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Useful conversion factors

Physical quantity Symbol | Sl to English conversion English to S| conversion
Length L 1 m = 3.2808 ft 1ft=0.3048m
Area A 1m? = 10.7639 ft? 1 ft2 = 0.092903 m?2
Volume 1% 1m3 = 353134 ft3 1ft3 = 0.028317 m3
Velocity v 1 m/s = 3.2808 ft/s 1ft/s= 0.3048 m/s
Density o 1 kg/m3 = 0.06243 by, /ft3 11by, /ft3 = 16.018 kg/m?3
Force F 1IN =0.22481by 1lby =4.4482 N
Mass m 1kg = 2.20462 Iby, 11by, = 0.45359237 kg
Pressure P 1N/m? =1.45038 x 10~ Ibs/in®> | 1lb/in? = 6894.76 N/m?
Energy, heat q 1kJ= 0.94783Btu 1 Btu = 1.05504 kJ
Heat flow q 1W = 3.4121 Btu/h 1 Btu/h = 0.29307 W
Heat flux per unit area g/A 1W/m? = 0.317 Btu/h - ft2 1Btu/h- ft2 = 3.154 W/m?
Heat flux per unit length q/L 1 W/m = 1.0403 Btu/h - ft 1Btu/h-ft = 0.9613 W/m
Heat generation per unit volume g 1W/m3 = 0.096623 Bturh - ft3 1 Btu/h- ft3 = 10.35 W/m?3
Energy per unit mass q/m 1 kJkg = 0.4299 Btu/lby, 1 Btu/lb,, = 2.326 kJ/Kkg
Specific heat c 1kJkg-°C=0.23884 Btu/lb, - °F | 1Btu/lb,, - °F = 4.1869 kJ/kg- °C
Thermal conductivity k 1W/m-°C=0.5778 Btu/h - ft- °F 1Btu/h-ft-°F= 17307 W/m-°C
Convection heat-transfer coefficient h 1W/m2.°C=0.1761Btuh-ft2.°F | 1Btwh-ft2.°F=5.6782 W/m?.°C
Dynamic 1kg/m-s=0.6721b,/ft-s
Viscosity " = 2419.2 b, /ft-h 1lby,/ft-s=1.4881kg/m-s
Kinematic viscosity and thermal diffusivity | v, | 1 m2/s= 10.7639 ft?/s 1 ft2/s = 0.092903 m?/s

Important physical constants

Avogadro’s number

Universal gas constant

Planck’s constant

Boltzmann's constant

Speed of light in vacuum

Standard gravitational acceleration

Electron mass
Charge on the electron

Stefan-Boltzmann constant

Ng = 6.022045 x 1028 molecules/kg mol

R = 1545.35 ft - Ibf/Ibm - mol - °R
= 8314.41 Jkg mol - K
= 1.986 Btu/lbm- mol - °R
= 1.986 kcal/kg mal - K

h = 6.626176 x 10734 J. sec

k = 1.380662 x 10~23 Imolecule- K
= 8.6173 x 105 eV/molecule- K

¢ =2.997925 x 108 m/s

g= 32174 ft/s?
= 9.80665 m/s?

me = 9.1095 x 10~31 kg
e= 1602189 x 1019 C

o =0.1714 x 10~8 Btu/hr - ft2.R*
= 5.669 x 10~8 W/m?2 . K4

1am

= 14.69595 Ibf/in? = 760 mmHg at 32°F
= 29.92 inHg at 32°F = 2116.21 Ibf/ft?

= 1.01325 x 10° N/m?




Basic Heat-Transfer Relations

Fourier’s law of heat conduction:

qx = —kA—
0x
Characteristic thermal resistance for conduction = Ax/kA
Characteristic thermal resistance for convection =1/hA
Convection heat transfer from a surface:
q = hA(Tsurface — THuid bulk) for flow in channels

Forced convection: Nu = f(Re, Pr) (Chapters 5 and 6, Tables 5-2 and 6-8)
Free convection: Nu= f(Gr, Pr) (Chapter 7, Table 7-5)
2 3
Re— X oo PSPATT o opnt
I w2 k
x = characteristic dimension

General procedure for analysis of convection problems:. Section 7-14, Figure 7-15, Inside
back cover.

Radiation heat transfer (Chapter 8)
i lack
Blackbody emissive power, energy emitted t_)y blackbody _ oT?
leaving surface area- fime
Radiosity = S0 9y €ving
area-time
\rradiation — energy inci den't on surface
area-time

Radiation shape factor F,,,, = fraction of energy leaving surface m
and arriving at surfacen
Reciprocity relation: A,, Fy, = Ap Fum

Radiation heat transfer from surface with area A1, emissivity €1, and temperature 71(K) to
large enclosure at temperature T2 (K):

q=0Arel(T] —T3)
LMTD method for heat exchangers (Section 10-5):
g=UAF AT,

where F = factor for specific heat exchanger; AT,, = LMTD for counterflow double-pipe
heat exchanger with same inlet and exit temperatures
Effectiveness-NTU method for heat exchangers (Section 10-6, Table 10-3):
_ Temperaure difference for fluid with minimum value of mc
N Largest temperature difference in heat exchanger
UA

NTU =

) €= fINTU, Crmin/ Cmax)
min

See List of Symbols on page xvii for definitions of terms.
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PREFACE

text it contains more than enough material for a one-semester course that may be

presented at the junior level, or higher, depending on individual course objectives.
The course is normally required in chemical and mechanical engineering curricula but is
recommended for electrical engineering students as well, because of the significance of
cooling problems in various electronics applications. In the author’s experience, electrical
engineering students do quite well in a heat-transfer course, even with no formal coursework
background in thermodynamics or fluid mechanics. A background in ordinary differential
equations is helpful for proper understanding of the material.

Presentation of the subject follows classical lines of separate discussions for conduc-
tion, convection, and radiation, although it is emphasized that the physical mechanism of
convection heat transfer is one of conduction through the stationary fluid layer near the heat-
transfer surface. Throughout the book emphasis has been placed on physical understanding
while, at the same time, relying on meaningful experimental data in those circumstances
that do not permit a simple analytical solution.

Conduction is treated from both the analytical and the numerical viewpoint, so that
the reader is afforded the insight that is gained from analytical solutions as well as the
important tools of numerical analysis that must often be used in practice. A liberal number of
numerical examples are given that include heat sources and radiation boundary conditions,
non-uniform mesh size, and one example of a three-dimensional nodal system. A similar
procedure is followed in the presentation of convection heat transfer. An integral analysis of
both free- and forced-convection boundary layers is used to present a physical picture of the
convection process. From this physical description, inferences may be drawn that naturally
lead to the presentation of empirical and practical relations for calculating convection heat-
transfer coefficients. Because it provides an easier instruction vehicle than other methods,
the radiation-network method is used extensively in the introduction of analysis of radiation
systems, while amore generalized formulation is given later. Systems of nonlinear equations
requiring iterative solutions are also discussed in the conduction and radiation chapters but
the details of solution are relegated to cited software references. The assumption is made
that the well-disposed reader should select his or her own preferred vehicle for solution of
systems of nonlinear equations.

The log-mean-temperature-difference and effectiveness approaches are presented in
heat-exchanger analysis since both are in wide use and each offers its own advantages
to the designer. A brief introduction to diffusion and mass transfer is presented in order to
acquaint the reader with these processes and to establish more firmly the important analogies
between heat, mass, and momentum transfer. A new Chapter 12 has been added on summary
and design information. Numerous calculation charts are offered in this chapter as an aid in
preliminary design work where speed and utility may be more important than the accuracy
that may be required in final design stages. Eleven new examples are presented in this
chapter illustrating use of the charts.

Problems are included at the end of each chapter. Some of these problems are of a
routine nature to familiarize the student with the numerical manipulations and orders of
magnitude of various parameters that occur in the subject of heat transfer. Other problems

This book presents an elementary treatment of the principles of heat transfer. As a
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extend the subject matter by requiring students to apply the basic principles to new situations
and develop their own equations. Both types of problems are important.

There is also a section at the end of each problem set designated as “Design-Oriented
Problems.” The problems in these sections typically are open-ended and do not result in
a unigque answer. In some cases they are rather extended in length and require judgment
decisions during the solution process. Over 100 such problems are included in the text.

The subject of heat transfer is not static. New developments occur quite regularly, and
better analytical solutions and empirical data are continuously made available to the pro-
fessional in the field. Because of the huge amount of information that is available in the
research literature, the beginning student could easily be overwhelmed if too many of the
nuances of the subject were displayed and expanded. The book is designed to serve as an
elementary text, so the author has assumed a role of interpreter of the literature with those
findings and equations being presented that can be of immediate utility to the reader. It is
hoped that the student’s attention is called to more extensive works in a sufficient number of
instances to emphasize the depth that is available on most of the subjects of heat transfer. For
the serious student, then, the end-of-chapter references offer an open door to the literature
of heat transfer that can pyramid upon further investigation. In several chapters the number
of references offered is much larger than necessary, and older citations of historical interest
have been retained freely. The author feels this is a luxury that will not be intrusive on the
reader or detract from the utility of the text.

A book in its tenth edition obviously reflects many compromises and evolutionary
processes over the years. While the basic physical mechanisms of heat transfer have not
changed, analytical techniques and experimental data have been revised and improved. In
this edition some trimming of out-of-date material has been effected, new problems added,
and old problems refreshed. Sixteen new worked examples have been added. All worked
examples are now referenced by page number at the front of the book, just following the
Table of Contents. The listing of such examples is still retained at the end of each chapter.

A feature is the use of Microsoft Excel for solution of both steady-state and transient
conduction heat-transfer problems. Excel is given a rather full discussion in a new Appendix
D, which includes treatment of heat source and radiation boundary conditions, steady-state
and transient conditions, and interfaces between composite materials. A special template is
provided that automatically writes nodal equations for most common boundary conditions.
Ten examples of the use of Excel for solution of problems are provided, including some
modifications and expansions of examples that appear in Chapters 3 and 4. One exam-
ple illustrates the progression of transient solution to yield the steady-state solution for
sufficiently long-time duration.

In addition to the summary tables of convection formulas provided at the conclusion
of each of the main convection chapters (Chapters 5, 6, 7), an overall procedure is now
offered for analysis of all convection problems, and is included in the inside book cover
as well as in the body of the text. While one might interpret this as a cookbook approach,
the true intent is to help heat-transfer practitioners avoid common and disarmingly simple
pitfalls in the analysis and solution of convection problems.

The SI (metric) system of units is the primary one for the text. Because the Btu-ft-pound
system is still in wide use, answers and intermediate steps to examples are occasionally
stated in these units. A few examples and problems are in English units.

It is not possible to cover all the topics in this book in either a quarter- or semester-term
course, but it is hoped that the variety of topics and problems will provide the necessary
flexibility for many applications.
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CHAPTER

Heat transfer is the science that seeks to predict the energy transfer that may take place
between material bodies as aresult of atemperature difference. Thermodynamics teaches
that this energy transfer is defined as heat. The science of heat transfer seeks not merely
to explain how heat energy may be transferred, but also to predict the rate at which the
exchange will take place under certain specified conditions. The fact that a heat-transfer
rate is the desired objective of an analysis points out the difference between heat transfer
and thermodynamics. Thermodynamics deals with systems in equilibrium; it may be used
to predict the amount of energy required to change a system from one equilibrium state to
another; it may not be used to predict how fast a change will take place since the system
is not in equilibrium during the process. Heat transfer supplements the first and second
principles of thermodynamics by providing additional experimental rules that may be used
to establish energy-transfer rates. As in the science of thermodynamics, the experimental
rules used as abasis of the subject of heat transfer are rather simple and easily expanded to
encompass a variety of practical situations.

As an example of the different kinds of problems that are treated by thermodynamics
and heat transfer, consider the cooling of a hot steel bar that is placed in a pail of water.
Thermodynamics may be used to predict the final equilibrium temperature of the steel
bar—water combination. Thermodynamics will not tell us how long it takes to reach this
equilibrium condition or what the temperature of the bar will be after a certain length of
time before the equilibrium condition is attained. Heat transfer may be used to predict the
temperature of both the bar and the water as afunction of time.

Most readers will be familiar with the terms used to denote the three modes of heat
transfer: conduction, convection, and radiation. In this chapter we seek to explain the mech-
anism of these modes qualitatively so that each may be considered in its proper perspective.
Subsequent chapters treat the three types of heat transfer in detail.

1-1 | CONDUCTION HEAT TRANSFER

When atemperature gradient exists in abody, experience has shown that thereis an energy
transfer from the high-temperature region to the low-temperature region. We say that the
energy istransferred by conduction and that the heat-transfer rate per unit areaisproportional
to the normal temperature gradient:

dx 8_T

A 0x



Figure 1-1 | Sketch showing
direction of heat flow.
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1-1 Conduction Heat Transfer

When the proportionality constant is inserted,

qo=—ka 2 [1-1]
ox

where g, isthe heat-transfer rate and 97/ 9dx is the temperature gradient in the direction of
the heat flow. The positive constant k is called the thermal conductivity of the material, and
the minus sign isinserted so that the second principle of thermodynamics will be satisfied;
i.e., heat must flow downhill on the temperature scale, asindicated in the coordinate system
of Figure 1-1. Equation (1-1) is called Fourier's law of heat conduction after the French
mathematical physicist Joseph Fourier, who made very significant contributions to the
analytical treatment of conduction heat transfer. It isimportant to note that Equation (1-1)
is the defining eguation for the thermal conductivity and that k has the units of watts per
meter per Celsius degree in a typical system of units in which the heat flow is expressed
in watts.

We now set ourselves the problem of determining the basic equation that governs the
transfer of heat in a solid, using Equation (1-1) as a starting point.

Consider the one-dimensional system shown in Figure 1-2. If the system isin a steady
state, i.e., if the temperature does not change with time, then the problem is a simple one,
and we need only integrate Equation (1-1) and substitute the appropriate valuesto solvefor
the desired quantity. However, if the temperature of the solid is changing with time, or if
there are heat sources or sinks within the solid, the situation is more complex. We consider
the general case where the temperature may be changing with time and heat sources may
be present within the body. For the element of thickness dx, the following energy balance
may be made:

Energy conducted in left face+ heat generated within element
=changeininternal energy + energy conducted out right face

These energy quantities are given as follows:

: oT
Energy inleft face =g, = —kA ™
X

Energy generated within element = gA dx

Figure 1-2 | Elemental volume for
one-dimensional hesat-
conduction analysis.
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L. oT
Changein internal energy = pcA . dx
T

. oT
Energy out right face = g,14x = —kA —}
0x X+dx

where

g = energy generated per unit volume, W/m3
¢ = specific heat of material, J/kg-°C
p = density, kg/m*

Combining the relations above gives

oT oT T 9 [ oT
A L gadr=pcA S dax— Ak E 4+ L (k) g
oy T AAGX=peA o dx [ax+ax(ax) x]
9 [ 9T oT
or — | k— ] = pc — 1-2
8x< 8x>+q P o [1-2]

Thisisthe one-dimensiona heat-conduction equation. To treat more than one-dimensional
heat flow, we need consider only the heat conducted in and out of aunit volumein all three
coordinate directions, as shown in Figure 1-3a. The energy balance yields

dE
qx + 9y + 49z + 9gen = Gx+dx +Gy+dy t Gz+dz + ——

dt
and the energy quantities are given by
oT
gx =—kdydz —
ox
ar 9 oT
=—|k—+— |k—)dx|dydz
Tt |: 8x+8x< 8x> x:| Yz
oT
=—kdxdz —
qy X dz ay
k8T+8 kBT dy|dxd
=— — 4+ — — X
qy+dy ay oy 3y y <

oT
q; = —kdxdy —
0z
aT 9 oT
=—|k—+4+— |k— )dz|dxd
qz+dz |: 3Z+3Z< 82) Zi| xay
ggen =gdxdydz

dE oT
— =pcdxdydz —
dr 'chyzar



1-1 Conduction Heat Transfer

Figure 1-3 | Elemental volume for three-dimensional heat-conduction analysis:
(a) cartesian coordinates; (b) cylindrical coordinates; (c) spherical coordinates.

y z
Oy +dy

0, 9

VI o
dy Q T

Oy ——] '_/l_’ Ox + dx o

Ogen= G dx dy dz

|
dz/

Oz+dz |<_ dX—“—»l >y

Qy

(@ (b)

so that the general three-dimensional heat-conduction equation is

o ( 9T\ o ( 9T\ o [ oT oT
TS + 2 (k) 2 (kD) rg=pe & 1-3
8x< 8x>+8y< ay>+az( 8z>+q = [1-3]

For constant thermal conductivity, Equation (1-3) is written

FPT  PT  PT ¢ 19T

8x2+8y2+812+k_a81 [1-3a]
where the quantity a = k/pc is called the thermal diffusivity of the material. The larger the
value of «, the faster heat will diffuse through the material. This may be seen by examining
the quantities that make up «. A high value of « could result either from a high value of
thermal conductivity, which would indicate arapid energy-transfer rate, or from alow value
of the thermal heat capacity pc. A low value of the heat capacity would mean that less of the
energy moving through the material would be absorbed and used to rai se the temperature of
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the material; thus more energy would be available for further transfer. Thermal diffusivity
a has units of square meters per second.

In the derivations above, the expression for the derivative at x + dx has been writtenin
the form of a Taylor-series expansion with only the first two terms of the series employed
for the development.

Equation (1-3a) may betransformed into either cylindrical or spherical coordinates by
standard calculus techniques. The results are as follows:

Cylindrical coordinates:
PT 19T 19T 9°T ¢ 10T
—_ —_—— —_—— —_— _—= = 1'3b
8r2+r8r+r28¢2+812+k o It [1-30]
Spherical coordinates:
182(D+ 1 9 sng T 1 T ¢ 19T
——(r - —_ e —_— _= =
r or? r2siné 9o 96 r2sin2@ 0?2 ko« ot

[1-3c]

The coordinate systems for use with Equations (1-3b) and (1-3c) are indicated in
Figure 1-3b and c, respectively.

Many practical problems involve only specia cases of the general equations listed
above. As a guide to the developments in future chapters, it is worthwhile to show the
reduced form of the general equations for several cases of practical interest.

Seady-state one-dimensional heat flow (no heat generation):

d’T
— =0 1-4
12 [1-4]
Note that this equation is the same as Equation (1-1) when ¢ = constant.
Seady-state one-dimensional heat flow in cylindrical coordinates (no heat
generation):
d’T  1dT
—+-——=0 [1-5]
dr?2 " r dr
Seady-state one-dimensional heat flow with heat sources:
d’T ¢
4+ 21=0 1-6
dx? + k [1-6]
Two-dimensional steady-state conduction without heat sour ces:
PT T
—_— —_— = 0 1'
ox2 + dy2 [1-7]

1-2 | THERMAL CONDUCTIVITY

Equation (1-1) is the defining equation for thermal conductivity. On the basis of this def-
inition, experimental measurements may be made to determine the thermal conductivity
of different materials. For gases at moderately low temperatures, analytical treatments in
the kinetic theory of gases may be used to predict accurately the experimentally observed
values. In some cases, theories are available for the prediction of thermal conductivitiesin



1-2 Thermal Conductivity

liquids and solids, but in general, many open questions and concepts still need clarification
where liquids and solids are concerned.

The mechanism of thermal conduction in agasisasimple one. We identify the kinetic
energy of amoleculewith itstemperature; thus, in ahigh-temperature region, the molecules
have higher velocities than in some lower-temperature region. The molecules arein contin-
uous random motion, colliding with one another and exchanging energy and momentum.
The molecul es have this random motion whether or not atemperature gradient existsin the
gas. If amolecule moves from a high-temperature region to aregion of lower temperature,
it transports kinetic energy to the lower-temperature part of the system and gives up this
energy through collisions with lower-energy molecules.

Table 1-1 lists typical values of the thermal conductivities for several materials to
indicate the relative orders of magnitude to be expected in practice. More complete tabular
information is given in Appendix A. In general, the thermal conductivity is strongly
temperature-dependent.

Table 1-1 | Thermal conductivity of various materials at 0°C.

Thermal conductivity

k
Material W/m . °C Btu/h.ft.°F
Metals:
Silver (pure) 410 237
Copper (pure) 385 223
Aluminum (pure) 202 117
Nickel (pure) 93 54
Iron (pure) 73 42
Carbon stedl, 1% C 43 25
Lead (pure) 35 20.3
Chrome-nickel steel (18% Cr, 8% Ni) 16.3 9.4
Nonmetallic solids:
Diamond 2300 1329
Quartz, parallel to axis 41.6 24
Magnesite 4.15 2.4
Marble 2.08-2.94 12-17
Sandstone 1.83 1.06
Glass, window 0.78 0.45
Maple or oak 0.17 0.096
Hard rubber 0.15 0.087
Polyvinyl chloride 0.09 0.052
Styrofoam 0.033 0.019
Sawdust 0.059 0.034
Glass wool 0.038 0.022
Ice 222 1.28
Liquids:
Mercury 8.21 4.74
Water 0.556 0.327
Ammonia 0.540 0.312
Lubricating oil, SAE 50 0.147 0.085
Freon 12, CCl,F» 0.073 0.042
Gases:
Hydrogen 0.175 0.101
Helium 0.141 0.081
Air 0.024 0.0139
Water vapor (saturated) 0.0206 0.0119

Carbon dioxide 0.0146 0.00844
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Figure 1-4 | Thermal conductivities of some typical gases
[1W/m-°C=0.5779 Btu/h - ft - °F].
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We noted that thermal conductivity has the units of watts per meter per Celsius degree
when the heat flow isexpressed in watts. Notethat aheat rateisinvolved, and the numerical
value of thethermal conductivity indicates how fast heat will flow in agiven material. How
is the rate of energy transfer taken into account in the molecular model discussed above?
Clearly, the faster the molecules move, the faster they will transport energy. Therefore the
thermal conductivity of a gas should be dependent on temperature. A simplified analytical
treatment showsthethermal conductivity of agasto vary with the squareroot of the absolute
temperature. (It may berecalled that the vel ocity of soundin agasvarieswith the squareroot
of the absolutetemperature; thisvel ocity isapproximately the mean speed of the molecules.)
Thermal conductivities of some typical gases are shown in Figure 1-4. For most gases at
moderate pressures the thermal conductivity isafunction of temperature alone. This means
that the gaseous data for 1 atmosphere (atm), as given in Appendix A, may be used for
a rather wide range of pressures. When the pressure of the gas becomes of the order of
its critical pressure or, more generally, when nonideal-gas behavior is encountered, other
sources must be consulted for thermal-conductivity data.
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Figure 1-5 | Thermal conductivities of sometypical liquids.
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The physical mechanism of thermal-energy conduction in liquids is qualitatively the
sameasingases, however, thesituation isconsiderably more complex becausethemol ecules
are more closely spaced and molecular force fields exert a strong influence on the energy
exchangein the collision process. Thermal conductivities of sometypical liquidsare shown
in Figure 1-5.

In the English system of units, heat flow is expressed in British thermal units per hour
(Btu/h), areain square feet, and temperature in degrees Fahrenheit. Thermal conductivity
will then have units of Btu/h - ft - °F.

Thermal energy may be conducted in solids by two modes: lattice vibration and trans-
port by free electrons. In good electrical conductors arather large number of free electrons
move about in the lattice structure of the material. Just as these electrons may transport
electric charge, they may also carry thermal energy from a high-temperature region to
a low-temperature region, as in the case of gases. In fact, these electrons are frequently
referred to as the electron gas. Energy may aso be transmitted as vibrational energy in
the lattice structure of the material. In general, however, this latter mode of energy transfer
is not as large as the electron transport, and for this reason good electrical conductors are
almost always good heat conductors, namely, copper, aluminum, and silver, and electrical
insulators are usualy good heat insulators. A notable exception is diamond, which is an
electrical insulator, but which can have athermal conductivity five times as high as silver
or copper. It is this fact that enables a jeweler to distinguish between genuine diamonds
and fake stones. A small instrument is available that measures the response of the stones
to a thermal hesat pulse. A true diamond will exhibit a far more rapid response than the
nongenuine stone.

Thermal conductivities of some typical solids are shown in Figure 1-6. Other data are
giveninAppendix A.
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Figure 1-6 | Thermal conductivities of some typical solids.
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Table 1-2 | Effective therma conductivities of cryogenic insulating
materials for usein range 15°C to —195°C. Density

range 30 to 80 kg/m3.
Type of insulation Effective k, mMW/m.°C
1. Foams, powders, and fibers, unevacuated 7-36
2. Powders, evacuated 0.9-6
3. Glass fibers, evacuated 0.6-3
4. Opacified powders, evacuated 0.3-1
5. Multilayer insulations, evacuated 0.015-0.06

Thethermal conductivitiesof variousinsulating materialsarea so giveninAppendix A.
Sometypical valuesare0.038 W/m - °Cfor glasswool and 0.78 W/m - °C for window glass.
At high temperatures, the energy transfer through insulating materials may involve several
modes: conduction through the fibrous or porous solid material; conduction through the air
trapped in the void spaces; and, at sufficiently high temperatures, radiation.

An important technical problem is the storage and transport of cryogenic liquids like
liquid hydrogen over extended periodsof time. Such applicationshaveledto thedevel opment
of superinsulations for use at these very low temperatures (down to about —250°C). The
most effective of these superinsulations consists of multiple layers of highly reflective
materials separated by insulating spacers. The entire system is evacuated to minimize air
conduction, and thermal conductivities as low as 0.3 mW/m-°C are possible. A conve-
nient summary of the thermal conductivities of a few insulating materials at cryogenic
temperaturesis given in Table 1-2. Further information on multilayer insulation isgivenin
References 2 and 3.
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1-3 Convection Heat Transfer

1-3 | CONVECTION HEAT TRANSFER

Itiswell known that a hot plate of metal will cool faster when placed in front of afan than
when exposed to till air. We say that the heat is convected away, and we call the process
convection heat transfer. The term convection provides the reader with an intuitive notion
concerning the heat-transfer process; however, this intuitive notion must be expanded to
enable one to arrive at anything like an adequate analytical treatment of the problem. For
example, we know that the velocity at which the air blows over the hot plate obviously
influences the heat-transfer rate. But does it influence the cooling in a linear way; i.e., if
the velocity is doubled, will the heat-transfer rate double? We should suspect that the heat-
transfer rate might be different if we cooled the plate with water instead of air, but, again,
how much difference would there be? These questions may be answered with the aid of
some rather basic analyses presented in later chapters. For now, we sketch the physical
mechanism of convection heat transfer and show its relation to the conduction process.

Consider the heated plate shown in Figure 1-7. The temperature of the plateis T, and
the temperature of the fluid is T,. The velocity of the flow will appear as shown, being
reduced to zero at the plate asaresult of viscous action. Since the velocity of thefluid layer
at thewall will be zero, the heat must be transferred only by conduction at that point. Thus
we might compute the heat transfer, using Equation (1-1), with the thermal conductivity
of the fluid and the fluid temperature gradient at the wall. Why, then, if the heat flows by
conduction in this layer, do we speak of convection heat transfer and need to consider the
velocity of the fluid? The answer isthat the temperature gradient is dependent on the rate at
which thefluid carriesthe heat away; ahigh velocity produces alarge temperature gradient,
and so on. Thusthe temperature gradient at the wall depends on the flow field, and we must
developin our later analysis an expression relating the two quantities. Nevertheless, it must
be remembered that the physical mechanism of heat transfer at the wall is a conduction
process.

To express the overall effect of convection, we use Newton's law of cooling:

q=hA(Ty —Tso) [1-8]

Here the heat-transfer rate is related to the overall temperature difference between the
wall and fluid and the surface area A. The quantity h is called the convection heat-transfer
coefficient, and Equation (1-8) isthe defining equation. Ananalytical calculation of hmay be
made for some systems. For complex situations it must be determined experimentally. The
heat-transfer coefficient is sometimes called the film conductance because of its relation
to the conduction process in the thin stationary layer of fluid at the wall surface. From
Equation (1-8) we note that the units of h are in watts per square meter per Celsius degree
when the heat flow isin watts.

In view of the foregoing discussion, one may anticipate that convection heat transfer
will have a dependence on the viscosity of the fluid in addition to its dependence on the

Figure 1-7 | Convection heat transfer from aplate.

Flow Free stream
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thermal propertiesof thefluid (thermal conductivity, specific heat, density). Thisisexpected
because viscosity influences the velocity profile and, correspondingly, the energy-transfer
rate in the region near the wall.

If aheated plate were exposed to ambient room air without an external source of motion,
a movement of the air would be experienced as a result of the density gradients near the
plate. We call this natural, or free, convection as opposed to forced convection, which
is experienced in the case of the fan blowing air over a plate. Boiling and condensation
phenomena are also grouped under the general subject of convection heat transfer. The
approximate ranges of convection heat-transfer coefficients are indicated in Table 1-3.

Convection Energy Balance on a Flow Channel

The energy transfer expressed by Equation (1-8) is used for evaluating the convection loss
for flow over an external surface. Of equal importanceisthe convection gain or lossresulting
from afluid flowing inside achannel or tube as shown in Figure 1-8. In this case, the heated
wall at T, loses heat to the cooler fluid, which consequently risesin temperature asit flows

Table 1-3 | Approximate values of convection heat-transfer coefficients.

11

h
Mode W/m? . °C Btu/h - ft2 . °F
Across 2.5-cm air gap evacuated to a pressure
of 10~% atm and subjected
to AT =100°C —30°C 0.087 0.015
Free convection, AT =30°C
Vertical plate 0.3 m[1ft] highinair 45 0.79
Horizontal cylinder, 5-cm diameter, in air 6.5 114
Horizontal cylinder, 2-cm diameter,
in water 890 157
Heat transfer across 1.5-cm vertical air
gap with AT =60°C 2.64 0.46
Finewireinair, d =0.02mm, AT =55°C 490 86
Forced convection
Airflow at 2 m/s over 0.2-m square plate 12 21
Airflow at 35 m/s over 0.75-m square plate 75 13.2
Airflow at Mach number =3, p =1/20 atm,
Txo = —40°C, across 0.2-m square plate 56 9.9
Air at 2 atm flowing in 2.5-cm-diameter
tube at 10 m/s 65 114
Water at 0.5 kg/s flowing in 2.5-cm-diameter
tube 3500 616
Airflow across 5-cm-diameter cylinder
with velocity of 50 m/s 180 32
Liquid bismuth at 4.5 kg/s and 420°C
in 5.0-cm-diameter tube 3410 600
Airflow at 50 m/s across fine wire,
d=0.04mm 3850 678
Boiling water
Inapool or container 2500-35,000 440-6200
Flowing in atube 5000-100,000 880-17,600
Condensation of water vapor, 1 atm
Vertical surfaces 4000-11,300 700-2000
Outside horizontal tubes 9500-25,000 17004400
Dropwise condensation 170,000-290,000 30,000-50,000




12

1-4 Radiation Heat Transfer

Figure 1-8 | Convection in achannel.

L

frominlet conditions at 7; to exit conditions at T,.. Using the symbol i to designate enthal py
(to avoid confusion with 7, the convection coefficient), the energy balance on the fluid is

q =i, —i;)

wherem isthefluid massflow rate. For many single-phase liquids and gases operating over
reasonable temperature ranges Ai = ¢, AT and we have

q= mcp(Te =T
which may be equated to a convection relation like Equation (1-8)
q= mcp(Te —T) =hA(Ty, avg — THuid, avg) [1-8a]

In this case, the fluid temperatures 7,, T;, and Tyiq are caled bulk or energy average
temperatures. A is the surface area of the flow channel in contact with the fluid. We shall
have more to say about the notions of computing convection heat transfer for external and
internal flows in Chapters 5 and 6. For now, we simply want to alert the reader to the
distinction between the two types of flows.

We must be careful to distinguish between the surface area for convection that is
employed in convection Equation (1-8) and the cross-sectional areathat isused to calculate
the flow rate from

M = pumeanAc

where A, = md?/4 for flow in a circular tube. The surface area for convection in this case
would be mdL, where L is the tube length. The surface area for convection is always the
area of the heated surface in contact with the fluid.

1-4 | RADIATION HEAT TRANSFER

In contrast to the mechani smsof conductionand convection, whereenergy transfer through a
material medium isinvolved, heat may also be transferred through regions where a perfect
vacuum exists. The mechanism in this case is electromagnetic radiation. We shall limit
our discussion to electromagnetic radiation that is propagated as a result of atemperature
difference; thisis called thermal radiation.

Thermodynamic considerations show* that anideal thermal radiator, or blackbody, will
emit energy at a rate proportiona to the fourth power of the absolute temperature of the
body and directly proportional to its surface area. Thus

Gemitted = 0AT* [1-9]

" Seg, for example, J. P Holman, Thermodynamics. 4th ed. New York: McGraw-Hill, 1988, p. 705.
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where o is the proportionality constant and is called the Stefan-Boltzmann constant with
the value of 5.669 x 10-8 W/m? - K*. Equation (1-9) is called the Stefan-Boltzmann law
of thermal radiation, and it applies only to blackbodies. It is important to note that this
equation is valid only for thermal radiation; other types of electromagnetic radiation may
not be treated so simply.

Equation (1-9) governsonly radiation emitted by ablackbody. The net radiant exchange
between two surfaces will be proportional to the differencein absolute temperatures to the
fourth power; i.e.,

dnet exchange

A

We have mentioned that a blackbody is a body that radiates energy according to the
T* law. We call such abody black because black surfaces, such as a piece of metal covered
with carbon black, approximate this type of behavior. Other types of surfaces, such as a
glossy painted surface or a polished metal plate, do not radiate as much energy as the
blackbody; however, the total radiation emitted by these bodies still generally follows the
T4 proportionality. To take account of the “gray” nature of such surfaces we introduce
another factor into Equation (1-9), called the emissivity ¢, which relates the radiation of
the“gray” surface to that of an ideal black surface. In addition, we must take into account
the fact that not all the radiation leaving one surface will reach the other surface since
electromagnetic radiation travelsin straight lines and some will belost to the surroundings.
Wethereforeintroducetwo new factorsin Equation (1-9) to takeinto account both situations,
so that

xo(T} —Ty) [1-10]

q=F.FGoA (T{ —Ty) [1-11]

where F¢ isthe emissivity function, and Fg is the geometric “view factor” function. The
determination of the form of these functions for specific configurations is the subject of a
subsequent chapter. It isimportant to alert the reader at this time, however, to the fact that
these functions usually are not independent of one another as indicated in Equation (1-11).

Radiation in an Enclosure

A simpleradiation problem is encountered when we have a heat-transfer surface at temper-
ature Ty, completely enclosed by a much larger surface maintained at 7>. We will show in
Chapter 8 that the net radiant exchange in this case can be calculated with

q=e1041 (T} — T3) [1-12]

Values of € are given in Appendix A.

Radiation heat-transfer phenomena can be exceedingly complex, and the cal culations
areseldom assimpleasimplied by Equation (1-11). For now, we wish to emphasize the dif-
ference in physical mechanism between radiation heat-transfer and conduction-convection
systems. In Chapter 8 we examine radiation in detail.

1-5 | DIMENSIONSAND UNITS

In this section we outline the systems of units that are used throughout the book. One must
be careful not to confuse the meaning of the terms units and dimensions. A dimensionisa
physical variable used to specify the behavior or nature of aparticular system. For example,

13
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1-5 Dimensions and Units

the length of arod isadimension of therod. In like manner, the temperature of a gas may
be considered one of the thermodynamic dimensions of the gas. When we say therod is
so many meters long, or the gas has a temperature of so many degrees Celsius, we have
given the units with which we choose to measure the dimension. In our development of
heat transfer we use the dimensions

=length
M =mass
F =force
T =time

T =temperature

All the physical quantities used in heat transfer may be expressed in terms of these funda-
mental dimensions. The units to be used for certain dimensions are selected by somewhat
arbitrary definitions that usualy relate to a physical phenomenon or law. For example,
Newton’s second law of motion may be written

Force~ time rate of change of momentum

d(mv)
dt

F=k
where k is the proportionality constant. If the massis constant,
F =kma [1-13]

where the acceleration isa = dv/dv. Equation (1-11) is usually written

1
F=—ma [1-14]
8c

with 1/g. = k. Equation (1-14) is used to define our systems of unitsfor mass, force, length,
and time. Some typical systems of units are

1-pound force will accelerate a 1-1b mass 32.17 ft/s2.

1-pound force will accelerate a 1-slug mass 1 ft/s?.

1-dyne force will accelerate a 1-g mass 1 cm/s%.

1-newton force will accelerate a 1-kg mass 1 m/s2.

1-kilogram force will accelerate a 1-kg mass 9.806 m/s%.

a s wbdheE

The 1-kg force is sometimes called a kilopond (kp).

Since Equation (1-14) must be dimensionally homogeneous, we shall have a different
value of the constant g, for each of the unit systemsinitems 1to 5 above. Thesevaluesare
gc =32.17 b, - ft/Iby -
gc=1dug-ft/lby - &
ge=1g-cm/dyn.s°
ge=1kg-m/N.s?

5. g.=9.806kg,, -m/kg; -
It matters not which system of unitsisused so long asit is consistent with these definitions.

A wbdeE
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Work has the dimensions of a product of force times a distance. Energy has the same
dimensions. The unitsfor work and energy may be chosen from any of the systems used on
the previous page, and would be
1 Iby-ft
2. Ibg-ft
3. dyn-cm=1erg
4. N-m=1joule (J)

5. kg, -m=9.806J
In addition, we may use the units of energy that are based on thermal phenomena:

1 Btuwill raise 1 1b,, of water 1°F at 68°F.
1 ca will raise 1 g of water 1°C at 20°C.
1 kcal will raise 1 kg of water 1°C at 20°C.

Some conversion factors for the various units of work and energy are
1Btu =778.16 b/ - ft

1Btu = 1055J
1kecal =41821J
1lby -ft =1.356J
1Btu =252 cal

Other conversion factors are given in Appendix A.

The weight of a body is defined as the force exerted on the body as a result of the
acceleration of gravity. Thus

w=2n [1-15]
8c

where W isthe weight and g is the acceleration of gravity. Note that the weight of a body
has the dimensions of aforce. We now see why systems 1 and 5 were devised; 1 Ib,, will
weigh 11by at sealevel, and 1 kg,, will weigh 1 kg;.

Temperature conversions are performed with the familiar formulas

F=32°C+32
°R =°F+459.69
K =°C+273.16
°R =K

Unfortunately, all of these unit systems are used in various places throughout the
world. While the foot, pound force, pound mass, second, degree Fahrenheit, Btu systemis
still widely used inthe United States, thereisincreasing impetustoinstitute the Sl (Systéme
International d’ Unités) units asaworldwide standard. In this system, the fundamental units
are meter, newton, kilogram mass, second, and degree Celsius; a “therma” energy unit is
not used; i.e., thejoule (newton-meter) becomes the energy unit used throughout. The watt
(joules per second) is the unit of power in this system. In the SI system, the standard units
for thermal conductivity would become

kinW/m-°C

15
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Table 1-4 | Multiplier factorsfor Sl units.

Multiplier Prefix Abbreviation

1012 tera T
10° giga G
10° mega M
103 kilo k
102 hecto h
102 centi c
10-3 milli m
106 micro w
1079 nano n
10712 pico p
10-18 atto a

Table 1-5 | S| quantities used in heat transfer.

Quantity Unit abbreviation
Force N (newton)
Mass kg (kilogram mass)
Time s (second)
Length m (meter)
Temperature °CorK
Energy J(joule)
Power W (watt)
Thermal conductivity W/m-°C
Heat-transfer coefficient wW/m?.°C
Specific heat Jkg-°C
Heat flux w/m?

and the convection heat-transfer coefficient would be expressed as
hinW/m?.°C

Because S units are so straightforward we shall use them as the standard in this text, with
intermediate steps and answers in examples aso given parenthetically in the Btu—pound
mass system. A worker in heat transfer must obtain a feel for the order of magnitudes in
both systems. In the S| system the concept of g, is not normally used, and the newton is
defined as

1N=1kg-m/s [1-16]

Even so, one should keep in mind the physical relation between force and mass as expressed
by Newton’s second law of motion.

The Sl system also specifies standard multiples to be used to conserve space when
numerical values are expressed. They are summarized in Table 1-4. Standard symbols for
guantities normally encountered in heat transfer are summarized in Table 1-5. Conversion
factors are given in Appendix A.

Conduction Through Copper Plate

One face of a copper plate 3 cm thick is maintained at 400°C, and the other face is maintained at
100°C. How much heat is transferred through the plate?
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H Solution

From Appendix A, the thermal conductivity for copper is 370 W/m - °C at 250°C. From Fourier’'s
law

q dT
=—k—
A dx
Integrating gives
AT  —(370)(100— 400
4__ AT _—E1OU0-400) .., MW/m?  [1.173 x 10° Btu/h - ft?]
A Ax 3x 102

Convection Calculation EXAMPLE 1-2

Air at 20°C blows over ahot plate 50 by 75 cm maintained at 250° C. The convection heat-transfer
coefficient is 25 W/m? - °C. Calculate the heat transfer.

H Solution
From Newton's law of cooling

q="hA(Ty — Teo)
= (25)(0.50)(0.75) (250 — 20)
=2.156 kW [7356 Btu/h]

Multimode Heat Transfer

Assuming that the plate in Example 1-2 is made of carbon steel (1%) 2 cm thick and that 300 W
islost from the plate surface by radiation, calculate the inside plate temperature.

B Solution

The heat conducted through the plate must be equal to the sum of convection and radiation heat
losses:

9cond = qconv + Grad

AT
—kA yvin 2.156+ 0.3 =2.456 kW

X
_ (—2456)(0.02)

AT = (0.5)(0.75)(43) ~

—3.05°C [-5.49°F]

where the value of k istaken from Table 1-1. The inside plate temperature is therefore

T; =250+ 3.05=253.05°C

Heat Source and Convection EXAMPLE 1-4

An electric current is passed through a wire 1 mm in diameter and 10 cm long. The wire is
submerged in liquid water at atmospheric pressure, and the current is increased until the water

17
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boils. For this situation 7 = 5000 W/m? - °C, and the water temperature will be 100°C. How much
electric power must be supplied to the wire to maintain the wire surface at 114°C?

B Solution
Thetotal convection lossis given by Equation (1-8):

gq=hA (Ty — Too)
For this problem the surface area of the wireis
A=ndL=mn(1x10"3)(10 x 10~%) =3.142 x 104 m?
The heat transfer is therefore
g = (5000 W/m? - °C)(3.142 x 10~% m?)(114 — 100) =21.99 W [75.03 Btu/h]

and thisis equal to the electric power that must be applied.

EXAMPLE 1-5 Radiation Heat Transfer

Two infinite black plates at 800°C and 300°C exchange heat by radiation. Calculate the heat
transfer per unit area.

H Solution
Equation (1-10) may be employed for this problem, so we find immediately
gA =o(T} —T3)
= (5.669 x 10~8)(1073* — 573%
= 69.03kW/m? [21,884 Btu/h - ft2]

Total Heat Loss by Convection and Radiation

A horizontal steel pipe having adiameter of 5 cm is maintained at atemperature of 50°Cin alarge
room where the air and wall temperature are at 20°C. The surface emissivity of the steel may be
taken as 0.8. Using the data of Table 1-3, calculate the total heat lost by the pipe per unit length.

B Solution
Thetotal heat lossis the sum of convection and radiation. From Table 1-3 we see that an estimate
for the heat-transfer coefficient for free convection with thisgeometry and airish = 6.5W/ mZ.°C.
The surface areais ndL, so the convection loss per unit length is
¢/Llconv = h(7wd)(Ty — Too)
= (6.5)(77)(0.05) (50 — 20) = 30.63 W/m

The pipe is a body surrounded by a large enclosure so the radiation heat transfer can be
calculated from Equation (1-12). With 73 =50°C = 323°K and 7> = 20°C = 293°K, we have

@/LIrad = €1(dy)o (T} — T3)
= (0.8)(7)(0.05)(5.669 x 10~8)(323* — 2934
= 25.04 W/m
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Thetotal heat loss is therefore
q/Lltot = g/Llconv + ¢/L]yad
= 30.63+ 25.04 =55.67 W/m

In this example we see that the convection and radiation are about the same. To neglect either
would be a serious mistake.

1-6 | SUMMARY

We may summarize our introductory remarks very simply. Heat transfer may take place by
oneor more of threemodes: conduction, convection, and radiation. It hasbeen noted that the
physical mechanism of convection is related to the heat conduction through the thin layer
of fluid adjacent to the heat-transfer surface. In both conduction and convection Fourier’'s
law is applicable, athough fluid mechanics must be brought into play in the convection
problem in order to establish the temperature gradient.

Radiation heat transfer involves a different physical mechanism—that of propagation
of electromagnetic energy. To study thistype of energy transfer we introduce the concept of
an ideal radiator, or blackbody, which radiates energy at arate proportional to its absolute
temperature to the fourth power.

It is easy to envision cases in which all three modes of heat transfer are present, as
in Figure 1-9. In this case the heat conducted through the plate is removed from the plate
surface by a combination of convection and radiation. An energy balance would give

dT 4 b

—kA — | =hA(Ty — Too) + FFoA (T — T
dy |wall

where

T, = temperature of surroundings
T, = surface temperature
Tso = fluid temperature

To apply the science of heat transfer to practical situations, a thorough knowledge of
all three modes of heat transfer must be obtained.

Figure 1-9 | Combination of conduction, convection, and
radiation heat transfer.

Radiant energy
Surrounding at Tg

Flow, T.,

—_—_— Qeonv = hA(TW - Too)

(™

X Heat conducted
through wall
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Review Questions

Table 1-6 | Listing of equation summary tablesin text.

Table Topic
1-3 Approximate values of convection heat-transfer coefficients
31 Conduction shape factors
32 Summary of steady-state nodal equations for Ax = Ay
4-1 Examples of lumped capacities
4-2 Summary of transient nodal equations for Ax = Ay
52 Forced-convection relations for flow over flat plates
6-8 Forced-convection relations for internal and external flows
(nonflat plates)
7-2 Simplified relations for free convection from hested
objectsin room air
7-5 Summary of free-convection relations
Section 7-14 and  Summary procedure for al convection calculations
Figure 7-15
8-7 Radiation formulas for diffuse, gray-body enclosures
10-3 Effectiveness relations for heat exchangers
10-4 NTU relations for heat exchangers
About Areas

Thereader will notethat areaisanimportant part of the cal culation for all threemodesof heat
transfer: The larger the area through which heat is conducted, the larger the heat transfer;
the larger the surface areain contact with the fluid, the larger the potential convection heat
transfer; and a larger surface will emit more thermal radiation than a small surface. For
conduction, the heat transfer will almost always be directly proportional to the area. For
convection, the heat transfer isacomplicated function of the fluid mechanicsof the problem,
whichinturnisafunction of both the geometric configuration of the heated surface and the
thermal and viscous fluid properties of the convecting medium. Radiation heat transfer also
involvesacomplex interaction between the surface emissive properties and the geometry of
the enclosure that involves the radiant transfer. Despite these remarks, the general principle
isthat an increased area means an increase in hesat transfer.

Summary TablesAvailablein Text

Asour discussion progresseswe will present several tableswhich summarize equations and
empirical correlationsfor convenience of thereader. A listing of some of these tables and/or
figures along with their topical content is given in Table 1-6.

REVIEW QUESTIONS

Define thermal conductivity.

Define the convection heat-transfer coefficient.

Discuss the mechanism of thermal conduction in gases and solids.
Discuss the mechanism of heat convection.

What is the order of magnitude for the convection heat-transfer coefficient in free
convection? Forced convection? Boiling?

When may one expect radiation heat transfer to be important?
Name some good conductors of heat; some poor conductors.

EE SN S
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What is the order of magnitude of thermal conductivity for (a) metals, (b) solid insu-
lating materials, () liquids, (d) gases?

Suppose a person stated that heat cannot be transferred in a vacuum. How do you
respond?

Review any standard text on thermodynamics and define: (a) heat, (b) internal energy,
(c) work, (d) enthalpy.

Define and discuss g..

LIST OF WORKED EXAMPLES

1-1
1-2
1-3
1-4
1-5
1-6

Conduction through copper plate
Convection calculation

Multimode heat transfer

Heat source and convection

Radiation heat transfer

Total heat loss by convection and radiation

PROBLEMS

11

1-3

1-4

1-5

If 3 kW is conducted through a section of insulating material 0.6 m? in cross section
and 2.5 cm thick and the thermal conductivity may betaken as0.2W/m - °C, compute
the temperature difference across the material.

A temperature difference of 85°C is impressed across a fiberglass layer of 13 cm
thickness. The thermal conductivity of the fiberglassis 0.035 W/m - °C. Compute the
heat transferred through the material per hour per unit area.

A truncated cone 30 cm high is constructed of auminum. The diameter at the top is
7.5 cm, and the diameter at the bottom is 12.5 cm. The lower surface is maintained
at 93°C; the upper surface, at 540°C. The other surface is insulated. Assuming one-
dimensional heat flow, what is the rate of heat transfer in watts?

The temperatures on the faces of aplanewall 15 cm thick are 375 and 85°C. Thewall
is constructed of a special glass with the following properties. k =0.78 W/m - °C,
p = 2700 kg/m®, cp=0.84 kJ/kg- °C. What is the heat flow through the wall at
steady-state conditions?

A certain superinsul ation material havingathermal conductivity of 2 x 1074 W/m - °C
isused to insulate a tank of liquid nitrogen that is maintained at —196°C; 199 kJis
required to vaporize each kilogram mass of nitrogen at this temperature. Assuming
that the tank isasphere having an inner diameter (1D) of 0.52 m, estimate the amount
of nitrogen vaporized per day for an insulation thickness of 2.5 cm and an ambient
temperature of 21°C. Assume that the outer temperature of the insulation is 21°C.
Rank the following materials in order of (a) transient response and (b) steady-state
conduction. Taking the material with the highest rank, give the other materials as
a percentage of the maximum: aluminum, copper, silver, iron, lead, chrome steel
(18% Cr, 8% Ni), magnesium. What do you conclude from this ranking?

A 50-cm-diameter pipeline in the Arctic carries hot oil at 30°C and is exposed to a
surrounding temperature of —20°C. A special powder insulation 5 cm thick surrounds

21
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Problems

1-8

1-9

1-10

1-11

1-12

1-13

1-14

1-15

1-16

1-17

1-18

1-19

1-20

1-21

1-22

1-23

the pipe and hasathermal conductivity of 7mW/m - °C. The convection heat-transfer
coefficient on the outside of the pipe is 9 W/m? . °C. Estimate the energy loss from
the pipe per meter of length.

Some people might recall being told to be sure to put on a hat when outside in cold
weather because “you lose all the heat out the top of your head.” Comment on the
validity of this statement.

A 5-cm layer of loosely packed asbestos is placed between two plates at 100 and
200°C. Calculate the heat transfer across the layer.

A certain insulation has a thermal conductivity of 10 W/m - °C. What thickness is
necessary to effect atemperature drop of 500°C for a heat flow of 400 W/m??
Assuming that the heat transfer to the spherein Problem 1-5 occurs by free convection
with aheat-transfer coefficient of 2.7 W/m? - °C, cal cul ate the temperature difference
between the outer surface of the sphere and the environment.

Two perfectly black surfaces are constructed so that al the radiant energy leaving a
surface at 800°C reaches the other surface. The temperature of the other surface is
maintained at 250°C. Calculate the heat transfer between the surfaces per hour and
per unit area of the surface maintained at 800°C.

Two very large paralel planes having surface conditions that very nearly approx-
imate those of a blackbody are maintained at 1100 and 425°C, respectively. Cal-
culate the heat transfer by radiation between the planes per unit time and per unit
surface area.

Calculate the radiation heat exchange in 1 day between two black planes having the
area of the surface of a 0.7-m-diameter sphere when the planes are maintained at
70 K and 300 K.

Two infinite black plates at 500 and 100°C exchange heat by radiation. Calculate
the heat-transfer rate per unit area. If another perfectly black plate is placed between
the 500 and 100°C plates, by how much is the heat transfer reduced? What is the
temperature of the center plate?

Water flows at the rate of 0.5 kg/sin a 2.5-cm-diameter tube having alength of 3 m.
A constant heat flux isimposed at the tube wall so that the tube wall temperature is
40°C higher than the water temperature. Calculate the heat transfer and estimate the
temperature rise in the water. The water is pressurized so that boiling cannot occur.
Steam at 1 atm pressure (Tsz = 100°C) is exposed to a 30-by-30-cm vertical square
plate that is cooled such that 3.78 kg/h is condensed. Calculate the plate temperature.
Consult steam tables for any necessary properties.

Boiling water at 1 atm may require a surface heat flux of 3 x 10* Btu/h - ft? for a
surface temperature of 232°F. What is the value of the heat-transfer coefficient?

A small radiant heater has metal strips 6 mm wide with atotal length of 3 m. The
surface emissivity of the stripsis 0.85. To what temperature must the strips be heated
if they are to dissipate 2000 W of heat to aroom at 25°C?

Calculate the energy emitted by a blackbody at 1000°C.

If theradiant flux from the sun is 1350 W/m?, what would be its equivalent blackbody
temperature?

A 4.0-cm-diameter sphere is heated to a temperature of 200°C and is enclosed in a
large room at 20°C. Calculate the radiant heat loss if the surface emissivity is 0.6.

A flat wall is exposed to an environmental temperature of 38°C. Thewall is covered
with alayer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m-°C,
and the temperature of the wall on the inside of the insulation is 315°C. The wall
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loses heat to the environment by convection. Compute the value of the convection
heat-transfer coefficient that must be maintained on the outer surface of theinsulation
to ensure that the outer-surface temperature does not exceed 41°C.

Consider awall heated by convection on one side and cooled by convection on the
other side. Show that the heat-transfer rate through the wall is

_ -1

" Yh1 A+ AxkA + Jho A

q

where T1 and T» are the fluid temperatures on each side of thewall and 21 and /i, are
the corresponding hesat-transfer coefficients.

One side of a plane wall is maintained at 100°C, while the other side is exposed
to a convection environment having 7 = 10°C and » = 10 W/m? - °C. The wall has
k=1.6W/m-°Candis40 cm thick. Calculate the heat-transfer rate through thewall.
How does the free-convection heat transfer from a vertical plate compare with pure
conduction through avertical layer of air having athickness of 2.5 cm and a temper-
ature difference the same at T, — Too? Use information from Table 1-3.

A %-in stedl plate having athermal conductivity of 25 Btu/h-ft - °F is exposed to a
radiant heat flux of 1500 Btu/h - ft? in a vacuum space where the convection heat
transfer is negligible. Assuming that the surface temperature of the steel exposed to
the radiant energy is maintained at 100°F, what will be the other surface temper-
ature if all the radiant energy striking the plate is transferred through the plate by
conduction?

A solar radiant heat flux of 700 W/m? is absorbed in a metal plate that is perfectly
insulated on the back side. The convection heat-transfer coefficient on the plate is
11 W/m? . °C, and the ambient air temperature is 30°C. Calcul ate the temperature of
the plate under equilibrium conditions.

A 5.0-cm-diameter cylinder is heated to a temperature of 200°C, and air at 30°C is
forced acrossit at a velocity of 50 m/s. If the surface emissivity is 0.7, calculate the
total heat loss per unit length if thewalls of the enclosing room are at 10°C. Comment
on this calculation.

A vertical square plate, 30 cm on aside, is maintained at 50°C and exposed to room
air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides
of the plate.

A black 20-by-20-cm platehasair forced over it at avel ocity of 2 m/sand atemperature
of 0°C. The plateis placed in alarge room whose walls are at 30°C. The back side of
the plate is perfectly insulated. Calculate the temperature of the plate resulting from
the convection-radiation balance. Use information from Table 1-3. Are you surprised
at the result?

Two large black plates are separated by a vacuum. On the outside of one plateis a
convection environment of 7 =80°C and i =100 W/m? - °C, while the outside of
the other plateis exposed to 20°C and 4 = 15 W/m? - °C. Make an energy balance on
the system and determine the plate temperatures. For this problem Fg = F. = 1.0.
Using the basic definitions of units and dimensions given in Section 1-5, arrive
a expressions (a) to convert joules to British thermal units, (b) to convert dyne-
centimetersto joules, and (c) to convert British thermal unitsto calories.

Beginning with the three-dimensional heat-conduction equation in cartesian coordi-
nates [Equation (1-3a)], obtain the general heat-conduction equation in cylindrical
coordinates [ Equation (1-3b)].
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Problems

1-35

1-36

Write the simplified heat-conduction equation for (a) steady one-dimensiona heat
flow in cylindrical coordinates in the azimuth (¢) direction, and (b) steady one-
dimensional heat flow in spherical coordinates in the azimuth (¢) direction.

Using the approximate values of convection heat-transfer coefficients given in
Table 1-3, estimate the surface temperature for which the free convection heat loss
will just equal the radiation heat loss from a vertical 0.3-m-square plate or a 5-cm-
diameter cylinder exposed to room air at 20°C. Assume the surfaces are blackened
such that € = 1.0 and the radiation surrounding temperature may be taken the same
asthe room air temperature.

Design-Oriented Problems

1-37

1-38

1-39

1-40

1-41

1-42

A woman informs an engineer that she frequently feels cooler in the summer when
standing in front of an open refrigerator. The engineer tells her that sheisonly “imag-
ining things’ because thereis no fan in the refrigerator to blow the cool air over her.
A lively argument ensues. Whose side of the argument do you take? Why?

A woman informs her engineer husband that “ hot water will freeze faster than cold
water.” He callsthis statement nonsense. She answers by saying that she has actually
timed the freezing process for ice trays in the home refrigerator and found that hot
water does indeed freeze faster. As afriend, you are asked to settle the argument. Is
there any logical explanation for the woman’s observation?

An air-conditioned classroom in Texas is maintained at 72°F in the summer. The
students attend classes in shorts, sandals, and tee shirts and are quite comfortable.
In the same classroom during the winter, the same students wear wool slacks, long-
dleeve shirts, and sweaters, and are equally comfortable with the room temperature
maintained at 75°F. Assuming that humidity is not a factor, explain this apparent
anomaly in “temperature comfort.”

A vertical cylinder 6 ft tall and 1 ft in diameter might be used to approximate a man
for heat-transfer purposes. Suppose the surface temperature of the cylinder is 78°F,
h =2Btu/h-ft? . °F, the surface emissivity is0.9, and the cylinder isplaced in alarge
room where the air temperature is 68°F and the wall temperature is 45°F. Calculate
the heat lost from the cylinder. Repeat for awall temperature of 80°F. What do you
conclude from these cal culations?

Anice-skating rink is located in an indoor shopping mall with an environmental air
temperature of 22°C and radiation surrounding walls of about 25°C. The convection
heat-transfer coefficient between theice and air is about 10 W/m? - °C because of air
movement and the skaters' motion. The emissivity of theiceisabout 0.95. Calculate
the cooling required to maintain theice at 0°C for anicerink having dimensions of 12
by 40 m. Obtain avalue for the heat of fusion of ice and estimate how long it would
take to melt 3 mm of ice from the surface of the rink if no cooling is supplied and the
surfaceis considered insulated on the back side.

In energy conservation studies, cost is usually expressed in terms of Btu of energy,
or some English unit of measure such asthe gallon. Some typical examples are

Overall cost: $/10° Btu

Transportation results: passenger miles per 108 Btu or per gallon of fuel
ton-miles of freight per 10° Btu or per gallon of fuel
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Consult whatever sources are needed, and devise suitable measures for energy con-
sumption and cost using the Sl system of units. How would you price such items as

Energy content of various types of coal
Energy content of gasoline
Energy content of natural gas
Energy “content” of electricity
After devising the Sl system of cost measures, construct atable of conversion factors

like that given in the front inside cover of this book, to convert from Sl to English
and from English to SI.

1-43 Usinginformation developed in Problem 1-42, investigate the energy cost saving that

results from the installation of alayer of glass wool 15 cm thick on a steel building
12 by 12 min size and 5 m high. Assume the building is subjected to a temperature
difference of 30°C and the floor of the building does not participate in the heat lost.
Assumethat theouter surface of the building loses heat by convectionto asurrounding
temperature of —10°C with a convection coefficient 4 = 13 W/m? . °C.

1-44 A boy-scout counselor gives the following advice to his scout troop regarding camp-

ing out in cold weather. “Be careful when setting up your cot/bunk—you may have
provided for plenty of blankets to cover the top of your body, but don't forget that
you can lose heat from the bottom through the thin layer of the cot/bunk. Provide a
layer of insulation for your bottom side also.” Investigate the validity of this state-
ment by making suitable assumptions regarding exterior body temperature, thermal
conductivity of blankets and cot/bunk materials, and the like.
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CHAPTER

2-1 | INTRODUCTION

We now wish to examine the applications of Fourier’s law of heat conduction to calculation
of heat flow in some simple one-dimensional systems. Several different physical shapes
may fall in the category of one-dimensional systems: cylindrical and spherical systems are
one-dimensional when the temperature in the body is a function only of radial distance
and is independent of azimuth angle or axial distance. In some two-dimensional problems
the effect of a second-space coordinate may be so small as to justify its neglect, and the
multidimensional heat-flow problem may be approximated with a one-dimensional analysis.
In these cases the differential equations are simplified, and we are led to a much easier
solution as a result of this simplification.

2-2 | THE PLANE WALL

First consider the plane wall where a direct application of Fourier’s law [Equation (1-1)]
may be made. Integration yields

kA
9="7 (T2 —T) [2-1]

when the thermal conductivity is considered constant. The wall thickness is Ax, and 71
and 7> are the wall-face temperatures. If the thermal conductivity varies with temperature
according to some linear relation k = ko(1 4+ BT ), the resultant equation for the heat flow
is

=——— |(h—-T)+Z(T; - T, 2-2
q Ax|:(2 1)+2(2 ) [2-2]
If more than one material is present, as in the multilayer wall shown in Figure 2-1, the
analysis would proceed as follows: The temperature gradients in the three materials are
shown, and the heat flow may be written
T, — T; T3 —T; Ty —T:
g=—ksA 2 1=—kBA 3 2=—kcA 4—13
Axp Axp Axc

Note that the heat flow must be the same through all sections.
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2-3 Insulation and R Values

Figure 2-1 | One-dimensional heat transfer through a composite wall and electrical analog.
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Solving these three equations simultaneously, the heat flow is written

_ T — Ty
" Axa/kaA + Axp/kpA + Axc/kcA

q [2-3]
At this point we retrace our development slightly to introduce a different conceptual view-
point for Fourier’s law. The heat-transfer rate may be considered as a flow, and the combina-
tion of thermal conductivity, thickness of material, and area as a resistance to this flow. The
temperature is the potential, or driving, function for the heat flow, and the Fourier equation
may be written

thermal potential difference

Heat flow = -
thermal resistance

[2-4]

a relation quite like Ohm’s law in electric-circuit theory. In Equation (2-1) the thermal
resistance is Ax/kA, and in Equation (2-3) it is the sum of the three terms in the denominator.
We should expect this situation in Equation (2-3) because the three walls side by side act as
three thermal resistances in series. The equivalent electric circuit is shown in Figure 2-1b.
The electrical analogy may be used to solve more complex problems involving both
series and parallel thermal resistances. A typical problem and its analogous electric circuit
are shown in Figure 2-2. The one-dimensional heat-flow equation for this type of problem

may be written
_ AToverall

q_—
> Rt

where the Ry, are the thermal resistances of the various materials. The units for the thermal
resistance are °C/W or °F - h/Btu.

It is well to mention that in some systems, like that in Figure 2-2, two-dimensional
heat flow may result if the thermal conductivities of materials B, C, and D differ by an
appreciable amount. In these cases other techniques must be employed to effect a solution.

[2-5]

2-3 | INSULATION AND R VALUES

In Chapter 1 we noted that the thermal conductivities for a number of insulating materials are
given in Appendix A. In classifying the performance of insulation, it is a common practice
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Figure 2-2 | Series and parallel one-dimensional heat transfer through a
composite wall and electrical analog.
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in the building industry to use a term called the R value, which is defined as
AT
R=——
q/A

The units for Rare °C-m2/W or °F - ft2 - h/Btu. Note that this differs from the thermal-
resistance concept discussed above in that a heat flow per unit area is used.

At this point it is worthwhile to classify insulation materials in terms of their application
and allowable temperature ranges. Table 2-1 furnishes such information and may be used
as a guide for the selection of insulating materials.

[2-6]

2-4 | RADIAL SYSTEMS
Cylinders

Consider a long cylinder of inside radius r;, outside radius r,, and length L, such as the
one shown in Figure 2-3. We expose this cylinder to a temperature differential 7; — T, and
ask what the heat flow will be. For a cylinder with length very large compared to diameter,
it may be assumed that the heat flows only in a radial direction, so that the only space
coordinate needed to specify the system is r. Again, Fourier’s law is used by inserting the
proper area relation. The area for heat flow in the cylindrical system is

A, =2mrL
so that Fourier’s law is written
dT
qr=—kA, — [2-7]
dr
or
dT

qr = —2mkrL -
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Table 2-1 | Insulation types and applications.

Thermal
Temperature  conductivity,  Density,
Type range, °C mW/m-°C kg/m3 Application
1 Linde evacuated superinsulation —240-1100  0.0015-0.72 Variable  Many
2 Urethane foam —180-150 16-20 25-48 Hot and cold pipes
3 Urethane foam —170-110 16-20 32 Tanks
4 Cellular glass blocks —200-200 29-108 110-150  Tanks and pipes
5 Fiberglass blanket for wrapping —80-290 22-78 10-50 Pipe and pipe fittings
6 Fiberglass blankets —170-230 25-86 10-50 Tanks and equipment
7 Fiberglass preformed shapes —50-230 32-55 10-50 Piping
8 Elastomeric sheets —40-100 36-39 70-100  Tanks
9 Fiberglass mats 60-370 30-55 10-50 Pipe and pipe fittings
10 Elastomeric preformed shapes —40-100 36-39 70-100  Pipe and fittings
11  Fiberglass with vapor —5-70 29-45 10-32 Refrigeration lines
barrier blanket
12 Fiberglass without vapor to 250 29-45 24-48 Hot piping
barrier jacket
13 Fiberglass boards 20-450 33-52 25-100  Boilers, tanks,
heat exchangers
14  Cellular glass blocks and boards 20-500 29-108 110-150  Hot piping
15 Urethane foam blocks and 100-150 16-20 25-65 Piping
boards
16 Mineral fiber preformed shapes to 650 35-91 125-160  Hot piping
17  Mineral fiber blankets to 750 37-81 125 Hot piping
18 Mineral wool blocks 450-1000 52-130 175-290  Hot piping
19 Calcium silicate blocks, boards 230-1000 32-85 100-160  Hot piping, boilers,
chimney linings
20  Mineral fiber blocks to 1100 52-130 210 Boilers and tanks

Figure 2-3 | One-dimensional heat flow
through a hollow cylinder
and electrical analog.

_In(rg/r)
th™ "2 7kL
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Figure 2-4 | One-dimensional heat flow through multiple cylindrical sections
and electrical analog.
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with the boundary conditions
T=T; atr=r;
T=T, atr=r,

The solution to Equation (2-7) is
_2mkL (T; — T,)

= o) [2-8]

and the thermal resistance in this case is
_In(ro/r)
t 2rnkL

The thermal-resistance concept may be used for multiple-layer cylindrical walls just as it
was used for plane walls. For the three-layer system shown in Figure 2-4 the solution is

_ 2nL (T1 — Ty)
=0 (ra/r1)/ka + 1 (r3/r2) ks + 10 (ra/ r3)/ kc

The thermal circuit is also shown in Figure 2-4.

[2-9]

Spheres

Spherical systems may also be treated as one-dimensional when the temperature isa function
of radius only. The heat flow is then

_ 4k (- T,)

= n—1r, [2-10]

The derivation of Equation (2-10) is left as an exercise.

Multilayer Conduction EXAMPLE 2-1

An exterior wall of a house may be approximated by a 4-in layer of common brick [k =
0.7 W/m - °C] followed by a 1.5-in layer of gypsum plaster [k =0.48 W/m - °C]. What thick-
ness of loosely packed rock-wool insulation [k = 0.065 W/m - °C] should be added to reduce the
heat loss (or gain) through the wall by 80 percent?
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Figure Example 2-2
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2-4 Radial Systems

B Solution
The overall heat loss will be given by

AT
> R

Because the heat loss with the rock-wool insulation will be only 20 percent (80 percent reduction)
of that before insulation

q

g with insulation " Ry, without insulation
g without insulation =~~~ " Ry, with insulation

We have for the brick and plaster, for unit area,

R, _E_M:Qlﬁmz.%;/w

Tk 0.7
Ax  (1.5)(0.0254) 2
R,=—=-—""""""""_0.079 m?-°C/W
P= 0.48 m=-"¢/

so that the thermal resistance without insulation is
R=0.145+0.079=0.224 m? . °C/W

Then i
R with insulation = W =1.122m?.°C/W

and this represents the sum of our previous value and the resistance for the rock wool

1.122 =0.224 + Ry,
Ax Ax
Ry=088=—=——
m k — 0.065
so that
Axrpy =0.0584 m=2.30in

Multilayer Cylindrical System

A thick-walled tube of stainless steel [18% Cr, 8% Ni, kK =19 W/m - °C] with 2-cm inner diam-
eter (ID) and 4-cm outer diameter (OD) is covered with a 3-cm layer of asbestos insulation
[k =0.2 W/m - °C]. If the inside wall temperature of the pipe is maintained at 600°C, calculate
the heat loss per meter of length. Also calculate the tube—insulation interface temperature.

H Solution
Figure Example 2-2 shows the thermal network for this problem. The heat flow is given by
q_ 27 (T — 1) _ 271(600—1(;0) — 680 W/m
L In(r2/ry)/ks+In(r3/r2)/ka  (In2)/19+ (In 3)/0.2

This heat flow may be used to calculate the interface temperature between the outside tube wall
and the insulation. We have
q Tn— 15

4_ a2 _ggowm
L In(r3/rp)/2mk,
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where Ty is the interface temperature, which may be obtained as
T,=595.8°C

The largest thermal resistance clearly results from the insulation, and thus the major portion of the
temperature drop is through that material.

Convection Boundary Conditions

We have already seen in Chapter 1 that convection heat transfer can be calculated from
Geonv =hA (Ty — Too)

An electric-resistance analogy can also be drawn for the convection process by rewriting
the equation as

Ty — Too
1hA

gconv =

[2-11]

where the 1/4 A term now becomes the convection resistance.

2-5 | THE OVERALL HEAT-TRANSFER
COEFFICIENT

Consider the plane wall shown in Figure 2-5 exposed to a hot fluid A on one side and a
cooler fluid B on the other side. The heat transfer is expressed by

kA
q=h1A(Tp—T) = Ax (I —T2) =h2A (T2 — Tp)

The heat-transfer process may be represented by the resistance network in Figure 2-5, and
the overall heat transfer is calculated as the ratio of the overall temperature difference to
the sum of the thermal resistances:

_ Ty —Tg
" 1h1 A+ Ax/kA+1/ho A

q [2-12]

Figure 2-5 | Overall heat transfer through a plane wall.
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2-5 The Overall Heat-Transfer Coefficient

Figure 2-6 | Resistance analogy for hollow cylinder with convection boundaries.
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Observe that the value 1/hA is used to represent the convection resistance. The overall
heat transfer by combined conduction and convection is frequently expressed in terms of
an overall heat-transfer coefficient U, defined by the relation

q=UA AToyerall [2-13]

where A is some suitable area for the heat flow. In accordance with Equation (2-12), the
overall heat-transfer coefficient would be

1
U:
Uhy + Ax/k + 1y

The overall heat-transfer coefficient is also related to the R value of Equation (2-6) through

_ 1
" Rvalue

For a hollow cylinder exposed to a convection environment on its inner and outer surfaces,
the electric-resistance analogy would appear as in Figure 2-6 where, again, T4 and T are
the two fluid temperatures. Note that the area for convection is not the same for both fluids
in this case, these areas depending on the inside tube diameter and wall thickness. The
overall heat transfer would be expressed by

_ Th—Tg
=71 nGo/ry 1
hl'A,' 2tk L hvo

[2-14]

in accordance with the thermal network shown in Figure 2-6. The terms A; and A,, represent
the inside and outside surface areas of the inner tube. The overall heat-transfer coefficient
may be based on either the inside or the outside area of the tube. Accordingly,

1
U= A A1 [2-19]
h; 27kl A, hy
U,= 1 2-16
CT AL AsInGr,/r) 1 [2-16]
Ai hi 2nkL ho

The general notion, for either the plane wall or cylindrical coordinate system, is that

UA= 1/ X Rih= 1/Rth,overall
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Calculations of the convection heat-transfer coefficients for use in the overall heat-transfer
coefficient are made in accordance with the methods described in later chapters. Some typi-
cal valuesof theoverall heat-transfer coefficient for heat exchangersaregivenin Table 10-1.
Some values of U for common types of building construction system are givenin Table 2-2
and may be employed for calculations involving the heating and cooling of buildings.

Table 2-2 | Overall heat transfer coefficientsfor common construction systemsaccording to James

and Goss[12].

Description of construction system

U, Btu/hr - ft2.°F U, W/m2.°C

1

10

11

12

13

14

15

16

17

18

19

20
21

22

2 x 3in double-wood stud wall, 406 mm OC, polyisocyanurate
(0.08-mm vapor retarder, 19-mm insulation), fiberglass batts
in cavity, 12.7-mm plywood

2 x 4inwood stud wall, 406 mm OC, polyisocyanurate
foil-faced, fiberglass battsin cavity, 15-mm plywood

2 x 4inwood stud wall, 406 mm OC, 38-mm polyisocyanurate,
foil-faced, cellular polyurethanein cavity, 19-mm plywood

2 x 4inwood stud wall, 406 mm OC, 15-mm exterior sheathing,
0.05-mm polyethylene vapor barrier, no fill in cavity

Nominal 4-in concrete-block wall with brick facade and
extruded polystyrene insulation

2 x 4inwood stud wall, 406 mm OC, fiberglass batt insulation
in cavity, 16-mm plywood

2 x 4inwood stud wall, 406 mm OC, fiberglass batt insulation
in cavity, 16-mm plywood, clay brick veneer

2 x 4inwood stud wall, 406 mm OC, fiberglass batt in cavity,
13-mm plywood, aluminum or vinyl siding

2 x 4inwood stud wall, 406 mm OC, polyurethane foam
in cavity, extruded polystyrene sheathing, aluminum siding

2 x 4in steel stud wall, 406 mm OC, fiberglass batts
in cavity, 41-mm air space, 13-mm plaster board

Aluminum motor home roof with fiberglass insulation
in cavity (32 mm)

2 x 6inwood stud ceiling, 406 mm OC, fiberglass
foil-faced insulation in cavity, reflective airspace (¢ ~ 0.05)

8-in (203-mm) normal-weight structural concrete (o = 2270 kg/mq)
wall, 18-mm board insulation, painted off-white

10-in (254-mm) concrete-block-brick cavity wall,
no insulation in cavities

8-in (203-mm) medium-weight concrete block wall,
perlite insulation in cores

8-in (203-mm) normal-weight structural concrete,

(o = 2270 kg/m3) including steel reinforcement bars
(Note: actual thickness of concreteis 211 mm.)

8-in (203-mm) lightweight structural concrete (p = 1570 kg/mS3)
including steel reinforcement bars
(Note: Actual thickness of concrete is 210 mm.)

8-in (203-mm) low-density concrete wall (p = 670 kg/m3)
including steel reinforcement bars
(Note: Actual thickness of concrete is 216 mm.)

Corrugated sheet steel wall with 10.2-in (260-mm.)
fiberglass batt in cavity

Corrugated sheet steel wall with (159-mm) fiberglass batt in cavity

Metal building roof deck, 25 mm polyisocyanurate, foil-faced
(¢~ 0.03), 203-mm reflective air space

Metal building roof deck, 25-mm foil-faced polyisocyanurate,
38-mm fiberglass batts in cavity

0.027

0.060

0.039

0.326

0.080

0.084

0.060

0.074

0.040

0.122

0.072

0.065

0.144

0.322

0.229

0.764

0.483

0.216

0.030

0.054
0.094

0.065

0.153

0.359

0.221

1.85

0.456

0.477

0.341

0.417

0.228

0.691

041

0.369

0.817

1.83

13

4.34

2.75

123

0.17

0.31
0.535

0.366
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Heat Transfer Through a Composite Wall

“Two-by-four” wood studs have actual dimensions of 4.13 x 9.21 cm and a thermal conductivity
of 0.1 W/m - °C. Atypical wall for a house is constructed as shown Figure Example 2-3. Calculate

the overall heat-transfer coefficient and R value of the wall.

Figure Example 2-3 | (a) Construction of a dwelling wall; (b) thermal resistance
model.

Outside air convection, h = 15 W/m?2.°C \

-+
Common brick, k= 0.69 T
1.9cm, k=0.96
Gypsum T
sheath \ A i
. b\ ! ——19cm k=048
40.6 cm —>| T
Insulation, k = 0.04
2 X 4 studs
Inside air convection, h=7.5 W/m?+« °C
(@
Rshea_th Rinsul R'_she_ath
outside inside
Tair . Tﬁif.
outside inside

Rcon\(ection Rbrick Rgonvection
outside inside

R R
sheath R sheath
outside stud inside

(b)

B Solution

The wall section may be considered as having two parallel heat-flow paths: (1) through the studs,
and (2) through the insulation. We will compute the thermal resistance for each, and then combine

the values to obtain the overall heat-transfer coefficient.

1. Heat transfer through studs (A = 0.0413 m? for unit depth). This heat flow occurs through six

thermal resistances:

a. Convection resistance outside of brick
1 1

R=—=—————=1614°C/W
hA  (15)(0.0413) /
b. Conduction resistance in brick
0.08
R=Ax/kA=————=2807°C/W
kA= 1069)(0.0413) /
c. Conduction resistance through outer sheet
Ax 0.019 —0.48°C/W

T kA~ (0.96)(0.0413)
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d. Conduction resistance through wood stud
_Ax 00921

= %A~ (0100413 223 "C/W
e. Conduction resistance through inner sheet
_ % - % —0.96 °C/W
f. Convection resistance on inside
! ! =3.23°C/W

R=7a= (7.5)(0.0413)

The total thermal resistance through the wood stud section is

Riotal = 1.614 + 2.807 + 0.48 4 22.3 + 0.96 ++ 3.23 = 31.39 °C/W [a]

2. Insulation section (A =0.406 —0.0413 m? for unit depth). Through the insulation sec-
tion, five of the materials are the same, but the resistances involve different area terms,
i.e., 40.6 — 4.13 cm instead of 4.13 cm, so that each of the previous resistances must be mul-
tiplied by a factor of 4.13/(40.6 — 4.13) = 0.113. The resistance through the insulation is

Ax 0.0921

T kA~ (0.04)(0.406 — 0.0413)

=6.31

and the total resistance through the insulation section is

Riotal = (1.614 +2.807 + 0.48 + 0.96 + 3.23)(0.113) + 6.31 =7.337 °C/W  [b]

The overall resistance for the section is now obtained by combining the parallel resistances in
Equations (a) and (b) to give

1
R =
overall =9 /31 39) + (1/7.337)

=5.947 °C/W [c]

This value is related to the overall heat-transfer coefficient by

AT

q= UAAT =

[d]

Roverall
where A is the area of the total section = 0.406 m2. Thus,

1 1

Us—=——_— _ —0414W/m?.°C
RA _ (5.947)(0.406) /m

As we have seen, the R value is somewhat different from thermal resistance and is given by

Rvalue= = — —~_ _2414°C. m2/w
U 0414
B Comment
This example illustrates the relationships between the concepts of thermal resistance, the overall
heat-transfer coefficient, and the Rvalue. Note that the R value involves a unit area concept, while
the thermal resistance does not.
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2-5 The Overall Heat-Transfer Coefficient

Cooling Cost Savings with Extra Insulation

A small metal building is to be constructed of corrugated steel sheet walls with a total wall surface
area of about 300 m2. The air conditioner consumes about 1 kW of electricity for every 4 kW
of cooling supplied.> Two wall constructions are to be compared on the basis of cooling costs.
Assume that electricity costs $0.15/kWh. Determine the electrical energy savings of using 260 mm
of fiberglass batt insulation instead of 159 mm of fiberglass insulation in the wall. Assume an overall
temperature difference across the wall of 20°C on a hot summer day in Texas.

B Solution
Consulting Table 2-2 (Numbers 19 and 20) we find that overall heat transfer coefficients for the
two selected wall constructions are

U(260-mm fiberglass) = 0.17 W/m? - °C
U (159-mm fiberglass) = 0.31 W/m? - °C
The heat gain is calculated from g = UAAT, so for the two constructions

q (260-mm fiberglass) = (0.17)(300)(20) = 1020 W

g (159-mm fiberglass) = (0.31)(300)(20) = 1860 W
Savings due to extra insulation = 840 W
The energy consumed to supply this extra cooling is therefore
Extra electric power required = (840)(1/4) =210 W

and the cost is
Cost = (0.210kW)(0.15%/kWh) = 0.0315 $/hr

Assuming 10-h/day operation for 23 days/month this cost becomes

(0.0315)(10)(23) = $7.25/month
Both of these cases are rather well insulated. If one makes a comparison to a 2 x 4 wood stud wall
with no insulation (Number 4 in Table 2-2) fill in the cavity (U = 1.85W/m? . °C), the heating
load would be

q=(1.85)(300)(20) = 11,100 W
and the savings compared with the 260-mm fiberglass insulation would be

11,100 — 1020 = 10,080 W

producing a corresponding electric power saving of $0.378/h or $86.94/month. Clearly the insu-

lated wall will pay for itself. It is a matter of conjecture whether the 260-mm of insulation will
pay for itself in comparison to the 159-mm insulation.

1This is not getting something for nothing. Consult any standard thermodynamics text for the reason for this

behavior.
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Overall Heat-Transfer Coefficient for a Tube

Water flows at 50°C inside a 2.5-cm-inside-diameter tube such that #; = 3500 W/m? - °C. The
tube has a wall thickness of 0.8 mm with a thermal conductivity of 16 W/m - °C. The outside of
the tube loses heat by free convection with /1, = 7.6 W/m? - °C. Calculate the overall heat-transfer
coefficient and heat loss per unit length to surrounding air at 20°C.

B Solution

There are three resistances in series for this problem, as illustrated in Equation (2-14). With
L=1.0m, d; =0.025 m, and d, = 0.025 + (2)(0.0008) = 0.0266 m, the resistances may be cal-
culated as

&= h,-lA,- - (3500)n(01.025)(1.0) =0.00364 °C/W
In (d,/d;
" | %%/ge:; 0.025
n(u. .
- W =0.00062 °C/W
Ry= — L =1.575°C/W

~ hoA,  (7.6)7(0.0266)(1.0)

Clearly, the outside convection resistance is the largest, and overwhelmingly so. This means that it
is the controlling resistance for the total heat transfer because the other resistances (in series) are
negligible in comparison. We shall base the overall heat-transfer coefficient on the outside tube

area and write
AT

=Tk

1 1
~ A, > R [(0.0266)(1.0)](0.00364 -+ 0.00062 + 1.575)

=7.577 W/m?.°C

=UA,AT [a]

Uo

or a value very close to the value of 4, =7.6 for the outside convection coefficient. The heat
transfer is obtained from Equation (a), with

q=UA, AT = (7.577)7(0.0266)(1.0)(50 — 20) = 19 W (for 1.0 m length)

B Comment

This example illustrates the important point that many practical heat-transfer problems involve
multiple modes of heat transfer acting in combination; in this case, as a series of thermal resis-
tances. It is not unusual for one mode of heat transfer to dominate the overall problem. In this
example, the total heat transfer could have been computed very nearly by just calculating the free
convection heat loss from the outside of the tube maintained at a temperature of 50°C. Because
the inside convection and tube wall resistances are so small, there are correspondingly small tem-
perature drops, and the outside temperature of the tube will be very nearly that of the liquid inside,
or 50°C.

2-6 | CRITICAL THICKNESS OF INSULATION

Let us consider a layer of insulation which might be installed around a circular pipe, as
shown in Figure 2-7. The inner temperature of the insulation is fixed at 7;, and the outer
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2-6 Critical Thickness of Insulation

Figure 2-7 | Critical insulation thickness.

hT
r
O—AMA—O0—AM—0
In (ro/r;) 1
27kl 2nrLh

surface is exposed to a convection environment at 7,. From the thermal network the heat
transfer is
_ 2nL(T; — To)
=M Gry/r) 1

k roh

[2-17]

Now let us manipulate this expression to determine the outer radius of insulation r,,, which
will maximize the heat transfer. The maximization condition is

_27TL(Ti_Too)< . - )

dr, InGro/ri) 1 2
k roh
which gives the result
k
Vo= z [2-18]

Equation (2-18) expresses the critical-radius-of-insulation concept. If the outer radius is less
than the value given by this equation, then the heat transfer will be increased by adding more
insulation. For outer radii greater than the critical value an increase in insulation thickness
will cause a decrease in heat transfer. The central concept is that for sufficiently small values
of h the convection heat loss may actually increase with the addition of insulation because
of increased surface area.

EXAMPLE 2-6 Critical Insulation Thickness

Calculate the critical radius of insulation for asbestos [k =0.17 W/m - °C] surrounding a pipe
and exposed to room air at 20°C with 7 =3.0 W/m2 - °C. Calculate the heat loss from a 200°C,
5.0-cm-diameter pipe when covered with the critical radius of insulation and without insulation.

B Solution
From Equation (2-18) we calculate r, as

kK 0.17
To=3 =35 = 0.0567 m=5.67 cm
The inside radius of the insulation is5.0/2 = 2.5 cm, so the heat transfer is calculated from Equation
(2-17) as

q_ 27 (200 — 20) ~
L~ n(5.67/25) 1 =105.7W/m
0.17 (0.0567)(3.0)

Without insulation the convection from the outer surface of the pipe is

% =hQnr)(T; — T,) = (3.0)(27)(0.025) (200 — 20) = 84.8 W/m
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So, the addition of 3.17 cm (5.67 — 2.5) of insulation actually increases the heat transfer by
25 percent.

As an alternative, fiberglass having a thermal conductivity of 0.04 W/m -°C might be
employed as the insulation material. Then, the critical radius would be

k 0.04

»=30 = 0.0133m=1.33cm

ro=
Now, the value of the critical radius is less than the outside radius of the pipe (2.5 cm), so addition
of any fiberglass insulation would cause a decreasein the heat transfer. In a practical pipe insulation
problem, the total heat loss will also be influenced by radiation as well as convection from the
outer surface of the insulation.

2-7 | HEAT-SOURCE SYSTEMS

A number of interesting applications of the principles of heat transfer are concerned with
systems in which heat may be generated internally. Nuclear reactors are one example;
electrical conductors and chemically reacting systems are others. At this point we shall
confine our discussion to one-dimensional systems, or, more specifically, systems where
the temperature is a function of only one space coordinate.

Plane Wall with Heat Sources

Consider the plane wall with uniformly distributed heat sources shown in Figure 2-8. The
thickness of the wall in the x direction is 2L, and it is assumed that the dimensions in
the other directions are sufficiently large that the heat flow may be considered as one-
dimensional. The heat generated per unit volume is ¢, and we assume that the thermal
conductivity does not vary with temperature. This situation might be produced in a practical
situation by passing a current through an electrically conducting material. From Chapter 1,

Figure 2-8 | Sketch illustrating
one-dimensional
conduction problem with
heat generation.

| § = heat generated per
o 'q unit volume
1l
x TO
Tw |

"L Tw

\#\ B
L\ X
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2-7 Heat-Source Systems

the differential equation that governs the heat flow is
d°T ¢
— +21=0 2-19
dx? + k [ ]

For the boundary conditions we specify the temperatures on either side of the wall, i.e.,

T=T, atx==+L [2-20]

The general solution to Equation (2-19) is

T— —;—kxz +Cix+Co [2-21]

Because the temperature must be the same on each side of the wall, C; must be zero. The
temperature at the midplane (x = 0) is denoted by Ty and from Equation (2-21)

To=C>

The temperature distribution is therefore

q

T—To=——x [2-223]
2k
or T_T )
Ty x
To—To (Z) [2-22b]

a parabolic distribution. An expression for the midplane temperature Top may be obtained
through an energy balance. At steady-state conditions the total heat generated must equal

the heat lost at the faces. Thus
T
2 (—kA —} ) =gA2L
dx x=L

where A is the cross-sectional area of the plate. The temperature gradient at the wall is
obtained by differentiating Equation (2-22by):

al T)(Z—x> (T -T2
dxi|x_L_ v L2 :|X_L_ v L

Then
2
—k(T, — To) I =qL
and
272
gL
To=—+T, 2-23
0 ok + Ty [ ]
This same result could be obtained by substituting T =T, at x= L into Equation
(2-22a).

The equation for the temperature distribution could also be written in the alternative

form )
T-T,
w_q_ [2-22¢]
To— Ty L2
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2-8 | CYLINDER WITH HEAT SOURCES

Consider a cylinder of radius Rwith uniformly distributed heat sources and constant thermal
conductivity. If the cylinder is sufficiently long that the temperature may be considered a
function of radius only, the appropriate differential equation may be obtained by neglecting
the axial, azimuth, and time-dependent terms in Equation (1-3b),

d°T 14T §

—+-—+-=0 2-24

dr? + r dr + k [ ]
The boundary conditions are

T=T, atr=R

and heat generated equals heat lost at the surface:

dT
GmR*L = —k2nRL —}
dr r=R

Since the temperature function must be continuous at the center of the cylinder, we could
specify that
dT
dr
However, it will not be necessary to use this condition since it will be satisfied automatically
when the two boundary conditions are satisfied.
We rewrite Equation (2-24)

0 atr=0

d?T dT  —gr

r + = —

dar? = dr k
and note that
d’T N dr d [ dT
r—+—=—\|r—
dar?  dr dr \' dr
Then integration yields
dT  —qr? .
d dr 2k !

and
T —_qr2+c Inr+cC
= r
4k ! 2

From the second boundary condition above,

dr _—é]R_—(']R+C1
dr|,_» 2 2 R

Thus
C1=0

We could also note that C1 must be zero because at r = 0 the logarithm function becomes
infinite.
From the first boundary condition,
T=T, LS +C atr=R
= = =
w Ak 2
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2-8 Cylinder with Heat Sources

so that
2

c,=1,+ I8
2=

The final solution for the temperature distribution is then

q 2 2
T—Ty=—(R — 2-25a
w 4k( ro) [ ]
or, in dimensionless form,
T—Ty, r\2
=1—(— 2-25b
To— Ty (R) [ ]
where Ty is the temperature at » =0 and is given by
- D2
gR
To=+—+T, 2-26
0 2 +Tw [ ]

It is left as an exercise to show that the temperature gradient at » =0 is zero.
For a hollow cylinder with uniformly distributed heat sources the appropriate boundary
conditions would be
T=T;, atr =r;(inside surface)
T=T, atr=r, (outside surface)
The general solution is still
)
rT=-2 tcinr+c,
4k
Application of the new boundary conditions yields
9 .2 2 r
T—T():E(Vo—r)—f-Cllnr— [2-27]

o
where the constant C is given by
CTi—T, 44 —r2)/4k

1 In (ri/ro)

[2-28]

EXAMPLE 2-7 Heat Source with Convection

A current of 200 A is passed through a stainless-steel wire [k =19 W/m - °C] 3 mm in diameter.
The resistivity of the steel may be taken as 70 €2 - cm, and the length of the wire is 1 m. The
wire is submerged in a liquid at 110 °C and experiences a convection heat-transfer coefficient of
4 k W/m? . °C. Calculate the center temperature of the wire.

B Solution
All the power generated in the wire must be dissipated by convection to the liquid:

P=I’R=q=hA Ty — Teo) [a]

The resistance of the wire is calculated from

—6
R=p L = (10x10790100) _ 55590
A 7(0.15)2

where p is the resistivity of the wire. The surface area of the wire is wdL, so from Equation (a),
(200)%(0.099) = 40007(3 x 10~3)(1)(Ty, — 110) = 3960 W
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and
Tw =215°C [419°F]

The heat generated per unit volume g is calculated from
P=§V =gnr’L

so that
3960

- _560.2MW/m3 [5.41 x 10’ Btu/h - ft3
7 (15 x 10-3)2(1) jm” (541 x /h-t°]

q
Finally, the center temperature of the wire is calculated from Equation (2-26):

) 8 —3y2

gr2 (5.602 x 108)(1.5 x 10~3) 3 5
To=—+Ty= 215=231.6°C [449°F
Tt 4)19) " 14497

2-9 | CONDUCTION-CONVECTION SYSTEMS

The heat that is conducted through a body must frequently be removed (or delivered) by
some convection process. For example, the heat lost by conduction through a furnace wall
must be dissipated to the surroundings through convection. In heat-exchanger applications
a finned-tube arrangement might be used to remove heat from a hot liquid. The heat transfer
from the liquid to the finned tube is by convection. The heat is conducted through the
material and finally dissipated to the surroundings by convection. Obviously, an analysis
of combined conduction-convection systems is very important from a practical standpoint.

We shall defer part of our analysis of conduction-convection systems to Chapter 10
on heat exchangers. For the present we wish to examine some simple extended-surface
problems. Consider the one-dimensional fin exposed to a surrounding fluid at a temperature
T~ as shown in Figure 2-9. The temperature of the base of the fin is Tp. We approach the
problem by making an energy balance on an element of the fin of thickness dx as shown in
the figure. Thus

Energy in left face = energy out right face + energy lost by convection

The defining equation for the convection heat-transfer coefficient is recalled as

q=hA(Ty —Teo) [2-29]

where the area in this equation is the surface area for convection. Let the cross-sectional
area of the fin be A and the perimeter be P. Then the energy quantities are

. dT
Energy in left face =g, = —kA—
dx
. dT
Energy out right face = gy = kA —
dx x+dx
dr  d*T
=—kA|—+—d
(dx + dx? x>

Energy lost by convection =h P dx (T — Txo)
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2-9 Conduction-Convection Systems

Figure 2-9 | Sketch illustrating one-dimensional
conduction and convection through a
rectangular fin.

( dQeny = hPAx (T-T..)

t
A
Ox — — Ox+dx
z
—»l ax |<— /
le—— | ——»
s X

Base

Here it is noted that the differential surface area for convection is the product of the perimeter
of the fin and the differential length dx. When we combine the quantities, the energy balance
yields

d’T P
75 T —Tx)=0 [2-30a]

Let 6 =T — Too. Then Equation (2-30a) becomes

d’6  hP
L ___9=0 2-30b
dx?2 kA [ ]
One boundary condition is

0=00=Tp— T atx=0
The other boundary condition depends on the physical situation. Several cases may be
considered:

CASE 1 The fin is very long, and the temperature at the end of the fin is essentially
that of the surrounding fluid.

CASE 2 The fin is of finite length and loses heat by convection from its end.
CASE 3 The end of the fin is insulated so that d7/dx=0at x=L.

If we let m2 = h P/kA, the general solution for Equation (2-30b) may be written
0=Cre ™ + Cre™* [2-31]

For case 1 the boundary conditions are

0=6y atx=0
=0 atx=o00
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and the solution becomes

9% = ;}__TT"; =¥ [2-32]
For case 3 the boundary conditions are
0 =6 atx=0
% =0 atx=L
Thus
o=C1+C2

0=m(—Cre ™t + Cpe™L)

Solving for the constants C1 and C2, we obtain

0 efmx emx
— = 2-33a
6o l+e_2mL + 1+eZmL [ ]
h[m(L —
_ coshim(L —x)] [2-33b]
coshmL
The hyperbolic functions are defined as
X _ ,—X X —X
sinhx =< coshx =& te
sinhx e*—e™*
tanh x = =
coshx e¥+e*
The solution for case 2 is more involved algebraically, and the result is
T —Ts _ coshm (L —x)+ (h/mk)sinhm (L — x) [2-34]

Ty — Too coshmL + (h/mk) sinhmL

All of the heat lost by the fin must be conducted into the base at x =0. Using the
equations for the temperature distribution, we can compute the heat loss from

=—kA :|
g=— dar
dx |,_g

An alternative method of integrating the convection heat loss could be used:
L L
q:/ hP(T—Too)dx=/ hP6dx
0 0

In most cases, however, the first equation is easier to apply. For case 1,

g=—kA (—mboe"®) = Vh PkA 69 [2-35]
For case 3,
1 1
q= —kA6ym <1 T o—2mL - 1 _I_e+2mL) [2'36]

=~ hPkA6GytanhmL
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The heat flow for case 2 is

sinhmL + (h/mk) coshmL
=vhPkA (To—T. 2-37
q (To=To0) CoshmL + (hjmk) sinhm L [2-37]

In this development it has been assumed that the substantial temperature gradients occur
only in the x direction. This assumption will be satisfied if the fin is sufficiently thin. For
most fins of practical interest the error introduced by this assumption is less than 1 percent.
The overall accuracy of practical fin calculations will usually be limited by uncertainties in
values of the convection coefficient h. It is worthwhile to note that the convection coefficient
is seldom uniform over the entire surface, as has been assumed above. If severe nonuniform
behavior is encountered, numerical finite-difference techniques must be employed to solve
the problem. Such techniques are discussed in Chapter 3.

2-10 | FINS

In the foregoing development we derived relations for the heat transfer from a rod or fin
of uniform cross-sectional area protruding from a flat wall. In practical applications, fins
may have varying cross-sectional areas and may be attached to circular surfaces. In either
case the area must be considered as a variable in the derivation, and solution of the basic
differential equation and the mathematical techniques become more tedious. We present
only the results for these more complex situations. The reader is referred to References 1
and 8 for details on the mathematical methods used to obtain the solutions.

To indicate the effectiveness of a fin in transferring a given quantity of heat, a new
parameter called fin efficiency is defined by

actual heat transferred
~ Theat that would be transferred ~ '/
if entire fin area were
at base temperature

Fin efficiency

For case 3, the fin efficiency becomes

vhPkAGytanhmL tanhmL
h PL6g mL

The fins discussed were assumed to be sufficiently deep that the heat flow could be
considered one-dimensional. The expression for m L may be written

[hP [h
mL=.—[ = ML
kA kzt

where z is the depth of the fin, and t is the thickness. Now, if the fin is sufficiently deep, the
term 2z will be large compared with 2, and

[2hz [2h
mL=,/—L=,/—L
ktz kt
Multiplying numerator and denominator by L/2 gives
mL :,/ﬁﬁ/z
kLt

Lt is called the profile area of the fin, which we define as
An =Lt
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mi = |23 [2-39]
kA

We may therefore use the expression in Equation (2-39) to compute the efficiency of a fin
with insulated tip as given by Equation (2-38).

Harper and Brown [2] have shown that the solution in case 2 may be expressed in
the same form as Equation (2-38) when the length of the fin is extended by one-half the
thickness of the fin. In effect, lengthening of the fin by #/2 is assumed to represent the
same convection heat transfer as half the fin tip area placed on top and bottom of the fin. A
corrected length L. is then used in all the equations that apply for the case of the fin with
an insulated tip. Thus

so that

t
L.=L+ 3 [2-40]
The error that results from this approximation will be less than 8 percent when
h\Y? 1
— <= 2-41
(5) =3 -4

If a straight cylindrical rod extends from a wall, the corrected fin length is calculated

from )
LC=L+M=L+d/4 [2-42]
d
Again, the real fin is extended a sufficient length to produce a circumferential area equal to
that of the tip area.

Examples of other types of fins are shown in Figure 2-10. Figure 2-11 presents a
comparison of the efficiencies of a triangular fin and a straight rectangular fin corresponding
to case 2. Figure 2-12 shows the efficiencies of circumferential fins of rectangular cross-
sectional area. Notice that the corrected fin lengths L. and profile area A,, have been
used in Figures 2-11 and 2-12. We may note that as rp./r1 — 1.0, the efficiency of the
circumferential fin becomes identical to that of the straight fin of rectangular profile.

It is interesting to note that the fin efficiency reaches its maximum value for the trivial
case of L =0, or no fin at all. Therefore, we should not expect to be able to maximize fin
performance with respect to fin length. It is possible, however, to maximize the efficiency
with respect to the quantity of fin material (mass, volume, or cost), and such a maximization
process has rather obvious economic significance. We have not discussed the subject of
radiation heat transfer from fins. The radiant transfer is an important consideration in a

Figure 2-10 | Different types of finned surfaces. (a) Straight fin of
rectangular profile on plane wall, (b) straight fin of
rectangular profile on circular tube, (c) cylindrical tube
with radial fin of rectangular profile, (d) cylindrical-spine
or circular-rod fin.

(@ @) © (d)
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Figure 2-11 | Efficiencies of straight rectangular and triangular fins.
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Figure 2-12 | Efficiencies of circumferential fins of rectangular
profile, according to Reference 3.
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number of applications, and the interested reader should consult Siegel and Howell [9] for

information on this subject.
In some cases a valid method of evaluating fin performance is to compare the heat
transfer with the fin to that which would be obtained without the fin. The ratio of these

guantities is

g with fin __nyArhbo
g without fin ~— hA,6
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where A is the total surface area of the fin and A is the base area. For the insulated-tip
fin described by Equation (2-36),

Ar=PL
Ap=A

and the heat ratio would become

gwithfin  tanhmL
g without fin — /RAJkP

This term is sometimes called the fin effectiveness.

Thermal Resistance for Fin-Wall Combinations

Consider a fin attached to a wall as illustrated in either Figure 2-11 or Figure 2-12. We
may calculate a thermal resistance for the wall using either R,, = Ax/kA for a plane wall,
or Ry, =In(r,/r;)/27kL for a cylindrical wall. In the absence of the fin the convection
resistance at the surface would be 1/ A. The combined conduction and convection resistance
R for the fin is related to the heat lost by the fin through

6
szanfh@ :R_U [2-43]
f

or, the fin resistance may be expressed as

1
Ry= [2-44]
nrArh
The overall heat transfer through the fin-wall combination is then
T, —T.
qp=— [2-45]
Ryf+ Ry

where T; is the inside wall temperature and R, is the wall resistance at the fin position.
This heat transfer is only for the fin portion of the wall. Now consider the wall section
shown in Figure 2-13, having a wall area A, for the fin and area A,, for the open section of
the wall exposed directly to the convection environment. The open wall heat transfer is

T, — Ty
= 2-46
9o Ruo + Ry [2-46]
where now
1
R, = 2-47
¢ hA, [ ]

and Ry, is the wall resistance for the open wall section. This value is Ry, = Ax/ kA, for
a plane wall, where Ax is the wall thickness. A logarithmic form would be employed for a
cylindrical wall, as noted above. The total heat lost by the wall is therefore

qtotal =41 +qo [2-48]
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Figure 2-13 | Heat
loss from fin-wall
combination.
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2-10 Fins

which may be expressed in terms of the thermal resistances by

1 1
—(T;—T i
qotal = (T; 00) |:wa TR, Ruot Ro]

Rw0+R0+wa+Rf

=(T; — To)
(wa + Rf)(Rwo + Ry)

[2-49]

Conditions When Fins