure shortly, for now simply notice that 
all the leaf nodes are on two adjacent levels. We should also point out that the same ter
minology we used to describe trees applies to binary trees. Thus, we can speak of the 
degree, level, or height of a node or a tree, and we can describe a node as a root, leaf, 
parent, or child.
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structure Binary_Tree (abbreviated BinTree} is
objects: a finite set of nodes either empty or consisting of a root node, left 
Binary_Tree, and right Binary_Tree.
functions;

for all bt,bt\,bt2 e BinTree, item e element

BinTree Create()
Boolean IsEmpty(Z?z)

BinTree MakeBT(/?H, item, bt2)

BinTree Lchild(/?r)

element Data(Z?r)

BinTree Rchild(Z?z)

creates an empty binary tree 
if (bt == empty binary tree) 
return TRUE else return FALSE 
return a binary tree whose left 
subtree is bti, whose right 
subtree is bt2, and whose root 
node contains the data item.
if (IsEmpty(Z?/)) return error else 
return the left subtree of bt.
if (IsEmptyCZ??)) return error else 
return the data in the root node of bt. 
if (IsEmpty(Z?r)) return error else 
return the right subtree of bt.

Structure 5.1; Abstract data type Binary_Tree

Figure 5.8 : Two different binary trees

5.2.2 Properties Of Binary Trees

Before examining data representations for binary trees, let us first make some observa
tions about such trees. In particular, we want to find out the maximum number of nodes 
in a binary tree of depth k, and we want to examine the relationship between the number 
of leaf nodes and the number of nodes of degree two in a binary tree. We present both
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Leuel

1

2

3

4

5
(a) (b)

Figure 5.9: Skewed and complete binary trees

these observations as lemmas. These lemmas allow us to define full and complete binary 
trees.

Lemma 5.1 [Maximum number of nodes} -.

(1)
(2) The maximum number of nodes in a binary tree of depth k is 2^ - 1, k > 1.

The maximum number of nodes on level i of a binary tree is 2'1-1

Proof:

(1) The proof is by induction on i.

Induction base: The root is the only node on level i = 1. Hence, the maximum number of 
nodes on level i = 1 is 2'»-l = 2® = 1.

Induction hypothesis: For all 7, 1 <7 < i, the maximum number of nodes on level j is 
2^-'.

Induction step: The maximum number of nodes on level i - 1 is 2' by the induction
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hypothesis. Since each node in a binary tree has a maximum degree of 2, the maximum 
number of nodes on level i is two times the maximum number of nodes on level Z-l or 
2'-’.

(2) The maximum number of nodes in a binary tree of depth k is:

X (maximum number of nodes on level i) = ^2' 
i=i f=i

=2M □

Lemma 5.2 [Relation between number of leaf nodes and nodes of degree 2]: For any 
nonempty binary tree, T, if /iq is the number of leaf nodes and ^2 the number of nodes of 
degree 2, then = ^2 + 1.

Proof: Let ni be the number of nodes of degree one and n the total number of nodes. 
Since all nodes in T are of degree at most two, we have:

n = riQ + rii + /I2 (5.1)

If we count the number of branches in a binary tree, we see that every node except 
the root has a branch leading into it. If B is the number of branches, then n = B-i-L All 
branches stem from a node of degree one or two. Thus, B = n 1 +2^2. Hence, we obtain:

n = 1 + + 2n 2 (5.2)

Subtracting Eq. (5.2) from Eq. (5.1) and rearranging terms, we get:

riQ = n2 + 1 □

In Figure 5.9(a), Wq = 1 ^2 = 0, while, in Figure 5.9(b), hq = 5 and ^2 = 4.

We are now ready to define full and complete binary trees.

Definition: A. full binary tree of depth k is a binary tree of depth k having 2^ - 1 nodes, 
k>0. □

By Lemma 5.1,2^ - 1 is the maximum number of nodes in a binary tree of depth k. 
Figure 5.10 shows a full binary tree of depth 4. An elegant sequential representation for 
such binary trees results from sequentially numbering the nodes, starting with the root on 
level 1, continuing with the nodes on level 2, and so on. Nodes on any level are num
bered from left to right (see Figure 5.10). This numbering scheme gives us the definition 
of a complete binary tree.
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Definition: A binary tree with n nodes and depth k is complete z^its nodes correspond to 
the nodes numbered from 1 to n in the full binary tree of depth k. □

2

4

8 9 10

5

Figure 5.10: Full binary tree of depth 4 with sequential node numbers 

5.2.3 Binary Tree Representations

Array Representation

The numbering scheme used in Figure 5.10 suggests our first representation of a binary 
tree in memory. Since the nodes are numbered from 1 to n, we can use a one
dimensional array to store the nodes. (We do not use the 0th position of the array.) 
Using Lemma 5.3 we can easily determine the locations of the parent, left child, and 
right child of any node, Z, in the binary tree.

Lemma 5.3: If a complete binary tree with n nodes (depth = |_ log2/? + 1 J ) is 
represented sequentially, then for any node with index Z, 1 < i < n, we have;

(1)
(2)
(3)

parent is at [ i! 2 J if z =/= 1 If z = 1, Z is at the root and has no parent. 
left-child{i} is at 2Z if 2z < n. If 2i > n, then z has no left child.
right-child(i) is at 2z + 1 if 2z + 1 < «. If 2z + 1 > n, then Z has no right child.

Proof: We prove (2). (3) is an immediate consequence of (2) and the numbering of 
nodes on the same level from left to right. (1) follows from (2) and (3). We prove (2) by 
induction on i. For i = 1, clearly the left child is at 2 unless 2 > n, in which case i has no
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left child. Now assume that for all y, 1 < j < i, left-child{j} is at Ij. Then the two nodes 
immediately preceding left-child{i +1) are the right and left children of z. The left child 
is at 2z. Hence, the left child of z + 1 is at 2z + 2 = 2(z + 1) unless 2(z + 1) > n, in which 
case z + 1 has no left child. □

We can use an array representation for all binary trees, although in most cases 
there will be a lot of unutilized space. For complete binary trees, this representation is 
ideal since it wastes no space. However, for the skewed tree in Figure 5.9(a), less than 
half the array is utilized. Figure 5.11 shows the array representation for both trees in 
Figure 5.9. Since position zero of the array isn't used, it is not shown. In the worst case, 
a skewed tree of depth k requires 2^-1 spaces. Of these, only k spaces will be occupied.

Cl] A [13 A

C2] B C2] B

C3] C3] C

C4] C C4] D

C5] C5] E

C6] C&l F

C7] C7] G

C8] D C8] H

C9] C9] I

C16] E

Figure 5.11: Array representation of binary trees of Figure 5.9

Linked Representation

While the sequential representation is acceptable for complete binary trees, it wastes 
space for many other binary trees. In addition, this representation suffers from the
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general inadequacies of other sequential representations. Thus, insertion or deletion of 
nodes from the middle of a tree requires the movement of potentially many nodes to 
reflect the change in the level of these nodes. We can easily overcome these problems 
by using a linked representation. Each node has three fields, left-child, data, and 
right-child, and is defined in C as:

* tree—pointer;typedef struct node 
typedef struct node { 

int data;
tree—pointer left—child, right—chiId; 
};

We draw such a node using either of the representations of Figure 5.12.

data

left child data r ight_c)i i Id

left child i?ight_child

Figure 5.12 : Node representation for binary trees

While this node structure makes it difficult to determine the parent of a node, it is 
adequate for most applications. Should we need to know the parents of random nodes, 
we will add a fourth field, parent, to the node definition. Figure 5.13 shows the represen
tation of the trees found in Figure 5.9 using this node structure. As was true of lists, we 
refer to the tree by the variable that points to its root.

EXERCISES

1. For the binary tree of Figure 5.14(a), list the terminal nodes, the nonterminal 
nodes, and the level of each node.

2. Repeat Exercise 1 with the binary tree of Figure 5.14(b).
3. Draw the internal memory representation for the binary tree of Figure 5.14(a), 

using (a) list, (b) sequential, and (c) linked representations.
4. Repeat Exercise 3 with the binary tree of Figure 5.14(b).
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root

A NULL
root > A

B A C

7
B NULL

D NULL E NULL NULL F NULL NULL G I NULL

C NULL

NULL H NULL NULL I NULL

D NULL

NULL E NULL

Figure 5.13 : Linked representation for the binary trees of Figure 5.9

(a) (b)

Figure 5.14: Two sample binary trees
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5.3 BINARY TREE TRAVERSALS

There are many operations that we can perform on trees, but one that arises frequently is 
traversing a tree, that is, visiting each node in the tree exactly once. A full traversal pro
duces a linear order for the information in a tree.

When traversing a tree we want to treat each node and its subtrees in the same 
way. If we let L, V, and R stand for moving left, visiting the node (for example, printing 
out the data field), and moving right, then there are six possible combinations of traver
sal; LVR, LRV, VLR. VRL, RVL, and RLV. If we adopt the convention that we traverse left 
before right, then only three traversals remain: LVR, LRV, VLR. We assign the names 
inorder, postorder, and preorder to these traversals because of the position of the V with 
respect to the L and R. For example, in postorder, we visit a node after we have 
traversed its left and right subtrees while in preorder the visiting is done before the 
traversal of these subtrees. There is a natural correspondence between these traversals 
and producing the infix, postfix, and prefix forms of an expression. To show this 
correspondence we will use the binary tree of Figure 5.15. This tree represents the arith
metic expression (in infix form): AIB^C^D-^E. For the present time, we will not 
consider how the tree was created, but we will assume that it is available. For illustra
tive purposes we have included the null nodes for the tree. They are represented as 
shaded rectangles in Figure 5.15. We also have labeled each of the nodes, including the 
null nodes. We use this tree to illustrate each of the traversals.

1

2 17

3

4
\

E
14

^-^18
fi)1 19

16

HA ,--,12
B 13

8

6 9 ■ilO

Figure 5.15: Binary tree with arithmetic expression
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Inorder Traversal

Informally, an inorder traversal moves down the tree toward the left until a null node is 
reached. The null node’s parent is then "visited," and the traversal continues with the 
node that is one to the right. If there is no move to the right, the traversal continues with 
the last unvisited node at the next higher level of the tree. We can describe this traversal 
in an elegant and precise way by writing it as a recursive function (Program 5.1).

inorder tree traversal
void inorder(tree—pointer ptr) 
/*  inorder tree traversal */  
{

if (ptr) {
inorder(ptr->left—child);
printf("%d", ptr->data) ;
inorder(ptr->right—child);

}
s

Program 5.1: Inorder traversal of a binary tree

Figure 5.16 is a trace of inorder using the tree of Figure 5.15. Each step of the 
trace shows the call of inorder, the value in the root, and whether or not the printf func
tion is invoked. The first three columns show the first 13 steps of the traversal. The 
second three columns show the remaining 14 steps. The numbers in columns 1 and 4 
correspond to the node numbers displayed in Figure 5.15 and are used to show the loca
tion of the node in the tree. Since there are 19 nodes in the tree, inorder is invoked 19 
times for the complete traversal. The data fields are output in the order: 

which corresponds to the infix form of the expression.

Preorder Traversal

The function preorder (Program 5.2) contains the code for a second form of traversal. 
With this traversal we "visit" the node first and then follow left branches visiting all 
nodes encountered. This continues until we reach a null node. At this point, we back up 
to the closest ancestor that has a right child and continue with this child. Using a 
preorder traversal, the nodes of the tree in Figure 5.15 would be output as:

!ABCDE
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which we recognize as the prefix form of the expression.

Call of 
inorder 

r 
2 
3 
4 
5 
6 
5 
7 
4 
8 
9 
8

10 
3

Value 
in root

+ 
*
*
/

A 
NULL

A 
NULL 

/
B 

NULL
B 

NULL 
*

Figure 5.16: Trace of Program 5.1
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printf
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printf
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inorder
11
12
11
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2
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16

1
17
18
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in root
C 

NULL
C 

NULL 
*

D 
NULL

D 
NULL 

+ 
E 

NULL
E 

NULL

Value 
Action

printf

printf

printf

printf

printf

void preorder(tree—pointer ptr) 
/*  preorder tree traversal 
{

*/

if (ptr) { 
printf( 
preorder(ptr—>left—child) ; 
preorder(ptr—>right—child) ;

II «-d", ptr->data) ;

Program 5.2: Preorder traversal of a binary tree

Postorder Traversal

The function postorder (Program 5.3) contains the postorder traversal. Informally, this 
traversal "visits" a node’s two children before it "visits" the node. This means that the 
node’s children will be output before the node. The output produced by postfix for the

}
}
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tree of Figure 5.15 is: 

which is the postfix form of our expression.

*/
void postorder{tree-pointer ptr) 
/*  postorder tree traversal 
{

if (ptr) {
postorder(ptr->left—child);
postorder(ptr->right—child) ; 
printf {"%d'',ptr->data) ;

}
}

Program 5.3: Postorder traversal of a binary tree

Iterative Inorder Traversal

Although we have written the inorder, preorder, and postorder traversal functions recur
sively, we can develop equivalent iterative functions. Let us take inorder traversal as an 
example. To simulate the recursion, we must create our own stack. We add nodes to and 
remove nodes from our stack in the same manner that the recursive version manipulates 
the system stack. This helps us to understand fully the operation of the recursive ver
sion. Figure 5.16 implicitly shows this stacking and unstacking. A node that has no 
action indicates that the node is added to the stack, while a node that has a printf action 
indicates that the node is removed from the stack. Notice that the left nodes are stacked 
until a null node is reached, the node is then removed from the stack, and the node’s right 
child is stacked. The traversal then continues with the left child. The traversal is com
plete when the stack is empty. Function iter -inorder (Program 5.4) stems directly from 
this discussion. The stack function add differs from that defined in Chapter 3 only in that 
the type of the elements in the stack is different. Similarly, the delete function returns a 
value of type tree -pointer rather than of type element. It returns NULL in case the stack 
is empty.

Analysis of inorder!'. Let n be the number of nodes in the tree. If we consider the action 
of iter - inorder, we note that every node of the tree is placed on and removed from the 
stack exactly once. So, if the number of nodes in the tree is n, the time complexity is 
O(/i). The space requirement is equal to the depth of the tree which is O(n). □
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void iter—inorder(tree—pointer node) 
{

initialize stack */int top = -1; /*
tree—pointer stack[MAX—STACK—SIZE]; 
for (;;) {

for(; node; node
add(&top, node); / 

node = delete(&top); / 
if (Inode) break; /*  
printf( 
node =

node->left—child) 
add to stack 
delete from stack 

empty stack
"%d", node->data); 
node—>right—child;

*/
*/

*/

*

★

}
}

Program 5.4: Iterative inorder traversal

Level Order Traversal

Whether written iteratively or recursively, the inorder, preorder, and postorder traversals 
all require a stack. We now turn to a traversal that requires a queue. This traversal, level 
order, visits the nodes using the ordering scheme suggested in Figure 5.10. Thus, we 
visit the root first, then the root’s left child, followed by the root’s right child. We con
tinue in this manner, visiting the nodes at each new level from the leftmost node to the 
rightmost one.

The code for this traversal is contained in level-order (Program 5.5). This 
assumes a circular queue as in Chapter 3. Function addq differs from the corresponding 
function of Chapter 3 only in that the data type of the elements in the queue is different. 
Similarly, the function deleteq used in Program 5.5 returns a value of type tree -pointer 
rather than of type element. It returns NULL in case the queue is empty.

We begin by adding the root to the queue. The function operates by deleting the 
node at the front of the queue, printing out the node’s data field, and adding the node’s 
left and right children to the queue. Since a node’s children are at the next lower level, 
and we add the left child before the right child, the function prints out the nodes using 
the ordering scheme found in Figure 5.10. The level order traversal of the tree in Figure 
5.15 is:
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level order tree traversal
void level—order(tree—pointer ptr) 
/*  level order tree traversal */  
{

rear

★ empty tree

int front = rear - 0;
tree—pointer queue[MAX—QUEUE—SIZE] ; 
if (!ptr) return; /★ empty tree */  
addq(front, &rear, ptr); 
for (;;) {

ptr = deleteq(&frent, rear);
if (ptr) {

printf (" %d'U ptr->data)
if (ptr->left—child)

addq(front,&rear,ptr->left—child);
if (ptr->right—child)

addq(front,&rear,ptr->right—child);
}
else break;

}
}

Program 5.5: Level order traversal of a binary tree

EXERCISES

6.

1. Write out the inorder, preorder, postorder, and level order traversals for tree (a) of 
Figure 5.14.

2. Repeat Exercise 1 using tree (b) of Figure 5.14.

3. Simulate the action of iter - inorder using the tree of Figure 5.14(a). At each stage 
show the contents of the stack and what, if any, action is taken (in other words, 
indicate if the contents of the data field are printed).

4. Repeat the preceding exercise using the tree of Figure 5.14(b).

5. Write an iterative version of preorder.

Write an iterative version of postorder.

7. Write the complete C codes for the stack add and delete functions used in 
iter - inorder (Program 5.4).

8. Write the complete C codes for the queue add and delete functions used in 
level - order (Program 5.5).
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9. Assume that we have a binary tree of names like the one illustrated in Figure 5.17. 
Prove that an inorder traversal always prints the names in alphabetical order.

function

do uns igned

char else if while

int

Figure 5.17: Binary tree of names

5.4 ADDITIONAL BINARY TREE OPERATIONS

Copying Binary Trees

By using the definition of a binary tree and the recursive versions of inorder, preorder, 
and postorder traversals, we can easily create C functions for other binary tree opera
tions. One practical operation is copying a binary tree. The code for this operation is 
containted in copy (Program 5.6). Notice that this function is only a slightly modified 
version of postorder (Program 5.3).

Testing For Equality Of Binary Trees

Another useful operation is determining the equivalence of two binary trees. Equivalent 
binary trees have the same structure and the same information in the corresponding 
nodes. By the same structure we mean that every branch in one tree corresponds to a 
branch in the second tree, that is, the branching of the two trees is identical. The function 
equal (Program 5.7) uses a modification of preorder traversal to test for equality. This 
function returns TRUE if the two trees are equivalent and FALSE if they are not.

The Satisfiability Problem

Consider the set of formulas that we can construct by taking variables xj, X2, • • ■ , x„ 
and operators a (and), v (or), and —i (not). The variables can hold only one of two
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tree—pointer copy(tree—pointer original) 
/*  
of the original tree 
{

this function returns a tree—pointer to an exact copy 
*/

tree—pointer temp; 
if (original) { 

temp 
if (IS—FULL(temp)) {

fprintf(stderr, "The memory is full\n"); 
exit(1);

(tree—pointer) malloc(sizeof(node));

}
temp->left—child = copy(original->left—child); 
temp->right—child = copy(original->right—child); 
temp->data = original->data;
return temp;

}
return NULL;

!

Program 5.6: Copying a binary tree

tree—pointer second)

function returns FALSE if the binary trees first and
*/

int equal(tree—pointer first, 
{ 
/*  
second are not equal, Otherwise it returns TRUE

return ((!first && Isecond) II (first && second && 
(first->data == second->data) && 
equal(first->left—child,second->left—child) && 
equal(first->right—child, second->right_child))

}

Program 5.7: Testing for equality of binary trees 

possible values, true or false. The set of expressions that we can form using these vari
ables and operators is defined by the following rules:
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(1)

(2)

(3)

A variable is an expression.

If X and y are expressions, then —i x, x a y , x v y are expressions.

Parentheses can be used to alter the normal order of evaluation, which is —1 before 
A before v.

These rules comprise the formulas in the propositional calculus since other operations, 
such as implication, can be expressed using —1, v, and a.

The expression:

X1 V (X2 A -1 ^^3)

is a formula (read as "xj or X2 and not X3"). If Xj and X3 are false and X2 is then 
the value of the expression is:

false V {true a —i false) 
= false V true 
= true

The satisfiability problem for formulas of the propositional calculus asks if there is 
an assignment of values to the variables that causes the value of the expression to be 
true. This problem was originally used by Newell, Shaw, and Simon in the late 1950s to 
show the viability of heuristic programming (The Logic Theorist) and is still of keen 
interest to computer scientists.

Again let us assume that our formula is already in a binary tree. For illustrative 
purposes we will use the formula:

(X, A-.X2)v(-,Xi AX3)V-iX3

Figure 5.18 shows the binary tree for this formula. The inorder traversal of this tree is:

Xj A —1X2 V-1X1 A—1X3 V—1X3

which is the infix form of the expression. The most obvious algorithm to determine 
satisfiability is to let (xi, X2, X3) take on all possible combinations of true and false, 
checking the formula with each combination. For n variables, there are 2” possible com
binations of true and false. For example, for n = 3, the eight combinations are {false, 
false, false), {false, false, true), {false, true, false), {false, true, true), {true, false, false), 
{true, false, true), {true, true, false), and {true, true, true). The algorithm takes O(g2") 
time, where g is the time required to substitute the true and false values for X], X2, X3 
and to evaluate the expression.

To evaluate an expression we can traverse the tree in postorder, evaluating the 
subtrees until the entire expression is reduced to a single value. This corresponds to the 
postfix evaluation of an arithmetic expression that we saw earlier. Viewed from the
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Figure 5.18: Propositional formula in a binary tree 

perspective of the tree representation, for every node we reach we have already com
puted the values of its children. For example, when we reach the v node on level 2, the 
values of a —। X2 and —i X] a are available to us and we can apply the rule for or. 
Notice that a node containing —। has only a single right branch since not is a unary opera
tor.

The node structure for this problem is found in Figure 5.19. The left-child and 
right-child fields are similar to those used previously. The field data holds either the 
value of a variable or a propositional calculus operator, while value holds either a value 
of TRUE or FALSE.

left-child data value right-child

Figure 5.19: Node structure for the satisfiability problem
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We define this node structure in C as:

typedef 
typedef 
typedef

enum {not,and,or,true,false} logical; 
struct node *tree —pointer;
struct node {
tree—pointer left—child;
logical data;
short int value;
tree—pointer right—chiId;
} ;

We assume that for leaf nodes, node -> data contains the current value of the 
variable represented at this node. For example, we assume that the tree of Figure 5.18 
contains either TRUE or FALSE in the data field of xj, and X3. We also assume that 
an expression tree with n variables is pointed at by root. With these assumptions we can 
write our first version of a satisfiability algorithm (Program 5.8).

for (all 2" possible combinations) 
generate the next combination; 
replace the variables by their 
evaluate root by traversing it 
if (root->value) {

printf(<combination>); 
return;

{

values;
in postorder;

}
}
printf("No satisfiable combinationXn");

Program 5.8: First version of satisfiability algorithm

The C function that evaluates the tree is easily obtained by modifying the original, 
recursive postorder traversal. The function post-order-eval (Program 5.9) shows the C 
code that implements this portion of the satisfiability algorithm.

EXERCISES

1. Write a C function that counts the number of leaf nodes in a binary tree. Deter
mine the computing time of the function.

2. Write a C function swap-tree that takes a binary tree and swaps the left and right 
children of every node. An example is given in Figure 5.20.
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modified post order traversal to evaluate a
*/

void post—order—eval(tree—pointer node) 
{ 
/*  
propositional calculus tree

if (node) {
post—order—eval(node->left—child);
post—order—eval(node->right—child); 
switch(node->data) {

node->value =

node->value

case not:
!node->right—child->value; 
break;

case and:
node->right—child->value && 
node->left—child->value;
break;

case or: node->value = 
node->right—child->value I I 
node->left—child->value; 
break;

case true:
break;

case false: node->value

node->value TRUE ;

FALSE;

}
}

}

Program 5.9: post-order-eval function

3. What is the computing time of post-order-evall

4. § [Programmingproject] Devise a representation for formulas in the propositional 
calculus. Write a C function that inputs such a formula and creates a binary tree 
representation of it. Determine the computing time of your function.

5.5 THREADED BINARY TREES

If we look carefully at the linked representation of any binary tree, we notice that there 
are more null links than actual pointers. Specifically, there are n + 1 null links out of 2 n 
total links. A. J. Perlis and C. Thornton have devised a clever way to make use of these 
null links. They replace the null links by pointers, called threads, to other nodes in the 
tree. To construct the threads we use the following rules (assume that ptr represents a 
node):
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root —►- root —

D
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G

A

B

E F £ D

H G

before after swap_tree()

Figure 5.20 swap-tree example

(1) If pZr -> left-child is null, replace ptr -> left-child with a pointer to the node 
that would be visited before ptr in an inorder traversal. That is we replace the null 
link with a pointer to the inorder predecessor of ptr.

(2) If ptr -> right-child is null, replace ptr -> right-child with a pointer to the node 
that would be visited after ptr in an inorder traversal. That is we replace the null 
link with a pointer to the inorder successor of ptr.

Figure 5.21 shows the binary tree of Figure 5.9(b) with its threads drawn as dotted 
lines. This tree has nine nodes and 10 null links that we have replaced by threads. If we 
traverse the tree in inorder, we visit the nodes in the order D, f B, E, A, F, C. G. To 
see how the threads are created we will use node E as an example. Since £”s left child is 
a null link, we replace it with a pointer to the node that comes before E, which is B. 
Similarly, since E’s right child is also null, we replace the null link with a pointer to the 
node that comes after E in an inorder traversal, which is A. We create the remaining 
threads in a similar fashion.

When we represent the tree in memory, we must be able to distinguish between 
threads and normal pointers. This is done by adding two additional fields to the node 
structure, left-thread and right-thread. Assume that ptr is an arbitrary node in a 
threaded tree. If ptr -> left-thread = TRUE, then ptr -> left-child contains a thread; 
otherwise it contains a pointer to the left child. Similarly, if ptr -> right-thread = 
TRUE, then ptr -> right-child contains a thread; otherwise it contains a pointer to the 
right child.

This node structure is given by the following C declarations:
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►root

G}

A

B

E F

C

Figure 5.21 : Threaded tree corresponding to Figure 5.9(b)

•k threaded—pointer;typedef struct threaded—tree 
typedef struct threaded—tree { 

short int left-thread; 
threaded—pointer left—child; 
char data;
threaded—pointer right—chiId; 
short int right—thread;
};

In Figure 5.21 two threads have been left dangling: one in the left child of H, the 
other in the right child of G. In the case of H, we cannot replace its null left child with a 
thread to the node that precedes H because H is the first node in the inorder traversal. 
Similarly, we cannot replace G’s null right child with a thread to the node that follows it 
since G is the last node in an inorder traversal. Obviously we do not want to have loose 
threads in our tree. Therefore, we assume that all threaded binary trees have a head 
node. This means that an empty threaded tree always contains one node, represented in 
Figure 5.22.

The complete memory representation of the tree of Figure 5.21 is shown in Figure 
5.23. The variable root points to the head node of the tree, while root -> left-child 
points to the start of the first node of the actual tree. This is true for all threaded trees. 
Notice that we have handled the problem of the loose threads by having them point to 
the head node, root.
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left thread left child data rightchiId

TRUE FALSE

r ight_tbread

4 t

Figure 5.22 : An empty threaded tree

Inorder Traversal of a Threaded Binary Tree

By using of threads we can simplify the algorithm for an inorder traversal. Observe that 
for any node, ptr, in a threaded binary tree, if ptr -> right-thread - TRUE, the inorder 
successor of ptr is ptr -> right-child by definition of the threads. Otherwise we obtain 
the inorder successor of ptr by following a path of left-child links from the right-child of 
ptr until we reach a node with left-thread = TRUE. The function insucc (Program 5.10) 
finds the inorder successor of any node in a threaded tree without using a stack.

To perform an inorder traversal we make repeated calls to insucc. The operation is 
implemented in tinorder (Program 5.11). This function assumes that the tree is pointed 
to by the head node’s left child and that the head node’s right thread is FALSE. The com
puting time for tinorder is still O(«) for a threaded binary tree with n nodes, although the 
constant factor is smaller than that of iter _ inorder.

Inserting A Node Into A Threaded Binary Tree

We have seen how to use the threads of a threaded binary tree for an inorder traversal. 
We also can use the threads to simplify the algorithms for preorder and postorder traver
sals. Let us now consider how to make insertions into a threaded tree. We examine only 
the case of inserting a new node as the right child of an existing node, parent, leaving the 
insertion of a left child as an exercise.

Assume that we have a node, parent, that has an empty right subtree. We wish to 
insert child as the right child of parent. To do this we must:

(i)
(2)

(3)

change parent ~> right-thread to FALSE

set child -> left-thread and child -> right-thread to TRUE 

set child -> left-child to point to parent
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Figure 5.23: Memory representation of a threaded tree

find the inorder sucessor of tree in a threaded binary 
*/

threaded-pointer insucc(threaded—pointer tree) 
{ 
/*
tree

threaded—pointer temp;
temp
if (’tree->right—thread) 

while ('temp->left—thread) 
temp = 

return temp;

tree->right—child;

temp->left—child;

}

Program 5.10: Finding the inorder successor of a node
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void tinorder(threaded—pointer tree) 
{ 
/* traverse the threaded binary tree inorder 

threaded—pointer temp - tree;
for (;;) {

temp = insucc(temp);
if (temp = tree) break;
printf("%3c", temp->data);

*/

}
}

Program 5.11: Inorder traversal of a threaded binary tree 

(5)

(4) set child -> right-child to parent -> right-child 

change parent -> right-child to point to child

Figure 5.24(a) is an example of this situation. In this case, we wish to insert node D as a 
right child of node B.

If parent has a nonempty right subtree, insertion is slightly more difficult since the 
right subtree of parent becomes the right subtree of child after the insertion. When this 
is done, child becomes the inorder predecessor of the node that was previously parent's 
inorder successor. Figure 5.24(b) illustrates this situation. In this case we wish to insert 
node X between nodes B and D. The function insert-right (Program 5.12) contains the C 
code which handles both cases.

EXERCISES

1.

2.

3.

4.

5.

Draw the binary tree of Figure 5.14(a), showing its threaded representation.

Repeat Exercise 1 using the tree of Figure 5.14(b).

Write a function, insert-left, that inserts a new node, child, as the left child of 
node parent in a threaded binary tree. The left child pointer of parent becomes the 
left child pointer of child.

Write a function that traverses a threaded binary tree in postorder. What are the 
time and space requirements of your method?

Write a function that traverses a threaded binary tree in preorder. What are the 
time and space requirements of your method?
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Figure 5.24: Insertion of child as a right child of parent in a threaded binary tree

5.6 HEAPS

In Section 5.2.2 we defined a complete binary tree. In this section, we present a special 
form of a complete binary tree that is used in many applications.
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void insert—right(threaded—pointer parent, 
threaded—pointer child)

{ 
/*  
binary tree 

threaded—pointer temp; 
child->right—chiId = parent->right—child; 
child->right—thread = parent->right—thread; 
child—>left—child = parent;
child->left—thread
parent->right—child = child; 
parent->right—thread = FALSE; 
if (!child->right—thread) { 

temp
temp->left—child = child;

insert child as the right child of parent in a threaded
*/

TRUE ;

insucc(child);

}
}

Program 5.12: Right insertion in a threaded binary tree

5.6.1 The Heap Abstract Data Type

Dehnition: A max tree is a tree in which the key value in each node is no smaller than 
the key values in its children (if any). A max heap is a complete binary tree that is also a 
max tree. □

Definition: A min tree is a tree in which the key value in each node is no larger than the 
key values in its children (if any). A min heap is a complete binary tree that is also a min 
tree. □

Figure 5.25 shows some example max heaps and Figure 5.26 shows some example 
min heaps. Notice that we represent a heap as an array, although we do not use position 
0. This allows us to use the addressing scheme provided by Lemma 5.3. From the heap 
definitions it follows that the root of a min tree contains the smallest key in the tree while 
the root of a max tree contains the largest key in the tree.

When viewed as an ADT, a max heap is very simple. In particular the only basic 
operations are:

(1) creation of an empty heap



Heaps 219

[21 12
[41 [51

[11

[31

[6]y

<“(30
[21

0 8

Figure 5.25: Sample max heaps

(2)

(3)

insertion of a new element into the heap

deletion of the largest element from the heap

These operations are abstractly defined in Structure 5.2. The real challenge is the design 
of the representation of a heap so that insertion and deletion can be carried out 
efficiently.

5.6.2 Priority Queues

Heaps are frequently used to implement priority queues. Unlike the queues we dis
cussed in Chapter 3, a priority queue deletes the element with the highest (or the lowest) 
priority. At any time we can insert an element with arbitrary priority into a priority 
queue. If our application requires us to delete the element with the highest priority, we 
use a max heap. For example, suppose the job scheduler of our operating system uses a 
priority system in which administrators are given the highest priority and students the 
lowest. We would implement the priority queue that holds the jobs as a max heap. If our 
application requires us to delete the element with the lowest priority, we use a min heap. 
For example, suppose the scheduler of our operating system schedules jobs based on the 
anticipated amount of run time with priority given to shorter jobs. In this case, we would 
implement the priority queue that holds the jobs as a min heap.

Heaps are only one way to implement priority queues. Therefore, before we dis
cuss the various heap operations, we first should examine some of the other representa
tions. Although we will assume that each deletion removes the element with the highest 
value from the queue, our conclusions also apply when we remove the element with the 
smallest value. Figure 5.27 shows the insertion and deletion times for several represen
tations, including a max heap.

An array is the simplest representation of a priority queue. Suppose that we have 
n elements in this queue. If we use an array, we can easily add to the priority queue by 
placing the new item at the current end of the array. Hence, insertion has a complexity
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Figure 5.26: Sample min heaps

Structure MaxHeap is
objects: a complete binary tree of n > 0 elements organized so that the value in each 
node is at least as large as those in its children
functions:

for all heap e MaxHeap, item e Element, n, max-size e integer

create an empty heap that can hold a 
maximum of max_size elements.
if (n == max-size) return TRUE
else return FALSE
if (’HeapFull(/z^(3p, n))
insert item into heap and return the resulting 
heap else return error.
if (n > 0) return TRUE 
else return FALSE
if (!HeapEmpty(Zze6zp, zi)) return one instance 
of the largest element in the heap and
remove it from the heap else return error.

MaxHeap Create(max_5zze)

Boolean HeapFullCA^ap, n)

MaxHeap Insert(/z^«p, item, n)

Boolean HeapEmpty(/ze6Zp, n)

Element Delete(/ze«p, n)

Structure 5.2: Abstract data type MaxHeap

of 0(1). To perform a deletion, we must first search for the element with the largest key 
and then delete this element. The search time is 0(n) and the time to shift the array ele
ments is O(n). Switching to an unordered linked list improves our computing time only 
slightly. We can add to the front of the chain in 0(1) time. However, since we still must 
search the list to find the element with the largest key, the time for a deletion is 0(m). 
With this representation, we have eliminated only the time needed to shift elements. An 
ordered array permits deletion of an element in 0(1) time, but inserting an element 
requires shifting some or all elements and this takes O(n) time. Using a linked list
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Representation 
Unordered array 
Unordered linked list 
Sorted array 
Sorted linked list 
Max heap

Insertion 

0(1) 
0(1) 
Q(^) 
O(^) 
O(log2/1)

Deletion
Q(^) 
Q(^) 
0(1) 
0(1) 
O(log2n)

Figure 5.27: Priority queue representations 

maintained in nonincreasing order assures that the highest element is always the first ele
ment in the list. However, since we must now search the list to add an element, the time 
for this operation is O(n). As we shall prove shortly, representing a priority queue as a 
heap allows us to perform both insertions and deletions in O(log2«) time, making it the 
preferred representation.

5.6.3 Insertion Into A Max Heap

To illustrate the insertion operation, we begin with the five-element max heap shown in 
Figure 5.28(a). When we add an element to this heap, the new six-element heap must 
have the structure shown in Figure 5.28(b). (We have highlighted the new node’s loca
tion.) Adding the new node at any other location violates the heap definition since the 
result would not be a complete binary tree.

Now suppose that the new element has a key value of 1. In this case, we simply 
place it in the new node, that is, it becomes the left child of 2. If instead the value of the 
new element is a 5, we cannot insert it as the left child of 2 since this violates the heap 
definition. So we must move the 2 down to the new node and place the 5 at the old posi
tion of 2. Since the parent (20) of the old position of 2 is at least as large as the value 
being inserted (5), we do not need to change the parent. Figure 5.28(c) shows the result
ing heap. Next, suppose that the new element has a value of 21 rather than 5. In this 
case, the 2 moves down to its left child and the 20 moves down to its right child. We then 
insert the 21 at the old position of 20. Figure 5.28(d) shows the resulting heap.

To implement the insertion strategy described above, we need to go from an ele
ment to its parent. If we use a linked representation, we must add a parent field to each 
node. However, since a heap is a complete binary tree, we also can use the array 
representation discussed in Section 5.2.3. Lemma 5.3 allows us to locate easily the 
parent of any element. The function insert-max-heap (Program 5.13) performs an 
insertion into a max heap that contains n elements. We assume that the heap is created 
using the following C declarations:
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Figure 5.28: Insertion into a max heap

#define MAX-ELEMENTS 200 /*  
ttdefine HEAP-FULL(n) (n == MAX—ELEMENTS—1) 
#define HEAP-EMPTY(n) (!n) 
typedef struct {

int key; 
/* */other fields
} element;

element heap[MAX—ELEMENTS];
int n 0;

maximum heap size+1 */

Analysis of insert-max-heap'. The function insert-max-heap first checks for a full 
heap. If the heap is not full, we set i to the size of the new heap (n + 1). We must now 
determine the correct position of item in the heap. We use the while loop to accomplish 
this task. This follows a path from the new leaf of the max heap to the root until it either 
reaches the root or reaches a position i such that the value in the parent position z/2 is at 
least as large as the value to be inserted. Since a heap is a complete binary tree with n 
elements, it has a height of f log2(« + 1)1- This means that the while loop is iterated
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void insert—max-heap(element item, 
{
/*insert  item into a max heap of current size 

int i;
if (HEAP-FULL(*n)  ) { 

fprintf(stderr, 
exit(1);

int *n)

*n */

"The heap is full.

} 
i 
while ((i !- 1) && (item.key 

heap[i j = heap[i/2];
i /- 2;

++(*n) ;
heap[i/2].key)) {

}
heap[i] item;

\n" ) ;

}

Program 5.13: Insertion into a max heap

O(log2^) times. Hence, the complexity of the insertion function is O(log2n). □

5.6.4 Deletion From A Max Heap

When we delete an element from a max heap, we always take it from the root of the 
heap. For instance, a deletion from the heap of Figure 5.28(a) removes the element 20. 
Since the resulting heap has only four elements, we must restructure the tree so that it 
corresponds to a complete binary tree with four elements. The desired structure is illus
trated in Figure 5.29(a) (the node that will be removed is highlighted). To remove the 
node, we place the node’s element (10) in the root node (see Figure 5.29(b)). The struc
ture is now correct, but the resulting tree violates the max heap definition. To reestablish 
the heap we move down the heap, comparing the parent node with its children and 
exchanging out-of-order elements until the heap is reestablished. Figure 5.29(c) shows 
the final heap. The function delete-max-heap (Program 5.14) implements this deletion 
strategy.

Analysis of delete-max-heap. The function delete -max-heap operates by moving 
down the heap, comparing and exchanging parent and child nodes until the heap 
definition is re-established. Since the height of a heap with n elements is [ log2(rt + 1)1, 
the while loop of delete-max-heap is iterated O(log2rt) times. Hence, the complexity of 
a deletion is O(log2n). □
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EXERCISES

1.

2.

3.

4.

5.

6.

7.

Two other possible representations of a priority queue would be a circular, doubly 
linked unordered list and a circular, doubly linked ordered list. Add these two 
representations to Figure 5.27. Explain your assessment of their insertion and 
deletion times.

Suppose that we have the following key values: 7, 16, 49, 82, 5, 31, 6, 2, 44.

(a) Write out the max heap after each value is inserted into the heap.

(b) Write out the min heap after each value is inserted into the heap.

Write a C function that changes the priority of an arbitrary element in a max heap. 
The resulting heap must satisfy the max heap definition. What is the computing 
time of your function?

Write a C function that deletes an arbitrary element from a max heap (the deleted 
element may be anywhere in the heap). The resulting heap must satisfy the max 
heap definition. What is the computing time of your function? (Hint: Change the 
priority of the element to one greater than that of the root, use the change priority 
function of Exercise 3, and then delete -max-heap.)

Write a C function that searches for an arbitrary element in a max heap. What is 
the computing time of your function?

Write insertion and deletion functions for a max heap represented as a linked 
binary tree. Assume that each node has a parent field as well as the usual left 
child, right child, and data fields.

§ [Programming project] Write a user-friendly, menu-driven program that allows 
the user to perform the following operations on min heaps.
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element delete—max-heap(int 
{ 
/*

*n)

delete element with the highest key from the heap 
int parent, child;
element item, temp;
if (HEAP-EMPTY{*n) ) {

fprintf(stderr, "The heap is empty\n");
exit(1);

} 
/■^ 
item = heap[1];

save value of the element with the highest key */

1;
2 ;

use last element in heap to adjust heap 
temp = heap[(*n) —]; 
parent 
child
while (child <= *n)  {

find the larger child of the current parent 
(child < *n)  && (heap [child] . key

*/

= heap[child].key) break;
*/

if
heap[child+1].key) 

child++;
if (temp.key

move to the next lower level 
heapEparent] = heap[chiId]; 
parent = child;
child *=  2;★_

}
heap[parent] 
return item;

t emp ;

}

Program 5.14: Deletion from a max heap

(a)

(b) 

(c) 

(d)

create a min heap

remove the key with the lowest value 

change the priority of an arbitrary element 

insert an element into the heap.
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5.7 BINARY SEARCH TREES

5.7.1 Introduction

While a heap is well suited for applications that require priority queues, it is not well 
suited for applications in which we must delete arbitrary elements. Deletion of an arbi
trary element from an n element heap takes O(az) time. This is no better than the time 
needed for the deletion of an arbitrary element from an unordered list. Similarly, search
ing for an arbitrary element takes O(n) in a heap.

A binary search tree has a better performance than any of the data structures stu
died so far when the operations we wish to perform are insertion, deletion, and search
ing. In fact, with a binary search tree we can perform these operations by both key value 
(for example, delete the element with key x) and by rank (for example, delete the fifth 
smallest element).

Definition: A binary search tree is a binary tree. It may be empty. If it is not empty, it 
satisfies the following properties:

(1)

(2)

(3)

(4)

Every element has a key, and no two elements have the same key, that is, the keys 
are unique.

The keys in a nonempty left subtree must be smaller than the key in the root of the 
subtree.

The keys in a nonempty right subtree must be larger than the key in the root of the 
subtree.

The left and right subtrees are also binary search trees. □

There is some redundancy in the definition. Properties (2), (3), and (4) taken 
together imply that the keys must be distinct. Therefore, we can replace property (1) 
with the property: The root has a key. However, the definition provided above is clearer 
than the nonredundant version.

Some sample binary trees are shown in Figure 5.30. The tree of Figure 5.30(a) is 
not a binary search tree since the right subtree fails to satisfy property (4). This subtree 
has a root with a key value of 25 and a right child with a smaller key value (22). Figure 
5.30(b) and Figure 5.30(c) are binary search trees.

Since a binary search tree is a specialized form of a binary tree, the C declarations 
for a binary search tree do not differ from the declarations that we previously used to 
create a binary tree. Similarly, all the binary tree operations discussed in Sections 5.3 
and 5.4 apply directly to binary search trees. Thus, for example, we may use the inorder, 
preorder, and postorder traversals without modification. To these operations, we add 
those of insertion, deletion, and search.
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Figure 5.30: Binary trees

5.7.2 Searching A Binary Search Tree

Since the definition of a binary search tree is recursive, it is easiest to describe a recur
sive search method. Suppose we wish to search for an element with a key. We begin at 
the root. If the root is NULL, the search tree contains no elements and the search is 
unsuccessful. Otherwise, we compare key with the key value in root. If key equals 
root's key value, then the search terminates successfully. If key is less than roof s key 
value, then no element in the right subtree can have a key value equal to key. Therefore, 
we search the left subtree of root. If key is larger than roofs key value, we search the 
right subtree of root. The function search (Program 5.15) recursively searches the sub
trees.

return a pointer to the node that contains key. If
*/

root->data)

tree—pointer search(tree—pointer root, int key) 
{ 
/*  
there is no such node, return NULL.

if (1 root) return NULL;
if (key == root->data) return root; 
if (key

return search(root->left—child, key);
return search(root->right_child,key);

}

Program 5.15: Recursive search of a binary search tree
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We can easily replace the recursive search function with a comparable iterative 
one. The function search! (Program 5.16) accomplishes this by replacing the recursion 
with a while loop.

return a pointer to the node that contains key. If
*/

tree—pointer search2{tree—pointer tree, int key) 
{ 
/*
there is no such node, return NULL.

while (tree) { 
if (key == tree->data) return tree; 
if (key 

tree 
else 

tree

tree->data)
tree->left—child;

tree->right— child;
}

return NULL;
}

Program 5.16: Iterative search of a binary search tree

Analysis of search and search!'. If h is the height of the binary search tree, then we can 
perform the search using either search or search! in 0(h). However, search has an 
additional stack space requirement which is O(h). □

5.7.3 Inserting Into A Binary Search Tree

To insert a new element, key, we must first verify that the key is different from those of 
existing elements. To do this we search the tree. If the search is unsuccessful, then we 
insert the element at the point the search terminated. For instance, to insert an element 
with key 80 into the tree of Figure 5.30(b), we first search the tree for 80. This search 
terminates unsuccessfully, and the last node examined has value 40. We insert the new 
element as the right child of this node. The resulting search tree is shown in Figure 
5.31(a). Figure 5.31(b) shows the result of inserting the key 35 into the search tree of 
Figure 5.31(a). This strategy is implemented by insert-node (Program 5.17). This uses 
the function modified - search which is a slightly modified version of function search 2 
(Program 5.16). This function searches the binary search tree *node  for the key num. If 
the tree is empty or if num is present, it returns NULL. Otherwise, it returns a pointer to 
the last node of the tree that was encountered during the search. The new element is to 
be inserted as a child of this node.

Analysis of insert-node: The time required to search the tree for num is O(/2) where h is
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Figure 5.31: Inserting into a binary search tree 

void insert—node{tree—pointer 
/*

*node, int num)
If num is in the tree pointed at by node do nothing; 

num * /otherwise add a new node with data 
{

tree—pointer ptr, temp = modified—search(*node , num); 
if (temp I I ! (*node) ) {

num is not in the tree/* */
(tree—pointer)malloc(sizeof(node));ptr

if (IS-FULL(ptr)) { 
fprintf(stderr, ' 
exit(1);

"The memory is full\n");

}
ptr->data
ptr->left—child 
if (*node)  /

i f (num <
else temp->right—child = ptr; 

else *

num;
ptr->right—child - NULL; 

insert as child of temp 
temp->data) temp->left—child = ptr;

*/

node = ptr;

Program 5.17: Inserting an element into a binary search tree

}

★

}
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its height. The remainder of the algorithm takes 0(1) time. So, the overall time needed 
by insert-node is O(/?). □

5.7.4 Deletion From A Binary Search Tree

Deletion of a leaf node is easy. For example, to delete 35 from the tree of Figure 5.31(b), 
we set the left child field of its parent to NULL and free the node. This gives us the tree 
of Figure 5.31(a). The deletion of a nonleaf node that has only a single child is also 
easy. We erase the node and then place the single child in the place of the erased node. 
For example, if we delete 40 from the tree of Figure 5.31(a) we obtain the tree in Figure 
5.32.

Figure 5.32: Deletion from a binary search tree

When we delete a nonleaf node with two children, we replace the node with either 
the largest element in its left subtree or the smallest element in its right subtree. Then we 
proceed by deleting this replacing element from the subtree from which it was taken. 
For instance, suppose that we wish to delete 60 from the tree of Figure 5.33(a). We may 
replace 60 with either the largest element (55) in its left subtree or the smallest element 
(70) in its right subtree. Suppose we opt to replace it with the largest element in the left 
subtree. We move the 55 into the root of the subtree. We then make the left child of the 
node that previously contained the 55 the right child of the node containing 50, and we 
free the old node containing 55. Figure 5.33(b) shows the final result. One may verify 
that the largest and smallest elements in a subtree are always in a node of degree zero or 
one. This observation simplifies the code for the deletion function. We leave the formal 
writing of this function as an exercise. From the examples considered, you should be 
able to see that a deletion can be performed in O(/i) time where h is the height of the tree.
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(a) tree before deletion of &0 (b) tree after deletion of 60

5.7.5

1. Assume that we change the definition of a binary search tree so that equal keys are 
permitted and that we add a count field to the node structure.

(a)

(b)

Rewrite insert-node so that it increments the count field when a plural key 
is found. Otherwise, a new node is created.

Rewrite delete so that it decrements the count field when the key is found. 
The node is eliminated only if its count is 0.

Figure 5.33: Deletion of a node with two children

Height Of A Binary Search Tree

Unless care is taken, the height of a binary search tree with n elements can become as 
large as n. This is the case, for instance, when we use insert-node to insert the keys 1, 2, 
3, • • •, n, in that order, into an initially empty binary search tree. However, when inser
tion and deletions are made at random using the above functions, the height of the binary 
search tree is O(log2n), on the average.

Search trees with a worst case height of O(log2M) are called balanced search trees. 
Balanced search trees that permit searches, insertions, and deletions, to be performed in 
O(/i) time exist. Most notable among these are AVL, 2-3, and red-black trees. We dis
cuss these in Chapter 10.

EXERCISES
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2.

3.

4.

5.

6.

Write the C code for the function modified -search that is used in Program 5.17.

Obtain a recursive version of insert-node. Which of the two versions is more 
efficient? Why?

Write a recursive C function to delete a key from a binary search tree. What is the 
time and space complexity of your function?

Obtain an iterative C function to delete a key from a binary search tree. The space 
complexity of your function should be 0(1). Show that this is the case. What is 
the time complexity of your function?

Assume that a binary search tree is represented as a threaded binary search tree. 
Write functions to search, insert, and delete.

5.8 SELECTION TREES

Suppose we have k ordered sequences that are to be merged into a single ordered 
sequence. Each sequence consists of some number of records and is in nondecreasing 
order of a designated field called the key. An ordered sequence is called a run. Let n be 
the number of records in the k runs together. The merging task can be accomplished by 
repeatedly outputting the record with the smallest key. The smallest has to be found 
from k possibilities and it could be the leading record in any of the <’-runs. The most 
direct way to merge Z:-runs would be to make k - 1 comparisons to determine the next 
record to output. For k > 2, we can achieve a reduction in the number of comparisons 
needed to find the next smallest element by using the idea of a selection tree. A selec
tion tree is a binary tree where each node represents the smaller of its two children. 
Thus, the root node represents the smallest node in the tree. Figure 5.34 illustrates a 
selection tree for the case k = 8.

The construction of this selection tree may be compared to the playing of a tourna
ment in which the winner is the record with the smaller key. Then, each nonleaf node in 
the tree represents the winner of a tournament and the root node represents the overall 
winner or the smallest key. A leaf node here represents the first record in the 
corresponding run. Since the records being merged are generally large, each node will 
contain only a pointer to the record it represents. Thus, the root node contains a pointer 
to the first record in run 4. The selection tree may be represented using the array 
representation scheme for binary trees that results from Lemma 5.3. The number above 
each node in Figure 5.34 represents the address of the node in this sequential representa
tion. The record pointed to by the root has the smallest key and so may be output. Now, 
the next record from run 4 enters the selection tree. It has a key value of 15. To restruc
ture the tree, the tournament has to be replayed only along the path from node 11 to the 
root. Thus, the winner from nodes 10 and 11 is again node 11 (15 < 20). The winner 
from nodes 4 and 5 is node 4 (9 < 15). The winner from 2 and 3 is node 3 (8 < 9). The 
new tree is shown in Figure 5.35. The tournament is played between sibling nodes and 
the result put in the parent node. Lemma 5.3 may be used to compute the address of 
sibling and parent nodes efficiently. After each comparison the next takes place at one
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Figure 5.34: Selection tree for k =8 showing the first three keys in each of the eight runs 

higher level in the tree. The number of levels in the tree is flog2^1 + 
restructure the tree is O(log2^). The tree has to be restructured each time a record is 
merged into the output file. Hence, the time required to merge all n records is 
O(u log2/c). The time required to set up the selection tree the first time is O(/:). Hence, 
the total time needed to merge the k runs is O(/i log2/:).

A slightly faster algorithm results if each node represents the loser of the tourna
ment rather than the winner. After the record with smallest key is output, the selection 
tree of Figure 5.34 is to be restructured. Since the record with the smallest key value is 
in run 4, this restructuring involves inserting the next record from this run into the tree. 
The next record has key value 15. Tournaments are played between sibling nodes along 
the path from node 11 to the root. Since these sibling nodes represent the losers of tour
naments played earlier, we would simplify the restructuring process by placing in each
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Figure 5.35: Selection tree of Figure 5.34 after one record has been output and the tree 
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nonleaf node a pointer to the record that loses the tournament rather than to the winner 
of the tournament. A tournament tree in which each nonleaf node retains a pointer to the 
loser is called a tree of losers. Figure 5.36 shows the tree of losers corresponding to the 
selection tree of Figure 5.34. For convenience, each node contains the key value of a 
record rather than a pointer to the record represented. The leaf nodes represent the first 
record in each run. An additional node, node 0, has been added to represent the overall 
winner of the tournament. Following the output of the overall winner, the tree is restruc
tured by playing tournaments along the path from node 11 to node 1. The records with 
which these tournaments are to be played are readily available from the parent nodes.
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EXERCISES

1.

3.

4.

Write an algorithm to construct a tree of losers for records /?,, 1 < i < k, with key 
values !</</:. Let the tree nodes be T,, Q< i < k, with 7,, 1 < z < ^, a pointer 
to the loser of a tournament and Tq a pointer to the overall winner. Show that this 
construction can be carried out in time O{k).

Do the previous exercise for the case of a tree of winners.

Write an algorithm, using a tree of losers, to carry out a fc-way merge of k runs, 
k > 2. Show that if there are n records in the k runs together, then the computing 
time is O(z21og2/:).

Do the previous exercise for the case when a tree of winners is used.
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5. Compare the performance of your algorithms for the preceding two exercises for 
the case k = 8. Generate eight runs of data, each having 100 records in it. Use a 
random number generator for this (the keys obtained from the random number 
generator will need to be sorted before the merge can begin). Measure the time 
taken to merge the eight runs using the two strategies. Approximately how much 
faster is the tree of losers scheme?

5.9 FORESTS

Definition: A forest is a set of n> 0 disjoint trees. □

The concept of a forest is very close to that of a tree because if we remove the root of a 
tree we obtain a forest. For example, removing the root of any binary tree produces a 
forest of two trees. In this section, we briefly consider several forest operations, includ
ing transforming a forest into a binary tree and forest traversals. In the next section, we 
use forests to represent disjoint sets.

5.9.1 Transforming A Forest Into A Binary Tree

Suppose that we have a forest of three trees as illustrated in Figure 5.37. To transform 
this forest into a single binary tree, we first obtain the binary tree representation for each 
of the trees in the forest. We then link all the binary trees together through the sibling 
field of the root node. Applying this transformation to the forest of Figure 5.37 gives us 
the tree of Figure 5.38.

G
G e

Figure 5.37: Forest with three trees

We can define this transformation formally as follows:

Definition: If T\, • • •, is a forest of trees, then the binary tree corresponding to this 
forest, denoted by B(T], • • -, T„):



Forests 237

Figure 5.38: Binary tree representation of Figure 5.37

(1)
(2)

is empty, if n = 0

has root equal to root (Tj); has left subtree equal to ' ’' , where
T\ 1, 7'12, ■ ■ ■, \m arc the subtrees of root (T।); and has right subtree 5(72, ‘,

5.9.2 Forest Traversals

Preorder, inorder, and postorder traversals of the corresponding binary tree T of a forest 
F have a natural correspondence with traversals of F. The preorder traversal of T is 
equivalent to visiting the nodes of Fin tree preorder. We define this as:

(1)
(2)

(3)
(4)

If F is empty, then return.

Visit the root of the first tree of F.

Traverse the subtrees of the first tree in tree preorder.

Traverse the remaining trees of F in preorder.

Inorder traversal of T is equivalent to visiting the nodes of F in tree inorder, which 
is defined as:

(1) If F is empty, then return.
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(2)

(3)
(4)

Traverse the subtrees of the first tree in tree inorder.

Visit the root of the first tree.

Traverse the remaining trees in tree inorder.

There is no natural analog for the postorder traversal of the corresponding binary 
tree of a forest. Nevertheless, we can define the postorder traversal of a forest, F, as:

(1)
(2)

(3)

(4)

If F is empty, then return.

Traverse the subtrees of the first tree of F in tree postorder.

Traverse the remaining trees of F in tree postorder.

Visit the root of the first tree of F.

EXERCISES

1.

2.

3.

4.

Define the inverse transformation of the one that creates the associated binary tree 
from a forest. Are these transformations unique?

Prove that the preorder traversal of a forest and the preorder traversal of the asso
ciated binary tree give the same result.

Prove that the inorder traversal of a forest and the inorder traversal of the associ
ated binary tree give the same result.

Prove that the postorder traversals of a forest and of its corresponding binary tree 
do not necessarily yield the same results.

5.10 SET REPRESENTATION

In this section, we study the use of trees in the representation of sets. For simplicity, we 
assume that the elements of the sets are the numbers 0, 1, 2, •••,«-!. In practice, these 
numbers might be indices into a symbol table that stores the actual names of the ele
ments. We also assume that the sets being represented are pairwise disjoint, that is, if 
and S; are two sets and i j, then there is no element that is in both 5, and 5,. For exam- 
pie, if we have 10 elements numbered 0 through 9, we may partition them into three dis
joint sets, 51 = {0, 6, 7, 8), S2 = {1, 4, 9}, and S3 = {2, 3, 5}. Figure 5.39 shows one 
possible representation for these sets. Notice that for each set we have linked the nodes 
from the children to the parent, rather than our usual method of linking from the parent 
to the children. The reason for this change in linkage will become apparent when we 
discuss the implementation of set operations.

The minimal operations that we wish to perform on these sets are:
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1s s s
2 3

Figure 5.39 : Possible forest representation of sets

(1) Disjoint set union. If S/ and Sy are two disjoint sets, then their union S, u Sy = {all 
elements, x, such that x is in S/ or Sy). Thus, Si o S2 = {0, 6, 7, 8, 1, 4, 9}. Since 
we have assumed that all sets are disjoint, following the union of S/ and Sy we can 
assume that the sets S/ and Sy no longer exist independently. That is, we replace 
them by S,- u Sy.

(2) Find(i). Find the set containing the element, i. For example, 3 is in set S3 and 8 is 
in set S1.

J'

5.10.1 Union And Find Operations

Let us consider the union operation first. Suppose that we wish to obtain the union of 5i 
and 52- Since we have linked the nodes from children to parent, we simply make one of 
the trees a subtree of the other. Si u S2 could have either of the representations of Fig
ure 5.40.

2 1oru s s 2 u s

Figure 5.40 : Possible representation of S j u S2
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To implement the set union operation, we simply set the parent field of one of the 
roots to the other root. We can accomplish this easily if, with each set name, we keep a 
pointer to the root of the tree representing that set. If, in addition, each root has a pointer 
to the set name, we can find which set an element is in by following the parent links to 
the root of its tree and then returning the pointer to the set name. Figure 5.41 shows this 
representation of Si, S2, and S3.

set 
name po inter

s 1

s 3

4

Figure 5.41 : Data representation of 51, S2, and S3

To simplify the discussion of the union and find algorithms, we will ignore the set 
names and identify the sets by the roots of the trees representing them. For example, 
rather than using the set name S1 we refer to this set as 0. The transition to set names is 
easy. We assume that a table, name [ ], holds the set names. If i is an element in a tree 
with root 7, and j has a pointer to entry k in the set name table, then the set name is just 
name[k].

Since the nodes in the trees are numbered 0 through n - 1 we can use the node’s 
number as an index. This means that each node needs only one field, the index of its 
parent, to link to its parent. Thus, the only data structure that we need is an array, int 
parent[MAX-ELEMENTS], where MAX-ELEMENTS is the maximum number of ele
ments. Figure 5.42 shows this representation of the sets, Sp S2, and S^- Notice that root 
nodes have a parent of -1.
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z
parent

[0]
-1

[1]
4

[2J
-1

[3]
2

[4]
-1

[5]
2

[6] 
0

[7] 
0

[8] 
0

[9]
4

Figure 5.42 : Array representation of 5 j, S2, and 53

We can now implement ^nJCz) by simply following the indices starting at z and 
continuing until we reach a negative parent index. For example, find{5), starts at 5, and 
then moves to 5’s parent, 2. Since this node has a negative index we have reached the 
root. The operation union(ij) is equally simple. We pass in two trees with roots z and j. 
Assuming that we adopt the convention that the first tree becomes a subtree of the 
second, the statement parent [i] = j accomplishes the union. Program 5.18 implements 
the union and find operations as just discussed.

int findl{int i) 
{

for(; parent[i] 0; i = parent[i])

return i;
}
void unionl(int i, int j) 
{

parent[i = j;
}

Program 5.18: Initial attempt at union-find functions

Analysis of union\ and find}: Although Mnz<7nl and find\ are, easy to implement, their 
performance characteristics are not very good. For instance, if we start with p elements, 
each in a set of its own, that is, S,: = {/}, 0 < z <7?, then the initial configuration is a forest 
with p nodes andpar^nzfz] = -1,0 < z <p. Now let us process the following sequence of 
union-find operations:

uni(7n(\, 2\find{{}}

union(n-2, n-1
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This sequence produces the degenerate tree of Figure 5.43. Since the time taken 
for a union is constant, we can process all the n - 1 unions in time O(n). However, for 
each find, we must follow a chain of parent links from 0 to the root. If the element is at 
level i, then the time required to find its root is O(z). Hence, the total time needed to pro
cess the n - 1 finds is:

n
2;; = O(n2)n
i=2

n—1 

n-2

T
A

Figure 5.43 : Degenerate tree

By avoiding the creation of degenerate trees, we can attain far more efficient 
implementations of the union and find operations. We accomplish this by adopting the 
following Weighting rule for uniond, j).

Definition: Weighting rule for uniond. j). If the number of nodes in tree i is less than the 
number in tree j then make j the parent of z; otherwise make i the parent of j. □

When we use this rule on the sequence of set unions described above, we obtain 
the trees of Figure 5.44. To implement the weighting rule, we need to know how many 
nodes there are in every tree. To do this easily, we maintain a count field in the root of 
every tree. If i is a root node, then count[i] equals the number of nodes in that tree. 
Since all nodes but the roots of trees have a nonnegative number in the parent field, we 
can maintain the count in the parent field of the roots as a negative number. When we 
incorporate the weighting rule, the union operation takes the form given in union! (Pro
gram 5.19). Remember that the arguments passed into union! must be roots of trees.

Lemma 5.4: Let Lbe a tree with n nodes created as a result of union!. No node in T has 
level greater than [ ^og2^^ J + L
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unionCO jl), 
0 = findCO)

initial

union(0j3)« . 
0 = find CO)

unionC0,2) 
0 = findCO)

union (0 ,n-l)

1

1

Figure 5.44 : Trees obtained using the weighting rule

void union2(int i, int j)
{
/*  union the sets with roots i and j, i != j, 
the weighting rule, parent[i] = -count[i] and 
parent[j] = -count[j]

int temp = parent[i] + parent[j];
if (parent[i]

parent[i] = j; /
parent[j]

union the sets with roots i and j,

parent[j]) {
make j the new root

using

■^ /

★

t emp ;
}
else {

parent[j]
parent[i]

i ;
t emp ;

/*make  i the new root */

}
}

Program 5.19: Union function

Proof: The lemma is clearly true for n = 1. Assume that it is true for all trees with i 
nodes, i < n - 1. We show that it is also true for i = n. Let T be a tree with nodes 
created by unionl. Consider the last union operation performed, umon(kj). Let m be the 
number of nodes in tree j and n-m, the number of nodes in k. Without loss of generality, 
we may assume that 1 < m < n f 2. Then the maximum level of any node in T is either the 
same as k or is one more than in j. If the former is the case, then the maximum level in T 
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is < [ log2(A2-m) J + 1 < [ log2Az J + 1. If the latter is the case, then the maximum level 
is < [ log2m J + 2 < [ log2«/2 J + 2 < Llog2n J+1. □

Example 5.1 shows that the bound of Lemma 5.4 is achievable for some sequence 
of unions.

Example 5.1: Consider the behavior of union! on the following sequence of unions 
starting from the initial configuration of parent [i ] = -count [Z ] = -1, 0 < i < n = 2^:

union(Q, 1) union(!, 3) union(4, 5) union(6, 7) 
union(0, 2) union(4, 6) union(0, 4)

When the sequence of unions is performed by columns (i.e., top to bottom within a 
column with column 1 first, column 2 next, and so on), the trees of Figure 5.45 are 
obtained. As is evident from this example, in the general case, the maximum level can 
be L log2m J + 1 if the tree has m nodes. □

As a result of Lemma 5.4, the time to process a find in an n element tree is 
O(log2«). If we must process an intermixed sequence of n - 1 union and m find opera
tions, then the time becomes O(n + m log2n). Surprisingly, further improvement is pos
sible if we add a collapsing rule to the find operation.

Definition [Collapsing rule]: If j is a node on the path from i to its root then make j a 
child of the root. □

Program 5.20 incorporates the collapsing rule into the find operation. The new function 
roughly doubles the time for an individual find. However, it reduces the worst case time 
over a sequence of finds.

Example 5.2: Consider the tree created by union! on the sequence of unions of Example
5.1. Now process the following 8 finds:

find{l\find(l\ ■ ■ ■ ,find{1}

Using the old version of find,find(7) requires going up three parent link fields for a total 
of 24 moves to process all eight finds. In the new version of find, the firstTzziJfZ) requires 
going up three links and then resetting two links. Each of the remaining seven finds 
requires going up only one link field. The total cost is now only 13 moves (note that 
even though only two links need to be changed, function find! sets three including the 
one from node four). □

The worst case behavior of the union-find algorithms while processing a sequence 
of unions and finds is stated in Lemma 5.5. Before stating this lemma, let us introduce a 
very slowly growing function, a(m, n), which is related to a functional inverse of 
Ackermann’s function A We have the following definition for a(w, n):
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t-ii [-11 [-11 [-11 [-11 [-11 [-11 [-11 Level Command

0 1 1 Initial

[-21[-21

2

3

[-21

[-41

[-21

1

2

union(0>l) 
union (2 >3) 
union (4,5)
union(6«7)

[-41

[-81

1

1 un ion (0,2 )

4

6 2

0 4

2
4

union (4

3

1

2

un ion (0,4 )

3

4

Figure 5.45: Trees achieving worst case bound

a(zn, n) = min{z >1 I A (z, 4 f m/n ]) > log2n }

The definition of Ackermann’s function used here is:

A(p, q} =

2q p
0 = 0 and p > I
0 P i and p =■ 1
A(;7-l,A(p, ^-1)) and 2
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int find2(int i) 
{ 
/*
collapsing rule to collapse all nodes from i to root 

int root, trail, lead; 
for (root

find the root of the tree containing element i. Use the

i; parent[root] 0; root = parent[root])

for (trail = i; trail 1= root; 
lead = parent[trail];
parent[trail]

1 ;

root;

trail lead) {

}
return root;

}

Program 5.20: Find function

The function A (p, q}\ssi v&ry rapidly growing function. You may prove that:

(1) A (3, 4) = 22’ 65,536 twos

(2)

(3)

If we assume that m 0, then (2) and (3) together with the definition of n} imply 
that a(m, n)<3 for log2/i < A(3, 4). But from (1), A(3,4) is a very large number indeed! 
In Lemma 5.5, n will be the number of unions performed. For all practical purposes we 
may assume log2« < A(3,4) and, hence, a(w, n) < 3.

Lemma 5.5 [Tarjan]: Let T{m, n) be the maximum time required to process an inter
mixed sequence of m > n finds and h - 1 unions. Then:

k 1 md^m, fi) < T{m, n}<k2tn n)

for some positive constants and ^2- □

Even though the function a(m, n) is a very slowly growing function, the complex
ity of the union-find is not linear in m, the number of finds. As far as the space require
ments are concerned, the space needed is one for each element.
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5.10.2 Equivalence Classes

Let us apply the union-find algorithms to processing the equivalence pairs of Section 4.6. 
We can regard the equivalence classes to be generated as sets. These sets are disjoint 
since no polygon can be in two equivalence classes. To begin with, all n polygons are in 
an equivalence class of their own; thus parent{i} = -1, 0 < i < n. Before processing an 
equivalence pair, i = j, we must first determine the sets containing i and j. If they are 
different, then we replace the two sets by their union. If the two sets are the same, then 
we do nothing since the relation Z = j is redundant. To process each equivalence pair we 
need to perform two finds and at most one union. Thus, if we have n polygons and m > n 
equivalence pairs, the total processing time is at most O(m a(2m, n)). Although for very 
large n this is slightly worse than the algorithm of Section 4.6, it needs less space. In 
Chapter 6, we shall see another application of union-find algorithms.

Example 5.3: We use the union-find algorithms to process the set of equivalence pairs of 
Section 4.6. Initially, there are 12 trees, one for each variable and parent[i] = -1,0 < Z < 
11. The forest configuration following the processing of each equivalence pair is shown 
in Figure 5.46. Each tree represents an equivalence class. It is possible to determine if 
two elements are currently in the same equivalence class at each stage of the processing 
by simply making two finds. □

EXERCISES

1.

2.

Using the result of Example 5.3, draw the trees after processing the instruction 
umon2(i 1, 9).

Using umon2 and find2, create a complete program that inputs equivalence rela
tions and then creates and prints out the equivalence classes. Use Example 5.3 as 
a guide.

5.11 COUNTING BINARY TREES

As a conclusion to our chapter on trees, we consider three disparate problems that amaz
ingly have the same solution. In particular, we wish to determine the number of distinct 
binary trees having n nodes, the number of distinct permutations of the numbers from I 
to n obtainable by a stack, and the number of distinct ways of multiplying n + 1 matrices. 
Let us begin with a quick look at these problems.

5.11.1 Distinct Binary Trees

We know that if n = 0 or n = 1, there is only one binary tree. If n = 2, then there are two 
distinct trees (Figure 5.47) and if n = 3, there are five such trees (Figure 5.48). How 
many distinct trees are there with n nodes? Before deriving a solution, we will examine
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[-11 [-11 [-11 [-11 [-11 [-11 [-11 [-11 [-11 [-11 [-11 [-11 INPUT

in it ia 1

[-23 [-11 [-21 [-11 [-21 [-11 [-21 [-11

11 3=1
6 = 10
8 = 9

[-21[-31 [-41 [-31

11

355

2 = 11

[-51 [-41 [-31

0

4 1 9

2

0 = 4

7 E 4

6 = 8

11 E 0

Figure 5.46: Trees for equivalence example

the two remaining problems. You might attempt to sketch out a solution of your own 
before reading further.

and

Figure 5.47: Distinct binary trees with n = 2
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Figure 5.48 : Distinct binary trees with n = 3

5.11.2 Stack Permutations

In Section 5.3, we introduced preorder, inorder, and postorder traversals and indicated 
that each traversal required a stack. Suppose we have the preorder sequence:

ABCDEFGHI

and the inorder sequence:

BCAEDGHFI

of the same binary tree. Does such a pair of sequences uniquely define a binary tree? 
Pul another way, can this pair of sequences come from more than one binary tree?

To construct the binary tree from these sequences, we look at the first letter in the 
preorder sequence, A. This letter must be the root of the tree by definition of the 
preorder traversal (VLR.}. We also know by definition of the inorder traversal {LVR} that 
all nodes preceding A in the inorder sequence (B Q are in the left subtree, while the 
remaining nodes {ED GHFI) are in the right subtree. Figure 5.49(a) is our first approx
imation to the correct tree.

Moving right in the preorder sequence, we find B as the next root. Since no node 
precedes B in the inorder sequence, B has an empty left subtree, which means that C is in 
its right subtree. Figure 5.49(b) is the next approximation. Continuing in this way, we 
arrive at the binary tree of Figure 5.49(c). By formalizing this argument (see the exer
cises for this section), we can verify that every binary tree has a unique pair of preorder
inorder sequences.

Let the nodes of an n node binary tree be numbered from 1 to n. The inorder per
mutation defined by such a binary tree is the order in which its nodes are visited during 
an inorder traversal of the tree. A preorder permutation is similarly defined.
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A A

B, C
Dj E, F, G, H, I

D, E, F> G, H> I B

(a)

c J
(b)

(c)

Figure 5.49 : Constructing a binary tree from its inorder and preorder sequences

As an example, consider the binary tree of Figure 5.49(c) with the node numbering 
of Figure 5.50. Its preorder permutation is 1, 2, ■ • •, 9, and its inorder permutation is 2, 
3, 1,5,4, 7, 8, 6,9.

Figure 5.50 : Binary tree of Figure 5.49(c) with its nodes numbered
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If the nodes of the tree are numbered such that its preorder permutation is 1, 2, 
• • • ,n, then from our earlier discussion it follows that distinct binary trees define distinct 

inorder permutations. Thus, the number of distinct binary trees is equal to the number of 
distinct inorder permutations obtainable from binary trees having the preorder permuta
tion, 1,2, • • • ,/i.

Using the concept of an inorder permutation, we can show that the number of dis
tinct permutations obtainable by passing the numbers 1 to n through a stack and deleting 
in all possible ways is equal to the number of distinct binary trees with n nodes (see the 
exercises). If we start with the numbers 1, 2, 3, then the possible permutations obtain
able by a stack are:

(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 2, 1)

Obtaining (3, 1, 2) is impossible. Each of these five permutations corresponds to one of 
the five distinct binary trees with three nodes (Figure 5.51).

Figure 5.51 : Binary trees corresponding to five permutations

5.11.3 Matrix Multiplication

Another problem that surprisingly has a connection with the previous two involves the 
product of n matrices. Suppose that we wish to compute the product of n matrices:

M1 * M 2 * • • • * Mfi

Since matrix multiplication is associative, we can perform these multiplications in any 
order. We would like to know how many different ways we can perform these multipli
cations. For example, if n = 3, there are two possibilities:

A/z) * Ml,(AY, *

A/1 * {M2 * A/3)
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((Ml * Ml) * M3) * 
(Mx {M2 * M3)) * M4 
M| * ({M2 * Ml,) M^) 
{Ml (M2 * (Ml, M4))) 
((Ml * M2) * (M^ * ^^))

Let be the number of different ways to compute the product of n matrices. Then b2 
1, bl, -= 1, and b^ = 5. Let M,y, i < j, be the product M^ M^+x 
WQ wish to compute is M^ 
ducts Mij- * + \ <i<n. The number of distinct ways to obtain My and My + i,„ are
bi and bn^i, respectively. Therefore, letting b 1 = 1, we have:

n •

* • • • * Mj. The product 
We may compute M^^ by computing any one of the pro-

bn 2 bi b
Z = 1

1

If we can determine the expression for only in terms of n, then wq haVe a solution to 
our problem.

Now instead let b„ be the number of distinct binary trees with n nodes. Again an 
expression for b^ in terms of n is what we want. Then we see that b„ is the sum of all the 
possible binary trees formed in the following way: a root and two subtrees with bj and 
bn-i-l nodes, for 0 < i < n (Figure 5.52). This explanation says that

n-1
bi b„^i_x , n>l ,andZ)o 1 

1=0
(5.3)

Figure 5.52: Decomposing b„

bn

This formula and the previous one are essentially the same. Therefore, the number 
of binary trees with n nodes, the number of permutations of 1 to n obtainable with a 
stack, and the number of ways to multiply n + 1 matrices are all equal.
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5.11.4 Number Of Distinct Binary Trees

To obtain the number of distinct binary trees with n nodes, we must solve the recurrence 
of Eq. (5.5). To begin we let:

B(.x) = X bix' 
(>0

(5.6)

which is the generating function for the number of binary trees. Next observe that by the 
recurrence relation we get the identity:

= B(x)- 1

Using the formula to solve quadratics and the fact (Eq. (5.5)) that 5(0) = bQ = 1 
we get:

B(x) =
1 - M-4.V

2a

We can use the binomial theorem to expand (1 - 4x)*'^ to obtain:

1
2x 1-S

1/2 
n (-4x)"

(5.7)

m>Q

1/2 ■
m + 1= L Xm

Comparing Eqs. (5.6) and (5.7) we see that which is the coefficient ofx" in B(x), is:
1/2 ■

n + 1 (-1)" 22"-^*

Some simplification yields the more compact form

bn = 1
n -I- 1

2/1 
/?

which is approximately

= 0(4"^^^)
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EXERCISES

1.

2.

3.

4.

5.

6.

Prove that every binary tree is uniquely defined by its preorder and inorder 
sequences.

Do the inorder and postorder sequences of a binary tree uniquely define the binary 
tree? Prove your answer.

Do the inorder and preorder sequences of a binary tree uniquely define the binary 
tree? Prove your answer.

Do the inorder and level order sequences of a binary tree uniquely define the 
binary tree? Prove your answer.

Write an algorithm to construct the binary tree with a given preorder and inorder 
sequence.

Repeat Exercise 5 with the inorder and postorder sequences.

5.12 REFERENCES AND SELECTED READINGS

For other representations of trees, see D. Knuth, The Art of Computer Program
ming: Fundamental Algorithms, Second Edition, Addison-Wesley, Reading, Mass., 
1973.

For the use of trees in generating optimal compiled code, see A. Aho, R. Sethi, and 
J. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, Reading, 
Mass., 1986.

Tree traversal algorithms may be found in G. Lindstrom, "Scanning list structures 
without stacks and tag bits,", Information Processing Letters, vol. 2, no. 2, 1973, pp 47- 
51, and B. Dwyer, "Simple algorithms for traversing a tree without an auxiliary stack," 
Information Processing Letters, vol.2, no. 5, 1973, pp. 143-145.

For more on data structures for the set representation problems see R. Tarjan and J. 
Leeuwen, "Worst case analysis of set union algorithms,". Journal of the ACM, vol. 31, 
no. 2, 1984, pp 245-281.

5.13
1.

2.

ADDITIONAL EXERCISES

Assume that we have a /c-ary tree (a tree with degree k) of height h. Assume that 
all nodes are of the same size as in Figure 5.3.

(a)

(b)

What is the maximum number of nodes in such a tree? 

How many NULL pointers are there?

Prove your answers.

§ [Programming project] Assume that we represent trees using the list representa 
tion and that we define the node structure as:
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tag = TRCE/FALSE dlink/data link

where tag is a field that holds the value of TRUE if the node is a link node, and a 
value of FALSE if the node is a data node. Figure 5.53 show a sample tree and its 
representation with this node structure. This tree is written as the list:

(A (B (E(H, I (J, K)), F), C(G),D)

(a) Sample tree

root

F = FALSE 
T = TRUE

mH
’11

f[e

* on
-► F F NULL f]~c

T I NULL

F G NULl

T I NULL

F D NULL

F A

F B

F H

>

F 1 —F J > F K NULL

(b) List representation

Figure 5.53: Sample tree and its list representation

Assume that we represent trees as in Figure 5.53(b). Write functions that:
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accept a list as input and create the tree corresponding to the list 

copy a tree

test for equality between two trees

erase a tree

output a tree in its list notation.

3.

(a)

(b)

(c)

(d)

(e)
§ [Programming project] In this project, we want to create a cross reference gen
erator. We assume that we have a file of text (Lincoln’s Gettysburg Address is a 
good candidate). We want to read in the file and print out an alphabetized list of 
all the words in the file, using the following format:

WORD NUMBER OF OCCURRENCES LINES THAT THE WORD APPEARED ON

You may assume that your cross-reference generator is not case-sensitive, that is 
the words Did and did are the same.

For example, running the cross-reference generator with the first two lines from 
the poem Jabberwocky by Lewis Carroll produces the following:

1 Twas brillig and the slithy toves 
2 Did gyre and gimble in the wabe

Word 
and 
brillig 
did 
gimble 
gyre 
in 
slithy 
the 
toves 
twas 
wabe
Total

Count
2
1
1
1
1
1
1
2
1
1
j______

n

Lines
12
1
2
2
2
2
1
1 2
1
2
2



CHAPTER 6

GRAPHS

6.1 THE GRAPH ABSTRACT DATA TYPE

6.1.1 Introduction

The first recorded evidence of the use of graphs dates back to 1736 when Leonhard Euler 
used them to solve the now classic Koenigsberg bridge problem. In Koenigsberg, the 
Pregal river flows around the island of Kneiphof. There are four land areas, labeled A 
through D in Figure 6.1, that have this river on their border. Seven bridges, labeled a 
through g, connect the land areas. The Koenigsberg bridge problem is as follows: Start
ing at some land area, is it possible to return to our starting location after walking across 
each of the bridges exactly once?

A possible walk might be:

start from land area B

walk across bridge a to island A 

take bridge e to area D

257
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take bridge g to C 

take bridge to A 

take bridge hto B 

take bridge /to D

This walk does not cross all bridges exactly once, nor does it return to the starting land 
area B. We invite you to try to find a solution to the problem. You should discover 
quickly, as did Euler, that the people of Koenigsberg cannot walk across each bridge 
exactly once and return to their starting location. Euler solved the problem by using a 
graph (actually a multigraph) in which the land areas are vertices and the bridges are 
edges. His solution is not only elegant, it applies to all graphs.

cc d ST

A
Kneiphof

J._____ V-

De

fba B
(a)

ft

c

D

B

(b)

Figure 6.1 : The bridges of Koenigsberg

Euler defined the degree of a vertex as the number of edges incident on it (we will 
explain these terms shortly). He then showed that there is a walk starting at any vertex, 
going through each edge exactly once, and terminating at the starting vertex iff the 
degree of each vertex is even. We now call a walk that does this an Eulerian walk. 
There is no such walk for the Koenigsberg bridge problem because all the vertices are of 
odd degree.

Since this first application, graphs have been used in a wide variety of applica
tions, including analysis of electrical circuits, finding shortest routes, project planning, 
and the identification of chemical compounds. Indeed graphs may be the most widely 
used of all mathematical structures.
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6.1.2 Definitions

A graph, G, consists of two sets: a finite, nonempty set of vertices, and a finite, possibly 
empty set of edges. V(G) and E(G) represent the sets of vertices and edges of G, respec
tively. Alternately, we may write G = (V, E) to represent a graph.

An undirected graph is one in which the pair of vertices representing any edge is 
unordered. For example, the pairs (vq, vj) and (vi, vq) represent the same edge.

A directed graph is one in which we represent each edge as a directed pair of ver
tices. For example, the pair <vo, vi> represents an edge in which vq is the tail and vj is 
the head. Therefore, <vo, vi> and <V|, vo> represent two different edges in a directed 
graph.

Figure 6.2 shows three sample graphs. We represent the vertices as circles num
bered from 0 to n - 1, where n is the number of vertices currently in use. For an 
undirected graph, we represent the edges as lines or curves. For a directed graph, we 
represent the edges as arrows, drawn from the tail to the head. Graphs Gj and G2 are 
undirected, while graph G3 is a directed graph.

1

0

2

3

2 3

6

G 1
G G

Figure 6.2 : Three sample graphs

The set representation of each of these graphs is:

E(Gi), = ((0, 1), (0, 2), (0, 3), (1, 2), (1, 3), (2, 3)}
E(G2), = {{0, 1), (0, 2), (1, 3), (I, 4), (2, 5), {2, 6)} 
E(G3)= {<0, 1>, <l,0>, <1,2>)

V(Gi),= {0, 1,2,3)
V(G2),= {0, 1,2,3,4,5,61
V(G3} = {O, 1,2}

Notice that graph G2 is a tree, while graphs Gi and G3 are not. We can define trees as a 
special case of graphs, but we need more terminology for that.

Since we define the edges and vertices of a graph as sets, we impose the following 
restrictions on graphs:
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1. A graph may not have an edge from a vertex, i, back to itself. That is, the edge, 
(v,, V,) or <Vj, V/> is not legal. Such edges are known as self loops. If we permit self 
edges, we obtain graph like structures such as the one shown in Figure 6.3(a).

2. A graph may not have multiple occurrences of the same edge. If we remove this 
restriction, we obtain a data object referred to as a multigraph (see Figure 6.3(b)).

0

(a)

2
1 3

2

(b)

Figure 6.3 : Examples of a graph with feedback loops and a multigraph

A complete graph is a graph that has the maximum number of edges. For an 
undirected graph with n vertices, the maximum number of edges is the number of dis
tinct, unordered pairs, (v,, vy), i j. This number is:

n(n - l)/2

For a directed graph on n vertices, the maximum number of edges is:

n{n - 1)

Examining the graphs from Figure 6.2, we can see that Gi is a complete graph on four 
vertices, while G2 and G3 are not complete.

If (vq, Vi) is an edge in an undirected graph, then the vertices vq and vj are adja
cent and the edge (vq, vj) is incident on vertices Vq and vj. For example, in graph 
vertices 3, 4, and 0 are adjacent to vertex 1; and edges (0, 2), (2, 5), and (2, 6) are 
incident on vertex 2. If <V0, vi> is a directed edge, then vertex vq is adjacent to vertex 
V|, while Vj is adjacent from vg. The edge <vo, V|> is incident on vg and Vp In G3, the 
edges incident to vertex 1 are <0, 1>, <1, 0>, and <1, 2>.

A subgraph of G is a graph G' such that V {G') c V (G) and £ (G 3 c £ (G). Fig
ure 6.4 shows some of the subgraphs of G1 and G3.
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3
(i) (ii) (iii)

(a) Sone of the subgraphs ofG|

(iu)

I y
2

(i) (ii) (iii)

2)
(iu)

(b) Sone of the subgraphs of G

Figure 6.4 : Subgraphs of and G3 

A path from vertex Vp to vertex Vg in a graph, G, is a sequence of vertices, Vp, v, . 
■ ■ > such that (Vp, v,]), (v,-,, Vy^), • • - , (v,;, v^) are edges in an undirected

'n ’

'1 ’

graph. If G' is a directed graph, then the path consists of <Vp, v^>, <Vjj, Vi^>, ■ • ■, <Vi^ 
Vq>. The length of a path is the number of edges on it.

A simple path is a path in which all vertices, except possibly the first and the last, 
are distinct. We may write a path by simply listing the vertices. For example, the path 
fO, 1), (1, 3), (3, 2) can be written as 0, 1, 3, 2. In graph G1 of Figure 6.2, paths 0, 1, 3, 2 
and 0, 1,3, 1 have length three. The first is a simple path, while the second is not. In 
graph G3, 0, 1, 2 is a simple directed path.

A cycle is a simple path in which the first and the last vertices are the same. For 
example, 0, 1, 2, 0 is a cycle in Gj, and 0, 1,0 is a cycle in G3. For directed graphs, we 
usually add the prefix "directed" to the terms cycle and path.

In an undirected graph G, two vertices, vq and v ।, are connected if there is a path 
in G from vq to v 1. Since G is undirected, this means that there must also be a path from 
vi to Vo- An undirected graph is connected if, for every pair of distinct vertices v,, Vy, 
there is a path from v, to vj in G. For example, graphs Gj and G2 are connected, while 
graph G4 in Figure 6.5 is not.
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A connected component, or simply a component, of an undirected graph is a maxi
mal connected subgraph. For example, G4 has two components, Hy and H^. A tree is a 
graph that is connected and acyclic (it has no cycles).

A directed graph is strongly connected if, for every pair of vertices V/, Vj in V(G), 
there is a directed path from Vj to vy and also from vy to v,. Graph G3 is not strongly con
nected since there is no path from vertex 2 to vertex 1. A strongly connected component 
is a maximal subgraph that is strongly connected. For example, G3 has two strongly con
nected components, as illustrated in Figure 6.6.

H0

12

3

2

G
4

Figure 6.5 : A graph with two connected components

2

Figure 6.6 : Strongly connected components of Gj

The degree of a vertex is the number of edges incident to that vertex. For exam
ple, the degree of vertex 0 in is 2. For a directed graph, we define the in-degree of a 
vertex v as the number of edges that have v as the head, and the out-degree as the 
number of edges that have v as the tail. For example, vertex 1 of G3 has in-degree 1, 
out-degree 2, and degree 3. If d^ is the degree of a vertex i in a graph G with n vertices 
and e edges, then the number of edges is:

n-l

0
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In the remainder of this chapter, we shall refer to a directed graph as a digraph. 
When we use the term graph, we assume that it is an undirected graph. Now that we 
have defined all the terminology we will need, let us consider the graph as an ADT. The 
resulting specification is given in Structure 6.1.

structure Graph is
objects: a nonempty set of vertices and a set of undirected edges, where each edge is a 

pair of vertices.
functions:

for all graph g Graph, v, v j, and V2 Vertices

Graph Create()
Graph InsertVertex(gr6Zp/z, v)

Graph InsertEdge(grap/2, Vi, V2)

Graph DeleteVertex(grap/z, v)

Graph DeleteEdge(grap/z, vi, V2)

Boolean isEmpty(graph)

List Adjacent(gra/7/2, v)

return an empty graph.
return a graph with v inserted. 
V has no incident edges.
return a graph with a new edge 
between Vj and
return a graph in which v and all 
edges incident to it are removed, 
return a graph in which the edge 
(v ], V2) is removed. Leave 
the incident nodes in the graph, 
if (graph == empty graph) return 
TRUE else return FALSE.
return a list of all vertices that 
are adjacent to v.

Structure 6.1: Abstract data type Graph

The operations in Structure 6.1 are a basic set in that they allow us to create any 
arbitrary graph and do some elementary tests. In the later sections of this chapter we 
will see functions that traverse a graph (depth first or breadth first search) and that deter
mine if a graph has special properties (connected, biconnected, planar).

6.1.3 Graph Representations

While several representations for graphs are possible, we shall study only the three most 
commonly used; adjacency matrices, adjacency lists, and adjacency multilists.

Adjacency Matrix

Let G = (V, E) be a graph with n vertices, m > 1. The adjacency matrix of G is a two- 
dimensional n xn array, say adj-mat. If the edge (Vj, Vj) (<Vi, Vj> for a digraph) is in



264 Graphs

E(G), adj-mat[i][j] = 1. If there is no such edge in E(G), adj~mat[i][j] = 0. The adja
cency matrices for graphs Gi, G3, and G4 are shown in Figure 6.7. The adjacency 
matrix for an undirected graph is symmetric since the edge (v,-, Vj) is in £'(G) iff the edge 
(vy, Vj) is also in £(G). In contrast, the adjacency matrix for a digraph need not be sym
metric. (This is true of G3.) For undirected graphs, we can save space by storing only 
the upper or lower triangle of the matrix. (We explored triangular matrices and other 
space-saving representations in the exercises of Chapter 2.)

0 1 2 3 0 1 2

0
1
2

0
1
0

0 
1
2 
3

□ 
1
1 
1

1 1
0 1
1 0
1 1

G

1
1
1
0

®3

0
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2
3
4
5
6
7

1 2

1 1 
0 0
0 0 
1 1
0000 

□ 1 
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0 0

0 
1
1 
0
0
000 
000 
000

0 0 0 0
10 0 0 
1 0 0 0 0
0 0 0 0 0

0 0
1 0 
0 1
1 0

0 
1
0 
1
0

1
0 
0

0 
1
0

1
0 3 4 5 6 7

0 
0

Figure 6.7 : Adjacency matrices for G], G^, and G4

From the adjacency matrix, we can determine easily if there is an edge connecting 
any two vertices. Determining the degree of a vertex is also a simple task. For an 
undirected graph, the degree of any vertex, i, is its row sum:

n-i

For a directed graph, the row sum is the out-degree, while the column sum is the in
degree.

Suppose we wish to answering questions such as: How many edges are there in G? 
or. Is G connected?. These require us to examine (potentially) all edges of the graph. 
Using adjacency matrices, all algorithms that answer these questions require at least 
O(n^) time since we must examine - n entries of the matrix (the n diagonal entries 
equal zero and can be excluded; only half as many entries need to be examined in the 
case of an undirected graph as in this case the adjacency matrix is symmetric) to deter
mine the edges of the graph. For sparse graphs (i.e., graphs that have a small number of 
edges), most of the terms in the adjacency matrix equal zero and we would like to avoid A
the overhead of examining O(n ) positioins in an adjacency matrix. In fact, we might 
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expect that the former questions would be answerable in significantly less time, say O(c 
+ n) time, where e is the number of edges in G and e « n^/2. For this, we must replace 
the adjacency matrix representation with an adjacency list (either sequential or linked) 
representation.

Adjacency Lists

In this representation, we replace the n rows of the adjacency matrix with n linked lists, 
one for each vertex in G. The node structure for the lists must contain at least vertex and 
link fields. For any given list, z, the nodes in the list contain the vertices that are adjacent 
from vertex i. Figure 6.8 shows the adjacency lists for G i, G^, and G4. Notice that each 
list has a head node, and that the lists are numbered sequentially. This allows us to 
quickly access the adjacency list for any vertex.

The C declarations for the adjacency list representation are:

#define 
typedef 
typedef

*node—pointer; 
{

MAX—VERTICES 50 /*maximum  number of vertices*/  
struct node 
struct node 
int vertex; 
struct node 
};

*link;

*
node—pointer graph[MAX—VERTICES];
int n = 0; /*  vertices currently in use */0; /

In the case of an undirected graph with n vertices and e edges, this representation 
requires n head nodes and 2e list nodes. Each list node has two fields. Often, you can 
sequentially pack the nodes on the adjacency lists, thereby eliminating the use of 
pointers. In this case, an array node [ ] may be used, node [z ] gives the starting point of 
the list for vertex z, 0<z <n and node [zi ] is set to n + 2e + 1. The vertices adjacent 
from vertex i are stored in node [z ], • • •, node [z + !]-!, 0 < z < n. Figure 6.9 gives 
such a sequential representation for the graph G4 of Figure 6.5.

We can determine the degree of any vertex in an undirected graph by simply 
counting the number of nodes in its adjacency list. This also gives us the number of 
edges incident on the vertex. This means that if there are n vertices in the graph G, we 
can determine the total number of edges in G in O(n + e) time. For a digraph, we can 
determine the out-degree of any vertex by counting the number of nodes in its adjacency 
list. This means that we also can determine the total number of edges in a digraph in O(zz 
+ e) time. Unfortunately, finding the in-degree of a vertex in a digraph is more complex. 
We handle this problem and the related problem of finding all vertices adjacent to a ver
tex by maintaining a second set of lists. These lists are called inverse adjacency lists. 
As was true of adjacency lists, the inverse adjacency lists contain one list for each ver
tex. However, each list contains a node for each vertex adjacent to the vertex that the 
list represents. Figure 6.10 shows the inverse adjacency list for G3.
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Figure 6.8 : Adjacency lists for Gj, G^, and G4

Changing the node structure of the adjacency lists is a second approach to the 
problem of finding the in-degree of vertices. Figure 6.11 shows a simplified version of 
the node structure used in the sparse matrix representation of Section 4.7. Each node 
now has four fields and represents one edge. Figure 6.12 shows the representation of G3 
using the structure of Figure 6.11. We assume that the head nodes are stored sequen
tially.

Before discussing the third representation, we would like to quickly reconsider the 
lists displayed in Figure 6.8. For each graph, we arranged the nodes in each of the lists 
so that the vertices were in ascending order. This is not necessary, and, in fact, vertices 
may appear in any order. Thus, the adjacency lists of Figure 6.13 are just as valid a
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[0] 9
[1] 11
[2] 13
[3] 15
[4] 17
[5] 18
[6] 20
[7] 22

[8] 23
[9] 1
[10] 2
[11] 0
[12] 3
[13] 0
[14] 3
[15] 1

[16] 2
[17] 5
[18] 4
[19] 6
[20] 5
[21] 7
[22] 6

Figure 6.9 Sequential representation of graph G4

1

2

0 1

0

1

NULL

NULL

NULL

Figure 6.10 : Inverse adjacency list for G3

tail head column link for head row link for tail

Figure 6.11 : Alternate node structure for adjacency lists 

representation of G] as the lists in Figure 6.8(a).

Adjacency Multilists

In the adjacency list representation of an undirected graph, we represent each edge, 
(v,', Vj), by two entries. One entry is on the list for v,, and the other is on the list for Vj. 
As we shall see, in some situations we need to find easily the second entry for an edge 
and mark it as having been examined. Maintaining the lists as multilists, that is, lists in 
which nodes are shared among several lists, facilitates this operation. For each edge 
there is exactly one node, but this node is on the adjacency list for each of the two
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headnodes 
(shown twice)

NULL NULL

NULL NULL NULL

NULL

Figure 6.12: Orthogonal representation for graph G3

vertex link

0

1

2

3

headnodes

3

2

3

2

NULL

Figure 6.13: Alternate order adjacency list for G

+- NULL

NULL

NULL

vertices it is incident to. Figure 6.14 shows the new node structure.

marked vertex 1 vertex2 pathl path2

> 1

0 1 2

0

> 0 1

> 1 2

1 2

0 3

0 1

1 0

1

Figure 6.14: Node structure for adjacency multilists

The C declarations to create this structure are: 
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typedef struct edge *edge —pointer; 
typedef struct edge {

short int marked;
int vertexl;
int vertex2;
edge—pointer pathl;
edge—pointer path2;
};

edge—pointer graph[MAX—VERTICES];

Figure 6.15 shows the adjacency multilist for Gj. In this figure the field marked is 
shown solid in each node.

headnodes

0 > N1

1

2

3

N2 N4 edge(0I 1)

► K2

H3

N4

N5

N6

N3 N4 edge(0> 2)

3 NULL N5 edge (0 >3)

N5 N6 edge(1,2)

3 NULL N6 edged,3)

3 NULL NULL edge (2,3)

0

0

0

1

1

2

1

2

2

The lists are: vertex 0: Ml —> M2 M3
vertex 1: M1 —> M4 —> M5 
vertex 2: M2 —> M4 —> M6 
vertex 3: M3 —> M5 M6

Figure 6.15: Adjacency multilists for G]

Weighted Edges

Thus far, we have considered only graphs that have unweighted edges. In many applica
tions, however, the edges of a graph are assigned weights. These weights may represent 
the distance from one vertex to another or the cost of going from one vertex to an adja
cent vertex. To handle this situation, we must modify our representations. For an adja
cency matrix, we replace the 1 used to signify an edge with the weight of the edge. For 
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adjacency lists and adjacency multilists, we must add a weight field to the node structure. 
A graph with weighted edges is called a network. We shall examine networks in greater 
detail when we consider minimum spanning trees and related topics.

EXERCISES

1. Does the multigraph of Figure 6.16 have an Eulerian walk? If so, find one.

Figure 6.16: A multigraph

2. For the digraph of Figure 6.17, obtain:

(a)

(b) 

(c) 

(d) 
(e)

the in-degree and out-degree of each vertex 

its adjacency matrix

its adjacency list representation

its adjacency multilist representation

its strongly connected components

Figure 6.17: A digraph
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3.

4.

5.

6.

Devise a suitable representation for graphs so that they can be stored on disk. 
Write a function that reads in such a graph and creates its adjacency matrix. Write 
another function that creates the adjacency lists from the disk input.

Draw the complete undirected graphs on one, two, three, four, and five vertices. 
Prove that the number of edges in an n vertex complete graph is n (n - l)/2.

Is the directed graph of Figure 6.18 strongly connected? List all the simple paths.

Show how the graph of Figure 6.18 would look if represented by its adjacency 
matrix, adjacency lists, and adjacency multilist.

Figure 6.18: A directed graph

7. For an undirected graph, G, with n vertices and e edges, show that:

n-l

Z

8.

9.

where = degree of vertex i.

(a) Let G be a connected undirected graph on n vertices. Show that G must have 
at least z? - 1 edges, and that all connected undirected graphs with n - 1 edges are 
trees.

(b) What is the minimum number of edges in a strongly connected digraph on n 
vertices? What form do such digraphs have?

For an undirected graph, G, with n vertices, prove that the following are 
equivalent: 

(a) 

(b)

(c)

(d)

G is a tree.

G is connected, but if any edge is removed the resulting graph is not con
nected.

For any two distinct vertices, u e V(G) and v 6 V(G), there is exactly one 
simple path from u to v.

G contains no cycles and has n - 1 edges
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10. Write a C function to:

(a)

11.

input the number of vertices in an undirected graph and its edges one by 
one.

set up the linked adjacency list representation of the graph. You may 
assume that no edge is input twice. Determine the time complexity of your 
function in terms of the number of vertices and the number of edges.

Write a C function that creates the inverse adjacency lists for a graph using the 
adjacency lists generated in Exercise 10. Create a second function that will print 
the adjacency lists and the inverse adjacency lists for the graph.

(b)

6.2 ELEMENTARY GRAPH OPERATIONS

When we discussed binary trees in Chapter 5, we indicated that tree traversals were 
among the most frequently used tree operations. Thus, we defined and implemented 
preorder, inorder, postorder, and level order tree traversals. An analogous situation 
occurs in the case of graphs. Given an undirected graph, G = (V, £), and a vertex, v, in 
V(G) we wish to visit all vertices in G that are reachable from v, that is, ail vertices that 
are connected to v. We shall look at two ways of doing this: depth first search and 
breadth first search. Depth first search is similar to a preorder tree traversal, while 
breadth first search resembles a level order tree traversal. In our discussion of depth first 
search and breadth first search, we shall assume that the linked adjacency list representa
tion for graphs is used. The excercises explore the use of other representations.

6.2.1 Depth First Search

We begin the search by visiting the start vertex, v. In this simple application, visiting 
consists of printing the node’s vertex field. Next, we select an unvisited vertex, w, from 
v’s adjacency list and carry out a depth first search on w. We preserve our current posi
tion in v’s adjacency list by placing it on a stack. Eventually our search reaches a vertex, 
M, that has no unvisited vertices on its adjacency list. At this point, we remove a vertex 
from the stack and continue processing its adjacency list. Previously visited vertices are 
discarded; unvisited vertices are visited and placed on the stack. The search terminates 
when the stack is empty. Although this sounds like a complicated function, it is easy to 
implement recursively. As indicated previously, it is similar to a preorder tree traversal 
since we visit a vertex and then continue with the next unvisited descendant. The recur
sive implementation of depth first search is presented in dfs (Program 6.1). This function 
uses a global array, visited[MAX-VERTICES], that is initialized to FALSE. When we 
visit a vertex, i, we change visited[i] to TRUE. The declarations are:
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#define FALSE 0
#define TRUE 1
short int visited[MAX—VERTICES];

void dfs(int v) 
{ 
/* depth first search of a graph beginning with vertex v.*/  

node—pointer w;
visited[v]
printf("%5d", v) ;
for (w = graph[v]; w; w 

if (!visited[w->vertex])
dfs(w->vertex);

TRUE ;

w->link)

}

Program 6.1: Depth first search

Example 6.1: We wish to carry out a depth first search of graph G of Figure 6.19(a). 
Figure 6.19(b) shows the adjacency lists for this graph. If we initiate this search from 
vertex Vq, then the vertices of G are visited in the following order: vq, vj, V3, V7, V4, V5,

By examining Figures 6.19(a) and (b), we can verify that dfs (vq) visits all vertices 
connected to vq. This means that all the vertices visited, together with all edges in G 
incident to these vertices, form a connected component of G. □

Analysis of dfs'. If we represent G by its adjacency lists, then we can determine the ver
tices adjacent to v by following a chain of links. Since dfs examines each node in the 
adjacency lists at most once, the time to complete the search is 0(e). If we represent G 
by its adjacency matrix, then determining all vertices adjacent to v requires 0(z7) time. 
Since we visit at most n vertices, the total time is 0(« ). □

6.2.2 Breadth First Search

Breadth first search starts at vertex v and marks it as visited. It then visits each of the 
vertices on v’s adjacency list. When we have visited all the vertices on v’s adjacency 
list, we visit all the unvisited vertices that are adjacent to the first vertex on v’s adjacency 
list. To implement this scheme, as we visit each vertex we place the vertex in a queue. 
When we have exhausted an adjacency list, we remove a vertex from the queue and 
proceed by examining each of the vertices on its adjacency list. Unvisited vertices are 
visited and then placed on the queue; visited vertices are ignored. We have finished the 
search when the queue is empty.
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Figure 6.19 : Graph G and its adjacency lists

To implement breadth first search, we use a dynamically linked queue as described 
in Chapter 4. Each queue node contains vertex and link fields. The addq and deleteq 
functions of Chapter 4 (Programs 4.8 and 4.9) will work correctly if we replace all refer
ences to element with int. The function hfs (Program 6.2) contains the C code to imple
ment the breadth first search.

The queue definition and the function prototypes used by bfs are:

*queue_pointer;typedef struct queue 
typedef struct queue { 

int vertex;
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queue_pointer link; 
};

★void addq(queue_pointer 
int deleteq(queue_pointer

*, queue_pointer 
■k

, int);

void bfs(int v) 
{ 
/*

^1

breadth first traversal of a graph, starting with node v 
the global array visited is initialized to 0, the queue 
operations are similar to those described in 
Chapter 4.

node_pointer w; 
queue_pointer front,rear; 
front = rear = NULL; /*  
printf( 
visited[v] 
addq(&front, &rear, v); 
while (front) {

V = deleteq(&front); 
for (w = graph[v]; w; w 

if (!visited[w->vertex]) { 
w->vertex);

rear
%5d't v)

TRUE ;

initialize queue

w—>link)

printf("%5d", 
addq(&frent,&rear,w->vertex); 
visited[w->vertex] TRUE ;

II 9.

}
}

)

Program 6.2: Breadth first search of a graph

Analysis of bfs'. Since each vertex is placed on the queue exactly once, the while loop is 
iterated at most n times. For the adjacency list representation, this loop has a total cost 
of do + ■ ■ ■ + dfi_\
tion, the while loop takes 0(n) time for each vertex visited. Therefore, the total time is 
0(/7^). As was true of dfs, all vertices visited, together with all edges incident to them, 
form a connected component of G. □

= 0(e), where dj = degree {Vj}. For the adjacency matrix representa-
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6.2.3 Connected Components

We can use the two elementary graph searches to create additional, more interesting, 
graph operations. For illustrative purposes, let us look at the problem of determining 
whether or not an undirected graph is connected. We can implement this operation by 
simply calling either dfs (0) or bfs (0) and then determining if there are any unvisited ver
tices. For example, the call dfs (0) applied to graph G4 of Figure 6.5 terminates without 
visiting vertices 4, 5, 6, and 7. Therefore, we can conclude that graph G4 is not con
nected. The computing time for this operation is O(n + e) if adjacency lists are used.

A closely related problem is that of listing the connected components of a graph. 
This is easily accomplished by making repeated calls to either dfs (v) or bfs (v) where v is 
an unvisited vertex. The function connected (Program 6.3) carries out this operation. 
Although we have used dfs, bfs may be used with no change in the time complexity.

void connected(void) 
{ 
/*  
int i;
for (i = 0; i < n; i++) 

i f(!visited[i]) {
dfs ( i);
printf("\n");

determine the connected components of a graph */

n;

}
}

Program 6.3: Connected components

Analysis of connected’. If G is represented by its adjacency lists, then the total time 
taken by dfs is O(^). Since the for loop takes O(m) time, the total time needed to gen
erate all the connected components is O(n 4- ef

If G is represented by its adjacency matrix, then the time needed to determine the 
connected components is Q{n^f □

6.2.4 Spanning Trees

When graph G is connected, a depth first or breadth first search starting at any vertex 
visits all the vertices in G. The search implicitly partitions the edges in G into two sets: 
T (for tree edges) and N (for nontree edges). T is the set of edges used or traversed dur
ing the search and N is the set of remaining edges. We can determine the set of tree 
edges by adding a statement to the if clause of either dfs or bfs that inserts the edge (v, w) 
into a linked list of edges. (7 represents the head of this linked list.) The edges in T form 
a tree that includes all vertices of G. A spanning tree is any tree that consists solely of
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edges in G and that includes all the vertices in G. Figure 6.20 shows a graph and three of 
its spanning trees.

0-0

o o
Figure 6.20 : A complete graph and three of its spanning trees

As we just indicated, we may use either dfs or bfs to create a spanning tree. When 
dfs is used, the resulting spanning tree is known as a depth first spanning tree. When bfs 
is used, the resulting spanning tree is called a breadth first spanning tree. Figure 6.21 
shows the spanning trees that result from a depth first and breadth first search starting at 
vertex Vq in the graph of Figure 6.19.

Ma
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(a) dfs(O) spanning tree (b) bfs(O) spanning tree

Figure 6.21 : dfs and bfs spanning trees for graph of Figure 6.19

Now suppose we add a nontree edge, (v, w), into any spanning tree, T. The result 
is a cycle that consists of the edge (v, w) and all the edges on the path from w to v in T. 
For example, if we add the nontree edge (7, 6) to the dfs spanning tree of Figure 6.21 (a), 
the resulting cycle is 7, 6, 2, 5, 7. We can use this property of spanning trees to obtain an 
independent set of circuit equations for an electrical network.

Example 6.2 [Creation of circuit equations}'. To obtain the circuit equations, we must 
first obtain a spanning tree for the electrical network. Then we introduce the nontree 
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edges into the spanning tree one at a time. The introduction of each such edge produces 
a cycle. Next we use Kirchoffs second law on this cycle to obtain a circuit equation. 
The cycles obtained in this way are independent (we cannot obtain any of these cycles 
by taking a linear combination of the remaining cycles) since each contains a nontree 
edge that is not contained in any other cycle. Thus, the circuit equations are also 
independent. In fact, we can show that the cycles obtained by introducing the nontree 
edges one at a time into the spanning tree form a cycle basis. This means that we can 
construct all other cycles in the graph by taking a linear combination of the cycles in the 
basis. (For further details, see the Harary text cited in the References and Selected Read
ings.) □

Let us examine a second property of spanning trees. A spanning tree is a minimal 
subgraph^ G\ of G such that V(G0 = V(G) and G' is connected. We define a minimal 
subgraph as one with the fewest number of edges. Any connected graph with n vertices 
must have at least n - 1 edges, and all connected graphs with n - 1 edges are trees. 
Therefore, we conclude that a spanning tree has n - 1 edges. (The exercises explore this 
property more fully.)

Constructing minimal subgraphs finds frequent application in the design of com
munication networks. Suppose that the vertices of a graph, G, represent cities and the 
edges represent communication links between cities. The minimum number of links 
needed to connect n cities is n - 1. Constructing the spanning trees of G gives us all 
feasible choices. However, we know that the cost of constructing communication links 
between cities is rarely the same. Therefore, in practical applications, we assign weights 
to the edges. These weights might represent the cost of constructing the communication 
link or the length of the link. Given such a weighted graph, we would like to select the 
spanning tree that represents either the lowest total cost or the lowest overall length. We 
assume that the cost of a spanning tree is the sum of the costs of the edges of that tree. 
Algorithms to obtain minimum cost spanning trees are studied in a later section.

6.2.5 Biconnected Components And Articulation Points

The operations that we have implemented thus far are simple extensions of depth first 
and breadth first search. The next operation we implement is more complex and requires 
the introduction of additional terminology. We begin by assuming that G is an 
undirected connected graph.

An articulation point is a vertex v of G such that the deletion of v, together with 
all edges incident on v, produces a graph, G', that has at least two connected com
ponents. For example, the connected graph of Figure 6.22 has four articulation points, 
vertices 1, 3, 5, and 7.

A biconnected graph is a connected graph that has no articulation points. For 
example, the graph of Figure 6.19 is biconnected, while the graph of Figure 6.22 obvi
ously is not. In many graph applications, articulation points are undesirable. For 
instance, suppose that the graph of Figure 6.22(a) represents a communication network.



Elementary Graph Operations 279

In such graphs, the vertices represent communication stations and the edges represent 
communication links. Now suppose that one of the stations that is an articulation point 
fails. The result is a loss of communication not just to and from that single station, but 
also between certain other pairs of stations.

A biconnected component of a connected undirected graph is a maximal bicon
nected subgraph, H, of G. By maximal, we mean that G contains no other subgraph that 
is both biconnected and properly contains H. For example, the graph of Figure 6.22(a) 
contains the six biconnected components shown in Figure 6.22(b). The biconnected 
graph of Figure 6.19, however, contains just one biconnected component: the whole 
graph. It is easy to verify that two biconnected components of the same graph have no 
more than one vertex in common. This means that no edge can be in two or more bicon
nected components of a graph. Hence, the biconnected components of G partition the 
edges of G.

8 9

7

2 3 5

4 6

(a) Connected graph

(b) Biconnected components

Figure 6.22 : A connected graph and its biconnected components
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We can find the biconnected components of a connected undirected graph, G, by 
using any depth first spanning tree of G. For example, the function call dfs (3) applied to 
the graph of Figure 6.22(a) produces the spanning tree of Figure 6.23(a). We have 
redrawn the tree in Figure 6.23(b) to better reveal its tree structure. The numbers outside 
the vertices in either figure give the sequence in which the vertices are visited during the 
depth first search. We call this number the depth first number, or dfn, of the vertex. For 
example, dfn (3) = 0, dfn (0) = 4, and dfn (9) = 8. Notice that vertex 3, which is an ances
tor of both vertices 0 and 9, has a lower dfn than either of these vertices. Generally, if u 
and V are two vertices, and u is an ancestor of v in the depth first spanning tree, then 
dfn (w) < dfn (v).

4® 9 8

3
5
5

0
32 2

6
61

(a) depth first spanning tree
4

2

0

(b)

Figure 6.23 : Depth first spanning tree of Figure 6.22(a)

The broken lines in Figure 6.23(b) represent nontree edges. A nontree edge (m, v) 
is a back edge (^either u is an ancestor of v or v is an ancestor of u. From the definition 
of depth first search, it follows that all nontree edges are back edges. This means that the 
root of a depth first spanning tree is an articulation point iff \i has at least two children. 
In addition, any other vertex u is an articulation point iff it has at least one child w such 
that we cannot reach an ancestor of u using a path that consists of only w, descendants of 
w, and a single back edge. These observations lead us to define a value, low, for each 
vertex of G such that low(u) is the lowest depth first number that we can reach from u 
using a path of descendants followed by at most one back edge:

low (m ) = min {dfn (m ), min {low (w) | w is a child of u), 
min {dfn (vv) | (m, w) is a back edge ) )
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Therefore, we can say that u is an articulation point ijfu is either the root of the 
spanning tree and has two or more children, or u is not the root and u has a child w such 
that low(w) > dfn{u}. Figure 6.24 shows the dfn and low values for each vertex of the 
spanning tree of Figure 6.23(b). From this table we can conclude that vertex 1 is an arti
culation point since it has a child 0 such that low (0) = 4 > dfn (1) = 3. Vertex 7 is also an 
articulation point since low (8) = 9 > dfn (7) = 7, as is vertex 5 since low (6) = 5 > dfn {5} 
= 5. Finally, we note that the root, vertex 3, is an articulation point because it has more 
than one child.

Vertex 
dfn 
low

0
4
4

1
3
3

2
2
0

1
7
7

4 
T 

0

3
0
0

5
5
5

6
6
5

8
9
9

9
8
8

Figure 6.24 : dfn and low values for dfs spanning tree with root = 3

We can easily modify dfs to compute dfn and low for each vertex of a connected 
undirected graph. The result is dfnlow (Program 6.4). We invoke the function with the 
call dfnlow(Xy -/), where x is the starting vertex for the depth first search. The function 
uses a MINI macro that returns the smaller of its two parameters. The results are 
returned as two global variables, dfn and low. We also use a global variable, num, to 
increment dfn and low. The function init (Program 6.5) contains the code to correctly 
initialize dfn, low, and num. The global declarations are:

(y) ? (X) : {y}}ttdefine MIN2(x,y) ((x) 
short int dfn[MAX-VERTICES]; 
short int low[MAX-VERTICES]; 
int num;

We can partition the edges of the connected graph into their biconnected com
ponents by adding some code to dfnlow. We know that low[w] has been computed fol
lowing the return from the function call dfnlow (w, u). If /ow[w] > dfn[u], then we 
have identified a new biconnected component. We can output all edges in a biconnected 
component if we use a stack to save the edges when we first encounter them. The func
tion bicon (Program 6.6) contains the code. The same initialization function (Program 
6.5) is used. The function call is bicon (x, -1), where x is the root of the spanning tree.

Analysis (yibicon'. The function bicon assumes that the connected graph has at least two 
vertices. Technically, a graph with one vertex and no edges is biconnected, but, our 
implementation does not handle this special case. The complexity of bicon is O(u + e). 
We leave the proof of its correctness as an exercise. □
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void init(void) 
{

int i;
for (i 

visited[i] 
dfn[i]

0; i n; i++) {
FALSE; 

low[i] - -1;
}
num 0;

}

Program 6.5: Initialization of dfn and Zow

void dfnlow(int u, int v) 
{ 
/*
beginning at vertex u, v is the parent of u (if any) 

node—pointer ptr; 
int w; 
dfn[u] = low[u] = num+-i-;
for (ptr = graph[u]; ptr; ptr = ptr->link) { 

w 
if (dfn[w] 

dfnlow(w,u);
low[u] = MIN2(low[u],low[w]);

compute dfn and low while performing a dfs search

low[u]

ptr->vertex;
0) { w is an unvisited vertex

■^1

■^ /

}
else if (w != v)

low[u] = MIN2(low[u],dfn[w]};
}

}

Program 6.4: Determining dfn and low

EXERCISES

1.
2.

Rewrite dfs sq that it uses an adjacency matrix representation of graphs.

Rewrite hfs so that it uses an adjacency matrix representation.

3. Let G be a connected undirected graph. Show that no edge of G can be in two or 
more biconnected components of G. Can a vertex of G be in more than one bicon
nected component?
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int v)

compute dfn and low, and output the edges of G by their 
V is the parent (if any) of the u 

It is assumed that 
1, num has

void bicon(int u, 
{ 

biconnected components,
(if any) in the resulting spanning tree, 
all entries of dfn[] have been initialized to 
been initialized to 0, and the stack has been set to empty 
*/

node_pointer ptr;
int w,x,y;
dfn[u] = low[u] = num++;
for (ptr = graph[u]; ptr; ptr = ptr->link) {

if {v '= ScSc dfnEw] 
add (&top, u, w) ; / 
if (dfn[w] 

bicon(w,u);
low[u] - MIN2(low[u],low[w]); 
if (low[w]

printf("New biconnected component: 
do { /*  delete edge from stack */  

delete(&top, &x, ;
print f("

} while (1((x u) && (y == w))); 
printf("\n");

low [u]

ptr->vertex;

0) { /*

< dfn[u]) 
add edge to stack
w has not been visited

*/
*/

}
}

}

= dfn[u]) {

* delete edge from stack

%d,%d>",x,y};

}
else if (w 1= v) low[u] = MIN2(low[u],dfn[w]);

Program 6.6: Biconnected components of a graph

4.

5.

6.

Let G be a connected graph and let The any of its depth first spanning trees. Show 
that every edge of G that is not in T is a back edge relative to T.

Write the stack operations necessary to fully implement the bicon function. Use a 
dynamically linked representation for the stack.

Prove that function hicon correctly partitions the edges of a connected graph into 
the biconnected components of the graph.
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7.

8.

9.

10.

11.

12.

13.

14.

15.

6.3

A bipartite graph, G = (V, E), is an undirected graph whose vertices can be parti
tioned into two disjoint sets Vj and with the properties:

no two vertices in Vj are adjacent in G

no two vertices in V2 are adjacent in G

The graph G4 of Figure 6.5 is bipartite. \ possible partitioning of Vis Vi = {0, 3, 
4, 6} and V2 = {1, 2, 5, 7). Write a function to determine whether a graph is bipar
tite. If the graph is bipartite your function should obtain a partitioning of the ver
tices into two disjoint sets, V'l and V2, satisfying the two properties listed. Show 
that if G is represented by its adjacency lists, then this function has a computing 
time of O(/i -1- e), where n = | V(G) | and e = | E(G) | ( | | is the cardinality of 
the set, that is, the number of elements in it).

Show that every tree is a bipartite graph.

Prove that a graph is bipartite iffit contains no cycles of odd length.

Apply depth first and breadth first searches to the complete graph on four vertices. 
List the vertices in the order that they are visited.

Show how to modify dfs as it is used in connected to produce a list of all newly 
visited vertices.

Prove that when dfs is applied to a connected graph the edges of T form a tree.

Prove that when bfs is applied to a connected graph the edges of T form a tree.

An edge, (w, v), of a connected graph, G, is a bridge iff its deletion from G pro
duces a graph that is no longer connected. In the graph of Figure 6.22, the edges 
(0, 1), (3, 5), (7, 8), and (7, 9) are bridges. Write a function that finds the bridges in 
a graph. Your function should have a time complexity of O(n -1- ef (Hint: use 
bicon as a starting point.)

Using a complete graph with n vertices, show that the number of spanning trees is 
at least 2””’ - 1.

MINIMUM COST SPANNING TREES

The cost of a spanning tree of a weighted undirected graph is the sum of the costs 
(weights) of the edges in the spanning tree. A minimum cost spanning tree is a spanning 
tree of least cost. Three different algorithms can be used to obtain a minimum cost span
ning tree of a connected undirected graph. All three use an algorithm design strategy 
called the greedy method. We shall refer to the three algorithms as KruskaTs, Prim’s, 
and Soilin’s algorithms, respectively.

In the greedy method, we construct an optimal solution in stages. At each stage, 
we make a decision that is the best decision (using some criterion) at this time. Since 
we cannot change this decision later, we make sure that the decision will result in a 
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feasible solution. The greedy method can be applied to a wide variety of programming 
problems. Typically, the selection of an item at each stage is based on either a least cost 
or a highest profit criterion. A feasible solution is one which works within the con
straints specified by the problem.

For spanning trees, we use a least cost criterion. Our solution must satisfy the fol
lowing constraints:

(1)
(2)

(3)

we must use only edges within the graph

we must use exactly n - 1 edges

we may not use edges that would produce a cycle.

Kruskal’s Algorithm

Kruskal’s algorithm builds a minimum cost spanning tree Tby adding edges to Tone at a 
time. The algorithm selects the edges for inclusion in T in nondecreasing order of their 
cost. An edge is added to T if it does not form a cycle with the edges that are already in 
T. Since G is connected and has n > 0 vertices, exactly n - 1 edges will be selected for 
inclusion in T.

Example 6.3: We will construct a minimum cost spanning tree of the graph of Figure 
6.25(a). Figure 6.26 shows the order in which the edges are considered for inclusion, as 
well as the result and the changes (if any) in the spanning tree. For example, edge (0, 5) 
is the first considered for inclusion. Since it obviously cannot create a cycle, it is added 
to the tree. The result is the tree of Figure 6.25(c). Similarly, edge (2, 3) is considered 
next. It is also added to the tree, and the result is shown in Figure 6.25(d). This process 
continues until the spanning tree has n-\ edges (Figure 6.25(h)). The cost of the span
ning tree is 99. □

Program 6.7 presents a formal description of Kruskal’s algorithm. (We leave writ
ing the C function as an exercise.) We assume that initially E is the set of all edges in G. 
To implement Kruskal’s algorithm, we must be able to determine an edge with minimum 
cost and delete that edge. We can handle both of these operations efficiently if we main
tain the edges in £ as a sorted sequential list. As we shall see in Chapter 7, we can sort 
the edges in E in O(^ log e) time. Actually, it is not necessary to sort the edges in E as 
long as we are able to find the next least cost edge quickly. Obviously a min heap is 
ideally suited for this task since we can determine and delete the next least cost edge in 
O(log e) time. Construction of the heap itself requires 0(e) time.

To check that the new edge, (v, w), does not form a cycle in T and to add such an 
edge to r, we may use the union-find operations discussed in Section 5.9. This means 
that we view each connected component in T as a set containing the veilices in that com
ponent. Initially, T is empty and each vertex of G is in a different set (see Figure 
6.25(b)). Before we add an edge, (v, w), we use the find operation to determine if v and 
H’ are in the same set. If they are, the two vertices are already connected and adding the
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Figure 6.25: Stages in Kruskal’s algorithm
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Edge Weight

(0,5)
(2,3)
(1,6)
(1,2)
(3,6)
(3,4)
(4,6)
(4,5) 
(0,1)

10
12
14
16
18
22
24
25
28

Result 
initial 
added to tree 
added 
added 
added 
discarded 
added 
discarded 
added 
not considered

Figure
Figure 6.25(b)
Figure 6.25(c)
Figure 6.25(d)
Figure 6.25(e)
Figure 6.25(f)

Figure 6.25(g)

Figure 6.25(h)

Figure 6.26 : Summary of Kruskal’s algorithm applied to Figure 6.25(a)

T - {};
while (T contains less than n-1 edges && E is not empty) { 

choose a least cost edge (v,w) from E;
delete (v,w) from E;
if {(v,w) does not create a cycle in T)

add (v,w) to T;
else

discard (v,w);
}
if (T contains fewer than n-1 edges) 

printf("No spanning tree\n");

Program 6.7: Kruskal’s algorithm 

edge (v, w) would cause a cycle. For example, when we consider the edge (3, 2), the sets 
would be (0), {1, 2, 3}, {5}, (6). Since vertices 3 and 2 are already in the same set, the 
edge (3, 2) is rejected. The next edge examined is (1, 5). Since vertices 1 and 5 are in 
different sets, the edge is accepted. This edge connects the two components {1,2, 3} and 
(5). Therefore, we perform a union on these sets to obtain the set {I, 2, 3, 5}.

Since the union-find operations require less time than choosing and deleting an 
edge (lines 3 and 4), the latter operations determine the total computing time of 
Kruskal’s algorithm. Thus, the total computing time is O(e log e). Theorem 6.1 proves 
that Program 6.7 produces a minimum spanning tree of G.
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Theorem 6.1: Let G be an undirected connected graph. Kruskal’s algorithm generates a 
minimum cost spanning tree.

Proof: We shall show that:

(a)
(b) The spanning tree generated is of minimum cost.

Kruskal’s method produces a spanning tree whenever a spanning tree exists.

For (a), we note that Kruskal’s algorithm only discards edges that produce cycles. 
We know that the deletion of a single edge from a cycle in a connected graph produces a 
graph that is also connected. Therefore, if G is initially connected, the set of edges in T 
and E always form a connected graph. Consequently, if G is initially connected, the 
algorithm cannot terminate with E = {} and I T I < n - 1.

Now let us show that the constructed spanning tree, T, is of minimum cost. Since 
G has a finite number of spanning trees, it must have at least one that is of minimum cost. 
Let G be such a tree. Both T and G have exactly n - 1 edges. If T = G, then T is of 
minimum cost and we have nothing to prove. So, assume that T^G. Let /c, k > 0, be the 
number of edges in T that are not in G {k is also the number of edges in G that are not in 
D.

We shall show that T and U have the same cost by transforming U into T. This 
transformation is done in k steps. At each step, the number of edges in T that are not in 
U is reduced by exactly 1. Furthermore, the cost of U is not changed as a result of the 
transformation. As a result, G after k transformation steps has the same cost as the initial 
V and contains exactly those edges that are in T. This implies that T is of minimum cost.

For each transformation step, we add one edge, e, from T to G and remove one 
edge,/, from G. We select the edges e and/in the following way:

(1)

(2)

Let e be the least cost edge in T that is not in U. Such an edge must exist because 
^>0.

When we add e to £/, we create a unique cycle. Let / be any edge on this cycle 
that is not in T. We know that at least one of the edges on this cycle is not in T 
because T contains no cycles.

Given the way e and/are selected, it follows that V= U + {^) - {/) is a spanning 
tree and that T has exactly k - 1 edges that are not in V. We need to show that the cost of 
V is the same as the cost of U. Clearly, the cost of V is the cost of U plus the cost of the 
edge e minus the cost of the edge / The cost of e cannot be less than the cost of /since 
this would mean that the spanning tree Vhas a lower cost than the tree U. This is impos
sible. If e has a higher cost than /, then /is considered before e by Kruskal’s algorithm. 
Since it is not in T, Kruskal’s algorithm must have discarded this edge at this time. 
Therefore, / together with the edges in T having a cost less than or equal to the cost of / 
must form a cycle. By the choice of e, all these edges are also in t/. Thus, U must con
tain a cycle. However, since V is a spanning tree it cannot contain a cycle. So the 
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assumption that e is of higher cost than / leads to a contradiction. This means that e and 
/must have the same cost. Hence, Vhas the same cost as V. □

Prim’s Algorithm

Prim's algorithm, like Kruskal’s, constructs the minimum cost spanning tree one edge at 
a time. However, at each stage of the algorithm, the set of selected edges forms a tree. 
By contrast, the set of selected edges in Kruskal’s algorithm forms a forest at each stage. 
Prim’s algorithm begins with a tree, T, that contains a single vertex. This may be any of 
the vertices in the original graph. Next, we add a least cost edge (w, v) to T such that T u 
{(w, v)} is also a tree. We repeat this edge addition step until T contains n - 1 edges. To 
make sure that the added edge does not form a cycle, at each step we choose the edge (w, 
v) such that exactly one of u or v is in T. Program 6.8 contains a formal description of 
Prim’s algorithm. T is the set of tree edges, and TV is the set of tree vertices, that is, ver
tices that are currently in the tree. Figure 6.27 shows the progress of Prim’s algorithm on 
the graph of Figure 6.25(a).

{};
{0}; /

T :
TV = {0); /*
while (T contains fewer than n-1 edges) {

let (u, v) be a least cost edge such that u e TV and 
V g 
if (there is no such edge) 

break;
add V to TV;
add (u, v) to T;

start with vertex 0 and no edges */

TV;

}
if (T contains fewer than n-1 edges) 

printf("No spanning tree\n");

Program 6.8: Prim’s algorithm

To implement Prim’s algorithm, we assume that each vertex v that is not in TV has 
a companion vertex, near(v), such that near(v) e TV and cost(near(v), v) is minimum 
over all such choices for near(v). (We assume that cost(v, w) = ©o if (v, w) E). At each 
stage we select v so that cost(near(v), v) is minimum and v TV. Using this strategy we 
can implement Prim’s algorithm in where n is the number of vertices in G. 
Asymptotically faster implementations are also possible. One of these results from the 
use of Fibonacci heap.s which we examine in Chapter 9.
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Figure 6.27 : Stages in Prim’s algorithm

Soilin’s Algorithm

Unlike Kruskal’s and Prim’s algorithms, Soilin’s algorithm selects several edges for 
inclusion in T at each stage. At the start of a stage, the selected edges, together with all n 
graph vertices, form a spanning forest. During a stage we select one edge for each tree 
in the forest. This edge is a minimum cost edge that has exactly one vertex in the tree. 
Since two trees in the forest could select the same edge, we need to eliminate multiple 
copies of edges. At the start of the first stage the set of selected edges is empty. The 
algorithm terminates when there is only one tree al the end of a stage or no edges remain 
for selection.
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Figure 6.28 shows Sollin’s algorithm applied to the graph of Figure 6.25(a). The 
initial configuration of zero selected edges is the same as that shown in Figure 6.25(b). 
Each tree in this forest is a a single vertex. At the next stage, we select edges for each of 
the vertices. The edges selected are (0, 5), (1, 6), (2, 3), (3, 2), (4, 3), (5, 0), (6, 1). After 
eliminating the duplicate edges, we are left with edges (0, 5), (1, 6), (2, 3), and (4, 3). 
We add these edges to the set of selected edges, thereby producing the forest of Figure 
6.28(a). In the next stage, the tree with vertex set {0, 5) selects edge (5, 4), and the two 
remaining trees select edge (1, 2). After these two edges are added, the spanning tree is 
complete, as shown in Figure 6.28(b). We leave the development of Sollin’s algorithm 
into a C function and its correctness proof as exercises.

2

10
14 16

12 25 12
4J^

22

4J^ 

22

0

1

5 6 2

3 3

(a) (b)

Figure 6.28 : Stages in Sollin’s algorithm

EXERCISES

1.

2.

3.

4.

Prove that Prim’s algorithm finds a minimum cost spanning tree for every 
undirected connected graph.

Refine Prim’s algorithm (Program 6.8) into a C function that finds a minimum cost 
spanning tree. The complexity of your function should be O(n ), where n is the 
number of vertices in the graph. Show that this is the case.

Prove that Sollin’s algorithm finds a minimum cost spanning tree for every con
nected undirected graph.

What is the maximum number of stages in Sollin’s algorithm? Give this as a func
tion of the number of vertices, n, in the graph.
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5.

6.

1,

Write a C function that finds a minimum cost spanning tree using Soilin’s algo
rithm. What is the complexity of your function?

Write a C function that finds a minimum cost spanning tree using Kruskal’s algo
rithm. You may use the union and find functions from Chapter 5 and the sort func
tion from Chapter 1 or the min heap functions from Chapter 5.

Show that if r is a spanning tree for an undirected graph G, then the addition of an 
edge e, e £(r) and e e £(G), to Tcreates a unique cycle.

6.4 SHORTEST PATHS AND TRANSITIVE CLOSURE

Suppose we have a graph that represents the highway system of a state or a country. In 
this graph, the vertices represent cities and the edges represent sections of the highway. 
Each edge has a weight representing the distance between the two cities connected by 
the edge. A motorist wishing to drive from city A to city 3 would be interested in 
answers to the following questions:

(1)
(2)

Is there a path from A to B?

If there is more than one path from A to 5, which path is the shortest?

In this section, we explore several problems related to finding shortest paths. We 
define the length of a path as the sum of the weights of the edges on that path rather than 
the number of edges on the path. The starting vertex of the path is the source and the last 
vertex is the destination. Since one-way streets are possible, the graphs are directed. 
Unless otherwise stated, we also assume that all weights are positive.

6.4.1 Single Source All Destinations

In this problem we are given a directed graph, G = (V, £), a weighting function, 
w(e) > 0, for the edges of G, and a source vertex, vq. We wish to determine a shortest 
path from vq to each of the remaining vertices of G. As an example, consider the graph 
of Figure 6.29(a). If vq is the source vertex, then the shortest path from vq to is vq, 
V2, V3, V|. The length of this path is 10 + 15 -1- 20 = 45. Although there are three edges 
on this path, it is shorter than the path vq vj, which has a length of 50. Figure 6.29(b) 
lists the shortest paths from vq to vj, V2, V3, and V4 in nondecreasing order of path 
length. There is no path from vq to V5.

We may use a greedy algorithm to generate the shortest paths in the order indi
cated in Figure 6.29(b). Let S denote the set of vertices, including vq, whose shortest 
paths have been found. For w not in S, let disiance[w] be the length of the shortest path 
starting from vq, going through vertices only in S, and ending in w. Generating the paths 
in nondecreasing order of length leads to the following observations:
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Figure 6.29 : Graph and shortest paths from vq

(1)

(2)

(3)

If the next shortest path is to vertex u, then the path from I'o to u goes through only 
those vertices that are in S. To prove this we must show that all intermediate ver
tices on the shortest path from Vq to u are already in S. Assume that there is a ver
tex w on this path that is not in S. Then, the path from vq to u also contains a path 
from vq to w which has a length that is less than the length of the path from vq to 
u. Since we assume that the shortest paths are generated in nondecreasing order of 
path length, we must have previously generated the path from vq to w. This is 
obviously a contradiction. Therefore, there cannot be any intermediate vertex that 
is not in 5.

Vertex u is chosen so that it has the minimum distance, distance[u], among all the 
vertices not in S. This follows from the definition of distance and observation (1). 
If there are several vertices not in S with the same distance, then we may select 
any one of them.

Once we have selected u and generated the shortest path from vq to m, w becomes a 
member of 5. Adding u to 5 can change the distance of shortest paths starting at 
Vo, going through vertices only in S, and ending at a vertex, w, that is not currently 
in 5. If the distance changes, we have found a shorter such path from vq to w. 
This path goes through u. The intermediate vertices on this path are in 5 and its 
subpath from u to w can be chosen so as to have no intermediate vertices. The 
length of the shorter path is distance [w ] + length (<u. w >).

We attribute these observations, along with the algorithm to determine the shortest 
paths from vq to all other vertices in G to Edsger Dijkstra. To implement Dijkstra’s algo
rithm, we assume that the n vertices are numbered from 0 to n - 1. We maintain the set 5 
as an array, found, with found [/) = FALSE if vertex i is not in 5 and found [i ] = TRUE if 
vertex i is in 5. We represent the graph by its cost adjacency matrix, with cas’d/Hyj being 
the weight of edge <i, j>. If the edge </, /> is not in C, we set Kj] to some large
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number. The choice of this number is arbitrary, although we make two stipulations 
regarding its value:

(1) The number must be larger than any of the values in the cost matrix.

(2) The number must be chosen so that the statement distance[u\ + c<?5Z[w][w] does not 
produce an overflow into the sign bit.

Restriction (2) makes INT-MAX (defined in <Umits.h>) a poor choice for nonexistent 
edges. For i = j, we may set nonnegative number without affecting the
outcome. Program 6.9 contains sample declarations that create the graph of Figure 
6.29(a). We may easily modify these declarations in case the graph is to be input from a 
file or keyboard or generated in some other manner. In these cases, the function creating 
the graph should keep track of the largest weight so that the weight of the nonexistent 
edges may be defined correctly. The function shortest-path (Program 6.10) contains our 
implementation of Dijkstra’s algorithm. This function uses choose (Program 6.11) to 
return a vertex, u, such that u has the minimum distance from the start vertex, v.

ttdefine MAX—VERTICES 6 /*maximum  number of vertices 
int cost[1[MAX—VERTICES] 

50, 
0, 

1000, 
20, 

1000, 
1000,

{{ 0, 
{1000, 
{ 20, 
{1000, 
{1000, 
{1000,

1000,
1000,

15,
0,

1000,
3,

45,
10,

1000,
35,
0,

1000,

1000},
1000},
1000},
1000},
1000},

0}};

*/

10, 
15, 
0, 

1000, 
30, 

1000,
int distance[MAX—VERTICES]; 
short int found[MAX—VERTICES]; 
int n - MAX—VERTICES;

Program 6.9: Declarations for the shortest path algorithm

Analysis of shortestpath\ The time taken by the algorithm on a graph with n vertices is 
O(n2). To see this, note that the first for loop takes O(n) time. The second for loop is 
executed n - 2 times. Each execution of this loop requires O(n) time to select the next 
vertex and also to update dist. So the total time for this loop is Any shortest path 
algorithm must examine each edge in the graph at least once since any of the edges 
could be in a shortest path. Hence, the minimum possible time for such an algorithm is 
O(e). Since we represented the graph as a cost adjacency matrix, it takes O(z2^) time just 
to determine the edges that are in G. Therefore, any shortest path algorithm using this 
representation has a time complexity of The exercises explore several variations 
that speed up the algorithm, but the asymptotic time complexity remains OCn^). For the 
case of graphs with few edges, the use of Fibonacci heaps together with an adjacency list 
representation produces a more efficient implementation of the greedy algorithm for the
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void shortestpath(int v, int cost [] [MAX—VERTICES], 
int distance[], int n, short int found[]) 
{ 
1'^
to i, 
has not been found and a 1 if it has, cost is the 
adjacency matrix 

int i,u,w; 
for (i

found[i] 
distance[i] = cost[v][i];

distance[i] represents the shortest path from vertex v 
found[i] holds a 0 if the shortest path from vertex i

*/

0; n; i++) {
FALSE;

0; i i + +) {

}
found[v] = 
distance[v] 
for (i

u = choose(distance,n,found);
found[u]
for (w = 0; w

if {!found[w])
if (distance[u] + cost[u][w] < distance[w]) 

distance[w] = distance[u] + cost[u][w];

TRUE ;

+ cost[u][w]

Program 6.10: Single source shortest paths

single-source all-destinations problem. We discuss this in Chapter 9. □

Example 6.4: Consider the eight-vertex digraph of Figure 6.30(a) and its cost adjacency 
matrix (Figure 6.30(b)). We would like to find the shortest paths from Boston (vertex 4) 
to each of the other cities on the graph. Figure 6.31 shows the vertices selected and the 
values of distance at each iteration of the nested for loops. Notice that the algorithm ter
minates when only seven of the eight vertices are in S. By the definition of distance, the 
distance of the last vertex, in this case Los Angeles, is correct since the shortest path 
from Boston to all other cities has been found. □

6,4.2 All Pairs Shortest Paths

i

TRUE ;
= 0;

n-2 ;

n; w+ + )

}
}

In the all pairs shortest path problem we must find the shortest paths between all pairs of 
vertices, v,, Vj, i j. We could solve this problem using shortestpath with each of the 
vertices in V(G) as the source. Since G has n vertices and shortestpath has a time
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int choose(int distance[], int n, short int found[]) 
{ 
/* find the smallest distance not yet checked 

int i, min, minpos;
min
minpos = -1;
for (i

if (distance[i]
min = distance[i];
minpos = i;

min,
INT—MAX;

0; i n; i++)
: min && !found[i]) {

}

*/

}
return minpos;

Program 6.11: Choosing the least cost edge

complexity of OCn^), the total time required would be However, we can obtain a 
conceptually simpler algorithm that works correctly even if some edges in G have nega
tive weights. (We do require that G has no cycles with a negative length.) Although this 
algorithm still has a computing time of O(n^), it has a smaller constant factor. This new 
algorithm uses the dynamic programming method.

We represent the graph G by its cost adjacency matrix with = 0, Z = j. If
the edge <i, j>, i j is not in G, we set e6>5’f[zl [7] to some sufficiently large number using 
the same restrictions discussed in the single source problem. Let A^fzllj] be the cost of 
the shortest path from i to 7, using only those intermediate vertices with an index < k. 
The cost of the shortest path from i to 7 is ^''“’[Zllj] as no vertex in G has an index 
greater than n-1. Further, A"*  [Z][7] = since the only i to j paths allowed have
no intermediate vertices on them.

The basic idea in the all pairs algorithm is to begin with the matrix A 
cessively generate the matrices A^, A \ A'^, ••• , A 
A^-i
two rules below applies.

fi-i

-1 and suc-
. If we have already generated 

, then we may generate by realizing that for any pair of vertices i, j one of the

(1) The shortest path from i to j going through no vertex with index greater than k does 
not go through the vertex with index k and so its cost is [<]L/l•

(2) The shortest such path does go through vertex k. Such a path consists of a path from i 
to k followed by one from k to 7. Neither of these goes through a vertex with index 
greater than ^-1. Hence, their costs are A A-l [/]«:] and
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1500

Ch icago

Boston
Z4^

San 
Francisco 

0-
Denuer

800
2 1000

300

©

250

1000

1400
900

5 Neu
Vork

Los Onge les
1700

7 1000

Neu Orleans 6 Miami

(a) Digraph of hypothetical airline routes
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800 0 
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1000
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0 900 

0
1700
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1000 

0

0

(b) Cost adjacency matrix

Figure 6.30 : Digraph of airline routes

These rules yield the following formulas for/l^ ][7 ]- 

[I'lD] = min(A
and

’ ld[71 = cMz]f7]

-1 matrix. For this graph 
because the

Example 6.5: Figure 6.32 shows a digraph together with its A
4' [0112] min{y4'101(2], A“|O][I] +A‘’[11|2]) =2. Instead, A' [01[2] =-oo 
length of the path:

0. 1,0, 1.0, 1, • • • ,0, 1,2
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Iteration S Vertex 
selected

LA

[0]

Distance
SF

[1]

DEN
[2]

CHI

[3]

BOST

[4]

NY

[5]

MIA
[6]

NO

[7]

Initial
1
2
3
4
5
6

{4}
{4,5}

{4,5,6}
{4,5,6,3}

{4,5,6,3,7}
{4,5,6,3,7,2} 

{4,5,6,3,7,2,1}

5
6
3
7
2
1

4-00
4-00
4-00
4-00

3350
3350
3350

4-00
4-00
4-00
-f-oo

3250
3250

4-co
4-00
4-00

2450
2450
2450
2450

1500
1250
1250
1250
1250
1250
1250

0
0
0
0
0
0
0

250
250
250
250
250
250
250

+00

1150
1150
1150
1150
1150
1150

4-00

1650
1650
1650
1650
1650
1650

Figure 6.31 : Action of shortestpath on the digraph of Figure 6.30

can be made arbitrarily small. This situation occurs because we have a cycle, 0, 1, 0, that 
has a negative length (-1). □

-2
0 1
-2 0

oo

1 W 1

(a) Directed graph

oo oo

Figure 6.32: Graph with negative cycle

The function allcosts (Program 6.12) computes 
done in place using the array distance, which we define as:

[i ][7 ]. The computations are

int distance[MAX_VERTICES][MAX-VERTICES];

The reason this computation can be carried out in place is that ] = A 
1 =

A-1 [/,/:] and 
’ [kJ I and so the in place computation does not alter the outcome.

Analysis of allcosts'. This algorithm is especially easy to analyze because the looping is 
independent of the data in the distance matrix. The total time for allcosts is O(/i^). An 
exercise examines the extensions needed to generate the <z, j> paths with these lengths. 
We can speed up the algorithm by using our knowledge of the fact that the innermost for

($ 2
1
0
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void allcosts(int cost[][MAX—VERTICES], 
int distance[][MAX—VERTICES], int n)

{
/*

vertex,
cost is the adjacency matrix, 

distances

determine the distances from each vertex to every other

distance is the matrix of

0; i < n; 
- 0; j <

i + +) 
j++)n;

*/ 
int i,j,k; 
for (i = 

for (j
distance[i][j] = cost[i][j]; 

for (k = 0; k 
for (i =0; i < n; i++) 

for (j = 0; j < n; j++)
if (distance[i][k] + distance[k][j] < 

distance[i][j])

0; i 
= 0; j

n; k++) 
< n;

n;

distance[i][j] =
distance [iHk] + distance

}

Program 6.12: All pairs, shortest paths function 

loop is executed only when distance[i}[k\ and distance\k\[j\ are not equal to «>. □

Example 6.6: Using the graph of Figure 6.33(a), we obtain the cost matrix of Figure 
6.33(b). Figure 6.34 shows the initial matrix, A”', and matrices A^\ A', A^. □

0
0
6
3

2

(a) Digraph G

Vx 0
1
2

1
4 11
0 
a>

2
0

fb) Cost adjacency matrix for G

Figure 6.33: Directed graph and its cost matrix
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A-’ A"

oo

11 11

0 1 2 0 I 2

0

1

2

0 4 0 0 4

6 0 2 1 6 0 2

3 0 2 3 7 0

A’ A2 21 10 1 0

4 0 4 60 0 6 0

1 0 2 5 0 216

1 3 1 0 2 3 I 0

Figure 6.34: Matrices produced by allcosts for Figure 6.33(a)

6.4.3 Transitive Closure

We would like to end this section by studying a problem that is closely related to the all 
pairs, shortest path problem. Assume that we have a directed graph G with unweighted 
edges. We want to determine if there is a path from i to j for all values of i and j. Two 
cases are of interest. The first case requires positive path lengths, while the second 
requires only nonnegative path lengths. These cases are known as the transitive closure 
and reflexive transitive closure of a graph, respectively. We define them as follows:

Definition: The transitive closure matrix, denoted A of a directed graph, G, is a matrix 
such that A [z ][7 ] = I if there is a path of length > 0 from z to J', otherwise, A [z ][7 ] = 0. 
□

Definition: The reflexive transitive closure matrix, denoted A*,  of a directed graph, G, is 
a matrix such that A*ti  IL/ ] = 1 if there is a path of length > 0 from z to 7; otherwise, 

IL/] =0. □

Figure 6.35 shows A * and A * for a digraph. Clearly, A * and A * differ only on the diago
nal. Thus, A * [/](/] = 1 ifl^ there is a cycle of length > 1 containing vertex i. In contrast, 
A*[z  ][/ ] is always one since there is always a path of length 0 from i to i.
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We can easily find A * by using allcosts. We first modify cost so that cost [/ ][j ] = 
1 if </. j> is an edge in G and cost [z ][y ] = +oo if </, is not in G. When allcosts ter
minates, we obtain A from Jzdrance by letting lly] = 1 iff distance[i][j] < +<». We 
then obtain A*  by setting all the diagonal elements in A*  to 1. The total time is O(n^). 
Vie can simplify the algorithm by changing the if statement in the nested for loops to:

distance[i] [j] distance[i] [j] | | distance[i] [k] && 
distance[k][j]

and initializing distance to be the adjacency matrix of the graph. With this modification, 
distance will be equivalent tod*  when allcosts terminates. For an undirected graph, the 
(reflexive) transitive closure matrix may be computed in O(n^) time by first computing 
the connected components.

0-*0-»  ($-(?>©
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3
4

0 
0
0 
0
0

1 
0
0 
0
0

0 
1
0 
0
1

0 
0
1 
0
0

0 
0
0 
1 
0

(a) Digraph G (b) Adjacency matrix A for G
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0
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0
0

1 
1 
0
0 
0

1 
1
1 
1
1

1
1
1
1
1

1 
1
1 
1
1

(c) A * (d) A *

Figure 6.35: Graph G and its adjacency matrix

EXERCISES

Create a C function that allows the user to enter graphs. The graphs should be put 
into an adjacency matrix, co5r[z][/], with the nonexistent edges initialized so that 
the cost can be used with both shortestpath and allcosts.

Rewrite shortestpath so that it generates the paths as well as the distances for each 
of the shortest paths.

3. Using the concepts from the shortestpath algorithm (Program 6.10), find a 
minimum spanning tree algorithm whose worst case time is O(n ).

1.

2.

*
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4. Use shortestpath to obtain the lengths of the shortest paths from vertex 0 to all 
remaining vertices in the digraph in Figure 6.36. Generate the paths in ascending 
order of length.

Figure 6.36 : Sample digraph

5. Rewrite shortestpath using the following assumptions:

(a) G is represented by its adjacency lists. Each node in the list has vertex, cost, 
and link fields, where cost is the length of the corresponding edge and n is 
the number of vertices in G.

(b) Instead of using 5 (the set of vertices for which we have found shortest 
paths), use T = V(G) - S. Represent T as a linked list.

6. Using the digraph of Figure 6.37, explain why shortestpath does not work prop
erly. What is the shortest path between vertices vq and vg?

Figure 6.37 : Digraph for which shortestpath does not work properly
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7.

8.

9.

By considering the complete graph with n vertices, show that the maximum 
number of simple paths between two vertices is O((n-1)!).

Modify allcosts so that it prints out each of the paths as well as the length of the 
paths.

Show that A * = A * x A, where matrix multiplication is defined as:

n

atj =

4 = 1

10.

11.

12.

where v is the logical or operation and a is the logical and operation.

Obtain the matrices A * and A * for the digraph of Figure 6.36.

Write a C function to compute the reflexive transitive closure of an undirected 
graph with n vertices in time. Begin with the adjacency matrix of the graph 
and obtain its connected components.

Do the preceding exercise for the case of transitive closure.

6.5 ACTIVITY NETWORKS

6.5.1 Activity On Vertex (AOV) Networks

We can divide all but the simplest projects into several subprojects called activities. The 
entire project is successfully completed when each of the activities is completed. For 
example, a student working toward a degree in computer science has to complete several 
courses successfully. In this case, the project is the completed major and the activities 
are the individual courses. Figure 6.38(a) lists the courses needed for a computer science 
major at a hypothetical university. Some of these courses may be taken independently, 
while other courses have prerequisites. For example, a student cannot take the data 
structures course without first completing the beginning programming and discrete 
mathematics courses. Thus, prerequisites define precedence relations among courses. 
We may represent these relations more clearly as a directed graph in which the vertices 
represent courses and the directed edges represent prerequisites. This graph has an edge 
</, j> iffi is a prerequisite for course j.

Definition: An activity on vertex^ or AOV, network, is a directed graph G in which the 
vertices represent tasks or activities and the edges represent precedence relations 
between tasks. □

Definition: Vertex i in an AOV network G is a predecessor of vertex j iff there is a 
directed path from vertex i to vertex j. Vertex i is an immediate predecessor of vertex J 
iff <i, j> is an edge in G. If i is a predecessor of j, then j is a successor of i. If i is an 
immediate predecessor of j, then j is an immediate successor of i. □
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Figure 6.38(b) is the AOV network corresponding to the courses of Figure 6.38(a). 
C3 and C6 are immediate predecessors of C7. C9, CIO, C12, and CJ3 are immediate 
successors of C7. C14 is a successor, but not an immediate successor of C3. If an AOV 
network represents a feasible project, the precedence relations must be both transitive 
and irreflexive.

Definition: A relation • is transitive Z^for all triples i, j, k, i • j and j • k => Z • k. A rela
tion • is irreflexive on a set S if Z • Z is false for all elements, Z, in S. A partial order is a 
precedence relation that is both transitive and irreflexive. □

We can easily see that the precedence relation defined by the set of edges on the 
set of vertices in Figure 6.38(b) is transitive. Determining if the precedence relation is 
irreflexive is more difficult, but crucial. If the precedence relation is not irreflexive, then 
there is an activity which is a predecessor of itself and so must be completed before it 
can be started. Clearly this is impossible. When there are no inconsistencies of this 
type, the project is feasible.

We can show that a precedence relation is irreflexive by proving that the network 
contains no directed cycles. A directed graph with no cycles is a directed acyclic graph 
(dag). In addition to testing an AOV for feasibility, our algorithm also generates a linear 
ordering, v, ,, 
topological order.

. . , v„_j, of the vertices (activities) in the network, referred to as the' I ’

Definition: A topological order is a linear ordering of the vertices of a graph such that, 
for any two vertices, Z, j, if i is a predecessor of j in the network then Z precedes j in the 
linear ordering. □

A topological order of the courses in Figure 6.38(b) gives a course of study that would 
successfully meet the degree requirements in computer science. There are several possi
ble topological orders for the network of Figure 6.38(b), including:

Cl, C2, C4, C5, C3, C6, C8, C7, CIO, C13, C12, C14, C15, Cl 1, C9 
and

C4, C5, C2, Cl, C3, C8, C15, QI, Q9, CIO, Cl 1, C12, C13, C14

An algorithm that sorts the tasks into topological order is straightforward. We begin by 
listing out a vertex in the network that has no predecessor. We then delete this vertex, 
and all edges leading out from it, from the network. We repeat these two steps until 
either all the vertices have been listed, or all remaining vertices have predecessors and so 
we cannot remove any of them. In this case, the network has a cycle and the project is 
infeasible. Program 6.13 contains a formal description of the topological sort.

Example 6.7: We will use Program 6.13 to find the topological order for the network of 
Figure 6.39. The first vertex picked is vq since it is the only vertex that has no predeces
sors. Vertex vq and the edges <vo, vi>, <vo, <vo, V3> are deleted. In the resulting 
network (Figure 6.39(b)), vj, V2, and vj have no predecessor. Any of these can be the
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Course number 
ci
C2
C3
C4
C5
C6
C7
C8
C9
CIO
Cll
C12
C13
C14
C15

Course name 
Programming I 
Discrete Mathematics 
Data Structures 
Calculus I 
Calculus 11 
Linear Algebra 
Analysis of Algorithms 
Assembly Language 
Operating Systems 
Programming Languages 
Compiler Design 
Artificial Intelligence 
Computational Theory 
Parallel Algorithms 
Numerical Analysis

(a) Courses needed for a computer science degree at a hypothetical university

Prerequisites
None
None 
C1,C2
None
C4
C5
C3,C6
C3
C7, C8
C7
CIO
C7
C7
C13
C5

(b) AOV network representing courses as vertices and edges as prerequisites

Figure 6.38 : An AOV network 

next vertex in the topological order. Assume that V3 is chosen. Deletion of V3 and the 
edges <V3, V5> and <V3, V4> produces the network of Figure 6.39(c). Either V] or V2 
may be picked next. Figure 6.39(d) through Figure 6.39(g) show the progress of the 
algorithm. □



306 Graphs

0; i n;for (i = 0; i < n; i++) (
if every vertex has a predecessor { 

fprintf(stderr,"Network has a cycle.\n"); 
exit(1);

}
pick a vertex v that has no predecessors; 
output v;
delete v and all edges leading out of v 
from the network;

}

Program 6.13: Topological sort

uMl

Mz

Ma

(b) Mg

Ml

Mz

Mg

Vs

(a) initial

Ml

Mz

Va

1

U.

(e) Mg (f) U (9) M41

Topological order generated: Mg, M^, M2 , M

Figure 6.39 : Simulation of Program 6.13 on an AOV network
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Before transforming Program 6.13 into a C function, we must specify the represen
tation of the AOV network. As always, the choice of a representation depends on the 
operations that we wish to perform. In this problem, we must:

(1) determine if a vertex has any predecessors.

(2) delete a vertex and all of its incident edges.

We can perform the first operation efficiently if we keep a count of the number of 
immediate predecessors for each vertex. The second operation is easily implemented if 
we represent the network by its adjacency lists. Then we can carry out the deletion of all 
incident edges of a vertex, v, by decreasing the predecessor count of all vertices on its 
adjacency list. Whenever the count of a vertex drops to zero, we place the vertex on a 
list of vertices with a zero count. We use this list to select the next vertex. The complete 
C function for performing a topological sort on a network is topsort (Program 6.14). The 
function assumes that the network is represented by its adjacency lists. The head nodes 
of these lists now contain count and link fields.

The declarations used in topsort are:

typedef 
typedef

typedef

hdnodes

struct node *node —pointer; 
struct node {
int vertex;
node—pointer link;
};
struct {
int count;
node—pointer link;
} hdnodes;
graph[MAX-VERTICES];

The count field contains the in-degree of that vertex and link is a pointer to the first 
node on the adjacency list. Each node has two fields, vertex and link. We can easily set 
up the count fields at the time of input. When <Z, j> is input, we increment the count of 
vertex j. We use a stack to hold the list of vertices with zero count. We could have used 
a queue, but the stack is easier to implement. We link the stack through the count field 
of the head nodes since this field is of no use after the count reaches 0. Figure 6.40 
shows the adjacency list representation of the network of Figure 6.39(a).

Analysis of topsort: As a result of a judicious choice of data structures, topsort is very 
efficient. The first for loop takes O(n) time, on a network with n vertices and e edges. 
The second for loop is iterated n times. The if clause is executed in constant time; the 
for loop within the else clause takes time 0(6/,), where dj is the out-degree of vertex i. 
Since this loop is encountered once for each vertex that is printed, the total time for this 
part of the algorithm is:
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void topsort(hdnodes graph[], int n) 
{

int i,j,k,top;
node—pointer ptr;

create a stack of vertices with no predecessors 
- -1;

*/
top
for (i = 0; i < n; i++)

if (1 graph[i].count) { 
graph[i1.count = top; 
top

n;

1;
}
for (i = 0; i

if (top -1) {
fprintf(stderr,"\nNetwork 

terminated. \n");
exit(1};

n; i++)

has cycle. Sort

}
else {

j - top; /'^ unstack a vertex 
top = graph[top].count;
printf ( ''v%d, 
for (ptr = graph[j].link; ptr; ptr = ptr->link) { 

decrease the count of the successor vertices
*/
: ptr->vertex;

", j ) ;

/*  
of j 

k 
graph[k].count—;
if ('graph[k].count) { 
/* add vertex k to the stack 

graph[k].count = top;
top k;

Program 6.14: Topological sort

n-l

O(( di ) ) = O(e + n)
i=0

Thus, the asymptotic computing time of the algorithm is O(^ + «). It is linear in the size 
of the problem! □

top ; /■^

■^ /

a

}

}
}

}
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^3

headnodes 
count link

node 
vertex 1 ink

NULL

NULL

NULL

NULL%
"1

U

0

1

1

1

1

4

4

5

>

>

>

2

5

4

> 3

34 NULL

M 2 NULL
5

Figure 6.40 : Adjacency list representation of Figure 6.39(a)

6.5.2 Activity On Edge (AOE) Networks

1 ’

An activity on edge, or AOE, network is an activity network closely related to the AOV 
network. The directed edges in the graph represent tasks or activities to be performed on 
a project. The vertices represent events which signal the completion of certain activities. 
Hence, an event occurs only when all activities entering it have been completed. Figure 
6.41(a) is an AOE network for a hypothetical project with 11 tasks or activities, a^, • • • , 
fliQ. There are nine events, vq, • • • , v^. We may interpret events, vq and vg as "start 
project" and "finish project,” respectively. Figure 6.41(b) gives interpretations for some 
of the nine events. The number associated with each activity is the time required to per
form the activity. Thus, activity a^ requires 6 days, while ojo requires 4 days. Usually, 
these times are only estimates. We can perform activities a(^, ai, and 02 concurrently 
after the start of the project. However, we cannot start a^, a^, a^ until events v 1, V2, and 
V3, respectively, occur. We can carry out Of, and a-j after the occurrence of event V4 
(after we have completed <33 and 6/4). If we must place additional constraints on the 
activities, we can introduce dummy activities whose time is zero. For example, if we do 
not want activities and a-/ to start until both events V4 and V5 have occurred, we add a 
dummy activity, a

AOE networks have proved very useful for evaluating the performance of many 
types of projects. This evaluation includes determining not only the minimum amount of 
time required to complete a project, but also an assessment of the activities whose dura
tion should be shortened to reduce the overall completion time. The most sophisticated 
of the techniques developed for evaluating networks include PERT (performance evalua
tion and review technique). CPM (critical path method), and RAMPS (resource alloca
tion and multiproject scheduling).

represented by the edge V4>.11 ’
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start ^0

0“^

= 4

1

•^4

^6=^

finish

*10 *
v?

>

= 7

= 4

a

^2

* 1

= 5

^3

(a) AOE network. Activity graph of a hypothetical project

interpretation
start of project
completion of activity aQ
completion of activities <33 and a 4 
completion of activities a-i and ag 
completion of project

event
Vo
Vi
V4
V7 
vg

(b) Interpretation of some of the events in the activity graph of (a)

Figure 6.41 : An AOE network

Since we can carry out the activities in an AOE network in parallel, the minimum 
time required to complete the project is the length of the longest path from the start ver
tex to the finish vertex. (We assume that the length of a path is the sum of the times of 
the activities on this path.) A critical path is a path that has the longest length. For 
example, the path vq, vj, V4, vy, vg is a critical path in the network of Figure 6.41(a). 
The length of this path is 18. A network may have more than one critical path. In the 
network of Figure 6.41(a), the path vq, vj , V4, v^, vg is also a critical path.

The earliest time an event, v,, can occur is the length of the longest path from the 
start vertex vq to vertex v,. For example, the earliest time that event V4 can occur is 7. 
The earliest time an event can occur determines the earliest start time for all activities 
represented by edges leaving that vertex. We denote this time as early(i) for activity a, . 
For example, early(6) = early(7) = 7.

The latest time, late(i), of activity, tz/, is defined to be the latest time the activity 
may start without increasing the project duration. For example, in Figure 6.41(a), 
early(5) = 5 and late(5) = 8, early(7) = 7 and late(7) = 7.
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A critical activity is an activity for which early(i) = late(i). The difference 
between late(i) and early(i) is a measure of how critical an activity is. It gives the time 
that we can delay or slow an activity without increasing the total time needed to finish 
the project. For example, we may add 2 two days to the time required to complete 
activity a 5 without affecting the project time. Clearly, all activities on a critical path are 
strategic and shortening the time required for noncritical activities has no effect on the 
project duration. A critical path analysis identifies critical activities so that we may con
centrate our resources in an attempt to reduce a project’s duration. Critical path methods 
have proved valuable in evaluating project performance and in identifying bottlenecks.

We can also perform a critical path analysis with an AOV network. The length of 
a path is the sum of the activity times of the vertices on that path. For each activity or 
vertex, we could analogously define the quantities early(i) and late(i). Since the activity 
times are only estimates, we should reevaluate the project at various stages of comple
tion as more accurate estimates of activity times become available. These changes in 
activity times could make previously noncritical activities critical and vice versa.

Before ending our discussion of activity networks, let us design an algorithm to 
compute early(i) and late(i) for all activities in an AOE network. Once we know these 
quantities, we can easily identify the critical activities. To determine the critical paths, 
we simply delete all noncritical activities from the AOE network, and generate all the 
paths from the start to finish vertex in the new network.

Calculation Of Earliest Tinies

When computing the earliest and latest activity times it is easier to first obtain the earli
est event occurrence time, earliest[j], and the latest event occurrence time, latest[j], for 
all events, 7, in the network. Then if activity a, is represented by edge <k, l>, we can 
compute early(i) and late(i) from the formulas:

early {i} = earliest [A: j (6.1)

late (0 = latest [I ] - duration of activity Oj (6.2)

(6.3)

We compute the times earliest[j] and latest[j] in two stages: a forward stage and a back
ward stage. During the forward stage, we start with earliest[Q] = 0 and compute the 
remaining start times using the formula:

earliest [7 ] = max { earliest [Z ] 4- duration of <i. j >} 
i e P{j)

where P(f} is the set of immediate predecessors of 7. If we carry out this computation in 
topological order, the early times of all predecessors of j would have been computed 
prior to the computation of earliest[j]. We can easily obtain an algorithm that does this 
by inserting the following statement at the end of the else clause in topsorv.
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if (earliest[k] earliest[j] + ptr->duration) 
earliest[k] = earliest[j] + ptr->duration;

We assume that earliest[] is initialized to zero and that duration is another field in 
the adjacency list’s node structure which contains the activity duration. With this 
modification the evaluation of Eq. (6.3) is carried on in parallel with the generation of a 
topological sort. The function earliest[J] is updated each time the earliest[i] of one of its 
predecessors is known (that is, when i is ready for output).

To show how the modified topological sort algorithm works, let us try it on the net
work of Figure 6.41(a). Figure 6.42(a) shows the adjacency lists for the network. The 
order of the nodes on these lists determines the order in which the algorithm examines 
the vertices. Initially, the early start time for all vertices is 0, and the start vertex is the 
only one on the stack. When the adjacency list for this vertex is processed, the early start 
time of all vertices adjacent from vq is updated. Since vertices 1, 2, 3 are now on the 
stack, all their predecessors have been processed and Eq. (6.3) has been evaluated for 
these vertices. Next, earliest[5] is determined. While vertex is being processed, ear- 
liest[l] is updated to 11. However, this is not the final value of earliest[l] since we have 
not evaluated Eq. (6.3) for all predecessors of vy (for example, we have not examined 
V4). This does not matter since we cannot stack vy until we have processed all of its 
predecessors. Now earliest[4] is updated to 5 and finally to 7. Next we obtain the values 
of earliest[6] and earliest[l]. Ultimately, earUest[S] is determined to be 18, the length 
of a critical path. You may readily verify that when a vertex is put onto the stack its 
early time has been computed correctly. The insertion of the new statement into topsort 
does not change the asymptotic computing time; it remains O(n + e).

Calculation Of Latest Times

In the backward stage, we compute the values of latest[i] using a procedure analogous to 
that used in the forward stage. We start with latest[n-l] = earliest[n-i\ and use the 
equation:

(6.4)latest [j j = min [latest [/ ] - duration of<j, i >}

where 5 (7) is the set of vertices adjacent from vertex 7. I.e., S(7) is the set of immediate 
successors of j. We set the initial values for latest[i] to earliest[n-1]. Eq. (6.4) states 
that if <j, i> is an activity and the latest start time for event i is latest[i], then event 7 
must occur no later than latest[i] - duration of <j, i>. Before we can compute latest[j] 
for some event j, we must first compute the latest event for all successor events (events 
adjacent from 7). We can obtain these times in a manner identical to the computation of 
the early times by using inverse adjacency lists, and inserting the following statement at 
the end of the else clause in topsort.

i f (latest[k] 
latest[k] = latest[j] - ptr->duration;

latest[j] - ptr->duration)
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U 0
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U 2
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U 4

U 5

U 8

U 7

M 8

count link uertex dur link

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

NULL

0

1

1

1

2

1

1

2

2

1 & > 2 4 > 3 S

4

4

5

6

7
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1

1

2

9 > 7 7

4

2

4

(a) Adjacency lists for Figure 6.41(a)

Earliest [0] [I] [2] [3] [4] [5] [6] [7] [8] Stack

initial
output V() 
output V3 
output V5 
output V2 
output V J 
output V4 
output V7 
output 
output

16
16
16

11

14
14
14

16
18

[0]
[3,2,1] 
[5,2, 1] 

[2,1]
[1]
[4]
[7,6]
[6]
[8]

0 0 0 0 0 0 0 0 0
0
0
0
0
0
0
0
0

6 4 5 0 0 0 0 0
6 4 5 0 7 0 0
6 4
6
6

4
4

5
5
5

0 7
5
7

7
1

0
0

0
0

11
11

0
0

6
6
6

4
4
4

5 7 1 0
5 7 1

5 1 1

(b) Computation of earliest

Figure 6.42 : Computing earliest from topological sort

Initially, the count field of a head node contains the out-degree of the vertex. Fig
ure 6.43 describes the process of calculating latest for the network of Figure 6.41(a).

If we have already carried out the forward step and obtained a topological order
ing of the vertices, we can compute the values of latest[i] directly using Eq. (6.4). We 
perform the computations in reverse topological order. Since the topological order.gen- 
erated in Figure 6.42(b) is vq, V3, V5, V2, vj, V4, V7, 1/5, vg, we compute the values of
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U 0

U 2

M 3

U 4

U 5

6

count link uertex dur link

NULL

NULL

NULL

NULL

NULL

NULL

NULL

3

1

1

1

2

1

1

U

0 6

0 4

0 5

1 1 > 2 1

3 2

4 9

>17 4 7 5 4 NULL

0U ----- k8 2 76 4 NULL

(a) Inverted adjacency lists for AOE network of Figure 6.41(a)

Latest [0] [1] [2] [3] [4] (5] (6] [7] [8] Stack

initial
output Vg 
output V7 
output V5 
output V3 
output
output V4 
output V2 
output V I

18
18
18
18
3
3
3
2
0

18
18
18
18
18
18
6
6
6

18
18
18
18
18
18
6
6
6

18
18
18
18

8
8
8
8
8

18
18

7
7
7
7
7
7
7

18
18
10
10
10
10
10
10
10

18
16
16
16
16
16
16
16
16

18
14
14
14
14
14
14
14
14

18
18
18
18
18
18
18
18
18

[8]
[7, 6]
[5, 6]
[3, 6]
[6]
[4]
[2,1]

[1]
[0]

(b) Computation of latest

Figure 6.43 : Computing latest for AOE network of Figure 6.41 (a) 

latest[i] in the order 8, 6, 7, 4, 1, 2, 5, 3, 0.
Once obtained we may use the values of earliest (Figure 6.42) and latest (Figure 

6.43) to compute the early {1} and late (i) times and the degree of criticality for each task. 
Figure 6.44 summarizes this information. Notice that the critical activities are aQ, a^, 
a^, <37, ag, and czjo. Deleting all noncritical activities from the network gives us the 
graph of Figure 6.45. All paths from vq to vg in this graph are critical paths, and there 
are no critical paths in the original network that are not paths in the graph of Figure 6.45.
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latest[S] = earliest[3] = 18
latest[6] = min{^6rr//e5r[8] - 2} = 16
latest[l] = min{e£zr/ze5?[8J -4} = 14
/«re5f[4] = min{earZze5r[6] - 9; ^ar//e5r[7]
latest\_}.} = min{e6zr/ze5’Z'[4J - 1) = 6

= min{^(3rZZ^5f[4] - 1} = 6
ZaZ^5r[5] = min{e(3rZZe5r[7J - 4} = 10
Ztzfe5r[3] = min(e6zrZZe5r[5] - 2) = 8
latestiQ] = min{eflrZZ^5?[l] - 6; ^<3rZZ^5f[2] - 4; ^6rrZZe.vr[3] - 5) = 0

(c) Computation of latest from Equation (6.4) using a reverse topological order

Figure 6.43 (continued): Computing latest for AOE network of Figure 6.41(a)

As a final remark on activity networks, we note that topsort detects only directed 
cycles in the network. There may be other flaws in the network, including vertices that 
are not reachable from the start vertex (see Figure 6.46). When we carry out a critical 
path analysis on such a network, there will be several vertices with earliest[i} = 0. Since 
we assume that all activity times are greater than zero, only the start vertex can have 
earliest[i\ = 0. Hence, we also can use critical path analysis to detect this kind of fault in 
project planning.

EXERCISES

1.

2.

3.

Does the following set of precedence relations (<) define a partial order on the ele
ments 0 through 4? Explain your answer.

(b)

(c)

(d)

0< 1; 1 <4; 1 <2; 2<3; 2<4;4<0

(a) For the AOE network of Figure 6.47, obtain the early and late starting times for 
each activity. Use the forward-backward approach.

What is the earliest time the project can finish?

Which activities are critical?

Is there a single activity whose speed up would result in a reduction of the 
project length?

§ [Programming project] Write a C program that allows the user to input an AOE 
network. The program should calculate and output the early(i) and late(i) times 
and the degree of criticality for each activity. If the project is not feasible, it 
should indicate this. If the project is feasible it should print out the critical activi
ties in an appropriate format.
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Activity
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Early
0
0
0
6
4
5
7
7
7
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14
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2
3
6
6
8
7
7
10
16
14

Late - Early 
0 
2 
3 
0 
2 
3 
0 
0 
3 
0 
0

Critical
yes 
no
no
yes 
no
no 
yes 
yes 
no 
yes 
yes

Figure 6.44 : Early, late, and critical values

Figure 6.45 : Graph with noncritical activities deleted
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Euler’s original paper on the Koenigsberg bridge problem is interesting reading. This 
paper has been reprinted in: "Leonhard Euler and the Koenigsberg Bridges,” Scientific 
American, vol, 189, no. 1, 1953, pp. 66-70.

The biconnected component algorithm is attributed to R. Tarjan. This algorithm, 
together with a linear time algorithm to find the strongly connected components of a 
directed graph, appears in R. Tarjan, "Depth-first search and linear graph algorithms," 
SIAM Journal of Computing, vol, 1 no. 2, 1972, pp. 146-149.

Prim’s minimum cost spanning tree algorithm was first proposed by Jarnik in 1930 
and rediscovered by Prim in 1957. Since virtually all references to this algorithm give 
credit to Prim, we continue to refer to it as Prim’s algorithm. Similarly, the algorithm we
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Figure 6.46 : AOE network with unreachable activities
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Figure 6.47 : An AOE network 
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318 Graphs

and M. Pauli, Algorithm Design: A Recursion Transformation Network, Wiley InterSci
ence, New York, 1988.

6.7

1.

ADDITIONAL EXERCISES
An incidence matrix is another matrix representation of a graph. In this represen
tation, we use one row for each vertex in the graph and one column for each edge. 
If edge j is incident to vertex i, incidence[i][J] = 1; otherwise it equals 0. The 
incidence matrix for the graph of Figure 6.19(a) is given in Figure 6.48. We have 
numbered the edges of Figure 6.19(a) from left to right and top to bottom. For 
example, (vq, vJ is edge 0, (vq^ ^2) is edge I, and so on. Rewrite dfs so that it 
works on a graph represented by its incidence matrix.

0 
1
2 
3
4

5 
6
7

0 1 2 3 4 5 6 7 8 9

1100000000 
1011000000 
0100110000 
0010001000 
0001000100 
0000100010 
0000010001 
0000001111

Figure 6.48 : Incidence matrix of graph of Figure 6.19(a)

2.

3.

4.

5.

If ADJ is the adjacency matrix of a graph, G = (V, E) and INC is the incidence 
matrix, under what conditions does

ADJ = INCxlNC^-I

where INC^ is the transpose matrix of INC^ Matrix multiplication is defined in 
Exercise 9, Section 6.4. /is the identity matrix.

The diameter of a tree is the maximum distance between any two vertices. Given 
a connected, undirected graph write a C function that finds a spanning tree of 
minimum diameter. Prove that your function is correct.

The radius of a tree is the maximum distance from the root to a leaf node. Given a 
connected, undirected graph, write a C function that finds a spanning tree of 
minimum radius. Prove that your function is correct.

§ [Programming project] Write a C program for manipulating graphs. Your pro
gram should allow the user to input arbitrary graphs, print out graphs, and deter
mine the connected components, articulation points, and bridges. It should also 
print out the spanning trees. You also should provide the capability of attaching 
weights to the edges.



CHAPTER 7

SORTING

7.1 SEARCHING AND LIST VERIFICATION

7.1.1 Introduction

Although the primary focus of this chapter is on sorting, we want to begin with two prob
lems, searching and list verification, to show you why efficient sorting methods are so 
important. Recall that in Chapterl, we introduced two searching techniques, sequential 
and binary. We used simple arrays of integers to illustrate the searching techniques, but 
we did not examine formally the computing times of these techniques. In this chapter, 
we begin by searching more complicated structures.

Let us assume that we have a collection of information concerning some set of 
objects. If this collection fits easily within the available memory we call it a list; if it 
must be stored externally we call it a file. We call the information for one of the objects 
in the collection a record, and within each record we break the information into smaller 
units called fields. The structure of a record depends entirely on the application. For 
example, if our list was a telephone directory, we might define a person record consist
ing of name, address, and phone number fields. On the other hand, if our list was a set of 
numbers, we might have only a field to represent the number. Often, when searching a 
list of records, we wish to examine the records based on some field that serves to identify 
the record. This field is known as a key. Since we can use the same list for several 
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different applications, the key field also depends on the particular application. For exam
ple, if we have a telephone list and we wish to locate the phone number 456-1023, the 
phone number field is the key. On the other hand, if we wish to figure out whether Joan 
Smith is listed in the directory, the name field is the key.

The efficiency of a searching strategy depends on the assumptions we make about 
the arrangement of records in the list. If the records are ordered by the key field, we can 
search the list very efficiently. On the other hand, if the records are in random order 
based on the key field, we must start the search at one end of the list and examine each 
record until we either find the desired key or we reach the other end of the list. This 
latter strategy is the one used by the sequential search.

7.1.2 Sequential Search

Assume that we have a list and a search key, searchnum. We wish to retrieve the record 
whose key field matches searchnum. If list has n records, with list[i].key referring to the 
key value for record i, then we can search the list by examining the key values 
list[()].key, ■ • ■ , list[n-l].key, in that order, until the correct record is located, or we 
have examined all the records in the list. Since we examine the records in sequence, this 
searching technique is known as a sequential search. The function seqsearch (Program 
7.1) contains the details. It uses the folowing declarations:

#define 
typedef

MAX—SIZE 1000 /*maximum  size of list plus one*/  
struct { 
int key;

other fields

element

/*
} element;
list[MAX-SIZE] ;

*/

Analysis of seqsearch'. Prior to the start of the search, we place searchnum in list[n].key. 
This position serves as a sentinel that signals the end of the list. By avoiding a test for 
the end of the list, that is, i > n - 1, we can simplify the loop structure. If the search is 
unsuccessful, i = n, and we return a value of -1. Therefore, an unsuccessful search 
requires n + 1 key comparisons, resulting in a worst case computing time of 0(h). The 
number of key comparisons made in a successful search depends on the position of the 
key in the list. If the keys are distinct and searchnum = list[i].key, then i + 1 key com
parisons are made. The average number of comparisons for a successful search is:

2 (z + 1)/h = (n + l)/2 □ 
j=0
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int seqsearch(int list[], int searchnum, 
{
/* search an array, 
list[i] = 
the list 

int i ; 
list[n] 
for (i

searchnum.
*/

int n)

list, that has n numbers. Return i, 
Return -1, if searchnum is not in

searchnum;
0; list[i] != searchnum; i++)

if

return ((i 7n ) : -1) ;1

}

Program 7.1 Sequential search

7.1.3 Binary Search

Unlike sequential search, which makes no assumptions about the order of the key fields, 
binary search assumes that the list is ordered on the key field such that list[Q].key < 
listW.key < • • • < Hst[n-l].key. As we indicated in Chapter 1, this search begins by 
comparing searchnum and list[middle}.key where middle = (/r-l)/2. The comparison 
function COMPARE was defined in Chapter 1. There are three possible outcomes:

(1)

(2)

(3)

searchnum < list[middle].key: In this case, we discard the records between 
list[middle] and list[n-l], and continue the search with the records between 

and list[middle~l}.

searchnum = list[middle].key: In this case, the search terminates successfully.

searchnum > list[middle].key: In this case, we discard the records between /z5r[0] 
and list[middle] and continue the search with the records between list[middle+\j 
and list[n - 1 ].

Thus, after a comparison either the search ends successfully or the size of the 
unsearched portion of the list is reduced by about one half. After j key comparisons, the 
unsearched part of the list is at most f n ], which means that this method requires 
O(log n) key comparisons in the worst case. The function binsearch (Program 7.2) 
implements the scheme just outlined. We pass in the number of elements, n, rather than 
the upper and lower boundaries as we did in the binary search function presented in 
Chapter 1. (The upper and lower boundaries are assumed to be 0 and n - 1, respectively.)

Analysis of binsearch'. In hinsearch the middle key of the current sublist is always com
pared with the desired key (searchnum}. Since there are only three outcomes for each
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int binsearch(element list[], 
{ 
/*

int searchnum, int n)

*/
0, right - n-1, middle;
<= right) {
(left + right) / 2;

search list[0], list[n-l]
int left - 
while (left 

middle =
switch (COMPARE(list[middle].key, searchnum)) { 

case -1 : left = middle + 1; 
break;

: return middle;
: right = middle - 1;

case 0
case 1

}
}
return — 1;

}

Program 7.2: Binary search 

comparison we can use a binary decision tree to describe the search process. For exam
ple, suppose that the input list is (4, 15, 17, 26, 30, 46, 48, 56, 58, 82, 90, 95). Figure 7.1 
shows this list represented as a binary decision tree. The key values appear inside the 
nodes and the list indices appear outside. A path from the root to any node in the tree 
represents a sequence of comparisons made by binsearch to either find searchnum or 
determine that it is not present. From the depth of this tree, we can easily see that bin
search makes no more than O(log n) comparisons. □

Getting back to our example of the telephone directory, we notice that neither 
sequential nor binary search corresponds to the search method actually employed by 
humans in searching the directory. If we are looking for a name beginning with W, we 
start the search towards the end of the directory rather than at the middle. A search 
method based on this interpolation search would then begin by comparing key f[i ]. key 
with i = ((k -/[/J. key)/(/'[« }.key -/[/]. key)) * n (f[l].key and f[u].key are the 
values of the smallest and largest keys in the file). Interpolation search can be used only 
when the file is ordered. The behavior of such an algorithm will clearly depend on the 
distribution of the keys in the file.

7.1.4 List Verification

Typically, we compare lists to verify that they are identical, or to identify the discrepan
cies. Thus, the problem of list verification is an instance of repeatedly searching one list, 
using each key in the other list as the search key. Since organizations often receive 
duplicate material from several different sources, list verification is a problem that arises



Searching And List Verification 323

4

[23

17

[3]\

[5]

46

[63

48

[81

58

11O3'>—

90

[13\_^

(15
[4 3 [73

30 56
[93 /

fsz
[113

95

Figure 7.1: Decision tree for binary search

frequently. For example, the Internal Revenue Service (IRS) receives statements from 
employers indicating the salary and Social Security deductions for each of their employ
ees. Similarly, employees must submit an income tax statement indicating their income 
and deductions. Naturally, the IRS would like to verify that the lists are identical with 
respect to the individuals entered in each list and to the information provided for each 
individual from the two sources. We have already shown that an ordered list increases 
the efficiency of the search process. Does it also speed up the process of list verification? 
To answer this question, we must develop list verification functions for both random and 
ordered lists. For each function, we assume that we have two lists, listl and Ust2, with 
keys listl[i].key, 0 < i < n, and Ust2[J].key, 0 < j < m. In addition, we assume that the 
verification process recognizes and reports three types of errors:

(1) A record with key listl[i].key appears in the first list, but there is no record with 
the same key in the second list (list2).

A record with key list2[j].key appears in the second list, but there is no record with 
the same key in the first list {listl).

listl[i\.key = list2[j].key, but the two records do not match on at least one of the 
other fields.

(2)

(3)

The function verify} (Program 7.3) assumes that the two lists are randomly 
arranged. We can easily prove that this function has a worst case asymptotic computing 
time of 0(wn). The function verify2 (Program 7.4) begins with the same input as does 
verify}. However, it sorts the two input lists before verifying them. Its worst case 
asymptotic time is Q{tsort(n) + tsort(m) + w + «), where tsort(n) is the time needed to
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sort the n records in listl, and tsort(m) is the time needed to sort the m records in list2. 
As we will show in this chapter, it is possible to sort n records in O(/? log n) time. There
fore, the worst case time for verify2 is O(m42r[n log n, m log w]).

void verifyl{element listl[], element list2[], 

{
compare two unordered lists listl and list2

int n,
*/

int m)

int i,j;
int marked[MAX-SIZE];

for (i = 0; i 
marked[i] -

for (i = 0; i < n; i++)
if ({j = seqsearch{list2,m,listl[i].key) ) 

printf( 
else

check each of the other fields from listl [i] and 
list2[j], and print out any discrepancies 

marked[j] 
for (i - 0; i 

if (!marked[i])
printf(”%d is not in listlXn",list2[i].key);

0; i

c m;
FALSE;
' n;

i++)

0)
"%d is not in list 2\n", listl[i] .key);

/*
*/

: TRUE; 
m; i++)

)

Program 7.3: Verifying using a sequential search

EXERCISES

1. Sequential search can be improved by transposing the Zth record and the 0th record 
if the search was successful. This leads to a better performance on future searches 
if the same key is searched for repeatedly. Write a sequential search function that 
incorporates this variation.

2. Sequential search can also be improved by shifting the records between 0 and z'-l 
one position to the right, and placing the /th record in the 0th position. This 
Move-To-Right shifting occurs only if the search was successful. This variation 
allows those keys that are frequently sought to move to the front of the list. Write 
a function to perform this variation.

3. Assume that we have a sorted list of the 20 numbers 2, 4, • • • , 40. Draw the 
binary decision tree for the list. This tree should reflect the possible comparison 
sequences in a binary search. How many comparisons does it take to determine
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void verify2(element listl[], element list2[], 
/*  
{

int n. 
Same task as verifyl, but listl and list2 are sorted

int m)

0;
n && j m)

c list2 [j] .key) {

int i,j;
sort(listl,n);
sort(list2,m);
i = j 
while (i

if (listl[i].key
printf("%d is not in list 2\n",listl[i] .key) ; 
i 4- 4-;

}
else if (listl[i].key list2 [ j] .key) {
1^ compare listl [i] and list2[j] on each of the other 
fields and report any discrepancies

i + +; :++;
*/

}
else {

printf("%d is not in list l\n", list2[j].key); 
:++;

}
for(; i < 

printf(
for {; 3 < 

printf(

n; i + +)
"%d is not in list 2\n'’, listl [ i ] . key) ;
- m; 3++)
"%d is not in list 1\n", list2[j] .key);

}

Program 7.4: Fast verification of two fists

that 30 is in the fist? How many does it take to determine that 21 is not in the list?

4. Program interpolation search and compare its performance with that of binary 
search. For the comparison, use sequences of numbers generated using a uniform 
random number generator. Sort the resulting sequence and measure the average 
search time for a successful search by searching for each of the numbers in the 
sequence. Assume that a successful search can be for any of the numbers in your 
sequence with equal probability. Repeat your experiment using an exponential 
random number generator.
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7.2 DEFINITIONS

We have seen two important applications of sorting: (1) as an aid to searching, and (2) 
for matching entries in lists. Sorting is also used in the solution of many other more 
complex problems. In fact, estimates suggest that over 25 percent of all computing time 
is spent on sorting, with some organizations spending more than 50 percent of their com
puting time sorting lists. So, the problem of finding efficient sorting algorithms is 
immensely important. Unfortunately, no single sorting technique is the "best" for all ini
tial orderings and sizes of the list being sorted. Therefore, we examine several tech
niques, indicating when one is superior to the others.

First, let us formally state the problem we are about to consider: We are given a 
list of records (7?o, /?i, • ■ • , in which each record, /?,■, has a key value, K^. In 
addition, there is an ordering relation (<) on the keys such that for any two key values x 
and y, either x = y or x < y or y < x. This ordering relation is transitive, that is, for any 
three values x, y, and z, x < y and y < z implies x < z. define the sorting problems as 
finding a permutation such that 0 < i < n - 1. The desired ordering is then
(^O(O)’^o(l)’ ■■■ ’^o(n-l))-

Since a list could have several identical key values, the permutation is not unique. 
In some applications, we are interested in finding the unique permutation, a^, that has the 
following properties:

(1) [sorted] for 0 < i < n - 1

(2) [stable] If i < j and Kj = Kj in the input list, then R^ precedes Rj in the sorted list.

A sorting method that generates the permutation is stable. Stability is only one 
criterion that we use to distinguish between sorting methods. In addition, we can charac
terize sorts based on both location and the sorting technique employed. Location refers 
to where the sort is carried out. Thus, an internal sort is one in which the list is small 
enough to sort entirely in main memory, while an external sort is used when there is too 
much information to fit into main memory. In the latter case, the file must be brought 
into the main memory in pieces until the entire file is sorted.

In Chapter 1, we developed the internal sorting method known as selection sort. 
In this chapter, we develop the following additional internal sorting methods: insertion 
sort, quick sort, heap sort, merge sort, and radix sort. The development of internal sort
ing methods is followed by a discussion of external sorting.

7.3 INSERTION SORT

An insertion sort is analogous to the action a card player takes when arranging a new 
hand: the cards arrive one at a time and each is placed in sorted order before the next one 
is picked up. Similarly, we pretend that the records in a list are visible to us one at a 
time. Thus, we insert a record 7?, into a sequence of ordered records, Rq, 7?|, • • • , /?,_],
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R

(Kq < Ki < • • • < Ki_\) so that the resulting sequence of size i is also ordered. We begin 
with the ordered sequence Rq, and then successively insert the records /?], R2, • • • , 

into the sequence. Since each insertion leaves the resulting sequence ordered, we 
can order a list with n records by making n-1 insertions. This strategy is implemented 
by insertion-sort (Program 7.5). The function call is insertion-sort(list,n);

n-i

void insertion—sort(element list[], int n) 
perform a insertion sort on the list 

{
■^ /

int i,j;
element next;
for (i = 1;

next - list[i]; 
for (j

list [ j+1]
list[j +1] =

i-1;

n; i++) {

j
- list[j]; 
next;

0 && next.key list[j].key; j—)

i

}
}

Program 7.5: insertion-sort

Analysis of insertion sort*.  In the worst case, the inner loop makes i comparisons 
before making the insertion. Hence, the computing time for inserting one record into 
the ordered list is 0(0. Since the outer loop is called for i = 1, 2, • • • , n - 1. the total 
worst case time is:

n-1
O( 2: i') = O{n^) □

We also can estimate the computing time of an insertion sort by examining the 
relative disorder of the input list. To figure out the relative disorder, we measure the 
extent to which each record is left out of order (LOO). This is defined as:

Rj is LOO iff/?, < max [Rj]

Clearly, the insertion step is executed only for those records that are LOO. If k is the 
number of records LOO, then the computing time is O{(k + l)n) and the worst case time 
is still O(n^). We also can show that the average time is OCn^).

Example 7.1 : Assume that n = 5 and the input sequence is (5, 4, 3, 2, 1). [Note: Only the 
key field is displayed.] After each insertion step, we have the following:
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i

1
2
3
4

[0]
5
4
3
2
1

[1]
4
5
4
3
2

[2]
3
3
5
4
3

[3]
2
2
2
5
4

[4]
1
1
1
1
5

Since the list is in reverse order as each new record Rj is inserted into the ordered 
list 7?o, 
sequence exhibits the worst case behavior of insertion sort. □

■ , the entire list is shifted right by one position. Thus, this input

Example 7.2 : Assume that n = 5 and the input sequence is (2, 3, 4, 5, 1). After each 
iteration we have:

i

1
2
3
4

[0]
2
2
2
2
1

[1]
3
3
3
3
1

[2]
4
4
4
4
3

[3]
5
5
5
5
4

[4]
1
1
1
1
5

In this example only is LOO, and the time for each i = 1, 2, and 3 is 0(1); for i 
= 4 the time is O(n). □

Since the computing time of an insertion sort is O((^ + i)n), it is an excellent sort 
to use when only a few records are LOO, that is, k « n. We also can easily verify that the 
sort is stable. These facts, coupled with the simplicity of the method, make insertion sort 
a good sort for small lists, that is, n < 20 (say).

Variations

Binary insertion sort: We can reduce the number of comparisons made in an insertion 
sort by replacing the sequential searching technique used in insertion-sort with binary 
search. The number of record moves remains unchanged.

2. List insertion sort: The elements of the list are represented as a dynamically linked 
list rather than as an array. The number of record moves becomes zero because only the 
link fields require adjustment. However, we must retain the sequential search used in 
insertion-sort.
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EXERCISES

1.

2.

3.

4.

C allows us to use a pointer to a function as a parameter in a function. Create two 
functions, ascending and descending. Each function takes two parameters, x and 
y. The ascending function returns TRUE if x < y and EALSE otherwise. The des
cending function returns TRUE if x > y and FALSE otherwise. Rewrite insertion 
sort to create a generic sort that can sort in either nondecreasing or nonincreasing 
order by passing in a pointer to one of these two functions.

Rewrite insertion-sort so that it uses binary search.

Rewrite insertion-sort so that the sorted list is returned as a linked list. The initial 
list is an array of records. Each record has the additional held link that is used to 
construct the sorted linked list.

Rewrite insertion-sort so that the input and output lists of records are represented 
as dynamically linked lists.

7.4 QUICK SORT

We now turn our attention to a sorting scheme with a very good average behavior. The 
quick sort scheme developed by C. A. R. Hoare has the best average behavior among all 
the sorting methods we shall be studying. In insertion sort the key A', (called the pivot 
key) currently controlling the insertion is placed into the right spot with respect to the 
sorted subhle (Aq, . . /?,_]). Quick sort differs from insertion sort in that the pivot key 
Ki controlling the process is placed at the right spot with respect to the whole file. Thus, 
if key A, is placed in position y (z), then Kj < A^(j) for j < s (z) and Kj > for j > s {i}. 
Hence, after this positioning has been made, the original file is partitioned into two 
subfiles, one consisting of records R^,. .., R^a^-i and the other of records 
^5(/)+i, • • •’ ^/i-i • Since in the sorted sequence all records in the first subfile may appear 
to the left of s(i) and all in the second subfile to the right of 5(z), these two subfiles may 
be sorted independently. The function quicksort (Program 7.6) is our recursive version 
of Hoare’s quick sort algorithm. The function call is quicksort(list, 0, n-l);

Example 7.3 : The input file has 10 records with keys (26, 5, 37, 1, 61, 11, 59, 15, 48, 
19). Figure 7.2 gives the statu.s of the file at each call of quicksort. Square brackets are 
used to demarcate subfiles yet to be sorted. □

Analysis of quicksort". The worst case behavior of this algorithm is examined in Exer
cise 2 and shown to be However, if we are lucky then each lime a record is
correctly positioned, the subfile to its left will be of the same size as that to its right. 
This would leave us with the sorting of two subfiles each of size roughly «Z2. The time 
required to position a record in a hie of size n is O(«). If T{n} is the time taken to sort a 
hie of n records, then when the hie splits roughly into two equal parts each time a record 
is positioned correctly we have
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void quicksort{element list[], int left, int right)
/*  sort list[left], • • • , list[right] into nondecreasing 
order on the key field, list[left].key is arbitrarily 
chosen as the pivot key.
list[left].key < list[right+1].key.
{

It is assumed that
*/

}

int pivot,i,j; 
element temp; 
if {left

i = left; j = right + 1; 
pivot = list[left].key;
do { 
/*

right) { 
left;

search for keys from the left and right sublists, 
swapping out-of-order elements until the left and 
right boundaries cross or meet 

do

}

i + +;
while (list[i].key 
do

pivot);

pivot);
j)

j — ;
while (list[j].key 
if (i

SWAP(list[i],list[j1,temp);
} while (i < j);
SWAP(list[left]/list[j],temp);
quicksort(list,left,j-1);
quicksort(list,j +1,right);

Program 7.6: quicksort function

T(n) < cn -¥Tr{n /2), for some constant c
<cn + 2(cn/2 + 2T(n/4))
< 2cn + 4r(«/4)

< cn log2n + nT(\) = O(n log2

Lemma 7.1 shows that the average computing time for quick sort is O(n log2 n). More
over, experimental results show that as far as average computing time is concerned, it is
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Figure 7.2: Simulation of quicksort

the best of the internal sorting methods we shall be studying.

Lemma 7.1: Let Tavg(n) be the expected time for quicksort to sort a file with n records. 
Then there exists a constant k such that T^ygin) < knXog^n for n>2.

Proof: In the call to quicksort (0, n-l), Kq gets placed at position 7. This leaves us with 
the problem of sorting two subfiles of size 7 and n - j - 1, respectively. The expected 
time for this is T^vgU) + - J - !)■ The remainder of the algorithm clearly takes at
most cn time for some constant c. Since 7 may take on any of the values 0 to n - 1 with 
equal probability we have

n-1 Zl-l1 n-l 2
Ta^^{n}<cn + — 'Z,(Tavg(J) + -7 - 1)) = cn + “ (7-1)

'^7=0 '’7=0

We may assume r^pg(0)<Z7 and Tavg(^)^b for some constant h. 'Wq shall now show 
Tavg(n) < /;nlog^n for n > 2 and k = 2(h + c). The proof is by induction on n.

Induction Base: For n = 2 we have from Eq. (7.1)

Tavf.{T) <2c + 2b < /cnlog^2

Induction Hypothesis: Assume T^vg (n)<knlog^« for 1 < n < m

Induction Step: From Eq. (7.1) and the induction hypothesis we have

Tavj.{tn} < cm +
4/7 
A??

7 4/7 2^'”“'

J=2

Arh
m

(7.2)
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Since jiogj is an increasing function of j, Eq. (7.2) yields

m
4/7 2k f , TavAm) <cm + — + Jxlog, 
mm2

2k , 4Z? Ik
.^x dx = cm -t- — + 

m

m log^m 
2m m

2 m
4

4/? krn= cm + — + Z:mlog^m - —— < /cmlog^m, for m > 2 □ 
m 2

Unlike insertion sort, where the only additional space needed was for one record, 
quick sort needs stack space to implement the recursion. In case the files split evenly as 
in the above analysis, the maximum recursion depth would be log n requiring a stack 
space of O(log «). The worst case occurs when the file is split into a left subfile of size 
n - 1 and a right subfile of size 0 at each level of recursion. In this case, the depth of 
recursion becomes n requiring stack space of O(n). The worst case stack space can be 
reduced by a factor of 4 by realizing that right subfiles of size less than 2 need not be 
stacked. An asymptotic reduction in stack space can be achieved by sorting smaller 
subfiles first. In this case the additional stack space is at most O(log n}.

Variation

quicksort using a median of three: Our version of quick sort always picked the key of 
the first record in the current sublist as the pivot. A better choice for this pivot is the 
median of the first, middle, and last keys in the current sublist. Thus, pivot = median 
{Kigfi, bright}' ^or example, median {10, 5, 7) = 7 and median {10, 7, 7) =
7.

EXERCISES

1.

2.

Produce a figure similar to Figure 7.2 for the case when the input file to be sorted 
is (12, 2, 16, 30, 8, 28, 4, 10, 20, 6, 18).
(a) Show that quicksort takes O(n^) time when the input file is already in sorted 

order.

Show that the worst case time complexity of quicksort is

Why is list [left]. key < list [right + 1]. key required in quicksort‘1

3.

4.

5.

(b)

(c)
Write an iterative version of quicksort that uses the median of three rule to select 
the pivot record. Show that this takes O(h log «) time on an already sorted file.

Show that if smaller subfiles are sorted first then the recursion in quicksort (Pro
gram 7.6) can be simulated by a stack of depth O(log n).

Quick sort is unstable. Give an example of an input file in which the order of 
records with equal keys is not preserved.
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7.5 OPTIMAL SORTING TIME

The two sorting methods discussed thus far have a worst case computing time of O(n^). 
At this point you might begin to wonder about the best computing time, that is, "How 
quickly can we hope to sort a list of n objects?" If we restrict our question to algorithms 
that permit only the comparison and interchange of keys, then the theorem we prove in 
this section shows that the best possible time is O(n log2n).

Our proof requires a decision tree that visually describes the sorting process. Each 
vertex in this tree represents a comparison between two keys, and each branch shows the 
result of a comparison. Thus, each path through the tree represents a sequence of com
putations that the sorting algorithm could produce.

Example 7.4: The decision tree for insertion-sort on the records Rq, /?i, and 7?2 is 
shown in Figure 7.3. Each node is labeled by the record permutation at that node. The 
root label [0, 1, 2] denotes the input permutation. Inside the root, we have identified the 
first comparison made by insertion-sort. The left branch is taken if Kq < A'l, while the 
right branch is taken if Kq > K^. The record permutation remains the same if the left 
branch is taken, but changes to [1, 0, 2] if the right branch is followed. The leaf nodes 
are numbered I-VI and are the only points at which the algorithm may terminate. Hence 
only six permutations of the input sequence are obtainable from this algorithm. Since all 
six of these are different and 3! = 6, it follows that this algorithm has enough leaves to 
constitute a valid sorting algorithm for three records. The maximum depth of this tree is 
3. Figure 7.4 gives six different permutations of the keys 7, 9, 10 and the permutation 
needed to sort the keys. This shows that all six output permutations are possible. The 
decision tree of Figure 7.3 is not a full binary tree of depth 3 and so it has fewer than 
2^ = 8 leaves. □

Theorem 7.1: Any decision tree that sorts n distinct elements has a height of at least 
log2(/i!) + 1.

Proof: When sorting n elements there are n\ different possible results. Thus, any decision 
tree must have at least n \ leaves. But a decision tree is also a binary tree that can have at 
most leaves if its height is k. Therefore, the height must be at least log2n ! + 1. □

Corollary: Any algorithm that sorts by comparisons only must have a worst case com 
puting time of log2A?).

Proof: We must show that for every decision tree with n\ leaves there is a path of length 
c n iog2M, c a constant. By the theorem, there is path of length log2« !. Now,

«! = n(z!-l)(«-2), ,(3)(2)(l)>(n/2)"^.
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Yes No

[0,1,2]

[0,l,2](/Ci <K2 a:o^a:2)[ 1,0,2]

Yes No Yes No

stop 

I IV
Yes No Yes

[0,2,1] stop

Ii
stop

TIT

[2,0,1] [1,2,0] stop 

'V'

ATi <A:2)[1,2,O]

No

VI

Figure 7.3: Decision tree for insertion sort

Leaf
I 

II 
in 
IV
V 

VI

Permutations 
572 
02 I 
20 1 
102 
120 
2 1 0

Sample input key values that 
give the permutation 

(7, 9, 10) 
{2. 10, 9) 
(9, 10, 2} 
(9, 7, 10) 
(10, 7, 9) 
(10, 9, 7)

Figure 7.4: The six permutations of 7, 9, 10

So, log2« ! (n/2)log2(n/2) = O(n Iog2n). □
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7.6 MERGE SORT

7.6.1 Merging

Before looking at the merge sort algorithm to sort n records let us see how one may 
merge two sorted lists to get a single sorted list. We shall examine two different algo
rithms for this. The first one. Program 7.7, is very simple and uses 0(^7) additional space. 
It merges the sorted lists • • • , list[m]) and +1], • • ■ , list[n]\ into a
single sorted list, (sorted[i ],•••, sorted[n ]).

int i, 
int n) 

merge two sorted files: list[i]list[m], and

void merge(element list[], element sorted^].

/*
list[m+1], .. ., list[n]. These files are sorted to 
obtain a sorted list: sorted[i, sorted[n] 
{

* /

int j,k,t; 
j = m+1;
k i ;

index for the second sublist 
index for the sorted list

int m,

■^1

= m && j <= n) {
:= list [ j] .key) 
list [i + + 3;

while (i
if (list [i] .key 

sorted [k-i--i-3 =
else

sorted fk+d-] = list [ j] ;
}
If (i m)
sorted[k], sorted[n3 = list[j],..., Iist[n3 
for (t = j; t <

sorted[k+t-j 3 
else 
/*

n;

sorted[k], sorted[n] = list[i],..., list[m] 
for (t

sorted[k+t-i]
m;: t + +) 
listft];

: t + +) 
list [ t] ;

■^ /
1; t

I

Program 7.7: Merging two sorted lists

Analysis of merge'. At each iteration of the while loop, one record is added to the sorted 
list, that is, k increases by 1. The total number of records added to the sorted list is n - i+
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1. This means that we iterate the while loop at most n - i + 1 times. Therefore, the total 
computing time is O(n - i + 1). If the records are of length M, this time is really O(M(n 
- i + 1)). When M is greater than 1, a linked list representation eliminates the additional 
n - i + 1 records required by sorted. However, we must now add space for n - i + 1 link 
fields. With this representation, the computing time no longer depends on Af; it is simply 
O(n-f + 1). □

The second merging algorithm we shall consider is more complex than that of Pro
gram 7.7. However, it requires only 0(1) additional space. We assume that i - 1. With 
this assumption the total number of records in the two lists being merged is n. Our dis
cussion will make the further simplifying assumptions that n is a perfect square and the 
number of records in each of the two lists to be merged is a multiple of yjn. The develop
ment of the full algorithm with these assumptions removed is left as an exercise.

Suppose that n = 36 and that each of the two files to be merged has 18 records. 
The first line of Figure 7.5 gives a sample instance. Only the record keys are shown. We 
assume that the sorted key sequence is 0, 1, • • •, a, b, • • •, z. The vertical bar separates 
the two sorted files of size 18. Each file can be thought of as consisting of sorted blocks 
of size a/h = 6. The first step in the 0(1) merge is to create a block that consists of the 
records with the largest keys. This is done by scanning the two sorted files from the right 
end to the left end. From this scan we discover that the -^n largest keys are those that are 
boxed in line 2 of Figure 7.5.

Next, the records from the second file that are in the set of a/h records with largest 
keys are exchanged with the same number of records just to the left of those in the first 
file that are in this set. This results in the configuration of line 3 of the figure. The verti
cal bars partition the n records into blocks of a/az consecutive records. Notice that the 
records with largest keys form a single block. This block is now swapped with the left
most block and the rightmost block is sorted to get line 4. The - 1 blocks excluding 
the one with the largest keys are sorted by their rightmost records to get line 5. This 
completes the preprocessing needed to commence the actual merge.

The actual merge consists of several merge sub steps in each of which two seg
ments of records are merged together. The first segment is the longest sorted sequence 
of records beginning at block two. Observe that this will always end at a block boun
dary. The second sequence consists solely of the next block. In the case of line 5, both 
of these sequences consist of exactly one block. A merge sub step uses three place 
markers which are depicted in line 5 by the symbol ♦. The leftmost one marks the posi
tion where the next merged record is to go. The second marker points to the next 
unmerged record of the first segment and the third marker points to the next unmerged 
record of the second segment. Initially these are, respectively, positioned at the first 
records of the leftmost block, segment one, and segment two. The two segments are 
merged by comparing the two keys pointed at by place markers two and three and 
exchanging the record with smaller key (in case of a tie, the record in the first segment is 
used) with the record pointed at by the first place marker. Following the first such 
exchange we get line 6. Lines 7 and 8 show the configuration following each of the next 
two exchanges. This merge exchanging continues until all of the first segment has been 
merged. In the case of our example eight more records get merged before the current
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02468acegijk/mntwzl3579bdfhopqrsuvxy

02468acegi j k/mntwz 1 3579bdfhopqr suvxy

02468acegijkuvxywzl3579bdfhopqrs/mnt

uvxywzcegi j k02468al3579bdfhopq/mnrst

uvxywz02468al3579bcegijkdfhopq/mnrst

0vxywzu2468al3579bcegijkdfhopqZmnrst

01 xywzu2468av3579bcegi j kdfhopq Zmnr s t

012ywzux468av3579bcegijkdfhopqZmnrst

Figure 7.5 : First eight lines for 0(1) space merge example 

merge sub step terminates. Line 1 of Figure 7.6 shows the configuration after the records 
with keys 3, 4, and 5 have been merged; line 2 shows the configuration following the 
merging of the records with keys 6, 7, and 8; and line 3 shows the status after segment 
one has been fully merged.

The following observations allow us to conclude that the merge of a merge sub 
step can always be done as described above without using extra space beyond that 
needed to exchange two records:

There are a/az records from the initial position of the first place marker to that of the 
second place marker.

(1)
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012345uxw68avyz79bcegi j kdfhopq/mnr s t

0l2345678uwavyzx9bcegijkdfhopq/mnrst

0123456789awvyzxubcegijkdfhopq/mnrst

0123456789awvyzxubcegi j kdfhopq/mnrs t

0123456789abcdefghijkvzuyxwopq/mnrst

0 123456789abcdef ghi j kvzuyxwopq/mnr s t

0123456789abcdefghi j k/mnopqyxwvzurs t

0123456789abcdefghijk/mnopqrstvzuyxw

Figure 7.6 : Last eight lines for 0(1) space merge example

(2)

(3)

The second segment has a/h records.

Because of the tie breaker rule and the initial ordering of blocks by their last 
records, the first segment will be fully merged before the second.
When a merge sub step is complete the yjn records with largest keys are contiguous 

and the first place marker points to the first of these records. The third place marker 
points to the first unmerged record in the second segment. This record begins the first 
segment for the next merge sub step. This segment is the longest sorted segment that 
begins at this record. This always ends at a block boundary. The next block forms the 
second segment. In the case of our example, the first segment begins at the record with 
key b and the second begins at the record with key d. Line 4 of Figure 7.6 shows the ini
tial positions of the three place markers. Line 5 shows the configuration after the first 
segment has been fully merged.
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The first segment for the next merge sub step begins at the record pointed at by the 
third place marker. We find a longest sorted sequence that begins here. This consists of 
just three records. The next block forms the second sequence. The initial positions of 
the three place markers for the third sort sub step is shown in line 6 of the figure. Line 7 
show the status after this sub step is complete. Now the longest sorted sequence that 
begins at the third place marker consists of the records with keys r, s, and t. As there is 
no next block, the second segment is empty. The last merge sub step results in the 
configuration of line 8. Since the second segment is empty to begin with, the last merge 
sub step can be performed using just two place markers that move rightwards one posi
tion at a time. We simply exchange the records pointed at by these two place markers.

Once the merge sub steps have been performed, the block of records with largest 
keys is at the right end and may be sorted using an 0(1) space sorting algorithm such as 
insertion sort. The steps involved in the 0(1) space merge algorithm just described are 
summarized in Program 7.8.

Steps in an O( 1) space merge when the total number of records, n is a perfect square */  
and the number of records in each of the tiles to be merged is a multiple of */

Step 1: Identify the ^In records with largest keys. This is done by following right to left 
along the two files to be merged.

Step 2: Exchange the records of the second file that were identified in Step 1 with those 
just to the left of those identified from the first file so that the yjn records with 
largest keys form a contiguous block.

Step 3: Swap the block of -\ln largest records with the leftmost block (unless it is already 
the leftmost block). Sort the rightmost block.

Step 4: Reorder the blocks excluding the block of largest records into nondecreasing 
order of the last key in the blocks.

Step 5: Perform as many merge sub steps as needed to merge the -^n -1 blocks other 
than the block with the largest keys.

Step 6: Sort the block with the largest keys.

Program 7.8: O( 1) space merge

For the complexity analysis, we see that steps 1 and 2, and the swapping of Step 3 
each take Oftime and 0(1) space. The sort of Step 3 can be done in 0(n) time and 
0(1) space using insertion sort. Step 4 can be done in O{n) time and 0(1) space using a 
selection sort (see Chapter 1). Note that selection sort sorts in records using O(w ) key 
comparisons and 0(/«) record moves. When selection sort is used to implement Step 4 
of Program 7.8 each block of records is regarded as a single record with key equal to 
that of the last record in the block. So, each record move of selection sort actually 
moves a block of size ^In. The number of key comparisons is 0(/7) and while the number 
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of block moves is O(a/a2), the time needed for these is O(n). Note that if insertion sort is 
used in place of selection sort, the time becomes O(n'’5) as insertion sort makes O(m^) 
record moves when sorting m records. So, in this application insertion sort is inferior to 
selection sort. The total number of merge sub steps is at most yjn - 1. The end point of 
the first segment for each merge sub step can be found in time proportional to the 
number of blocks in the segment as we need merely find the first block whose last key is 
greater than the first key of the next block. The time for each sub step is therefore linear 
in the number of records merged. Hence, the total Step 5 time is O(n). The sort of Step 
6 can be done in O(n) time using either a selection or an insertion sort. When the steps 
of Program 7.8 are implemented as above the total time is O(n) and the additional space 
used is 0(1).

We are now ready to develop a merge sort algorithm that works on an unordered 
list. Both iterative and recursive implementations are possible, and we develop both ver
sions. The iterative version uses the simple merge method found in merge, while the 
recursive version uses the linked list version of merge discussed above. We begin with 
the iterative version.

7.6.2 Iterative Merge Sort

In the iterative version, we assume that the input sequence has n sorted lists, each of 
length 1. We merge these lists pairwise to obtain n / 2 lists of size 2. (If n is odd, then 
one list is of size 1). We then merge the n I 2 lists pairwise, and so on, until a single list 
remains. The iterative algorithm is easier to implement if we first write a function that 
performs a single merge pass. The function merge-pass (Program 7.9) gives the details. 
Notice that this function invokes merge (Program 7.7) to merge the sorted sublists. The 
actual sort is found in merge-sort (Program 7.10). The function call is mergesort(list, 
n);

Analysis of merge sort'. A merge sort consists of several passes over the input records. 
The first pass merges lists of size 1, the second merges lists of size 2, and the /th pass 
merges lists of size 2'"’. Thus, the total number of passes is f log2/t 1- As merge 
showed, we can merge two sorted lists in linear time, which means that each pass takes 
O(n) time. Since there are f log2At ] passes, the total computing time is O(« log n). □

Example 7.5: The input list is (26, 5, 77, 1, 61, 11, 59, 15, 48, 19). Figure 7.7 illustrates 
the sublists being merged at each pass. □

7.6.3 Recursive Merge Sort

For the recursive version, we modify our record structure to accommodate a link field. 
The new structure is defined as:
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void merge—pass(element list[], element sorted[], 
int length)

int n,

{
/*  perform one pass of the merge sort.
pairs of subfiles from list into sorted.
number of elements in the list, length is the length of the 
subfile */  

int i,j;
for (i = 0; i<^n-2*  length; i 2 * 
merge(list,sorted,i,i + length - l,i + 2 

if (i + length
merge(list,sorted,i,i + length - l,n - 1); 

else
for (j = i; j < n; j++) 

sortedEj] = list[j];

It merges adjacent 
n is the

0;

n)

n;

Program 7.9: merge-pass

int n)
*/

length)
length - 1) ;

void merge—sort(element list[], 
/*  perform a merge sort on the file 
{

int length =1; / 
element extra[MAX—SIZE];

current length being merged */

while (length
merge—pass(list,extra,n,length);
length *-  2;
merge—pass(extra,list,n,length);
length *=  2;

n) {

Program 7.10: merge-sort

i ;

2 *

★

}

}

★_

}

*
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5 126 77 61 11 59 15 48 19

26 77 11 61 15 59 19 48

26 77 11 15 59 61 19 48

11 15 26 59 61 77 19 48

11 15 19 26 48 59 61 77

5 1
I

1

1

1

5

5

5

S

S

I

Figure 7.7 : Merge tree for iterative merge sort

typedef struct { 
int key; 
/*  
int link; 
} element;

other fields */

We assume that list[i\.link and list[i].key refer to the link and key fields in record i, 
0 < i < n - Notice that we are implementing the link field as an integer rather than a 
dynamic pointer. Initially list[i).link = -1, which means that each record is in a chain 
that contains only itself. The function rmerge (Program 7.11) implements the recursive 
merge sort; rmerge returns an integer that points to the start of the sorted list. Most of 
the actual merging is accomplished through listmerge (Program 7.12). This function 
takes two sorted chains, first and second, and returns an integer that points to the start of 
a new sorted chain that includes the first and second chains. Unlike the iterative imple
mentation, the recursive one does not physically rearrange the list. Should this be neces
sary, we could use one of the schemes discussed in Section 7.9. The function call is start 
= rmerge(list, 0, n-1);

Analysis of rmergex One may readily verify that this linked version of merge sort results 
in a stable sorting function, and that its computing time is Q{n log n). □

Example 7.6: The input list is (26, 5, 77, 1, 61, 11, 59, 15, 48, 19). At each recursive 
call, the current list that is indexed from left to right is divided into two sublists that are 
indexed from left to [ {left + right)! 2 J and from [ {left + right)!! J + 1 to right.
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int rmerge(element list[], int lower, int upper)
/*  sort the list, list[lower], list[upper]. The link 
field in each record is initially set to-1.
{

*/

= upper)

(lower + upper) / 2;

int middle;
if (lower > 

return lower;
else { 

middle
return listmerge(list,rmerge(list,lower,middle),

rmerge (list, middles-1, upper) ) ;
}

}

Program 7.11: Recursive merge sort

respectively. These sublists are sorted recursively and the results are later merged. Fig
ure 7.8 shows the partitioning and merging for the sample data. You will notice that the 
sublists being merged are different from those produced by the iterative implementation 
(Figure 7.7). Figure 7.9 show the values in start and the key and link fields after the sort 
terminates. □

5 126 77 61 11 59 15 48 19

26 11 59

26 77 61 11 IS 59 19 48

26 61 77 11 15 19 48 59

11 15 19 26 48 59 61 77

5
S

5 1

1

1

5

5

Figure 7.8 : Sublist partitioning for a recursive merge sort
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int listmerge(element list[], int first, 
merge lists pointed to by first and second

int second)
*/

<
int start
while (first 1= -1 && second I- -1) 

if (list[first].key 
/'^ key in first list is lower, link this element to 
start and change start to point to first 

list [start] .link = first; 
start 
first

n;

= list[second].key) { 
key in first list is lower.

first;
list[first].link;

}

*/

}
else { 
/* key second list is lower, 
the partially sorted list

list [start] .link = second;
start 
second

link this element into
*/

second;
list[second].link;

}
move remainder 

if (first =;= -1)
list[start].link = second; 

else
list[start].link = first; 

return list[n].link; /

/* */

* start of the new list ■^ /

Program 7.12: Merging linked lists

start = 3

i 
key 
link

^0

26
8

5 77 1
”7

^4

61 11 
~7

59
4

^7

15
9

48 19
0

Figure 7.9: Simulation of merge-sort
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Variation

Natural merge sort: We can modify merge-sort to take into account the prevailing 
order within the input list. In this implementation we make an initial pass over the data 
to determine the sequences of records that are in order. The merge sort then uses these 
initially ordered sublists for the remainder of the passes. Figure 7.10 shows the results of 
a natural merge sort using the input sequence found in Example 7.6.

26 77 61 11 59 15 48 I 19

26 77 11 59 61 15 19 48

11 26 59 61 77 15 19 48

15 19 26 59 61 7?

5

1

5 1

1

5

1 5 n 48

Figure 7.10 : Merge sort starting with sorted sublists

EXERCISES

Write a function to shift the records (xq, .. .,x„_i) circularly right by p, 0 < p < n 
positions. Your function should have time complexity O(n) and space complexity 
0(1). (Hint: Use three segment reversals.)

The two sorted files (xq, . . x^) and (x^^i, . . ., x„_|) are to be merged to get the 
sorted file (xq, . . x„_i). Let 5 = [yjn J.

(a)

1.

2.

Assume that one of these files has fewer than .v records. Write a function to 
merge the two sorted files in O(m) time while using only 0(1) additional 
space. Show that your function actually has these complexities. (Hint: If the 
first list has fewer than 5 elements then find the position, 6/, in the merged file 
of the first element of the first file; perform a circular shift of q-\ as in the 
preceding exercise. This circular shift involves only the records of the first 
file and the first q-\ records of the second. Following the circular shift the 
first q records are in their final merged positions. Repeat this process for the 
second, third, etc., elements of the initial first file.)
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(b)

(c)

(d)

(e)

(0

1

Assume that both files have at least 5 elements. Write a merge function with 
the same asymptotic complexity as that for (a). Show that your function 
actually has this complexity. (Hint: Partition the first file such that the first 
block has 5 j, 0 < 51 <5, records and the remainder have 5 records. Partition 
the second file so that the last block has .y2, 0 < 53 <5 records. If yj 0, 
then compare the first blocks of the two files to identify the 51 records with 
smallest key. Perform a swap as in Step 2 of Program 7.8 so that these 5 
records are in the leftmost block of the first file. If 0, then using a simi
lar process we can get the S2 records with largest keys into the rightmost 
block of the second file. Now, the leftmost block of size and the right
most one of size 53 are sorted. Following this, we may forget about them. 
The remaining blocks of the first and second files may be arranged in sorted 
order using the merge function of part (a). Next, Program 7.8 may be used 
to merge them.)

Use the function for (a) and (b) to obtain an O(m) time and 0(1) space func
tion to merge two files of arbitrary size.

Compare the run time of the merge function of (c) with that of Program 7.7. 
Use i = 1, m = n/2, and the values n = 100, 250, 500, 1000, 2000, 5000, 
10000. For each value of n use ten randomly generated pairs of sorted files 
and compute the average merge time. Plot these for the two merge function. 
What conclusions can you draw?

Modify your function for part (b) so that it does not use the function of (a) to 
rearrange records in the first and second files into sorted order. Rather, the 
last and first blocks of the first and second files, respectively, are sorted. To 
find the largest 5 records we need to look at the last two blocks of the first 
file and the last block of the second file. Program this function and obtain 
run times using the data of (d). Add these to your plot of (d).

Program the 0(1) space merge function as described by Huang and Langs
ton in their paper cited in the references and selected readings section. This 
function begins by partitioning the first file as in (b). The second file is par
titioned into blocks of size except for the last block whose size 53 is such 
that 5 < 53 < 2*s.  The largest 5 records are found and placed in the rightmost 
block of the first file. This is called the merge buffer. The rightmost block 
of the second file (i.e., the one with size 53) is sorted. If y] >0, the leftmost 
block of the first file is merged with the leftmost block of the second file 
using the last 51 positions of the merge buffer. A swap of the leftmost 51 
records and those in the rightmost y i positions of the merge buffer results in 
moving the 5] smallest records to their final place and also restores the 
merge buffer to contain the largest 5 records. Now we can forget about the 
first 51 records and proceed to move the merge buffer to the leftmost 5 size 
block and sort the remaining blocks by their last records. One of these 
blocks is of size 53. The sort of the blocks needs to be a little careful about
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3.

4.

5.

this. Obtain the run times for this function using the data of (d). Add these 
results to your plot of (d). What conslusions can you draw?

Is mergesort stable?

Suppose we use Program 7.8 to obtain a merge sort function. Is the resulting func
tion a stable sort?

Write an algorithm to perform a natural merge sort. How much time does this 
algorithm take on an initially sorted list? What is the worst case computing time 
of the new algorithm? How much additional space is needed?

7.7 HEAP SORT

While the merge sort scheme discussed in the previous section has a computing time of 
O(n log «) both in the worst case and as average behavior, it requires additional storage 
proportional to the number of records in the file being sorted. By using the 0(1) space 
merge algorithm, the space requirements can be reduced to 0(1). The resulting sort 
algorithm is significantly slower than the original one. The sorting method, heap sort, 
we are about to study will require only a fixed amount of additional storage and at the 
same time will have as its worst case and average computing time O(« logn). While 
heap sort is slightly slower than merge sort using O(a2) additional space, it is faster than 
merge sort using 0(1) additional space.

In heap sort, we utilize the max heap structure introduced in Chapter 5. The dele
tion and insertion algorithms associated with max heaps directly yield an O(« log n) 
sorting method. The n records are first inserted into an initially empty heap. Next, the 
records are extracted from the heap one at a time. It is possible to create the heap of n 
records faster by using the function adjust (Program 7.13). This function takes a binary 
tree T whose left and right subtrees satisfy the heap property but whose root may not and 
adjusts T so that the entire binary tree satisfies the heap property. If the depth of the tree 
with root / is J, then the while loop is executed at most d times. Hence the computing 
time of adjust is O(d).

To sort the list, we make n 1 passes over the list. On each pass, we exchange the 
first record in the heap with the last record. Since the first record always contains the 
highest key, this record is now in its sorted position. We then decrement the heap size 
and readjust the heap. For example, on the first pass, we place the record with the 
highest key in the nth position; on the second pass, we place the record with the second 
highest key in position n - 1; and on the /th pass, we place the record with the /th highest 
key in position n - / + 1. The function heapsort (Program 7.14) implements the strategy 
just outlined. The function call is heapsort(Ust, n);

z-I
Analysis of heapsort. Suppose 2^“' < n < 2^ so that the tree has k levels and the number 
of nodes on level / is 2'~\ In the first for loop of Program 7.14, heapsort calls adjust 
once for each node that has a child. Therefore, the time required for this loop is the sum, 
over each level, of the number of nodes on a level times the maximum distance the node
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void adjust(element list[], 
/*  
{

int root, int n) 
adjust the binary tree to establish the heap

int child,rootkey; 
element temp;
temp = list[root];
rootkey = list [root].key;
child - 2 * root; /*
while {child 

if ((child 
(list[child].key 

child++;
if {rootkey

root;
<= n) { 

n) &&

left child

list[child+1].key) )

list[child].key) /* compare root and 
max. child

2 ■^ /

break;
else {

list[child / 2] - list[child]; / 
child *=  2;

move to parent
★ _

★ ■^ /

}
}
list[child/2] temp;

}

Program 7.13: Adjusting a max heap

can move. This is no more than:
k/c

Z2
2 = 1

i-l
A-i •

i<n <2n = O(n)
2'

(k -0 = 2 2"^-'-* i
i = l

i

In the second for loop, heapsort calls adjust n - 1 times with maximum depth: 
|'log2(«+1) 1 - Therefore, the computing time for this loop is O(n log m). So, the total 
computing time is O(n log n). □

Example 7.7: The input list is (26, 5, 77, i, 61, 11, 59, 15,48, 19). The initial binary tree 
is given in Figure 7.11. Its transformation into a max heap is given in Figure 7.12. The 
sorting process is illustrated in Figure 7.13. Solid circles show the records that have 
been placed into their sorted positions; the remaining records define the current max 
heap. □
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void heapsort(element list[], int n) 
/*  perform a heapsort on the array 
{

int i, j;
element temp;

0; i—)for (i = n/2; i
adjust(list, i,n);

for (i = n-l; i
SWAP(list[l],list[i+l],temp);
adjust(list,1,i);

0; i—) {

}
}

Program 7.14: Heap sort

fl J 26

[21 131 775

[8]

M] E5]

[10]

15 [9]

61

48 19

16]
[71 591

Figure 7.11 : Array interpreted as a binary tree

EXERCISES

1.

2.

heapsort is unstable. Give an example of an input list in which the order of 
records with equal keys is not preserved.

Finish the heap sort illustrated in Figure 7.13.
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C4] 48

[2]

[lOJ

[8] 15 [9] 1 5

Figure 7.12 : Max heap following first for loop of heapsort

7.8 RADIX SORT

Thus far we have assumed that the records to be sorted have a single key value. Let us 
now examine the problem of sorting records that have several keys. These keys are 
labeled K^, K\ ■ ■ ■ , with being the most significant key and K''~^ the least. 
Let Kj denote key of record 7?,. A list of records, Rq, ■ • ■ , Rn-\^ 
with respect to the keys K°, K\ K"-' iff (X?, X*,  X^*)  < (X?+,, xLi, .... Xf;!).
0 < i < n-i. We say that the r-tuple (xq, -Vj, x^_i) is less than or equal to the r-tuple 
(yo,..., ) (^either Xi = y,, 0<i<j and Xy + i < yy + i for some j < r - 1 or Xi = yi, Q < i <
r.

r-l r-1, with being the most significant key and K
is lexically sorted 

/'.I,r-l

For example, we can regard the problem of sorting a deck of cards as a sort on two 
keys, suit and face value, in which the keys have the ordering relations:

[Suit]:
[Face value]:

A < ♦ < V < A
2<3<4< < 10<J<Q<K<A

Thus, a sorted deck of cards has the ordering:

24», ■ ■ ■ , A«i», ■ , 2a, ■ ■ , Aa

In the card sorting example, following the sort on suit (AT®), we would have four 
piles of cards, each containing all the cards in a suit Figure 7.14 is an example of the 
arrangement of piles. We now independently sort the four suit piles on face value. 
Finally, we stack the four piles so that the spade pile is on the bottom and the club pile is 
on the top. We call a sort that proceeds in this fashion an MSD (Most Significant Digit)
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[8]

[8]

[2] 48

[4]

[4]

15

[9]

[2]

15

19)

til 61

[51

[10]

48

19

(a)

<31 59
[6]

[?] 26

tlO]

(b)

5

5

1

Figure 7.13 : Heap sort example 

sort.

The second approach begins with the least significant key first, and is known as an 
LSD {Least Significant Digit) sort. Following the sort on a key, the piles are put together 
to obtain a single pile which is then sorted on the next least significant key. This process 
is continued until the pile is sorted on the most significant key. Using our card example, 
sorting by the least significant key first, means that we would first sort the cards by their 
face values. Figure 7.15 is an example of the configuration of cards after this pass. We 
then reform the cards into a single pile with the aces at the bottom of the pile and the 
twos at the top. We now resort the cards based on suit. The sorting method we employ
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[2] 19

[8]

[81

[4]

[41

15

191

[21

15

[91

[101

19

(C)

til

[51

tioi

26

11
[61

[31

[715 ■

(d)

Figure 7.13 (continued): Heap sort example 

in this second pass must be stable or we will undo the results of the first pass. The LSD 
approach is simpler than the MSD one because we do not have to sort the subpiles 
independently. This means that an LSD sort typically has less overhead than an MSD 
one.

The terms LSD or MSD indicate only the order in which the keys are sorted; they 
do not specify how each key is to be sorted. Generally, however, we implement either 
sort by creating bins to represent the different key values. For example, in an MSD card 
sort, we first create four "bins" to represent the different suit values. After we have 
placed the cards in the correct bins, we use an insertion sort to sort each of these bins. In 
the case of an LSD card sort, we would set up thirteen bins to represent the different face 
values. After we have placed the cards in the correct bins, we would reform them into a 
single pile, create four bins to represent the suits, and resort the cards using a stable sort.
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34

L 5
1 1

4*
4’

<<■ 
e

i
4 
V

L □ □1

*

A ♦

♦

Figure 7.14 : Arrangement of cards after first pass of an MSD sort

is
2 3 

♦

1

4
b

A

* 
z

♦ 
e

Figure 7.15 : Arrangement of cards after first pass of LSD sort

If the spread in key values is O(zz), a bin sort requires only O(n) time, thus, making it a 
very fast sorting technique.

We also can use an LSD or MSD sort when we have only one logical key, if we 
interpret this key as a composite of several keys. For example, an integer has several 
digits, and these digits are ordered so that the digit in the far right position is the least 
significant and the one in the far left position is the most significant. If our integers are 
in the range 0 < K < 999, then we can use either an LSD or MSD sort for three keys 
K\ where is the digit in the hundredths place, the digit in the tens place, and 

the digit in the units place. Since all the keys lie in the range 0 < < 9, the sort for
each key requires only ten bins. However, since an LSD sort does not require the 
maintenance of independent subpiles, it is easier to implement.

In a radix sort, we decompose the sort key into digits using a radix r. When r = 
10, we get the common base 10 or decimal decomposition described above, r = 2 
corresponds to a binary decomposition of the key. With a radix of r, r bins are needed to 
sort on each digit.
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Let us now develop an LSD radix r sort. We assume that the records, Rq, • • • , 

have keys that are J-tuples (ro,xi, ••• , xj_i), and that 0 <%,< r. We also assume
that each record has a link field, and that the input list is stored as a dynamically linked 
list. We implement the bins as queues with front[ij, Q< i < r, pointing to the first record 
in bin i and rear[ij, 0 < i < r, pointing to the last record in bin i. The function 
radix-sort (Program 7.15) implements LSD radix r sort. It assumes that the input is a 
linked list of records and it creates a sorted linked list. The following declarations are 
for the case r = 10, and d =3.

#define MAX-DIGIT 3 /*  
ttdefine RADIX-SIZE 10 
typedef struct list—node *list —pointer; 
typedef struct list—node {

int key[MAX-DIGIT]; 
list—pointer link; 
};

numbers between 0 and 999*/

Analysis of radix sort*.  The function radix-sort makes MAX-DIGIT passes over the 
data, each pass taking G{RAD1X-S1ZE + n) time. The total computing time is 
O(MAX-D/G/r(RADIX_SIZE + n)). □

The choice of the radix affects the computing time of the radix sort. A radix sort 
with a radix of 2 and numbers ranging from 1 to 100 billion would perform terribly, 
while a radix of 10 and numbers ranging from 0 • • • 999 would perform very well. Gen
erally, we want to select carefully our radix, using the value of n and the size of the larg
est key to govern our final choice.

Example 7.8: The input sequence is (179, 208, 306, 93, 859, 984, 55, 9, 271, 33). The 
radix is 10, and since all numbers are in the range [0 • • • 999], the number of digits is 3. 
The list elements are labeled Rq, • • • , Rg. Figure 7.16 illustrates the sort at each pass.

EXERCISES

1. Write a sort algorithm that sorts records 7?o, • • • , R„_\ lexically on keys (A^o, ' ‘' 
, A^r-i) for iho case when the range of each key is much larger than n. In this case, 
the bin sort scheme used in radix-sort to sort within each key becomes inefficient 
(why?). What scheme would you use to sort within each key if we desired an 
algorithm with:

(a) good worst case behavior

(b) good average behavior
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*/
list—pointer radix—sort(list—pointer ptr) 
/*Radix  Sort using a linked list 
{

0; i—) {1

0; j

list—pointer front[RADIX—SIZE], rear [RADIX—SIZE];
int i, j, digit;
for (i = MAX_DIGIT-1;

for (j - 0; 3 < RADIX-SIZE; :
front[j] rear[3] - NULL;

while (ptr) {
digit = ptr->key[i];
if (!front[digit]) 

front[digit] = ptr;
else

rear[digit]->link = ptr;
rear[digit] = ptr;
ptr = ptr->link;

} 
/■^ 

ptr 
for (j = RADIX-SIZE-l; j 

if {front[j]) { 
rear[j]->link

reestablish the linked list for the next pass 
= NULL;

ptr = front[j];

*/

0; j~)

ptr ;
}

}
return ptr;

}

Program 7.15: LSD radix sort

2.

3.

small values of n, say < 15?(c)
If WQ have n records with integer keys in the range [0, then they may be sorted 
in O(n log n) time using heap sort or merge sort. The function radix-sort on a sin
gle key, that is, MAX-DIGIT-1 = 1 and radix = takes 0(^2) time. Show how 
to interpret the keys as two subkeys so that radix sort takes only O(a7) time to sort n 
records. (Hint: each key, K,, may be written as A', = K■*  n -i- with /C? and A^,*  
integers in the range [0, «-! ].)

Generalize the method of the previous exercise to the case of integer keys in the 
range [0, obtaining an Q{pn} sorting method.
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179 208 -> 306—> 93 -4 859 984 55 9 271 -> 33

Initial input

4front to] —k

front El]-- k
front[2]

front [3 ]-- k

NULL

271

NULL

93

NULL ■4

33 NULL

rearto]

reartl]

reartZ]

rear[31

► 4

► 4

front t4]-- k 984 NULL rear[414

front[5]

front[6]

front[7]

front t8]-- k

frontt9]

rear[5]
55 NULL

306 null

NULL

208 NULL

179 859 NULL

rearC6]

reart?]

reart8]

reart9]

>

>

►

k k

4

4

4

4

k 9 4

271 93 -> 33 -> 984 55 306 208 -> 179 859 9
Chain after first pass, i = 1

Figure 7.16 : Simulation of radix-sort

4. Is radix-sort stable? Assume that you are sorting lists of numbers.

5. Write convert and reconvert functions that convert an array with integer keys into 
a linked list of the form used by radix-sort and reconvert the linked fist back to its 
original form.

6. Rewrite radix-sort so that the radix is 2. Use the BIT macro to extract the bits. 
Try this version with keys of type long int. How quick is it?

7. Under what conditions would an MSD radix sort be more efficient than an LSD 
radix sort?
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► ► 4front[01 —k

front Cl1

front[21

front [31 k

front[41

front[51

front[61

front[71

front[81

front[91

306

NULL

NULL
33

NULL

55

NULL

271

208 NULL rear[0]

rear[11

rear[21

NULL rear[31
rear[41

984 NULL

93 NULL

859 NULL

179 NULL

rear [51

rear[61

rear[71

rear[81

rear[91

►
►

k

k

k

k

k

k

9

4
4

4

k
4

k

4

4

4

4

4

306^208 ^ 9 ->33^55 ^859 —>271 179984-> 93
Chain after second pass, i = 1

Figure 7.16 (continued): Simulation of radix-sort

7.9 LIST AND TABLE SORTS

Apart from the radix sort and the recursive merge sort, all the sorting methods we have 
looked at require excessive data movement since we must physically move records fol
lowing some comparisons. If the records are large, this slows down the sorting process. 
Therefore, when sorting lists with large records we modify our sorting methods to 
minimize data movement. As we indicated in our discussion of the recursive merge sort, 
we can reduce data movement by using a linked list representation. The sort does not 
physically rearrange the list, but modifies the link fields to show the sorted order. In 
many applications this is sufficient. For example, if the sorted list is to be stored on some 
external media, we can send the records over using the link fields to determine the order 
in which the records are transmitted. However, in some applications we must physically
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Frontto1 —k 33 55 93 NULL rear [01

front til-----k

front[21

front [31-----k

front [41----- ►

front[51

front [61---- k

front[71
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front [91----- ►

179 NULL reartil
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306 NULL

NULL

NULL

NULL

NULL

859 NULL

984 NULL
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rear[31

rear[41

rear[51
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>
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>
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►

4

4

4

4

4

4

4

4

9 33 55 -> 93^ 179 208 271 306^ 859 984
Chain after third pass, i = 0

Figure 7.1 6 (continued): Simulation of radix-sort 

rearrange the records so that they are in the required order. Even in these cases we can 
achieve considerable savings by first performing a linked list sort and then physically 
reaiTanging the records according to the order specified in the list. We can accomplish 
this rearranging in linear time using some additional space. In this section, we examine 
three methods for rearranging the lists into sorted order. The first two methods require a 
linked list representation, while the third method uses an auxiliary table that indirectly 
references the list’s records. We begin our discussion with sorts that use a linked list 
representation.

Assume that the linked list has been sorted and that start points to the record that 
contains the smallest key. This record’s link field points to the record with the second 
smallest key, and so on. (See Example 7.6, which illustrated a linked list sort using a 
recursive merge sort.) To physically rearrange these records into nondecreasing order, 
we first interchange records /?o ^nd R^tarf Record Rq now has the smallest key.start •
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However, if start 0, the remaining records are no longer correctly linked. Therefore, 
we must find the record that contained a 0 in its link field, and change this record's link 
field to point to start. We now change start to point to record Aq’s link field, and inter
change records R^ and Rsiarf After n-i iterations the list is in ascending order.

Since the correct relinking of the list after each iteration requires a knowledge of 
each record’s predecessor, we must use a doubly linked list. The function listsortl 
(Program 7.16) sorts a linked list by first converting a singly linked list into its doubly 
linked version. It then moves each record into its correct position. The function call is 
listsortl(list, rt-1, start). We use the following declaration:

typedef struct { 
int key; 
int link; 
int linkb; 
} element;

back link

Analysis of listsortl: If there are n records in the list, then the time required to convert 
the singly linked list into a doubly linked one is O(n). The actual sort does not begin 
until the second for loop. This loop is iterated n-1 times, with each iteration interchang
ing no more than two records. If each record is m words long, then the cost per inter
change is 3m. Therefore, the total time is O(mz?). □

Example 7.9: The input list is (26, 5, 77, 1, 61, 11, 59, 15, 48, 19). After a recursive 
merge sort, the list is linked as in Figure 7.17. The list with the backlinks linkb is found 
in Figure 7.18. Figure 7.19 shows the list after the first record has been placed in order, 
and Figure 7.20 shows the list after the next three iterations. In Figures 7.19 and 7.20, 
the changes in the records are highlighted. □

Although we can modify listsortl in several ways, a variation created by M. D. 
MacLaren is of particular interest because it does not require back links. In this algo
rithm (Program 7.17), after we exchange record Rstart 
new Ri to start. This shows that we moved the original record. Since start must always 
be > i, we can correctly reorder the records. The function call is listsortl{list, n-1, 
start);

with Ri, we set the link held of the

Analysis of listsortl: The sequence of record moves for listsortl is identical to that 
of listsortX. Therefore, in the worst case 3(m - 1) record moves are made. Since the 
while loop examines each record no more than once, the total cost of this loop is O(n). 
Thus, listsortl has a worst case time of O(mn). □

Although listsortl and listsortl have the same asymptotic time and make the 
same number of record moves, listsortl is slightly faster than listsortl since each time 
two records are interchanged listsortl works harder than listsortl. In addition, since 
listsortl requires an additional link field for each record, it is also inferior to listsortl 
when space is considered.
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void list—sortl(element list[], 
/*

int n, int start)
start is a pointer to the list of n sorted elements, 

linked together by the field link, 
present in each element.
so that the resulting elements list[0],..., list[n-l] 
consecutive and sorted.
{

linkb is assumed to be 
The elements are rearranged

are
*/

int i,last,current; 
element temp;

last = -1;
for (current 
current 
/*

-1;start; current
list[current].link) { 

establish the back links for the list 
list[current].linkb = last;
last current;

*/

1 -

0; i
/*

}
for (i = 0; i < n-l; i++) {

move list[start] to position i while maintaining the 
list */

if (start !- i) {
if (list[i].link+1)

list[list[i].link].linkb - start;
list [list [i] .linkb] .link = start;
SWAP(list[start],list[i],temp);

1 J
start = list[i].link;

}
}

Program 7.16: list-sort!

Example 7.10: The input list is (26, 5, 77, 1, 61, 11, 59, 15, 48, 19). After the recursive 
merge sort we have the configuration of Figure 7.21. The configuration after each of the 
first two iterations of the for loop is shown in Figure 7.22, and Figure 7.23 shows the 
configurations after the next three iterations. The sort continues in this fashion until all 
the records are in their sorted position. □

The list sort technique is not well suited for quick sort or heap sort. For heap sort, 
the sequential representation of the heap is essential to the operation of the sort. We can 
eliminate excessive data movement in these sorts, as well as the sorts that work well with 
the list sort technique, by using an auxiliary table that indirectly references the records in
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sta rl = 3

i 
key 
link 
linkb

^0

26 
~~8

5
~7

^^2

11
-1

Rl
I
I

Ra 

6l 
~2

11
^^6 

59 
"7

Rl 
15 
"7

^8 

48 
~6

19
~~0

Figure 7.1 7 Linked list following a list sort

start = 3

i 
key 
link 
linkb

26
^8

5

~7

Rl 
11 
22 

4

Rl
I 

22 
-I

^4 

61

~6

Rs
11

I

^6 
59 
22 
~~8

Rl
15

”7

48

21
^9

19
0

Figure 7.1 8 Doubly linked list resulting from list of Figure 7.15

start - 1

i 
key 
link 
linkh

Ro 
1
1

Rj
5

"7

^^2 

77 
-1 
”7

Ra 
26 
21 
~9

^4 

6l

~6

11

”7

Re 
59
4 

~~8

Rl
I5

22 
~7

48

"5

19

22
1

Figure 7.1 9 Configuration after first iteration of the for loop of function list-sort}

the list. The table is defined as int tahle[MAX-SIZE], but we refer to it as t in the follow
ing analysis. At the start of the sort, /[/] = /, 0 < i < zz-l. If the sorting algorithm needs 
to interchange and /?,, then the table entries ] and are exchanged; the original 
list is not altered. After the sort. ’S the record with the smallest key, is the 
record with the largest key, and, in general, /?,[,] is the record with the /th smallest key. 
Therefore, the sorted list is /??{()], 
sufficient for many applications that require an ordered list including a binary search. 
However, in some applications we must physically rearrange the records according to

■ ' (see Figure 7.22). This table is
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i = l
start ~ 5

i 
key 
link 
linkb

^0

1
22

-1

5
~7

3

^2

-1
”7

^3 
26 
~8 
"7

61
2

R5 
11
7
1

59
^7

Ri 
15 
3 

5

^8 
48 
21 
~5

19
2^

i = 3
start = 1

/

link 
linkb

^0

1

-1

5 
~7 
"7

R2 
11
1

R3 
26 

~~8 
"7

^4

61

6

R5
77

Re 
59
4

"7

Rj 
15 

~9 
"7

48 
~6 
"7

R9

19
~3

z = 4
5f<3rZ = 9

i 
key 
link 
linkb

5
21 
~3

R2 
11
7

~T

R3 
15 
^9 
”5

61
22

^5

-1

Re 
59 
22 
”8

R7
26

"7

^8 
48 
21 
~7

R9 

19

~1

^0

1
i

Figure 7.20 Example for to-wrzl 

the permutation specified by t.
The algorithm to rearrange records corresponding to the permutation z[0], z[l],

• • • , z [n-1] is a rather interesting application of a theorem of mathematics: Every per
mutation is made up of disjoint cycles. The cycle for any element i consists of i, Z [/ ], 
t^[i ], ■ * * ■ , ?^[/ ], where z4^ ], = t [Z^“^ [z ]], Z*^[/ ] = i, and Z^[z j = i. Thus, the permutation 
t of Figure 7.24 has two cycles, the first involving Rq and and the second involving 
7?3, /?2, and 7?i. The function table-sort (Program 7.18) uses this cyclic decomposition 
of a permutation. First, the cycle containing /?o is followed and all records moved to 
their correct positions. Next, the cycle containing R^ is examined, unless R\ was 
included in the cycle containing R^. The cycles for R^, Ry, • • • , Rn-2 are each exam
ined in turn. The result is a physically sorted list.
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void list—sort2(element list [J, 
/*

Figure 7.21: Configuration after a recursive merge sort

Since each cycle in the sort can be classified as trivial or nontrivial, the sort uses 
two distinct strategies. A trivial cycle, that is, one in which t [i ] = i for some record Rj, is 
handled easily because the record with the Zth smallest key is already in its correct posi
tion. Thus, no rearrangement of records is necessary. A nontrivial cycle, that is, one in 
which t (/ ] i for some record /?,, requires more work. First, we move Rj to a temporary 
position, temp, then we move the record at t[i 1 to i. Next, we move the record at 
to f [z 1. We repeat this process until we reach the end of the cycle t^[i ]. We then move 
temp to z

Analysis of table-sort'. If each record uses m words of storage, then the additional space

int n, int start) 
list sort with only one link field

0; i n-1; i++) { 
i)

int i,next;
element temp;
for (i

while(start
start = list[start].link; 

next — licbfct'art’l 1 i nV • / *list [start].link; ! save index of next 
largest key

if (start != i) {
SWAP(list[i],list[start],temp); 
list[i].link = start;

}
start next ;

}
}

Program 7.17 listsort'l

start = 3

I
key 
link

A’o 
26 
T

77
-1

R^
6 

~2

Rs
11

^6 
59 
”7

Rl 

15 
~9

48 
~6

195 1
1

k-\ [i ]. The function call is table-sort(list, n-J, table);
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i = 0
start = 1

i 
key 
link

Rq
1

Rj
5

"3

Ri
11

R3 
26 
"T

61
^5
11 59

Ri
15 48

"7

^9

19
~~0

i= 1
= 5

i 
key 
link

^0 
1 

"3
5 

"3

Ri
11

^3
26 61

^5
11

~1

^6

59
4

^7

~~9

R^ 
48

R9
19
0

• • , Rearranging these records requires k + 1 record moves. Since no

Figure 7.22: Configurations after iterations i - 0 and 1 of list-sort2 

needed is m words for temp plus space for the index variables z, 7, and k. To obtain an 
estimate of the computing time we observe that the for loop is executed n-l times. If for 
some value of /, z[z] i then there is a nontrivial cycle including k > 1 distinct records: 
Ri^ 
record can be in two different nontrivial cycles, these records are not moved again at any 
time in the algorithm. Let kj be the number of records in a nontrivial cycle starting at Rj 
when i = j in the algorithm. Let kj = 0 for a trivial cycle. Then, the total number of 
record moves is:

n-l

j=O,kj^

Since the records in nontrivial cycles must be different, Z Thus, the total 
record moves is at its maximum when Z ^7 = there are [ n ! 2 J cycles. When « is 
even, each cycle contains two records. Otherwise, one cycle contains three records and 
the other cycles contain two records. In either case the number of record moves is [ 3n / 
2 J. Since one record move costs O(m) time, the total computing time is Q{mn}. □

Comparing list-sort! and table-sort, we see that, in the worst case, list-sort! 
makes 3(/i - 1) record moves while table-sort makes only [ !n ! 2 J record moves. For 
larger values of m, we can attain a more efficient sort on a linked list, if we first make one 
pass over the list to create a table. This takes O(n) time. Then we use table-sort to rear
range the records in the order specified by the table.

Example 7.11: Suppose that tahle^sort begins with the configuration of Figure 7.25(a).
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i = 2
start = 7

z
key 
link

^0 
1 

~7
5

R2 
11 

"~5
26

^4
61

2

Rs
11 59

”7

^7 
15 
"7

48
^9

19
~~0

i = 3
start = 9

i 
key 
link

^0
1 5 

”7

R2
11
”5

R3
15 61

~2

^5
77
-1

Re
59

4

R7
26

^8 
48

^9
19 

~~0

z = 4
start = 0

i 
key 
link

Rts
1 

~3
5 

”7

R2
11 
"7

R3
15
1

R4
19

^5 
11

Re 
59

4

R7 
26 

8

^8
48

6

R9 
61 

~~2

Figure 7.23: Configurations after iterations i = 2, 3, and 4 of list_sort2

There are two nontrivial cycles in the permutation specified by table. The first is Rq, R2, 
R-,, R^, R^^. The second is /?3, /?4, R3- During the first iteration of the for loop, the
cycle Rq, Ri[0], Rt^io], R{^[q\^ Rq ’S followed. Record R^ is moved to a temporary spot 
temp-, * (R2)^ is moved to position R^-, Rp[Q], (R-/}, is moved to A2; is moved to 
R-j-, and finally temp is moved to R^. Thus, after the first iteration we have the 
configuration of Figure 7.25(b).

Since t [/ ] = i, when i = 1 and i = 2 records, R ] and R^ are already in their correct 
positions. When i = 3, the next nontrivial cycle is discovered, and the records in this 
cycle (/?3, R4, R(,, R^) SLve moved to their correct positions. Following this we have the 
configuration of Figure 7.25(c). Since r|/] = i for the remaining values of i, all the non
trivial cycles have been processed. □
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Before 
sort 0 1 2 3 4 Auxiliary 

table
T

Keg

After 
sort

«0 «1 «2 «3 «4

50

1

4

Figure 7.24: Table sort

EXERCISES

1.

2.

3.

4.

5.

6.

7.

8.

7.10

9

3

11 8 3

t

1 2 0
Auxiliary 
table

T

Trace the remaining iterations for the list sort! example.

Trace the remaining iterations for the list-sort2 example.

Rewrite selection sort (Program 1.3 from Chapter 1) so that it produces a list that 
we can sort using either list-sortl or list-sort2.

Rewrite quicksort so that it creates a table that contains the sorted order of the list. 
The records are not physically moved during the sort; instead table[i} points to the 
record that would have been in position i if records had been moved physically. 
Use table-sort to rearrange the records into the sorted order specified by table.

Repeat Exercise 4 with insertion-sort.

Do Exercise 4 for the case of selection sort.

Repeat Exercise 4 with heap-sort.

Repeat Exercise 4 with merge-sort (Program 7.10.

SUMMARY OF INTERNAL SORTING

Of the several sorting methods we have studied no one method is best. Some methods 
are good for small n, others for large n. An insertion sort works well when the list is 
already partially ordered. Because of the low overhead of this method, it is also the best 
sorting method for small n. Merge sort has the best worst case behavior, but it requires
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void table—sort(element list[], int n, int table[]) 
{ 
/*  
sequence list[table[0]],..., list[table[n-l]]

int i,current,next; 
element temp; 
for (i = 0; i < n-l; i++) 

if (table[i] 1- i) { 
/*

rearrange list[n-l] to correspond to the
*/

n-l;

nontrivial cycle starting at i 
t emp = 1i s t [ i] ; 
current 
do {

next= table[current];
list[current] = list[next]; 
table[current] 
current

} while (table[current] != i); 
list[current] 
table[current]

current;
next;

*/

1;

t emp;
current;

}
}

Program 7.18: table-sort 

more storage than a heap sort, and has slightly more overhead than quick sort. Quick sort 
has the best average behavior, but its worst case behavior is The behavior of radix 
sort depends on the size of the keys and the choice of the radix.

Figure 7.26 gives the average running times for insertion-sort, quicksort, 
merge-sort, and heapsort. Figure 7.27 is a plot of these times. As can be seen, for n up 
to about 20, insertion-sort is the fastest. For values of n from about 20 to 45, quicksort 
is the fastest. For larger values of n, merge-sort is the fastest. Therefore, in practice, it 
is worthwhile to combine insertion-sort, quicksort, and merge-sort so that mergesort 
uses quicksort for sublists of size less than about 45 and quicksort uses insertion-sort 
when the sublist size is below about 20.
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table

^0 
35 14

"7

^2

12 
~7

^^3 

42 
"7

^4

26 
~7

50
"7

^6 
31 

”7
18 

~~5

(a) Initial configuration

table
12
~0

14
T

18 42
~4

26
”6

35
"7

31 50
”7

(b) Configuration after rearrangement of first cycle

key 
table

12
0

14
1

18 26 31
4

35
~5

42
~6

50
"7

(c) Configuration after rearrangement of second cycle

Figure 7.25 : Tables for Example 7.11

EXERCISES

1.

Insertion Sort

Quick Sort

Merge Sort

Heap Sort

The objective of this assignment is to come up with one composite sorting algo
rithm that is good on the worst time criterion. The candidate algorithms are:

(a)

(b) 

(c) 

(d)

To begin with, program these algorithms in C. In each case, assume that n 
integers are to be sorted. In the case of quick sort, use the median of 3 method. In 
the case of merge sort, use the iterative algorithm (as a separate exercise, you 
might wish to compare the run times of the iterative and recursive versions of 
merge sort and determine what the recursion penality is in your favorite language 
using your favorite compiler). Check out the correctness of the programs using 
some test data. Since quite detailed and working algorithms are given in the book, 
this part of the assignment should take little effort. In any case, no points are 
earned until after this step.

To get reasonably accurate run times, you need to know the accuracy of the 
clock or timer you are using. Determine this by reading the appropriate manual. 
Let this be 6. Now, run a pilot test to determine approximate times for your four
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Times in hundredths of a second

n
0

10
20
30
40
50
60
70
80
90

100
200
300
400
500
600
700
800
900

1000

quick 
~"a041

1.064
2.343
3.700
5.085
6.542
7.987
9.587

11.167
12.633
14.275
30.775
48.171
65.914
84.400

102.900
122.400
142.160
160.400
181.000

merge
0.027
1.524
3.700
5,587
7.800
9.892

11.947
15.893
18.217
20.417
22.950
48.475
81.600

109.829
138.033
171.167
199.240
230.480
260.100
289.450

heap
0.034
1.482
3.680
6.153
8.815

11.583
14.427
17.427
20.517
23.717
26.775
60.550
96.657

134.971
174.100
214.400
255.760
297.480
340.000
382.250

insert
0.032
0.775
2.253
4.430
7.275

10.892
15.013
20.000
25.450
31.767
38.325

148.300
319.657
567.629
874.600

Figure 7.26 : Average times for sort methods

sorting functions for n = 5, 10, 20, 30, 40, 50, and 100. You will notice times of 0 
for many of these values of n. The other times may not be much larger than the 
clock accuracy.

To time an event that is smaller than or near the clock accuracy, repeat it 
many times and divide the overall time by the number of repetitions. You should 
obtain times that are accurate to within 1%.

We need worst case data for each of the 4 sort methods. The worst case data 
for insert sort is easy to generate. Just use the sequence n, n—1, n-2, • • • , 1. 
Worst case data for merge sort can be obtained by working backwards. Begin with 
the last merge your algorithm will perform and make this work hardest. Then look 
at the 2nd last merge, and so on. Use this logic to obtain a program that will gen
erate worst case data for merge sort for each of the above values of n.

Generating worst case data for heap sort is the hardest. So, here we shall use 
a random permutation generator (one is provided in Program 7.19). We shall
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t
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insert sort heap sort

merge sort

20 -

quick sort

10 -
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10
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n

Figure 7.27 : Plot of average times

generate random permutations of the desired size; clock heap sort on each of 
these; and use the max of these times as an approximation to the worst case time. 
You will be able to use more random permutations for smaller values of n than for 
larger. For no value of n should fewer than 10 permutations be used. Use the 
same technique to obtain worst case times for quick sort.

Having settled on the test data, we are ready to perform our experiment. 
Obtain the worst case times. From these times you will get a rough idea when one 
algorithm performs better than the other. Now, narrow the scope of your experi
ments and determine the exact value of n when one algorithm outperforms 
another. For some algorithms, this value may be 0. For instance, each of the other 
three algorithms may be faster than quick sort for all values of n.
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2Plot your findings on a single sheet of graph paper. Do you see the n 
behavior of insert sort and quick sort; and the nlogn behavior of the other two 
algorithms for suitably large n (about n > 20)? If not, there is something wrong 
with your test or your clock or with both. For each value of n determine the sort 
algorithm that is fastest (simply look at your graph). Write a composite algorithm 
with the best possible performance for all n. Clock this algorithm and plot the 
times on the same graph sheet you used earlier.

A word of CAUTION. If you are using a multi process computer, make all 
your final runs at about the same time. On these computers, the clocked time will 
vary significantly with the amount of computer work load. Comparing the run 
times of an insert sort run made at 2;00pm with the run times of a merge sort run 
made at 2:00am will not be very meaningful.

WHAT TO TURN IN
You are required to submit a report that states the clock accuracy; the number of 
random permutations tried for heap sort; the worst case data for merge sort and 
how you generated it; a table of times for the above values of n; the times for the 
narrowed ranges; the graph; and a table of times for the composite algorithm. In 
addition, your report must be accompanied by a complete listing of your program 
(this includes the sorting function and the main program for timing and test data 
generation).

random permutation
void permute(element list[], int n) 
/*  random permutation */  
{

int i,j; 
element temp;

>= 1; i—) { 
(n-1) + 1;

n-1; 1
g, "o

for {i 
j = rand() 
SWAP(1i s t[j],1i s t[i],t emp);

}
}

Program 7.19: Random permutation generator

2. Repeat the previous exercise for the case of average run times. Average case data 
is almost impossible to create. So, use random permutations. This time, however, 
don't repeat a permutation many times to overcome clock inaccuracies. Instead, 
use each permutation once and clock the time over all (for a fixed /?).
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3. We also can compare the various sorts by counting the number of comparisons and 
exchanges they make for different types of input data. In this experiment, we want 
to count the numbers of comparisons and exchanges for the following sorts and 
input data patterns;

Sorts
Insertion sort
Heap sort
Quicksort
Merge sort
Radix sort
Selection sort (see Chapter 1)

Input Data Patterns
Ordered
Nearly ordered
Reverse ordered
Random

7.11

To perform this experiment, you must:

(a)

(b)

(c)

modify each of the functions provided in the text so that you can count the 
comparisons and exchanges.

generate appropriate input data patterns.

conduct your experiment on lists of size = 50, 100, 200, • • • , 5000.

TURN IN;

(i)

(ii)

(iii)

A listing of your program.

A table that shows the performance of the various sorts for the various input 
patterns.

A short paper summarizing the differences.

EXTERNAL SORTING

7.11.1 Introduction

In this section, we consider techniques to sort large files. The files are assumed to be so 
large that the whole file cannot be contained in the internal memory of a computer, mak
ing an internal sort impossible. We shall assume that the file to be sorted resides on a 
disk. Most of the ideas we present for a disk sort also apply for the case when the exter
nal storage media is a tape. When reading or writing from/to a disk, the following over
heads apply;

(1) Seek time: time taken to position the read/write head to the correct track of the 
disk. This will depend on the number of tracks across which the head has to move.
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(2) Latency time: time until the right sector of the track is under the read/write head.

(3) Transmission time: time to transmit the data to/from the disk.

We shall use the term block to denote the unit of data that is read from or written 
to the disk at one time. A block will usually contain several records.

The most popular method for sorting on external storage devices is merge sort. 
This method consists of essentially two distinct phases. First, segments of the input file 
are sorted using a good internal sort method. These sorted segments, known as runs, are 
written out onto external storage as they are generated. Second, the runs generated in 
phase one are merged together following the merge tree pattern of Figure 7.7, until only 
one run is left. Because function merge (Program 7.7) requires only the leading records 
of the two runs being merged to be present in memory at one time, it is possible to merge 
large runs together. It is more difficult to adapt the other internal sort methods con
sidered in this chapter to external sorting.

We shall use an example to illustrate the basic external sort process and analyze 
the various contributions to the computing time. A file containing 4500 records, 
Al, . . ., A 4500, is to be sorted using a computer with an internal memory capable of sort
ing at most 750 records. The input file is maintained on disk and has a block length of 
250 records. We have available another disk that may be used as a scratch pad. The 
input disk is not to be written on. One way to accomplish the sort using the approach 
outlined above is to:

(1) Internally sort three blocks at a time (i.e., 750 records) to obtain six runs R[- 
R(,. A method such as heap sort or quick sort could be used. These six runs are written 
out onto the scratch disk (Figure 7.28).

run I run 2 run 3 run 4 run 5 run 6

1-750 751 - 1500 1501 - 2250 2251 -3000 3001-3750 3751 -4500

3 blocks per run

Figure 7.28 : Blocked runs obtained after internal sorting

(2) Set aside three blocks of internal memory, each capable of holding 250 
records. Two of these blocks will be used as input buffers and the third as an output 
buffer. Merge runs R\ and /?2- 3"his is carried out by first reading one block of each of 
these runs into input buffers. Blocks of runs are merged from the input buffers into the 
output buffer. When the output buffer gets full, it is written out onto disk. If an input 
buffer gets empty, it is refilled with another block from the same run. After runs and 
y?2 iire merged, Ri, and R^ and finally R^ and R^ are merged. The result of this pass is 3 
runs, each containing 1500 sorted records or 6 blocks. Two of these runs are now 
merged using the input/output buffers set up as above to obtain a run of size 3000.
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Finally, this run is merged with the remaining run of size 1500 to obtain the desired 
sorted file (Figure 7.29).

run 1 pun 2 run 3 run 4 pun 5 run 6

750 pecopds 750 pecopds 750 pecopds 750 records 750 pecopds 750 pecopds

run

1500 records 1500 records 1500 records

run 1

3000 records

run 1

4500 records

Figure 7.29 : Merging the six runs

To determine the time required by the external sort, we use the following notation:

ts= maximum seek time 

ti= maximum latency time

trw = dme to read or write one block of 250 records

~ 9 + ^rw

//5= time to internally sort 750 records

ntm= time to merge n records from input buffers to the output buffer

We shall assume that each time a block is read from or written onto the disk, the 
maximum seek and latency times are experienced. While this is not true in general, it 
will simplify the analysis. The computing times for the various operations are given in 
Figure 7.30.

Note that the contribution of seek time can be reduced by writing consecutive 
blocks on the same track or on adjacent tracks. A close look a the final computing time 
indicates that it depends chiefly on the number of passes made over the data. In addition
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operation
(1) read 18 blocks of input, 

18Z/<9, internally sort, 
write 18 blocks, 18f/c)

(2) merge runs 1-6 in pairs
(3) merge two runs of 1500 

records each, 12 blocks
(4) merge one run of 3000 

records with one run of 
1500 records

time
36^/0 +6tis

3^t}o +4500f^
24Z/^ -i-3000z^

3^t[o +4500?/^

total time 132Z/^ + 12000z^ ■+■

Figure 7.30 Computing times for disk sort example 

to the intitial input pass made over the data for the internal sort, the merging of the runs 
requires 2-2/3 passes over the data (one pass to merge 6 runs of length 750 records, two 
thirds of a pass to merge two runs of length 1500 and one pass to merge one run of length 
3000 and one of length 1500). Since one full pass covers 18 blocks, the input and output 
time is 2 X (2-2/3 + 1) x 18 tio = 132Z/o. The leading factor of 2 appears because each 
record that is read is also written out again. The merge time is 2-2/3 
X 4500z^ = 12,000Z/„. Because of this close relationship between the overall computing 

time and the number of passes made over the data, future analysis will be concerned 
mainly with counting the number of passes being made. Another point to note regarding 
the above sort is that no attempt was made to use the computer’s ability to carry out 
input/output and CPU operation in parallel and thus overlap some of the time. In the 
ideal situation we would overlap almost all the input/output time with CPU processing 
so that the actual time would be approximately 132 tjQ ~ 12000 Z^ + 6Z/5.

If we had two disks, we could write on one while reading from the other and merg
ing buffer loads already in memory all at the same time. In this case a proper choice of 
buffer lengths and buffer handling schemes would result in a time of almost 66Z/c). This 
parallelism is an important consideration when sorting is being carried out in a non- 
multi-programming environment. In this situation unless input/output and CPU process
ing is going on in parallel, the CPU is idle during input/oputput. In a multi-programming 
environment, however, the need for the sorting program to carry out input/output and 
CPU processing in parallel may not be so critical since the CPU can be busy working on 
another program (if there are other programs in the system at the time), while the sort 
program waits for the completion of its input/output. Indeed, in many multi
programming environments it may not even be possible to achieve parallel input, output 
and internal computing because of the structure of the operation system.
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The remainder of this section will concern itself with: (1) reduction of the number 
of passes being made over the data, (2) efficient utilization of program buffers so that 
input, output and CPU processing is overlapped as much as possible, (3) run generation, 
and (4) run merging.

7.11.2 k-way Merging

The 2-way merge algorithm merge is almost identical to the merge function just 
described (Figure 7.29). In general, if we started with m runs, then the merge tree 
corresponding to Figure 7.29 would have flog2mj +1 levels for a total of flog2mj passes 
over the data file. The number of passes over the data can be reduced by using a higher 
order merge, i.e., ^-way merge for k > 2. In this case, we would simultaneously merge k 
runs together. Figure 7.31 illustrates a 4-way merge on 16 runs. The number of passes 
over the data is now 2, versus 4 passes in the case of a 2-way merge. In general, a /:-way 
merge on m runs requires at most flogi-mj passes over the data (Figure 7.32). Thus, the 
input/output time may be reduced by using a higher order merge.

I 2 3 4 9 10 11 12 13 14 15 16

. ..________________________ ___________

5 6 7 8

Figure 7.31 : A 4-way merge on 16 runs

The use of a higher order merge, however, has some other effects on the sort. To 
begin with, Z:-runs of size 5i, 52, 53, . . .,5/. can no longer be merged internally in 
O(Z*  5/) time. In a Z:-merge, as in a 2-way merge, the next record to be output is the one 
with the smallest key. The smallest has now to be found from k possibilities and it could 
be the leading record in any of the ^-runs. The most direct way to merge A;-runs would 
be to make k - 1 comparisons to determine the next record to output. The computing 
time for this would be O((/c - 1) S*  5/). Since log^m passes are being made, the total 
number of key comparisons being made is n (k - l)log/.m = n{k - I)log2w/log2^ where 
n is the number of records in the file. Hence, (k - l)/log2^ is the factor by which the 
number of key comparisons increases. As k increases, the reduction in input/output time 
will be offset by the resulting increase in CPU time needed to perform the Z:-way merge.
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I k+l . .. 2k2 ... k

[log^ m + 1 levels

k
z

Figure 7.32 : A A^-way merge

For large k (say, Z: > 6) we can achieve a significant reduction in the number of comparis
ons needed to find the next smallest element by using a loser tree with k leaves (Chapter 
5). In this case, the total time needed per level of the merge tree of Figure 7.32 is 
O(n log2^)- Since the number of levels in this tree is O(log^.m), the asymptotic internal 
processing time becomes O(n log2^ Iog/.m) = O(«log2w). The internal processing time 
is independent of k.

Tn going to a higher order merge, we save on the amount of input/output being car
ried out. There is no significant loss in internal processing speed. Even though the inter
nal processing time is relatively insensitive to the order of the merge, the decrease in 
input/output time is not as much as indicated by the reduction to logj^-w passes. This is so 
because the number of input buffers needed to carry out a A:-way merge increases with k. 
Though k -I- 1 buffers are sufficient, we shall see in the next section that the use of 2k •+• 2 
buffers is more desirable. Since the internal memory available is fixed and independent 
of k, the buffer size must be reduced as k increases. This in turn implies a reduction in 
the block size on disk. With the reduced block size each pass over the data results in a 
greater number of blocks being written or read. This represents a potential increase in 
input/output time from the increased contribution of seek and latency times involved in 
reading a block of data. Hence, beyond a certain k value the input/output time would 
actually increase despite the decrease in the number of passes being made. The optimal 
value for k clearly depends on disk parameters and the amount of internal memory 
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available for buffers.

7.1L3 Buffer Handling For Parallel Operation

If k runs are being merged together by a A:-way merge, then we clearly need at least k 
input buffers and one output buffer to carry out the merge. This, however, is not enough 
if input, output, and internal merging are to be carried out in parallel. For instance, while 
the output buffer is being written out, internal merging has to be halted since there is no 
place to collect the merged records. This can be easily overcome through the use of two 
output buffers. While one is being written out, records are merged into the second. If 
buffer sizes are chosen correctly, then the time to output one buffer would be the same as 
the CPU time needed to fill the second buffer. With only k input buffers, internal merg
ing will have to be held up whenever one of these input buffers becomes empty and 
another block from the corresponding run is being read in. This input delay can also be 
avoided if we have 2k input buffers. These 2k input buffers have to be cleverly used in 
order to avoid reaching a situation in which processing has to be held up because of lack 
of input records from any one run. Simply assigning two buffers per run does not solve 
the problem. To see this, consider the following example:

Example 7.12: Assume that a two way merge is being carried out using four input 
buffers, in [/], 1< i <4, and two output buffers, ou [1] and ou [2]. Each buffer is capable 
of holding two records. The first few records of run 1 have key value 1, 3, 5, 7, 8, 9. The 
first few records of run 2 have key value 2, 4, 6, 15, 20, 25. Buffers in [1] and in [3] are 
assigned to run 1. The remaining two input buffers are assigned to run 2. We start the 
merging by reading in one buffer load from each of the two runs. At this time the buffers 
have the configuration of Figure 7.33(a). Now runs 1 and 2 are merged using records 
from in [1] and in [2]. In parallel with this the next buffer load from run 1 is input. If we 
assume that buffer lengths have been chosen such that the times to input, output and gen
erate an output buffer are all the same, then when ou [1] is full we have the situation of 
Figure 7.33(b). Next, we simultaneously output ou [1], input into in [4] from run 2 and 
merge into ou [2]. When ou [2] is full we are in the situation of Figure 7.33(c). Continu
ing in this way we reach the configuration of Figure 7.33(e). We now begin to output 
ou [2], input from run 1 into in [3] and merge into ou [!}. During the merge, all records 
from run 1 get exhausted before ou [ 1} gets full. The generation of merged output must 
now be delayed until the inputting of another buffer load from run 1 is completed. □

Example 7.12 makes it clear that if 2k input buffers are to suffice then we cannot 
assign two buffers per run. Instead, the buffer must be floating in the sense that an indivi
dual buffer may be assigned to any run depending upon need. In the buffer assignment 
strategy we shall describe, for each run there will at any time be at least one input buffer 
containing records from that run. The remaining buffers will be filled on a priority basis; 
i.e., the run for which the k-v/ay merging algorithm will run out of records first is the one 
from which the next buffer will be filled. One may easily predict which run’s records 
will be exhausted first by simply comparing the keys of the last record read from each of
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the k runs. The smallest such key determines this run. We shall assume that in the case 
of equal keys, the merge process first merges the record from the run with least index. 
This means that if the key of the last record read from run i is equal to the key of the last 
record read from run j, and i < j, then the records read from i will be exhausted before 
those from j. So, it is possible that at any one time we might have more than two 
bufferloads from a given run and only one partially full buffer from another run. All 
bufferloads from the same run are queued together. Before formally presenting the algo
rithm for buffer utilization, we make the following assumptions about the parallel pro
cessing capabilities of the computer system available:

(1)

(2)

(3)

We have two disk drives and the input/output channel is such that it is possible 
simultaneously to read from one disk and write onto the other.

While data transmission is taking place between an input/output device and a 
block of memory, the CPU cannot make references to that same block of memory. 
Thus, it is not possible to start filling the front of an output buffer while it is being 
written out. If this were possible, then by coordinating the transmission and merg
ing rate only one output buffer would be needed. By the time the first record for 
the new output block was determined, the first record of the previous output block 
would have been written out.

To simplify the discussion we assume that input and output buffers are to be the 
same size.

Keeping these assumptions in mind, we provide a high level description of the 
algorithm obtained using the strategy outlined earlier and then illustrate its working 
through an example. Our algorithm, Program 7.20, merges /:-runs, k > 2, using a ^-way 
merge. 2k input buffers and 2 output buffers are used. Each buffer is a contiguous block 
of memory. Input buffers are queued in k queues, one queue for each run. It is assumed 
that each input/output buffer is long enough to hold one block of records. Empty buffers 
are placed on a linked stack. The algorithm also assumes that the end of each run has a 
sentinel record with a very large key, say +<». It is assumed that all records other than 
the sentinel records have key value less than this. If block lengths, and hence buffer 
lengths, are chosen such that the time to merge one output buffer load equals the time to 
read a block, then almost all input, output, and computation will be carried out in paral
lel. It is also assumed that in the case of equal keys the k-v/ay merge algorithm first out
puts the record from the run with smallest index.

We make the following observations about Program 7.20.

(1) For large k, determination of the queue that will exhaust first can be made in iog2^ 
comparisons by setting up a selection tree for last (/ ], \ < i <k, rather than making 
k - 1 comparisons each time a buffer load is to be read in. The change in comput
ing time will not be significant, since this queue selection represents only a very
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/*  Steps in buffering algorithm */

Step 1: Input the first block of each of the k runs setting up k linked queues each having 
one block of data.
Put the remaining k input blocks into a linked stack of free input blocks.
Set OU to 0.

Step 2: Let lastkey [Z ] be the last key input from run i. Let nextrun be the run for which 
lastkey is minimum. If lastkey [nextrun ] +00 then initiate the input of the next 
block from run nextrun.

Step 3: Use a function kwaymerge to merge records from the k input queues into the 
output buffer ou. Merging continues until either the output buffer gets full or a 
record with key +«> is merged into ou. If, during this merge, an input buffer 
becomes empty before the output buffer gets full or before a +co is merged into 
ou, the kwaymerge advances to the next buffer on the same queue and returns 
the empty buffer to the stack of empty buffers. However, if an input buffer 
becomes empty at the same time as the output buffer gets full or +©0 is merged 
into ou, the empty buffer is left on the queue and kwaymerge does not advance 
to the next buffer on the queue. Rather, the merge terminates.

Step 4: Wait for any ongoing disk input/output to complete.

Step 5: If an input buffer has been read, add it to the queue for the appropriate run. 
Determine the next run to read from by determining nextrun such that 
lastkey [nextrun ] is minimum.

Step 6: If lastkey [nextrun ] +00, then initiate reading the next block from run nextrun 
into a free input buffer.

Step 7: Initiate the writing of output buffer ou. Set ou = 1 - ou.

Step 8: If a record with key -1-00 has been not been merged into the output buffer go back 
to step 3. Otherwise, wait for the ongoing write to complete and then terminate.

Program 7.20 Buffering

(2)

(3)

small fraction of the total time taken by the algorithm.

For large k, the function kwaymerge uses a tree of losers as discussed in Chapter 5.

All input/output except for the initial k blocks that are read and the last block out
put is done concurrently with computing. Since after k runs have been merged we 
would probably begin to merge another set of k runs, the input for the next set can 
commence during the final merge stages of the present set of runs. That is, when 
lastkey [nextrun ] = +oo in step 6, we begin reading one by one the first blocks from 
each of the next set of k runs to be merged. In this case, over the entire sorting of a 
file, the only time that is not overlapped with the internal merging time is the time 
for the first k blocks of input and that for the last block of output.
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(4) The algorithm assumes that all blocks are of the same length. This may require 
inserting a few dummy records into the last block of each run following the sen
tinel record with key +^0.

Example 7.13: To illustrate the working of the above algorithm, let us trace through it 
while it performs a three-way merge on the three runs of Figure 7.34. Each run consists 
of four blocks of two records each; the last key in the fourth block of each of these three 
runs is +<». We have six input buffers, and two output buffers. Figure 7.35 shows the 
status of the input buffer queues, the run from which the next block is being read and the 
output buffer being output at the beginning of each iteration of the loop of steps 3 
through 8 of the buffering algorithm.

Run I

Run 2

Run 3

20

23

24

25

29

28

26

34

31

28

36

33

29

38

40

30

60

43

33

70

50

+ 00

+ 00

+ 00

Figure 7.34 : Three runs

From line 5 of Figure 7.35 it is evident that during the ^-way merge the test for 
"output buffer full?” should be carried out before the test "input buffer empty?", as the 
next input buffer for that run may not have been read in yet, and so there would be no 
next buffer in that queue. In lines 3 and 4 all 6 input buffers are in use and the stack of 
free buffers is empty. □

We end our discussion of buffer handling by proving that Program 7.20 is correct. 
This is stated formally in Theorem 7.2.

Theorem 7.2: The following is true for Program 7.20:

(1)

(2)

In step 6, there is always a buffer available in which to begin reading the next 
block; and

during the jt-way merge of step 3, the next block in the queue has been read in by 
the time it is needed.
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Proof: (1) Each time we get to step 6 of the algorithm there are at most ^ + 1 buffer loads 
in memory, one of these being in an output buffer. For each queue there can be at most 
one buffer that is partially full. If no buffer is available for the next read, then the 
remaining k buffers must be full. This means that all the k partially full buffers are empty 
(as otherwise there will be more than k + i buffer loads in memory). From the way the 
merge is set up, only one buffer can be both unavailable and empty. This may happen 
only if the output buffer gets full exactly when one input buffer becomes empty. But 
k > 1 contradicts this. So, there is always at least one buffer available when step 6 is 
being executed.

(2) Assume this is false. Let run be the one whose queue becomes empty during 
kwaymerge. We may assume that the last key merged was not +<», since otherwise kway- 
merge would terminate the merge rather then get another buffer for /?,. This means that 
there are more blocks of records for run Rj on the input file and lastkey [/ ] # +co. Conse
quently, up to this time whenever a block was output another was simultaneously read 
in. Input and output therefore proceeded at the same rate and the number of available 
blocks of data is always k. An additional block is being read in, but it does not get 
queued until step 5. Since the queue for R^ has become empty first, the selection rule for 
the next run to read from ensures that there is at most one block of records for each of 
the remaining k~i runs. Furthermore, the output buffer cannot be full at this time as this 
condition is tested for before the input buffer empty condition. Thus there are fewer than 
k blocks of data in memory. This contradicts our earlier assertion that there must be 
exactly k such blocks of data. □

7.11.4 Run Generation

Using conventional internal sorting methods such as those of this chapter, it is possible 
to generate runs that are only as large as the number of records that can be held in inter
nal memory at one time. Using a tree of losers, it is possible to do better than this. In 
fact, the algorithm we shall present will on the average generate runs that are twice as 
long as obtainable by conventional methods. This algorithm was devised by Walters, 
Painter, and Zalk. In addition to being capable of generating longer runs, this algorithm 
will allow for parallel input, output and internal processing. For almost all the internal 
sort methods of this chapter, this parallelism is not possible. Heap sort is an exception 
to this.

We describe the run generation algorithm as though input, output, and internal 
processing are not being overlapped. It should be obvious that these can be effectively 
overlapped by the use of two input and two output buffers. The run generation algorithm 
assumes that there is enough space in internal memory to construct a loser tree for k 
records, where k is the number of nodes in the tree. To construct the tree we use the fol
lowing C declarations for the case k = 16.
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#define k 16 
typedef struct { 

int key; 
int run; 
} element;

typedef struct { 
element data; 
int loser; 
} tree—node;

tree—node tree[k];

/* nodes in the tree */

Each of the k record positions has a run number, tree[i].data.run. 0 < i < k. This 
field enables us to determine whether we can output tree[i}.data.run as part of the run we 
are currently generating. Whenever we output a tournament winner, we input a new 
record (if there is one) and we replay the tournament, run-generation (Program 7.21) 
implements the loser tree strategy. The function uses an open-input function (Program 
7.22) to check the input file. The variables used in run-generation have the following 
significance.

tree[i].data, Q<i<k 
tree[i].data.key 
tree[i].data.run 
tree[i]. loser 
current-run 
winner 
winner-run
max-runs 
last-key

k records in the tree
key value of record, tree[i].data
run number to which tree[i].data belongs 
loser of the tournament played at node i 
run number of current run
position of overall tournament winner, [0] 
run number for tree[winnerj.data 
number of runs that will be generated 
key value of last record output

void run—generation(char *in —name, char 
{ 
/* generate runs using a loser tree */

*out—name)

int winner = 
int max—runs 
int i, parent, loser, temp; 
FILE *in,  *out;

0, winner—run
- 0, last-key = INT-MAX;

0, current—run 0;

* in, •k

in = open—input(in—name); 
out = 
for (i

fopen (out—name, "wb") ; 
1; i < k; i++) {i
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/*set  up tree with dummy nodes 
tree[i].data.key = 0;
tree[i].data.run = 0;
tree[i].loser = i;

■^1

}
tree[winner].data.run = Q;

for (;;) {
if (winner—run != current—run) { 

max—runs) { 
last record reached, close files and return 
fclose(in);
return;

if (winner—run

fclose(out);
*/

}
current—run = winner—run;

}

■^1

if (winner—run) {
/*suppress  output if dummy records

fwrite (Sctree [winner] . data, sizeof (element) , 1, out) ;
last—key = tree[winner].data.key;

signal to end proccessing

}
fread(&tree[winner].data,sizeof(element),1,in);
if(feof(in)) { /'^ signal to end proccessing */

winner—run = max—runs + 1;
tree[winner].data.run = winner—run;

last—key) {

} 
else {

if (tree[winner].data.key 
winner—run++;
tree[winner].data.run = winner—run; 
max—runs = winner—run;

}
else

tree[winner].data.run = current—run;
} 
/*  
parent 
while (parent) { 

loser - tree[parent].loser; 
if (tree[loser].data.run <
(tree[loser].data.run == winner—run && 
tree[loser].data.key 

temp = winner;

adjust tree
(k + winner) / 2;

*/

winner—run I I

tree[winner].data.key)) {
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winner = tree[parent].loser; 
tree[parentj.loser = temp; 
winner—run = tree[winner].data.run;

}
parent /= 2;

}
}

)

Program 7.21: Run generation using a loser tree

FILE 
{

*open—input(char *source—name)

FILE
source 
if ( 1 source) {

fprintf(stderr, "File %s cannot be opened 
for input\n", source—name) ;
exit(1);

source;
= fopen(source—name, "rb");

"File

*

}
return source;

}

Program 7.22: open-input function

The for(;;) loop in tree-runs repeatedly plays the tournament, outputting records 
and restructuring the tree. To correctly set up the tree we create a fictitious run num
bered 0. (The for loop prior to the for(;;) loop does this.) Thus, we have tree[i].data.run 
= 0 for each of the k records. Since all but one of these records must be a loser exactly 
once, the initialization of tree[ijdoser = i sets up a loser tree with tree[Q].data as the 
winner. Once initialized, the for(;;) loop can correctly set up the loser tree for run 1. 
The test if(winner-run) suppresses the output of the k fictitious records making up run 0. 
We use the variable last-key to determine whether or not we can output the new record 
input, tree[winnerj.data, as part of the current run. If tree[winner].data.key < last-key 
then tree[winnerj.data is smaller than the last outputted record. Therefore, we cannot 
output it as part of the curent run. When we readjust the tree, a record with a lower run 
number wins over a record with a higher run number. When the run numbers are equal, 
the record with the lower key value wins. This ensures that records come out of the tree 
in nondecreasing order of their key values. We use max-runs to terminate the algorithm. 
Thus, when we run out of input, we introduce a record with run number max-runs + 1. 
When this record is ready for output, the algorithm terminates. We may easily verify 
that when the input file is already sorted, only one run is generated.
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Analysis of run-generation". On the average, the run size for tree-runs is almost 2k. 
The time required to generate all the runs for an n record input file is O(n log k}. We 
may speed up the algorithm slightly by explicitly initializing the loser tree using the first 
k records of the input file rather than k fictitious records. In this case we may remove the 
if statement that suppresses output of these records. □

7.11.5 Optimal Merging Of Runs

The runs generated by run_generation may not be of the same size. When runs are of 
different size, the run merging strategy employed so far (i.e., make complete passes over 
the collection of runs) does not yield minimum merge times. For example, suppose we 
have four runs of length 2, 4, 5, and 15, respectively. Figure 7.36 shows two possible 
ways to merge these runs using a series of two-way merges. The round nodes represent a 
two-way merge with the data in the children nodes as input. The square nodes represent 
the initial runs. We refer to the round nodes as internal nodes and the square ones as 
external nodes. Each figure is a merge tree.

and

Figure 7.36: Example trees

In the first merge tree, we begin by merging the runs of size two and four to obtain 
a run of size six. Next, we merge this run with the run of size five to obtain a run of size 
11. Finally, we merge the run with length 11 with the run of size 15 to obtain the desired 
sorted run of size 26. When we merge by using the first merge tree, we merge some 
records only once, while others may be merged up to three times. In the second merge 
tree, we merge each record exactly twice. This corresponds to the strategy in which we 
repeatedly make complete merge passes over the data.

The number of merges that involve an individual record is given by the distance of 
the corresponding external node from the root. For example, the records in the run of 15 
records are merged only once for the first tree of Figure 7.36 and twice for the second 
tree of Figure 7.36. Since the time for a merge is linear in the number of records being 
merged, we obtain the total merge time by summing the products of the run lengths and 
the distance from the root of the corresponding external nodes. We call this sum the 
weighted external path length. For the two trees of Figure 7.36, the respective weighted
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external path lengths are:

2-3 + 4-3 + 5-2+15-l=43

and

2-2 + 4-2 + 5-2+15-2 = 52.

The cost of a A^-way merge of n runs of length <7,, 1 < Z < n is minimized by using a 
merge tree of degree k which has minimum weighted external path length. Although we 
shall explicitly consider only the case k = 2, we can easily generalize to the case k > 1 

the exercises).
A very nice solution to the problem of finding a binary tree with minimum 

weighted external path length has been given by D. Huffman. We simply state his algo
rithm and leave the correctness proof as an exercise. The following type declarations are 
assumed:

typedef struct tree—node *tree —pointer; 
typedef struct tree—node {

tree—pointer left—child;
int weight;
tree—pointer right—child;

};
tree-pointer tree; 
int n;

The huffinan function (Program 7.23) begins with n extended binary trees, each 
containing one node. These are in the array heap []. Each node in a tree has three fields: 
weight, left-child, and right-child. The single node in each of the initial extended 
binary trees has as weight of one of the ^, ’s. During the course of the algorithm, for any 
tree in heap with root node tree and depth greater than 1, tree -> weight is the sum of 
the weights of all external nodes in tree. The huffinan function uses the functions least 
and insert; least finds a tree in heap with minimum weight and removes it from list; 
insert adds a new tree to list. These are simply the delete min and insert operations on a 
min heap. The function initialize initializes the min heap. As discussed in Section 7.7, 
this can be done in linear time.

We illustrate the way this algorithm works by an example. Suppose we have the 
weights = 2, <72 = 3, ^3 = 5, <74 = 7, = 9, and q^, = 13. The sequence of trees we
would get is given in Figure 7.37 (the number in a circular node represents the sum of 
the weights of external nodes in that subtree).

The weighted external path length of this tree is:

2-4 + 3- 4 + 5- 3+13-2 + 7- 2 + 9- 2 = 93
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void huffman(tree—pointer heap[], int n) 

/■^ heap is a list of n single node binary trees
tree—pointer tree;
int i;
/*
initialize(heap,

create a new tree by combining the trees with the

* /

}

initialize min heap 
n) ;

*/

/■^ 
smallest weights until one tree remains

for (i = 1; i 
tree

i++) {
(tree—pointer)

n;

malloc(sizeof(tree—node));
if (IS-FULL(tree)) {

fprintf(stderr, "The memory is full\n");
exit(1);

}
tree
tree->right—child = least(heap, n-i);
tree->weight = tree->left—child->weight + 
tree->right—child->weight ;
insert(heap,n-i-1,tree);

left—child = least(heap, n-i+1);

}

Program 7.23: Huffman function

In comparison, the best complete binary tree has weighted path length 95.

Analysis of huffman'. Heap initialization takes O(n) time. The main for loop is executed 
n - 1 times. Each call to least and insert requires only O(log n) time. Hence, the asymp
totic computing time for the algorithm is O(n log n). □

EXERCISES

1. (a) n records are to be sorted on a computer with a memory capacity of 5 
records (S
input/output buffers. The input is on disk and consists of m runs. Assume 
that each time a disk access in made the seek time is and the latency time 
is ?/. The transmission time is t, per record transmitted. What is the total 
input time for phase 11 of external sorting if a k-w&y merge is used with

n). Assume that the entire S record capacity may be used for
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A
(b) (c)(a)

39

16

10

5

23

(d) (e)

Figure 7.37: Construction of a Huffman tree

internal memory partitioned into I/O buffers so as to permit overlap of input, 
output and CPU processing as in algorithm buffering!

(b) Let the CPU time needed to merge all the runs together be tcpu (we may 
assume it is independent of k and hence constant). Let = 80 ms, ti = 2()ms, 
n - 200,000, m - 64, z, = 10“^ sec/record, .S’ = 2000. Obtain a rough plot 
of the total input time, 
which tcpu =

2. Modify run_generation so that it initializes the loser tree using the first k records 
rather than k fictitious records.

Show that function Huffman correctly generates a binary tree of minimal 
weighted external path length.

(b) When n runs are to be merged together using an m-way merge, Huffman’s 
method generalizes to the following rule: First add (1 - n) % (m - 1) runs 
of length zero to the set of runs. Then repeatedly merge together the m shor
test remaining runs until only one run is left. Show that this rule yields an 
optimal merge pattern for m-way merging.

versus k. Will there always be a value of k for

3. (a)
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Design and Analysis, Addison-Wesley, Reading, Massachusetts, 1987.

7.13

1.

2.

3.

4.

ADDITIONAL EXERCISES

[Count About the simplest known sorting method arises from the observation 
that the position of a record in a sorted list depends on the number of records with 
smaller keys. Associated with each record there is a count held used to determine 
the number of records that must precede this one in the sorted list. Write an algo
rithm to determine the count of each record in an unordered list. Show that if the 
list has n records, then all the counts can be determined by making at most n{ri - 
l)/2 key comparisons.

Write a function similar to table sort to rearrange the records of a list if with each 
record we have a count of the number of records preceding it in the sorted list (see 
the preceding exercise). What is the complexity of your algorithm?

[Exchange sort\ Another simple sorting technique works by exchanging adjacent 
elements that are out of order. The sort is frequently called a bubble sort because 
at each iteration the current highest element bubbles to the highest unsorted posi
tion of the array. Write a function that implements exchange sort. What is its 
computing time?

[Exchange sort] We can take advantage of the fact that exchange sort makes very 
few exchanges when the input sequence is in nearly sorted order. This requires 
adding an "exchange" flag to the outer loop. The flag holds TRUE if an exchange 
was made during the current iteration and FALSE if no exchange took place. The 
sort terminates when the end of the list is encountered or the flag becomes FALSE. 
Rewrite the exchange sort to take into account this variation.
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5.

6.

7.

[Shaker sori] This is also a variation of exchange sort in which the record with the 
highest key is bubbled into the last list position on the first iteration. On the 
second iteration, the record with the lowest key is placed in the first position. The 
sort alternates in this fashion until the list is sorted. Write a function that performs 
a shaker sort. What is its computing time?

Write the status of the list L = (12, 2, 16, 30, 8, 28, 4, 10, 20, 6, 18) after each 
phase of the following algorithms:

(a)

(b)

(c)

(d)

(e)
Assume you are working in the census department of a small town where the 
number of records, about 3000, is small enough to fit into the internal memory of a 
computer. All the people currently living in this town were born in the United 
States. There is one record for each person in this town. Each records contains:

(a)

(b)

(c)

insertion sort

quicksort 

mergesort 

heapsort

radixsort with radix = 10

the state in which the person was born 

the person’s county of birth 

the name of the person.

How would you produce a list of all persons living in this town? The list is to be 
ordered by state. Within each state the persons are to be listed by their counties, 
the counties being arranged in alphabetical order. Justify any assumptions you 
may make.



CHAPTER 8

HASHING

8.1 THE SYMBOL TABLE ABSTRACT DATA TYPE

We have all used a dictionary, and many of us have a word processor equipped with a 
limited dictionary, that is, a spelling checker. In this chapter, we consider the dictionary, 
as an ADT. Examples of dictionaries are found in many applications, including the spel
ling checker, the thesaurus, the data dictionary found in database management applica
tions, and the symbol tables generated by loaders, assemblers, and compilers.

In computer science, we generally use the term symbol table rather than diction
ary, when referring to the ADT. Viewed from this perspective, we define the symbol 
table as a set of name-attribute pairs. The characteristics of the name and attribute vary 
according to the application. For example, in a thesaurus, the name is a word, and the 
attribute is a list of synonyms for the word; in a symbol table for a compiler, the name is 
an identifier, and the attributes might include an initial value and a list of lines that use 
the identifier.

Generally we would want to perform the following operations on any symbol 
table:

(1) determine if a particular name is in the table
(2) retrieve the attributes of that name
(3) modify the attributes of that name
(4) insert a new name and its attributes

395
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(5) delete a name and its attributes.

Structure 8.1 provides the complete specification of the symbol table ADT.

structure SymbolTable(SymTab) is
objects: a set of name-attribute pairs, where the names are unique.
functions:

for all name e Name, attr e Attribute, symtab g SymbolTable, max-size g integer.

SymTab QxQ3XQ{max-size}

Boolean lsln(symtab, name)

Attribute Find(symtab, name)

SymTab XnsQXt^symtab, name, attr)

SymTab TioiQtQ^symtab, name)

create the empty symbol table 
whose maximum capacity is max-size. 
if (name is in symtab) 
return TRUE
else return FALSE.
if {name is in symtab)
return the corresponding attribute
else return null attribute.
if (name is in symtab)
replace its existing attribute with attr 
else insert the pair {name, attr) 
into symtab.
if {name is not in symtab)
return
else delete {name, attr) from symtab.

Structure 8.1: Abstract data type SymbolTable

Although Structure 8.1 lists several operations, there are only three basic opera
tions on symbol tables: searching, inserting, and deleting. Therefore, when choosing a 
symbol table representation, we must make sure that we can implement these operations 
efficiently. For example, we could use the binary search tree introduced in Section 5.7 
to represent a symbol table. If our search tree contained n identifiers, the worst case 
complexity for these operations would be 0{n). In Chapter 10 we introduce several 
refinements of binary search tree that reduce the time per operation to O(log n). In this 
chapter we examine a technique for search, insert, and delete operations that has very 
good expected performance. The technique is referred to as hashing. Unlike search tree 
methods which rely on identifier comparisons to perform a search, hashing relies on a 
formula called the hash function. We divide our discussion of hashing into two parts: 
static hashing and dynamic hashing.
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8.2 STATIC HASHING

8.2.1 Hash Tables

In static hashing, we store the identifiers in a fixed size table called a hash table. We use 
an arithmetic function, /, to determine the address, or location, of an identifier, x, in the 
table. Thus,/(x) gives the hash, or home address, of x in the table. The hash table ht is 
stored in sequential memory locations that are partitioned into b buckets, 
/2r[0],... , ht [b - 1]. Each bucket has 5 slots. Usually 5 = 1, which means that each 
bucket holds exactly one record. We use the hash function f(x) to transform the 
identifier x into an address in the hash table. Thus, / (x) maps the set of possible 
identifiers onto the integers 0 through b - 1. If we limit the length of identifiers to six 
characters, where the first character must be a letter and the remaining characters can be 

a letter or a decimal digit, then there are T = ^26 x 36' > 1.6 x 10^ distinct possible 
(=0

values for x. However, any reasonable application would never have this many 
identifiers. We use T, as well as b and 5, to determine the identifier and loading density 
of a hash table. Later we will use these statistics to estimate the efficiency of hashing 
operations.

Definition: The identifier density of a hash table is the ratio n/T, where n is the number 
of identifiers in the table. The loading density or loading factor of a hash table is a = 
n/{sb). □

Since the number of buckets b in a hash table is usually several orders of magni
tude lower than the total number of possible identifiers T, the hash function / must map 
several different identifiers into the same bucket. Two identifiers, i\ and i^, are 
synonyms with respect to/if/(/i) =/(/2)- enter distinct synonyms into the same 
bucket as long as the bucket has slots available. An overflow occurs when we hash a 
new identifier, /, into a full bucket. A collision occurs when we hash two nonidentical 
identifiers into the same bucket. When the bucket size is 1, collisions and overflows 
occur simultaneously.

Example 8.1: Consider the hash table ht with b = 26 buckets and 5 = 2. We have n = 10 
distinct identifiers, each representing a C library function. This table has a loading fac
tor, a, of 10/52 = 0.19. The hash function must map each of the possible identifiers onto 
one of the numbers, 0-25. We can construct a fairly simple hash function by associating 
the letters, a ~z, with the numbers, 0-25, respectively, and then defining the hash func
tion, /U), as the first character of x. Using this scheme, the library functions acos, 
define, float, exp, char, atan, ceil, floor, clock, and ctime hash into buckets 0, 3, 5, 4, 2, 
0, 2, 5, 2, and 2, respectively. Figure 8.1 shows the first 8 identifiers entered into the 
hash table.



398 Hashing

SlotO
0 
T
2
3
4
5
6

acos

char 
define
exp 
float

Slot 1
atan

ceil

floor

25

Figure 8.1: Hash table with 26 buckets and two slots per bucket

The identifiers acos and atan are synonyms, as are float and floor, and ceil and 
char. The next identifier, clock, hashes into the bucket Since this bucket is full, 
we have an overflow. Where in the table should we place clock so that we may retrieve it 
when necessary? We consider various solutions to the overflow problem in Sections 
8.2.3. and 8.2.4 □

Assume, for a moment, that no overflows occur. Then the time required to enter, 
delete, or search for identifiers using hashing depends only on the time required to com
pute the hash function and to search one bucket. Since the bucket size is usually small, 
we may use a sequential search to look for an identifier within a bucket. Hence, the time 
required to enter, delete, or search for identifiers does not depend on the number of 
identifiers n in use; it is 0(1).

Our choice of a hash function in Example 8.1 is not well suited for most applica
tions since a large number of collisions and overflows is likely. For example, we have 
already seen that many C functions begin with the same letter; the same is true of vari
able names. Ideally, we would like to choose a hash function that is both easy to com
pute and produces few collisions. Unfortunately, since the ratio h/T is usually small, we 
cannot avoid collisions altogether.

8.2.2 Hashing Functions

A hash function, f, transforms an identifier, x, into a bucket address in the hash table. As 
mentioned above, we want a hash function that is easy to compute and that minimizes 
the number of collisions. Although the hash function we used in Example 8.1 was easy 
to compute, using only the first character in an identifier is bound to have disastrous 
consequences. We know that identifiers, whether they represent variable names in a 
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program, words in a dictionary, or names in a telephone book, cluster around certain 
letters of the alphabet. To avoid collisions, the hash function should depend on all the 
characters in an identifier. It also should be unbiased. That is, if we randomly choose an 
identifier, x, from the identifier space (the universe of all possible identifiers), the proba
bility that f (x) = i is \/b for all buckets i. This means that a random x has an equal 
chance of hashing into any of the b buckets. We call a hash function that satisfies this 
property a uniform hash function.

There are several types of uniform hash functions, and we shall describe four of 
them. We assume that the identifiers have been suitably transformed into a numerical 
equivalent. (Later we will describe a simple transformation.)

Mid-square

The middle of square hash function is frequently used in symbol table applications. We 
compute the function by squaring the identifier and then using an appropriate number 
of bits from the middle of the square to obtain the bucket address. (We assume that the 
identifier fits into one computer word.) Since the middle bits of the square usually 
depend upon all the characters in an identifier, there is a high probability that different 
identifiers will produce different hash addresses, even when some of the characters are 
the same. The number of bits used to obtain the bucket address depends on the table size. 
If we use r bits, the range of the values is 2''. Therefore, the size of the hash table should 
be a power of 2 when we use this scheme.

Division

We obtain a second simple hash function by using the modulus (%) operator. In this 
scheme, we divide the identifier x by some number M and use the remainder as the hash 
address for x. The hash function is:

%M

This gives bucket addresses that range from 0 to M - 1, where M = the table size. The 
choice of M is critical. Recall that when we use the middle of square function f„, the 
table size should be a power of 2. In the division function, if M is a power of 2, then 
/pfx) depends only on the least significant bits of x. Such a choice for M results in a 
biased use of the hash table when several of the identifiers in use have the same suffix. If 
M is divisible by 2, then odd keys are mapped to odd buckets, and even keys are mapped 
to even buckets. Hence, an even M results in a biased use of the table when a majority of 
identifiers are even or when a majority are odd.

Let X = X\X2 and Y = two identifiers each consisting of the characters x,
and X2. If the internal binary representation of xj has value C(X|) and that forx2 has 
value C(x2) ^hen if each character is represented by six bits, the numeric value of X is 
2^C(X]) + C(x2) while that for Y is 2^C(x2) + C(xi). If p is a prime number dividing
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M then

(/d(x) - A(y)) % p = (26 c (X,) % p + c (X2) % p
- 2^C (X2) % p - C {x 1)% p) % p

If p = 3, then

(/d(X) -foaft %P = (64 % 3 e(xi) % 3 -F C(%2) % 3
- 64 % 3 C(X2) %3- C(xi) % 3) % 3

= C(;ri) % 3 C(X2) C(_X2) %3- C(%i) % 3
= 0%3

i.e., permutations of the same set of characters are hashed at a distance a factor of 3 
apart. So, when many identifiers are permutations of each other, a biased use of the table 
results. This happens because 64 % 3 = 1. The same behavior can be expected when 7 
divides M as 64 % 7 = 1.

These difficulties can be avoided by choosing M as a prime number. Then, the 
only factors of M are M and 1. Knuth has shown that w’hen M divides r^ ± a where k and 
a are small numbers and r is the radix of the character set (in the above example r = 64), 
then X % M tends to be a simple superposition of the characters in X. Thus, a good 
choice for M would be: M a prime number such that M does not divide ± a for small k 
and a. Experience indicates that, in practice, it is sufficient to choose M such that it has 
no prime divisors less than 20.

Folding

In this method, we partition the identifier x into several parts. All parts, except for the 
last one have the same length. We then add the parts together to obtain the hash address 
for X. There are two ways of carrying out this addition. In the first method, we shift all 
parts except for the last one, so that the least significant bit of each part lines up with the 
corresponding bit of the last part. We then add the parts together to obtain f (x). This 
method is known as shift folding. For example, suppose that we have divided the 
identifiers into the following parts; xj = 123, x^ - 203, S3 = 241, S4 = 112, and S5 = 20. 
Using shift folding, we would align si through S4 with S5 and add. This gives us a hash 
address of 699.

The second method, known as folding at the boundaries, reverses every other par
tition before adding. For example, suppose the identifiers is divided into the same parti
tions as in shift folding. Using the folding at the boundaries method, we would reverse 
the second and fourth partitions, that is, S2 = 302 and S4 - 211, and add the partitions. 
This gives us a hash address of 897.
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Digit Analysis

The last method we will examine, digit analysis, is used with static files. A static file is 
one in which all the identifiers are known in advance. Using this method, we first 
transform the identifiers into numbers using some radix, r. We then examine the digits of 
each identifier, deleting those digits that have the most skewed distributions. We con
tinue deleting digits until the number of remaining digits is small enough to give an 
address in the range of the hash table. The digits used to calculate the hash address must 
be the same for all identifiers and must not have abnormally high peaks or valleys (the 
standard deviation must be small).

In Section 8.2.4, we compare the various methods used to generate a hash address. 
Of these methods, the one most suitable for general purpose applications is the division 
method with a divisor, A/, such that M has no prime factors less than 20.

8.2.3 Overflow Handling

Linear Open Addressing

There are two methods for detecting collisions and overflows in a static hash table; each 
method using a different data structure to represent the hash table. In this section we dis
cuss the simplest method, referred to as linear open addressing or linear probing, and in 
the next section we introduce chaining.

When we use linear open addressing, the hash table is represented as a one
dimensional array with indices that range from 0 to the desired table size - 1. The com
ponent type of the array is a struct that contains at least a key field. Since the keys are 
usually words, we use a string to denote them. The C declarations creating the hash 
table ht with one slot per bucket are:

#define MAX-CHAR

#define 
typedef

10 /*max  number of characters in 
an identifier*/
max table size-prime number

element

TABLE-SIZE 13 /*  
struct 
char key[MAX—CHAR]; 
/*  other fields 
} element;
hash-table[TABLE-SIZE];

*/

*/

{

Before inserting any elements into this table, we must initialize the table to 
represent the situation where all slots are empty. This allows us to detect overflows and 
collisions when we insert elements into the table. The obvious choice for an empty slot 
is the empty string since it will never be a valid key in any application, init-table (Pro
gram 8.1) shows the initialization function.
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void init—table(element ht[]) 
{

int i ; 
for (i

ht[i].key[0]
0; i TABLE—SIZE;

= NULL;
i++)

}

Program 8.1: Initialization of a hash table

To insert a new element into the hash table we convert the key field into a natural 
number, and then apply one of the hash functions discussed in Section 8.2.2. We can 
transform a key into a number if we convert each character into a number and then add 
these numbers together. (Apparently this is one of the most popular transformation tech
niques, despite the fact that it does not produce a uniform hash function.) The function 
transform (Program 8.2) uses this simplistic approach. (The exercises examine other 
alternatives.) To find the hash adddress of the transformed key, hash (Program 8.2) uses 
the division method.

int transform(char *key)  
{ 
/*
that is within the integer range 

int number - 
while (*key)  

number +=
return number;

simple additive approach to create a natural number

0;

*key++;

}

int hash(char *key)  
{ 
/* transform key to a natural number, and return this 
result modulus the table size

return(transform(key)
*/

Q, 
'O TABLE-SIZE);

}

Program 8.2: Creation of a hash function

We are now ready to insert elements into the hash table. If the slot at the hash 
address is empty, we simply place the new element into this slot. However, if the new 
element is hashed into a full bucket, we must find another bucket for it. The simplest 
solution places the new element in the closest unfilled bucket. We refer to this method
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of resolving overflows as linear probing or linear open addressing. Let us illustrate this 
technique on a 13-bucket table with one slot per bucket. As our data we will use the 
words for, do, while, if, else, and function. Figure 8.2 shows the hash value for each 
word using the simplified scheme discussed above. Inserting the first five words into the 
table poses no problem since they have different hash addresses. However, the last 
identifier, function, hashes to the same bucket as if. Using a circular rotation, the next 
available bucket is at ht [0], which is where we place function (Figure 8.3).

Identifier

for 
do 
while 
if 
else 
function

Additive
Transformation
102+111 + 114
100 + 111
119 + 104 + 105 + 108 + 101
105 + 102
101 + 108 + 115 + 101
102 + 117 + 110 + 99 + 116 + 105 + 111 + 110

Hash

327
211
537
207
425
870

2
3
4

12
9

12

X

Figure 8.2 : Additive transformation

[0]
[1]
[2]
[3]
[4]
[5]
[6]
[7]
18]
19]

[10]
111]
112]

function

for 
do 
while

else

if

Figure 8.3 : Hash table with linear probing (13 buckets, 1 slot/bucket)

To implement the linear probing strategy, we first compute /(x) for identifier x 
then examine the hash tableand then examine the hash table buckets + j}%TABLE-SlZE\.

0 <7 < TABLE-SIZE in this order. Four outcomes can result from the examination of a
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hash table bucket:

(1) The bucket contains x. In this case, x is already in the table. Depending on the 
application, we may either simply report a duplicate identifier, or we may update 
information in the other fields of the element.

(2)

(3)

The bucket contains the empty string. In this case, the bucket is empty, and we 
may insert the new element into it.

The bucket contains a nonempty string other than x. In this case we proceed to 
examine the next bucket.

(4) We return to the home bucket ht [f (r)] (j = TABLE-SIZE}. In this case, the home 
bucket is being examined for the second time and all remaining buckets have been 
examined. The table is full and we report an error condition and exit.

The insertion strategy just discussed is implemented in linear-insert (Program 8.3).

insert the key into the table using the linear probing
*/

void linear—insert{element item, element ht[]) 
{ 
/*
technique, exit the function if the table is full

int i, hash—value;
hash—value = hash{item.key);
i = hash—value;
while (strlen(ht[i].key)) {

if (!strcmp{ht[i].key, item.key)) { 
fprintf(stderr,"Duplicate entry\n"); 
exit{1);

}
i -- (i + 1) % TABLE—SIZE;
if {i == hash—value) {

fprintf(stderr,"The table is full\n");
exit{1);

(i+1) g, •o

}
ht [i] Item;

}

}

Program 8.3: Linear insert into a hash table

Our earlier example shows that when we use linear probing to resolve overflows, 
identifiers tend to cluster together. In addition, adjacent clusters tend to coalesce, thus 
increasing the search time. For example, suppose we enter the C built-in functions acos, 
atoi, char, define, exp, ceil, cos, float, atol, floor, and ctime into a 26-bucket hash table



Static Hashing 405

in that order. For illustrative purposes, we assume that the hash function uses the first 
character in each function name. Figure 8.4 shows the bucket number, the identifier con
tained in the bucket, and the number of comparisons required to insert the identifier. 
Notice that before we can insert atol, we must examine ht [0], . . . Jit [8], a total of nine 
comparisons. This is far worse than the worst case behavior of the search trees we will 
study in Chapter 10. If we retrieved each of the identifiers in ht exactly once, the aver
age number of buckets examined would be 35/11 =3.18 per identifier. Analyses of the 
linear probing method show that the expected average number of identifier comparisons, 
p, required to look up an identifier is approximately (2 - a)/(2 - 2a) where a is the load
ing density. In the above example, a = 11/26 = .42 and p = 1.36. This indicates that the 
average number of probes for a loading density of .42 is 1.36. Thus, although we know 
that the average number of probes is small, the worst case can be large.

bucket 
0
1
2 
3
4 
5
6 
7
8 
9

io

acos 
atoi 
char 
define
exp 
ceil
cos 
float 
atol 
floor 
ctime

buckets searched
1 
2 
T 
T 
T 

4 
5 
3
9
5 
9

X

25

Figure 8.4 : Hash table with linear probing (26 buckets, 1 slot per bucket)

We have just seen that linear open addressing creates clusters of identifiers. These 
clusters tend to merge as we enter more identifiers into the table, thus leading to bigger 
clusters. We can partially curtail the growth of these clusters and hence reduce the aver
age number of probes by using quadratic probing. Whereas, linear probing searches 
buckets (f (x) + i)% h, 0 < i < h - where b is the number of buckets in the table, in 
quadratic probing we use a quadratic function of i as the increment. In particular, we 
carry out the search by examining buckets / (x), (/“(x) 4- r) % Z?, and {J (x) - z ) % b for 
!</<(/?- l)/2. When b is a prime number of the form 4/ -I- 3, where j is an integer, the 
quadratic search described above examines every bucket in the table. (We refer the
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reader interested in the proof to the Radke article cited in the References and Selected 
Readings section.) Figure 8.5 lists some primes of the form 47 + 3.

Prime
3
7

11
19
23
31

2 
0
1
2
4
5
7

Prime
43
59

127
251
503

1019

J
10
14
31
62

125
254

Figure 8.5 : Some primes of the form + 3

We also can reduce the clustering that occurs with linear probing by applying a 
series of hash functions/|,/2 5 ^fb- This method is known as rehashing. We examine 
buckets TKx), !</</?. A third approach for handling bucket overflow, random probing, 
is explored in the exercises.

Chaining

Linear probing and its variations perform poorly because inserting an identifier requires 
the comparison of identifiers with different hash values. For example, in the hash table 
of Figure 8.4, before we could insert atol we had to examine buckets ht [0] to ht [8], even 
though only the first two identifiers collided with atol; the remainder could not possibly 
be in the same bucket as atol. We could have eliminated most of these comparisons if 
we had maintained a list of synonyms for each bucket. To insert a new element we 
would only have to compute the hash address f (x) and examine the identifiers in the list 
for/(x). Since we would not know the sizes of the lists in advance, we should maintain 
them as linked chains. We now require additional space for a link field. Since we will 
have M lists, where M is the desired table size, we employ a head node for each chain. 
These head nodes only need a link field, so they are smaller than the other nodes. We 
maintain the head nodes in ascending order, 0, • • • , A/ - 1 so that we may access the 
lists at random. The C declarations required to create the chained hash table are:

#define MAX-CHAR 10 /*  
ttdefine TABLE-SIZE 13 /*
#define IS-EULL(ptr) (!(ptr))

10 / maximum identifier size*/  
prime number */
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typedef

typedef 
typedef

{struct
char key[MAX—CHAR] ;
/*  other fields */  other fields 
} element;

★struct list 
struct list { 
element item; 
list—pointer link; 
} ;

list—pointer;

list—pointer hash—table[TABLE—SIZE];

1 + a/2,

The function chain-insert (Program 8.4) implements the chaining strategy. The 
function first computes the hash address for the identifier. It then examines the 
identifiers in the list for the selected bucket. If the identifier is found, we print an error 
message and exit. If the identifier is not in the list, we insert it at the end of the list. If 
the list was empty, we change the head node to point to the new entry.

Figure 8.6 shows the chained hash table corresponding to the linear table found in 
Figure 8.4. The number of probes needed to search for any of the identifiers is now one 
each for acos, char, define, exp and float; two each for atoi, ceil, and float; three each 
for atol and cos; and four for ctime. The average number of comparisons is now 21/11 = 
1.91. The expected number of identifier comparisons for a chained table is 
where a is the loading density n/b (b = number of headnodes). For a = 0.42, the 
expected number of probes is 1.21; for a = 1, it is about 1.5.

The results of this section and the last suggest that the performance of a hash table 
depends only on the method used to handle overflows, that is, chaining or linear probing. 
As long as a uniform hash function is used, the performance is independent of the hash 
function. Although this is true if we randomly select identifiers from the identifier space, 
it is not true in practice. In practice, our choice of identifiers is biased since we fre
quently use identifiers that have a common suffix or prefix or are simple permutations of 
other identifiers. Thus, in practice we would expect the choice of a hash function to 
affect hash table performance. The table of Figure 8.7 presents the results of an empiri
cal study conducted by Lum, Yuen, and Dodd. The values in each column give the aver
age number of bucket accesses made in searching eight different tables with 33,575, 
24,050, 4909, 3072, 2241, 930, 762, and 500 identifiers each. As expected, chaining per
forms better than linear open addressing. Examining the performance of the various 
hash functions, we can see that division is generally superior. Therefore, for a general 
application, this is the preferred method. The divisor should be a prime number, 
although it is sufficient to choose a divisor that has no prime factors less than 20. Notice 
that the table also gives the theoretical expected number of bucket accesses based on 
random keys.
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void chain—insert(element item, list—pointer ht[]) 
{ 
/■^ insert the key into the table using chaining

int hash—value = hash(item.key);
list—pointer ptr,trail-KULL,lead-hc[hash—value];
for (; lead; trail = lead, lead = lead->link)

if (!strcmp(lead->item.key,item.key)) {
fprintf(stderr, "The key is in the tableXn");
exit(1);

lead, lead

}

}
}
ptr
if (IS-FULL(ptr)) {

fprintf(stderr, "The memory is full\n");
exit(1);

(list—pointer)malloc(sizeof(list));

}
ptr->item 
ptr—>link 
if (trail)

trail->link = ptr;
else

ht[hash—value] = ptr;

i t em ; 
NULL;

Program 8.4: Chain insert into a hash table

[0] -> acos -> atoi -> atol
[1] -> NULL
[2] -> char -> ceil -> cos -> ctime
[3] -> define
[4] -> exp
[5] -> float -> floor
[6] -> NULL

[25] -> NULL

Figure 8.6: Hash chains corresponding to Figure 8.4
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a=
b

.50 .75 .90 .95

Hash Function Chain

mid square 
division 
shift fold 
bound fold 
digit analysis 
theoretical

1.26
1,19
1.33
1.39
1.35
1.25

Open

1.73
4.52

21.75
22.97

4.55
1.50

Chain Open Chain

1.40
1.31
1.48
1.57
1.49
1.37

9.75
7.20

65.10
48.70
30.62

2.50

1.45
1.38
1.40
1.55
1.52
1.45

Open

37.14
22,42
77,01
69,63
89.20
5.50

Chain

1.47
1.41
1.51
1.51
1.52
1.48

Open

37.53
25.79

118.57
97.56

125.59
10.50

(Adapted from V. Lum, P. Yuen, and M. Dodd, CACM, 1971, Vol. 14, No. 4)

Figure 8.7: Average number of bucket accesses per identifier retrieved.

8.2.4 Theoretical Evaluation of Overflow Techniques

The experimental evaluation of hashing techniques indicates that they generally perform 
better than conventional techniques, such as binary search trees. However, the worst 
case performance for hashing can be very bad. In the worst case, an insertion in a hash 
table with n identifiers may take O(/i) time. In this section, we present a probabilistic 
analysis for the expected performance of the chaining method and state, without proof, 
the results of similar analyses for the other overflow handling methods. First, we formal
ize what we mean by expected performance.

Let ht [ b ] be a hash table with b buckets, each bucket having one slot. Let / be a 
uniform hash function with range fO, b - 1 ]. If we enter n identifiers x j, x^, • • • , into 
the hash table, then there are b^ distinct hash sequences /(X|), f {x£}, • • • , /(x^). 
Assume that each of these is equally likely to occur. Let denote the expected number 
of identifier comparisons needed to locate a randomly chosen x,-, !</<«. Then, is 
the average number of comparisons needed to find the yth key Xy, averaged over 
1 < j < n, with each j equally likely and averaged over all hash sequences, assuming 
each of these also to be equally likely. Let (/„ be the expected number of identifier 
comparisons when a search is made for an identifier not in the hash table. This hash 
table contains n identifiers. The quantity may be defined in a manner analogous to 
that used for

Theorem 8.1 Let a = n/h be the loading density of a hash table using a uniform hash 
function/. Then:

(1) for linear open addressing:
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1
1 +2

]
(1-a)2

i
2

1 +Sn
1

1-a

(2) for rehashing, random probing, and quadratic probing:

1/(1-a)

1
Sn - — loge(l-a)

a

(3) for chaining:

Un = a

= 1 + Qf/1

Proof: Exact derivations of Un and are fairly involved and can be found in Knuth’s 
book The Art of Computer Programming: Sorting and Searching. Here, we present a 
derivation of the approximate formulas for chaining. First, assume that we wish to insert 
the identifier x, where f (x) = i and chain i has k nodes, excluding the headnode. If x is 
not on the chain, k comparisons are made. If x is j nodes away from the head node, 
1 < j < k, j comparisons are made. When the n identifiers distribute uniformly over the b 
possible chains, the expected number in each chain is n/b = a. Since Un = expected 
number of identifiers on a chain, [/„ = a. When we enter the /th identifier X/ into the 
table, the expected number of identifiers on any chain is (/ - 1)//?. Hence, the expected 
number of comparisons needed to insert X/ after all n identifiers have been entered is 
1 + a - lyfc. (This assumes that new entries are added to the end of the chain.) There
fore:

Sn = n

n
^{{ + (i-iyb} = i + 
i=\

n - 1
2b

a
2

EXERCISES

1. Why does transform (Program 8.2) produce a biased hash function? What 
transformation would you suggest?



Static Hashing 411

2. Create a C function linear-search that returns -1 if an identifier, x, is not in the 
hash table, and the bucket address of x if x is in the table.

3. Write a C function that deletes identifier x from a hash table that uses hash func
tion /and linear open addressing to resolve collisions. Show that simply setting 
the slot previously occupied by x to an empty string does not solve the problem. 
How must you modify linear-search so that a correct search is made in the situa
tion when deletions are permitted? Where can a new identifier be inserted?

4. (a) Show that if quadratic searching is carried out in the sequence (/(x) + q^\ 
(/(x)-I-(^ - 1/), , (/(x) + 1), /(x), (f(x)- 1), , (/(x)-<?2) with
q = {b - l)/2 then the address difference mod b between successive buckets being 
examined is:

b — 2, b — 4, b — 6, • • •,5, 3, 1, 1, 3, 5, ,b — 6, b — b — 2

5.

Write an algorithm to insert the identifier x into a hash table contain b buck
ets. Use quadratic hashing to resolve overflows.

[Morris 1968] In random probing, the search for an identifier, x, in a hash table 
with b buckets is carried out by examining buckets /(x), (/{x)-i-5(0) % b, 
1 <i < Z?-l, where 5(0 is a pseudorandom number. The random number generator 
must generate every number from 1 to b - 1 exactly once.

(a)

(b)

Show that for a table of size 2'", the following sequence of computations 
generates numbers with this property:

6.

7.

(b)

Initialize R to 1 each time the search routine is called.
On successive calls for a random number do the following:

R=R^ 5
R -.= low order r + 2 bits of R
S{i') — R/^

Write an algorithm, incorporating the above random number generator, to 
insert an identifier into a hash table using random probing and the middle of 
square hash function

It can be shown that for this method, the expected value for the average number of 
comparisons needed to search for x is -(1 /ex)Iog( 1 - a) where a is the loading fac
tor.

Write an algorithm to list all the identifiers in a hash table in lexicographic order. 
Assume the hash function /is/(x) = first character of x and linear probing is 
used. How much time does your algorithm take?

Let the binary representation of identifier x be XiX2. Let |x | denote the number of 
bits in X and let the first bit of X| be 1. Let |x|| = [ |x|/2 ] and | X2I = Ll-^l^ J ■ 
Consider the following hash function:
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f {x} = middle k bits of (xj XORX2)

where XOR is the exclusive or operator. Is this a uniform hash function if 
identifiers are drawn at random from the space of allowable C identifiers? What 
can you say about the behavior of this hash function in a real symbol table usage?

8. [T. Gonzalez] Design a symbol table representation which allows you to search, 
insert, and delete an identifier x in 0(1) time. Assume that 0<x < m and that 
m + n units of space are available where n is the number of insertions to be made. 
(Hint: Use two arrays a [az] and b[m], where a[Z] will be the zth identifier 
inserted into the table. If x is the zth identifier inserted, then b [x ] = z.) Write algo
rithms to search, insert, and delete identifiers. Note that you cannot initialize 
either a or b to zero as this would take O(az -I- m) time. Note that x is an integer.

9. [T. Gonzalez] Let S = [xj, X2,... , x„) and T = (y 1, ^2, • • ■ ^r) be two sets. 
Assume 0 < x, < m, 1 < z < az and 0 < y,- < azz, 1 < z < r. Using the idea of Exercise 
8, write an algorithm to determine if 5 c T. Your algorithm should work in 
0(r + n) time. Since S = T iff 5 c T and T qS, this implies that one can deter
mine in linear time if two sets are equivalent. How much space is needed by your 
algorithm?

10. [T. Gonzalez] Using the idea of Exercise 9, write an O(az + m) time algorithm to 
carry out the function of algorithm verify2 of Section 7.1. How much space does 
your algorithm need?

Show that when linear open addressing is used:11.

1 
n

n~\

Using this equation and the approximate equality:

1
2 1 +

1
(l-a)2

where a = — 
b

show that:

1 +Sn

2
1

(1 - a)

12. [Guttag] The following set of operations defines a symbol table that handles a 
language with block structure. Write a specification for this data type in the style 
of Structure 8.1.
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INIT 
ENTERS 
ADD 
LEAVES 
RETRIEVE 
ISINS

creates an empty table
indicates a new block has been entered
places an identifier and its attributes in the table
deletes all identifiers that are defined in the innermost block
returns the attributes of the most recently defined identifier
returns true if the identifier is defined in the innermost block else false

13. § [Programming project] Create a menu-driven, user-friendly program that 
manages the supply list of Widgets, Inc. Widgets, Inc., keeps the following infor
mation on their supplies:

♦ 5-digit part number (the key)

• 10-character description of part

• reorder level

• size of current inventory

You must maintain the supply list using a chained hash table. In addition, Widg
ets, Inc., employees must be able to perform the following operations:

(a)

(b)

(c)
(d)

(e)

add a new part to the inventory 

delete a part from the inventory 

search for a part

change the key field of a part 

change any of the remaining fields

8.3 DYNAMIC HASHING

One of the most important classes of software is the database management system or 
DBMS. In a DBMS the user enters a query using some language (possibly SQL) and the 
system translates it and retrieves the resulting data. Fast access time is essential since a 
DBMS is typically used to hold large sets of information. Another key characteristic of 
a DBMS is that the amount of information can vary a great deal over time. Various data 
structures have been suggested for storing the data in a DBMS. In this section, we exam
ine an extension of hashing that permits the technique to be used by a DBMS.

Traditional hashing schemes as described in the previous sections are not ideal 
because we must statically allocate a portion of memory to hold the hash table. This 
hash table is used to point to the buckets that hold identifiers, or it may actually contain 
the identifiers. In either case, if we allocate a large portion of memory to hold the table, 
we waste space. Yet, if we allocate a minimal amount of memory, we will have to res
tructure the entire file when the data exceeds the capacity of the hash table. This is a very 
time-consuming process. Dynamic hashing, also referred to as extendible hashing, 
retains the fast retrieval time of conventional hashing, while extending the technique so 



414 Hashing

that it can accommodate dynamically increasing and decreasing file size without penalty.
We assume that a file, F, is a collection of records, R. Each record has a key field, 

K, by which it is identified. Records are stored in buckets, or pages as they are called in 
dynamic hashing, whose capacity is p. The algorithms we develop must minimize page 
accesses since pages are usually stored on disk and their retrieval into memory dom
inates any operation. The measure of space utilization is the ratio of the number of 
records, n, divided by the total space, mp, where m is the number of pages.

8.3.1 Dynamic Hashing Using Directories

Consider an example where an identifier consists of two characters and each character is 
represented by 3 bits. Figure 8.8 gives a list of some of these identifiers.

Identifiers
aO 
al 
bO 
bl 
cO 
cl 
c2 
c3

Binary representation
100 000
100 001
101 000
101 001
110 000
110 001
110010
110011

Figure 8.8: Some identifiers requiring 3 bits per character

We would like to place these identifiers into a table that has four pages. Each page can 
hold no more than two identifiers, and the pages are indexed by the 2 bit sequence 00, 
01, 10, 11, respectively. We use the two low-order bits of each identifier to determine 
the page address of the identifier. Figure 8.9(a) shows the placement of aO, bO, c2, al, 
bl, and c3 into the table. Notice that we select the bits from least significant to most 
significant. Branching at the root is determined by the least significant bit. If this bit is 
zero, the upper branch is taken. Otherwise, the lower branch is taken. Branching at the 
next level is determined by the second least significant bit, and so on. aO and bO are in 
the first page since their two low-order bits are 0 and 0. The second page contains only 
c2. To get to this page, we first branch on the least significant bit of c2 (i.e., 0) and then 
on the next bit (i.e., 1). The third page contains al and bl. To get to this page, we first 
branch on the least significant bit of al or bl. This bit is one for both al and bl. Next, 
we branch on the next bit which is zero for both. The last page contains c3, with a bit 
pattern of 11. We use the term trie to denote a binary tree in which we locate an 
identifier by following its bit sequence. (We shall describe tries in greater detail in 
Chapter 10.) Notice that this trie has nodes that always branch in two directions 
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corresponding to 0 or 1. Only the leaf nodes of the trie contain a pointer to a page.

aO, bO

c2

al,bl

c3

aO, bO

c2

al, bl

c5

c3
(a) two level trie on four pages

(b) inserting c5 with overflow

aO, bO

c2

al,cl

bl

c5

c3

(c) inserting cl with overflow

Figure 8.9: A trie to hold identifiers
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Now suppose we try to insert a new identifier, say c5, into Figure 8.9(a). The two 
low-order bits of c5 are 1 and 0, which means that we should place it in the third page. 
However, since a page can hold only two identifiers, an overflow occurs. When this hap
pens, we add a new page and increase the depth of the trie. This is shown in Figure 
8.9(b). If we now insert the identifier cl, an overflow of the page containing al and bl 
occurs. We obtain a new page and divide the identifiers among the two pages according 
to their four low-order bits.

From this example one can see that two major problems exist. First, the access 
time for a page depends on the number of bits needed to distinguish the identifiers. 
Second, if the identifiers have a skewed distribution, the tree is also skewed. Both these 
factors increase the retrieval time. Fagin et al. present a method, which they call exten
dible hashing, for solving these problems. To avoid the skewed distribution of 
identifiers, a hash function is used. This function takes the key and produces a random 
set of binary digits. To avoid the long search down the trie, the trie is mapped to a direc
tory.

A directory is a table of page pointers. In case k bits are needed to distinguish the 
identifiers, the directory has 2^ entries indexed 0, • • •, 2^-1. To find the page for an 
identifier, we use the integer with binary representation equal to the last k bits of the 
identifier. The page pointed at by this directory entry is searched. Figure 8.10 shows the 
three directories corresponding to the three tries in Figure 8.9. The first directory con
tains four entries indexed from 0 to 3 (the binary representation of each index is shown 
in Figure 8.10). Each entry contains a pointer to a page. This pointer is shown as an 
arrow in the figure. The letter above each pointer is a page label. The page labels were 
obtained by labeling the pages of Figure 8.9(a) top to bottom beginning with the label a. 
The page contents are shown immediately after the page pointer. To see the correspon
dence between the directory and the trie, notice that if the bits in the directory index are 
used to follow a path in the trie (beginning with the least significant bit), we will reach 
the page pointed at by the corresponding directory entry.

The second directory contains eight entries indexed from 0 to 7, and the third has 
16 entries indexed from 0 to 15. Page a of the second directory (Figure 8.10(b)) has two 
directory entries (000 and 100) pointing to it. The page contents are shown only once. 
Page b has two pointers to it, page c has one pointer, page d has one pointer, and page e 
has two pointers. In Figure 8.10(c) there are six pages with the following number of 
pointers respectively: 4, 4, 1, 1,2, and 4.

Using a directory to represent a trie allows the table of identifiers to grow and 
shrink dynamically. This, of course, assumes that the operating system can give us more 
pages or return pages to available storage with little or no difficulty. In addition, access
ing any page requires only two steps. In the first step, we use the hash function to find 
the address of the directory entry, and in the second, we retrieve the page associated with 
the address.

Unfortunately, if the keys are not uniformly divided among the pages, the direc
tory can grow quite large. However, most of the entries point to the same pages. To 
prevent this from happening, we cannot use the bit sequence of the keys themselves. 
Instead we translate the bits into a random sequence. This is done using a uniform hash
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00

01

^aO, bO 
c al, bl

10

11

c2 
d c3

(a) 2 bits

000

001

010

Oil

100

101

110

111

^aO, bO 

^al, bl 
b c2

c3

c5

(b) 3 bits

0000-4. aO, bO 
c0001 al, cl

0010-X- c2 

f0011

0100

c3

0101-^ c5 
b

f
OHO

0111

lOOQ

1001

loia
1011

1100

1101

1110

nil

bl

(c) 4 bits

b

e

a a

d

b

e

a

d

b

f

a

e

b

f

Figure 8.10 : Tries collapsed into directories 

function as discussed in the previous section. But, in contrast to the previous section, we 
need a family of hash functions, because, at any point, we may require a different number 
of bits to distinguish the new key. One solution is the family:

hashi'. key {0...2‘-‘), i<i<d

where hashj is simply hashi_\ with either a zero or one appended as the new leading bit 
of the result. Thus, hash (key, z) might be a function that produces a random number of 
i bits from the identifier key.

There are some important twists associated with this approach. For example, sup
pose a page identified by i bits overflows. We allocate a new page and rehash the 
identifiers into those two pages. The identifiers in both pages have their low-order i bits 
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in common. We refer to these pages as buddies. When the number of identifiers in two 
buddy pages is no more than the capacity of a single page, then we coalesce the two 
pages into one.

Suppose a page that can hold only p records now contains p records and a new 
record is to be added. The operating system allocates a new page. All 4- 1 keys are 
rehashed, using 1 more bit and divided among the two pages. If the number of bits used 
is greater than the depth (the number of bits or log2 of the directory size) of the direc
tory, the whole directory doubles in size and its depth increases by 1. If all p -I- 1 records 
are hashed to one of the two pages the split operation has to be repeated. Fortunately, 
this is a fairly rare occurrence. When this happens, the depth of the directory can be 
reduced using a compressed trie as discussed in Chapter 10.

Program 8.5 contains a pseudo-C program that provides many of the details for 
implementing the directory version of dynamic hashing.

stdio.h> 
alloc.h> 
stdlib.h

5 /*

#include
#include
#include
ttdefine WORD—SIZE
#define PAGE-SIZE 10 /*
#define DIRECTORY-SIZE 32 / 
typedef struct page *paddr;  
typedef struct page { 

int local—depth; /*
char *name[PAGE —SIZE]; 
int num—idents; /*  # of identifiers in page 
};

max number of directory bits 
max size of a page 

*
*

max size of directory

page level */

*/

*/
/

/* */

typedef struct { 
char *key;  
/*

/* pointer to string */
other fields

} brecord;
int global—depth; /*  trie height */  
paddr directory[DIRECTORY-SIZE]; /*

*/

trie height
pointers to pages */

•k , short int);

* , paddr);

•k

paddr hash{char 
paddr buddy{paddr); 
short int pgsearch{ char 
int convert{paddr);
void enter{brecord, paddr); 
void pgdelete{char 
paddr find{brecord, char 
void insert{brecord, char 
int size{paddr);

, paddr); 
k ) ;
*> ;
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void coalesce(paddr, paddr); 
void delete(brecord, char

paddr hash(char *key,  short int precision) 
{

key is hashed using a uniform hash function, and the
*/

/ * *
low precision bits are returned as the page address

paddr buddy(paddr index) 
{

Take an address of a page and returns the page's/*
buddy, i.e., the leading bit is complemented */

int size(paddr ptr) 
{

/* return the number of identifiers in the page */

}

}

}

) ;

void coalesce(paddr ptr, paddr buddy) 
{

/* combine page ptr and its buddy into a single page */
}

short int pgsearch(char *key,  paddr index) 
{

}

Search a page for a key.
*/

/*  
otherwise return 0

If found return 1

int convert(paddr ptr) 
{

Convert a pointer to a page to an equivalent/*  
integer */

}

void enter(brecord r, paddr ptr) 
{

Insert a new record into the page pointed
*/

/*
at by ptr

}

void pgdelete{char *key,  paddr ptr)
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{
remove the record with key, key, from the page/*  

pointed to by ptr */
)

short int find(char *key,  paddr 
{

*ptr)

return 0 if key is not found and 1 if it is./*  return 0 if key is not found and 1 if it is. Also, 
return a pointer (in ptr) to the page that was searched. 
Assume that an empty directory has one page. */

}

paddr index;
int intindex;

index = hash(key, global—depth); 
intindex = convert(index);
*ptr = directory[intindex]; 
return pgsearch(key, ptr);

void insert(brecord r, char *key)  
{

paddr ptr;
if find(key, &ptr) { 

fprintf(stderr. "The 
table.in");

key IS already in the

exit(1);
}
if (ptr->num—idents != PAGE-SIZE) { 

enter(r,ptr);
ptr->num—idents++;

}
else {

/* Split the page into two, insert the new key, and 
update global—depth if necessary.
If this causes global—depth to exceed WORD—SIZE 
then print an error and terminate. */

};
}

void delete(brecord r, char *key)  
{ 
/* find and delete the record r from the file 

paddr ptr;
*/
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if (!find(key, &ptr)) {
fprintf(stderr,"Key is not in the table.\n"); 
return; / * non-fatal error */

}
pgdelete(key,ptr);
if (size(ptr) + size(buddy(ptr)) 

coalesce(ptr,buddy(ptr));
PAGE—SIZE)

}

void main(void) 
{
}

Program 8.5: Dynamic hashing

8.3.2 Analysis of Directory Dynamic Hashing

The most important feature of the directory version of extendible hashing is the guaran
tee that retrieving any page requires only two disk accesses. Thus, its performance is 
very good. However, we pay for this performance in space usage. Recall that adding 
identifiers that are not uniformly distributed can double the directory size. Since many 
of the pointers could point to the same page, we have a lot of wasted storage.

A second criterion for judging hashing schemes is the space utilization. This is 
defined as the ratio of the number of records stored in the table divided by the total 
amount of space allocated. Several researchers (Fagin, Larson, and Mendelson) have 
analyzed this measure for different variations of dynamic hashing. They have all 
reached similar conclusions, namely, that without any special strategies for handling 
overflows, the space utilization is approximately 69 percent. Each of their derivations is 
quite complex and rely on assumptions about the distributions of the identifiers. Here we 
will follow the derivation given by Mendelson.

Let L{k} stand for the expected number of leaf nodes needed to hold k records. 
When the records all fit in a single page, L{k} = 1. The interesting case is when k 
exceeds the page size. In this case, the number of records in the two subtrees of the root 
have a symmetric binomial distribution. From this it follows that there will be j keys in 
the left subtree and k - j in the right, each with a given probability, which is:

k 
j
; (1/2)

This implies that the number of leaf pages in the left subtree is L(/) and the 
number in the right subtree is L{k - j}. Thus, one can express L{k} by the formula:

1

./=o2^'

it
' {LG-) + L(/;-7)}=2'-'X

.i=(^

1 k 
J
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Mendelson goes on to show that:

k 
p\n2

It follows that the storage utilization is the number of records k divided by the pro
duct of the page size p and the number of leaf nodes L (k) or that:

utilization = k 
pL(k)

- In2 - 0.69

To see that Mendelson’s estimate is reasonable, suppose there is no overflow stra
tegy other than doubling the directory size. We have a full page with p records and 
attempt to insert ap -t-l’st record, which causes an overflow. With a uniform hash func
tion we now have two pages each containing about p/2 identifiers, or a space utilization 
of 50 percent. After the process of inserting and deleting continues for a while, we 
would expect that a recently split page is at least half full. Thus, space utilization should 
be at least 50 percent, but certainly less than 100 percent.

When a page overflows, it may double the directory size. To avoid this, we intro
duce the concept of overflow pages. Instead of increasing the directory, an overflow 
causes the allocation of a new page. The pointer to this page is stored in the main page. 
Rather than storing new identifiers in the main page, we place them in the overflow page. 
As we shall see, this increases storage utilization, but at the expense of increased 
retrieval time.

Assume that an overflow page is the same size as a regular page and that both 
pages are full with p records, a total of 2p records. Suppose an overflow now occurs. 
We obtain a new page, and distribute the keys among the three pages. The utilization is 
2p/3p or 66 percent. On the other hand, suppose that the overflow page has a capacity of 
p/2 rather than p. If we redistribute the keys as before, then a total of 3p/2 records is 
divided over a capacity of 2p. This produces a utilization of 3/4 = 75 percent. Thus, we 
see that although overflow pages increase utilization, they also increase retrieval time.

Determining the ideal size for the overflow page has been investigated by Larson 
and others. Larson concludes that if a space utilization below 80 percent is sufficient, 
then the size of the overflow pages can vary widely, say, from p to p/2. However, higher 
space utilizations require a successively narrow range of overflow page sizes, because 
utilization begins to oscillate and access time increases significantly. To cope with this 
problem, we could monitor the space utilization of the file, so that when it achieves some 
predetermined amount, say the 80 percent ratio, the algorithm resumes splitting.

We can also analyze the size of the directory in terms of the number of records, n, 
that are stored in the file. Fagin estimates this as:

2 [log n 
p\n2 1
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Figure 8.11 contains a table given by Flajolet which shows the expected directory 
size for various numbers of records, n, and page size, p. For example, we would need a 
directory of size 62,500 to store one million records using a page size of 50. This is sub
stantial, and indicates that the directory may have to be stored using auxiliary storage.

n 
H? 
10*  
10’ 
10® 
10’

5
1.5K
25.6K
424. IK
6.9M
lll.llM

10____
0?3K
4.8K
68.2K
1.02M
11.64M

P 
20___
O.IK 
1.7K 
16.8K 
0,26M 
2.25M

50
O.OK 
0.5K
4.1K
62.5K
0.52M

100
O.OK 
0.2K
2.0K
16.8K
0.26M

200 
O.OK 
O.OOK 
l.OK 
8.1K 
0.13M

Figure 8.11 : Directory size given n records and p page size

In the event that the hash function does not evenly distribute the identifiers across 
the pages, more sophisticated techniques are required. Lomet suggests that, in the direc
tory scheme, we do not view pages as of a fixed size, but allow them to grow. Thus, any 
given page may be composed of several subpages. As more identifiers map to this page, 
its storage is expanded. This leads to different strategies for maintaining the identifiers 
within the page. The simplest strategy is to keep the identifiers in the order they were 
entered into the table. However, sequential searching is time consuming, especially as 
the identifier list gets long. An alternate strategy is to treat each subpage as a dynami
cally hashed directoryless structure. We describe its maintenance in Section 8.3.3.

Simulation

One important way to measure the performance of any new data structure is to 
carry out a series of experiments. Each experiment makes use of the algorithms that 
implement the data structure. Various distributions of identifiers are given to the algo
rithms and the resultant behavior is tabulated. In the case of dynamic hashing, we would 
want to monitor (1) access time, (2) insertion time, and (3) total space utilization. The 
factors influencing these attributes are (1) the number of records, (2) the page size, (3) 
the directory size, (4) the size of main memory for holding the directory and identifiers, 
and (5) the time required to process page faults.

Fagin et al. have done such a series of experiments. They found that in all cases 
extendible hashing performed at least as well or better than B-trees, a popular competi
tor. In the case of access time and insertion time, extendible hashing was clearly supe
rior. For space utilization the two methods were about equal.
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8.3.3 Directoryless Dynamic Hashing

Section 8.3.2 assumed that a directory existed that pointed to pages. One criticism of 
this approach is that it always requires at least one level of indirection. If we assume 
that we have a contiguous address space which is large enough to hold all the records, 
we can eliminate the directory. In effect, this leaves it to the operating system to break 
the address space into pages, and to manage moving them into and out of memory. This 
scheme is referred to as directoryless hashing or linear hashing.

Consider the trie in Figure 8.9(a) which has two levels and indexes four pages. In 
the new method, the 2 bit addresses are the actual addresses of these pages (actually they 
are an offset of some base address). Thus, the hash function delivers the actual address 
of a page containing the key. Moreover, every value produced by the hash function must 
point to an actual page. In contrast to the directory scheme where a single page might be 
pointed at by several directory entries, in the directoryless scheme there must exist a 
unique page for every possible address. Figure 8.12 shows a simple trie and its mapping 
to contiguous memory without a directory.

c2

c3

al, bl

aO,bO

00

01

10

11

aO 
bO 
c2

al 
bl 
c3

Figure 8.12 : A trie mapped to a directoryless, contiguous storage

Now what happens when a page overflows? We could double the size of the 
address space, but this is wasteful. Instead, whenever an overflow occurs we add a new 
page to the end of the file, and divide the identifiers in one of the pages between its origi
nal page and the new page. This complicates the handling of the family of hash func
tions somewhat. However, if we had simply added one bit to the result of the hash func
tion, the table would have to be doubled. By adding only a single page, the hash 
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function must distinguish between pages addressed by r bits and those addressed by r +1. 
We will show how this is done in a moment.

Figure 8.13 provides an example of directoryless hashing after two insertions. Ini
tially, there are four pages each addressed by 2 bits (Figure 8.13(a)). Two of the pages 
are full, and two have one identifier each. When c5 is inserted, it hashes to the page 
whose address is 10 (Figure 8.13(b)). Since that page is full, an overflow node is allo
cated to hold c5. At the same time, we add a new page at the end of the storage, rehash 
the identifiers in the first page, and split them between the first and new page. Unfor
tunately, none of the new identifiers go into the new page. The first page and the new 
page are now addressed by 3 bits, not 2 as shown in Figure 8.13(b). In the next step, we 
insert the identifier cl. Since it hashes to the same page as c5, we use another overflow 
node to store it. We add another new page to the end of the file and rehash the identifiers 
in the second page. Once again none go into the new page. (Note that this is largely a 
result of not using a uniform hash function.) Now the first two pages and the two new 
pages are all addressed using three bits. Eventually the number of pages will double, 
thereby completing one phase. A new phase then begins.

00

01

10

11

aO 
bO 
c2

000

01

aO 
bO 
c2

000

al 
bl
c3

10

11

al 
bl 
c3

overflow
P4ge

001

10
c5

11

aO 
bO 
c2

al 
bl 
c3

cl c5

100 100
new page

101
new page

start of expansion 2 
there are 4 pages

(a)

insert c5
page 10 overflows 

page 00 splits 
(b)

insert c l 
page 10 overflows 

page 01 splits 
(c)

Figure 8.13 : An example with two insertions

Consider Figure 8.14, which shows the state of file expansion during the rth phase 
at some time q. At the beginning of the rth phase, there are 2'’ pages all addressed by r
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bits. In the figure, q new pages have been added. The pages to the left of the q line have 
already been split. The pages between the q and r lines are waiting to be split, and the 
pages to the right of the r line have been added during this phase of the process. Each 
page in this section of the file is addressed by r + 1 bits. Notice that the q line indicates 
which page gets split next. The actual modified hash function is given in Program 8.6. 
All pages less than q require r + 1 bits. The function hash {key, r) is in the range 
{0,2''”’) so, if the result is less than q, we rehash using r + 1 bits. This gives us either the 
pages to the left of q or above 2''-!. The directoryless method always requires 
overflows.

pages already split pages not yet split pages added so far

addressed by r bits addressed by r +1 bits
r

addressed by r +1 bits

Q
-------------------- 2'' pages at start --------------------

suppose we are at phase r; there are 2'" pages indexed by r bits

Figure 8.14 : During the rth phase of expansion of directoryless method

One sees that many retrievals require only one access, that is, those that have 
identifiers that are in the page directly addressed by the hash function. However, other 
retrievals might require substantially more than two accesses as one moves along the 
overflow chain. When a new page is added and the identifiers split across the two pages, 
all identifiers including the overflows are rehashed.

We should also point out that the space utilization for this method is not good. As 
can be seen from Figure 8.13, some extra pages are empty and yet overflow pages are 
being used. Litwin has shown that space utilization is approximately 60 percent. He 
offers an alternate strategy pursued in the exercises. The term controlled splitting refers 
to splitting the next page only when storage utilization exceeds a predefined amount. 
Litwin suggests that until 80 percent utilization is reached, other pages continue to 
overflow.

A natural way to handle overflows is to use one of the traditional hashing schemes 
discussed earlier, such as open addressing. Recall that open addressing searches the file 
linearly from the point where the identifier hashes, either looking for the identifier or for 
an open spot.
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if (hash(key,r) 
page = hash(key,r+1); 

else
page = hash(key,r);

if needed, then follow overflow pointers;

q)

Program 8.6: Modified hash function

From the example, one sees that the longest overflow chains occur for those pages 
that are near the end of the expansion phase since they are the last to be split. In con
trast, those pages that are split early are generally underfuli.

EXERCISES

1.

2.

3.

4.

5.

6.

The text points out that nonuniform distributions of keys result in a skewed direc
tory and a waste of directory space. We can avoid this problem in the directory 
scheme if we store the directory as a forest of tries rather than a table. A new key 
is hashed to one of the tries and then its nodes are traversed until a leaf node is 
reached. The leaf node points to the page containing the desired record. Splitting 
is still required. The tries grow and contract with respect to the file. Write out the 
algorithms for maintaining a trie as a directory.

In extendible hashing, given a directory of size d, suppose two pointers point to 
the same page. How many low-order bits do all identifiers share in common? If 
four pointers point to the same page, how many bits do the identifiers have in com
mon?

We can handle overflows in directory dynamic hashing by permitting a page to be 
divided into as many multiple pages as necessary to hold all identifiers that hash to 
that page. We assign a limit on the size of the directory. Once this limit has been 
reached, pages simply continue to grow. Modify the algorithms in Program 8.11 
to implement this strategy.

Prove that in directory-based dynamic hashing a page can be pointed at by a 
number of pointers that is a power of 2.

We have not talked much about how to organize the identifiers within a page for 
fast retrieval. Consider an unordered list, an ordered list, and hashing and com
pare their merits.

The function insert is almost complete except for a few lines of pseudocode. 
Replace the pseudocode by actual C code that places all identifiers in page p into 
the temp area and then rehashes those identifiers back into either page p or q.
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1. Program 8.5 contains a reference to a function coalesce that combines the 
identifiers in two pages into a single page. Using the types and functions already 
defined, write a C version of this function.

8. Take the formula given by Mendelson for the number of leaf pages required to 
store k records in a directory-based dynamic hashing scheme and formally derive 
the approximation that L (k} is about equal to k/{p In 2) where p is the page size.

9. Larson has suggested using open addressing in a directoryless dynamic hashing 
method to handle overflows. The problem is that those pages that have yet to be 
split have the most overflows, but these pages are stored contiguously. Instead, 
Larson suggests that pages be alternately split, so next to an unsplit page is a split 
page. Show how the hash function must be rewritten to handle this scheme.
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CHAPTER 9

HEAP STRUCTURES

9.1 MIN-MAX HEAPS

9.1.1 Definition

A double-ended priority queue is a data structure that supports the following operations:

(1)
(2)

(3)

Insert an element with arbitrary key.

Delete an element with the largest key.

Delete an element with the smallest key.

When only insertion and one of the two deletion operations is supported, we may 
use a min heap or a max heap (see Chapter 5). A min-max heap supports all of the 
operations just described.

Definition: A min-max heap is a complete binary tree such that if it is not empty, each 
element has a field called key. Alternating levels of this tree are min levels and max lev
els, respectively. The root is on a min level. Let x be any node in a min-max heap. If x 
is on a min level then the element in x has the minimum key from among all elements in 
the subtree with root x. We call this node a min node. Similarly, if x is on a max level 
then the element in x has the maximum key from among all elements in the subtree with 

430
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root X. We call this node a max node. □

Figure 9.1 shows an example 12 element min-max heap. The value in each node is 
the key of the element in that node. Notice that we are using the array representation 
discussed in Section 5.2.

7 min

45

30

50

70

30 20 12

10

40

15

max

min

max

9

Figure 9.1 : A 12 element min-max-heap

9.1.2 Insertion Into A Min-Max Heap

Suppose we wish to insert the element with key 5 into this min-max heap. Following the 
insertion, we will have a 13 element min-max-heap. This has the shape shown in Figure 
9.2. As in the case of heaps, the insertion algorithm for min-max-heaps follows the path 
from the new node j to the root. Comparing the new key 5 with the key 10 that is in the 
parent of j, we see that since the node with key 10 is on a min level and 5 < 10, 5 is 
guaranteed to be smaller than all keys in nodes that are both on max levels and on the 
path from j to the root. Hence, the min-max-heap property is to be verified only with 
respect to min nodes on the path from j to the root. First, the element with key 10 is 
moved to node j. Then the element with key 7 is moved to the former position of 10. 
Finally, the new element with key 5 is inserted into the root. The min-max-heap follow
ing the insertion is shown in Figure 9.3(a).

Next, suppose we wish to insert an element with key 80 into the min-max-heap of 
Figure 9.1. The resulting min-max-heap has 13 elements and has the shape shown in 
Figure 9.2. Since 80 > 10 and 10 is on a min level, we are assured that 80 is larger than 
all keys in nodes that are both on min levels and on the path from j to the root. Hence, 
the min-max-heap property is to be verified only with respect to max nodes on the path 
from j to the root. There is only one such node in the min-max-heap of Figure 9.1. This
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Figure 9.2 : Min-max-heap of Figure 9.1 with new node j 

100 /*

node has key 40. The element with key 40 is moved to j and the new element inserted 
into the node formerly occupied by this element. The resulting min-max-heap is shown 
in Figure 9.3(b).

The preceding insertion examples lead to the insertion function min-max-insert 
(Program 9.1). The C declarations necessary to create the min-max heap are:

#define MAX-SIZE 100 /*  maximum size of heap plus 1 
*/
#define FALSE 0 
ttdefine TRUE 1 
#define SWAP(x,y,t) ((t) 
typedef struct { 

int key;
other fields 

} element;
element heap[MAX—SIZE];

(x) , (X) (y) , (y) (t))

Notice that we store a min-max heap in a one-dimensional array using the standard array 
representation of a complete binary tree (see Section 5.3). The function 
min-max-insert uses verify-max. verify-min. and level functions. The function level 
determines whether a node is on a min or a max level of a min-max heap; it returns 
FALSE for a min level and TRUE for a max level. The function verify-max (Program 
9.2) begins at a max node i and follows the path of max nodes from i to the root of the 
min-max heap. It searches for the correct node in which to insert item. This node has 
the property that all max nodes above it and on the path to the root have key values at 
least as large as item.key. In addition, all max nodes below it and on the path from i to
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(a) min-max-heap of Figure 9.1 after inserting 5
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(b) min-max-heap of Figure 9.1 after inserting 80

Figure 9.3 : Insertion into a min-max-heap 

the root have key values smaller than item.key. During the search, max nodes with keys 
smaller than item.key are moved one max level down.

The functions verify-min and verify-max are similar except that verify-min 
begins at a min node i and follows the path of min nodes from i to the root. To preserve 
the min-max heap property, item is inserted into one of these min nodes. We leave the 
formal development of verify-min and level as an exercise.

We may easily establish the correctness ofAnalysis of min-max-insert:
min-max-insert. In addition, since a min-max heap with n elements has O(log n) levels, 
the complexity of the min-max-insert function is O(log n). □
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void min—max—insert(element heap[], int 
{ 
/*

*n, element item)

insert item into the min-max heap 
int parent;
(*n)
if {*n  == MAX_SIZE) {

fprintf(stderr,"The heap is full\n");
exit(1);

*/

(*n)/2;

item;
insert item into first position */

+ + 7

}
parent
if ( !parent)
/*  heap is empty, 

heap[1]
else switch(level(parent)) { 

min level 
heap[parent].key) {

*/case FALSE: /*  
if (item.key 

heap[*n]  = heap[parent]; 
verify—min(heap,parent,item);

}
else

verify—max(heap,*n,item) ; 
break;

case TRUE: /* max level 
if (item.key 

heap[*n]  = heap[parent]; 
verify—max(heap,parent,item);

*/
heap[parent].key) {

}
else

verify_min(heap,*n,item)  ;
}

}

Program 9.1: Procedure to insert into a min-max heap

9.1.3 Deletion Of Min Element

Let us now take a look at deletion from a min-max-heap. If we wish to delete the ele
ment with smallest key, then this element is in the root. In the case of the min-max-heap 
of Figure 9.1, we are to delete the element with key 7. Following the deletion, we will 
be left with a min-max-heap that has 11 elements. Its shape is shown in Figure 9.4. The 
node with key 12 is deleted from the heap and the element with key 12 is reinserted into
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void verify-_rr>ax (element heap[], int i, element item) 
{ 
/*  
insert item into its proper place

int grandparent = i/4; 
while (grandparent) 

if (item.key 
heap[i] = heap[grandparent];
i = grandparent; 
grandparent /- 4;

follow the nodes from the max node i to the root and
*/

heap[grandparent].key) {

}
else

break; 
heap[i]

Program 9.2: verify-max: function

the heap. As in the case of deletion from a min or max-heap, the reinsertion is done by 
examining the nodes of Figure 9.4 from the root down towards the leaves.

12 min

45

70 40 max

30

50 30 20

10 15 min

max

11 em ;
}

9

Figure 9.4 : Shape of Figure 9.1 following a delete min

In a general situation, we are to reinsert an element item into a min-max-heap, 
heap, whose root is empty. We consider the two cases:
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(1)
(2)

(b)

(c)

The root has no children. In this case item is to be inserted into the root.

The root has at least one child. Now, the smallest key in the min-max-heap is in 
one of the children or grandchildren of the root. We determine which of these 
nodes has the smallest key. Let this be node k. The following possibilities need to 
be considered:

(a) item, key < heap item may be inserted into the root as there is no
element in heap with key smaller than item. key.

item, key > heap [/:]. key and A: is a child of the root. Since k is a max node, 
it has no descendants with key larger than heap Hence, node k has
no descendants with key larger than item. key. So, the element heap [k ] may 
be moved to the root and item inserted into node k.

item, key > heap [k]. key and k is a grandchild of the root. In this case too, 
heap [k ] may be moved to the root. Let parent be the parent of k. If 
item, key > heap [parent}.key, then heap [parent} and item are to be inter
changed. This ensures that the max node parent contains the largest key in 
the sub-heap with root parent. At this point, we are faced with the problem 
of inserting item into the sub-heap with root k. The root of this sub-min-max 
heap is presently empty. This is quite similar to our initial situation where 
we were to insert item into the min-max-heap heap with root 1 and node 1 is 
initially empty. Therefore, we repeat the above process.

In our example, x. key =12 and the smallest key in the children and grandchildren 
of the root node is 9. Let k denote the node that contains this key and let p be its parent. 
Since, 9 < 12 and k is a grandchild of the root, we are in case 2 (c). The element with 
key 9 (i.e., A [A:]) is moved to the root. Since x. key = 12 < 70 = h[p}.key, we do not 
interchange x and h[p}. The current configuration is shown in Figure 9.5. We must 
now reinsert x into the sub-min-max-heap with root k. The smallest key from among the 
children and grandchildren of node k is 20. Since 12 < 20, we are in case 2 (a) and the 
element x is inserted into /?[/:].

The function delete-min (Program 9.3) implements the deletion of the node with 
the minimum key from a min-max heap. This function uses a min-child-grandchild(i) 
function to determine the child or grandchild of the node i that has the smallest key. If 
both a child and a grandchild of i have the smallest key, min-child-grandchild should 
return the address of the child since this prevents further iterations of the for loop of 
delete-min. Notice that although delete-min does not explicitly check for the case 
when n = 1, this is handled correctly and an empty min-max heap results from the dele
tion.

Analysis of delete-min'. In each iteration of the for loop of delete-min a constant 
amount of work is done. Also, in each iteration (except possibly the last), i moves down 
two levels. Since a min-max heap is a complete binary tree, heap has O(log «) levels. 
Hence, the complexity of delete-min is O(log n). □
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Figure 9.5: Figure 9.4 following the move of the element with key 9

The function to delete the element with the maximum key is similar to delete-min. 
We leave its development as an exercise.

EXERCISES

1.

2.

3.

4.

5.

Write the verify-min function defined in connection with insertion into a min-max 
heap.

Write the level (?) function that determines whether node i of a min-max heap is on 
a min or a max level.

Write the mm-child-grandchild(i, n) function that returns the child or grandchild 
of node i of a min-max heap that has the smallest key. You may assume that i has 
at least one child, n is the current size of the min-max heap.

Write a delete-max function to delete the element with the maximum key in a 
min-max heap. Your function should run in O(log «) time for a min-max heap 
with n elements.

Write a function that initializes a min-max heap with n elements. Use a series of 
adjusts as described in the initialization of a min (or max) heap (see Section 5.6). 
Show that your function takes O(n) time rather than the O(n log n) time that would 
be taken if initialization is done by performing n insertions into an initially empty 
heap.
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element delete—min(element heap[], int 
{ 
/■^

*n)

delete the minimum element from the min-max heap 
int i, last, k, parent;
element temp, x;

■^ /

}

if (!(*n) ) {
fprintf(stderr, "The heap is emptyXn"); 
heap[0].key - INT—MAX; / 
return heap[0];

* error key in heap[0]

} 
heap[0] = heap[1]; I 
y. = heap [ ( *n)  - - ] ;
/'^ find place to insert x '^ / 
for (i = 1, last = (*n)  /'I-, i 

k = min—child—grandchild(i, 
if (x.key 

case 2(b) or 2(c) 
heap[i] = heap[k]; 
if (k

i - k; 
break;

* save the element

find place to insert x 
1, last

/■^

}
/*

*/

: last;} { 
n) ;

= heap[k].key) break;
*

= 2*i+l)  {

case 2(c), 
parent = k/2; 
if (x.key

1
} /*

2 (b) ■^ /

k is a grandchild of i

heap[parent].key)
SWAP(heap[parent], x, temp); 
z k; 
for

heap[i] 
return heap[0];

*/
x;

^1

■^ /

Program 9.3: Function to delete the element with minimum key
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9.2 DEAPS

9.2.1 Definition

A deap is a double-ended heap that supports the double-ended priority queue operations 
of insert, delete min, and delete max. As in the case of the min-max heap, these opera
tions take logarithmic time on a deap. However, the deap is faster by a constant factor 
and the algorithms are simpler.

Definition: A deap is a complete binary tree that is either empty or satisfies the follow 
ing properties:

(1)

(2)

(3)
(4)

The root contains no element.

The left subtree is a min-heap.

The right subtree is a max-heap.

If the right subtree is not empty, then let i be any node in the left subtree. Let j be 
the corresponding node in the right subtree. If such a j does not exist, then let j be 
the node in the right subtree that corresponds to the parent of i. The key in node i 
is less than or equal to the key in j. □

An example of an 11-element deap is shown in Figure 9.6. The root of the min- 
heap contains 5, while that of the max-heap contains 45. The min-heap node with key 10 
corresponds to the max-heap node with key 25, while the min-heap node with key 15 
corresponds to the max-heap node with key 20. For the node containing 9, the node j 
defined in property (4) of the deap definition is the max-heap node that contains 40.

Figure 9.6: An 11 element deap
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From the definition of a deap, it is evident that in an n element deap, n > 1, the 
min element is in the root of the min-heap while the max element is in the root of the 
max-heap. If n = 1, then the min and max elements are the same and are in the root of 
the min-heap. Since a deap is a complete binary tree, it may stored as an implicit data 
structure in a one dimensional array much the same way as min-, max-, and min-max- 
heaps are stored. In the case of a deap, position 1 of the array is not utilized (we may 
simply begin the array indexing at 2 rather than at 1). Let n denote the last occupied 
position in this array. Then the number of elements in the deap is n - 1. If i is a node in 
the min-heap, then its corresponding node in the max-heap is i Hence the j
defined in property (4) of the definition is given by:

Lloga/J—1

if (j > n')j/= 2;

Notice that if property (4) of the deap definition is satisfied by all leaf nodes i of 
the min-heap, then it is satisfied by all remaining nodes of the min-heap too.

The double-ended priority queue operations are particularly easy to implement on 
a deap. The complexity of each operation is bounded by the height of the deap which is 
logarithmic in the number of elements in the deap.

9.2.2 Insertion Into A Deap

Suppose we wish to insert an element with key 4 into the deap of Figure 9.6. Following 
this insertion, the deap will have 12 elements in it and will thus have the shape shown in 
Figure 9.7. j points to the new node in the deap.

The insertion process begins by comparing the key 4 to the key in y’s correspond
ing node, i, in the min-heap. This node contains a 19. To satisfy property (4), we move 
the 19 to node j. Now, if we use the min-heap insertion algorithm to insert 4 into posi
tion i, we get the deap of Figure 9.8.

If instead of inserting a 4, we were to insert a 30 into the deap of Figure 9.6, then 
the resulting deap has the same shape as in Figure 9.7. Comparing 30 with the key 19 in 
the corresponding node i, we see that property (4) may be satisfied by using the max
heap insertion algorithm to insert 30 into position j. This results in the deap of Figure 
9.9.

The case when the new node, j, is a node of the min-heap is symmetric to the case 
just discussed. The function deap-insert (Program 9.4) implements the insert operation. 
The data type, deap, is defined as:

element deap [MAX—SIZE]

The position of the last element in the deap is n and n = 1 denotes an empty deap.
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Figure 9.7: Shape of a 12 element deap

Figure 9.8: Deap of Figure 9.6 following the insertion of 4

The function deap-insert uses the following functions whose implementation we 
leave as exercises:
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Figure 9.9 : Deap of Figure 9.6 following the insertion of 30

(1)

(2)

(3)

(4)

max-heap(n). This function returns TRUE iffn is a position in the max-heap of the 
deap.

miri-partner^n). This function computes the min-heap node that corresponds to 
the max-heap position n. This is given by n - 2

max-partnerin). This function computes the max-heap node that corresponds to 
the parent of the min-heap position n. This is given by (n •+• 2 '■’”^^"^"5/2.

min-insert and max-insert. These functions insert an element into a specified 
position of a min- and max-heap, respectively. This is done by following the path 
from this position toward the root of the respective heap. Elements are moved 
down as necessary until the correct place to insert the new element is found. This 
process differs from that used in Chapter 5 to insert into a min- or max-heap only 
in that the root is now at position 2 or 3 rather than at 1.

Uog2«J-l

Analysis of deap-insert'. The correctness of this function is easily established. Its com
plexity is O(log«) as the height of the deap is O(logn). □

9.2.3 Deletion Of Min Element

Now consider the delete min operation. A description of the deletion process is given in 
Program 9.5. The strategy is to first transform the deletion of the element from the root 
of the min-heap to the deletion of an element from a leaf position in the min-heap. This 
is done by following a root to leaf path in the min-heap ensuring that the min-heap pro
perties are satisfied on the preceding levels of the heap. This process has the effect of 
shifting the empty position initially at the min-heap root to a leaf node p. This leaf node
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void deap—insert(element deap[], int 
{ 
/■^

n, element x)

insert x into the deap 
int i;
(*n)  
if (*n  =- MAX-SIZE) {

fprintf(stderr, "The heap is full\n"); 
exit(1);

+ +;

*

}
if (*n 2)

deap[2] = x; /★ insert into empty deap ★/
else switch(max—heap(*n) ) {

case FALSE: /*  *n  is a position on min side 
i = max—partner(*n) ;
if (x.key 

deap[*n]  = deap[i];
max—insert(deap,i,x);

x; /

*/

deep[i].key)

★

1^

{

} 
else

min—insert(deap,*n ,x); 
break;

case TRUE: /*
= min—partner(*n) ;

deap[i].key) {

■^ /*n is a position on max side
i
if (X.key 

deap[*n]  = deap[i]; 
min—insert(deap,i,x);

}
else

max—insert(deap,*n,x) ;
}

}

Program 9.4: Function to insert an item into a deap

is then filled by the element, r, initially in the last position of the deap. The insertion of t 
into position p of the min-heap is done as in deap-insert except that the specification of 
max-partner(i) is changed to:

Llog2ij-1 .
j = i
if (j > n) j /= 2;

and the insertion does not increase the size of the deap. Function modified-deap-insert
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does this insertion. We leave the writing of this function as an exercise.

element deap—delete—min(element deap[1, int 
{ 
/*

*n)

delete the minimum element from the heap */  
int i, j;
element temp;
if (*n

fprintf(stderr, 
return an error code to user

2) {
"The deap is empty\n");

/*
deap[0].key - INT-MAX; 
return deap[01;

*/

} 
deap[0] - deap[2]; 
temp - deap[(*n) --]; 
for (i - 2; i*2  <= * 
/*  
j 
if (j+1 <= *n)  {

if (deap[j].key > deap[j+11.key) 
j++;

/* save min element */

2; i*2  <- *n;  deap[i] = deap[j], i = j) { 
find node with smaller key 
i*2;

*/

}
}
modified—deap—insert(deap,i,temp); 
return deap[0];
}

Program 9.5: Delete min function

For example, suppose that we wish to remove the minimum element from the deap 
of Figure 9.6. To do this, we first place the last element (the one with key 20) in the deap 
into a temporary element, temp, since the deletion removes this node from the heap 
structure. Next, we fill the vacancy created in the min-heap root (node 2) by the removal 
of the minimum element. To fill this vacancy we move along the path from the root to a 
leaf node. Prior to each move, we place the smaller of the elements in the current node’s 
children into the current node. We then move to the node previously occupied by the 
moved element. In this example, we first move 8 into node 2. Then we move 9 into the 
node formerly occupied by 8. Now, we have an empty leaf and proceed to insert 20 into 
this. We compare 20 with the key 40 in its max partner. Since 20 < 40, no exchange is 
needed and we proceed to insert the 20 into the min-heap beginning at the empty posi
tion. This operation results in the deap of Figure 9.10.
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Figure 9.10 : Deap of Figure 9.6 following a delete min

Analysis of deap -delete -mint We may easily verify that deap-delete-min works 
correctly regardless of whether the last position in the deap is in the min- or max-heap. 
The complexity is O(logn) as the height of a deap is O(logn). □

The deap-delete-max operation is performed in a similar manner.

EXERCISES

3.

1. Complete the deap-insert function (Program 9.4) by writing all the functions that 
it uses. Test the insertion function by running it on a computer. Generate your 
own test data.

2. Complete the deap-delete-min function (Program 9.5) by writing all the func
tions that it uses. Test the correctness of your function by running it on a computer 
using test data of your choice.

Write a function to initialize a deap with n elements. Your function must run in 
O(n) time. Show that it actually has this running time. (Hint: Use a series of 
adjusts as discussed in Section 5.6.)

4. Write the functions to perform all double-ended priority queue operations for a 
min-max heap and for a deap.

(a) Use suitable test data to test the correctness of your functions.
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(b)

(c)

Create a random list of n elements and a random sequence of insert, delete 
min, and delete max operations of length m. Create the latter sequence so 
that the probability of an insert is approximately .5 and the probability for 
each type of delete is approximately .25. Initialize a min-max heap and a 
deap to contain the n elements in the first random list. Now, measure the 
time to perform the m operations using the min-max heap as well as the 
deap. Divide this time by m to get the average time per operation. Do this 
for n = 100, 500, 1000, 2000, • • ■ , 5000. Let m be 5000. Tabulate your 
computing times.

Based on your experiments, what can you say about the relative merits of 
the two double-ended priority queue schemes?

Obtain an exact count of the worst case number of key comparisons that can be 
made during each of the double-ended priority queue operations when a min-max 
heap is used. Do this also for the case when a deap is used. What can you say 
about the expected worst case performance of these two methods? Can you think 
of a way to reduce the worst case number of comparisons using a binary search 
(this will not affect the number of element moves though)?

5.

93 LEFTIST TREES

In the preceding section we extended the definition of a priority queue by requiring that 
both delete max and delete min operations be permissible. In this section, we consider a 
different extension. Suppose that in addition to the normal priority queue operations, we 
are also required to support the operation of combine. This requires us to combine two 
priority queues into a single priority queue. One application for this is when the server 
for one priority queue shuts down. At this time, it is necessary to combine its priority 
queue with that of a functioning server.

Let n be the total number of elements in the two priority queues that are to be com
bined. If heaps are used to represent priority queues, then the combine operation takes 
O(n) time. Using a leftist tree, the combine operation as well as the normal priority 
queue operations take logarithmic time.

In order to define a leftist tree, we need to introduce the concept of an extended 
binary tree. An extended binary tree is a binary tree in which all empty binary subtrees 
have been replaced by a square node. Figure 9.11 shows two example binary trees. 
Their corresponding extended binary trees are shown in Figure 9.12. The square nodes 
in an extended binary tree are called external nodes. The original (circular) nodes of the 
binary tree are called internal nodes.

Let X be a node in an extended binary tree. Let left-child (x) and right-child (x), 
respectively, denote the left and right children of the internal node x. Define shortest (x) 
to be the length of a shortest path from x to an external node. It is easy to see that 
shortest (x) satisfies the following recurrence:
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(a) (b)

Figure 9.11: Two binary trees

2 2

(a) (b)

Figure 9.12: Extended binary trees corresponding to Figure 9.11

shortest (x) = 0 if X is an external node
1 + min [shortest {left-child (x)), shortest {right-child (x))) otherwise

The number outside each internal node x of Figure 9.12 is the value of shortest {x}.

Definition: A leftist tree is a binary tree such that if it is not empty, then

shortest {left - child (x)) > shortest {right - child (x))
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for every internal node x. □

The binary tree of Figure 9.11 (a) which corresponds to the extended binary tree of 
leftist tree as shortest (left - child (C) = 0 whileFigure 9.12(a) is not a

shortest (right - child(C) = 1. The binary tree of Figure 9.11 (b) is a leftist tree.

> ’2shortest{x} _ ।

Lemma 9.1: Let x be the root of a leftist tree that has n (internal) nodes.

(a) n

(b) The rightmost root to external node path is the shortest root to external node path. 
Its length is shortest (x).

Proof: (a) From the definition of shortest (x) it follows that there are no external nodes 
on the first shortest (x) levels of the leftist tree. Hence, the leftist tree has at least

shortest{x)
Z 2't-1 _ ^^shortestix) _ ।

internal nodes.

(b) This follows directly from the definition of a leftist tree. □

We represent leftist trees with nodes that have the fields left-child, right-child, 
shortest, and data. We assume that data is a struct with at least a key field. We should 
note that we introduced the concept of an external node to arrive at clean definitions. 
The external nodes are never physically present in the representation of a leftist tree. 
Rather the appropriate child field of the parent of an external node is set to NULL. The C 
declarations are:

typedef struct { 
int key; 
/*
} element;

typedef struct leftist 
struct leftist { 

leftist—tree left—child; 
element data;
leftist—tree right—chiId; 
int shortest; 
} ;

other fields */

■k leftist—tree;

Definition: A min-leftist tree (max leftist tree) is a leftist tree in which the key value in 
each node is no larger (smaller) than the key values in its children (if any). In other 
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words, a min (max) leftist tree is a leftist tree that is also a min (max) tree. □

Figure 9.13 depicts two min-leftist trees. The number inside a node x is the key of 
the element in x and the number outside x is shortest (x). The operations insert, delete 
min (delete max), and combine can be performed in logarithmic time using a min (max) 
leftist tree. We shall continue our discussion using min leftist trees.

2 1
a - b

1
7

1 1
^9

1
8

1
11

1 2 1

1 < 
n

1 / 1
18^

1 / 
"15

(a) (b)

Figure 9.13: Example min leftist trees

We can implement both insert and delete min operations by using the combine 
operation. To insert an element, x, into a min-leftist tree, a, we first create a min-leftist 
tree, b, that contains the single element x. Then we combine the min-leftist trees a and £?. 
To delete the min element from a nonempty min-leftist tree, a, we combine the min- 
leftist trees a ~> left-child and a -> right-child and delete node a.

The combine operation is itself simple. Suppose that we wish to combine the 
min-leftist trees a and b. First, we obtain a new binary tree containing all elements in a 
and b by following the rightmost paths in a and/or b. This binary tree has the property 
that the key in each node is no larger than the keys in its children (if any). Next, we 
interchange the left and right subtrees of nodes as necessary to convert this binary tree 
into a leftist tree. The insert and delete min operations can both be performed by using 
the combine operation. To insert an element x into a min leftist tree a, we first create a 
min leftist tree b that contains the single element x. Then we combine the min leftist 
trees a and b. To delete the min element from a non empty min leftist tree a, we combine 
the min leftist trees a->left - child and a->right -child and delete the node a.

As an example, consider combining the min leftist trees a and b of Figure 9.13. To 
obtain a binary tree that contains all the elements in a and b and that satisfies the 
required relationship between parent and child keys, we first compare the root keys 2 and 
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5. Since 2 < 5, the new binary tree should have 2 in its root. We shall leave the left sub
tree of a unchanged and combine the right subtree of a and the entire binary tree b. The 
resulting binary tree will become the new right subtree of a. When combining the right 
subtree of a and the binary tree b, we notice that 5 < 50. So, 5 should be in the root of the 
combined tree. Now, we proceed to combine the subtrees with root 8 and 50. Since 8 < 
50 and 8 has no right subtree, we can make the subtree with root 50 the right subtree of 
8. This gives us the binary tree of Figure 9.14(a). Hence, the result of combining the 
right subtree of a and the tree b is the tree of Figure 9.14(b). When this is made the right 
subtree of a, we get the binary tree of Figure 9.14(c). To convert this into a leftist tree, 
we begin at the last modified root (i.e., 8) and trace back to the overall root ensuring that 
shortest {left -child ()) > shortest {right -child ()). This inequality holds at 8 but not at 
5 and 2. Simply interchanging the left and right subtrees at these nodes causes the ine
quality to hold. The result is the leftist tree of Figure 9.14(d).

The function min-combine (Program 9.6) contains the code to combine two leftist 
trees. This function uses the recursive function min-union (Program 9.7) to actually 
combine two nonempty leftist trees. The function min-union intertwines the two steps:

(2)

(1) Create a binary tree that contains all elements while ensuring that the root of each 
subtree has the smallest key in that subtree.

Ensure that each node has a left subtree whose shortest value is greater than or 
equal to that of its right subtree.

Analysis of min-combine\ Since ruin-union moves down the rightmost paths in the two 
leftist trees being combined and since the lengths of these paths is at most logarithmic in 
the number of elements in each tree, the combining of two leftist trees with a total of n 
elements is done in time O(log n). □

EXERCISES

1.

Write a function to initialize the shortest field of each node in t.

Write a function to convert t into a leftist tree.

Determine the complexity of each of the these functions.

Let t be an arbitrary binary tree represented using the node structure for a leftist 
tree.

(a)

(b)

(c)
2. Write a function to initialize a min-leftist tree with n elements. Assume that nodes 

have the same structure as that used in the text. Your function must run in O(n) 
time. Show that this is the case. Can you think of a way to do this initialization in 
O(m) time, and such that the resulting min-leftist tree is also a complete binary 
tree?
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Figure 9.14: Combining the min leftist trees of Figure 9.13

3. Write a function to delete the element in node x of the min-leftist tree <3. Assume 
that each node has the fields left-child, right-child, parent, shortest, and data. 
The parent field of a node points to its parent in the leftist tree. Show we can per
form this deletion in O(log n), where n is the number of elements in a.

[Lazy deletion] Another way to handle the deletion of arbitrary elements from a 
min-leftist tree is to use a field, deleted, in place of the parent field of the previous 
exercise. When we delete an element, we set its deleted field to TRUE. However,
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leftist—treevoid min—combine{leftist—tree 
{
/*  combine the two min leftist trees *a  and *b.  
resulting min leftist tree is returned in 
is set to NULL

if (!*a)
*a

else if (*b)
min—union(a,b);

NULL;

combine the two min leftist trees

*b;

•*

*/

*b

*b)

The 
and *b

★ Sz

a,

}

Program 9.6: : Combining two leftist trees

we do not physically delete the node. When we perform a delete-min operation, 
we first search for the minimum element not deleted by carrying out a limited 
preorder search. This preorder search traverses only the upper part of the tree as 
needed to identify the min element. All deleted elements encountered are physi
cally deleted and their subtrees combined to obtain the new min-leftist tree.

(a)

(b)

(c)

Write a function to delete the element in node x of the min-leftist tree a.

Write another function to delete the min element from a min-leftist tree from 
which several elements have been deleted using the former function.

Determine the complexity of this latter function as a function of the number 
of deleted elements encountered and the number of elements in the entire 
tree.

5. [Skewed heaps] A skewed heap is a min-tree that supports the min-leftist tree 
operations insert, delete min, and combine in amortized time (see the next section 
for a definition of amortized time) O(log n} per operation. As in the case of min- 
leftist trees, inserts and deletes are performed using the combine operation which 
is carried out by following the rightmost paths in the two heaps being combined. 
However, unlike min-leftist trees, we interchange the left and right subtrees of all 
nodes (except the last) on the rightmost path in the resulting heap.

(a) Write insert, delete min, and combine functions for skewed heaps.

(b) Compare the running times of these with those for the same operations on a 
min-leftist tree. Use random sequences of insert, delete min, and combine 
operations.
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★void min—union(leftist—tree 
{ 
/*

a, leftist—tree *b)

recursively combine two nonempty min leftist trees 
leftist—tree temp;

set a to be the tree with smaller root
(*b)->data.key)

*/

/*
if ((*a)->data .key :

SWAP(*a,*b,temp) ;
create binary tree such that the smallest key in each/*  

subtree is in the root 
if {!{*a)->right —child)

{*a)->right_child  = *b;  
else

min—union(&(*a)->right —child, b); 
/*leftist  tree property 
if (!{*a)->left_child)  {

(*a)->left —child
(*a)->right —child - NULL ;

*/

*/

(*a)->right —child;

*/

} 
else if ((*a)->left —child->shortest < 
(*a)->right —child->shortest)

SWAP((*a)->left —child,(*a)->right —child, temp); 
{*a)->shortest  = (1 (*a)->right —child) ? 1 : 
(*a)->right —child->shortest + 1;

(!(*a)->right —child)

}

Program 9.7: Combining two min-leftist trees

9.4 BINOMIAL HEAPS

9.4.1 Cost Amortization

A. binomial heap is a data structure that supports the same functions (i.e., insert, delete 
min or max, and combine) as supported by leftist trees. Unlike leftist trees where an 
individual operation can be performed in O(logn) time, certain individual operations per
formed on a binomial heap may take O(n) time. However, if we amortize part of the cost 
of expensive operations over the inexpensive ones, then the amortized complexity of an 
individual operation is either 0(1) or O(logM) depending on the type of the operation.

Let us examine the concept of cost (we shall use the terms cost and complexity 
interchangeably) amortization more closely. Suppose that a sequence II, 12, DI, 13,14. 
15, 16, D2, 17 of insert and delete min operations is performed. Assume that the actual 
cost of each of the seven inserts is one. By this, we mean that each insert takes one unit 
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of time. Further, suppose that the delete min operations DI and D2 have an actual cost 
of eight and ten, respectively. The total cost of the sequence of operations is therefore 
25.

In an amortization scheme we charge some of the actual cost of an operation to 
other operations. This reduces the charged cost of some operations and increases that of 
others. The amortized cost of an operation is the total cost charged to it. The cost 
transferring (amortization) scheme is required to be such that the sum of the amortized 
costs of the operations is greater than or equal to the sum of their actual costs. If we 
charge one unit of the cost of a delete min to each of the inserts since the last delete min 
(if any), then two units of the cost of DI get transferred to II and 12 (the charged cost of 
each increases by one) and four units of the cost of D2 get transferred to 13 - 16. The 
amortized cost of each of II -16 becomes two, that of 17 is equal to its actual cost (i.e., 
one), and that of each of DI and D2 becomes 6. The sum of the amortized costs is 25 
which is the same as the sum of the actual costs.

Now suppose we can prove that no matter what sequence of insert and delete min 
operations is performed, we can charge costs in such a way that the amortized cost of 
each insert is no more than two and that of each delete min is no more than six. This will 
enable us to make the claim that the actual cost of any insert / delete min sequence is no 
more that 2*Z+6M  where i and d are, respectively, the number of insert and delete min 
operations in the sequence. Suppose that the actual cost of a delete min is no more than 
ten, while that of an insert is one. Using actual costs, we can conclude that the sequence 
cost is no more than i + 10 * d. Combining these two bounds, we obtain 
min{2 * i + 6 * d, i + 10 * d} as a bound on the sequence cost. Hence, using the notion 
of cost amortization it is possible to obtain tighter bounds on the complexity of a 
sequence of operations. We shall use the notion of cost amortization to show that while 
individual delete operations on an binomial heap may be expensive, the cost of any 
sequence of binomial heap operations is actually quite small.

9.4.2 Definition Of Binomial Heaps

As in the case of heaps and leftist trees, there are two varieties of binomial heaps: min 
and max. A min-binomial heap is a collection of min-trees while a max-binomial heap is 
a collection of max-trees. We shall explicitly consider min-binomial heaps only. These 
will be referred to as B-heaps. Figure 9.15 shows an example B-heap that is comprised 
of three min-trees.

Using B-heaps, we can perform an insert and a combine in 0(1) actual and amor
tized time and a delete min in O(log/2) amortized time. B-heaps are represented using 
nodes that have the fields: degree, child, left-link, right-link, and data. The degree of 
a node is the number of children it has; the child field is used to point to any one of its 
children (if any); the left-link and right-link fields are used to maintain doubly linked 
circular lists of siblings. All the children of a node form a doubly linked circular list and 
the node points to one of these children. Additionally, the roots of the min-trees that 
comprise a B-heap are linked to form a doubly linked circular list. The B-heap is then
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8 3

10 5 4

Figure 9.15 : A B-heap with three min-trees 

pointed at by a single pointer to the min-tree root with smallest key. In an exercise, we 
examine the possibility of replacing all doubly linked circular lists by singly linked cir
cular lists.

Figure 9.16 shows the representation for the example of Figure 9.15. child fields 
are shown by broken arrows and parent fields by solid arrows. To enhance the readabil
ity of this figure, we have used bidirectional arrows to join together nodes that are in the 
same doubly linked circular list. When such a list contains only one node, no such 
arrows are drawn. Each of the key sets: (10), (6), (5,4), {20), {15, 30), {9), {12, 7, 
16), and {8, 1, 3) denotes the keys in one of the doubly linked circular lists of Figure 
9.16 . fl is the pointer to the B-heap. Note that an empty B-heap has a NULL pointer.

9.4.3 Insertion Into A Binomial Heap

We insert an element, x, into an B-heap, a, by first putting x into a new node and then 
placing this node into the doubly linked circular list pointed at by a. We reset a to this 
new node only if a is blULL or x’s key is smaller than the key in the node pointed at by a.
It is evident that we can perform these insertion steps in 0(1) time.

9.4.4 Combine

To combine two nonempty B-heaps a and b, we combine the top doubly linked circular 
lists of a and b into a single doubly linked circular list. The new B-heap pointer is either 
a or b depending on which has the smaller key. This can be determined with a single 
comparison. Since two doubly linked circular lists can be combined into a single one in 
O( 1) time, a combine takes only O( 1) time.
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Figure 9.16 : B-heap of Figure 9.15 showing parent pointers and sibling lists

9.4.5 Deletion Of Min Element

Now, let’s take a look at the delete min operation. Let a be the pointer of the B-heap 
from which the min element is to be deleted. If a is NULL, then the B-heap is empty and 
a deletion cannot be performed. Assume that a is not NULL, a points to the node that 
contains the min element. This node is deleted from its doubly linked circular list. The 
new B-heap consists of the remaining min-trees and the sub min-trees of the deleted root. 
Figure 9.17 shows the situation for the example of Figure 9.15.

3 12 ®®

5 4 15 30

Figure 9.17 : The B-heap of Figure 9.15 following the deletion of the min element
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Before forming the doubly linked circular list of min-tree roots, we repeatedly join 
together pairs of min-trees that have the same degree (the degree of a nonempty min-tree 
is the degree of its root). This min-tree joining is done by making the min-tree whose 
root has larger key a subtree of the other (ties are broken arbitrarily). When two min- 
trees are joined, the degree of the resulting min-tree is one larger than the original degree 
of each min-tree and the number of min-trees decreases by one. For our example, we 
may first join either the min-trees with roots 8 and 7 or those with roots 3 and 12. If the 
first pair is joined, the min-tree with root 8 is made a subtree of the min-tree with root 7. 
We now have the min-tree collection of Figure 9.18. There are three min-trees of degree 
two in this collection. If the pair with roots 7 and 3 is picked for joining, the resulting 
min-tree collection is that of Figure 9.19. Since the min-trees in this collection have 
different degrees, the min-tree joining process terminates.

7 3

8 9 5 4

Figure 9.18 : The B-heap of Figure 9.17 following the joining of the two degree one 
min-trees

After we have finished joining min-trees, we link the roots of the min-trees to form 
a doubly linked circular list. We also reset the B-heap pointer so as to point to the min- 
tree root with smallest key. The steps involved in a delete min operation are summarized 
in Program 9.8.

Steps 1 and 2 take 0(1) time. Step 3 may be implemented by using an array tree 
indexed from 0 to the maximum possible degree, MAX -DEGREE, of a min-tree. Ini
tially all entries in this array are NULL. Let 5 be the number of min-trees in a and y. The 
lists a and y created in step 2 are scanned. For each min-tree p in the lists a and y created 
in step 2, the code of Program 9.9 is executed. The function join - min-trees makes the 
input tree with larger root a sub tree of the other tree. The resulting tree is returned in 
the first parameter. In the end, the array tree contains pointers to the min-trees that are to 
be linked together in step 4. Since each time a pair of min-trees is joined the total 
number of min-trees decreases by one, the number of joins is at most 5-1. Hence, the 
complexity of step 3 is O(Af/lX - DEGREE + .y). Step 4 is accomplished by scanning tree 
and linking together the min-trees found. During this scan, the min-tree with minimum 
key may also be determined. The complexity of step 4 is 0(MAX -DEGREE).
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15

12

30

Figure 9.19 : The B-heap of Figure 9.18 following the joining of two degree two min- 
trees

{Delete the min element from a B-heap a, this element is returned in x]

Step 1: [Handle empty B-heap] if (a = NULL) deletion - error else perform steps 2-4;

Step 2: [Deletion from nonempty B-heap] x - a->data\ y - a->child\ Delete a from 
its doubly linked circular list; Now, a points to any remaining node in the 
resulting list; If there is no such node, then a = NULL,

Step 3: [Min-tree joining] Consider the min-trees in the lists a and y; Join together pairs 
of min-trees of the same degree until all remaining min-trees have different 
degree;

Step 4: [Form min-tree root list] Link the roots of the remaining min-trees (if any) 
together to form a doubly linked circular list; Set a to point to the root (if any) 
with minimum key;

Program 9.8: Steps in a delete min

9.4.6 Analysis

Definition: The binomial tree, B/^, of degree k is a tree such that if k = 0, then the tree has 
exactly one node and if A: > 0, then it consists of a root whose degree is k and whose sub
trees are Bq, Bj, □
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for (degree = p->degree; tree[degree]; degree++) { 
join—min—trees(p,tree[degree]) ;
tree[degree] NULL;

}
tree[degree] p;

Program 9.9: Code to handle min-tree p encountered during a scan of lists a and y

The min-trees of Figure 9.15 are Si, S2, and S3, respectively. One may verify 
that S^ has exactly 2^ nodes. Further, if we start with a collection of empty B-heaps and 
perform only the operations insert, combine, and delete min, then the min-trees in each 
B-heap are binomial trees. These observations enable us to prove that when only inserts, 
combines, and delete mins are performed, we can amortize costs such that the amortized 
cost of each insert and combine is 0(1) and of each delete min is O(logAz).

Lemma 9.2: Let a be a B-heap with n elements that results from a sequence of insert, 
combine, and delete min operations performed on initially empty B-heaps. Each min- 
tree in a has degree < log2«. Consequently, MAX -DEGREE < Llog2nJ and the actual 
cost of a delete min is O(logn -I- 5).

Proof: Since each of the min-trees in a is a binomial tree with at most n nodes, none can 
have degree greater than |_log2nj. □

Theorem 9.1: If a sequence of n insert, combine, and delete min operations is per
formed on initially empty B-heaps, then we can amortize costs such that the amortized 
time complexity of each insert and combine is 0(1) and that of each delete min is 
O(logn).

Proof: For each B-heap define the quantities ^insert- and last-size in the following way. 
When an initially empty B-heap is created or when a delete min is performed on an B- 
heap, its ^insert value is set to zero. Each time an insert is done on a B-heap, its ^insert 
value is increased by one. When two B-heaps are combined, the ^insert value of the 
resulting B-heap is the sum of the ^insert values of the B-heaps combined. Hence 
^insert counts the number of inserts performed on a B-heap or its constituent B-heaps 
since the last delete min performed in each. When an initially empty B-heap is created 
its last-size value is zero. When a delete min is performed on a B-heap its last-size is 
set to the number of min-trees it contains following this delete min. When two B-heaps 
are combined the last-size value for the resulting B-heap is the sum of the last-size 
values in the two B-heaps that were combined. One may verify that the number of min- 
trees in a B-heap is always equal to ^insert + last-size.
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Consider any individual delete min in the operation sequence. Assume this is 
from the B-heap a. Observe that the total number of elements in all the B-heaps is at 
most n as only inserts add elements and at most n inserts can be present in a sequence of 
n operations. Let u = a ->degree < log2A2.

From Lemma 9.2, the actual cost of this delete min is O(log/t + 5). The log« term 
is due to MAX -DEGREE and represents the time needed to initialize the array tree and 
the step 4 time. The 5 term represents the time to scan the lists a and y and to perform 
the at most 5-I min-tree joins. We see that 5 = ^insert + last size + u - 1. If we charge 
^insert units of cost to the insert operations that contribute to the count ^insert and 
last-size units to the delete mins that contribute to the count last-size (each such delete 
min gets charged a number of cost units equal to the number of min-trees it left behind), 
then only u-1 of the 5 cost units remain. Since u < log2n and since the number of min- 
trees in a B-heap immediately following a delete min is < log2«, the amortized cost of a 
delete min becomes O(log2n).

Since the above charging scheme adds at most one unit to the cost of any insert, 
the amortized cost of an insert becomes 0(1). The amortization scheme used does not 
charge anything extra to a combine. So the actual and amortized cost of a combine are 
also 0(1). □

From the preceding theorem and the definition of cost amortization, it follows that 
the actual cost of any sequence of i inserts, c combines, and dm delete mins is 
O(i +c +dm}ogi).

EXERCISES

I. Let S be an initially empty stack. We wish to perform two kinds of operations on 
S: eidd(x') and delete - until {x}. These are defined as follows:

(a) add{x} ... add the element x to the top of the stack S. This operation takes 
0(1) time per invocation.

(b) delete - until (x) ... delete elements from the top of the stack upto and 
including the first x encountered. If p elements are deleted, the time taken is 
O(p).

Consider any sequence of n stack operations (adds and delete -untils}. Show how 
to amortize the cost of the add and delete - until operations so that the amortized 
cost of each is 0(1). From this, conclude that the time needed to perform any such 
sequence of operations is 0(«).

2. Let X be an unsorted array of n elements. The function search (x,n,i,y ] searches x 
for y by examining x [/ ], x [/ +1], ..., in that order, for the least j such that x [7 ] = y. 
In case no such j is found, j is set to n+L On termination, search sets i to j. 
Assume that the time required to examine a single element of x is 0(1).
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What is the worst case complexity of search?(a)

(b) Suppose that a sequence of m searches is performed beginning with i = 0. 
Use a cost amortization scheme that assigns costs to both elements and 
search operations. Show that it is always possible to amortize costs so that 
the amortized cost of each element is 0(1) and that of each search is also 
0(1). From this, conclude that the cost of the sequence of m searches is 
O(m + n).

3. Prove that the binomial tree has 2^ nodes, k > 0.

4. Can all the functions on a B-heap be performed in the same time using singly 
linked circular lists rather than doubly linked circular lists? Note that we can 
delete from an arbitrary node i of a singly linked circular list by copy over the 
data from the next node and then deleting the next node rather than the node x.

5. Compare the performance of leftist trees and B-heaps under the assumption that 
the only permissible operations are insert and delete min. For this, do the follow
ing;

(a) Create a random list of n elements and a random sequence of insert and 
delete min operations of length m. The number of delete mins and inserts 
should be approximately equal. Initialize a min-leftist tree and a B-heap to 
contain the n elements in the first random list. Now, measure the time to 
perform the m operations using the min-leftist tree as well as the B-heap. 
Divide this time by m to get the average time per operation. Do this for n = 
100, 500, 1000, 2000, • • ■ , 5000. Let m be 5000. Tabulate your computing 
times.

Based on your experiments, make some statements about the relative merits 
of the two data structures?

(b)

9.5 FIBONACCI HEAPS

9.5.1 Definition

A Fibonacci heap is a data structure that supports the three binomial heap operations: 
insert, delete min or max, and combine as well as the operations:

(1)
(2)

delete, delete the element in a specified node

decrease key, decrease the key of a specified node by a given positive amount.

The first of these can be done in 0(1) amortized time and the second in O(log/z) amor
tized time. The binomial heap operations can be performed in the same asymptotic times 
using a Fibonacci heap as using a binomial heap.
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There are two varieties of Fibonacci heaps: min and max. A min-Fibonacci heap 
is a collection of min-trees while a max-Fibonacci heap is a collection of max-trees. We 
shall explicitly consider min-Fibonacci heaps only. These will be referred to as F-heaps. 
B-heaps are a special case of F-heaps. Thus, all the example B-heaps of the preceding 
section are also examples of F-heaps. As a consequence, we shall, in this section, refer 
to these examples as example F-heaps. To represent an F-heap, the B-heap representa
tion is augmented by adding two fields: parent and child-cut to each node. The parent 
field is used to point to the node's parent (if any). The significance of the child -cut field 
will be described later. The basic operations: insert, delete min, and combine are per
formed exactly as for the case of B-heaps. Let us examine the remaining two operations.

9.5.2 Deletion From An F-heap

To delete an arbitrary node b from the F-heap a, we do the following:

(1)

(2)

(3)

(4)

If a = by then do a delete min; otherwise do steps 2, 3, and 4 below.

Delete b from the doubly linked list it is in.

Combine the doubly linked list of b's children with the doubly linked list of a's 
min-tree roots to get a single doubly linked list. Trees of equal degree are not 
joined together as in a delete min.

Dispose of node b.

For example, if we delete the node containing 12 from the F-heap of Figure 9.15, 
we get the F-heap of Figure 9.20. The actual cost of an arbitrary delete is 0(1) unless the 
min element is being deleted. In this case the deletion time is the time for a delete min 
operation.

10

30

6

Figure 9.20: F-heap of Figure 9.15 following the deletion of 12
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9.5.3 Decrease Key

To decrease the key in node b we do the following:

(I)
(2)

(3)

Reduce the key in b.

If b is not a min-tree root and its key is smaller than that in its parent, then delete b 
from its doubly linked list and insert it into the doubly linked list of min-tree roots.

Change a to point to b in case the key in b is smaller than that in a.

Suppose we decrease the key 15 in the F-heap of Figure 9.15 by 4. The resulting 
F-heap is shown in Figure 9.21. The cost of performing a decrease key is 0(1).

0 12 16

11

20

1

0

0

Figure 9.21: F-heap of Figure 9.15 following the reduction of 15 by 4

9.5.4 Cascading Cut

With the addition of the delete and decrease key operations, the min-trees in an F-heap 
need not be binomial trees. In fact, it is possible to have degree k min-trees with as few 
as /:-i-l nodes. As a result, the analysis of Theorem 9.1 is no longer valid. The analysis 
of Theorem 9.1 requires that each min-tree of degree k have an exponential (in k) 
number of nodes. When decrease key and delete operations are performed as described 
above, this is no longer true. To ensure that each min-tree of degree k has at least 
nodes for some c, c > 1, each delete and decrease key operation must be followed by a 
cascading cut step. For this, we add the boolean field child-cut to each node. The 
value of this field is useful only for nodes that are not a min-tree root. In this case, the 
child - cut field of node x has the value TRUE iff one of the children of x was cut off (i.e., 
removed) after the most recent time x was made the child of its current parent. This 
means that each time two min-trees are joined in a delete min operation, the child -cut 
field of the root with larger key should be set to FALSE. Further, whenever a delete or 
decrease key operation deletes a node g that is not a min-tree root from its doubly linked 
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list (step 2 of delete and decrease key), then the cascading cut step is invoked. During 
this, we examine the nodes on the path from the parent p of the deleted node q up to the 
nearest ancestor of the deleted node with child - cut = FALSE. In case there is no such 
ancestor, then the path goes from p to the root of the min-tree containing p. All non root 
nodes on this path with child-cut field TRUE are deleted from their respective doubly 
linked lists and added to the doubly linked list of min-tree root nodes of the F-heap. If 
the path has a node with child -cut field FALSE, this field is changed to TRUE.

Figure 9.22 gives an example of a cascading cut. Figure 9.22(a) is the min-tree 
containing 14 before a decrease key operation that reduces this key by 4. The child - cut 
fields are shown only for the nodes on the path from the parent of 14 to its nearest ances
tor with child -cut = FALSE. A TRUE value is indicated by T During the decrease key 
operation, the min-tree with root 14 is deleted from the min-tree of Figure 9.22(a) and 
becomes a min-tree of the F-heap. Its root now has key 10. This is the first min-tree of 
Figure 9.22(b). During the cascading cut, the min-trees with roots 12, 10, 8, and 6 are 
cut off from the min tree with root 2. Thus the single min-tree of Figure 9.22(a) becomes 
six min-trees of the resulting F-heap. The child-cut value of 4 becomes TRUE. All 
other child-cut values are unchanged.

9.5.5 Analysis

Lemma 9.3: Let a be an F-heap with n elements that results from a sequence of insert, 
combine, delete min, delete, and decrease key operations performed on initially empty 
F-heaps.

(a) Let b be any node in any of the min-trees of a. The degree of b is at most log^m, 
where (|) = {l-t-^/5)/2 and m is the number of elements in the subtree with root b.

MAX-DEGREE < [log^nj and the actual cost of a delete min is O(log« -t- j ).(b)

Proof: We shall prove (a) by induction on the degree of b. Let Ni be the minimum 
number of elements in the subtree with root b when b has degree i. We see that Aq = 1 
and Al = 2. So, the inequality of (a) holds for degrees 0 and 1. For i > 1, let c j, • • •, c, 
be the i children of b. Assume that Cy was made a child of b before cy + i, j < i. Hence, 
when Q, k < i was made a child of b, the degree of b was at least k—\. The only F-heap 
operation that makes one node a child of another is delete min. Here, during a join min- 
tree step, one min-tree is made a sub tree of another min-tree of equal degree. Hence, at 
the time of joining, the degree of q must have been equal to that of b. Subsequent to 
joining, its degree can decrease as a result of a delete or decrease key operation. How
ever, following such a join, the degree of q can decrease by at most one as an attempt to 
cut off a second child of q results in a cascading cut at Such a cut causes q to 
become the root of a min-tree of the F-heap. Hence, the degree, d/^, of q is at least 
max{0, k - 2}. So, the number of elements in q is at least A^^. This implies that

z-2 z-2
A, = Ao+ i;a,-m=: + 2

k=Q k=Q
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Figure 9.22: A cascading cut following a decrease of key 14 by 4

One may show (see the exercises) that the Fibonacci numbers satisfy the equality

h-2
> l,Fo=O, and F, =I

A:=0

From this we may obtain the equality A, = F,+2, i 0. Further, since F,+2 > <|)', A, > p'. 
Hence, / < log^m.

(b) is a direct consequence of (a). □

Theorem 9.2: If a sequence of n insert, combine, delete min, delete, and decrease key 



466 Heap Structures

operations is performed on an initially empty F-heap, then we can amortize costs such 
that the amortized time complexity of each insert, combine, and decrease key operation 
is 0(1) and that of each delete min and delete is O(log«). The total time complexity of 
the entire sequence is the sum of the amortized complexities of the individual operations 
in the sequence.

Proof: The proof is similar to that of Theorem 9.1. The definition of ^insert is 
unchanged. However, that of last-size is augmented by requiring that following each 
delete and decrease key last-size be changed by the net change in the number of min- 
trees in the F-heap (in the example of Figure 9.22 last-size is increased by 5). With this 
modification, we see that at the time of a delete min operation 5 = ^insert + last-size + 
M - 1. ^insert units of cost may me charged, one each, to the ^insert insert operations 
that contribute to this count and last-size units may be charged to the delete min, delete, 
and decrease key operations that contribute to this count. This results in an additional 
charge of at most log,j,n to each contributing delete min and delete operation and of one 
to each contributing decrease key operation. As a result, the amortized cost of a delete 
min is O(logn).

Since the total number of cascading cuts is limited by the total number of deletes 
and decrease key operations (as these are the only operations that can set child - cut to 
TRUE), the cost of these cuts may be amortized over the delete and decrease key opera
tions by adding one to their amortized costs. The amortized cost of deleting an element 
other than the min element becomes O(IogM) as its actual cost is 0(1) (excluding the cost 
of the cascading cut sequence that may be performed); at most one unit is charged to it 
from the amortization of all the cascading cuts; and at most log^zt units are charged to it 
from a delete min.

The amortized cost of a decrease key operation is 0(1) as its actual cost is 0(1) 
(excluding the cost of the ensuing cascading cut); at most one unit is charged to it from 
the amortization of all cascading cuts; and at most one unit is charged from a delete min.

The amortized cost of an insert is 0(1) as its actual cost is one and at most one cost 
unit is charged to it from a delete min. Since the amortization scheme transfers no 
charge to a combine, its actual and amortized costs are the same. This cost is 0(1). □

From the preceding theorem, it follows that the complexity of any sequence of F- 
heap operations is O(z +c +dk +{dm +d)iogi) where i, c, dk, dm, and d are, respectively, 
the number of insert, combine, decrease key, delete min, and delete operations in the 
sequence.

9.5.6 Application Of F-heaps

We conclude this section on F-heaps by considering their application to the single source 
all destinations algorithm of Chapter 6. Let 5 be the set of vertices to which a shortest 
path has been found and let distance (/) be the length of a shortest path from the source 
vertex to vertex Z, i e S, that goes through only vertices in 5. On each iteration of the 
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shortest path algorithm, we need to determine an z, i g S, such that distance (i ) is 
minimum and add this i to 5. This corresponds to a delete min operation on S. Further, 
the distance values of the remaining vertices in S may decrease. This corresponds to a 
decrease key operation on each of the affected vertices. The total number of decrease 
key operations is bounded_by the number of edges in the graph and the number of delete 
min operations is n ~ 2. S begins with n - 1 vertices. If we implement S as an F-heap 
using distance as the key, then n - 1 inserts are needed to initialize the F-heap. Addi
tionally, n-2 delete min operations and at most e decrease key operations are needed. 
The total time for all these operations is the sum of the amortized costs for each. This is 
O(«log« -I- e). The remainder of the algorithm takes O(n) time. Hence if an F-heap is 
used to represent S, the complexity of the shortest path algorithm becomes O(nlog« + e). 
This is an asymptotic improvement over the implementation discussed in Chapter 6 if the 
graph does not have edges. If this single source algorithm is used n times, once 
with each of the n vertices in the graph as the source, then we can find a shortest path 
between every pair of vertices in OCn^logn + ne) time. Once again, this represents an 
asymptotic improvement over the O(n^) dynamic programming algorithm of Chapter 6 
for graphs that do not have edges. It is interesting to note that O(/dog/z + e) is the 
best possible implementation of the single source algorithm of Chapter 6 as the algo
rithm must examine each edge and may be used to sort n numbers (which requires 
O(nlog«) time).

EXERCISES

1.

2.

3.

4.

Prove that if we start with empty F-heaps and perform only the operations insert, 
combine, and delete min, then all min-trees in the F-heaps are binomial trees.

Can all the functions on an F-heap be performed in the same time using singly 
linked circular lists rather than doubly linked circular lists? Note that we can 
delete from an arbitrary node x of a singly linked circular list by copy over the 
data from the next node and then deleting the next node rather than the node x.

Show that if we start with empty F-heaps and do not perform cascading cuts, then 
it is possible for a sequence of F-heap operations to result in degree k min-trees 
that have only k +1 nodes, k > 1.

Suppose we change the rule for a cascading cut so that such a cut is performed 
only when a node loses a third child rather than when it loses a second child. For 
this, the child-cut field is changed so that it can have the values 0, 1, and 2. 
When a node acquires a new parent, its child -cut field is set to 1. Each time a 
node has a child cut off (during a delete or decrease key operation), its child-cut 
field is increased by one (unless this field is already two). In case the child -cut 
field is already two, a cascading cut is performed.
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5.

6.

7.

Obtain a recurrence equation for N,, the minimum number of nodes in a 
min-tree with degree i. Assume that we start with an empty F-heap and that 
all operations (except cascading cut) are performed as described in the text. 
Cascading cuts are performed as described above.

Solve the recurrence of part (a) to obtain a lower bound on A/.

Does the modified rule for cascading cuts ensure that the minimum number 
of nodes in any min-tree of degree i is exponential in Z?

For the new cascading cut rule, can you establish the same amortized com
plexities as for the original rule? Prove the correctness of your answer.

Answer parts (c) and (d) under the assumtion that cascading cuts are per
formed only after k children of a node have been cut off. Here, k is a fixed 
constant {k = 2 for the rule used in the text and k = 3 for the rule used earlier 
in this exercise).

How do you expect the performance of F-heaps to change as larger values of 
k (see part (e)) are used?

Write C functions to do the following:

(a)

(b)

(c)

(a)

(b)

(c)

(d)

(e)

(f)

(d)

(e)

Create an empty F-heap

Insert element x into an F-heap

Perform a delete min from an F-heap. The deleted element is to be returned 
to the invoking function.

Delete the element in node b of an F-heap a. The deleted element is to be 
returned to the invoking function.

Decrease the key in the node b of an F-heap a by some positive amount c.

Note that all operations must leave behind properly structured F-heaps. Your 
functions for (d) and (e) must perform cascading cuts. Test the correctness of your 
procedures by running them on a computer using suitable test data.

For the Fibonacci numbers and the numbers Ni of Lemma 9.3, prove the follow
ing:

(a)

(b)

/z-2
F,=: j;F,-hl,A>l

A:=0

Use (a) to show that A, = F,_,_2, i > 0. 
1+a/5 

2
1-a/5

2
> 0 to show that F^+2- — (Use the equality F/, = ^”( 

> (|)*,  k > 0, where 9 = (1-i-a/5)/2.

Implement the single source shortest path algorithm of Chapter 6 using the data 
structures recommended there as well as using F-heaps. However, use adjacency 
lists rather than an adjacency matrix. Generate 10 connected undirected graphs 
with different edge densities (say 10%, 20%, • • • , 100% of maximum) for each of

(c)
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the cases n = 100, 200, • • •, 500. Assign random costs to the edges (use a uniform 
random number generator in the range [1, 1000J). Measure the run times of the 
two implementations of the shortest path algorithms. Plot the average times for 
each n.
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CHAPTER 10

SEARCH STRUCTURES

10.1 OPTIMAL BINARY SEARCH TREES

We introduced binary search trees in Chapter 5, and in this section we look at the con
struction of these search trees for a static set of identifiers. That is, we make no additions 
to or deletions from the tree; we only perform searches.

We begin by examining the correspondence between a binary search tree and the 
binary search function we studied in Chapter 7. In Chapter 7 we showed that we could 
construct a binary search tree that corresponds to a binary search on a sorted list (see 
Figure 7.1). For example, a binary search on the list (do, if, while) is equivalent to using 
the function search 2 (Program 5.17) on the binary search tree of Figure 10.1. Although 
this is a full binary tree, it may not be an optimal binary search tree for this list if the 
identifiers are searched for with different frequency. That is, the probability that we will 
search for one of the identifiers is higher than the probability that we will search for the 
other identifiers.

To find an optimal binary search tree for a given static list, we must first decide on 
a cost measure for search trees. Assume that we wish to search for an identifier at level k 
of a binary search tree using the search 2 function. We know that search 2 makes k itera
tions of the while loop. Generally, the number of iterations of this loop equals the level 
number of the identifier we seek. Since the while loop determines the computing time of 
the search, it is reasonable to use the level number of a node as its cost.

470
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if

do while

Figure 10. 1: Binary search tree corresponding to a binary search on the list (do, if, 
while)

Consider the two search trees of Figure 10.2. The second tree requires at most 
three comparisons to decide whether the identifier we seek is in the tree. The first binary 
tree may require four comparisons, since any identifier that alphabetically comes after 
for but precedes void tests four nodes. Thus, the second binary tree has a better worst 
case search time than the first tree. Searching for an identifier in the first tree requires 
one comparison for for, two comparisons each for do and while, three comparisons for 
void, and four comparisons for if. If we search for each with equal probability, the aver
age number of comparisons for a successful search is 2.4. The average number of com
parisons for the second tree is only 2.2. Thus, the second tree also has better average 
behavior.

for for

do while do void

void if while

(b)
if 

(a)

Figure 10. 2: Two possible binary search trees
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In evaluating binary search trees, it is useful to add a special square node at every 
place there is a null link. Doing this to the trees of Figure 10.2 yields the trees of Figure 
10.3. Remember that every binary tree with n nodes has n + 1 null links and hence has 
n + 1 square nodes. We call these nodes external nodes because they are not part of the 
original tree. The remaining nodes are internal nodes. Each time we search for an 
identifier that is not in a binary search tree, the search terminates at an external node. 
Since all such searches represent unsuccessful searches, we also refer to external nodes 
as failure nodes. A binary tree with external nodes added is an extended binary tree. 
Figure 10.3 shows the extended binary trees corresponding to the search trees of Figure 
10.2.

for for

do while do void

void if while

if

(b)

(a)

Figure 10. 3: Extended binary trees corresponding to search trees of Figure 10.2

We define the external path length of a binary tree as the sum over all external 
nodes of the lengths of the paths from the root to those nodes. Analogously, the internal 
path length is the sum over all internal nodes of the lengths of the paths from the root to 
those nodes. For example, the internal path length, I, of the tree of Figure 10.3(a) is:

/ = 0+ 1 + 1+2 + 3 = 7

Its external path length, E, is:

£ = 2 + 2 + 4 + 4 + 3 + 2= 17
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Exercise 1 shows that the internal and external path lengths of a binary tree with n 
internal nodes are related by the formula E = I + 2n. Hence, binary trees with the max
imum E also have maximum 1. What are the maximum and minimum possible values for 
I over all binary trees with n internal nodes? Clearly, the worst case occurs when the 
tree is skewed, that is, the tree has a depth of n. In this case,

n-1
f ~ n( n ~ V)/2

i=Q

To obtain trees with minimal /, we must have as many internal nodes as close to 
the root as possible. We can have at most 2 nodes at distance 1,4 at distance 2, 8 at dis
tance 3, and so on. In general, the smallest value for I is:

0 + 2*l+4*2  + 8*3+...+

One tree with minimal internal path length is the complete binary tree defined in 
Section 5.2. If we number the nodes in a complete binary tree as in Section 5.2, then we 
see that the distance of node i from the root is [ log2/ J • Hence, the smallest value for I 
is:

n

Z Uogzd = O(niog2n)

Let us now return to our original problem of representing a static list of identifiers 
as a binary search tree. If the binary search tree contains the identifiers a i ,a2> • • •, 
with cfj < 6^2 < ■ ■ ■ the probability of searching for each a, is p,, then the total
cost of any binary search tree is:

n

leveKa,-)
Z = 1

when only successful searches are made. Since unsuccessful searches, that is, searches 
for identifiers not in the table, are also made, we should include the cost of these 
searches in our cost measure. Unsuccessful searches terminate with NULL returned in 
function search?. Every node with a null subtree defines a point at which such a termi
nation can take place. If we replace every null subtree by a failure node, we may parti
tion the identifiers that are not in the binary search tree into n 4- 1 classes 0 < Z < n. 
Eq contains all identifiers x such that x <a\. £, contains all identifiers x such that 
ai < X < a^+j, 1 < Z < n, and £„ contains all identifiers x, x > a„. It is easy to see that for 
all identifiers in a particular class, £,, the search terminates at the same failure node; it 
terminates at different failure nodes for identifiers in different classes. We may number 
the failure nodes from 0 to n with Z being the failure node for class £,, 0 < Z < n. If q, is 
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the probability that the identifier we are searching for is in £,•, then the cost of the failure 
nodes is:

^qp (level(failure node 0 - 1) 
i=Q

Therefore, the total cost of a binary search tree is:

n n

YjPi ’ level(flj) + • (level (failure node Z)-l)
i=l 1=0

(10.1)

An optimal binary search tree for the identifier set aj, • • • , a^ is one that minimizes 
Eq.(10.1) over all possible binary search trees for this identifier set. Since all searches 
must terminate either successfully or unsuccessfully, we have:

n n
ILPi + Qi =
i = l i=0

Example 10.1: Figure 10.4 shows the possible binary search trees for the identifier set 
(a 1, 02, «3) = (do, if, while). If we search for the identifiers with equal probabilities, 
Pl = Oj = 1/7 for all i and y, we have:

cost (tree a} = \5n\ cost (tree b) = \3n 
cost (tree c) = XSH', cost (tree d) = \5n 
cost (tree e) = \5n

As expected, tree b is optimal. However, with pi =.5, p2 = .l, P3 =.05, = .15,
q^ = ,\^q2 = .05, and q^ = .05, we have:

cost (tree a) = 2.65; cost (tree b) = 1.9 
cost (tree c) = 1.5; cost (tree d) = 2.05 
cost (tree e) = 1.6

Tree c is optimal with this assignment of p’s and q's. □

How do we determine the optimal tree from all the possible binary search trees for 
a given set of identifiers? We could proceed as in Example 10.1 and explicitly generate 
all possible binary search trees. Thus, we would compute the cost of each such tree and 
determine the optimal tree. We can determine the cost of each of the binary search trees 
in O(n) time for an n node tree. If A(n) is the total number of distinct binary search 
trees with n identifiers, the complexity of the algorithm is O(n A(n)). From Section 5.10 
we know that N(n) = 0(4Vn^'^), which makes this brute force algorithm impractical for
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if

do

(a)

do

while

while

if do

if

(c)

do

(b)

while if

(d)

while

do

if

while

(e)

Figure 10. 4: Binary search trees with three identifiers 

large values of n. However, we can find a fairly efficient algorithm by making some 
observations about the properties of optimal binary search trees.

Let a I < 672 < .. . < be the n identifiers represented in a binary search tree. Let
• , aj, i < j. Tii is an empty tree forTij denote an optimal binary search tree for

0 < i < n and Ta is not defined for i > /. Let c,; denote the cost of the search tree T,. By V J ij ij J
definition c,-, is 0. Let rij denote the root of Tij and let

J
= IL + Pk) 

k=i-¥\

, an. Its cost is c,,n
denote the weight of T^j. By definition, = 0 and h’,/ = qj, (}<i <n. T^^n is an optimal 
binary search tree for «i, • • • , 67„. Its cost is its weight is and its root is
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If Tij is an optimal binary search tree for , • • • , aj and = k, then k satisfies 
the inequality i < k < j. Tij has two subtrees L and R. L is the left subtree and contains 
the identifiers a

■ ■ ■ ,aj (Figure 10.5). The cost of Tij is
7+1 ♦ • • • , and R is the right subtree and contains the identifiers

=Pk + cost (L) + cost (/?) + weight (L) + weight (7?) (10.2)

where weight (L) = weight (r,,^_i) = and weight (R) = weight (T^j) =

L R

Figure 10.5: An optimal binary search tree 7,^

From Eq. (10.2) it is clear that Cy is minimal only if cost(L)=Cj,^_i and cost(A) = 
Cj^j. Otherwise we could replace either Lor R with a subtree of lower cost and thus obtain 
a binary search tree for aj+i, . .., aj with a lower cost than C/y. This violates the assump
tion that Tij is optimal. Hence, Eq. (10.2) becomes:

- p-t + C,+ Ckj + + Wj^j

= Wy + + Ckj (10.3)

Since is optimal, it follows from Eq. (10.3) that = k is such that

+ Ckj = min{Wy -I- Q/.j + C/y}

or

Q;:-! + Ckj = min{Q/_, + qJ (10.4)

Equation (10.4) shows us how to obtain and 
Th = 0 and c,-,- = 0.

starting from the knowledge that



Optimal Binary Search Trees 477

Example 10.2: Let n = 4 and (a i, 6/2, ^3, <24) = (do, for, void, while). Let {pi, p2^
P4) = (3, 3, 1, 1) and q^, q2, q^, q^} = (2, 3, I, 1, 1). (We have multiplied the origi
nal p’s and q's by 16 for convenience.) Initially, = q^, cu = 0, and ra = Q,0<i <4. 
Using Eqs. (10.3) and (10.4) we get:

= 1
= P2 + ^li+'^22 =P2+‘?2+^ll
= Wi2+min{c‘ii+C221 = 7

= 1

n^oi - Pi+^oo+>^ii -Pi+^i+vvoo = 8 

coi = woi+min{coo+cii} = 8 

^01

W12

12

12
*^23 = P3+n/22+>V33 = P3+^3+'^22 = 3

^23 = W23+min{c'22+C33} =3

f'23 = 3
n^34 = P4+n’33+^'44 = P4 ■'”^4 "^n^33 = 3

C34 = W34-l-min{C33-|-C44 ) = 3
^■34 = 4

0<?<3.^f.i+2’

Knowing and 0<z < 4 we can again use Eqs. (10.3) and (10.4) to 
compute w,/+2, c,.i+2’ ^i.i+2’ 0<i<3. repeat this process until we obtain 
Wo4, Co4’ ^04- The table of Eigure 10.6 shows the results of this computation. From 
the table, we see that cq^ = 32 is the minimal cost of a binary search tree for to ^4. 

The root of tree Tq^ is a2- Hence, the left subtree is Tq] and the right subtree 724- Tgi 

has root Oj and subtrees Too and Tn. T24 has root a^', its left subtree is therefore T22 
and right subtree Thus, with the data in the table it is possible to reconstruct 
(Figure 10.7). □

Example 10.2 illustrates how we use Eq.(10.4) to determine the c’s and r’s, and 
how to reconstruct T^n knowing the r’s. Let us examine the complexity of the function 
that evaluates the c’s and r’s. The evaluation function described in Example 10.2 
requires us to compute c,y for (J - z) = 1, 2, • • • , n in that order. When j - i = m there 
are n-m + 1 Cy’s to compute. To compute each of these C/y’s we must find the 
minimum of m quantities (see Equation (10.4)). Hence, we can compute each such Cjj in 
O(m) time. Therefore, the total time for all Cj/s with 7 - z = m is 0(nm - m^). The total 
time to evaluate all the Cjj's and rjfs is:

n
y (nm — m^) = O(n^) 

m = i

Actually we can do better than this by using a result attributed to D. E. Knuth. He 
states that we can find the optimal / in Eq.(10.4) by limiting the search to the range 
r,y_] </<r/^.i y. In this case, the computing time become.s O(n^) (Exercise 3). The 
function ohst (Program 10.1) uses this result to obtain the values of W/y, r,y, and Cjj, 0 < i 
< j < n in 0(^7^) time. We may construct the actual tree, Tq,,, from the values of rjj in
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Computation is carried out row-wise from row 0 to row 4

Figure 10.6: Computation of C04 and ro4.

for

do void

while

Figure 10.7: Optimal search tree for Example 10.2

O(n) time. We leave this as an exercise. The data types used by obst are:

ttdefine MAX—SIZE 200 /*max  # of ids plus 1*/  
ttdefine MAX-CHAR 

set of identifiers
30 /*max  characters/id*/

■^ //*
char words[MAX-SIZE][MAX-CHAR] , 
int 
int 
int

q[MAX-SIZE] ;
p[MAX-SIZE] ;
cost[MAX-SIZE] [MAX-SIZE] ;

ptr = words[0];
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int 
int 
int n;

root[MAX-SIZE][MAX-SIZE];
weight[MAX-SIZE][MAX-SIZE];

number of identifiers/■^

void obstdnt p[], int q[], int cost [] [MAX—SIZE] , 
int root[] [MAX—SIZE] , int weight[] [MAX—SIZE] , int n)

{

probabilities p[l] ... p[n], and q[0] ... q[n] compute 
the cost c[i][j] 
a [i]
and root of the tree

int i,j,k,m,min,minpos;
/■^

given n distinct identifiers a[l] ... a[n] and

of the optimal binary search tree for 
... a[j], 1 < z < 7 < n. Also compute the weight 

*/

initialize 0 and 1 node trees 
for (i = 0; i < n; i++) { 

weight[i][i] = q[i]; 
root[i] [i] 
cost [i] [i] 
cost[i] [i + 1] = weight[i] [i + 1] 

q[i] + q[i+l] + p[i+l]; 
root[i] [ i + 1] = i + 1;

0; i

0;
0;

0;
0;

compute remaining diagonals 
m++) 
n-m;

*/

}
weight [n] [n] = q[n] 
root[n][n] 
cost[n][n] 
/*
for (m = 2; m < 

for (i 0; . 
j = i + m ; 
weight[i][j] = weight[i][j-l] + p[j] + q[j]; 
k = knuth—min{cost,root,i,j);
/★ knuth—min returns a value, k, in the range 
root[i][j-l] to root[i+1][j], that minimizes 
cost[i][k-1] + cost[k][j] 
cost[i][j] = weight[i][j] + cost[i][k-1] 

+ cost[k][j];

n;
i + +} {

knuth—min returns a value, k.

*/

}

root[i][j] - k;

!

Program 10.1: Function to find an optimal binary search tree
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EXERCISES

1.

2.

3.

Prove by induction that if T is a binary tree with n internal nodes, I its inter
nal path length, and E its external path length, then E = 1 + 2n, n>Q.

(b) Using the result of (a), show that the average number of comparisons 5 in a 
successful search is related to the average number of comparisons, u, in an 
unsuccessful search by the formula:

5 = (1 + i/n}u ~ 1, n >1

Using function obst, compute Wy, rij, and Cq, 0 < i < y < 4 for the identifier set {a 1, 
02, a^, 04} = (else, malloc, printf, scanf) with pi = 1/20, p2 = 1/5, p3 = 1/10, 
P4 = 1/20, ^0 = 1/5, = 1/ZO, q2 = 1/5, ^3 = 1/2Q, q4 =■ 1/20. Using the rfs,
construct the optimal binary search tree.

(a)

(b)

(c)

(a)

4.

Complete function obst by providing the code for the knuth-min function.
Show that the computing time of obst is 0{ri^}.

Write an algorithm to construct the optimal binary search tree given the 
roots rij, 0 < i < j < n. Show that this can be done in Q{n} time.

Since often only the approximate values of the p’s and q's are known, it is just as 
meaningful to find a binary search tree that is nearly optimal; that is, its cost. Eq.
(10.1), is almost minimal for the given p’s and ^’s. This exercise explores an 
O(n log n} algorithm that creates nearly optimal binary search trees. The search 
tree heuristic we will study is:

Choose the root such that | ^0,^-1 - ^k,n\ small as possible. Repeat this 
function to find the left and right subtrees of aj^.

(b)

Using this heuristic obtain the resulting binary search tree for the list of 
Exercise 2. What is its cost?

Write a C algorithm implementing the above heuristic. Your algorithm 
should have time complexity O(ai log n).

An analysis of the performance of this heuristic may be found in the paper by 
Melhorn.

10.2 AVL TREES

We also may maintain dynamic tables as binary search trees. In Chapter 5, we discussed 
how to insert elements into and delete them from binary search trees. Figure 10.8 shows 
the binary search tree obtained by entering the months January to December, in that 
order, into an initially empty binary search tree. We used add~node (Program 5.18).

The maximum number of comparisons needed to search for any identifier in the 
tree of Figure 10.8 is six (for November}. The average number of comparisons is (1 for 
January + 2 each for February and March + 3 each for April, June, and May + • • • + 6 
for November} = 42/12 = 3.5. If we enter the months into the tree in the order July,
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Feb

June

Mar

Apr May

Aug Ju ly
Sept

Dec Oct

Nou

Figure 10.8: Binary search tree obtained for the months of the year

February, May, August, January, March, October, April, December, June, November, 
and September, we obtain the tree of Figure 10.9. This tree is well balanced and does not 
have any paths to leaf nodes that are much longer than others. In contrast, the tree of 
Figure 10.8 has six nodes on the path from the root to November, but only three nodes on 
the path from the root to April. The tree of Figure 10.9 has other advantages. The max
imum number of comparisons needed to search for any identifier is now four, and the 
average number of comparisons is 37/12 3.1. In addition, all the intermediate trees
created during the construction of the tree of Figure 10.9 are also well balanced. Sup
pose that we now enter the months into an initially empty tree in alphabetical order. The 
tree degenerates into the chain shown in Figure 10.10. The maximum search time is now 
12 identifier comparisons and the average is 6.5. Thus, in the worst case, binary search 
trees correspond to sequential searching in an ordered list. However, when we enter the 
identifiers in a random order, the tree tends to be balanced as in Figure 10.9. If all per
mutations are equally probable, then we can prove that the average search and insertion 
time is O(log n) for an n node binary search tree.

From our earlier study of binary trees, we know that we can minimize the average 
and maximum search time if we maintain the binary search tree as a complete binary tree 
at all times. Unfortunately, since we have a dynamic environment, we will search for 
identifiers as we are building the tree. This makes it is difficult to maintain a complete 
binary tree without a significant increase in the time required to add new elements. The 
increased time arises because, in some cases, we may have to restructure the entire tree 
to accommodate a new entry. However, we can maintain a balanced tree that ensures 
that the average and worst case search time for a tree with n nodes is O(log n). In this 
section, we study one method of growing balanced binary trees. These balanced trees 
have satisfactory search and insertion times. Other balanced tree structures are studied 
in subsequent sections.
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Feb
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Figure 10.9:A balanced tree for the months of the year

Apr

Aug

Dec

Feb

Jan

July
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Mar
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Nou
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Sept

Figure 10.10: Degenerate binary search tree

In 1962, Adelson-Velskii and Landis introduced a binary tree structure that is bal
anced with respect to the heights of subtrees. Since the trees are balanced, we can per
form dynamic retrievals in O(log «) time for a tree with n nodes. We also can enter an 
element into the tree, or delete an element from it, in O(log n) time. The resulting tree 
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remains height balanced. We refer to the trees introduced by Adelson-Velskii and 
Landis as AVL trees. As with binary trees, we may define AVL trees recursively.

Ti and Tf^ are height balanced

Definition: An empty binary tree is height balanced. If Lis a nonempty binary tree with 
Ti^ and T/j as its left and right subtrees, then T is height balanced iff 

(1) 
and 

(2) I hj^ - hj^\ < I where and Zz/? are the heights of 7^ and T/^, respectively. □

The definition of a height balanced binary tree requires that every subtree also be 
height balanced. The binary tree of Figure 10.8 is not height balanced since April's left 
subtree has a height of 0 and its right subtree has a height of 2. The tree of Figure 10.9 
is height balanced, while the tree of Figure 10.10 is not. To illustrate the processes 
involved in maintaining a height balanced binary search tree, let us construct such a tree 
for the months of the year. This time we will insert the months into the tree in the order 
March, May, November, August, April, January, December, July, February, June, 
October, and September. Figure 10.11 shows the tree as it grows, and the restructuring 
involved in keeping it balanced. The numbers by each node represent the difference in 
heights between the left and right subtrees of that node. We refer to this as the balance 
factor of the node.

Definition: The balance factor, BF(T}, of a node, 7, in a binary tree is defined as - 
Zz/?, where Zz^ and Zz/? are, respectively, the heights of the left and right subtrees of T. For 
any node T in an AVL tree BF(T) = -1, 0, or 1. n

Inserting March and May results in the binary search trees (a) and (b) of Figure 
10.11. When we add November to the tree, the height of March's right subtree becomes 
2, while that of the left subtree is 0. The tree is now unbalanced. To rebalance the tree, 
we perform a rotation. This rotation involves the two gray nodes. Since the tree is 
unbalanced to the right, we rotate it to the left. Thus, we make March the left child of 
May, and May the root of the tree. The introduction of August leaves the tree balanced. 
However, the next insertion, April, causes the tree to become unbalanced again. Since 
the tree is now unbalanced to the left, we rotate the two gray nodes to the right. Thus, 
we make March the right child of August, and we make August the root of the subtree 
(Figure 10.11(e)). Notice that we performed both of the previous rotations when the 
closest ancestor of the new node that had a balance factor of ±2. The insertion of Janu
ary also produces an unbalanced tree. However, this time the rotation is more complex 
since the imbalance is not in one direction. In this case, we must rotate the three shaded 
nodes along with their subtrees. We make March the new root. August, together with its 
left subtree, becomes the left subtree of March. The left subtree of March becomes the 
right subtree of August. May and its right subtree, which have identifiers greater than 
March, become the right subtree of March. If March had a nonempty right subtree, this 
would have become the left subtree of May since all identifiers would have been less
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than May.

Mar

(a) Insert March

-1
Mar

(b) Insert May

2
RR

Rotat ion
0

0

0

0

>

(c) Insert Nouenber

Figure 10.11: Insertion into an AVL tree

Inserting December and July necessitates no rebalancing. However, when we 
insert February, the tree again becomes unbalanced. The rebalancing process is similar 
to the one we used after we inserted January. It again involves the three gray nodes. 
The imbalance occurs at August. In this case, we make December the new root of that 
subtree. August, with its left subtree, becomes the left subtree of December. January, 
and its right subtree, becomes the right subtree of December. We make February the left 
subtree of January. If December had a left subtree, it would have become the right sub
tree of August. The insertion of June requires the same rebalancing as in Figure 10.11(f). 
Inserting October also requires rebalancing. In this case, the rotation is identical to the 
one we used after we placed November in the tree. Inserting September leaves the tree 
balanced.

In the preceding example we saw that the addition of a node to a balanced binary 
search tree could unbalance it. We carried out the rebalancing using four different kinds 
of rotations: LL, RR, LR, and RL (Figure 10.11 (e), (c), (f), and (i), respectively). LL and 
RR are symmetric as are LR and RL. These rotations are characterized by the nearest 
ancestor, A, of the inserted node, Y, whose balance factor becomes ±2. We characterize 
the rotation types as follows:
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♦1
Mar

+ 1
May

\o
Nou

(d) Insert August

+2

May

\p
Nov

LL

Rotation

+ 1
May

0
Nou

0

0

0 0

(e) Insert April

Figure 10.11 (continued): Insertion into an AVL tree

LL:

LR:

RR:

RL:

new node L is inserted in the left subtree of the left subtree of A

Y is inserted in the right subtree of the left subtree of A

Y is inserted in the right subtree of the right subtree of A

Y is inserted in the left subtree of the right subtree of A

Figure 10.12 shows the LL, LR, and RR rotations in terms of abstract binary trees. 
The RL rotations are similar to the LR ones. The root node in each of the trees of the 
figure represents the nearest ancestor whose balance factor has become ±2 as a result of 
the insertion. A moment’s reflection shows that if a height balanced binary tree becomes 
unbalanced as a result of an insertion, then these are the only four cases possible for 
rebalancing (if a moment’s reflection doesn’t convince you, then try Exercise 1). In both 
the example of Figure 10.11 and the rotations of Figure 10.12, the height of the subtrees 
which are not involved in the rotation remain unchanged. This means that once we have 
rebalanced the subtree in question, we do not need to examine the remaining portions of 
the tree. The only nodes whose balance factors can change are those in the subtree that 
is rotated.
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+2

-1 0
Nou

LR
Rotat

0
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0

+1

Jan (f) Insert January

+ 1

Nar

-1 
Aug

-1
Nay

0 / 

Apr

+ 1
Jan

0 
Nou

0

0
Dec

(g) Insert December 
+ 1

ClNar^

-1

Aug
-1
Nay

0 / 

Apr

0
Jan

0
Nou

0
Dec

(h) Insert July

Figure 10.11 (continued): Insertion into an AVL tree

To perform a rotation, we must first locate the nearest ancestor, A, of the newly 
inserted node whose balance factor becomes ±2. A node’s balance factor cannot change 
to ±2 unless its balance factor was ±1 prior to insertion. Therefore, the insertion function 
may use this information to determine when a node’s balance factor increases to ±2. To 
complete an LL or RR rotation, we also must know the parent of A since after the rotation 
one of the parent’s pointers is changed to point to the new root of the subtree. Figure 
10.12 shows the changes in the nodes and their balance factors.
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0

0
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0

0

0

0

(j) Insert June

Figure 10.11 (continued): Insertion into an AVL tree

What happens when the insertion of a node does not result in an unbalanced tree 
(Figure 10.11 (a), (b), (d), (g), (h), and (1))? While no restructuring of the tree is needed, 
the balance factors of several nodes change. Let A be the nearest ancestor of the new 
node with balance factor ±1 before insertion. If as a result of the insertion the tree does 
not become unbalanced even though some path length increased by 1, the new balance 
factor of A must be 0. In case there is no ancestor A with balance factor ±1 (as in Figure 
10.11 (a), (b), (d), (g), and (1), let A be the root. The balance factors of nodes from A to 
the parent of the new node will change to ±1 (see Figure 10.11 (h), A= January). 
Notice that in both cases the function for determining A is the same as when rebalancing 
is needed. The remaining details of the insertion-rebalancing process are spelled out in
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(1) Insert Septenber

Figure 10.11 (continued): Insertion into an AVL tree 

avl-insert (Program 10.2). The function left-rotation (Program 10.3) gives the code for 
the LL and LR rotations. The code for the RR and RL rotations is symmetric and we 
leave it as an exercise. The type definitions in use are:
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Figure 10.12 (continued): Rebalancing rotations

0
1

ttdefine IS—FULL(ptr) (1(ptr)) 
ttdefine FALSE 
ttdefine TRUE 
typedef struct { 

int key; 
} element;

typedef struct tree—node
struct tree—node { 

tree—pointer left—child; 
element 
short int
tree—pointer right—child; 
};

int unbalanced = FALSE; 
tree—pointer root = NULL;

*tree—pointer;

data;
bf ;

The pointer to the tree root is set to NULL before to the first call of avl-insert. We also 
set unbalanced to FALSE before each call to avl-insert. The function call is 
avl-insert(&.root, x, (^unbalanced).
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void avl—insert(tree—pointer ■^parent, element x,
*unbalanced)

{

if ( !*parent ) { 
/* insert element into null tree

■^unbalanced
■^parent

TRUE ;
(tree—pointer)

*/

int

malloc(sizeof(tree—node));
if (IS—FULL(^parent)) { 

fprintf(stderr, 
exit(1);

"The memory is fullXn”);

}
("^parent) -> left—child =

(*parent )->right—child = NULL;
( *parent )->bf = 
(*parent )->data

0;
= X;

} 
else if (x.key (*parent )->data.key) { 

avl—insert (& ( *parent)  ->left—child, unbalanced) ;
if (*unbalanced)

left branch has grown higher 
switch ((^parent)->bf) { 

(*parent )->bf 
*unbalanced = 
break;
(*parent )->bf 
break;

1: left—rotation(parent,unbalanced);

case -1:

case

case

*/

= 0;
FALSE;

1;0 :

}
}
else if (x.key

avl—insert(&(*parent)->right —child, unbalanced);
if (*unbalanced)

right branch has grown higher

(*parent )->data.key) {

= 0;
FALSE;

switch((^parent)->bf) { 
case 1 : (*parent )->bf 

*unbalanced = 
break;

case 0 : (*parent )->bf = -1; 
break;

case -1: right—rotation(parent, unbalanced);
}

}
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FALSE;
else {

*unbalanced
printf("The key is already in the tree");

}
I

Program 10.2: Insertion into an AVL tree

+ F,

To really understand the insertion algorithm, you should apply it to the example of 
Figure 10.11. Once you are convinced that it keeps the tree balanced, then the next 
question is how much time does it take to make an insertion? An analysis of the algo
rithm reveals that if h is the height of the tree before insertion, then the time to insert a 
new identifier is O(/i). This is the same as for unbalanced binary search trees, although 
the overhead is significantly greater now. In the case of binary search trees, however, if 
there were n nodes in the tree, then h. could be n (Figure 10.10) and the worst case inser
tion time would be O(n). In the case of AVL trees, since h is at most O(log n), the worst 
case insertion time is O(log n). To see this, let be the minimum number of nodes in a 
height balanced tree of height h. In the worst case, the height of one of the subtrees is 
h — 1 and the height of the other is h - 2. Both these subtrees are also height balanced. 
Hence, A/, = -i- + 1 and Aq = 0, A, = 1 and A2 = 2. Notice the similarity
between this recursive definition for A/, and the definition of the Fibonacci numbers 

+ Ff^^2^ Eo = 0, and F\ =1. In fact, we can show (Exercise 2) that 
= •^A+2 “ h>0. From Fibonacci number theory we know that F/j ==0^/ ^^5

where 0 = (1 + yjS)/!. Hence, A/, = 0"^^ /^/5 - 1. This means that if there are n nodes in 
the tree, then its height, h, is at most log^^ (^5(n -1- l))-2. Therefore, the worst case 
insertion time for a height balanced tree with n nodes is O(log n).

The exercises show that it is possible to find and delete a node with identifier x and 
to find and delete the /:th node from a height balanced tree in O(Iog n) time. The paper 
by Karlton et al. gives the results of an empirical study of deletion in height balanced 
trees. Their study indicates that the probability that a random insertion will require no 
rebalancing is .5349; the probability that it will require a single rotation (LL or RR) is 
.2324; and the probability that it will require a double rotation {LR or RL) is .2324. Fig
ure 10.13 compares the worst case times of certain operations on sorted sequential lists, 
sorted linked lists, and AVL trees.

n-] n~2^

EXERCISES

1. (a) Complete Figure 10.12 by drawing the tree configurations for the rotations 
RL (a), (b), and (c).
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void left—rotation(tree—pointer 
{

*parent, int *unbalanced)

{ *parent ) ->left—child;

/*

tree—pointer grand-child, child; 
child 
if (child->bf ==

LL rotation
(*parent )->left—child 
child->right—child = 
(*parent )->bf 
(*parent)  = child;

0;

= child->right—childz- 
parent ;

}
else { 
/* */LR rotation 

grand-child = child->right—child; 
child->right—chiId = grand—child->left—child; 
grand—child->left—child
(*parent)->left —child = grand—child->right—child; 
grand—child->right—child = 
switch(grand—child->bf) { 

case

child;

*parent;

case 0:

1 : ( *parent )->bf = -1 ; 
child->bf 
break;

(*parent )->bf
break;

(*parent )->bf 
child->bf

0;

child->bf 0;

case -1:
1;

0;

1) {

*

}
*parent - grand-child;

}
(*parent )->bf
*unbalanced =

= 0;
FALSE;

}

Program 10.3: Left rotation function

(b) Convince yourself that the completed Figure 10.12 takes care of all the pos
sible situations that may arise when a height balanced binary tree becomes 
unbalanced as a result of an insertion. Alternately, come up with an example 
that is not covered by any of the cases in this figure.
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Operation
Search forx
Search for /dh item
Delete x
Delete hh item
Insert x
Output in order

Sequential list 
O(log n) 
0(1) 
0(/t) 
O(n - 
O(/i) 
0(«)

Linked list
O(n) 
O(fe) 
0(1)' 
O(^) 
0(1)2 
0(n)

AVL tree
O(log n)
O(log n) 
O(log «) 
O(log n)
O(log n)

1. Doubly linked list and position of x known.
2. If position for insertion is known.

Figure 10.13: Comparison of various structures

2.

3.

4.

Prove by induction that the minimum number of nodes in an AVL tree of height Zz 
is Nh = F,
Complete avl-insert by writing the right-rotation function.

Obtain the height balanced trees corresponding to those of Figure 10.11 using 
algorithm avl-insert, starting with an empty tree, on the following sequence of 
insertions:

/i+ 2“ 1’^-0-

December, January, April, March, July, August, 
October, February, September November, May, June

5.

6.

7.

8.

Label the rotations according to type.

Assume that each node in an AVL tree t has the field Isize. For any node, a, 
a~>lsize is the number of nodes in its left subtree plus one. Write an algorithm 
avl-find(t, k) to locate the kth smallest identifier in the subtree t. Show that this 
can be done in O(log n) time if there are n nodes in t.

Rewrite algorithm avl-insert with the added assumption that each node has a Isize 
field as in Exercise 5. Show that the insertion time remains O(log n).

Write an algorithm to list the nodes of an AVL tree T in ascending order of the key 
fields. Show that this can be done in O(n) time if T has n nodes.

It is known that any algorithm that merges together two sorted lists of size n and 
m, respectively, must make at least n + m - 1 comparisons in the worst. What 
implications does this result have on the time complexity of any comparison based 
algorithm that combines together two AVL trees that have n and m elements, 
respectively?
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9.

10.

11.

12.

13.

14.
15.

In Chapter 7, we showed that every comparison based algorithm to sort n elements 
must make O(nlogn) comparisons in the worst case. What implications does this 
result have on the complexity of initializing an AVL tree with n elements?
Write an algorithm to delete the node with identifier x from an AVL tree t. The 
resulting tree should be restructured if necessary. Show that the time required for 
this is O(log n) when there are n nodes in t.
Do Exercise 5 for the case when each node has a Isize field and the ^th smallest 
identifier is to be deleted.
Write an algorithm to merge the nodes of the two AVL trees, T] and T2, together 
to obtain a new AVL tree. What is the computing time of your algorithm?
Write an algorithm to split an AVL tree, T, into two AVL trees T] and T2 such that 
all identifiers in Tj are < x and all those in T2 are > x.

Complete Figure 10.13 by adding a column for hashing.
§ For a fixed k, Z: > 1, we define a height balanced tree HB{k) as follows:

Definition: An empty binary tree is an HB (k) tree. If T is a nonempty binary tree 
with ?£ and as its left and right subtrees, then Tis HB(k) iff.

(1)
(2)

and Tf^ are HB (k )

I //£ - A/jI < k, where and hf^ are the heights of and 7}?, respectively. □

10.3

(a)
(b)

Obtain the rebalancing transformations for HB (2) trees.
Write an insertion function for HB (2) trees.

TWO-THREE TREES (2-3 TREES)

10.3.1 Definition And Properties

By considering search trees of degree greater than 2, we can arrive at tree structures for 
which the insertion and deletion algorithms are simpler than that for AVL trees. Yet, 
these algorithms have O(log«) complexity. The tree structure we consider is called a 2-3 
tree. This name reflects the fact that each internal node in a 2-3 tree has degree two or 
three. A degree two node is called a l-node while a degree three node is called a 3-node.

Definition: A 2-3 tree is a search tree that is either empty or satisfies the following pro 
perties:

(1) Each internal node is either a 2-node or a 3-node. A 2-node has one element while 
a 3-node has two elements.
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(2)

(3)

(4)

Let left-child and middle-child denote the children of a 2-node. Let data-l be 
the element in this node and let data-l.key be its key. All elements in the 2-3 sub
tree with root left-child have key less than data-l.key, while all elements in the 
2-3 subtree with root middle-child have key greater than data-l.key.

Let left-child, middle-child, and right-child denote the children of a 3-node. Let 
data-l and data-r be the two elements in this node. Then, data-l.key < 
data-r.key, all keys in the 2-3 subtree with root left-child are less than 
data-l.key’, all keys in the 2-3 subtree with root middle-child are less than 
data-r.key and greater than data-l.key, and all keys in the 2-3 subtree with root 
right-child are greater than data-r.key.

All external nodes are at the same level. □

An example 2-3 tree is given in Figure 10.14. As in the case of leftist trees, exter
nal nodes are introduced only to make it easier to define and talk about 2-3 trees. Exter
nal nodes are not physically represented inside a computer. Rather, the corresponding 
child field of the parent of each external node is set to NULL.

A
40

B
10 80

C

Figure 10.14: An example 2-3 tree

The number of elements in a 2-3 tree with height h (i.e., the external nodes are at 
level h +1) is between 2^ - 1 and 3^-1. To see this, note that the first bound applies 
when each internal node is a 2-node while the second bound applies when each internal 
node is a 3-node. These two cases represent the two extremes. A 2-3 tree with some 2- 
nodes and some 3-nodes will have a number of elements somewhere between these two 
bounds. Hence, the height of a 2-3 tree with n elements is between f log3(/t +1) 1 and 
riog2(n + 1)1.

We may represent a 2-3 tree using nodes of the type two-three defined as:

*two—three—ptr;typedef struct two—three 
struct two—three {
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element data—1, data—r;
two—three—ptr left—child, middle—child, 
right—child ;
};

We assume that no valid element has key INT-MAX (defined in <limits.h>\ and adopt 
the convention that a 2-node has data~r.key = INT-MAX. Its single element is kept in 
data-l, and left-child and middle-child point to its two children. Its right-child field is 
set to NULL.

10.3.2 Searching A 2-3 Tree

We can easily extend the search algorithm for binary search trees to obtain the search 
function search!?} (Program 10.4), which searches a 2-3 tree, t, for a node that contains 
an element with key x. We assume that the keys are integers. The search function uses a 
compare function that compares a key, x, with the keys in a given node p. It returns the 
value 1, 2, 3, or 4, respectively, depending on whether x is less than the first key, 
between the first and second keys, greater than the second key, or equal to one of the 
keys in p. The number of iterations of the while loop is bounded by the height of the 2-3 
tree, t. Hence, if t has n nodes, the complexity of search 23 is O(log n).

two—three—ptr search23(two—three—ptr t, element x) 
{ 
/*
If such an element is found, a pointer to its node is
returned, otherwise a null pointer is returned 

while (t) 
switch(compare(x,t)) {

t->left—child;

search the 2-3 tree t for an element that matches x.key.

*/

t->middle—child;

case 4:

case 1: t 
break;

case 2: t
break;

case 3: t
break;
return t;

t->right—child;

}
return NULL;

}

Program 10.4: Function to search a 2-3 tree
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10.3.3 Insertion Into A 2-3 Tree

Insertion into a 2-3 tree is fairly simple. Consider inserting an element with key 70 into 
the 2-3 tree of Figure 10.14. First we search for this key. If the key is already in the tree 
then the insertion fails as all keys in a 2-3 tree are distinct. Since 70 is not in our exam
ple 2-3 tree, it may be inserted. For this, we need to know the leaf node encountered dur
ing the search for 70. Note that whenever we search for a key that is not in the 2-3 tree, 
the search encounters a unique leaf node. The leaf node encountered during the search 
for 70 is the node C with key 80. Since this node has only one element, the new element 
may be inserted here. The resulting 2-3 tree is shown in Figure 10.15(a).

A
40 20 40

10
B

20 70 80 10
B

30
C

80

A

C

(a) 70 inserted (b) 30 inserted

Figure 10.15: Insertion into the 2-3 tree of Figure 10.14

Next, consider inserting an element x with key 30. This time the search 
encounters the leaf node B. Since B is a 3-node, it is necessary to create a new node D. 
D will contain the element that has the largest key from amongst the two elements 
currently in B and x. The element with the smallest key will be in B and the element 
with the median key together with a pointer to D will be inserted into the parent A of B. 
The resulting 2-3 tree is shown in Figure 10.15(b).

As a final example, consider the insertion of an element x with key 60 into the 2-3 
tree of Figure 10.15(b). The leaf node encountered during the search for 60 is node C. 
Since C is a 3-node, a new node E is created. This contains the element with largest key 
(80). Node C contains the element with smallest key (60). The element with the median 
key (70) together with a pointer to the new node E are to be inserted into the parent A of 
C. Again, since A is a 3-node, a new node F containing the element with largest key 
amongst {20, 40, 70} is created. As before, A contains the element with the smallest 
key. B and D remain the left and middle children of A, respectively and C and E become 
these children of F. If A had a parent, then the element with the median key 40 and a 
pointer to the new node F would be inserted into this parent node. Since A does not have 
a parent, we create a new root G for the 2-3 tree. This contains the element with key 40 
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together with a left child pointer to A and a middle child pointer to F. The new 2-3 tree 
is as shown in Figure 10.16.

G
40

A F
20 70

B
10 30 60 80

D C E

Figure 10.16: Insertion of 60 into the 2-3 tree of Figure 10.15(b)

(1)

(2)

(3)

Each time we attempt to add an element into a 3-node, p, we create a new node, q. 
We refer to this as a node split. We say that p is split into p, q, and the median element. 
Putting the ideas in the preceding discussion together, we get the insertion function of 
m5ert23 (Program 10.5).

This function makes use of several functions whose development we leave as an 
exercise. We specify the task performed by each as follows:

new-root. We invoke this function when the root of the 2-3 tree is to change. The 
inputs to this function are the left child of the new root, its single element, and its 
middle child. A pointer to the new root is returned in the first parameter.

find-node. This function is a modified version of searchllf. It searches a 
nonempty 2-3 tree, t, for the presence of an element with key y.key. If this key is 
present in t, then we set return NULL. Otherwise, we return the leaf node, p, 
encountered in the search. Additionally, find-node creates a global stack so that 
we can find the ancestors from the leaf p to the root t. The stack keeps a list of 
nodes from the closest ancestor to the most distant one. We need such a list since 
following a node split we must access the parent of the node that was split.

put-in. We use this function to insert an element, y, into a node, p, that has exactly 
one element in it. We place the subtree q immediately to the right of y. Thus, if y 
becomes data-I, then q becomes middle-child and the previous values of data-l 
and middle-child move to data-r and right-child. If y becomes data-r. then q 
becomes right-child.
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void insert23(two—three—ptr *t,  element y) 
{ 
/■^ insert the element y into the 2-3 tree 

two—three—ptr q, p, temp;

)

/■^if (!(*t))  /★ tree is empty
new—root(t, y, NULL);

else {

■^ /

insert into a non-empty tree 
P 
if (!p) {

fprintf(stderr, "The key is currently in the 
tree\n");

find—node(*t,y );

exit(1);
} 
q 
for(;;)

if {p->data—r .key == INT—MAX) { /*2 -node 
put—in(&p,y,q);
break;

NULL;

* /

}

}
else { /*  3-node

split(p,&y,&q); 
if (P

new—root(t,y,q);
break;

*t) { split the root * /

}

else 
/*remove  a node from stack 
P delete();

Program 10.5: Insertion into a 2-3 tree

* /

(4) split. This function takes a node, p, that has two elements in it and creates a new 
node, q. The new node contains the record with largest key from among the ele
ments initially in p and the element y. The element with smallest key is the only 
element left in p. The three original children pointers of p and the pointer q 
occupy the four children fields that need to be defined in p and the new node. On 
return, y is the element with median key and q points to the newly formed node.
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(5) delete. This function removes a node from the global stack. The pointer to the top 
of the stack is also a global variable.

In insert 23, y denotes the element to be inserted into the 2-3 tree and q denotes the 
node that was newly created at the last iteration of the for loop. As for the complexity 
analysis, we see that the total time taken is proportional to the height of the 2-3 tree. 
Hence, insertion into a 2-3 tree with n elements takes O(log n) time.

10.3.4 Deletion From A 2-3 Tree

Deletion from a 2-3 tree is conceptually no harder than insertion. In case we are deleting 
an element that is not in a leaf node, then we transform this into a deletion from a leaf 
node by replacing the deleted element by a suitable element that is in a leaf. For exam
ple, if we are to delete the element with key 50 that is in the root of Figure 10.17(a), then 
this element may be replaced by either the element with key 20 or the element with key 
60. Both are in leaf nodes. In a general situation, we may use either the element with 
largest key in the subtree on the left or the element with smallest key in the subtree on 
the right of the element being deleted.

Henceforth, we consider only the case of deletion from a leaf node. Let us begin 
with the tree of Figure 10.17(a). To delete the element with key 70, we need merely set 
data~r.key = 1NT~MAXin node C. The result is shown in Figure 10.17(b). To delete the 
element with key 90 from the 2-3 tree of Figure 10.17(b), we need to shift data-r to 
data-l and set data-r.key = INT-MAX in node D. This results in the 2-3 tree of Figure 
10.17(c).

Next consider the deletion of the element with key 60. This leaves node C empty. 
Since the left sibling, B, of C is a 3-node, we can move the element with key 20 into the 
data-l position of the parent node, A, and move the element with key 50 from the parent 
to node C. After setting data-r.key = INT-MAX in B, the 2-3 tree takes the form shown 
in Figure 10.17(d). This data movement operation is called a rotation. When the ele
ment with key 95 is deleted, node D becomes empty. The rotation performed when the 
60 was deleted isn’t possible now as the left sibling C is a 2-node. This time, we move 
the 80 into the left sibling C and delete the node D. We shall refer to this operation as a 
combine. In a combine one node is deleted, while no nodes are deleted in a rotation. 
The deletion of 95 results in the 2-3 tree of Figure 10.17(e). Deleting the element with 
key 50 from this tree results in the 2-3 tree of Figure 10.17(f). Now consider deleting the 
element with key 10 from this tree. Node B becomes empty. At this time, we examine 
B’s right sibling C to see if it is a 2-node or a 3-node. If it is a 3-node, we can perform a 
rotation similar to that done during the deletion of 60. If it is a 2-node, then a combine is 
performed. Since C is a 2-node, we proceed in a manner similar to the deletion of 95. 
This time, the elements with keys 20 and 80 are moved into B and the node C deleted. 
This, however, causes the parent node A to have no elements. If the parent had not been 
a root, we would examine its left or right sibling as we did when nodes C (deletion of 60) 
and D (deletion of 95) became empty. Since A is the root, it is simply deleted and B
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B
10 20

A
50

C
60

10

80

70 90
D

95

(a) Initial 2-3 tree
A

B
20

50

60

80

90
D

95

(b) 70 deleted 
A

50 80

10
B

60 95
D

(c) 90 deleted

Figure 10.17: Deletion from a 2-3 tree 

becomes the new root (Figure 10.17(g)).
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A A
20 80 20

10
B

50

B
10

D
95 10

B
50 80

(d) 60 deleted
A

(e) 95 deleted 
B

20 20 80

C
80 (g) 10 deleted

(f) 50 deleted

Figure 10.17 (continued): Deletion from a 2-3 tree

Program 10.6 summarizes the steps involved in deletion from a leaf node p of a 
2-3 tree t.

There are three cases for a rotation depending on whether p is the left, middle, or 
right child of its parent r. If p is the left child of r, then let q be the right sibling of p. 
Otherwise, let q be the left sibling of p. Note that regardless of whether r is a 2-node or a 
3-node, q is well defined. The three rotation cases are shown pictorially in Figure 10.18. 
A “?” denotes a don’t care situation, a, b, c, and d denote the children (i.e., roots of sub
trees) of nodes.

Figure 10.19 shows the two cases for a combine when p is the left child of r. We 
leave it as an exercise to obtain the figures for the cases when p is a middle child and 
when p is a right child.

The refinement of step 1 of Program 10.6 into C code is shown in Program 10.7. 
Programs 10.8 and 10.9 show the code for the rotate and combine operations when p is 
the left child of r. leave the development of the complete deletion function as an 
exercise.



2-3 Trees 505

Step 1: Modify p as necessary to reflect its status after the desired element has been 
deleted.

Step 2: while (p has zero elements && p is not the root) {
let r be the parent of p;
let q be the left or right sibling of p (as appropriate);
if (<7 is a 3-node)

rotate;
else

combine;
p = r;
)

Step 3: If p has zero elements, then p must be the root. The left child of p becomes the 
new root and p is deleted.

Program 10.6: Steps in deleting from a leaf node, p, of a 2-3 tree

Analysis of deletion: It should be obvious that an individual rotation or combine opera
tion takes 0(1) time. If a rotation is performed, the deletion is complete. If a combine is 
performed, p moves up one level in the 2-3 tree. Hence, the number of combines that we 
can perform during a deletion cannot exceed the height of the 2-3 tree. Consequently, 
deletion from a 2-3 tree with n elements takes O(Iog n) time. □

EXERCISES

1.

2.

Write the compare function used in Program 10.4.

(a)

3.

4.

5.

Develop the functions find-node, new-root, put-in, and split used by func
tion insert 23 (Program 10.5). Use these functions to test the correctness of 
insert 23.

Next, use random insertions and measure the height of the resulting 2-3 trees 
with n = 100, 1000, and 10,000 elements.

Complete Figure 10.19 by providing the figures for the cases p is a middle child 
and p is a right child.

Develop a complete C function to delete the element with key x from the 2-3 tree 
t. Test this function using at least five different 2-3 trees of your choice. For each 
of these perform at least six successive deletions.

It is known that any algorithm that merges together two sorted lists of size n and 
m, respectively, must make at least n •+• m - 1 comparisons in the worst. What 
implications does this result have on the time complexity of any comparison based 
algorithm that combines together two 2-3 trees that have n and m elements,

(b)
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(a) p is the left child of r
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(c) p is the right child of r

d ec

Figure 10.1 8: The three cases for rotation in a 2-3 tree

respectively?
6. In Chapter 7, we showed that every comparison based algorithm to sort n elements 

must make O(/ilog/2) comparisons in the worst case. What implications does this 
result have on the complexity of initializing a 2-3 tree with n elements?
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Figure 10.1 9: Combining in a 2-3 tree when p is a the left child of r

7.

(a)

(b) 

(c) 

(d) 
(e)

8.

Consider a variation of a 2-3 tree in which elements are kept only in leaf nodes. 
Each leaf has exactly one element. The remaining nodes are 2-nodes or 3-nodes. 
Each such node keeps only the values large - a- largest key in any leaf in its left 
subtree and large - b = largest key in any leaf in its middle subtree. As before, all 
external nodes are at the same level.

Define two node structures such that one is suitable to represent a leaf node 
and the other to represent a nonleaf node.

Write a procedure to search such a 2-3 tree represented in this way.

Write a procedure to insert an element x into this tree.

Write a deletion procedure for such a 2-3 tree.

Show that each of the above operations can be performed in O(logn) time 
where n is the number of elements (i.e., leaf nodes) in the tree.

Let Tand f/be two 2-3 trees in which keys are kept in the leaves only (see preced
ing exercise). Let V'be a similar tree that contains all key values in T and U. Write 
an algorithm to construct V from T and U. What is the complexity of your
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/*delete  x from the leaf p 
if (x.key == p->data—1.key) 

if (p->data_r.key 1 = 
p is a 3-node

p->data—r;
*/

*/

INT-MAX) {
/*  
p->data—1 
p->data—r.key = INT—MAX;

} 
else

/* p is a 2-node 
p->data—1.key = INT—MAX;

*/

else
/* delete second element 
p->data—r.key - INT-MAX;

*/

Program 10.7: Refinement of step 1 of Program 10.6

/* */
r->data—1 ;
q->data—1; 
q->data—r;

rotation when p is left child of r 
p->data—1 
r->data—1 
q->data—1
q->data—r.key - INT—MAX; 
p->middle—child 
q->left—child = 
q->middle—child

= q->left—child; 
q->middle—child;
= q->right—child;

Program 10.8: Rotation when p is the left child of r

algorithm?

9. Write insertion and deletion algorithms for 2-3 trees assuming that an additional 
field/is associated with each key value. /= 1 iff the corresponding key value has 
not been deleted. Deletions should be accomplished by simply setting the 
corresponding / = 0 and insertions should make use of deleted space whenever 
possible without restructuring the tree.

10. Write algorithms to search and delete keys from a 2-3 tree by position; that is, 
search (k) finds the Uh smallest key and delete (^) deletes the Uh smallest key in 
the tree. (Hint: In order to do this efficiently additional information must be kept 
in each node. With each pair keep TV, = Ljlg (number of key values in the 
subtree Ay + 1).) What are the worst case computing times of your algorithms?
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p is the left child of r 
r->data—1;
q->data—1;

/*
p—>data—1 
p->data—r 
p->middle—child = q->left—child; 
p->right—child = q->middle—child; 
if (r->data—r.key INT—MAX)

r was a two node
r->data—1.key = INT—MAX; 

else { 
r->data—1 
r->data—r.key = INT-MAX; 
r->middle—child

/■^ */

r->data—r;

r->right—child;
}

Program 10.9: Combine when p is the left child of r

11. Modify the 2-3 insertion algorithm so that we first check to see if either the nearest 
left sibling or the nearest right sibling of p has fewer than 2 keys. If so, no node is 
split. Instead, a rotation is performed moving either the smallest or largest key in 
p to its parent. The corresponding key in the parent together with a subtree is 
moved to the sibling of p which has space for another key value.

10.4

10.4.1

TWO-THREE-FOUR TREES (2-3-4 TREES)

Definition And Properties

A 2-3-4 tree extends a 2-3 tree so that 4-nodes are also permitted (4-nodes may have up 
to four children).

Definition: A 2-3-4 tree is a search tree that is either empty or satisfies the following 
properties:

(1)

(2)

Each internal node is a 2-, 3-, or 4-node. A 2-node has one element, a 3-node has 
two elements, and a 4-node has three elements.

Let left-child and left-mid-child denote the children of a 2-node. Let data-l be 
the element in this node and let data-l.key be its key. All elements in the 2-3-4 
subtree with root left-child have key less than data-l.key, while al! elements in 
the 2-3-4 subtree with root left-mid-child have key greater than data-l.key.
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(3)

(4)

(5)

Let left-child, left-mid-child, and right-mid-child denote the children of a 3- 
node. Let data-l and data-m be the two elements in this node. Then, data-l.key 
< data-m.key, all keys in the 2-3-4 subtree with root left-child are less than 
data-l.key, all keys in the 2-3-4 subtree with root left-mid-child are less than 
data-m.key and greater than data-l.key, and all keys in the 2-3-4 subtree with 
root right-mid-child are greater than data-m.key.

Let left-child, left-mid-child, right-mid-child and right-child denote the chil
dren of a 4-node. Let data-l, data-m and data-r be the three elements in this 
node. Then, data-l.key < data-m.key < data-r.key, all keys in the 2-3-4 subtree 
with root left-child are less than data-l.key', all keys in the 2-3-4 subtree with root 
left-mid-child are less than data-m.key and greater than data-l.key, all keys in 
the 2-3-4 subtree with root right-mid-child are greater than data-m.key but less 
than data-r.key, and all keys in the 2-3-4 subtree with root right-child are 
greater than data-r.key.

All external nodes are at the same level. □

We may represent a 2-3-4 tree using nodes of the type two 3^pointer defined as:

{

typedef struct two34 *two34pointer ;
typedef struct two34 

element data—1; 
element data—m; 
element data—r; 
two34pointer left-child; 
two34pointer left—mid—child; 
two34pointer right—mid—child; 
two34pointer right—chiId; 
} ;

As in the case of 2-3 trees, we assume that no valid element has key = INT-MAX. We 
adopt the convention that a 2-node has data-m.key = INT-MAX. The single element is 
kept in data-l and left-child and left-mid-child point to its two children. A 3-node has 
data-r.key = INT-MAX and the left-child, left-mid-child, and right-mid-child fields 
point to its three subtrees. An example 2-3-4 tree using these conventions and nodes of 
type two 34 is shown in Figure 10.20.

If a 2-3-4 tree of height h has only 2-nodes, then it contains 2^ - 1 elements. If it 
contains only 4-nodes, then the number of elements is 4^ - 1. A height h 2-3-4 tree with 
a mixture of 2-, 3-, and 4-nodes has between 2*  - 1 and 4^ - 1 elements. In other words, 
the height of a 2-3-4 tree with n elements is between f log4(n +1) 1 and [ log2+ 1)1-

An advantage 2-3-4 trees have over 2-3 trees is that we may insert an element into, 
or delete an element from, a 2-3-4 tree by a single root to leaf pass. The same operations 
on a 2-3 tree require a forward root to leaf pass followed by a backward leaf to root pass. 
As a result, the corresponding 2-3-4 tree algorithms are simpler. More interestingly, we
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□ □
Figure 10.2 0: An example 2-3-4 tree 

can efficiently represent a 2-3-4 tree as a binary tree called a red-black tree. As we shall 
see in the next section, red-black trees utilize space more efficiently than either 2-3 or 
2-3-4 trees. In this section, however, we shall see how we can insert elements into, and 
delete them from, a 2-3-4 tree by making a single top-down root to leaf pass over the 
tree.

10.4.2 Insertion Into A 2-3-4 Tree

If the leaf node into which the element is to be inserted is a 4-node, then this node splits 
and a backward leaf to root pass is initiated. This backward pass terminates when either 
a 2- or 3-node is encountered or when the root is split. To avoid the backward leaf to 
root pass, we split 4-nodes on the way down the tree. As a result, the leaf node into 
which the insertion is to be made is guaranteed to be a 2- or 3-node. The element to be 
inserted may be added to this node without any further node splitting.

There are essentially three different situations to consider for a 4-node:

(1)
(2)
(3)

it is the root of the 2-3-4 tree 
its parent is a 2-node
its parent is a 3-node
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The splitting transformations for cases (1) and (2) are shown in Figure 10.21 and 
Figure 10.22, respectively. For case (3), Figure 10.23 shows the transformation when the 
4-node is the left child of the 3-node and Figure 10.24 shows it for the case when the 4- 
node is the left middle child. The remaining case when the 4-node is the right middle 
child of the 3-node is symmetric to the case when it is the left child and is left as an exer
cise. It is easy to see that if the transformations of Figure 10.21, Figure 10.22, and Fig
ure 10.23 are used to split 4-nodes on the way down the 2-3-4 tree, then whenever a non 
root 4-node is encountered, its parent cannot be a 4-node. Notice that the transformation 
for a root 4-node increases the height of the 2-3-4 tree by one, while the remaining 
transformations do not affect its height.

t t

X y z y

a b c d

a

X

b c

z

d

Figure 10.2 1: Transformation when the 4-node is the root

The function to insert element y into the 2-3-4 tree t represented with nodes of 
type two34 takes the form given in Program 10.10. The functions used by insert 23A are 
specified as follows:

(1)

(2)

(3)

(4)

new-root. This function creates a single node 2-3-4 tree, t with only the element y 
in it.

four-node. This function returns TRUE the given node is a 4-node, and FALSE 
otherwise.

split-root. This function uses the transformation of Figure 10.21 to split a root that 
is a 4-node.

node-type. This function returns the value two-node if the given node is a 2-node 
and the value three-node otherwise. We use the following declaration to define 
the node-type'.

typedef enum {two—node,three—node} node—result;
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Figure 10.22: Transformation when the 4-node is the child of a 2-node

(5)

(6)

(7)

e

split~child~-of2. This function uses the transformations of Figure 10.22 to split a 
4-node that is a child of a 2-node.
split-child-of3. This function uses the transformations of Figures 10.23 and 10.24 
to split a 4-node that is a child of a 3-node.
compare. The function compares y.key with the keys in p. The possible outputs 
from this function and the corresponding conditions are:

(a)
(b)
(c)
(d)
(e)

equal.
leaf. 
Ichild.

y.key equals the key of one of the elements in p 

p is a leaf node
y.key <p ~> data-I.key

Imchild. p-~>data-l.key < y.key < p-> data-m.key

rmchild. p->data-m.key < y.key < p-> data-r.key
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Figure 10.23: Transformation when the 4-node is the left child of a 3-node
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Figure 10.24: Transformation when the 4-node is the left middle child of a 3-node

(0 rchild. y.key > p->data~r.key

If > and p satisfy more than one of the above conditions, then we use the first con
dition encountered. The following declaration creates the enumerated type used 
by compare to return the result:

typedef enum {equal,leaf,1child,Imchild,rmchild,rchild} 
compare—result;
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(8) put-ifi. This function adds the new element to a leaf node. This leaf node is either 
a 2-node or a 3-node.

We may easily show that the complexity of insert 234 is O(log n), where n is the 
number of elements in root.

10.4.3 Deletion From A 2-3-4 Tree

As in the case of 2-3 trees, the deletion of an arbitrary element may be reduced to that of 
a deletion of an element that is in a leaf node. If the element to be deleted is in a leaf 
that is a 3-node or a 4-node, then its deletion leaves behind a 2-node or a 3-node. In this 
case, no restructuring work is required. Hence, to avoid a backward leaf to root restruc
turing path (as performed in the case of 2-3 trees) it is necessary to ensure that at the 
time of deletion, the element to be deleted is in a 3-node or a 4-node. This is accom
plished by restructuring the 2-3-4 tree during the downward root to leaf pass.

The restructuring strategy requires that whenever the search moves to a node on 
the next level, this node must be a 3-node or a 4-node. Suppose the search is presently at 
node p and will move next to node q. Note that q is a child of p and is determined by the 
relationship between the key of the element to be deleted and the keys of the elements in 
p. The following cases are to be considered: 

(1)

(2)

(3)

(4)

p is a leaf. In this case, the element to be deleted is either in p or not in the tree. If 
the element to be deleted is not in p, then the deletion is unsuccessful. Assume 
this is not the case. By the nature of the restructuring process, p can be a 2-node 
only if it is also the root. The deletion results in an empty tree.

q is not a 2-node. In this case, the search moves to q and no restructuring is 
needed.

q is a 2-node and its nearest sibling r is also a 2-node (if q is the left child of p, 
then its nearest sibling is the left middle child of p; otherwise, the nearest sibling is 
its left sibling). Now, if p is a 2-node, it must be the root and we perform the 
transformation of Figure 10.21 in reverse. That is, p, q, and r are combined to 
form a 4-node and the height of the tree decreases by 1. If p is a 3-node or a 4- 
node, then we perform, in reverse, the 4-node splitting transformation for the 
corresponding case (Figures 10.22 through 10.24).

q is a 2-node and its nearest sibling r is a 3-node. In this case, we perform the 
transformation of Figure 10.25. This figure only shows the transformations for the 
case when q is the left child of a 3-node p. The cases when q is the left middle 
child, right middle child, or right child and when p is a 2-node (in this case p is the 
root) or a 4-node are similar.
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void insert234(two34pointer 
{

★ t, element y)

insert y into the 2-3-4 tree t 
two34pointer p, r;
if (!*t)

new—root(t, y);
else {

if (four—node(*t ) ) 
split—root(t) ;
*t; r - NULL;

*/

p = *t; r 
for {;;) { 

if (four—node(p)) { 
if (node—type(r)

split—child—of2(&p,&r); 
else

split—child—of 3 (&:p, &:r) ; 
r;

two—node)

P
} 
r 
switch (compare(y,p)) { 

case equal:

p;

case leaf:

case Ichild:

fprintf(stderr,"The key is in the 
treeXn"};
exit(1);
put—in(y, &p); 
return; 
P
break; 

case Imchild: p 
break; 

case rmchild: p
break; 
P

p->left-child;

p—>left—mid—child;

p->right—mid—child;

case rchild: p->right—child;

}
}

}
}

Program 10.10: Insertion into a 2-3-4 tree
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(5) q is a 2-node and its nearest sibling r is a 4-node. This is similar to the case when r 
is a 3-node.

The above transformations guarantee that a backward restructuring pass is not 
needed following the deletion from a leaf node. We leave the development of the dele
tion procedure as an exercise.

P P
w z zX

f f
r r

wV yX yV

da b c d e a b c e

(a) q is the left child of a 3-node

P P
wV yy T

ff g g
r rq q

u w uX V X

b b da cca d QQ

(b) q is the left child of a 4-node

Figure 10.2 5: Deletion transformation when the nearest sibling is a 3-node

EXERCISES

1. Complete Figure 10.23 by drawing the splitting transformations for the case when 
the 4-node is the right middle child of a 3-node.

2. Complete function insert 234 (Program 10.10) by writing the code for all the func
tions used. Test your function using randomly generated keys.
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3. Use the deletion transformations described in the text to obtain a function to delete 
an element, y, from a 2-3-4 tree represented using nodes of type two34. Show that 
the complexity of you algorithm is O(log n), where n is the number of elements 
initially in the tree.

10.5 RED-BLACK TREES

10.5.1 Definition And Properties

A red-black tree is a binary tree representation of a 2-3-4 tree. The child pointers of a 
node in a red-black tree are of two types: red and black. If the child pointer was present 
in the original 2-3-4 tree, it is a black pointer. Otherwise, it is a red pointer. The node 
structure red-black is defined as:

Cypedef enum {red,black) color; 
typedef struct red—black 
typedef struct red—black { 

element data; 
red—black—ptr left—child; 
red—black—ptr right—child; 
color left—color; 
color right—color; 
)

red—black—ptr;

An alternate node structure in which each node has a single color field may also be 
used. The value of this field is the color of the pointer from the node’s parent. Thus a 
red node has a red pointer from its parent while a black node has a black pointer from its 
parent. The root node, is by definition, a black node. We examine this structure in the 
exercises. The former structure is better suited for top down insertion and deletion while 
the latter is better suited for algorithms that make a bottom to top restructuring pass. 
When drawing a red-black tree, we shall use a solid line to represent a black pointer and 
a broken one to represent a red pointer. We transform a 2-3-4 tree using nodes of type 
two 34 into red-black trees as follows:

(1)

(2)

(3)

We represent a 2-node, p, by a red-black node, q, with both its color fields black 
and data - data-l\ q —>left-child = p-> left-child, and q-> right-child = 
p->left-mid-child.

A 3-node p is represented by two red-black nodes connected by a red pointer. 
There are two ways in which this may be done (see Figure 10.26, color fields are 
not shown).
A 4-node is represented by three red - black nodes one of which is connected to 
the remaining two by red pointers (see Figure 10.27).

★
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X y y or X

a b c c a
X y

a b b c

Figure 10.2 6: Transforming a 3-node into two red -black nodes

zX y y

a b c d
X z

a b c d

Figure 10.2 7: Transforming a 4-node into three red-black nodes

The red-black tree representation of the 2-3-4 tree of Figure 10.20 is given in Fig
ure 10.28. External nodes and color fields are not shown. One may verify that a red- 
black tree satisfies the following properties:

(Pl)
(P2)

(P3)

It is a binary search tree.

Every root to external node path has the same number of black links (this follows 
from the fact that all external nodes of the original 2-3-4 tree are on the same level 
and black pointers represent original pointers).

No root to external node path has two or more consecutive red pointers (this fol
lows from the nature of the transformations of Figure 10.26 and Figure 10.27).

An alternate definition of red-black trees is possible. In this, we associate a rank 
with each node x in the tree. This value is not explicitly stored in each node. Rather, if 
the rank of the root (also called rank of the tree) is known, then the rank of every other
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Figure 10.2 8: Red-black representation of 2-3-4 tree of Figure 10.20

node can be computed by traversing the binary tree and using the color information of 
the nodes/pointers. A binary tree is a red-black tree iff it satisifies the following proper
ties:

(QI) 
(Q2) 
(Q3) 
(Q4) 
(Q5)

It is a binary search tree.
The rank of each external node is 0.
Every internal node that is the parent of an external node has rank 1.
For every node x that has a parent p (x), rank (x) < rank (p (x)) < rank (x) -i- 1.
For every node x that has a grandparent gp (x), rank (x) < rank (gp {x}}.

Intuitively, each node x of a 2-3-4 tree T is represented by a collection of nodes in 
its corresponding red-black tree. All nodes in this collection have a rank equal to 
height (T) - level (x) + 1. So, each time there is a rank change in a path from the root of 
the red-black tree, there is a level change in the corresponding 2-3-4 tree. Black pointers 
go from a node of a certain rank to one whose rank is one less while red pointers connect 
two nodes of the same rank. The following lemma is an immediate consequence of the 
properties of a 2-3-4 tree.

Lemma 10.1: Every red-black tree RB with n (internal) nodes satisifies the following:
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(1)
(2)

(3)

height (RB) < 2 f log2 (n + 1) ] 

height (RB) < 2rank (RB) 

rank(RB} < [ Iog2(M + 1)1 □

10.5.2 Searching A Red-Black Tree

Since every red-black tree is a binary search tree, it can be searched using exactly the 
same algorithm as used to search an ordinary binary search tree. The pointer colors are 
not used during this search.

10.5.3 Top Down Insertion

An insertion can be carried out in one of two ways: top down and bottom up. In a top 
down insertion a single root to leaf pass is made over the red-black tree. A bottom up 
insertion makes both a root to leaf and a leaf to root pass. To make a top down insertion, 
we use the 4-node splitting transformations described in Figures 10.21 through 10.24. In 
terms of red-black trees, these take the form given in Figures 10.29 through 10.32. The 
case when a 4-node is the right middle child of a 3-node is symmetric to the case when it 
is the left child (Figure 10.31).

t
/ 

y

z 

y

zzX X

a b c d a b c d

color change

Figure 10.2 9: Transformation for a root 4-node

We can detect a 4-node by simply looking for nodes q for which both color fields 
are red. Such nodes together with their two children form a 4-node. When such a q is 
detected, the transformations of Figures 10.29 through 10.32 are accomplished as below:
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(a) color change

w w

a ay y

2.
X X

c db c d b eQ

(b) color change

Figure 10.3 0: Transformation for a 4-node that is the child of a 2-node

(1)
(2)

(3)

Change both the colors of q to black.

If q is the left (right) child of its parent, then change the left (right) color of its 
parent to red.

If we now have two consecutive red pointers, then one is from the grandparent, gp, 
of q to the parent, p of q and the other from p to q. Let the direction of the first of 
these be X and that of the second be Y. We shall use L (R) to denote a left (right) 
direction, XY = LL, LR, and RL in the case of Figures 10.31(a), 10.32(a), and 
10.32(b), respectively. For the case symmetric to Figure 10.31(a) that arises when 
the 4-node is a right middle child of a 3-node, XY = RR. A rotation similar to that 
performed in AVL trees is needed. We describe the rotation for the case XY = LL. 
Now, node p takes the place previously occupied by pp\ the right child of p 
becomes the left child of pp and pp becomes the right child of p.
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b c d (a) LL rotation
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a b c d a b c d
(b) color change

Figure 10.3 1: Transformation for a 4-node that is the left child of a 3-node

It is interesting to note that when the 4-node to be split is a root or the child of a 
2-node or that of a “nicely” oriented 3-node (as in Figure 10.31(b), color changes 
suffice. Pointers need to be changed only when the 4-node is the child of a 3-node that is 
not “nicely” oriented (as in Figures 10.31(a) and 10.32). We leave the development of 
the formal insertion procedure as an exercise.
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(b) RL rotation

Figure 10.3 2: Transformation for a 4-node that is the left middle child of a 3-node

10.5.4 Bottom Up Insertion

In a bottom up insertion, we search the red-black tree for the key to be inserted. This 
search is unsuccessful. No transformations are made during this downward pass. The 
element to be inserted is added as the appropriate child of the node last encountered. A 
red pointer is used to join the new node to its parent. Following this, all root to external 
node paths have the same number of black pointers. However, it is possible for one such 
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path to have two consecutive red pointers. This violates the red-black property P3 that 
no root to external node path has two consecutive red pointers. Let these two pointers be 
<p. q > and <q, r>. The first is from node p to node q and the second from node q to 
node r. Let 5 be the sibling (if any) of node q. s = NULL, if q has no sibling. The viola
tion is classified as an XYZ violation where X = L if <p, > is a left pointer and X = R 
otherwise; Y = L if <q, r > is a left pointer and Y = R otherwise; and Z = r (for red) if 5 
NULL and <p, s > is a red pointer and Z = b (for black) otherwise.

The color change transformation of Figure 10.33 handles the violation cases LLr 
and LRr. Similar transforms handle the cases RRr and RLr. In these figures the subtrees 
a, b, c, d, and e may be empty and the pointer from the parent of y nonexistent (in case y 
is the root). These color changes potentially propagate the violation up the tree and may 
need to be reapplied several times. Note that the color change does not affect the number 
of black pointers on a root to external node path. Figure 10.34 shows the rotations 
needed for the cases LLb and LRb. The cases RRb and RLb are symmetric. The rota
tions of this figure do not propagate the violation. Hence, at most one rotation can be 
performed. Once again, we observe that the above rotations do not affect the number of 
black pointers on any root to external node path.

In comparing the top down and the bottom up insertion methods, we note that in 
the top down method O(log/i) rotations can be performed while only one rotation is pos
sible in the bottom up method. Both methods may perform O(logn) color changes. 
However, the top down method can be used in pipeline mode to perform several inser
tions in sequence. The bottom up method cannot be so used.

10.5.5 Deletion Fron A Red-Black Tree

For top down deletion from a leaf, we note that if the leaf from which the deletion is to 
occur is the root, then the result is an empty red-black tree. If the leaf is connected to its 
parent by a red pointer, then it is part of a 3-node or a 4-node and the leaf may be deleted 
from the tree. If the pointer from the parent to the leaf is a black pointer, then the leaf is 
a 2-node. Deletion from a 2-node requires a backward restructuring pass. To avoid this, 
we ensure that the deletion leaf has a red pointer from its parent. This is accomplished 
by using the insertion transformations in the reverse direction together with red-black 
transformations corresponding to the 2-3-4 deletion transformations (3) and (4) {q is a 
2-node whose nearest sibling is a 3- or 4-node), and a 3-node transformation that 
switches from one 3-node representation to the other as necessary to ensure that the 
search for the element to be deleted moves down a red pointer.

Since most of the insertion and deletion transformations can be accomplished by 
color changes and require no pointer changes or data shifts, these operations actually 
take less time using red-black trees than when a 2-3-4 tree is represented using nodes of 
type two 34.

The development of the bottom up deletion transformations is left as an exercise.
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Figure 10.3 3: LLr and LRr color changes for bottom up insertion

EXERCISES

1. (a) Show that every binary tree obtained by transforming a 2-3-4 tree as 
described in the text satisfies properties Q1-Q5.

(b) Show that every binary tree that satisfies properties Q1-Q5 represents a 
2-3-4 tree and can be obtained from this 2-3-4 tree using the transformations 
of the text.
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Figure 10.34: LLb and LRb rotations for bottom up insertion

2.

3.

4.

X

y

c

d e

Write a function to convert a 2-3-4 tree into its red-black representation. What is 
the time complexity of your function?

Write a function to convert a red-black tree into its 2-3-4 representation. What is 
the time complexity of your function?

Let r be a red-black tree with rank r. Write a procedure to compute the rank of 
each node in the tree. The time complexity of your procedure should be linear in 
the number of nodes in the tree. Show that this is the case.
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5.

6.

7.

8.

9.
10.

II.

Compare the worst case height of a red-black tree with n nodes and that of an AVL 
tree with the same number of nodes.
Rewrite function insert 234 (Program 10.10) so that it inserts an element into a 
2-3-4 tree represented as a red-black tree.
Obtain the symmetric transforms for Figure 10.33 and Figure 10.34.
§ Obtain a function to delete an element y from a 2-3-4 tree represented as a red- 
black tree. Use the top down method. Test the correctness of this procedure by 
running it on a computer. Generate your own test data.
§ Do the preceding exercise using the bottom up method.
§ The number of color fields in a node of a red-black tree may be reduced to one. 
In this case the color of a node represents the color of the pointer (if any) from the 
node’s parent to that node. Write the corresponding insert and delete procedures 
using the top down approach. How would this change in the node structure affect 
the efficiency of the insert and delete procedures?
§ Do the previous exercise for the bottom up approach.

10.6 B-TREES

10.6.1 Definition Of w-way Search Trees

The balanced search trees that we have studied so far (AVL trees, 2-3 trees, 2-3-4 trees, 
and red-black trees) allow us to search, insert, and delete entries from a table in O(logn) 
time, where n is the number of entries in the table. These structures are well suited to 
applications in which the table is small enough to be accommodated in internal memory. 
However, when the table is too large for this, these structures do not have good perfor
mance. This is because we must now retrieve the nodes of the search tree structure from 
a disk (say). These nodes are retrieved one at a time as needed. So, for example, when 
searching a 2-3 tree for an element with key x, we would retrieve only those nodes that 
are on the search path from the root to the node that contains the desired element. As a 
result, the number of disk accesses for a search is 0(h) where h is the height of the 2-3 
tree. When n = 1000, h could be as high as 10. So, searching a 2-3 tree that is stored on 
a disk and which has 1000 elements would require up to 10 disk accesses. Since the time 
required for a disk access is significantly more than that for an an internal memory 
access, we seek structures that would reduce the number of disk acceses.

We shall use the term index to refer to a symbol table that resides on a disk. The 
symbol table may be assumed to be too large to be accommodated in the internal 
memory of the target computer. To obtain better performance, we shall use search trees 
whose degree is quite large.

Definiton: An m-way search tree, is either empty or satisfies the following properties;
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(1)

(2)

(3)

(4)

(5)

The root has at most m subtrees and has the structure:

^0, (^1 ’^41), (A'2,A2), .. (A'„,24„)

where the A/, 0 < i < n < m are pointers to subtrees and the Kj, 1 < z < /? < m are 
key values.

Kj < \ <i <n.

All key values in the subtree A, are less than and greater than 0 < i < n.

All key values in the subtree A„ are greater than and those in Aq are less than 
a:,.

The subtrees Aj, Q<i<n are also m-way search trees. □

We may verify that AVL trees are 2-way search trees, 2-3 trees are 3-way search 
trees, and 2-3-4 trees are 4-way search trees. Of course, there are 2-way search trees that 
are not AVL trees, 3-way search trees that are not 2-3 trees, and 4-way search trees that 
are not 2-3-4 trees. A 3-way search tree that is not a 2-3 tree is shown in Figure 10.35.

T
20 40

b c d

10,15 25,30 45,50

e

35

node

a 
b 
c 
d 
e

schematic 
format
2,b.(20,c),(40,d) 
2,0,(10,0),(I5,0) 
2,0,(25,0),(30,e) 
2,O,(45,O),(5O,O) 
1.0,(35,0)

Figure 10.3 5: Example of a 3-way search tree that is not a 2-3 tree
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10.6.2 Searching An w-way Search Tree

= -oo and Kf^ + j

w' =

Suppose we wish to search the m-way search tree T for the key value x. Assume that T 
resides on a disk. We begin by retrieving the root node from the disk. Assume that this 
node has the structure given in the definition of an m-way search tree. For convenience, 
assume that Kq = -oo and + j = -i-oo. By searching the keys of the root, we determine i 
such that Kj < .v < + i. If x = Kj, then the search is complete. If x Ki, then from the
definition of an w-way search tree, it follows that if x is in the tree, it must be in subtree 
A-,. So, we retrieve the root of this subtree from the disk and proceed to search it. This 
process continues until we either find x or we have determined that x is not in the tree 
(the search leads us to an empty subtree). When the number of keys in the node being 
searched is small, a sequential search (as in the case of 2-3 and 2-3-4 trees) is used. 
When this number is large, a binary search may be used.

In a tree of degree m and height h the maximum number of nodes is

(m^' - l)/(m - 1). Since each node has at most m - 1 keys, the maximum number of keys 
in an m-way tree index of height - 1. For a binary tree with h ~ 3 this figure is 7. 
For a 200-way tree with h = 3 we have - 1 = 8 * 10'^ - 1,

Clearly, the potentials of high order search trees are much greater than those of 
low order search trees. To achieve a performance close to that of the best m-way search 
trees for a given number of keys «, the search tree must be balanced. The particular 
variety of balanced m-way search trees we shall consider here is known as a B-tree. In 
defining a B-tree, it is convenient to reintroduce the concept of failure nodes. Recall that 
a failure node represents a node which can be reached during a search only if the value x 
being searched for is not in the tree.

10.6.3 Definition And Properties Of A B-tree

Definition: A B-tree of order m is an m-way search tree that is either empty or satisfies 
the following properties:

(1)
(2)

(3)

The root node has at least 2 children.

All nodes other than the root node and failure nodes have at least [m/2l children.

All failure nodes are at the same level. □

Observe that a 2-3 tree is a B-tree of order 3 and a 2-3-4 tree is a B-tree of order 4. 
Also, notice that all B-trees of order 2 are full binary trees. Hence, B-trees of order 2 
exist only when the number of key values is 2^ - 1 for some k. It is not too difficult to 
see that for any given number of keys and any m, m > 2, there is a B-tree of order m that 
contains this many keys.
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Number Of Key Values In A B-Tree

A B-tree of order m in which all failure nodes are at level Z +1 has at most - 1 keys. 
What is the minumum number, V, of keys in such a B-tree? From the definition of a B- 
tree we know that if Z > 1, the root node has at least two children. Hence, there are at 
least two nodes at level 2. Each of these nodes must have at least fm/?] children. Thus, 
there are at least 2|'m/2] nodes at level 3. At level 4 there must be at least 2fz7-i/2'] 
nodes, and continuing this argument, we see that there are at least 2[m/2y~^
level Z when Z > 1. All of these nodes are nonfailure nodes. If the key values in the tree 
are Kj, K^, ■ ■ ,K^ and 1 < i < V, then the number of failure nodes is ZV -t- 1.
This is so because failures occur for < j; < , 0 < Z < V where Kq = -oo and =
+oo. This results in V -I- 1 different nodes that one could reach while searching for a key 
value X that is not in the B-tree. Therefore, we have,

nodes at

N ■+■ 1 = number of failure nodes
= number of nodes at level I + 1
> Zfm/Zl /-I

/-I - 1, /> 1.and so, N > 2[m/2]
This in turn implies that if there are N key values in a B-tree of order w, then all 

nonfailure nodes are at levels less than or equal to /, I < logp„,^^ {(V -i- l)/2} -i- I. The 
maximum number of accesses that have to be made for a search is /. Using a B-tree of 
order m = 200, an index with N <2x lO* ’ - 2 will have Z < logjoo {(V -i- l)/2} -i- I. Since 
I is integer, we obtain I < 3. For n < 2 x 10^-2 we get Z < 4. Thus, the use of a high 
order B-tree results in a tree index that can be searched making a very small number of 
disk accesses even when the number of entries is very large.

Choice Of m

B-trees of high order are desirable since they result in a reduction in the number of disk 
accesses needed to search an index. If the index has Ventries, then a B-tree of order m = 
N + 1 would have only one level. This choice of m clearly is not reasonable, since by 
assumption the index is too large to fit in internal memory. Consequently, the single 
node representing the index cannot be read into memory and processed. In arriving at a 
reasonable choice for w, we must keep in mind that we are really interested in minimiz
ing the total amount of time needed to search the B-tree for a value x. This time has two 
components, one, the time for reading in the node from the disk and, two, the time 
needed to search this node forx Let us assume that each node of a B-tree of order m is 
of a fixed size and is large enough to accommodate n, Aq and/n-l triples A,, /?,), 
1 <j < m. Notice that while in the definition of an w-way search tree we had tuples 
(Kj, Aj), in practice, these will really be triples (/C,, A,, /?,) where fij gives the address, on 
disk, of the record with key Kj (as before. A, points to a subtree of the B-tree). If the K, 
are at most a characters long and the A/ and /?,• each p characters long, then the size of a 



532 Search Structures

node is approximately m(a + 2P) characters. The time, required to read in a node is 
therefore:

h = ?5+f/+w(a+2p) fc 
= a+bm

where

a =ts+ti= seek time + latency time
b = (a+2P)re and = transmission time per character

If binary search is used to search each node of the B-tree, then the internal pro
cessing time per node is c log2W + d for some constants c and d. The total processing 
time per node is thus,

T = a + bm + c m d

For an index with N entries, the number of levels, /, is bounded by:

I <logf„^i{(A?+l)/2) + 1

Iog2{(7V+l)/2}

10g2'^
for some constant f

The maximum search time is therefore:

maximum search time =g a+d 
log2^

bm +c seconds+

where g = f * log2{(A^ + l)/2).

We therefore desire a value of m that minimizes the maximum search time. If the 
disk drive available has a tg = 1/100 sec and f/ = 1/40 sec, then a = 0.035 sec. Since J 
will typically be a few microseconds, we may ignore it in comparison with a. Hence, 
a + d ~ a = 0.035 sec. If each key value is at most six characters long and that each A,- 
and Bi is three characters long, a = 6 and P = 3. If the transmission rate is 5 x 10"^ 
sec/charac (corresponding to a track capacity of 5000 characters), then /? = (« + 2P)/c = 
6x10“^ sec. The formula for the maximum search time now becomes:
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g
35 

log2zn
0.06/72
10g2W

+1000c milliseconds+

This function is tabulated in Figure 10.36 and plotted in Figure 10.37. It is evident that 
there is a wide range of values of m for which nearly optimal performance is achieved. 
This corresponds to the almost flat region m e [50,400]. In case the lowest value of m in 
this region results in a node size greater than the allowable capacity of an input buffer, 
the value of m will be determined by the buffer size.

m
2
4
8

16
32
64

128
256
512

1024
2048
4096
8192

Search time (sec) 
35J2 
17.62 
11.83 
8.99 
7.38 
6.47 
6.10 
6.30 
7.30 
9.64 

14.35 
23.40 
40.50

Figure 10.3 6: Values of (35 + .06w)/log2W

10.6.4 Insertion Into A B-tree

The algorithm to insert a new key into a B-tree is a generalization of the two pass inser
tion algorithm for 2-3 trees. While, for m > 3, we could also generalize the top-down 
insertion algorithm described for 2-3-4 trees, this is not desirable as this algorithm splits 
many nodes and each time we change a node, it has to be written to disk. This increases 
the number of disk accesses.

The insertion algorithm for B-trees of order m first performs a search to determine 
the leaf node, p, into which the new key is to be inserted. If the insertion of the new key 
into p results in p having m. keys, the node p is split. Otherwise, the new p is written to 
the disk and the insertion is complete. To split the node, assume that following the inser
tion of the new key, p has the format:
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Figure 10.3 7: Plot of (35+.06m)/log2'?i

m, Ao, and Ki < A?/+i, 1 < i < m

The node is split into two nodes p and <7 with the following formats:

nodep: fm/?! -1 ^AoJ/fiAi), . .

node q-.m- \m/l'\ ,A p^/21 [m/21 + n^

The remaining key Kand a pointer to the new node q form a tuple {KThis 
is to be inserted into the parent of p. Before attempting this, the nodes p and q are writ
ten to disk.

As in the case of 2-3 trees, inserting into the parent may require us to split the 
parent and this splitting process can propagate all the way up to the root. When the root 
splits, a new root with a single key is created and the height of the B-tree increases by 
one. Since this insertion process is almost identical to that used for 2-3 trees, we do not 
provide any further details.

Analysis of B-tree insertion: If h is the height of the B-tree, then h disk accesses are 
made during the top-down search. In the worst case, all h of the accessed nodes may 
split during the bottom-up splitting pass. When a node other than the root splits, we need 
to write out two nodes. When the root splits, three nodes are written out. If we assume 
that the h nodes read in during the top-down pass can be saved in memory so that they 
are not to be fetched from disk during the bottom-up pass, then the number of disk 
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accesses for an insertion is at most h (downward pass) + 2{h - 1) (nonroot splits) + 3 
(root split) = 3h -I- 1.

The average number of disk accesses is, however, approximately h -»- 1 for large 
m. To see this, suppose we start with an empty B-tree and insert N values into it. The 
total number of nodes split is at most p - 2 where p is the number of nonfailure nodes in 
the final B-tree with N entries. This upper bound of p - 2 follows from the observation 
that each time a node splits, at least one additional node is created. When the root splits, 
two additional nodes are created. The first node created results from no splitting, and if a 
B-tree has more than one node then the root must have split at least once. Figure 10.38 
shows that p - 2 is the best possible upper bound on the number of nodes split in the 
creation of a ;? node B-tree when p > 2 (note that there is no B-tree with p = 2). A B- 
tree of order m with p nodes has at least

1 + (Pm/21 - l)(p - 1)

keys as the root has at least one key and remaining nodes have at least fm/Z] - 1 keys 
each. The average number of splits, s, may now be determined as below:

5 = (total number of splits)/N 
<(p-2)/{l +(rm^l-l)(p-l)} 
< l/([m/2] ~ 1)

For m=200 this means that the average number of node splits is less than 1/99 per key 
inserted. The average number of disk accesses is therefore only I + 2s + 1 < I + 101/99 
-I + 1.

10.6.5 Deletion From A B-tree

The deletion algorithm for B-trees is also a generalization of the deletion algorithm for 
2-3 trees. First, we search for the key x that is to be deleted. In case x is found in a node, 
z, that is not a leaf, then the position occupied by x in z is filled by a key from a leaf node 
of the B-tree. Suppose that x is the zth key in z (i.e., x = K■^). Then x may be replaced by 
either the smallest key in the subtree A, or the largest in the subtree A/_|. Both of these 
keys are in leaf nodes. In this way the deletion of x from a nonleaf node is transformed 
into a deletion from a leaf.

There are four cases when deleting from a leaf node p. In the first, p is also the 
root. If the root is left with at least one key, the changed root is written to disk and we 
are done. Otherwise, the B-tree is empty following the deletion. In the remaining cases, 
p is not the root. In the second case, following the deletion, /?, has at least I’m/?] - 1 
keys. The modified leaf is written to disk and we are done.
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Figure 10.3 8: B-trees of order 3
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In the third case, p has l'm/2'l -2 keys and its nearest sibling, q, has at least 
[ m/21. To determine this, we examine only one of the at most two nearest siblings that 

p may have, p is deficient as it has one less than the minimum number of keys required. 
q has more keys than the minimum required. As in the case of a 2-3 tree, a rotation is 
performed. In this rotation, the number of keys in q decreases by one while the number 
in p increases by one. As a result, neither p nor q are deficient following the rotation. 
The rotation leaves behind a valid B-tree. Let r be the parent of p and q. If q is the 
nearest right sibling of p, then let i be such that Ki is the /th key in r, all keys in p are less 
than Ki, and all those in q are greater than A?/. For the rotation, K, is replaced by the first 
(i.e., smallest) key in q, becomes the rightmost key in p, and the leftmost subtree of q 
becomes the rightmost subtree of p. The changed nodes p, q, and r are written to disk 
and the deletion is complete. The case when q is the nearest left sibling of p is similar.

In the fourth case for deletion, p has f m/21 - 2 keys while q has f m/21-1. So, 
p is deficient and q has the minimum number of keys permissible for a nonroot node. 
Now, nodes p and q and the key Ki are combined to form a single node. The combined 
node has ([m/2f - 2) + ([m/21 - 1) + 1 = 2|’m/21 - 2 < m - 1 keys which will at most 
fill the node. The combined node is written to disk. The combining operation reduces 
the number of keys in the parent node r by one. If the parent does not become deficient 
(i.e., it has at least one key in case it is the root and at least [ m/2 ] - 1 keys if it is not 
the root), the changed parent is written to disk and we are done. Otherwise, if the 
deficient parent is the root, it is discarded as it has no keys. If the deficient parent is not 
the root, it has exactly fm/21 -2 keys. To remove this deficiency, we first attempt a 
rotation with one of r’s nearest siblings. If this isn’t possible, a combine is done. This 
process of combining can continue up the B-tree only until the children of the root are 
combined.

Analysis of B-tree deletion: For a B-tree of height /z, h disk accesses are made to find 
the node from which the key is to be deleted and to transform the deletion to that from a 
leaf. In the worst case, a combine takes place at each of the last h - 2 nodes on the root 
to leaf path and a rotation takes place at the second node on this path. The h - 2 com
bines require this many disk accesses to retrieve a nearest sibling for each node and 
another h\ ~ 2 to write out the combined nodes. The rotation requires one access to read 
a nearest sibling and three to write out the three nodes that get changed. The total 
number of disk accesses is - 1.

The deletion time can be reduced at the expense of disk space and a slight increase 
in node size by including a delete bit, F,, for each key value Kj in a node. Then we can 
set Fj = 1 if Kj has not been deleted and Fj = 0 if it has. No physical deletion takes 
place. In this case a delete requires a maximum of /z + 1 accesses (/z to locate the node 
containing x and 1 to write out this node with the appropriate delete bit set to 0). With 
this strategy, the number of nodes in the tree never decreases. However, the space used 
by deleted entries can be reused during further insertions (see exercises). As a result, 
this strategy would have little effect on search and insert times (the number of levels 
increases very slowly when m is large). Insert times may even decrease slightly due to 
the ability to reuse deleted entry space. Such reuses would not require us to split any
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nodes. □
Some variations of B-trees are examined in the exercises.

10.6.6 Variable Size Key Values

(A?i,24i), • • •, where a, is the address of Ki in internal

With a node format of the form m, Aq, (A?i,^i), • • •, the first problem created 
by the use of variable size key values, A?, , is that a binary search can no longer be carried 
out since, given the location of the first tuple (A?i ,A j) and «, we cannot easily determine 

or even the location of + „)/2- When the range of key value size is small, it is best 
to allocate enough space for the largest size key value. When the range in sizes is large, 
storage may be wasted and another node format may become better, i.e., the format 
n,AQ,ai,a2, ■ • • ,ct„, 
memory, i.e., Kj - memory (a,). In this case, a binary search of the node can still be 
made. The use of variable size nodes is not recommended since this would require a 
more complex storage management system. More importantly, the use of variable size 
nodes would result in degraded performance during insertion, as an insertion into a node 
would require us to request a larger node to accommodate the new value being inserted. 
Consequently, nodes of a fixed size should be used. The size should be such as to allow 
for at least m - 1 key values of the largest size. During insertions, however, we can 
relax the requirement that each node have < m - 1 key values. Instead, a node will be 
allowed to hold as many values as can fit into it and will contain at least f w/21 - 1 
values. The resulting performance will be at least as good as that of a B-tree of order m. 
Another possibility is to use some kind of key sampling scheme to reduce the key value 
size so as not to exceed some predetermined size, d. Some possibilities are prefix and 
sufhx truncation, removing vowels, etc. Whatever the scheme used, some provision will 
have to be made for handling synonyms (i.e., distinct key values that have the same sam
pled value).

EXERCISES

1. Show that all B-trees of order 2 are full binary trees.
2. (a)

(b)

(c)

Insert the keys 62, 5, 85, 75, one at a time, into the order 5 B-tree of Figure 
10.39. Show the new tree after each key is added. Do the insertion using 
the insertion process described in the text.
Assuming that the tree is kept on a disk and one node may be fetched at a 
time, how many disk acceses are needed to make this insertion? State any 
assumptions you make.
Delete the keys 45, 40, 10, 25 from the order 5 B-tree of Figure 10.39. 
Show the tree after each key is deleted. The deletions are to be performed 
using the deletion process described in the text.
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Figure 10.39: B-tree of order 5

How many disk accesses are made for each of the deletions?

3.

4.

5.

6.

7.

8.

9.

(d)
Write a C function to search an w-way search tree that is stored on a disk. You 
may assume a function that reads a record from a specified disk address.

Write a C function to insert a key x into a B-tree of order m that is stored on a disk. 
You may assume functions to read and write records from and to a specified disk 
address. Use the strategy described in the text.

Write a C function to delete a key x from a B-tree of order m that is stored on a 
disk. You may assume functions to read and write records from and to a specified 
disk address. Use the strategy described in the text.

Write insertion and deletion algorithms for B-trees assuming that an additional 
field / is associated with each key. f = 1 iff the coresponding key value has not 
been deleted. Deletions should be accomplished by simply setting the correspond
ing /=0 and insertions should make use of deleted space whenever possible 
without restructuring the tree.

§ Write algorithms to search and delete keys from a B-tree by position; i.e., 
search (k} finds the Hh smallest key and delete {k} deletes the Z:th smallest key in 
the tree. (Hint: In order to do this efficiently additional information must be kept 
in each node. With each pair (Af,,A,) keep Ni = Z'z'o (number of key values in the 
subtree Aj -I- 1).) What are the worst case computing times of your algorithms?

Modify the B-tree insertion algorithm so that we first check to see if either the 
nearest left sibling or the nearest right sibling of p has fewer than m - 1 key 
values. If so, then no additional nodes are created. Instead, a rotation is per
formed moving either the smallest or largest key in p to its parent. The 
corresponding key in the parent together with a subtree is moved to the sibling of 
p which has space for another key value.

[Bayer and McCreight] The idea of the preceding exercise can be extended to 
obtain improved B-tree performance. In case the nearest sibling, Q. of P already 
has m 1 key values, then we can spilt both P and Q to obtain three nodes P, Q,



540 Search Structures

and R with each node containing [(2m - 2)Z3J, [{2m - l)/3j and L2m/3j key 
values. Figure 10.40 below describes this splitting procedure when Q is P’s nearest 
right sibling.

pp P" \P'

... K

ATT
p. P, P„.^ P„ P' I in • I fn u p' p' P'.-i Po P. Pi p\

m—I

P'«-l

m

0

(a) Node P oyerflows (b) After Splitting P and P'

Figure 10.40: Splitting P and its nearest right sibling P'

Write a B-tree insertion algorithm so that node splittings occur only as described 
above.

10. A B-tree,  of order m is a search tree that is either empty or satisfies the follow
ing properties:

*

(a)
(b)

The root node has at least 2 and at most 2 [{2m - 2)/3j + 1 children.
The remaining nonfailure nodes have at most m and at least \{2m - I)/?] 
children each.
All failure nodes are on the same level.(c)

For a B*-tree  of order m and containing N key values, show that if
X = f(2m - l)/3] then

(a) The height, h, of the B*-tree  satisfies:

/z < 1 + logj(yv + l)/2}

(b) the number of nodes p in the B-tree  satisifies:*

p < 1 + (?/- 1)/U- 1)

What is the average number of splits per insert if a B*-tree  is built up starting from 
an empty B*-tree?
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11.

12.

13.

§ Lfsing the splitting technique of Exercise 9 write an algorithm to insert a new 
key X into a B*-tree,  t, of order m. How many disk accesses are made in the worst 
case and on the average? Assume that t was initially of depth I and that t is main
tained on a disk. Each access retrieves or writes one node.

§ Write an algorithm to delete the identifier x from the B*-tree,  t, of order m. What 
is the maximum number of accesses needed to delete x from a B*-tree  of depth I? 
Make the same assumptions as in Exercise 11.

The basic idea of a B-tree may be modified differently to obtain a fi'-tree. A B - 
tree of order m. is similar to a B-tree of order m except that in a B'-tree all 
identifiers are placed in leaf nodes. If P is a nonleaf node in a B '-tree and is of 
degree j, then the node format for P is: j, L(l), L(2), • • •, L{j - 1) where 
L(0, 1 < j, is the value of the largest key in the /th subtree of P. Figure 10.41
shows a B'-tree of order 5. Notice that in a B'-tree, the key values in the leaf 
nodes will be increasing left to right. Only the leaf nodes contain such informa
tion as the address of records having that key value. If there are n key values in 
the tree then there are n leaf nodes. Write an algorithm to search forx in a B'-tree 
t of order m. Show that the time for this is O(log n).

2 20 35

10 15 25

10 15 20 25

30

30 35

40

40

45

45 50

2 2 2

Figure 10.41: Example 6 -tree

14.

15.

16.

§ For a B '-tree of order m write a function to insert x. How many disk accesses are 
needed?
Write an algorithm to delete x from a B '-tree, t, of order m. Since all key values 
are in leaf nodes, this always corresponds to a deletion from a leaf. How many 
disk accesses are needed.

Let T and U be two B '-trees of order m. Let V be a B '-tree of order m containing 
all key values in T and V. Write a C function to construct V from T and U. What 
is the complexity of your algorithm?
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17.

18.

Obtain search, insert, and delete algorithms for B "-trees of order m. If the tree 
resides on disk, how many disk accesses are needed in the worst case for each of 
the three operations? Assume the tree has n leaf nodes.
§ [Programming Project] Evaluate the relative performance of B-trees, B*-trees,  
and B "-trees when the required operations are search for x, insert x, and delete x.

10.7 SPLAY TREES

AVL, 2-3, 2-3-4, and red-black trees allow one to perform the search tree operations: 
insert, delete, and search in O(logn) worst case time per operation. In the case of priority 
queues we saw that if we are interested in amortized complexity rather than worst case 
complexity, simpler structures can be used. This is true even for search trees. Using a 
splay tree the search tree operations can be performed in O(logn) amortized time per 
operation.

A splay tree is a binary search tree in which each search, insert, and delete is per
formed in the same way as in an ordinary binary search tree (Chapter 5). However, each 
of these operations is followed by a splay. A splay consists of a sequence of rotations. 
For simplicity, we assume that each of the three operations is always successful. A 
failure can be modeled as a different successful operation. For example, an unsuccesful 
search may be modeled as a search for the element in the last node encountered in the 
unsuccessful search and an unsuccessful insert may be modeled as a successful search. 
With this assumption, the starting node for a splay is obtained as follows:

(1)
(2)
(3)

search. The splay starts at the node containing the searched for element.
insert. The start node for the splay is the newly inserted node.
delete. The parent of the physically deleted node is used as the start node for the 
splay. If this node is the root, then the splay start node is NULL.

Splay rotations are performed along the path from the start node to the root of the 
binary search tree. These rotations are similar to those performed for AVL trees and 
red-black trees. Let q be the node at which the splay is being performed. Initially, q is 
the splay start node. The following steps define a splay:

(1)
(2)

(3)

If q is either NULL or the root, then the splay terminates.
If q has a parent p but no grandparent, then the rotation of Figure 10.42 is per
formed and the splay terminates.
If q has a parent p, and a grandparent §p, then the rotation is classified as LL (p is 
the left child of gp and q is the left child of p), LR (p is the left child of gp and q is 
the right child of p), RR, or RL. The RR and RL rotations are shown in Figure 
10.43. LL and LR rotations are symmetric to these. The splay is repeated at the 
new location of q.
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b c ba

a, b, c are subtrees

Figure 10.42: Rotation when q is a right child and has no grandparent

Notice that all rotations move q up the tree and that following a splay q becomes 
the new root of the search tree. Figure 10.44 shows an example binary search tree 
before, during, and after a splay at node *.

In the case of Fibonnaci heaps, we obtained the amortized complexity of an opera
tion by using an explicit cross charging scheme. The analysis for splay trees will use a 
potential technique. Let Po be the initial potential of the search tree and let P, be its 
potential following the zth operation in a sequence of n operations. The amortized time 
for the zth operation is defined to be:

(actual time for the /th operation) + P, - Pi_\

That is, the amortized time is the actual time plus the change in the potential. Rearrang
ing terms, we see that the actual time for the zth operation is

(amortized time for the zth operation) + P,_i - P/

Hence, the actual time needed to perform the n operations in the sequence is

(amortized time for the zth operation) + Pq - P„
I

Since each operation is followed by a splay whose actual complexity is of the 
same order as that of the whole operation, it is sufficient to consider only the time spent 
performing splays. Each splay consists of several rotations. We shall assign to each 
rotation a fixed cost of one unit. The choice of a potential function is rather arbitrary. 
The objective is to use one that results in as small a bound on the time complexity as is 
possible. The potential function we shall use is obtained in the following way. Let the 
size, 5(z), of the subtree with root z be the total number of nodes in it. The rank, r(z), of 
node z is equal to log25(z). The potential of the tree is '^r(i). The potential of an empty

I
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c bad

(a) Type RR

a

b dcad

b c (b) Type RL

Figure 10.43: RR and RL rotations

tree is defined to be zero. Suppose that in the tree of Figure 10.44(a), the subtrees a, b, 
■ ■ ■ ,j are all empty. Then, (5(1), ■ ■ • ,5(9)) = (9, 6, 3, 2, 1, 4, 5,1, r(4) = 1, r(5) =

0, and r(9) = 3. In the following lemma we use r and r' to, respectively, denote the rank 
of a node before and after a rotation.

Lemma 10.2: Consider a binary search that has n elements / nodes. The amortized cost 
of a splay operation that begins at node q is at most 3(log2« - r (q)) + 1.

Proof: Consider the three steps in the definition of a splay. 

(1) In this step, q is either NULL or is the root. This step does not alter the potential of 
the tree. So its amortized and actual costs are the same. This cost is 1.
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Figure 10.44: Rotations in a splay beginning at node *
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Figure 10.44 (continued): Rotations in a splay beginning at node *

(2)

(3)

In this step, the rotation of Figure 10.42 (or the symmetric rotation for the case q is 
the left child of p) is performed. Since only the ranks of p and q are affected, the 
potential change is r'{p}-\-r\q}-r{p}-r{q}. Further, since r'{p') < r(p} the poten
tial change is less than r\q}-r{q}. The amortized cost of this step (actual cost 
plus potential change) is, therefore, no more than \+r'{q}-r{q}.

In this step only the ranks of q, p, and gp change. So, the potential change is a'"(^) 
+ r'{p} + r'(gp} - r(q) - r(p) - r(gp}. Consider an RR rotation. From Figure 
10.43(a), we see that r(gp} = r'(q), r'{q) > r'(p), and r(p) > r{q}. Using these in 
the equation for potential change, we see that the potential change cannot exceed 
r\q) + r'{gp} - 2r(<7). This is at most 3{r'{q}-r{qy}~2. To prove this, we need to 
show that 2r'{q) - r'{gp) - r{q} > 2. Let 5 and s', respectively, denote the size 
function before and after the rotation. So, 2r'(q) - r'{gp} - r{q} = 21og25X^) - 
log2.C(gp) - Iog25(<?) = -(log2A-Hlog2B), where A = s'^gpYs'^q) and B = 
s{qYs'{q}). From Figure 10.43, we see that A +B < 1. So, log2A + log2B < -2. 
Hence, the amortized cost of an RR rotation is at most l+3(rX<?)“'*(^)) “2 = 
3(r\^)-r(^))-l. This bound may similarly be obtained for LL, LR, and RL rota
tions.

The lemma now follows by observing that steps 1 and 2 are mutually exclusive 
and can occur at most once. Step 3 occurs zero or more times. Summing up over the 
amortized cost of a single occurrence of steps 1 or 2 and all occurrences of step 3 we 
obtain the bound of the lemma. □

Theorem 10.1: The total time needed for a sequence of n search, insert, and delete 
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operations performed on an initially empty splay tree is O(nlogZ) where Z, Z > 0, is the 
number of inserts in the sequence.

Proof: From our definition of the amortized cost of a splay operation, it follows that the 
time for the sequence of operations is the sum of the amortized costs of the splays and 
the potential change, Po-Pn- From Lemma 10.2, it follows that the sum of the amortized 
costs is CXnlogZ). The initial potential, Pq, is 0 and the final potential P„ is > 0. So, the 
total time is O(nlogZ). □

EXERCISES

1.

2.

3.

4.

Obtain figures corresponding to Figure 10.42 and Figure 10.43 for the symmetric 
splay rotations.

What is the maximum height of a splay tree that is created as the result of n inser
tions made into an initially empty splay tree? Give an example of a sequence of 
inserts that results in a splay tree of this height.

Complete the proof of Lemma 10.2 by providing the proof for the case of an RL 
rotation. Note that the proofs for LL and LR rotations are similar to those for RR 
and RL rotations, respectively, as the rotations are symmetric.

[Sleator and Tarjan] Suppose we modify the definition of s(i) used in connection 
with the complexity analysis of splay trees. Let each node Z have a positive weight 
p (Z). Let 5 (Z) be the sum of the weights of all nodes in the subtree with root Z. The 
rank of a Z is log25(Z).

fa)

(b)

Let t be a splay tree. Show that the amortized cost of a splay that begins at 
node q is at most 3(r(r)-r((7))+l where r is the rank just before the splay.

Let S be a sequence of n inserts and m searches. Assume that each of the n 
inserts adds a new element to the splay tree and that all searches are suc
cessful. Let p {i}, p(i) > 0, be the number of times element i is searched for. 
The p (Z)’s satisfy the equality

n

J = l

Show that the total time spent on the m searches is

O(m-i-^/7(Z)log(m//7(Z)))
1 = 1

n

Note that since f2(m + ^p(Z)log(m/p(Z))) is an information theoretic bound 
/ = i

on the search time in a static search tree (the optimal binary search tree of



548 Search Structures

this Section 10.1 is an example of such a tree), splay trees are optimal to 
within a constant factor for the representation of a static set of elements.

10.8 DIGITAL SEARCH TREES

10.8.1 Digital Search Tree

A digital search tree is a binary tree in which each node contains one element. The ele
ment to node assignment is determined by the binary representation of the element keys. 
Suppose that we number the bits in the binary representation of a key left to right begin
ning at one. Then bit one of 1000 is 1, while bits two, three, and four are 0. All keys in 
the left subtree of a node at level i have bit i equal to zero while those in the right subtree 
of nodes at this level have bit i = 1. Figure 10.45 shows an example digital search tree. 
This contains the keys 1000, 0010, 1001, 0001, 1100, and 0000.

a
1000

b 
^0010

_c 
1001'

d
"'oooT

e 
non

f 7^ 
"0000

Figure 10.4 5: Example digital search tree

A search in a digital search tree is performed in the following way. Suppose we 
are to search for the key k = 0011 in the tree of Figure 10.45. k is first compared with the 
key in the root. Since k is different from the key in the root and since bit one of k is 0, we 
move to the left child, b, of the root. Now, since k is different from the key in node b and 
bit two of k is 0, we move to the left child, d, of b. As k is different from the key in node 
d and since bit three of k is one, we move to the right child of d. Node d has no right 
child to move to. From this we conclude that k = 0011 is not in the search tree. If we 
wish to insert k into the tree, then it is to be added as the right child of d. When this is 
done, we get the digital search tree of Figure 10.46.

The digital search tree procedures to search, insert, and delete are quite similar to 
the corresponding procedures for binary search trees. The essential difference is that the 
subtree to move to is determined by a bit in the search key rather than by the result of the
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a 
^Tooo

b
"0010

_ c
1001

d
"'oooT

\ e 
noo^

f .7^ 
"0000 0011

Figure 10.4 6: Digital search tree of Figure 10.45 following insertion of 0011 

comparison of the search key and the key in the current node. We leave the formal 
development of these procedures as an exercise.

Each of the above search tree operations can be performed in 0(h) time where h is 
the height of the digital search tree. If each key in a digital search tree has KeySize bits, 
then the height of the digital search tree is at most KeySize + 1.

10.8.2 Binary Tries

When we have very long keys, the cost of a key comparison is high. We can reduce the 
number of key comparisons to one by using a related structure called Patricia (Practical 
algorithm to retrieve information coded in alphanumeric). We shall develop this struc
ture in three steps. First, we introduce a structure called a binary trie. Then we 
transform binary tries into compressed binary tries. Finally, from compressed binary 
tries we obtain Patricia. Since binary tries and compressed binary tries are introduced 
only as a means of arriving at Patricia, we do not dwell much on how to manipulate these 
structures. A more general version of binary tries (called a trie) is considered in the next 
section.

A binary trie is a binary tree that has two kinds of nodes branch nodes and element 
nodes. A branch node has the two fields left-child and right-child. It has no data field. 
An element node has the single field data. We use branch nodes to build a binary tree 
search structure similar to that of a digital search tree. This search structure leads to ele
ment nodes.

Figure 10.47 shows a six-element binary trie. To search for an element with key k, 
we use a branching pattern determined by the bits of k. The zth bit of k is used at level i. 
If it is zero, the search moves to the left subtree. Otherwise, it moves to the right subtree. 
To search for 0010 we first follow the left child, then again the left child, and finally the
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right child.

1100

0000 0001

0010

1000 1001

Figure 10.4 7: Example binary trie

Observe that a successful search in a binary trie always ends at an element node. 
Once this element node is reached, the key in this node is compared with the key we are 
searching for. This is the only key comparison that takes place. An unsuccessful search 
may terminate at either an element node or at a NULL pointer.

The binary trie of Figure 10.47 contains branch nodes whose degree is one. By 
adding another field bit - number to each branch node, we can eliminate all degree one 
branch nodes from the trie. The bit - number field of a branch node gives the bit number 
of the key that is to be used at this node. Figure 10.48 gives the binary trie that results 
from the elimination of degree one branch nodes from the binary trie of Figure 10.47. 
The number outside a node is its bit - number. A binary trie that has been modified in 
this way to contain no branch nodes of degree one is called a compressed binary trie.

10.8.3 Patricia

Compressed binary tries may be represented using nodes of a single type. The new 
nodes, called augmented branch nodes are the original branch nodes augmented by the 
field data. The resulting structure is called Patricia and is obtained from a compressed 
binary trie in the following way:
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1

3 2

4 4
0010 1100

0000 0001 1000 1001

Figure 10.4 8: Binary trie of Figure 10.47 with degree one nodes eliminated

(1)
(2)

(3)

(4)

Replace each branch node by an augmented branch node.
Eliminate the element nodes.
Store the data previously in the element nodes in the data fields of the augmented 
branch nodes. Since every non empty compressed binary trie has one fewer 
branch node than it has element nodes, it is necessary to add one augmented 
branch node. This node is called the head node. The remaining structure is the 
left subtree of the head node. The head node has bit - number equal to zero. Its 
right child field is not used. The assignment of data to augmented branch nodes is 
done in such a way that the bit - number in the augmented branch node is less than 
or equal to that in the parent of the element node that contained this data.
Replace the original pointers to element nodes by pointers to the respective aug
mented branch nodes.

When the above transformations are performed on the compressed trie of Figure 
10.48, we get the structure of Figure 10.49. Let t be an instance of Patricia, t is NULL iff 
the instance is empty. An instance, with one element is represented by a head node 
whose left child field points to itself (Figure 10.50(a)).

We can distinguish between pointers that were originally to branch nodes and 
those that were to element nodes by noting that, in Patricia, the former pointers are 
directed to nodes with a greater bit - number value, while pointers of the latter type are 
directed to nodes whose bit - number value is either equal to or less that that in the node 
where the pointer originates.
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0
■"Tioo

1
"0000

3 X 
''OOlO

> 2 
10^

4
0f)()l 1000^

Figure 10.4 9: An example of Patricia

Search

To search for an element with key k we begin at the head node and follow a path deter
mined by the bits in k. When an element pointer is followed, the key in the reached node 
is compared with k. This is the only key comparison made. No comparisons are made 
on the way down. Suppose we wish to search for k = 0000 in the Patricia instance of 
Figure 10.49. We begin at the head node and follow the left child pointer to the node 
with 0000. The bit number field of this node is 1. Since bit one of k is 0, we follow the 
left child pointer to the node with 0010. Now bit three of k is used. Since this is 0, the 
search moves to the node with 0001. The bit number field of this node is 4. The fourth 
bit of k is zero, so we follow the left child field. This gets us to a node with bit number 
field less than that of the node we moved from. Hence, an element pointer was used. 
Comparing the key in this node with k we find a match and the search is successful.

Next, suppose that we are to search for k = 1011. We begin at the head node. The 
search successively moves to the nodes with 0000, 1001, 1000, 1001. k is compared with 
1001. Since k is not equal to 1001, we conclude that there is no element with this key. 
The function to search Patricia tree t is given in Program 10.11. This function returns, a 
pointer to the last node encountered in the search. If the key in this node is k, the search 
is successful. Otherwise, f contains no element with key k. The function returns 
the yth bit (the leftmost bit is bit one) of i. The C declarations used to define a Patricia 
tree are:

typedef struct patricia—tree 
struct patricia—tree { 

int bit—number; 
element data;

*patricia;
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patricia left—child, right—child; 
} ;

patricia root;

search the Patricia tree t; return the last node y 
y->data.key, the key is in

patricia search(patricia t, unsigned k) 
{ 
/*
encountered; if k 
the tree 

patricia p, y; 
if (It) return NULL; /*  
y 
P
while (y->bit—number 

P 
y
y->right—child : y->left—child;

*/

empty tree */
t->left—child; 
t;

p->bit—number) {
y;
(bit(k, y->bit—number)) 7

}
return y;

}

Program 10.11: Searching Patricia

Insertion

Let us now examine how we can insert new elements. Suppose we begin with an empty 
instance and wish to insert an element with key 1000. The result is an instance that has 
only a head node (Figure 10.50(a)). Next, consider inserting an element with key k = 
0010. First, we search for this key using function search (Program 10.11). The search 
terminates at the head node. Since 0010 is not equal to the key q = 1000 in this node, we 
know that 0010 isn’t cuirently in the Patricia instance and so the element may be 
inserted. For this, the keys k and q are compared to determine the first (i.e., leftmost) bit 
at which they differ. This is bit one. A new node containing the element with key k is 
added as the left child of the head node. Since bit one of k is zero, the left child field of 
this new node points to itself and its right child field points to the head node. The bit 
number field is set to 1. The resulting Patricia instance is shown in Figure 10.50(b).

Suppose that the next element to be inserted has k = 1001. The search for this key 
ends at the node with q = 1000. The first bit where k and q differ is bit j = 4. Now we 
search the instance of Figure 10.50(b) using only the first /-I = 3 bits of k. The last 
move is from the node with 0010 to that with 1000. Since this is a right child move, a
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(e) 0000 inserted

Figure 10.50: Insertion into Patricia
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new node containing the element with key k is to be inserted as the right child of 0010. 
The bit number field of this node is set to j = 4. As bit four of k is 1, the right child field 
of the new node points to itself and its left child field points to the node with q. Figure 
10.50(c) shows the resulting structure.

To insert k = 1100 into Figure 10.50(c), we first search for this key. Once again, q 
= 1000. The first bit where k and q differ is j = 2. The search using only the first j-1 bits 
ends at the node with 1001. The last move is a right child move from 0010. A new node 
containing the element with key k and bit number field 7 = 2 is added as the right child of 
0010. Since bit 7 of k is one, the right child field of the new node points to itself. Its left 
child field points to the node with 1001 (this was previously the right child of 0010). 
The new Patricia instance is shown in Figure 10.50(d). Figure 10.50(e) shows the result 
of inserting an element with key 0000, and Figure 10.50(f) shows the Palrcia instance 
following the insertion of 0001.

The preceding discussion leads to the insertion finction insert of Program 10.12. 
Its complexity is seen to be 0(h) where h is the height of t. h can be as large as 
min(A:cv - size + 1, n] where key - size is the number of bits in a key and n is the number 
of elements. When the keys are uniformly distributed the height is O(iogn). We leave 
the development of the deletion procedure as an exercise.

void insert(patricia 
{ 
/*

element x)

insert x into the Patricia tree *t  
patricia s, p, , 
int i;
if ( ! (*t) ) {/

*t
if (IS-FULL(*t) ) { 

fprintf(stderr, 
exit(1};

*/

* empty tree */
(patricia)malloc(sizeof(patricia—tree));

empty tree

"The memory is full\n");

}
{*t )->bit—number
(*t )->data
(*t) ->left—child

0;

}
y = search(*t ,X.key);
if (x.key == y->data.key) {

fprintf(stderr, "The key is in the tree, 
fails.\n");

Insertion

exit(1);
}
/*

*/
for (i

find the first bit where x.key and y->data.key differ

1; bit(x.key,i) == bit{y->data.key,i); i++);

*t,

z;

x:;
*t;
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search tree using the first i-1 bits 
(*t )->left—child;
*t ;

/■^ 
s
P
while (s->bit—number number &&

s->bit—number < i) {

P 
s -p

s;
(bit (x. key, s->bit—number) ) 

s->right—child : s->left—child;

■^ /add X as a child of p
(patricia)malloc(sizeof(patricia—tree));

)
/*
z
if (IS-FULL(2)) {

fprintf(stderr, "The memory is full\n");
exit(1);

1 ;
(bit(x.key/i)) ? s: z;

z :
p->left—child)

}
z->data
z-> bi t —numbe r 
z->left—child 
z->right—child = (bit(x.key, i ) ) 7 
if (s

p->left—child 
else

p->right—child = z;

s;

}

Program 10.12: Insertion function for Patricia

EXERCISES

1. § Write the digital search tree functions for the search, insert, and delete opera
tions. Assume that each key has key-size bits and that the function bit{k, Z) 
returns the /th (from the left) bit of the key k. Show that each of your functions 
has complexity O(/z) where h is the height of the digital search tree.

2. § Write the binary trie functions for the search, insert, and delete operations. 
Assume that each key has key -size bits and that the function bit {k. i) returns the 
/th (from the left) bit of the key k. Show that each of your functions has complex
ity 0(h) where h is the height of the binary trie.

3. § Write the compressed binary trie functions for the search, insert, and delete 
operations. Assume that each key has key - size bits and that the function bit(k, i) 
returns the /th (from the left) bit of the key k. Show that each of your functions 
has complexity 0(h), where h is the height of the compressed binary trie.
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4. Write a function to delete the element with key k from the Patricia tree t. The 
complexity of your algorithm should be O(/z), where h is the height of t. Show that 
this is the case.

10.9 TRIES

10.9.1 Definition

A trie is an index structure that is particularly useful when the keys vary in length. It is a 
generalization of the binary trie we introduced in the preceding section.

A trie is a tree of degree m > 2 in which the branching at any level is determined 
not by the entire key value but by only a portion of it. As an example, consider the trie 
of Figure 10.51 This trie contains two types of nodes. The first type we call a branch 
node because it contains pointers only. Since we assume that all characters in a key are 
one of the 26 letters of the alphabet, a branch node contains 27 link fields. We use the 
extra link field to hold a blank character. For example, suppose we have two keys, an 
and ant. If we are to correctly place an in the trie we must insert an imaginary blank 
after the n.

At the first level of a trie, we partition the keys into disjoint classes depending on 
their first character. Thus, t->u . letters [i ] points to a subtrie containing all key values 
beginning with the Zth letter. On the Jth level the branching is determined by the yth 
character. When a subtrie contains only one key value, we replace it with an element 
node. This node contains the key and any other information, such as the address of the 
record with this key value, etc. In Figure 10.51, we represent branch nodes as clear rec
tangles and element nodes as solid rectangles. We use the following C declarations to 
create a trie:

#define 
#define 
typedef 
typedef

MAX-LETTERS 27
MAX-CHAR
enum {data, pointer} node—type;
struct trie—node

struct trie—node { 
node—type tag; 
union { 

char *key;  /*data
trie—pointer letters[MAX—LETTERS];

} n;

30 /*maximum  length of key*/

*trie—pointer;

*/

trie—pointer root;
} ;
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Figure 10.5 1: Trie created using characters of key value left to right, one at a time

10.9.2 Searching A Trie

To search a trie for a key, x, we must break x into its constituent characters and follow 
the branches determined by these characters. The function search (Program 10.13) 
assumes that p->u. key is the key represented in node p if p is an element node and that 
a blank has been appended to the search key before invocation. The function invocation 
is search{t,key, 1). search uses the function get-index (key,i) which performs the zth 
level sampling of the key. In the case of left to right single character sampling, this 
function extracts the zth character of the key and converts it to an integer index that tells 
us which pointer field of the branch node to use.

Analysis of search'. The search function is straightforward and we may readily verify 
that the worst case search time is O(/), where I is the number of levels in the trie (includ
ing both branch and element nodes). □

10.9.3 Sampling Strategies

In the case of an index, all nodes reside on disk and so at most I accesses are made dur
ing a search. Given a set of keys to be represented in an index, the number of levels in 
the trie depends on the key sampling technique used to determine the branching at each 
level. We can define this by a sampling function sample (x, z), which appropriately sam
ples X for branching at the zth level. The example trie of Figure 10.52 and the search
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trie—pointer search(trie-pointer t, char *key,  
{ 
/*

int i)

search the trie t 
if (!t) return NULL; / 
if (t->tag -- data)

return ((strcmp(t->u.key,key)) 7 NULL : t);
return search(t->u.letters[get—index{key,i)], key,

not found

Program 10.13: Searching a trie

function use sampling technique (1):

(1) sample (x, i) = Zth character of x

Some other possible choices for this function are (x = xqXi . .. _ i):

(2) sample (x, z)=x„_,'

(3) sample (x, i) = Xr^xj) for r(j;, i) a randomization function

(4) sample (x, i) =
X//2 if I is even

+ if i is odd

■^ /
★

i + 1) ;
}

For each of these functions, we may easily construct key value sets for which that 
particular function is best, that is, it results in a trie with the fewest number of levels. 
The trie of Figure 10.51 has five levels. Using the function (2) on the same key values 
yields the trie of Figure 10.52, which has only three levels. An optimal sampling func
tion for this data set will yield a trie that has only two levels (Figure 10.53). Choosing 
the optimal sampling function for any particular set of values is very difficult. In a 
dynamic situation, with insertion and deletion, we wish to optimize average perfor
mance. In the absence of any further information on key values, probably the best 
choice would be (3).

Although all our examples of sampling have involved single character sampling 
we need not restrict ourselves to this. We may interpret the key values as digits using 
any radix we desire. Using a radix of 27 produces a two-character sampling. Other 
radixes give different samplings.

We can keep the maximum number of levels in a trie low if we design the element 
nodes so that they hold more than one key value. If the maximum number of levels 
allowed is /, then we enter all key values that are synonyms up to level / - 1 into the 
same element node. If we choose the sampling function correctly, there will be only a
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few synonyms in each element node. Therefore, the element node will be small and can 
be processed in internal memory. Figure 10.54 shows the use of this strategy on the trie 
of Figure 10.51 with I = 3. In further discussion we shall, for simplicity, assume that the 
sampling function in use is (1) and that we place no restriction on the number of levels in 
the trie.

D £ G H K L N R T

bluebird bunt ing
goshawk wren thrasher goduit

thrush
E L A L

chicadee or io le cardinal gull

Sampling one character at a time, right to left

Figure 10.5 2: Trie constructed for the data of Figure 10.51
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it *

thrasher cardinal

ch icadee

goshawk

bluebird

gull wren

or io le

bunt ing

thrush

godu it

* = NULL node

Sampling on the first level done by using the fourth character of the key values

Figure 10.5 3: An optimal trie for the data of Figure 10.51



Tries 561

B C G 0 T U

T rOP io le
wren

b lueb ird bunt ing card ina1 chicadee goduit
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H

Keys have been sampled from left to right, one character at a time

Figure 10.5 4: Trie obtained for the data of Figure 10.51 when the number of levels is 
limited to 2

10.9.4 Insertion Into A Trie

Insertion into a trie is straightforward. We shall indicate the process by means of two 
examples and leave the writing of the algorithm as an exercise. Let us consider the trie 
of Figure 10.51 and insert into it the two entries: bobwhite and bluejay. First, we have 
X = bobwhite and we attempt to search for bobwhite. This leads us to node a, where we 
discover that o->u. letters[\5] = NULL. (The letter O resides in the 15th index.) 
Hence, x is not in the trie and we may insert it here. Next, x = bluejay and a search of 
the trie leads us to the element node which contains bluebird. We sample bluebird and 
bluejay until the two keys differ. This occurs when we compare the fifth letters of the 
two keys. Figure 10.55 shows the trie after both insertions.

10.9.5 Deletion From A Trie

Once again, we will not present the deletion algorithm formally, but will look at two 
examples to illustrate some of the ideas involved in deleting entries from a trie. From the 
trie of Figure 10.55 let us first delete bobwhite. To do this we just set a->n . /eZTerA'l 151 
= NULL. We do not need to make any other changes. Next, let us delete bluejay. This 
deletion leaves us with only one key in the subtrie, 63. This means that we may delete 
node 83 and move node p up one level. The same can be done for nodes 8| and 83. 
Finally, we reach node a. The subtrie with root a has more than one key value.
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Figure 10.5 5: Section of the trie of Figure 10.51 after inserting bobwhite and bluejay

Therefore, we cannot move p up any more levels and we set a->M . Ietters[i2] = p. To 
facilitate deletions from tries, it is useful to add a count field in each branch node. This 
field contains the number of children that a node has.

As in the case of binary tries, we can define compressed tries in which each branch 
node has at least two children. In this case, each brach node is augmeneted to have an 
additional field skip which indicates the number of levels of branching that have been 
eliminated (alternately, we can have a field sample which indicates the smapling level to 
use).

EXERCISES

1. (a) Draw the trie obtained for the following data:

Amiot, Avenger, Avro, Heinkel, HellDiver, Macchi, 
Marauder, Mustang, Spit Fire. Sykhoi

Sample the keys left to right one character at a time.
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2.

3.

4.

5.

6.

(b) Using single character sampling, obtain a trie, for the above data, with the 
fewest number of levels.

Write a C function to insert a key into a trie. What is the complexity of your func
tion?

§ Do Exercise 2 with the added assumption that the trie is to have no more than six 
levels. Synonyms are to be packed into the same element node.

§ Write a function that deletes x from a trie using the assumptions of Exercise 2. 
Assume that each branch node has a count field equal to the number of element 
nodes in the subtrie for which it is the root.

§ Do Exercise 4 for the trie of Exercise 3.

§ In the trie of Figure 10.55 the nodes 6i and §2 have only one child. Branch 
nodes with only one child may be eliminated from tries by maintaining a skip field 
with each node. The value of this field equals the number of characters to be 
skipped before obtaining the next character to be sampled. Thus, we can have 
skip [83] = 2 and delete the nodes 81 and 82. Write algorithms to search, insert and 
delete from tries in which each branch node has a skip field.

10.10 DIFFERENTIAL FILES

Consider an application where we are maintaining an indexed file. For simplicity, 
assume that there is only one index and hence just a single key. Further assume that this 
is a dense index (that is, one which has an entry for each record in the file) and that 
updates to the file (inserts, deletes, and changes to an existing record) are permitted. We 
must keep a back-up copy of the index and file so that we can recover from an accidental 
loss or failure of the working copy. This loss or failure may occur for a variety of rea
sons including corruption of the working copy due to a malfunction of the hardware or 
software. We refer to the working copies of the index and file as the master index and 
master file, respectively.

Since updates to the file and index are permitted, the back-up copies will generally 
differ from the working copies at the time of failure. For failure recovery, we must have 
both the back-up copies and a log of all updates made since the back up copies were 
created. We call this log the transaction log. To recover from the failure, we process the 
back-up copies and the transaction log to reproduce an index and file that correspond to 
the working copies at the time of failure. This means that the recovery time is a function 
of the sizes of the back-up index and file and the size of the transaction log. We can 
reduce the recovery time by making frequent back-ups. This results in a smaller transac
tion log. However, making sufficiently frequent back-ups of the master index and file is 
not practical when the index and file are very large or the update rate is very high.

When only the file, but not the index, is very large, we can reduce the recovery 
time by keeping updated records in a separate file called the differential file. Although 
the master file is unchanged, we do change the master index to reflect the position of the 
most current version of the record with a given key. We assume that differential file 
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records and master file records have different addresses. This means that the address 
obtained from a search of the master index tells us whether the most current version of 
the record we are seeking is in the master file or the differential file. Program 10.14(b) 
shows the necessary steps to follow when accessing a record with a given key. Program 
10.14(a) shows the steps taken when we do not use a differential file.

Step 1:
Step 2:
Step 3:

Step 1:

Step 2:

Step 3:

Search master index for record address.

Access record from this master file address.

If this is an update, then update master index, master file, and transaction log.

(a) No differential file

Search master index for record address.

Access record from either the master or differential file depending on the 
address obtained in Step 1.

If this is an update, then update master index, differential file, and transaction 
log.

(b) Differential file in use

Step 1:

Step 2:

Step 3:

Search differential index for record address. If the search is unsuccessful, 
then search the master index.

Access record from either the master or differential file depending on the 
address obtained in Step I.

If this is an update, then update differential index, differential file, and 
transaction log.

(c) Differential index and file in use

Step 1:

Step 2:

Step 3:

Query the Bloom filter.
If the answer is “maybe”, then search differential index for record address.
If the Bloom filter answer is “no” or if the differential index search is 
unsuccessful, then search the master index.

Access record from either the master or differential file depending on the 
address obtained in Step 1.

If this is an update, then update Bloom filter, differential index, differential 
file, and transaction log.

(d) Differential index and file and Bloom filter in use

Program 10.14: Access steps
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Notice that when we use a differential file, the back-up file is an exact replica of 
the master file. Hence, we need to back-up only the master index and differential file fre
quently. Since they are relatively small this is feasible. To recover from a failure of the 
master index or differential file, we must process the transactions in the transaction log 
using the back-up copies of the master file, master index, and differential file. The tran
saction log is usually relatively small since back-ups are done more frequently. To 
recover from a failure of the master file, we need merely make a new copy of its back-up. 
When the differential file becomes too large, we create a new version of the master file 
by merging together the old master file and the differential file. This also results in a new 
index and an empty differential file. It is interesting to note that the use of a differential 
file does not affect the number of disk accesses needed to perform a file operation (see 
Program 10.14).

Suppose that both the index and the file are very large. In this case the differential 
file scheme discussed above does not work as well since it is not feasible to back-up the 
master index as frequently as necessary to keep the transaction log sufficiently small. 
We can get around this difficulty by using a differential index as well as a differential file. 
The master index and file remain unchanged as updates are made. The differential file 
contains all newly inserted records and the current version of all changed records. The 
differential index is an index to the differential file. It also has null address entries for 
deleted records. Program 10.14(c) shows the steps needed to perform a file operation 
when both a differential index and file are used. Notice that compared to Program 
10.14(a), Program 10.14(c) frequently requires additional disk accesses since we will 
often first query the differential index and then the master index. (Observe that the 
differential file is much smaller than the master file, so most requests are satisfied from 
the master file.)

When we use both a differential index and file, we must back them up with high 
frequency. This is possible since they are relatively small. To recover from a loss of the 
differential index or file, we need to process the transactions in the transaction log using 
the available back-up copies. To recover from a loss of the master index or master file, 
we only need to make a copy of the appropriate back-up. When the differential index 
and/or file becomes too large, we reorganize the master index and/or file so that the 
differential index and/or file becomes empty.

We can considerably reduce the performance degradation that results from the use 
of a differential index by using a Bloom filter. A Bloom, filter is a device that resides in 
internal memory and accepts queries of the type Is key in the differential index? If we 
can answer queries of this type accurately, then we will never need to search both the 
differential and master indexes for a record address. Clearly, the only way to answer 
queries of this type accurately is to keep a list of all keys in the differential index. This is 
not possible for differential indexes of reasonable size.

A Bloom filter does not answer queries of the above type accurately. Instead of 
returning an answer of yes and no, it returns one of maybe and no. When the answer is 
no, then we are assured that the search key is not in the differential index. In this case, 
we search only the master index and the number of disk accesses is the same as when a 
differential index is not used. If the answer is maybe, we search the differential index.
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The master index is searched only if we do not find the key in the differential index. Pro
gram 10.14(d) shows the steps to follow when a Bloom filter is used in conjunction with 
a differential index.

A filter error occurs whenever the answer to the Bloom filter query is maybe and 
the key is not in the differential index. Both the differential and master indexes are 
searched only when a filter error occurs. To obtain a performance close to that obtained 
when a differential index is not used, we must ensure that the probability of a filter error 
is close to zero.

Let us take a closer look at a Bloom filter. Typically, it consists of m bits of 
memory and h uniform and independent hash functions • • • , Initially, all m 
filter bits are zero and the differential index and file are empty. When we add a key, k, to 
the differential index, we set bits fo{k), ••• , fh-i(A:) of the filter to 1. When we make a 
query of the type Is k in the differential index?, we examine bits fo(_kfi • • • , (k). The
query answer is maybe if all these bits are 1. Otherwise, the answer is no. We may ver
ify that whenever the answer is no, the key cannot be in the differential index, and that 
when the answer is maybe, the key may or may not be in the differential index.

We compute the probability of a filter error in the following way. Assume that 
there are initially n records and u updates are made. Assume that none of these updates 
is an insert or a delete. Hence, the number of records remains unchanged. Further, 
assume that the record keys are uniformly distributed over the key (or identifier) space 
and that the probability that an update request is for record i is 1/n, \<i<n. From these 
assumptions, it follows that the probability that a particular update does not modify 
record / is 1 - 1/n. So, the probability that none of the u updates modifies record i is 
(1 - l/n)“. Hence, the expected number of unmodified records is n (1 - l/n)“ and the pro
bability that the (u +1)’st update is for an unmodified record is (1 - l/n)“.

Next, consider bit / of the Bloom filter and the hash function fj, 0 < j < h -1. Let k 
be the key corresponding to one of the u updates. Since fj is a uniform hash function, the 
probability that^(^) i is 1 - 1/m. Since the h hash functions are independent, the pro
bability that fj^k} i for all h hash functions is (1 - 1/m)^. If this is the only update, the 
probability that bit / of the filter is zero is (1 - 1/m)^. From the assumption on update 
requests, it follows that the probability that bit i is zero following the u updates is 
(1 - 1/mf^. From this, we can conclude that if the (w -»-l)’st update is for an unmodified 
record, the probability of a filter error is (1 - (1 - l/m)“^)^. The probability P{u} that the 
(M-i-l)’st update results in a filter error is this quantity times the probability that the 
(m -h l)’st update is for an unmodified record. Hence:

P(u) = (1-1/;2)“(1 -(1-1/m)"'')'’

Using the approximation:

(1 -

for large x, we obtain;
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P(u)~e uAl (i-e -uhAnyh

when n and m are large.
Suppose we wish to design a Bloom filter that minimizes the probability of a filter 

error. This probability is highest just before the master index is reorganized and the 
differential index becomes empty. Let u denote the number of updates done up to this 
time. In most applications, m is determined by the amount of memory available and n is 
fixed. So the only variable in design is h. Differentiating P(u) with respect to h and set
ting the result to zero yields:

= (]oge2)m/u - 0.693m/u

We may verify that this h yields a minimum for P(u). Actually since /z has to be an 
integer, the number of hash functions to use is either f 0.693m/M 1 or [ 0.693m/M J 
depending on which results in a smaller P(u).

EXERCISES

2.

1. By differentiating P(m) with respect to /z, show that P(z/) is minimized when 
/z = (Ioge2)m/M.

Suppose that you are to design a Bloom filter with minimum P{u} and that n = 
100,000, m = 5000, and w = 1000.

(a) Using any of the results obtained in the text, compute the number h of hash 
functions to use. Show your computations.

What is the probability P (n) of a filter error when h has this value?(b)
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APPENDIX

ANSI C AND K&R C

In this appendix we examine many of the differences between the American National 
Standard X3.159-1989 version of C (ANSI C) and the more traditional versions of C as 
represented by Kernighan and Ritchie in their book "The C Programming Language", 
Prentice Hall, 1978, (K&R C).

In this book we follow the standards of ANSI C. We do so for two reasons. Most 
important is the fact that ANSI C provides mechanisms for improving readability and 
reliability of programs. The second reason is that with increased frequency ANSI C is 
being supported by all computer manufacturers. Nevertheless many C compilers still 
exist that do not support ANSI C. One notable example is SUN Sparcstations which run 
a version of Berkeley UNIX. All of the programs in this book were transformed to K&R 
C and successfully run on a SUN Sparcstation.

ANSI C Is Bigger Than K&R C

There are many small changes and additions in ANSI C. For example you are 
likely aware that a source line can be continued onto the next line by ending the first line 
with backslash (\). ANSI C introduces a "trigraph", a three character sequence, such that 
the trigraph ??/ can be used to denote continuation on the next line.

ANSI C introduces the ideas of multibyte and wide character sets. There purpose 
is to accommodate international alphabets, many of which require more than one byte 
for their representation. A wide character can be declared as wchart, which is defined in 
stddef.h. A multibyte character is the external representation of a wide character. It 
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appears as a normal C character string.
ANSI C has added two new type qualifiers: const and volatile. The word const 

refers to objects that cannot be assigned to. For example,

const int i 
int

47; /*  
const cptr; /*

*/

const int *ptrc; /*

i cannot be changed
cptr is a pointer that cannot 

be changed 
pointer to constant data can be 
assigned to but not 
the object it points to

*/

*/

10; /*  
/*

this is illegal 
this is illegal

*/
*/

i =
i + +;

★

The word volatile is used whenever the object it refers to can be modified 
sufficiently often that we want the compiler to avoid performing optimizations on it.

One of the major extensions of ANSI C is the function prototype. In K&R C one 
begins a function definition by providing the name of the function and a list of names to 
stand for the parameters. Facts about the parameters occur later. In ANSI C parameters 
and their types appear together in the function heading. A function prototype is similar 
to a function heading except that only the types of the parameters appear. Function pro
totypes are typically placed near the #define and #include directives in a C program and 
allow the C compiler to perform type-checking on function calls. For example:

small(x,y) /*
small(int, int) /*
small(int x, int y) /*

*/KScR C function heading 
ANSI C function prototype
ANSI C function heading */

*/

Even for functions with no arguments, e.g. f(), ANSI C provides the form void f(void) as 
a prototype. In traditional C when a function is encountered the following steps are 
taken:

(i)

(ii)

the arguments are converted using standard defaults;

no type checking is done, nor is checking for agreement in the number of argu 
ments;

(iii) any function can take a variable number of arguments.

When a function prototype is used, the steps are:

(i) arguments are converted to the declared types of the formal parameters, just as if 
assignments occurred;
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(ii) the number and type of arguments are checked against the prototype and an error 
is raised if there is a discrepancy

(iii) functions that do require a variable number of arguments must have been specified 
earlier.

ANSI C introduces the initialization of variables in the language. The initial 
values are enclosed within curly braces. Some compilers will initialize static storage to 
zero, but this is not part of the language definition and cannot be depended upon. For 
example,

int numbers [] [MAX—NUMBERS] {{1, 2, 3}, {4, 5, 6}, 
{7, Q, 9}}

initialiazes a two-dimensional array, numbers, such that numbers[O][Q] 
?TwmZ?^rs[0][l] = 2, numbers[0][2] = 3, zzMmZ>^r5[l][0] = 4,...

1,

Void
Scalar types

pointer
arithmetic types 

integral
integers 
enumerations 
character

floating point 
Function types 
Union types 
Aggregate types

array 
structure

Figure A.l: The types of C

It is useful to see how the types of ANSI C are organized, and this is shown in Fig
ure A. 1. It is required that type int is not smaller than short, and long is not smaller than 
int. Many implementations represent a character in 8 bits, short in 16 bits, long in 32 
bits and int in 16 or 32 bits. ANSI C requires that at least these widths be used.

ANSI C requires that each compiler implementation document ranges of integers 
in the header file limits.h The values in this file include: CHAR-BIT, INT-MIN, 
INT-MAX, CHAR-MIN, CHAR-MAX, and others.
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C's real numbers come in two forms, float and double. In K&R C it was assumed 
that all floats were converted to doubles before being operated upon. This is not true in 
ANSI C. C has addressed the issue of pointers and conversions from ints to pointers, by 
introducing the special null pointer called void. There is a macro, NULL, which is 
defined as the constant that represents a null pointer, either 0, OL or (void *)  0.

Multidimensional arrays are declared as an array of arrays. They are stored in row 
major order. If arr is a 3 x 2 array, e.g. int tzrrfS][2], then the expression ^2rr[2J [ 1 ] is the 
same as the pointer expression *(*(£zrr+2)4-l).  To see why, arr is a pointer to arr[0][0]. 
*(62rr+2) is a pointer to flrr[2][0] and therefore the final expression points to arr[2][l].

Dangerous Practices

Some programmers assume that the alphabetic characters are consecutively 
represented, so that ’Z’-’A’+ 1 should equal 26. This is true for ASCII, but not for 
EBCDIC. ANSI C specifies that /*  begins a comment and */  ends a comment. It does 
not permit nested comments, though many C implementations do. If there is a need to 
comment out a large segment of C code, that may contain comments, one should use the 
C preprocessor commands

#if 0

#endif

In traditional C the compound operators, such as += or -=, are treated as two 
tokens and can contain white space between them. ANSI C treats them as a single token. 
Traditional C specified that identifiers would only be distinguished based upon their first 
eight characters. Thus identifiers looknice and looknice2 would be regarded as the same. 
ANSI C permits at least 31 characters to determine the uniqueness of an identifier, 
thereby encouraging the use of informative names. However, external identifiers in C 
must be handled by debuggers and linkers. These tools are often more restrictive, and 
thus longer names are still discouraged.

In a C program, a line that begins with a # is interpreted as a directive to the C 
preprocessor. The # is generally followed by a command, which may be followed by 
arguments. ANSI C permits whitespace to precede and follow the use of #, but many 
traditional C compilers expect to see # in column 1 with the command immediately fol
lowing. ANSI C allows the keyword register to be used with any type of variable or 
parameter. However, non-ANSI C compilers often restrict the use of register to scalar 
types. Other differences may exist such as the widening of small objects declared with 
register.

C permits the type specifier of a variable or a function definition to be left out. In 
such a case the default is int. In ANSI C this is considered poor programming practice. 
ANSI C has introduced the special type void to indicate that the return value is ignored. 
C permits unrestricted jumps into the middle of compound statements. This is in sharp 
contrast to Ada, Modula-2, and Pascal which do not. This practice should be avoided.
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It is impossible to cover all of the differences between K&R C and ANSI C in one 
appendix. For the interested reader we suggest the book by Harbison and Steele, "C A 
Reference Manual”, for a complete exposition of the differences.

Conversion Of Programs In This Text To K&R C

It is easy to convert the programs in this book from ANSI C to your own local ver
sion. Here we present a complete example that was done so the program could run on a 
SUN Sparcstation. In Program A.l you see a sample program that was taken from 
Chapter 9 of this book. It is a "complete" program, in that it is designed to execute. It 
demonstrates the maintenance of a hash table. To the right of certain statements we have 
placed the equivalent K&R C statements, for comparison. To the left of each statement 
we have placed a line number to help you locate the source of the compiler errors pro
duced when we ran the program on a SUN Sparcstation.

1 /  file name: Hashl.c /* *
2 #include <stdio.h>
3 #include <string.h>
4 #include <stdlib.h>
5 #define MAX_CHAR 10
6 #define TABLE SIZE 13
7
8 typedef struct {
9 char key [MAX_CHAR];
10 ) element;
11 /  K&R C correct form /* *
12 element hash_table[TABLE_SIZE];
13 int transform(char );*
14 int hash(char );*
15 void init_table(element []);
16 void linear_insert(element, element []); /void  linear_insert();/* *
17 int linear_search(element, element []); /int  linear_search(); /* *
18 void print_table(element []); /void  print_table(): /* *
19
20 void main(void)
21 {
22
23
24
25
26
27
28

/*int  transformO; */
/*int  hash(); */  
/*void  init_table(); */

/*void  main() */

char key[MAX_CHAR];
element info;
int position;
init_table(hash_table);
printfC'Enter a key <zzz> to quit: ");
scanf("%s", &key);
while (strcmp(key,"zzz’')) (

/*  scanf("%s", key) */
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/*  scanf(’'%s'’, key) */

strcpy(info.key, key);
linear_insert(info,hash_table);
print_table(hash_table);
printfC'Enter a key <zzz> to quit: ");
scanf("%s'',&key);

)
printfC'Enter a key to search <zzz> to quit: ");
scanfC'%s",&key);
while (strcmp(key,"zzz")) { 

strcpy(info.key, key);
if ((position = linear_search(info,hash_table)) < 0) 
printfC'The Key is not in the table \n");
else
printfC'The key was found in the %d position 0,position);
printfC'Enter a key to search <zzz> to quit: ");
scanf("%s",&key); /*  scanf("%s", key) */

/*  scanf('’%s", key) */

)

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 }
47
48 int transform(char *key)  /*  int transform(key) */
49 { /*  char *key;  */
50 /*  simple additive approach to create a natural number, that is
51
52
53
54
55
56
57
58 }
59
60 int hash(char *key)  /*  int hash(key) */
61 { /*  char *key;  */
62 /*  transform key to a natural number, and return this result modulus
63 the table size */
64 return(transform(key) % TABLE_S1ZE);
65 }
66
67 void linear_insert(element item,element ht[])/*void  linear_insert(item,ht)*/
68 { /^element item, ht[]; */
69 /  insert the key into the table using the linear probing technique,*
70 exit the function if the table is full /*
7!
72 int i, hash_value;

within the integer range */  
int number = 0;
int i;
int length = strlen(key);
for (i = 0; i < length; i++) 

number+= key[i];
return number;
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i = (i+1) % TABLE.SIZE;
if (i == hash_value) {

fprintf(stderr,"The Table is full \n’'); 
exit(l);

1

if (!strlen(ht|j].key))
return -1;

if (’strcmp(ht[j].key,item.key)) 
return];

j = 0+1) % TABLE SIZE;
if (j == hash_value)
return -1;

1

73
74 hash_value = hash(item.key);
75 i = hash_value;
76 printfC'Hash value is: %dO,i);
77 while (strlen(ht[i].key)) {
78
79
80
81
82
83 ) 
84 ht[i] = item;
85 )
86
87 int linear_search(element item, element ht[])/*int  linear_search(item, ht)*/
88 { /^element item, ht[]; */
891"^ search for the key contained in item, return -1 if the key is not
90 in the table, and the position (j), if it is. */
91
92 int j, hash_value;
93
94 hash_value = hash(item.key);
95 j = hash_value;
96 for(;;){
97
98
99
100
101
102
103
104
105 J
106 }
107
108 void init_table(element ht| |)
109 {
110 int i;
111 for (i = 0; i < TABLE_SIZE; i++)
112 ht[i].key = NULL;
113 }

/*  void init_table(ht) */
/*  element ht[]; */



Appendix A 577

114
115 void print_table(element ht[J)
116 {
117 inti;
118 printf("index valueO);
119 for (i=0; i<TABLE_SIZE; i++)
120
121 }

printf("[%3dj = %sO,i,ht[i].key);

/*  void print_table(ht) */
/*  element ht[]; */

Program A.l: A Sample C Program

In Figure A.2 you see the list of error messages initially produced by a compiler on 
a SUN Sparcstation. Lines 13-18 all contain function prototypes, that is definitions of 
the function name and its arguments. K&R C does not support such definitions, although 
it does want the name to be declared. To remove these error messages one must delete 
the parameter specifications, as shown to the right within the comments. Line 20 
violates K&R C by having a void listed as a parameter. This is easily corrected by 
removing it, as shown to the right. Once these changes have been made, one can re
compile the program with the result being a new set of warnings as shown in Figure A.3

"hashl.c", line 13: syntax error at or near type word "char”
"hashI.c", line 14: syntax error at or near type word "char”
"hashl.c", line 15: syntax error at or near symbol [
"hashl.c", line 15: element declared as parameter to non-function
"hashl.c", line 16: redeclaration of formal parameter, element
"hashl.c", line 16: syntax error at or near symbol [
"hashl.c", line 16: element declared as parameter to non-function
"hashl.c", line 16: element declared as parameter to non-function
"hashl.c”, line 17: redeclaration of formal parameter, element
"hashl.c", line 17: syntax error at or near symbol [
"hashl.c”, line 17: element declared as parameter to non-function
"hashl.c”, line 17: element declared as parameter to non-function
"hashl.c”, line 18: syntax error at or near symbol [
"hashl .c", line 18: element declared as parameter to non-function
"hashl.c", line 20: syntax error at or near type word "void”
"hashl.c", line 68: redeclaration of linear_insert
"hashl.c", line 74: item undefined
"hashl.c", line 77: ht undefined
"hashl.c", line 87: syntax error at or near variable name "item”
"hashl.c", line 87: redeclaration of formal parameter, element
"hashl.c", line 94: item undefined
"hashl ,c". line 97: ht undefined
"hashl .c", line 109: syntax error at or near variable name "ht"
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"hashl.c", line 113: ht undefined
"hashl.c", line 116: syntax error at or near variable name "ht"
"hashl.c", line 116: fatal error: too many errors

Figure A.2: Error messages produced by K&R C compiler

"hashl.c", line 27: warning: & before array or function: ignored
"hashl.c", line 33: warning: & before array or function: ignored
"hashl.c", line 36: warning: & before array or function: ignored
"hashl.c", line 44: warning: & before array or function: ignored
"hashl.c", line 48: syntax error at or near type word "char"
"hashl.c", line 54: key undefined
"hashl.c", line 60: syntax error at or near type word "char"
"hashl.c", line 64: key undefined
"hashl.c", line 67: syntax error at or near variable name "item"
"hashl.c", line 67: redeclaration of formal parameter, element
"hashl.c", line 74: item undefined
"hashl.c", line 77: ht undefined
"hashl.c", line 87: syntax error at or near variable name "item"
"hashl.c", line 87: redeclaration of formal parameter, element
"hashl.c", line 94: item undefined
"hashl.c", line 97: ht undefined
"hashl.c", line 109: syntax error at or near variable name "ht"
"hashl.c", line 113: ht undefined
"hashl.c", line 116: syntax error at or near variable name "ht"
"hashl.c", line 121: ht undefined

Figure A.3 Second set of error messages

Looking at Figure A.3 one sees several occurrences of the message: 

"hashl.c", line 48: syntax error at or near type word "char"

This refers to the fact that K&R C does not permit argument specification as to type. 
Generally, a variable name is provided, but its type follows on another line. These 
changes are done on six pairs of lines, numbered: 48,49 60,61 67,68 87,88 109,110, 
and 116, 117. The only remaining error messages are those on lines: 27, 33, 36 and 44, 
namely 

"hashl .c'\ line 27: warning: & before array or function: ignored

This is not a serious error as one can see it is ignored. Nevertheless, to remove it, one 
need only remove the & sign immediately preceding the variable key.
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