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Preface 
How is this book different from scores of other books on systems theory? 
First, it is more rigorous mathematically. All developments are based 
on precise mathematical arguments, many being innovative and origi­
nal. But no derivations are included just because they are elegant; each 
derived theorem or lemma is used later in the book. Second, the theory 
is general; often i t ap p lies to (l) linear and nonlinear systems, (2) con­
tinuous and discrete systems, and (3) time invariant and time varying 
systems. Third, modern, computer-oriented methods are presented, not 
graphical techniques. Fourth, it has examples from most major fields 
of engineering, economics, and social sciences, with special emphasis on 
electrical engineering. 

This book is self-contained. It starts \Vith a solid mathematical foun­
dation in Chapters l and 2. These chapters have all the mathematical 
developments that \vill be used later in the book. Ho\vever, these chap­
ters can be skimmed if the results are already known to the reader or 
if the reader is uninterested in the mathematical details. This rigorous 
presentation of basic principles allo\vs fast, efficient development of later 
material. 

This text \Vas primarily \vritten for first-year graduate students in 
electrical engineering, although it is suitable for graduate students in 
other engineering fields as \Vell as those in economics, social sciences, or 
mathematics. It \vould also be suitable for some advanced undergrad­
uate students. The prerequisites are the fundamentals of calculus and 
matrix algebra only. The instructor can select the examples and appli­
cations that match the students' backgrounds. For example, for a course 
in electrical engineering the instructor ma y \Vis h to present the seeond, 
third, fourth, sixth and ninth problems of the Engineering Applications 
sections. These five systems are introduced in Chapter 3 and are re­
peated in various forms in each of the subsequent chapters. For such a 
class the instructor might present same of the other problems just for 
the fun of it. On the other hand, an economics professor might ignore 
the engineering applications and study instead the economics examples. 

ix 



x Preface 

This book is an outgrowth of courses taught over the last two decades 
to electrical, mechanical, systems, chemical and bion1edical engineers 
at the U ni versity of Arizona and Carnegie Mellan U ni versity and to 
economics students at the Budapest U ni versity of Economics, Hungary. 

The objective of this book is to help students develop their capabilities 
for modeling dynamic systems, examining their properties, and applying 
this knowledge to real-life situations. These objectives are served by four 
main features of the book. The theoretical foundation and the theory of 
nonlinear and linear systems are given in a comprehensive, precise way. 
A unified approach is presented for continuous and discrete systems. We 
develop a unified treatment of contraHability and observability that is 
valid for both time-invariant and time-varying systems. In selecting the 
theoretical material and methodology to be covered in this book, we con­
centrated mainly on modern, computer-oriented techniques and omitted 
the old-fashioned, pre-computer age (mostly graphical) methods. 

For example, in this text we present only four techniques for assessing 
stability of a system: Lyapunov functions, the boundedness and con­
vergence of the state transition functions, the location in the camplex 
plane of the eigenvalues of the coeffi.cient matrix or the location in the 
camplex frequency plane (s-plane) of the poles of the transfer function, 
and the Hurwitz criterion. Proving stability with Lyapunov functions 
is general: it also works for nonlinear and time-varying systems. It is 
good for proving stability and asymptotkal stability. Ho,vever, proofs 
based on Lyapunov functions are difficult, and failure to find a Lyapunov 
function that proves a system is stable does not prove that the system 
is unstable. The seeond technique we present requires checking if the 
state transition function is bounded and even converges to the zero ma­
trix if t ---+ oo. This method can be used for both time-invariant and 
time varying linear systems. The third technique is bas ed on finding the 
location in the con1plex plane of the eigenvalues of the time-invariant 
coefficient matrix or finding the poles of the transfer function. This task 
is sometimes difficult because it requires finding and factoring the char­
actedstic equation of the system. However, man y computer packages are 
now available to do this job. Finally, we present the Hurwitz technique 
because it can assess the stability of a system without factoring poly­
nomials. Routh's criterion is similar to the Hurwitz approach, so it is 
not presented here. These techniques were developed in the nineteenth 
century. In the twentieth century, many more techniques were developed 
to help assess the stability of a system without factoring polynomials, 
such as Bode plats, Nyquist's criterion, Sylvester's condition, Kalman's 
extension of Lyapunov's criterion, and the roat locus technique. We do 
not present any of these because for real world problems no one would 
ever apply them by hand. One would use a computer program that 
implemented the method. And if one were to use a computer program, 
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you might as well have it solve the characteristic equation. Many com­
mercial software packages implement common linear systems techniques. 
We think the users of this book would benefit by having one of these 
computer programs available. Advertisements in technical publications 
such as the IEEE Contro l Systems M agazine and IEEE Spectrum and 
the article by Foster [13] describe many appropriate software packages. 

In this book, theory is illustrated by simple numerical examples that 
are easy to follow and help the student understand the essence of the 
methodology. At the end of each chapter we present real-life applica­
tions. They are selected from most n1ajor fields of engineering with spe­
cial emphasis on electrical engineering, social sciences, and economics. 
In addition to the illustrative examples and applications, we present 
hornework problems at the end of each chapter. The last five or six 
hornework problems in each chapter need a deep understanding of the 
material and an ability to develop mathematical proofs. 

The organization of the book is as follows. Chapter l presents the 
mathematical background that will be used in later chapters. It is self­
contained and presents all the material t hat will be needed later. Ch ap­
ter 2 contains the basics of differential and difference equations as well 
as Laplace and Z transforms. In Chapter 3, characterizations of non­
linear and linear systems are discussed both in state space form and by 
using the transfer function method. The stability of dynamic systems 
is analyzed in Chapter 4. Conditions are derived for marginal stability, 
asymptotkal stability, global asymptotkal stability, uniform stability, 
uniform exponential stability and BIBO stability. We present a unified 
general approach that can be used for continuous and discrete and for 
nonlinear and linear systems. ContraHability and observability are stud­
ied in Chapters 5 and 6, respectively. In Chapter 6 we also introduce 
the concept of duality, \vhkh has many theoretical and practical conse­
quences. In solving and examirring the properties of dynamk systems, 
special forms, called canonical forms, are often used. These canonical 
forms are introduced in Chapter 7. System realizations and minimal 
realizations are discussed in Chapter 8, \Vhere conditions for the realiz­
ability of \Veighting patterns and transfer functions are also introduced. 
Special system structures, such as the use of observers for constructing 
feedback compensators, are analyzed in Chapter 9. In Chapter 10 we 
introduce four advanced topics: nonnegative systems, Kalman filters, 
adaptive control, and neural networks. 

There are several major additions to this seeond edition. New sta­
bility concepts are introduced and analyzed in Chapter 4. We added 
illustrative examples in all chapters, and \ve added five to six "theoreti­
cal" hornework problems to each set. These theoretkal problems can be 
very useful for stimulating grad u a te students to t hink about the main 
concepts and the main results of the chapters. Engineering applications 
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N umber six and nine are new, and their different aspects are examin ed 
in each chapter. With these new case studies we puta greater emphasis 
on electrical engineering application. 

There is enough material for a full academic year course, hut for grad­
uate students the essence of the book can be covered in a three-unit, 
ene-semester course. The first edition of this book, with certain emis­
sions, has been used in a ene-semester, three-unit, graduate course at 
the University of Arizona. A chapter-dependency chart is illustrated in 
Figure 0.1, w hi ch should hel p instructors tailor individual course pro­
grams. 

Figure 0.1 Chapter dependency chart. 

In preparing the manuscript we obtained significant help from our 
students, especially from Jerome Yen, Dan Liu and Ling Shen who care­
fully read the manuscript, checked for misprints and understandability, 
and prepared the solutions for the hornework problems. \Ve also thank 
Jerome Yen for writing the neural network programs used in Chap­
ter 10. Mo Jamshidi provided us with helpful critiques. The figures 
were camposed by Morgan, Cain and Associates of Tucson, Arizona. 
Our most special thanks should be addressed to our families, who pro­
vided the needed support and personal understanding while we prepared 
the manuscript. 

Ferenc Szidarovszky 
and 

A. Terry Bahill 
Tucson, AZ 



In troductian 

The technological revolution of the past century occurred because people 
learned to control large systems composed of nature, machines, people, 
and society. When they used and improved devices to help them con­
tro! such systems, they found that they could control bigger and bigger 
systems. To show this evolution to bigger systemslet us consicler trans­
portation systems. A horse-drawn coach was handled quite well by the 
coachman, using simple direct controls. The early automobile was simi­
lady controlied in a direct manner. However, modern a utomobiles have 
a multitude of devices to help the driver control the vehicle: electronic 
automatic transmission, povver steering, and four-wheel anti-lock brakes, 
to mentio n a fe\v. To fly an airplane the pilot needs contro l devices to 
translate his manual actions into the large forces required to move the 
wing control surfaces. Some of the devices he uses amplify his strength 
and others augment his intelligence. On many airplanes the intelligence 
devices are so good the pilot can put the airplane on autopilot and let 
the plane fly itself. As systems become more complicated, the human 
does less of the controlling and the rnachine does more. If we make a 
manned voyage to :Nlars, humans \vill play a small role in controlling the 
spacecraft. 

The design of control devices is called control engineering. Early con­
trol devices \vere mechanical: and their design \Vas mainly intuitive. 
However, recent contro l devices are algorithms embedded in comput­
ers, and their design is very mathematical. The linear systems tools 
presented in this book comprise the basic mathen1atical portion of the 
control engineer's toolkit. This introduction discusses these tools, hut 
does so in nonmathematical terms. It is meant to motivate the main 
concepts and help the reader see the forest through the trees. 

Chapters l and 2 of this book present the mathematical basis for 
understanding the concepts, methods, and derivations in later chapters. 
The material presented may at first be foreign to you, hut we encourage 
you to bear \Vith us, because after you master this material the rest of 
the book will be easy. 

xiii 
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Chapter 3 shows how \Ve rnadel dynamic systems. The term "dy­
namic" means that the patterus describing the system change with time 
and the characteristics of the patterus at any time period are interre­
lated with those of earlier times. A system is a process that converts 
inputs to outputs. A system accepts inputs and, based on the inputs 
and its present state, creates outputs. A system has no direct control 
over its inputs. An example of a system used in everyday lifeisa traffi.c 
light. It accepts inputs, such as pedestrians pushing the walk hutton or 
cars driving over sensors, and based on its current state, creates outputs 
that are the colors of the lights in each direction. Defining the state of 
a system is one of the most important, and often most diffi.cult, tasks 
in system design. The state of the system is the smallest entity that 
summarizes the past history of the system. The state of the system and 
the sequence of inputs allows computation of the future states of the 
system. The state of a system contains all the information needed to 
calculate future respanses without reference to the history of inputs and 
responses. For example, the current balance of your checking account is 
the state of that system. There are many ways that it could have gotten 
to the current value, but when you are ready to write a check that his­
tory is irrelevant. The names of the states are often camposed of a set 
of variables, called state variables. For systems described by difference 
or differential equations, these state variables are often the independent 
variables of these dynamic equations. If the time scale is assumed to 
be continuous, then the system is described with differential equations, 
whereas if the time scale is assumed to be discrete (as for computers), 
then the system is described with difference equations. For sequential 
logi c circuits ( computers) the outputs of the memory elements are usu­
ally the state variables. However, it is important to nate that the choice 
of state variables is not unique. Most physical systems can be described 
with many different sets of state variables. 

In Chapter 4 we analyze stability and instability of systems. With­
out giving a formal definition we can say that in an unstable system 
the state can havelarge variations and small inputs may produce very 
large outputs. A common example of an unstable system is illustrated 
by someone painting the microphone of a public address (PA) system 
at a speaker; a loud high-pitched tone results. Often instabilities are 
eaused by too mu ch gain. So to quiet the P A system, decrease the gain 
by painting the microphone away from the speakers. Discrete systems 
can also be unstable. A friend of ours once provided an example. She 
was sitting in a chair reading and she got cold. So she went over and 
turned up the thermostat on the heater. The house warmed up. She got 
hot, so she got up and turned down the thermostat. The house cooled 
off. She got cold and turned up the thermostat. This process continued 
until someone finall y suggested t hat she p ut on a sweater ( reducing the 
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gain of her heat loss system). She did and was much more comfortable. 
We called this a discrete system because she seemed to sample the en­
vironment and produce outputs at discrete intervals about 15 minutes 
apart. 

In Chapter 5 we mathematically analyze controllability. Informally, a 
system is controllable if we can construct a set of inputs that will drive 
the system to any given state. A real world example of an uncontrollable 
system is iii ustrated by a mother in a grocery store with two toddlers. 
The mother cannot control the states; she can never the exact be­
havior she wants. But continual action by an intelligent controller can 
restrain the children to acceptable behavior. Notice that this is not an 
unstable system; the children are always within the confines of the store. 
stability and controllability are not the same. 

In Ch ap ter 6 we mathematically analyze o bservability. Informally, 
observability means that by centrolling the inputs and watching the 
outputs of a system we can determine what the states were. A person 
driving a ear is a nonobservable system. Most aspects of the ear can 
be observed, but we cannot put electrodes inside the driver's skull to 
observe the driver's states and control signals. When engineers must 
control nonobservable systems, they sometimes build observers. In one 
prosthetic system, electrical signals recorded from the upper arm of an 
amputee were used to control a prosthetic arm. This technique was not 
successful until a computer \Vas placed in bet\veen the human's arm and 
the prosthetic device. The computer contained a type of observer that 
modeled the body's internal states. 

There are different \vays to say the same thing. Here are three ways 
to describe events in a particular baseball game. Joe hit two home runs. 
Joe homered t\vice. T\vo home runs -vvere hit by Joe. These all say 
about the same thing. But each \vould be best in certain situations. 
Similarly, the canonical forms, presented in Chapter 7, show how the 
same system can be represented in many different mathematical \Vays. 
Most canonical forms can be used for most systems, but for any given 
situation one may be more useful. 

When building a new system, management vvould like to know if the 
system the engineers design is the simplest one that satisties the cus­
tomer's requirements. Suppose a customer asked for a system that 
receives radio station I<:UAT F:NI, and the engineers come up with a 
design for an A:NI-F:NI-tape system. Is the engineer's system minimal? 
No, a simpler system could be built. (Hovvever, given the realities of 
manufacturing, i t ma y not be less expensive.) In Chapter 8 we present 
mathematical tools to hel p build a system and determine if i t is minimal. 

As shown in Chapter 9, adding feedback loops can reduce the sensi­
tivity to variations in certain parameters, increase rejection of output 
disturbances, and change system dynamics. For example, have a friend 
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hold a book in her hand with her elbow at her hip and her forearm 
perpendicular to her body. Instruct her to close her eyes and hold her 
arm steady. In a few minutes, as her muscles get tired, her arm will sag. 
Now allow her to open her eyes and look at the book. She will be able 
to hold her arm steadier because the visual feedback loop has reduced 
her sensitivity to muscle fatigue. Once again ask her to close her eyes. 
This time push down on the book. The book will move quite some dis­
tance before she can reject your disturbance and return it to its original 
position. Now allow hertoopen her eyes and do the same thing. Using 
visual feedback she will be better at rejecting your disturbances. Finally, 
when feedback is used to change system dynamics, it is usually used to 
speed up the system. Imagine using flash cards to help a fifth grader 
learn the multiplication tables. First do it without feedback. Show him 
a card, wait for his answer, put it down, and show him another. He will 
learn, but very slowly. Next give him feedback. 

For example, if you show him the card with 7 x 3, and he 
says, "21." 
Respond with, "Very Good." :-) 
<That symbol is a smiling face turned on its side.> 
However, if he says, "22." 
Respond with, "No. I t is 21." :- ( 
<That is a frowning face turned on its side.> 

He will learn faster with feedback. Notice that you can tailor the 
feedback to get almost any dynamic you want. If you give him ten 
cents for each correct answer and take away five cents for each incorrect 
answer, he will learn mu ch faster. 

In Chapter 10 we present four advanced tools of systems theory. If the 
state variables of a model are, for example, human body temperature and 
blood pressure, then we know that they should never become negative; 
if they could, then the model is wrong. In Section 10.1 we present simple 
mathematical tools that can be used to check if a system's state variables 
always remain nonnegative, and we discuss the main properties of such 
systems. 

In Section 10.2 we present a Kalman Filter. It represents a class 
of adaptive systems often used in signal processing to separate signals 
from noise. These filters are designed to extract signals from white 
noise. However, w hi te noise would have equal energy at all frequen­
cies, therefore it is impossible to make; so, real systems use bandlimited 
white noise, \vhich is called pink noise. The human auditory system 
uses adaptive filters to extract signals from noise. At a party most peo­
ple are able to listen to one person (the signal) in spite of many back­
ground conversatians (noise). However, when they walk away and start 
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conversing with another person (with different frequencies, intonations, 
and accents), they must change their filters. Same of us have difficulty 
understanding the first few sentences with a new conversant, while our 
filters are still adapting. Following one voice out of many is easy in 
person, but difficult over a telephone, uniess the speaker has increased 
the signal-to-noise ratio by talking directly into the mouthpiece. Some 
hearing aids have been fitted vvith l{alman Filters. They are better at 
separating signals from noise. 

Section 10.3 presents a different type of adaptive system, a type used 
to control time-varying systems. Many systemschange with time due to, 
for example, hearing wear, warming of lubricants, or fatigue of muscles. 
When controlling such systems the controller must also change with 
time. One of the biggest challenges in designing adaptive systems is 
proving that the resulting systems are stable. In this section we present 
techniques for designing stable adaptive control systems. 

Artificial neural networks are computer systems composed of a very 
large number of adaptive units connected in parallel. They are useful 
for pattern recognition and have been used, for example, in banks to 
verify signatures on checks. Because they can recognize patterns of 
input variations and specify appropriate outputs, they have also been 
used as controllers in control systems. The basic operation of neural 
networks is explained in Section 10.4. 

This brief overview of systems theory \vas provided to help motivate 
the mathematical analysis that follo\vs. We hope that knowledge of 
these mathematical techniques 'vill help engineers design systems for 
the betterment of mankind. 
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chapter one 

Mathematical Background 

1.1 Introduction 

This chapter provides the foundation for understanding the mathemat­
ical details to be discussed in later chapters of this book. It is devoted 
to two fundamental topics of applied mathematics: metric spaces and 
matrices. We will see in later chapters t hat man y pro b lems in dynami c 
systems theory can be solved by evaluating the solutions of linear and 
nonlinear algebraic equations as ·well as by computing the solutions of 
ordinary differential and difference equations. The most commonly used 
techniques are iterative, \v hi ch d etermine a sequence of real (or complex) 
numbers, vectors, or functions that converge to the desired solutions. 
The theory of metric spaces and contraction mapping establishes the 
basis of such methods. This theory \vill be outlined in the first part of 
this chapter. In the seeond part \Ve present the basic properties of linear 
structures, which \vill be needed in analyzing linear systems. In this 
section, norms, transformations, and function of matrices are discussed. 

1.2 Metric Spaces and Contraction Mapping Theory 

Metric spaces and special mappings defined in metric spaces play very 
important roles in the solution methodologies of linear and nonlinear 
algebraic, difference, and differential equations. The solutions of these 
equations are real or camplex vectors, scalars, or functions defined on 
discrete or continuous time scales. Therefore, the convergence analysis 
of iteration methods for solving such equations requires the concept of a 
certain kind of distance bet\veen vectors, scalars, and functions. A uni­
fied approach using 1netric spaces is given in this section. The elements 
of this theory are outlined below. 

1 
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1.2.1 Metric Spaces 
If A and B are any sets, then A x B denotes the Cartesian product of A 
and B: 

A x B= {(x, y) i x E A, y E B}. (1.1) 

If A and B are single-dimensional intervals, then A x B is the rectangle 
shown in Figure 1.1. 

y 

B 

A x 

Figure 1.1 Cartesian product in one dimension. 

DEFINITION 1.1 A pair (NI, p) is called a metric space if M is a set, and 
p is a real valued function defined on M x M with the Jollowing properties: 

(i) For all x, y E NI, p( x, y) ~ O, and p( x, y) =O if and only if x y. 

(ii) Forallx,yEM,p(x,y) p(y,x). 

(iii) For all x, y, z E NI, p( x, z) ::; p( x, y) + p(y, z). 

Function p is called metric, which represents the distance between 
elements of set M. Property (i) requires that the distance of different 
elements is always positive, and the distance of any element from it­
self is zero. Property (ii) represents the symmetry of the distance, and 
Property (iii) is known as the triangle inequality, which statesthat the 
direct distance between two elements is never larger than the sum of 
their distances from a third element. 

Example 1.1 

Let M be the set R (or C) of real (or complex) numbers, and define 
p( x, y) lx -y j. Properties (i) and (ii) are satisfied obviously, and 
the triangle inequality is the obvious consequence of the well-known 
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inequality la+ bl la l + l bl, when we select a = x y, b y - z, 
and a+ b x z. Hence, (M, p) is a metric space. 

Example 1.2 

Let lvf be the set R n (or en) of the n-dimensional real (or complex) 
vectors. 

(A) Select the metric function as 

3 

(1.2) 

where x i and Yi are theithcomponents ofvectors x and y,respectively. 
Properties (i) and (ii) are satisfied, and (iii) can be verified as follows. 
From the previous example we know that for all i, 

Assume that 

Poo(x, z) = m~x lxi- Zil = lxio Zi0 l . 
1, 

Then 

Figure 1.2(a) illustrates this distance. 
(B) Select now the function 

n 

P1 (x, y) L lxi Yil · 
i= l 

(1.3) 

(1.4) 

We can easily show that (111, p1 ) is also a metric s pace because prop­
erties (i) and (ii) are satisfied, and (iii) can be proven by ad ding inequal­
ities (1.3) for i l, 2, ... , n. Figure 1.2(b) shows this distance. 

(C) The most commonly used metric function defined on n-dimensional 
vectors is given as 

(1.5) 

Properties (i) and (ii) are obvious again, and the triangle inequality 
can be proven by applying the Cauchy-Schwarz inequality, which can 
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a) Distance p""' 

Poo(X, Y) 

b) Distance p1 

c) Distance p2 

Y (YPY2) 

Figure 1.2 Distances in R 2 . 
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bestatedas follows: If u (ui) and v= (vi) are real (or complex) 
n-dimensional vectors, then 

Use the triangle inequality and the Cauchy-Schwarz inequality for 
vectors x y and y z to get 

n n 

P2(x, z)2 = L lxi- zil 2 ~ L[lxi- Yil + IYi- zilf 
i=l i= l 

n n n 

L lxi Yil
2 +L IYi zil

2 + 2 L[lxi Yii·IYi zil] 
i= l 

n 

< L lxi Yil
2 

i= l 

[{ 

n } 1/2 { n t; ix; - Y;l
2 + t; IYi 

Figure 1.2(c) illustrates this distance. 
Hence1 R n (or en) is a metric space with distances Poo 1 P1 1 and P2· 

No te that the a bov e three metric functions p00 , p1, and P2 are all special 
cases of the more general Minkowski distance 

5 

Pv(x,y) {~ (1.6) 

where p 2:: l is a given constan t. 
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Example 1.3 

Let M be the set C [a, b] of the continuous functions on the finite closed 
interval [a, b]. Define 

p(f,g) max lf(x)- g(x)l, 
xE[a,b] 

which is illustrated in Figure 1.3. 

y 

a b 

(1.7) 

x 

Figure 1.3 Distance of continuous functions. 

We now prove that (M, p) is a metric space. Nate first that the 
continuity of function If( x) g(x)l implies that the maximum exists. 
Properties (i) and (ii) are obvious, and the triangle inequality can be 
proven as in the case of distance Poo of n-dimensional vectors. 

Example 1.4 

If M is an y set, then we can define 

p( x, y) {
l, ~f x =l= y 
0, If X= y. 

(1.8) 

Properties (i), (ii), and (iii) can be proven easily. The resulting metric 
s pace (M, p) is called discrete. 

Let (M, p) be a metric s pace, and M1 c A1. Define function p1 on 
M1 x M1 as Pl(x, y) p(x, y) (x, y E M1). Then (Mb Pl) is also a 
metric space and is called the subspace generated by subset M 1 . 

An open ball with center x E M and radius r> O is defined as 

B(x,r) ={y l y E 1\II,p(x,y) <r}, (1.9) 

and the set 
B(x,r) {y l y E M,p(x,y):::; r} (1.10) 
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is called the c lo sed ball with center x and radius r. 
Let M 1 ~ NI. A point x E M1 is called an interior point of M1 if for 

somG r> O, B(x, r) lv11 . A point x E M is called a boundary point of 
M 1 if for all r> O, B(x, r) contains points that belong to M1 and points 
t hat do not bel o ng to M l· 

A set M 1 is c all ed open if each point of M 1 is interior. A set M 1 is 
closed if M - Jv11 is open. Note that the empty set is considered to be 
both open and closed. 

DEFINITION 1.2 A sequence { xn} of elements of M is said to be conver­
gent and to have the limit point x* E lvf, if p(xn, x*) ~O as n~ oo. This 
property is denoted as Xn ~ x* or as limn~CXJ X n x*. 

First we prove that the limit point of any convergent sequence is 
unique. In contrast to the assertion, assume that x* and x** are both 
limit points of sequence {X n}. Then 

O :::; p( x*, x**) :::; p( x*, Xn) + p(xn, x**) = p(xn, x*)+ p(xn, x**) . 

Since both terms of the right-hand side converge to zero, p( x*, x**) =O. 
Hence, x* x**. 

Let lvf1 ~M be a closed set, and assume that for all n 2:: l, Xn E M1 

and sequence Xn converges to an x* E M. We will next prove that 
x* E JvJ1. Assume in contrast to the assertion that x* ~ M 1 . Since 
M1 is closed, A1- lvf1 is open. Therefore, there is a ball B(x*, r) ·with 
some r > O that is in 111 Jvl1 . Convergence Xn ~ x* implies that 
for sufficiently large values of n, p(xn, x*) < r, that is, Xn E B(x*, r) 
implying that Xn E Jvl- M1 contradieting the assertion that Xn E M1. 
This property of closed sets can be formulated by saying that a closed 
set Jvf 1 contains all limit points of sequences from M 1 . 

DEFINITION 1.3 A sequence {xn} of elements of M is called a Cauchy 
sequence if p(xn, Xm) ~O as n, m~ oo. 

THEOREM1.1 
If {X n} is convergent, then it is also a Cauchy sequence. 

PRO OF Le t the limit point of {X n} be denoted by x*. Then 
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Because both terms of the right-hand side converge to zero, we conclude 

that p(xn, Xm) ---t O as n, m oo. l 

REMARK 1.1 A Cauchy sequence is not necessarily convergent, as 
the case of metric space (Jvf, p) with NI (0, oo) and p(x, y) lx-Yl 
illustrates. Consicler sequence Xn = 1/n (n ~ 1), which has no limit 
point in NI (the zero limit does not belong to M), but for n, m ---t oo, 

1(1/n)- (1/m)l ---t O. l 

DEFINITION 1.4 A nzetric space (Af, p) is called complete if all Cauchy 
sequences of elements in }/J have linzit pointsin M. 

I t is weil known from calculus that in the set of real (or complex) 
numbers all Cauchy sequences are convergent, so R (or C) is com­
plete. The convergence of vectors in an y of the discussed distances means 
component-wise convergence. Because each component is a real (or com­
plex) number, Rn(or en) is also complete. The convergence in C[a, b] 
is the well-known uniform convergence. It is also weil know from calcu­
lus that the limit function of uniformly convergent continuous functions 
defined on a closed interval b) is also continuous implying that C[ a, b] 
with distance (1. 7) is also complete. 

In the next theorem we prove t hat p( x, y) is a continuous two-variable 
function. 

THEOREM1.2 
If X n ---t x* and Y n y* for n oo, t hen p( X n, Y n) p( x*, y*) for n oo. 

PROOF By applying the triangle inequality we have 

+p( x*, Yn) :S p(xn, +p( x*, y*) + p(y*, Yn) , 

that is, 

By interchanging Xn with x* and Yn with y* we conclude that 

+ p(y*' Yn) · 

Hence 
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where the right-hand side tends to zero as n -t oo. Thus, p(xn, Yn) -t 
p( x*, y*) for n -t oo. l 

In the next section, mappings between metric spaces will be defined 
and their main properties will be examined. These properties then will 
be applied in proving the contraction mapping theorem, which will be 
very useful in showing the existence of a unique state trajectory in con­
tinuous systems. 

1.2.2 Mappings in Metric Spaces 
Any iteration method consists of the repeated application of a certain 
mapping. In order to analyze the convergence of iteration procedures, 
the basic properties of such mappings have to be investigated. This 
section is devoted to this subject. Assume that (M, p) and (M', p') are 
two (not necessarily different) metric spaces. The domain D(A) and 
range R(A) of a single-valued mapping A from M to M' are defined as 
follows: 

D(A) ={x l x E M and A(x) is defined} , 

R(A) ={x' l x' E NI' and there exists x E D(A) such that x' A(x)} . 

O bviously D (A) ~ l\1 and R( A) ~ Jt;f'. The domain and r ange of 
mappings are illustrated in Figure 1.4. 

M M' 

Figure 1.4 Darnain and range of mappings. 

DEFINITION 1.5 Mapping A is said to be continuous at a point x E 

D (A), if for every sequence {X n} front D (A) converging to x, A (X n) -t A (x) 
as n -too. 
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Similar ly, a mappin g A is said to be continuous if it is eontinuous at every 
x E D(A). 

DEFINITION 1.6 Mappin g A is ealled bounded if there exists a nonneg-
ative eonstant K sueh that for all x, y E D( A), 

p'(A(x), A(y)) ::; K· p( x, y). (1.11) 

Bounded mappings are illustrated in Figure 1.5. 

M M' 

p(x, y)'--+-+-+-++-~• 1•--~t-+--+--+-+•p'(A(x), A(y)) 
~~H+--~-------+--~~~ 

Figure 1.5 Bounded mappings. 

Note first that every bounded mappingis continuous, because if x*, Xn E 

D( A) (n 2: l) and Xn -7 x*, then 

O::; p'(A(xn), A(x*)) ::; K· p(xn, x*) . 

Since the right-hand side converges to zero, A(xn) A( x*) as Xn -+x*. 
It is easy to see that a continuous mappingis not necessarily bounded. 
As an example, consicler M ]1.1[' R, p(x, y) = Jx- yJ, p' =p, and 
A(x) = x 2 . In this case, for all x =f. y, 

p'(A(x), A(y)) 
p( x, y) 

lx2 y2J 
l l = Jx+yJ' x-y 

which can be arbitrarily large, if x and y are sufficiently large positive 
numbers. 

A special class of bounded mappings is defined next. 

DEFINITION1.7 MappingA is ealled a contraction ifit is bounded with 
a eonstant O ::; K < l. 
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Example 1.5 

Let M= M' R, p( x, y) = jx yl, p' = p, furthermore letA be. 
a differentiable function on same interval D ~ A1. Assume that for 
all x E D, lA' (x) l ::S J(, where A' is the derivative of A. Then for all 
x,yE D, 

p'(A(x), A(y)) = IA(x)- A(y)! IA'(~)I·Ix Yl 

11 

::S K· jx- Yl K· p( x, y) , (1.12) 

where~ is between x and y. Hence, mappingA is bounded with 
eonstant K. 

Example 1.6 

Let M !VI'= R n, p'= p= Pp (p= l, 2, oo), and assume that A is 
a differentiable function on a con v ex set D ~ !VI. Ass u me furthermore 
that for all x E D, I(BAi/Bxj)(x)l ::; aij1 where A = (Ai) and 
x (X j). The mean-value theorem of the derivatives of multivariable 
functions implies that for all x and y E D, 

(i= l, 2, ... , n) . 

Select first p l, then 

n n n l BA· l Pl (A(x), A(y)) = t; IAi(x) - Ai(Y)I ::; t; f.; ax; (ei) ·IX j 

where 

n 

::S J( l ·L lxi - Yil = J(lPl (x, y), 
j=l 

n 

J(l = ID?JC Laij. 
J i=l 

(1.13) 
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Select next p 2, then the Cauchy-Schwarz inequality implies that 

2 
n 

P2(A(x), A(y)) 2 ==L IAi(x) 
i= l 

that is, 
P2(A(x), A(y)) ::; K2 · p2(x, y) 

with 

(1.14) 

Select finall y p oo. Then 

Poo(A(x), A(y)) 

where 
n 

K 00 ffi?-X L O:ij. 
1, 

(1.15) 
j=l 

Hence, A is a bounded mapping with eonstants K P (p == l, 2, oo). 
Note that in the special case of the linear function 

A(x) =Ax+ f, 

where A ( aij) is an n x n real matrix and f is an n-element real 
vector, ( 8Ai/ 8xi )(x) = aii. Consequently, we may select o:ii == 
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l aij l, hence the above bounds have the special forms: 

n 

K1 =m~Liaijl, 
J i=l 

(1.16) 

and 
n 

I<oo ffi?X L laijl · 
t 

j=l 

It is easy to verify that these bounds hold even if A, f, and x are 
complex. 

Example 1.7 

Let 1\II == M' == C[a, b] with the metric defined in Example 1.3. As­
sume that function k is continuous on [a, b] X [a, b] and f is continuous 
on [a, b]. Define mappingA on lY! as 

A(y)(x) =t k(x, s)y(s) ds + f(x), (1.17) 

where y E lY! is a continuous function, and the left-hand side is the 
value of mapping A(y) at x. Hence, we choose D(A) = M and 
R( A) ~ M'. It is easy to show that mappingA is bounded, since for 
all y, z E 1\1, 

p(A(y), A( z)) 

where 

max IA(y)(x) - A(z)(x)l 
xE[a,b] 

b 

~ max r lk(x,s)l·ly(s) z(s)lds 
xE[a,b] Ja 

::; max {b i k( x, s)l ds · max ly( x) - z(x)l K· p(y, z), 
xE[a,b]} a xE[a,b] 

K= ma.x {b ik(x, s)l ds. 
xE[a,b] Ja 

Consequently, mapping A is bounded. 



14 cbapter one: Matbematical Background 

Example 1.8 

Let 111 be the set et [a, b] of the continuously differentiable functions 
on [0, 21r] with the distance defined in Example 1.3. Define mapping 
A(y) = y' with D( A) = NI. We shall now verify that this mapping 
is notbounded. Consicler functions y( x) sin nx (n~ 0), z( x) O. 
Then 

therefore, 

Since 

A(y)(x) n cos nx and A(z)(x) =O, 

p(A(y), A( z)) max In · cos nx - O l = n . 
x E [0,27r] 

p(y,z) = max jsinnx -01 =l, 
x E [0,27r] 

no finite K satisties Definition 1.6. Hence, mappingA is not bounded. 

The last example shows that differentiation as a mappingis not bounded. 
This is the reason why in Section 2.1.1 differential equations will be be 
rewritten as integral equations. The resulting integral mappings will be 
not only bounded, bu t also contractions, and therefore the results of the 
next seetian can be easily applied. 

1.2.3 Contraction Mappings and Fixed Points 
The main result of this seetian is formulated as a theorem, which gives 
sufficient conditions for the existence of the unique solution of fixed­
point problems of the form x= A( x), where A is a mapping with D(A) 
and R( A) being the s u bsets of the same set M. As we will see later, the 
computation of equilibrium states and state trajectories of a dynamic 
system requires the solution of such fixed-point problems. 

THEOREM1.3 
Assume that metric space (Jvf, p) is complete, M 1 ~ M is a closed set. Let 
mappingA be a contraction such that D(A) = M1 and R(A) ~ M1. Then 
the fixed-point problem x = A(x) has a unique solution in M 1, Jurthermare it 
can be found as the limit of the iteration sequence 

(xo E Nit arbitrary) 
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(1.18) 

PROOF The proof contains several steps. 

(a) First we provethat the iteration sequence is a Cauchy sequence. 
The repeated application of the triangle inequality im p lies that for 
m>n, 

p(xn, Xm) :::; p(xn, Xn+l) + p(xn+l' Xn+2) + · · · + p(Xm-1, Xm) · 
(1.19) 

From the definition of contractive mappings we see that for all 
k 21, 

Combining this relation with (1.19) yields the inequality 

Since O :::; J( < l, the right-hand side converges to zero as n ----+ oo, 
which implies that p(xn, ----+O as m> n and n oo. 

(b) Since metric space (JYI, p) is complete, sequence {xn} converges to 
an element x* E ]Yl. Note that for all n, Xn E 1\11 • Since M 1 is a 
closed set, x* E 1111. 

(c) Next we show that x* is a fixed point of A. MappingA is bounded, 
therefore it is continuous. Letting n----+ oo in the iteration equation 
Xn+l = A(xn) we have Xn+I ----+ x* and A(xn) A(x*), and the 
uniqueness of the limit implies that x* =A( x*). 

(d) Finally we verify that the fixed point is unique. Assume that x* 
and x** are fixed points of A such that x* =J. x**. Since A is a 
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contraction mapping, 

p(x*,x**) = p(A(x*),A(x**)) :=;K· p(x*,x**) 

with K < l. Divide both sides of this inequality by p( x*, x**) > O 
to get the relation 

which contradiets the definition of K. Hence the proof is complete. 

l 

COROLLARY 1.1 
The iterations of mappin g A can be defined by the following recursion: 

(1.20) 

It is easy to verify that the as sumptian of the theorem that A is a contraction 
can be replaced by the weaker condition that for same k 2:: l, A k is a contraction. 

The iteration process (1.18) is illustrated in Figure 1.6 and can be 
summarized as follows: 

Step l Select an initial approximation Xoid E M1. 

Step 2 Campute Xnew = A(xoid)· 

Step 3 If p(Xnew, Xoid) is less than an error tolerance E, then accept 
Xnew as the solution and stop. Otherwise set Xoid = Xnew and go 
back to Step 2. 

1\ 

\ 

Figure 1.6 Illustration of fixed-point iteration. 
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At the conclusion of this section, a numerical example is presented. 

Example 1.9 

Consicler the special case w hen M = MI is the closed interval [l, 2] 
and mapping A is defined as 

A(x) ~(x+~)· 

Obviously M is complete and MI is closed. For all x E [l, 2], 

and 

since x ~ 2, 2/x :::; 2/1 
A(x) E M1. Furthermore, 

2, x ~ l, and 2/x ~ 2/2 = l. That is, 

therefore, Example 1.5 implies that mappingA is a contraction. Thus, 
all conditions of Theorem 1.3 are satisfied. Select x 0 = 2, then the 
iteration sequence is the following: 

X2 = l (1.5 + 2_) ~ 1.4166667 , 
2 1.5 

and in a similar manner 

X3 ~ 1.4142157, X4 ~ 1.4142136 , 

and so on. No te that the only fixed point in [l, 2] of mappingA is -/2, 
which equals X4 to the accuracy shown. 

Finally, \Ve note that some applications of these results to the theory 
of iteration n1ethods are discussed, for example, in [2, 42], and in [8]. 
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1.3 Same Properties ofVectors and Matrices 
In the theory of linear the metric of finite-dimensional 
vectors and n1atrices have important roles. For example, the stability 
analysis of dynamic systems requires the investigation of the convergence 
of the state vector as time approaches infinity, which can be performed 
easily by the concepts of the first part of this seetio n. In the seeond 
part, special matrix transformations and decompositions are discussed. 

will be useful in transforming linear systems to special forms. In 
the third part of this matrix functions are introduced and an­
alyzed, which will be applied to solve linear difference and differential 
equations, discrete and continuous systems, in closed form. 

1.3.1 Norms ofVectors and Matrices 
In the previous seetian distances of vectors were introduced, but they 
do not measure explicitly the magnitud e of a vector. Howeve r, in 
analogy to the definition of the absolute values of real numbers 
their distances from zero, the length (or norm) of a vector x is defined 
as its distance p( x, O) from the zero vector. 

DEFINITION 1.8 The p-nonns (p = l, 2, oo) of an n-element real or 
contplex vector x= (xi) are defined as follorvs: 

n 

llxll1= L 
i= l 

(1.21) 

and 
llxlloo m?X ]xi] · 

t 

These vector norms are illustrated in 1.7. vVe note that llx]] 2 

can also be written as v'x*X, where x* is the conjugate transpose of x 
(or the usual transpose of x in the real 

The main properties of vector norms are given next. 

THEOREM1.4 
The p-norms of n-elenzent real or camplex vectors satisfy the following prop­
erties: 
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y 

llxll 00 

llx11 1 

,.__---lx1 1----•~o~o~~l~~---lx214 

Figure 1.7 Vector norms in R 2
. 
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x 

(i) lix Il ;::: O, and llxll = O if and only if x O, where O is the zero vector 
with all elements equal to zero. 

(ii) For an arbitrary real (or complex) nurnber a, l!a:xll = la:l · llxll· 
(iii) lix+ Y Il ~ llxll + IIYII· 

PRO OF 

(i) llxll p(x, O) is always nonnegative, and is zero if and only if 
x o. 

(ii) This properl y follows immediately from the definition of the vector 
norms. 

(iii) llx+yll = p(x, -y) ~ p(x, O)+p(O, -y) llxii+II-YII llxii+IIYII· 

l 

REMARK 1.2 Any real-valued function defined on the set of the n­
element real (or complex) vectors satisfying conditions (i), (ii), and (iii) 
is called a vector norm. It can be proved (see Problem 1.21) that any 
two vector norms defined on the set of the n-element real (or complex) 
vectors are equivalent to each other, that is, if 11·11 and 11·11' are two norms, 
then there exist positive eonstants a 1 and a2 such that for all vectors x, 

l 

DEFINITION 1.9 Let Il · Il be a given nonn of n-dimensional real (or 
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complex) vectors. The ntatrix norm generated by this vector norm is given as 

IIAII = max{IIAxll lllxll l}. 

Since vector norms are continuous and the set S = {x l llxll = l} is 
closed and bounded, the maximum exists. 

The fundamental properties of matrix norms are summarized next. 

THEOREM1.5 
Let Il · Il be a matrix norm generated by a vector norm. Then 

(i) IlA Il ~O, and Il All =O if and only if A= O, where O is the zero matrix 
with all elements equal to zero. 

(ii) For an arbitrary real (or complex) number o:, llo:AII lo: l · IlA Il· 

(iii) IlA+ Bli :s; IIAII + IIBII· 

(iv) IlABli :s; IIAII · IIBII· 

PRO OF Properties (i) and (ii) are obvious, and (iii) is the consequence 
of the inequality 

IIA+BII max II(A + B)xll max IIAx + Bxll s s 

< max(IIAxll + IIBxll) < max IIAxll +max IIBxll - s - s s 

= IIAII+IIBII-

The last property can be shown as follows: 

IlABli =max IIABxll =max IIA(Bx)ll < max(IIAII · IIBxll) s s - s 

= Il All ·max IIBxll = IIAII · Il Bli · s 

l 

REMARK 1.3 Any real-valued function defined on the set of the n x n 
real (or complex) matrices satisfying conditions (i)-( iv) is called a matrix 
norm. l 
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For p = l, 2, oo, let Il · liP denote the matrix norm generated by the 
vector norm Il · liP' 

THEOREM1.6 
If A is an n x n real (or complex) matrix with (i, j) element a ii, t hen 

n 

IIAII1 m~x L laiil 
J i=l 

and 
n 

IIAIIoo m~x L laiil · 
~ 

j=l 

Let A* = A T denote the con j u gate transpose of A, and let .A* denote the largest 
eigenvalue of matrix A* A. That is, .A* is the largest real number such that 
A* Ax .A* x 'With some nonzero vector x. Then 

PROOF Let llxlh = 2:~1 lxil = l. Then 

n n n n 

IIAxll1 =L L aijXj ~L L laiil·lxil 
i=l j=l i=l j=l 

n n n 

~L lxil· m~x L laiil 
j=l J i=l 

m9-x L laij l . 
J i=l 

In order to show that the last expression on the right-hand side is the 
maximum of IIAxll1 we find a vector x with unitnorm that gives equal­
ities everywhere in the above inequality. Assume that 

n n 

1n~x L laijl =L laijol, 
J i=l t=l 

then the selection 
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is satisfying. 

{
l if j j 0 

x i = O if j =/= jo 

Assume next that llxlloo maxi lxil l. Then 

n n 

I!Axlloo m~x LaijXj ::;m~xLiaij!·lxil 
~ ~ 

j=l j=l 

It is easy to show that in this case vector x with 

gives equalities everywhere in the above inequality, where i 0 is selected 
as 

IIAxll~ = (Ax)* (Ax) =x* (A* A)x. 

Since matrix A* A is Hermitian, all eigenvalues are real and the maxi­
mum of the above quadratic form is the largest eigenvalue ,\ *, and the 
maximum occurs w hen x is selected as an eigenvector associated to ,\ * 
(see, for example, [ 43]). 

Thus, the proof is complete. l 

DEFINITION 1.10 A vector norm Il · Il and a matrix norm Il · Il are called 
compatible if for all vectors and matrices such that Ax exists, 

I!Axll ::; IIAII · llxll · (1.22) 

THEOREM1.7 
Let Il · Il be any vector norm, thenit is compatible with the matrix norm that 
is generated by Il · Il· 
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PROOF Note first that the norm of the vector z= (1/llxll) ·x equals 
l. Therefore 

IIAxll llxll ·IlA· ll:llll llxll · IIAzll 

:::; mffx IIAzll · llxll Il All · llxll , 

which completes the proof. l 

REMARK 1.4 It can be easily verified that for every matrix norm 
satisfying Properties (i), (ii), (iii), and (iv) of Theorem 1.5 there is at 
least one vector norm with which the matrix norm is compatible. The 
construction of one of these vector norms is the following. Let x= (xi) 
be an n-dimensional vector. Construct matrix 

x 
(

xl o ... o) 
X2 Q··· 0 
. . . . .... . . . . 

Xn O··· O 

(1.23) 

and define the norm of vector x as the matrix norm of matrix X. N o te 
that a given vector norm ma y be compatible with more than one matrix 
norm. Such a case is presented next. l 

DEFINITION 1.11 The Frobenius norn1 of n x n real (or complex) matrices 
is defined as 

(1.24) 

By using the triangle inequality and the Cauchy-Sch\varz inequality it 
is easy to see that this matrix norm satisfies all properties of Theorem 1.5 
and is compatible \Vith the vector norm Il · ll2· 

Example 1.10 

Consicler vectors 
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and n1atrices 

B (~~~). 
l l o 

The norms of these vectors and matrices can be determined as follows. 
Simple calculation shows that 

llxll1 = l+ l 2, llxllz = Vf2+T2 llxlloo max{ l; l} l; 
v'6, I!YIIoo = max{l; 2; l}= 2; IIYih =l+ 2 +l= 4, IIY!Iz 

IIAII1 max{l +l; 2 +l} 3, 

IIAIIoo max{l + 2; l+ l}= 3, 

and 

IIBih IIBIIoo max{l +l; l+ l; l+ l}== 2, 

Nate that 

and 

(101) (101) (211) B*B = O l l O l l = l 2 l . 110 110 112 
By using standard software to fin d eigenvalues of real symmetric matri­

ces, we find that the eigenvalues of A* A and B*B are (l /2) (7 ± J45) 
and l, l, 4, respectively. Hence, 

and IIBII2 = J4 = 2. 

In the next part of this subsection, important relations between ma­
trix norms and the eigenvalues of square matrices are discussed. These 
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results locate the eigenvalues into finite regions which allow us to se­
lect appropriate initial approximations of the eigenvalues in applying 
iteration methods for finding them. 

THEOREM1.8 
Let 11·11 be a matrix norm. If A is an eigenvalue ofmatrix A, then !Al S IlA Il· 

PROOF The eigenvalue equation Ax AX implies that 

1).1 · llxll ll).xll IIAxll :::; IIAII · llxll · 

Dividing by llxll f= O yields the assertion. l 

The assertion of the theorem is illustrated in the next example. 

Example 1.11 

Consicler the matrix 

A CD· 
In Example 1.10 we derived that its p = l, 2, oo, and Frobenius 

norms are 3, V 1/2(7 ± v'45), 3, and -/7, respectively. The characteristic 
polynomial of A is 

therefore, the eigenvalues of A are 

That is, 

and 

2v's 
--=l±h 2 . 

A1 l - J2 ~ -0.4142 , 

).2 l+ v/2 ~ 2.4142. 

Nate that the smallest norm of A equals 

J~(7 + 145) ~ 2.6180, 

which bounds the absolutevalues of both eigenvalues. 
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It is possible to restrict even further the domain 1>-1 :S IIAII for the 
location of the eigenvalues of A by the following result, which is known 
as the Gerschgorin theorem 

THEOREM1.9 
[The Gerschgorin Theorem] For i = l, 2, ... , n, let 

n 

T; = 2:::: la;JI , 
j=l 
-i-#i 

(1.25) 

and let B; denote the closed ball with center a;; and radius r;. Then all eigen­
values of A lie in the dontain 

D = B1 u B2 u · · · U Bn . (1.26) 

PROOF Let ,\ be an eigenvalue of A with associated eigenvector 
x= (:r;). Let io be determined by the relation 

lxinl = maxlx;l. 
' 

The eigenvalue equation of matrix A implies that for all i, 

n 

,\x; = 2:::: a;1x 1 . 
j=l 

Therefore, by selecting i = io and subtracting a;0 ; 0 X;0 from both sides, 

n 

(,\- aioio):l.:in = 2:::: aiojXj, 

which implies that 

i=l 
)T-io 

n n 

1(,\- aioio)Xiol = 2:::: aiojXj :S 2:::: laiojl·lxJI · 

Di vide by l x in l # O to get 

'i=l 
i-=!-io 
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Hence, ,\ Bi0 , which proves the assertion. l 

This theorem is illustrated next. 

Example 1.12 

In the case of matrix A discussed earHer in Example 1.11, we have the 
do mains 

BI={..\ ll..\-11::0:2} 

and 

B2 {..\ Il..\ ll ::; l}. 

Because the first disk contains the seeond one, 

u ={..\ 11..\-11::0:2}. 

The resulting region is illustrated in Figure 1.8. 

y 

x 

Figure 1.8 Illustration of Example 1.12. 

27 

REMARK 1.5 Since the eigenvalues of A and A T are the same, define 

(1.27) 
··=l 
ii: i 
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and let BJ denote the ciased disk with center aii and radius . Then 
all eigenvalues of A lie in the domain 

U Bf U··· U B~. (1.28) 

l 

We close this seetian with an important property of real matrices, 
which will have important applications in later chapters. 

Let A be an n x m real matrix. Let R( A) den o te the r ange s pace of 
A: 

R(A) {y l Ax= y with some x} , 

and let N(AT) denote the null space of AT: 

THE O REM 1.10 
R( A) and N (A T) are orthaganal contplementary subspaces in R n, t hat is: 

(i) If u E R(A) and v E N(AT), then uT v= O. 

(ii) If for avectorv E Rn, uT v= O with all u E R( A) then v E N(AT). 

PRO OF 

(i) Assume first that u E R( A) and v E N(AT). Then u Ax with 
so me x, and A T v O. Therefore, 

uTv=(xTAT)v xT(ATv) xTO O. 

(ii) Assume next that for a vector v, uT v = O with all u E R( A). 
Nate that Ax E R( A) with x = A T v; therefore we may select 
u= Ax= AAT v. Hence, 

which implies that AT v O, that is, v E N(AT). 

l 

COROLLARY 1.2 
Arbitrary x E R n can be uniquely represented as x = u+ v, ·where u E R( A) 
andv E N(AT). 
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PROOF Letu1, u 2, ... , uk beanorthogonalbasisinR(A),andextend 
it to an orthogonal basis u1, u2, ... , uk, VI, v2, ... , V n-k of Rn. Then 
v1, v2, ... , V n-k is a basis of N( AT). Therefore, all x E Rn can be 
represented as 

Select 

and 

to obtain the desired representation. 
Assume next that there are two representations: 

x=u+v ii+v. 

Then 

u-u= v-v, 

whereu-ii E R(A) and v v E N(AT). Because these vectors are 
orthogonal, 

Therefore, u ii and v = v, w hi ch completes the pro of. l 

COROLLARY 1.3 
In the previous decon1position, llxll~ Il ull~ + llvll~· 

PROOF Since u and v are orthogonal, 

l 

REMARK 1.6 The above corollary is also known as the theorem of 

Pythagoras in n-dimensional Euclidean spaces. l 
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1.3.2 Special Matrix Forms 
In the discussion of linear systems, special matrix transformations and 
certain canonical matrix forms are often applied. They are the subjects 
of this subsection. 

Assume first that an nxn matrix has n distinct eigenvalues, A1 , A2 , ... , 

An. Let the associated eigenvectors be denoted by X1, x 2 , ... , Xn· We 
remind the reader that a scalar A and vector x =f=. O are an eigenvalue 
and an associated eigenvector of a matrix A, if Ax AX. First we prove 
that these eigenvectors are linearly independent. Assume that there are 
eonstants c1, c2, ... , Cn s u ch that 

and at least one ci =f=. O. Multiply this equation first by A1 and then by 
matrix A to equalities 

and 

where we used the fact that Axk = AkXk for k l, 2, ... , n. Subtracting 
the seeond equation from the first one \Ve have 

Therefore, we conclude that if vectors x1, x2, ... , Xn are linearly depen­
dent, then by dropping x1, the remaining vectors x2, ... , Xn are still 
linearly dependent. If we continue this idea sequentially dropping vec­
tors x 2 , ... , Xn- 1, we will conclude that vector Xn itself forms a linearly 
dependent set of vectors. Since Xn =f=. O (being an eigenvector), this is a 
contradiction. 

This observation implies the following important theorem. 

THE O REM 1.11 
Assume that the eigenvalues Ai of the n x n matrix A are distinct. Then there 
is a nonsingular matrix T such that 

(1.29) 

where this notation means a diagonal ntatrix ·with diagonal elements A1 , ... , An. 
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PROOF Equations 

(i=l,2, ... ,n) 

can be summarized as 

where (x1, ... , xn) denotes the n-column matrix with column vectors 
x 1, ... , Xn· Define T (x1, ... , Xn)-1, which exists, since colum.ns 
x 1, ... , Xn are linearly independent. Premultiply the above equation by 
T to get relation (1.29). l 

REMARK 1. 7 The proof of the theorem suggests the following diag­
onalization algorithm: 

Step l Find the eigenvalues A i and associated eigenvectors xi of ma­
trix A. 

Step 2 Form matrix (x1, x2, ... , Xn)· 

Step 3 Invert this matrix to obtain T. 

For finding the eigenvalues and eigenvectors of matrix A and for 

inverting matrix T, standard computer programs are available. l 

REMARK 1.8 The assertion remains true even in the slightly more 
general c ase, w hen the distinct eigenvalues A 1, ... , Ar have multiplicities 
m1, ... , mr, and for each i, therearemi linearly independent eigenvec­
tors associated to Ai· However, in the general case, the theorem does not 
hold, bu t the matrix can be transformed in to a J orda n canonical form. 
That is, there exists a nonsingular matrix T such that 

(

Jl J2 . o) 
TAT- 1 = 

O Js 

(1.30) 



32 chapter one: Mathematical Background 

with s 2::: r, and for j l, 2, ... , s, 

Ai l O 
).i l 

J j = (1.31) 

Ai l 
O Ai 

Note that the order of J j is not greater than mi, and in each Jordan 
block J j the same eigenvalue forms the diagonal; however, the same 
eigenvalue can be found simultaneausly in different Jordan blocks. 

A Jordan canonical form with 2 x 2, 3 x 3, 2 x 2, and l x l blocks is 
illustrated in Figure 1.9, where all elements not indicated are equal to 

zero. l 

l 
l 

A., l : 
l 

A., l l l 
-----~---------~------i ___ _ 

l l l 

: A.2 : : 
l l l 

3 : A.2 : : 
l l l 
l A.2 l l 
l l l 

------L---------L-----~----1 l l 

: l AJ 1 : 
l l l 

l l A.J l 
-----~---------~-----~----

' l l 
l l l A.4 
l l l 

2 3 2 

Figure 1.9 A special Jordan canonical form. 

In general, matrix transformations TAT- 1 with nonsingular matrices 
T are called similarity transformations, and matrices A and TAT-1 are 
called similar. I t is weil known from linear algebra that the characteristic 
polynomials of similar matrices are the same, therefore they have the 
same eigenvalues. 

An important consequence of the above theorem is known as the 
Cayley-Hamilton theorem: 
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THEOREM 1.12 
[The Cayley-Hamilton Theorem] LetA be an n x n real or camplex matrix, 
and let <p denote its characteristic polynomial. Then 

cp(A) =O, 

·where O is an n x n matrix with all elements equal to zero. 

PROOF Because the characteristic polynomials and eigenvalues of 
n x n matrices depend continuously on the matrix elements, it is suffi­
cient to show that the assertion holds for matrices with distinct eigen­
values. In this case (1.29) implies that 

A= T- 1 
· diag()q, ... , An)T. 

Therefore, for all j 2:: l, 

which implies that for all finite polynomials 

k 

p( A) = L ajT- 1 
· diag(.X{, ... , .X~) ·T 

j=O 

= T- 1 
· diag(p(.-\1), ... ,p(.Xn))T. 

If p cp, then p(.Xi) =O (i l, 2, ... , n), hence cp( A) O. l 
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Example 1.13 

Consicler matrix 

A==( Ow) -w O ' 

where w > O is a given constant. Note this matrix has an important 
role in analyzing harrnonie motions (see Example 3.3). The diagonal 
form of A will now be determined. The characteristic polynomial of 
A is as follows: 

(
-A w) 

<p(A) = det -w -A 

where det(·) denotes the determinants of matrices. Therefore, the 
eigenvalues are Al j w, A2 -j w, where j = .;=I. The eigen­
vector associated with Al is the solution of the homogeneous linear 
equation 

( -jw w) (xn) (O) 
-w -jw x12 O 

Select X11 l, then x12 j. Therefore, x1 (l, j) T. One can 
similarly verify that x2 (l, -j) T is an eigenvector associated with 
A2. Since the eigenvalues are different, Equation (1.29) can be applied, 
which implies that with T (x b x2)- 1, 

A 
(

l j) -l . l l j w O 2 - 2 
T · d2ag(A1, A2) ·T= ( . . ) ( O . ) . . 

J -J -JW 1. J.. 
2 2 

In this case, the Cayley-Hamilton theorem can be easily demon­
strated because 

O. 

Note that the construction of the diagonal and Jordan canonical forms 
of square matrices require the computation of the eigenvalues and the 
eigenvectors. A summary of such methods is presented for example 
in [42] and in [43]. 

In the diagonal transformation (1.29) and the Jordan form (1.30), 
matrix T is nonsingular. In many cases, transformations with more 
special matrices are important. Such a special case is given next. 
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THE O REM 1.13 
Let A be an n x n real or conzplex 111atrix. Then t here exists a ( unitary) matrix 
U such that u- 1 ==U*, and VAV* is upper triangular. 

PROOF Finite induction is used for n. If n = l, then A is a scalar, 
and therefore U l is satisfactory. Assume next that the assertion 
holds for n l. Let A be an n x n matrix, and let )q be an eigenvalue 
of A with associated eigenvector x 1. Select vectors x2, ... , Xn in such a 
way that {x 1 , x2 , ... , Xn} is an orthonormal system, and define n1atrix 
u l (xl, X2, ... 'Xn)*. Obviously u l is a unitary matrix, since 

where the diagonal elements equall and the off-diagonal elements are 
all equal to zero. Observe that 

= U1(Ax1, Ax2, ... , Axn) 

The elements in the first column of the product are .-\ 1xix1 == .-\1, 
AIX2Xl o, ... ' AIX~Xl =o. Therefore, thefirstcolumnis (.-\1, o, ... ' o) T, 

and so 

where a T is an (n l )-element ro w vector, O is the (n- l )-element zero 
column vector, and A 1 is an (n- l) x (n- l) matrix. By the inductive 
hypothesis, there exists an (n- 1)-order unitary matrix U 2 such that 
U2A1 U2 is upper triangular. Define 
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where oT is the (n 1)-dimensional zero row vector. Note that u3 is 
also unitary, since 

Finall y we show that U U 3 U 1 satisfies the assertion of the theorem. 
Note first that 

UU* U3U1UiU; = U3IUi = U3U; l, 

that is, U is unitary. Furthermore, 

which is upper triangular. l 

In the special case, when A is real and symmetric, a much stronger 
result holds. 

THE O REM 1.14 
Assume that A is an n x n real symmetric n1atrix, then there exists a real 
orthaganal matrix Q such that 

and (1.32) 

where Al, A2, ... , An are the eigenvalues of A. 
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PROOF First we show that all eigenvalues of A are real. Let Ar be 
an eigenvalue of A with associated eigenvector xr, then 

Premultiplying this equation by xi and dividing by xixr =l O yields the 
relation 

Observe that both the numeratar and the denominator are real, since 

xi Ax1 = (xi Ax r)* = xi Ax1 

and 

Hence A1 is real, and therefore the associated eigenvector can also be 
selected as a real vector because the homogeneous e qua tion (A-A 1 I) x 
O has real coefficients. 

The construction presented in the proof of the previous theorem im­
p lies that U can be selected as reaL 

We prove finallythat the selection Q =U satisfies the assertion. Be­
cause Q is real, Q* = QT. By denoting the upper triangular matrix 
QAQTby Ar, 

Af (QAQT)T = QATQT = QAQT Ar. 

Hence A 1 is diagonal, which completes the proof. l 

REMARK 1.9 It is known that the eigenvectors x 1 , ... , Xn of a real 
symmetric n x n matrix A can be selected as an orthonormal system. 
That is, xfxi l and xfxi =O (i=!= j; i,j = 1, . .. ,n). Then we 
may select Q= (xb ... , xn)T. The eigenvalues and eigenvectors can be 
determined by using standard computer packages. l 

COROLLARY 1.4 
Assunte that A is a real, syntnzetric, and positive semidefinite matrix, that is, 
for arbitrary vector v, vT Av 2:: O. Then tlzere exists a nonsingular matrix T 
such that 

A= TT diag(l, ... ,l, O, ... ,O)T. (1.33) 
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PROOF Let >. 1 , ... , >.k denote the nonzero eigenvalues of A, then 
>.i > O (i = l, 2, ... , k) and 

Observe that the seeond factor can be rewritten as 

diag ( ~, ... , ~,1, ... ,1) · diag(l, .. . ,1,0, ... ,0) 

· diag ( ~' ... ,~'l, ... , 1) 

therefore the selection 

T dia g ( ~' ... , ~'l, ... , l) Q 

sa tisfies the assertion. l 

Example 1.14 

Decomposition (1.33) will now be constructed for matrix 

A= G D. 
First the method suggested in the proof of the theorem is illustrated. 

Method l. The characteristic polynomial of A is 

(l-A l ) 2 cp ( >.) = d et 1 1 _ ). = (l - A) l 

therefore >. 1 = 2, >.2 O. Similar to the previous example, one may 
easily verify that the normalized eigenvectors are 

and 

which implies that 

From (1.32) we conclude that 

l T 
)2(1, -1) ' 

l (l l) 
l -1 . 
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l (l l) (20) 
= y2 l -1 o o 

The factored form (1.33) of A can beobtained in the same way as shown 
in the proof: 

A=( ) 

A special method is illustrated next. 

Method 2. For matrices of small order, the computation of the 
decomposition is reduced to a system of nonlinear equations that can 
be easily solved in many cases. Find matrix T as 

T= (a b) 
cd ' 

where a, b, c, and d are considered to be unknown. Since rank(A) 
l, the decomposition has the form 

A= (ii) 
Campare the corresponding components on the two sides to get the 
system of equations 

ab= l 

For example, a = b = l is a solution. The seeond row of T is arbitrary. 
Select for example c l, d -l to guarantee that T is nonsingular. 

39 
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Hence we obtain the decomposition 

C D= C -D 0~) C -D· 
Nate that this resultdiffers from theprevious decomposition; however, 
simple calculation shows that i t also satisties Equation (1.33). 

O ur next result is a special factorization of real (or complex) matrices. 

THE O REM 1.15 
LetA be an m x n matrix with rank(A) r (:s; min{ m, n}). Then there 
exist matrices A 1 and Bl! such that A 1 has r columns and B 1 has r rows; 
Jurthermare, 

(1.34) 

PRO OF Let A = ( a1, a2, ... , an) and assume that ai1 , ai2 , ••• , air 
form a basis of the column space of A. Then for all j = l, 2, ... , n, 

T 

aj :I:: akj · aik 
k=l 

with so me eonstants O. k j, which im p lies that 

Hence the selection 

satisfies the assertion. l 

Example 1.15 

Consicler matrix 

A=CD. 



1.3 Some Properties of Vectors and Matrices 41 

Because the first column gives the basis of the column space, 

Therefore, we may select 

and B1 (l , l) . 

1.3.3 Matrix functions 
In obtaining and analyzing the solutions of linear difference and differ­
ential equations, which govern the state transitions of dynamic linear 
systems, special functions of real matrices have an important role. In 
particular, the computation of matrix powers and matrix exponentials 
are used in such investigations. This subseetian is devoted to defining 
and examining matrix functions. 

Assume that the complex po\ver series 

is convergent for lzl <R. 

DEFINITION 1.12 
sum of the series 

Le t A be a s qua re matrix, t hen f (A) is defined as the 

(1.35) 

if this matrix series converges. 

Example 1.16 

Assume that AN = O with some N. Then for all k ~ N, A k = O. 
Therefore f (A) exists and 

(1.36) 

Hence, f (A) is given in a finite form. 
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Example 1.17 

Assume that R> l and A 2 A. Then for all k~ 2, A k= A, and 

f(A) aol + ~ akA k = aol + (~ ak) ·A= aol + ( /(1) ao)A. 

(1.37) 
This farmula is easy to compute. 

Example 1.18 

Assume that A= diag(Al, ... , An) with IAil <R (i l, 2, ... , n). 
Then 

00 

f( A) L ak diag(A7, ... , A~) 
k=O 

= diag( j(A1), ... , j(An)). 

Hence, a closed form representation is obtained again. 

Example 1.19 

LetA be a v-order Jordan block 

Al O 
A l 

A= 

l 
O A 

with lA l < R. Introduce matrix 

N= 

01 o 
o l 

l 
o o 

(1.38) 
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to have 
A -XI+N. 

Since N v == O, 

for all k ~ v. Therefore, 

where we used the fact that for l > k, 

(7) =0. 

Therefore, 

The matrix form of this representation is the following: 

f(--\) fr f'(,X) ~J"(--\) -if J"'(--\) · · · (v21)! J(v-l)(,X) 

f (A) fl f' (-X) ?fi J" (-X) · .. <v 2 2) 1 f C v- 2) ().) 

o 

f(--\) fr f'(--\) ·" (v23)! f(v- 3 ) (,X) 
f(,X) (v24)! f(v- 4 ) (--\) 

n!'(--\) 
f(--\) 

Nate that a finite representation is obtained. 

Example 1.20 

Assume now that A is a Jordan canonical form 

43 
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Since 

we have 

(

f(Jl) f(J2) o ) 
f(A) 

O f(Js) 

(1.40) 

Each diagonal block of this matrix can be determined by using the 
method of the previous example. 

Matrix functions are usually determined by using special matrix trans­
formations. This principle is based on the following result. 

THEOREM 1.16 
Assume that f(A) exists, and Jurthermare T is a nonsingular matrix of the 
same order as A. Then 

(1.41) 

PROOF Note first that for k 2:: l, 

Therefore, 

00 00 

f(TAT- 1 ) = Lak(TAT-1 )k = LakTAkT- 1 

k=O k=O 

l 

COROLLARY 1.5 
If A = T-1 · diag()q, ... , An) ·T, then the result of Example 1.18 implies 
t hat 

f(A) T-1 · diag(j(A1), ... , j(An)) ·T. (1.42) 
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COROLLARY 1.6 
In the general case A= T- 1 ·J· T, where J is a fordan canonical form given 
in Example 1.20. Therefore, 

f(A) O ) T. 

f(Js) 

(1.43) 

The theorem suggests the following algorithm for finding matrix func­
tions: 

Step l Transform matrix A to a special form Å = TAT- 1
. 

Step 2 Find f(Å). 

Step 3 Campute f(A) as T- 1/(Å)T. 

Nate that the first step can be performed by using standard computer 
packages. Several packages even campute special matrix functions, such 
as matrix exponentials (see Example 1.22 for definition). 

Example 1.21 

Let t be a positive integer, and let the eigenvalues of matrix A be 
A1, A2, ... , Ar with multiplicities m1, m2, ... , mr. We willpresent a 
special representation of A t. The result of this example will be used 
later in solving linear difference equations with eonstant coefficients. 
It is known from relation (1.30) that there exists a nonsingular matrix 
T such that 

where each matrix J j is a Jordan block. From Equation (1.41) we con­
dudethat 

(

Jt o) 
T-1. l J~ . T. 

o J~ 

Consicler first one block J} with order V j. Select function f (z) = z t, 
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then Equation (1.39) implies that 

ffi.i-1 

l) ... (t -l+ l)>.;-l = ).~ L tlMjl ' 
l=O 

where Ai is the eigenvalue in block J j, and Mjl is a eonstant matrix. 
If V j < mi, then Mjl O for l 2: V j. Therefore, 

o o 

o 
At T-IL J t. 

J T 
j=l o 

o o 

o o 

ffii-l o 
=T-IL>-~ L tl T. 

j=l l=O 

o o 

Because each eigenvalue appears in at least one Jordan block, 

r mi.-1 

A t = L >.~ L t z c il , (1.44) 
i=1 l=O 

where Cil is a eonstant matrix. We mention that this representation 
will have man y applications in later chapters. 

Example 1.22 

LetA be a square matrix and t be a real constant. In linear systems 

theory, the matrix exponential eAt has special importance, since in Sec­
tion 2.1.2 we willsee that the solutions of time-invariant linear differ­
ential equations can be easily constructed using these matrix functions. 
A special representation of this matrix exponential will be introduced 
next. Our derivation and the final result are analogous to those of the 
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previous example. Selectnow f(z) ezt, and ifJj is aJordan block, 
then from (1.39) we have 

where Kjl is a eonstant matrix. A similar argument that was shown 
in the previous example yields to our final form ula: 

r mi-l 
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eAt = L e..\it L tlBu ' (1.45) 
i=l l=O 

where Bil is a eonstant matrix. Like the previous example, this repre­
sentation will be applied frequently in later chapters. 

The derivations presented in Examples 1.21 and 1.22 have only the­
oretkal importance. In practical problems, matrices e At and A t are 
computed directly without repeating the above derivations. Such direct 
methods will be introduced in Example 1.23. 

Since matrix exponentials are often used in the theory of continuous 
systems, we now summarize their basic properties. 

THE O REM 1.17 
The following relations are true: 

(i) eA.o l. 

(ii) -fteAt =A. eAt. 

(iii) eAt . eAr = eA(t+r). 

(iv) (eAt)-1 =e-At. 

(v) If AB = BA, then eAt . eBt e<A+B)t. 

PRO OF 

(i) Use the definition of matrix functions to get eA.o 
(1/1!)0 + (1/2!)02 + ... =l. 

(ii) Simple differentiation shows that 

~ _.!._Akktk-1 
~ k! 
k= l 

l+ 
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00 l 
= A""""' A k-1tk-1 

Lt (k- l)! 
k=1 

A f ~Altl = AeAt . 
l=O 

(iii, v) We first provethat if MN = NM, then eM . eN eM+N. 

Note that the Cauchy product of infinite series implies that 

= ~ (~Mo. __!_Nm + ~M1. l Nm-1 + ... 
Lt O! m! l! (m-1)! 
m=O 

oo m 

- ""' ""' l Mn Nm-n 
-~o~ n!(m- n)! 

The assumption that matrices M, N commute has been used in applying 
the binomial theorem for matrices. If M and N do not commute, then, 
for example, 

(M+N)2 (M+N)(M+N) 

For proving relations (iii) and (v), select 
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M=At, N=Ar and M=At, N Bt, 

respectively. 

(iv) From (i) and (iii) we conclude that 

eAt . e-At = eAt-At eO _ 1 
- ' 

which implies the assertion. 

l 

Example 1.23 

Consicler ma trix 

which was the subject of our earlier Example 1.13. The matrix eAt will 
now be determined. In order to illustrate the methodology, several 
alternative approaches will be used. 

Method l. First we use the definition of matrix functions. Note 
first that 

A 2 = ( -w2 O ) = -w21 A3 = -w3B A4 41 t 
0 -w2 , , w , e c. 

In general, 

Therefore, 

At_~ _!_Ak k 
e -L--t k! t 

k=O 

(k=eveu) (k=od1l) 

49 
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cos(wt)I + sin(wt)B 

( 
cos(wt) sin(wt)) 

- sin(wt) cos(wt) 

Method 2. Next we apply the diagonal transformation of A, 
which was derived in Example 1.13. Combine that result with rela­
tion (1.42) to obtain 

o 

( 
( 

cos(wt) sin(wt)) 
- sin(wt) cos(wt) · 

Method 3. Now we apply the special form (1.45). Because the 
eigenvalues of A are distinct, m1 = m2 = l. Therefore, 

(1.46) 

where matrices B1o and B2o are to be determined. We can easily 
formulate two equations for the two unknowns in the following way. 
First, substitutet =O into the above equation to get 

I= B1o + B2o, 

where we used property (i) ofTheorem 1.17 .. 
Differentiate Equation (1.46) with respect to t andsubstitutet = O 

into the resulting relation to have 

Here we used property (ii) of Theorem 1.17. From the first equation, 

B2o I B1o, 

and by substituting this relation into the seeond equation, 

A jwB1o - jw(I- B1o) , 
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which implies that 

l . l ( jw w) B 10 = -.-(A+ JWl) = -
2

. . 
2JW JW -W ]W 

and 

Hen c e 

(

l j) ( l .) 
eAt = ~ -~ ejwt + 2 : e-jwt 

= ( cos(wt) sin(wt)) 
sin( w t) cos( wt) · 
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Discrete time-in variant systems are usually analyzed based on the 
properties of matrix A t, w hi ch are summarized next. 

THEOREM 1.18 
The following relations are true: 

(i) A 0 =I. 

(ii) At+l =A· At. 

(iii) At· A r = At+r. 

(iv) (A t) -l (A -l) t assunzing t hat A is invertible. 

(v) If AB= BA, then At· Bt = (AB)t. 

Because the proof of this theorem follo\VS immediately from the defi­
nition of matrix powers, the details are left as an exercise. 

Example 1.24 

In the previous example, At for matrix 

A= ( O w) -w O 

was determined by first observing and then proving the general form 
for A, A 2 , A 3, ... , A t. In most cases the general express i on for A t is 
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complicated, usually i t is hard (if not impossible) to guess from some 
initial terms. In this example we show two systematic methods for 
finding At for the above matrix. 

Method l. By using the diagonal transformation of A (which was 
determined in Example 1.13), we have 

( l l) ((j w) t O ) ( ~ -~) 
= j -j O ( -jw)t ~ ~ 

= ( ~[(jw)t + ( -jw)t] ~[-(jw)t + ( -jw)t]) 
~ [(jw )t ( -jw)t] ~ [(jw)t + ( -jw)t] 

Ift = 2m,then(jw)t = (-jw)t (-l)mwt,andift 2m+l,then 
(jw)t j( -l)mwt and ( -jw)t = -j( -l)mwt. Hence, if t= 2m, 
t hen 

and if t= 2m+ l, then 

Method 2. Next we use Equation (1.44), which has now the form: 

By substituting t O, 

and by substituting t l, 

A jwC1o + (-jw)C2o. 

The two equations for C 10 and C2o have the solution: 

and 

l j 
C1o =-l- -A 

2 2w 

l j 
C2o = -1+ -A. 

2 2w 
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Therefore, 

t ( . ) t [ l j ] ( . ) t [ l I j A] A = JW -1- -A+ -JW - +-
2 2w 2 2w 

which coincides with the result obtained by using the previous method. 

We conclude this section \vith a special matrix function, which will be 
applied in later chapters of this book. 

Example 1.25 

LetA be a square n1atrix, and assume that all eigenvalues of A are 
inside the unit circle of the complex plane. Consicler the function 

f(z) 

t hen 

l 
--=l+z+ 
1-z 

+z3 + ... ' 

Note first that in the case of the above series, R = l. Therefore, 
Examples 1.19 and 1.20 imply that the infinite matrix series f(A) is 
convergent. Hence, A k --7 O as k --7 oo. 

Next we prov e that f (A) (I - A) - 1. Consicler the equation 

(t 2:: O) 

and let t ---+ oo. Then 

I = f (A) · (I - A) , 

which implies that (I- A)- 1 exists and equals f( A). 
Finall y we no te that the results of this example have many applica­

tions in matrix theory. 

Proble11ts 

l. Assume that in Definition 1.1, condition (iii) is modified as fol­
lows: 

(iii') For all x, y, z E NI, p( z, x) ::::; p( x, y)+ p(y, z). 
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Prove that (i) and (iii') in1ply condition (ii). 

2. Prove that conditions (ii) and (iii) of Definition 1.1 and the as­
sumption that p( x, x) 2:: O for all x E 1\1 imply that p( x, y) 2:: O for all x, 
y 2:: o. 

3. Let M= R 1 and p( x, y) =(x- y) 2
• Is (M, p) a metric space? 

4. Construct a metric space that has closed balls B 1 and B2 such that 
B 1 is a proper subset of B2 , but the radius of B 1 is larger than that of B2 • 

5. Assume that (M, pt) and (M, p2 ) are metric spaces. Provethat 
(M, p) is also a metric space with p Pt + P2· 

6. Let M= M'= R 1 and A(x) =In x with D(A) (0, oo). If p and 
p' are defined as in Example 1.1,.is mappingA bounded? 

7. Assume that (M, p) is a complete me tri c space, M 1 ~ M is el osed, 
D(A) = M1,andR(A) ~ Af1. Assumefurthermorethatforallx,y E M1, 

p( A( x), A(y)) :::; p( x, y). Construct an example such that mappingA has 
no fixed point in 1\;fl· 

8. Construct an example such that under the conditions of the pre­
vious problem mapping A has infinitely many fixed points. 

9. Solve equation xex 1/2 by fixed-point iteration. 

10. LetA be an n x n real matrix such that IlA Il < l with some matrix 
norm. Prove that equation x = Ax + b has a unique solution for all 
bERn. 

11. Bound the eigenvalues of matrix 

A(-~~~) 
021 

by using the p l, oo and Frobenius norms. 

12. Apply first Theorem 1.9 for matrix 

( 

112) 
A= -111 , 

o 3 l 

and then, apply again for AT. Which case gives better results? 
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13. Find the n ull space of matrix 

A (-ii~) 
023 

14. Diagonalize and find decomposition (1.33) for matrix 

A G~). 
15. Find decomposition (1.34} for matrix 

A=(;~) 
16. Find eAt for 

A=GD. 
17. Find eAt for 

18. Fin d A t for 

A=G~)· 
19. Find At for 

20. 

(i) Prove the triangle inequality for Example 1.3. 

(ii) Prove Theorem 1.5 for the Frobenius norm. 

(iii) Prove Theorem 1.18. 
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21. Provethat the vector norms of n-element real (or camplex) vectors 
are equivalent to e a ch others. That is, if Il · · · Il and Il · · · Il' are two vector 
norms, then the re are positive eonstants a 1 and a2 s u ch that for all vectors 
x, 

22. Discuss an improvement of the Gerschgorm Theorem by using 
the fact that the eigenvalues of A and D- 1 AD are the same for all 
nonsingular diagonal matrices D. 
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23. U sing Theorem 1.8 and the fact that the characteristic polynomial 
of matrix 

O O O··· O -ao 
l O O··· O -al 

A= O l O··· O -a2 

O O O··· l -an-l 

is <p(A) = An +an-lAn-l + · · · + a1A + ao, show that all roots of this 
polynomial satisfy inequalities 

and 
n-l 

l A l :::; (n - l) + 'E lai 12 
· 

i=O 

24. LetA be an n x n real symmetric matrix and assume that A1 and 
An are the smallest and largest eigenvalues of A. Provethat 

and 
xTAx 

max-T- =An· 
x:pO x x 

25. Let A and B be n x n real matrices. Show that 

where IIAII:::; a and IIBII:::; f3. 



chapter two 

Ma thernatics of Dynamic 
Processes 

This chapter introduces conditions for the solvability of ordinary differ­
ential and difference equations, which will be fundamental in describing 
dynamic processes. In addition, the general solutions of such equations 
will be constructed in linear cases. In the eonstant coeffi.cient cases, 
La place transforms and Z- transforms serve as the most commonly used 
solution methods. Their definitions and main properties are also dis­
cussed in this chapter. 

2.1 Solution of Ordinary Differential Equations 
Dynamic systems with continuous time scale are usually modeled by a 
system of linear or nonlinear differential equations. Without defining 
the state of the system formally \Ve mention that the unknown of the 
differential equations is usually the state of the dynamic system under 
consideration. Therefore, the determination of the state requires the 
solution of the governing differential equations, and the examination of 
the properties of the state is based on those of the solution of differential 
equations. In this section the existence and uniqueness of the solutions 
of such equations are discussed, and methods \Vill be introduced to find 
t hem. 

2.1.1 Existence and Uniqueness Theorems 
In this subsection, conditions \vill be developed for the existence and the 
uniqueness of the solution of initial value problems of ordinary differen­
tial equations. Because the solution represents the state of the corre­
sponding dynamic system, the results of this subseetian are often used 
to determine whether or not a given differential equation represents a 

57 
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dynamic system. If no solution exists, then no state can be defined, and 
if the solution is not unique, then there is a multiple state for the system. 
In the theory of dynamic systems, we usually assume the existence of 
the unique state. 

Consicler the first-order explicit differential equation 

x f(t,x), (2.1) 

where x : I --7 Rn is an unknown real-variable, vector-valued function, 
and f : I x X --7 R n, where I is an in terval of the reallin e and X ~ R n. 

A function x is called the solution of the given differential equation 
on an interval I 1 ~ I, if for all t E I~, x( t) and x( t) exist, x( t) E X; 
furthermore x( t) = f(t, x(t)). 

In order to have a solution, function f must satisfy certain conditions, 
as the following example illustrates. 

Example 2.1 

Let n = l, I = R, X = R and 

f(t, x) (t) = {O if t is rational 
g l if t is irrational. 

We can easily show that Equation (2.1) has no solution. Assume that 
there is a solution x( t) on an interval I1 = [a, b], then the left-hand 
side x of the differential equation is integrable on I l· Therefore, the 
right-hand side must also be integrable on I1. But g is not integrable, 
which can be shown as follows. Consicler the Riemann sum of function 
g: 

N 

R L g(~i)(ti- ti-1)' 
i= l 

where a =to < t1 < · · · < t N 

is rational for all i, then g( ~i) 
to be irrational for all i, then 

N 

b, and for all i, ~i E [ti-1, ti]· If ~i 
O, therefore, R O. If ~i is selected 

R = L (t i - ti-1) = t N - to = b - a =f. O . 
i= l 

If N -? oo, we obtain different limits O and b - a for R. Hence 
J1 1 

g (t) d t does not exist. 

Assume next t hat to E I, and Xo E X are given. The initial val u e 
problem of the differential equation is given as 

x= f(t,x), x(to) = Xo . (2.2) 
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That is, a solution which passes through the point (t0 , x 0 ) is to be de­
termined as illustrated in Figure 2.1. In systems theory, x(t) usually 
denotes the state of the system at time t, and xo is the initial state 
when to= O. 

x 

solution of the 
initial-vaJue 

x" -------r problem 

Figure 2.1 Initial value problem. 

If to =/=O, then by introducing the new independent variable t' t- t0 , 

the initial value of t' becomes zero. 
The previous example shows that an initial value problem does not 

need to have a solution. The next example shows even if i t has a solution, 
the solution does not need to be unique. 

Example 2.2 

Consicler the one-dimensional initial value problem 

±=/Fl, x(l) =O 

with I = X R. Obviously the zero function (x1 (t) = O) satisfies 
both the differential equation and the initial condition. Consicler next 
the function 

X2(t) {
o if t< l 
( t 2 l ) 2 if t > l . 

Easy calculation shows that x2(l) O, x 2 is differentiable, and 

Hence x2 also solves the initial value problem. Therefore, x 1 (t) and 
x2(t) are both solutions. That is, the solution is not unique. 
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Note that in the above example, function f = JiXT is continuous. 
Therefore, even stronger conditions are needed to guarantee the unique­
ness of the solution. In contrast to this example, in dynamic systems 
theory we always assume t hat the governing dynamic relations ( differ­
ential or difference equations) and the initial values uniquely d etermine 
the solutions. Otherwise the future behavior of the system is absolutely 
unpredictable. These additional conditions and the resulting existence 
and uniqueness theorem are discussed next. 

Consicler the initial value problem (2.2), where I [to- a, t0 +a] and 
with some norm let 

X {x j11x xoll ~b} , (2.3) 

where b > O is given. Assume that f is continuous on I x X, and fur­
thermore it satisfies the Lipschitz condition, that is, there is a eonstant 
L > O such that 

(2.4) 

for all t E I and Xt, x2 E X. After proving Theorem 2.1 we willpresent 
an easy way to check if the Lipschitz condition holds for a given function 
f. 

Since f is continuous, 

Q = max Il f( t, x)ll 
(t,x)ElxX 

exists and is finite. Define finally 

. { b l 
a= min a, Q' L 

where c: > O is a small number. Sets I and X are illustrated in Figure 2.2. 

The main result of this seetian can be now formulated as follows. 

THEOREM2.1 
Under the above conditions, the initial value problem has a unique solution on 
the interval 10 = [to a, to +a]. 
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x 

Ix0 +b 

x1 x" x0 -h 

-----~x(t) 
(! 1 
l l l 

Figure 2.2 Illustration of Theorem 2.1 in one dimension. 

PRO OF 
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(a) First we provethat the initial value problem (2.2) is equivalent to 
the fixed-point problem 

x( t)= Xo + {t f( r, x( r)) dr. 
}to 

(2.5) 

Assume first that x is the solution of (2.2). Integrate both sides on 
interval [t0 , t] to get relation 

x( t) -x( to) {t f( T, x( r)) dr, 
}to 

and use the initial condition x(t0 ) x 0 to obtain (2.5). Assume 
next that x is a solution of the fixed-point problem (2.5). Differen­
tiate both sides and use the fact that f(r,x(r)) is continuous in T 

to derive 
x(t) = f(t,x(t)). 

Nowsubstitutet = t0 into (2.5) to get the initial condition. 

(b) Next we will verify that the fixed-point problem (2.5) satisfies all 
conditions of Theorem 1.3 which implies that there is a unique 
solution. 

Define M as the function space C(lo) (that is, the set of the 
continuous functions defined on lo) with distance p(x1 , x 2) 
maxtEin !lxt (t) x2(t) Il· Select 

lvft {x( t) l x E !VI, x( to) = Xo, lix( t) xoll ::; b for all t E lo} , 
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andmapping 

A(x)(t) = xo + lt f(r, x( r)) dr. 
to 

(2.6) 

The right-hand side gives the value of function A( x) at t. 
We know from Section 1.2.1 that M is a complete metric space, 
and because all conditions in defining M1 are el osed ( = or ::;), M1 
is a closed subset in M. Note that A(x) is defined on the entire 
M1, because f is continuous and therefore, the integral exists in 
the right-hand side of (2.6). Hence, we may select D( A) = M1 . 

NextweverifythatR(A) ~ M1,thatis,ifx E M1,thenA(x) E M1 . 

Obviously, A(x) is continuous, since for continuous f and x the 
right-hand side of (2.5) is differentiable with derivative f(t, x( t)). 
Simple substitution shows that A(x)(to) = x 0; furthermore for all 
t E lo, 

IIA(x)(t) - xoll \\1,: f(T, x( 7)) dT\\ ~ l: Il f( T, x( 7)) Il dT 

::; Q · l t to l ::; Q · a ::; b . 

Therefore, A(x) E M1. 
Finally we show that mapping A is a contraction on M1. Let 
x1, x2 E M1, then 
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~ p(x1, x2) ·L· max l {t dr l 
tElo }to 
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Since La < l, mapping A is a contraction, which completes the 
proof. l 

REMARK 2.1 In practical problems we can usually check if condi­
tian (2.4) holds. Assume that all partial derivatives of f with respect to 
the coordinates of x are bounded. If they are all continuous on X, then 
they are also bounded. Then the mean-value theorem of derivatives 
implies that (2.4) holds (see Problem 2/19). l 

REMARK 2.2 The proof of this theorem and that of Theorem 1.3 sug­
gest an iteration method for solving the initial val u e problem (2.2). Select 
the initial approximation for the solution as x 0 (t) = x 0 • Obviously, this 
eonstant function belongs to NJ1 • Construct the iteration sequence by 
the recursion 

(2.7) 

which uniformly converges on I 0 to the unique solution of the initial 
value problem. l 

The iteration method (2.7) is illustrated next. 

Example 2.3 

Consicler the one-dimensional initial value problem 

±=x, x(O) =l, 

which has the unique solution x( t) = et. In this case the iteration 
method (2.7) has the special form 

Selecting 
xo(t) = l, 
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we get the iteration sequence 

t2 
t+-

2 ' 

{t ( 72) t2 t3 
x3 (t) = l+ Jo l+ r+ 2 dr= l+ t+ 2 + 3! , 

and so on. It is easy to show by using finite induction that Xk(t) is the 
kth degree Taylor' s polynomial of et. Hence, Xk(t) ~et as t~ oo. 

This method, however, has only limited practical val u e, since in man y 
cases the convergence is very slow and the integration can be performed 
only by using numerical techniques. Therefore, this method is used only 
in certain special cases. A summary of modern computer methods for 
solving initial value problems can be found for example, in [42] and 
in (36]. 

Higher order initial value problems can be transformed into higher 
dimensional first-order initial value problems. Consicler the nth order 
one-dimensional explicit ordinary differential equation 

x<n) = f(t, x, x, ... ' x<n-1)) (2.8) 

with initial conditions 

x(to) = xo,x(to) =±o, ... ,x<n- 1)(to) (n-l) Xo . (2.9) 

Here x and x are the first and seeond derivatives, respectively. For 
k > 2, x(k) derrotes the kth derivative of x. 

Introduce the new variables 

· ·· (n-1) X1=X,X2=X,X3=X, ... ,Xn=X , 

then x<n) = Xn· Therefore, we obtain the following problem: 
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Xn-1 == Xn 

(2.10) 

with initial values 

x1 (to) xo, x2(to) ==±o, ... , Xn(to) == x~n- 1 ) . (2.11) 

Note that the resulting equations form an n-dimensional tirst-order ini­
tial value problem. 

Example 2.4 

Consicler the seeond-order initial value problem 

x(O) ±(O) == l . 

By introducing the variables X1 x and X2 == x, Equation (2.10) can 
be written as 

and the initial conditions (2.11) are x1 (O) == x2(0) == l. Hence, the 
seeond-order initial val u e problem is reduced to the initial value prob­
lem of a system of first-order differential equations. 

2.1.2 Solution of Linear Differential Equations 
The state of continuous linear systems is obtained by solving the gov­
erning linear differential equation, which therefore, is the basis for deter­
mining the state and investigating the properties of the state of linear 
systems. We discuss this problem area in this subsection. First the 
existence of the unique solution is examined, and then the solution is 
determined in a closed form, \vhich makes the computation procedure 
very attractive. 

In this section the solutions of linear ordinary differential equations of 
the form 

x== A(t)x +f( t) (2.12) 
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are examined, where A(t) is an n x n matrix, and f(t) is an n-element 
vector. I t is assumed t hat all elements aij of A and all elements f i of f 
are continuous functions of t on a closed finite interval I c R. 

Note that the right-hand side function is continuous, and IIA(t)ll is 
bounded, since it is continuous. Furthermore, the right-hand side of the 
differential equation satisfies the Lipschitz condition: 

JI(A(t)xl + f(t))- (A(t)x2 + f(t))ll = IIA(t)(xl x2)ll 

for all t E I and x1, X2 E Rn, where L is an upper bound for IIA(t)ll· 
Consequently, the initial value problem 

x= A(t)x +f( t), x(to) = xo (2.13) 

has a unique solution for all to E I and x 0 E R n. By using a slight 
refinement of the proof of Theorem 2.1 we can verify that the unique 
solution is defined on the entire interval I. 

Consicler first the corresponding homogeneous equation: 

x A(t)x. (2.14) 

Let to E J, and for k = l, 2, ... , n consicler the initial conditions 

x(to) =ek , (2.15) 

with ek being the kth basis vector (0, ... 'o, l, o, ... ' o) r, where the kth 
element equals l and all other elements equal O. Let Xk denote the 
unique solution of this initial value problem with fixed k, and construct 
the n x n matrix 

<P( t, to) = (x1 (t), x2(t), ... , Xn(t)) . 

THEOREM2.2 
For all t E J, matrix <P( t, t0 ) is nonsingular, and the general solution of the 
homogeneous Equation (2.14) is given as 

x( t) <P( t, to)c, (2.16) 

where c is a eonstant vector. 
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PRO OF First we provethat (2.16) satisfies the homogeneous equation 
with arbitrary c E R n. If c= (ck), then 

n 

x( t) =I: CkXk(t) , 
k=l 

therefore, 

n n n 

x(t) =I: CkXk(t) =I: CkA(t)xk(t) = A(t) I: CkXk(t) A(t)x(t) . 
k=l k=l k=l 

Nextweverifythatcj:J(t, t0 ) isnonsingular, thatis, itscolumnsx1 (t), ... , 
xn(t) are linearly independent for all t E I. In contrast to this assertion 
assume that there is a t1 E I such that 

where the eonstants a1, ... , an are not all zero. Define function 

and note that it satisfies equation (2.14), since it has the form of (2.16) 
with c (ak)· Furthermore z(ti) = O, that is, function z solves the 
initial value problem 

z A(t)z, z(ti) O. 

The linear independence of the basis vectors ek (l ::; k ::; n) implies that 
z( to) =f. O, hence z( t) is not identically zero. Note that function x( t) =O 
also solves this initial value problem, and we obtained a contradiction 
to the uniqueness of the solution. 

Finally we show that any solution x( t) of the homogeneous equation 
can be written in the form of (2.16). Let x( t) be a solution with x( t0 ) = x 0, 

then x satisfies the initial value problem 

x= A(t)x, x( to)= xo. (2.17) 

Consicler next the function 

z( t) = l/J( t, ta)xo , 

which is a solution of the homogeneous differential equation; further­
more, 

z(to) = (xl(to), ... ,xn(to))xo (eb ... ,en)Xo =I· xo = xo. 
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Hence x and z sol ve the same initial value problem. The uniqueness of 
the solution implies that z(t) x(t) for all t E I, which completes the 

proof. l 

)~~ COROLLARY2.1 
From the end of the proof rue conclude that the particular solution of the initial 
value problem (2.17) is given as 

x( t) t/J( t, to)xo . (2.18) 

Matrix tjJ(t, t0 ) is called the fundamental (or the transition) matrix of 
equation (2.14). 

THEOREM2.3 
The fundantental matrix satisfies the following proper ties: 

(i) t/J( to, to) =I; 

(ii) t/J( t, ti)tfJ(tb to) </>(t, to); 

(iii) tjJ(t1, to)-I = t/J(to, ti); 
(iv) (ajat)tjJ(t, t0 ) A(t)tjJ(t, to); 

(v) (a j at) t/J (to , t) = -t/J (to , t) A (t). 

PRO OF 

(i) The construction of the transition matrix implies that 

</>(to, to) (xi(to), ... ,xn(to)) (eb ... ,en)= I. 

(ii) The solution of the initial value problem (2.17) is x( t) = tjJ(t, t0 )x0 • 

Denote XI = tjJ(ti, t0 )x0 , then x( t) obviously satisfies the initial 
value problem 

x= A(t)x, x(ti) =XI . 

Fromformula (2.18), however, we know that its solution is 

therefore, the uniqueness of the solution implies that this function 
equals x: 
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Vector x0 is arbitrary, which implies the assertion. 

(iii) Substitute t to into (ii) and use (i). " 

(iv) Simple calculation shows that 

= (A(t)x1(t), ... ,A(t)xn(t)) = A(t)(x1(t), ... ,xn(t)) 

A(t)lj>(t, to) . 

(v) From property (iii) we know that 

l/>( to, t)lj>(t, to) =I. 

Differentiating both sides with respect to t yields the relation 

a a 
at 4>(to, t)lj>(t, to) +l/>( to, t) at l/>( t, to) = o ' 

which implies that 

-4>(t0 , t)A(t)lj>(t, t0 )4>- 1 (t, to)= -4>(to, t)A(t). 

l 

REMARK 2.3 Assume that the n x n matrix X( t) satisties the matrix 
initial value problem 

X(t) =A( t)· X(t), X(t0 ) =I. (2.19) 

Then X( t)= lj>(t, t0 ), which follows from the uniqueness of the solution 
of the initial value problems (2.14) and (2.15). l 

Example 2.5 

As a particular numerkal example, we now solv e the initial val u e prob­
lem 
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x(O) =C) 
using the above results. 

First the fundamental matrix will be determined by solving the 
initial-value problem (2.14) and (2.15). 

For k l, we have the problem 

. (t t) x= o 2t x, x(to) = (~). 

If x 1 and x2 denote the components of x, then this equation can be 
rewritten as 

The seeond equation is separable: 

from which we have 

2tdt' 
and by integration 

logx2 = t 2 +log C, 

where the integration eonstant is log C. Hence, 

The initial condition implies equality 

therefore, C = O, and X2 (t) O. Then the first equation simplifies as 

By separating the variables we get 
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or 
dx1 - = tdt. 
X l 

By integration 
t2 

2 +logG, 

so 
2 

x1(t) Ge~. 

The initial condition implies that 

l 
to2 

x1 (to) = Ce2"" , 

therefore, 

C= 

and hence 

For k = 2, we have the similar problem 

x(to) = (n , 
which can be rewritten as 

We have already derived the general solution of the seeond equation, 
and this new initial condition implies that 

so 

and hence 

l 
t 2 

x2(to) = Ge 0 
, 

Substituting this function into the first equation, an inhomogeneous 
linear equation is obtained: 

71 



72 chapter two: Mathematics of Dynamic Processes 

From the previous case we know that the general solution of the ear­
respanding homogeneous equation is 

Assume now that C also depends on t, andsubstitutethis form ula to 
the inhomogeneous equation: 

which implies that 
1.2 2 

tey-to ' 

therefore, 

with some eonstant k. So, 

1.~ 
The initial con di tio n x 1 (to) = O im p lies t hat k = -e-2, and hen c e 

The columns of qy( t, to) are the above solution vectors: 

cf>( t, to) = ( 
o 

If to =O, then 

tjJ(t, O) 

We can easily show that this matrix as X( t) satisties relations (2.19) 
with t 0 0: 

:t cf>(t, O) = (te: 
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and 

Then the solution farmula (2.18) implies that 

x(t) = ( 
0 

The inhomogeneous equation (2.12) will be solved next. Look for the 
solution in the form 

x( t) = 4J(t, t0 )k(t) , (2.20) 

which is a modification of (2.16), where k now depends on t. Since 
4J(t, t0 ) is nonsingular, an arbitrary vector-valued function can be rep­
resented in this form. Simple substitution shows that x(t) is a solution 
if and only if 

a . . 
at if>( t, to)k(t) +if>( t, to)k(t) == A(t)if>(t, to)k(t) +f( t) . 

By using properties (iii) and (iv) of Theorem 2.3, we conclude that this 
equation is equivalent to relation 

k( t) 4J(t, t0 )-
1f(t) = 4J(t0 , t)f(t) . 

If to is any point in I, t hen 

k( t) lt 4J(to, r)f(r) dr+ k1 , 
to 

where k 1 is a eonstant vector. Substituting this expression into (2.20), 

x( t) 4J(t, to)kl + lt 4J(t, to)4J(to, r)f(r) dr , 
to 

that is, 

x( t) 4J(t, to)kl + lt 4J(t, r)f(r) dr , 
to 

(2.21) 

where \Ve used property (ii) of Theorem 2.3. This farmula gives the 
general solution of the inhomogeneous equation. 

The solution of the initial value problem 

x A(t)x +f( t) , x(to) xo (2.22) 
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can be obtained by substituting the general solution fermula (2.21) into 
the initial condition. Since 

the initial condition is satisfied if and only if k1 = Xo. Hence the partic­
ular solution of (2.22) has the form 

x( t)= l/J( t, to)x0 + lt ljJ(t, 7)f(7) dT. 
to 

(2.23) 

In many applications, the coefficient matrix is periodic, that is, there 
is a T > O such that for all t ~ O, A(t +T) A(t). It can be proven 
that the fundamental matrix for a periodic matrix A(t) can be written 
in the form 

l/J( t, to) P(t)eR(t-to)p-l(to) ' 

where R is a eonstant (possible complex) matrix having the same size 
as A(t), and P(t) is a continuously differentiable matrix function that 
also has the same size and period as A(t) and is invertible for all t. 
This form is known as the Floquet decomposition. We mention here 
that the computation of this decomposition is rather complicated and 
involves computing the natural logarithm of an invertible matrix. For 
details see, for example, (32], and for a special case, see Problem 2/25. 

Consicler next the special case when A(t) A, that is, when the 
coefficient matrix is constant. Then the fundamental matrix can be 
easily obtained as it is given by the following theorem. 

THEOREM2.4 
If A( t) A, then 

l/J( t, to) eA·(t-to) . (2.24) 

PROOF Itis sufficienttoshowthatthismatrixsatisfiesconditions (2.19). 
U se properties (i), (ii), and (iii) of Theorem 1.17 to conclude that 

and 

a 
at l/J( t, to) d A·t -A·to A A·t -A·to -e ·e = e ·e 

d t 

= AeA·(t-to) = AljJ(t, to) . 
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These equations complete the proof. l 

Example 2.6 

Now we solve the initial value problem 

x(O) O) . 
In Example 1.23 we computed eAt for this particular coefficient matrix. 
Therefore, (2.24) implies that 

lf>(t t ) = ( cosw(t- to) sinw(t- t0 )) 
' 

0 sinw(t- t0 ) cosw(t- to) ' 

and from (2.23) we conclude that 

x( t) = ( c os w (t - O) sin w (t - O) ) ( 1 ) 
-sin w( t- O) cosw(t- O) O 

+ {t ( c~sw(t- r) sin w( t- r)) (O) dr 
} 0 - s1nw(t r) cosw(t- r) l 

( 
cos wt) {t ( sin w (t r) ) d 

= - sinwt + }0 cosw(t- r) 7 

= ( c~s wt ) + _!_ ( l -. cos wt) 
- s1nwt w s1nwt 

_!_ ( l + (w - l) cos wt ) 
w -(w- l) sinwt · 

Hence the solution of the initial value problem is determined. 
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Finall y \Ve mentio n that matrix exponentials (and therefore, the fun­
damental matrix) can be determined by using standard computer pack­
ages. 

2.1.3 Laplace Transfarin 
In this subseetian \Ve introduce a very useful function transformation, 
known as Laplace transform. It allo\vs us to reduce the solution of lin­
ear differential equations \Vith eonstant coeffi.cients to the solution of 
algebraic equations, which are easier to solve. 
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Laplace transforms are defined as follows. 

DEFINITION 2.1 Let x(t) be a real- or vector-valued function defined for 
t ~ O. Then the La place transform of x is defined as the improper integral 

X(s) fooo x(t)e-ts dt, (2.25) 

where s is a camplex variable. 

Nate that Laplace transforms are mappings from a function space inta 
another function space. In the above notation X (s) d enates the value 
of the image function at s. 

The abscissa of convergence is the smallest real number a such that 
the integral (2.25) exists for all s such that Res > a, where Re means 
the real part of a camplex number. 

In the first part of this subseetian the fundamental properties of the 
Laplace transform are summarized and then the Laplace transforms of 
same well-known functions are determined. The application of Laplace 
transforms for solving differential equations will be discussed in the third 
part of this section. 

We start our analysis with an important existence theorem. 

THEOREM2.5 
Assume that x is integrable and 

(t~ O) (2.26) 

with some real eonstants k> O and a. Then X(s) exists for all Res> a. 

PROOF Let s= s1 + js2, then 

w hi ch is finite for all s1 > a. l 

The most used properties of Laplace transforms are summarized as 
follows. 
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THEOREM2.6 
The Jollarving relations are true: 

(i) Ifx(t) = x1(t) + x2(t), then X(s) = X1(s) + X2(s). 

(ii) If x( t) = ax1(t), then X(s) aX1(s). 
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(iii) If x(t) x 1 (t 6) 'With son1e 6 > O, zvhere x 1 (t) O for t < O, then 

X(s) e-s6. X1(s). 

(iv) If x(t) = x1 (t)eo:t with some real eonstant a, then 

X(s) = X1(s- a). 

(v) If x(t) = x1 (~)(T> O), then 

X(s) T· X1 (sT). 

(vi) Ifx(t) x1(t), then 

X(s) = -x1(0) + sX1(s), 

and in general, if x( t) x in) (t), then 

(vii) Ifx(t) J~x1(r)dr,then 

X(s) 
l 
-X1(s), 
s 

and in general, if x(t) = J~ J;1 · · · J;n-l xl(rn) drn dr n-l ... dr1, 
t hen 

..,Y(s) 
l 

-X1(s) . s n 

(viii) If x is the convolution of x1 and x2, that is, if 

t hen 
X(s) = Xt(s) · X2(s). 
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PROOF Properties (i) and (ii) are the simple consequences of the 
linearity of the integral. Relations (iii) through (vii) can be shown by 
simple calculations based on the elementary facts of integral calculus: 

6)e-st dt. (iii) X (s) J000 x (t) e-st = J000 x 1 (t 
Introduce the new variable T t - 6, then this integral equals 

where we used the fact that x1 (T) = O for T < O. 

(iv) X(s) J
0
00 x1(t)eate-st dt J

0
00 x1(t)e-(s-a)t dt 

(v) X(s) J0
00 x1(~)e-st dt = J0

00 T· x1(T)e-sTr dT 
where we introduced the new variable T = t /T. 

(vi) Integrating by parts, 

X1(s- a). 

T· X1(sT), 

and the general case can be proven by the repeated application of 
the above formula. Let x 1k(t) denote the kth derivative of x 1(t). 
Then 

(n-1)( ) [ (n-2)( ) X ( )] -x1 O +s· -x1 O +s· l,n-2 s 

(n-l) (O) (n-2) (O) 2X ( ) = -x1 -s· x 1 +s l,n-2 s = · · · 

= -xin-1) (O) s. xin-2) (O) - s2 . x~n-3) (O) - ... 

(vii) Using the previous identities and observing that x1 =±(or x 1 = 
x< n)), furthermore x(O) O (or x(O) =±(O) x< n-l) (O) 0), 
we obtain identities 
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X1(s) s· X(s) (or X 1 (s) s n · X (s)) , 

from which the assertions follow immediately. 

(viii) Interchange the integrals and use identity (iii) to have 

== X1(s) · X2(s). l 

The Laplace transforms of the most commonly used functions are 
summarized in Table 2.1. These relations are verified next. 

Table 2.1 Laplace Transforms of Common 
Functions 

l No. l x(t) X(s) 

l e at _l_ 
s-a 

{lift> o l 2 uni t step = 
0 

h . 
ot erw1se s 

3 t n n! 
s n+ l 

4 tneat n! 
{s-a)n+l 

5 coswt ~ 
6 sinwt w 

s2+w2 

7 eo:t coswt s-o: 
(s-a) 2+w'i 

8 eo:t sinwt w 
,:l .:l 

c.;> ...... , -~ 

9 bc;(t) { l l c if o < t :::; c 
O otherwise 

_!_(l 
se 

e-se) 

lO unit impulse 6(t) == limc:-70 8c:(t) l 
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Numbers l, 3, and 9 are proven by simple integration: 

1
00 100 l eat. e-st dt = e<a-s)t dt = --

0 o s-a 
(Res> a), 

ni 1oo n! _:_ t0 e-st dt = 
sn o 

and ioo [l l Or:;(t)e-st dt = d t -(1 -se;) e . 
.o o c s c 

Select a= O in No. l to prove identity 2. Use No. 3 and Property (iv) 
of Theorem 2.6 to verify No. 4. Note that No. 5 and No. 6 are implied 
by ideutities 

coswt 
2 

sinwt 
2j 

and the linearity of the La place transform. U se again property (iv) of 
Theorem 2.6 and the previous cases to show No. 7 and 8. The last row 
of the table is verified by letting c---+ O in the result of No. 9: 

-se:) l' se-se: l e =Im--=, 
c:---+0 s 

w here we used the L 'Hospital rule. 
As an example, Figure 2.3 illustrates function tn and its Laplace trans­

form for n 2. For the sake of simplicity, only nonnegative values of t 
and s are considered. 

Note that function Or:; is very seldom used in practical cases. However, 
it has a great theoretical importance because the unit impulse function 
is defined as its limit for c ~ O. 

Laplace transforms are very useful in solving linear ordinary differ­
ential equations with eonstant coefficients. The main idea is based on 
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x, X 

5 

4 

3 

2 

2 3 4 5 t, s 

Figure 2.3 A function and its La place transform. 

Property (vi) of Theorem 2.6 reducing differential equations to algebraic 
equations, which are easy to solve. Consicler first an nth order initial 
value problem 

(o) '(O) . (n-1)(0) (n-1) x =xo,x =xo, ... ,x =x0 . (2.27) 

Apply the Laplace transform on both sides, and use Property (vi) of 
Theorem 2.6 to obtain equality 

+ .. · + al[-x(O) + sX(s)] + a0X(s) F(s) , 

where X(s) and F(s) are the Laplace transforms of x(t) and f(t), re­
spectively. This equation can be rewritten as 

X(s) = q(s) + F(s) 
p(s) p(s) ' 

(2.28) 

where 
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and 

q( s) = sn- 1x(O) + sn- 2 [x(O) + an-Ix(O)] + · · · 

Note that in the special case when all initial values x(O) x(O) = · · · = 
x<n-l)(O) O, q(s) = O. That is, the first term becomes zero. After 
X(s) is computed, x(t) has to be determined. In special cases we can 
use the results of Table 2.1. As an example, assume that F( s) is a 
rational function. Then X (s) is also rational. Assume that X (s) is 
strictly proper and the roots AI, ... , Ar of its denominator are distinct. 
Then the partia l fraction expansion of X (s) is as follows: 

X(s) (2.29) 

where R1, ... , Rr are constants. Use No. l of Table 2.1 to conclude that 

(2.30) 

Assume next that the roots A I, ... , Ar have multiplicities m 1 , ... , mr· 
Then the partial fraction expansion of X (s) can be \Vritten as 

X(s) = __ t-+ t + ... + tmi ' 
r [ R·1 R·2 R· J 
~ s- Ai (s Ai)2 (s- Ai)m' 

(2.31) 

where the numbers Rij can be determined by using elementary methods, 
which will be illustrated in Example 2.7. To recover x(t), use No. 4 of 
Table 2.1: 

(2.32) 

This procedure can be summarized as follows: 

Step l A p p ly La place transform on bot h sides of the differential equa­
tion. 

Step 2 Solve the resulting algebraic equation. 

Step 3 Apply inverse transform to recover the solution of the original 
problem. 
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Figure 2.4 illustrates this procedure. 

Original space Transform space 

Original problem Algebraic equation 

algebraic equation 

solution of original 
problem 

solution of transformed 
problem 

Figure 2.4 Application ofLaplace transforms in solving differential equations. 

Example 2.7 

First we solve the initial value problem 

x- 3± + 2x 4, x(O) =O, ±(O)= l. 

By using Laplace transform on both sides of the equation we have 

. 4 
-x(O)- sx(O) + s2 X(s)- 3( -x(O) + sX(s)) + 2X(s) =-, 

which implies that 

X(s)(s2 

Therefore, 

1+1. 

4 
3s + 2) =-+l. 

s 

s+4 X(s)- s 
- (s-l)(s-2) s(s-l)(s-2) · 

s 

Because the denominator has distinct roots, relations (2.29) and (2.30) 
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can be used. The unknown coefficients of the parti al fr action expansion 

s+4 
s( s- l)(s- 2) 

R1 R2 R3 -+--+-­s s-1 s-2 

can be obtained by applying one of the following methods. 

(2.33) 

Method l (Alg e braic approach). Multiply both sides by 
s (s - l) (s 2) and re arrange the terms to get 

Camparing the like coefficients, the linear equations 

R1 + R2 + R3 ==O 

are obtained; therefore, the solution is 

Thus, we conclude that 

2 5 3 
X(s) == --+-, s s-1 s-2 

and (2.30) im p lies that the solution is as follows: 

Method 2 (Residue method). Firstmultiplybothsidesof(2.33) 
by s and then evaluate the resulting equation at s O to get 

s+ 4 ( R2 R3 ) 
(s l)(s 2) ls=O = Rl +s ~ + s- 2 ls=O' 

which implies that 

4 
R1 = (-l)( _ 2) = 2. 
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Next multiply both sides of (?.33) by (s - l) and evaluate at s = 1: 

sts~~)ls=l Rz+(s-1) (~1 
+ 

8
_ 2 ) ls=l; 

therefore, 

R - l +4 = -5. 
2- l· 

And finally, multiply both sides of (2.33) by (s - 2) and evaluate at 
s 2. The resulting relation is 

that is, 
R _ 2+4 

3 - 2 ·l 3. 

Nate that this is the same result we derived before. 

Example 2.8 

Next we solve the initial value problem 

x x= l, x(O) O, ±(O) = l. 

By using Laplace transform on both sides of the equation we have 

-x( O) 
l 

sx(O) + s 2 X(s)- ( -x(O) + sX(s)) = , 
s 

which can be rewritten as 

? l 
X (s) (s- - s) = - + l . 

s 

Therefore, 

Nate that the roats of the denaminatar are .\1 O and .\2 = l with 
multiplicities m 1 = 2 and m2 = L Therefore, X (s) can be w ritten in 
the more general form of (2.31), which specializes to the following: 
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Ru R12 R21 -+-+-. s s2 s- l 
(2.34) 
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The unknown eonstants R11, R12, and Rz1 can be determined by using 
either of the methods shown in the previous example. 

Method l. Multiply both sides by s2 (s - l) and rearrange the 
terms: 

Compare the like terms to get the linear equations 

Ru + R21 =O 

-Ru +R12 =l 

-R12 =l. 

The solution is 

Ru = -2, R12 = -1, 

Method 2. Multiply both sides of (2.34) by s2 to get equation 

s+l 2 R21 
--=Rus+R12+s ·--. 
s-1 s-1 

Substitute s = O to conclude that R12 = -l. Because Ru is mul­
tiplied by s, it cancels at s = O. That is, R11 cannot be determined 
directly. However, by differentiating both sides, multiplier s disap­
pears. The resulting equation becomes 

(s- l)- (s+ l) _R 2 . -R21 2 ,. R21 
(s-1)2 - u+s (s-1)2 + s s-1· 

Evaluate this equation at s = O to conclude that 

Ru = -2. 

Multiply next both sides of (2.34) by s - l and evaluate at s = l: 

s+ l (Ru R12) 
- 2-ls=l = R21 +(s -l) - + - 2 ls=l, s s s 

which im pliesthat R21 = 2. 
Therefore, 

2 l 2 
X(s) = ----+-, 

s s2 s- l 
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and from relation (2.32) we have the solution: 

x( t) e0 ·t( -2- t)+ e1·t · 2 -2- t+ 2et. 

In the general case, w hen a root Ai has multiplicity mi, multiply first 
Equation (2.31) by (s .Ai)mi, then differentiate the resulting equation 
O, l, 2, ... , mi - l timesand substitute s Ai to these equations to 
recover the eonstants Ril, Ri2, ... , Rim.i. 
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O ur next example illustrates a c ase w hen X (s) is rational b ut not 
strictly proper. 

Example 2.9 

Assume that the La place transform of a function is 

X(s) 

Thenit can be rewritten as the sum of a polynomial and a strictly proper 
rational function: 

with 

Simple calculation shows that 

l l 
X2(s) == - + --. 

s s l 

Then the last row of Table 2.1 and relation (2.30) imply that 

== b (t) + l + et . 

Consicler next the system 

x Ax+ f(t), x(O) xo , (2.35) 

where A is an n x n eonstant matrix and f is an n-dimensional function 
of t. By applying the La place transform on bot h sides, we have equation 

-x(O) + sX(s) A· X(s) + F(s) , 
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that is, 
(si- A)X(s) = xo +F( s) . 

Assuming that s is not an eigenvalue of A, si - A is invertible and 

X( s)= (si- A)- 1(xo +F( s)) . (2.36) 

The components of x( t) can then be recovered by applying the above 
methods. 

Example 2.10 

Consicler again the initial value problem 

x(O) O) 
of Example 2.6. In our case, 

A= ( O w) 
-w O ' f(t) = (n , and xo=(~)· 

By using No. 2 of Table 2.1 we have 

( ) ( 

1/w + (1-1/w)s) 
s s2+w2 

' 

and from Nos. 5 and 6 of Table 2.1 we have 

( 
.l + (l - .l) c os wt ) 

x(t) = w -w+1 ~ t 
-w-SlnW 

Hence, the solution is determined. 

~ ( l + (w - l) cos w t) 
w -(w- l) sinwt · 

In cases w hen we cannot recognize x( t) from X (s) by using Table 2.1 
and/or elementary methods, the following general result may be useful. 



2.2 Solution of Difference Equations 89 

THEOREM2.7 
Assume that a is the abscissa of convergence in the Laplace transform of x( t). 
Then x( t) can be determined with the inversion farmula 

x(t) 
l 1ao+joo 
~ X(s)e 8 t ds, 

1fJ ao-joo 
(2.37) 

where a0 > a is arbitrary. 

REMARK 2.4 Note that the integration domain ma y be an y vertical 
line in the complex plane that lies in the region of convergence. 

The proof of this result can be found for example in [26]. We note that 
the integral (2.37) is usually difficult to compute, therefore, the direct use 
of the inversion formula is not an easy task. However, one may apply 
numerical integration and standard computer progran1s to determine 
the values of the integral (2.37) for given values of t. l 

2.2 Solution of Difference Equations 
Dynamic systems with discrete time scale are usually modeled by a sys­
tem of difference equations. The solution of the difference equations 
represent the state of the dynamic system. Therefore, the determination 
of the state requires the solution of the governing difference equations. 
Similar to the differential equation case discussed earlier in Section 2.1.2, 
this section gives a summary of the existence and solution methodology 
of nonlinear and linear difference equations. 

2.2.1 General Sol-utions 
In this subsection, the existence of the unique solution of the initial value 
problem of difference equations is discussed. Similar to the differential 
equation case, the results of this subseetian are useful in determining 
whether or not a given difference equation really represents a dynamic 
system with discrete time scale. 

Consid er the first-order explicit difference eq uation 

x(t +l) f(t,x(t)) (2.38) 

where x : N -l> R n is an integer variable vector-valued unknown function 
(here N {0, 1,2, ... }) and f : N x X -l> Rn, where X ~ Rn. A 
function x is calku the solution of the above difference equation if for 
all t E N, x(t) E X and Equation (2.38) is satisfied. In the case of 
difference equations, we will always assume that the initial time is zero. 
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This assumption willmake all further formulatians easier without losing 
the essence of the problems. If the initial time to f= O, then we have to 
introduce a new time-variable t' =t to. Nate furthermore that there 
is an obvious analogy between the difference equations (2.38) and the 
iteration process (1.18) for solving fixed-point problems. 

Nate first that function f and set X should satisfy certain conditions 
in order to have a solution, as illustrated in the following example. If no 
solution exists, Equation (2.38) cannot describe the behavior of dynamic 
systems. 

Example 2.11 

Consicler equation 

x(t +l)= v-lx(t)l-1. 

Note first that function 

f(t,x) ~ l 

is defined only for x =O. Therefore, we must select x(O) O in order 
to start the solution. Then 

x(l) J -lx(O)I- l -l, 

which cannot be substituted in to function f. Hence no solution exists. 

Our main existence result can be summarized as follows. 

THEOREM2.8 
Assume that for all x E X and t E N, f(t, x) E X. Then there is a unique 
solution in X startingfrom any arbitrary initial value x(O) = x0 E X. 

PRO OF If x( O) E X, then f(O, x( O)) exists and is in X. Therefore, 
x(l) E X. By induction, assume that x( t) E X. Then f (t, x( t)) exists 
and is in X, that is, x( t + l) E X. Hence, the proof is completed. l 

Higher order difference equations are given by the recursion 

x(t+n) f(t,x(t),x(t+l), ... ,x(t+n-1)), (2.39) 

and in order to guarantee the uniqueness of the solution, the initial 
values 

x( O) = xo, x(l) x1, ... , x( n- l) Xn-1 (2.40) 
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are given. As in the case of higherorder ordinary differential equations, 
it is possible to transform Equation (2.39) inta a first-order system of 
the form (2.38). This transformation is based on the introduction of the 
new variables 

XI (t) ==x( t), x2(t) ==x( t+ 1), ... , xn(t) =x( t+ n- l) . 

Then we have the first-order system 

Xn-I (t+ l) Xn(t) 

Xn(t +l)== f(t,xi(t), ... ,xn(t)) (2.41) 

of difference equations with initial values 

(2.42) 

Example 2.12 

Consicler the seeond-order initial value problem 

x(t + 2) t+ x(t) + x(t + 1)2
, x(O) == x(l) l . 

Introduce the new variables XI (t) = x(t) and x2 (t) == x(t +l), then 
Equation (2.41) can be rewritten as 

and the initial conditions (2.42) are 
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2.2 .2 Solution of Linear Difference Equations 
The state of discrete linear systems is obtained as the solution of the 
governing linear difference equation, which therefore, is the basis for 
determining the state and investigating the state properties. In this 
subseetian the solution of linear difference equations is examined; the 
closed form solution introduced next is often applied in solving practical 
problems. 

Consicler the linear difference equations of the form 

x(t +l) A(t)x(t) + f(t) (2.43) 

where A(t) is an n x n matrix and f(t) is an n-vector defined for all 
t E N. Obviously this equation satisfies the conditions of Theorem 2.8 
with X = R n; therefore, for all x 0 E R n, there is a unique solution 
satisfying the initial condition x(O) = xo. 

First, a general farmula will be derived for the solution of Equa­
tion (2.43). The repeated application of Equation (2.43) gives the solu­
tions: 

x(l) = .A(O)xo + f(O) , 

x(2) A(l)x(l) + f(l) 

= A(l)A(O)x0 + A(l)f(O) + f(l) , 

x(3) A(2)x(2) + f(2) 

A(2)A(l)A(O)x0 + A(2)A(l)f(O) + A(2)f(l) + f(2) , 

and so on. By using finite induction, it is easy to see that, in general, 

x( t) =A( t l)A(t- 2) ... A(l)A(O)x0 + 

t-2 L A( t l)A(t 2) ... A( T+ l)f(T) +f( t- l) . 
T=O 

The third term, f(t 1), can be considered as the extension of the 
summation for T t - l, because in this case, T + l > t - l, so 
A(t-l)A(t-2) ···A( T+ l) represents an "empty" product with identity 
matrix value. Introduce the notation 

<jJ(t,T) A(t l)A(t-2)· ... ·A(T) 
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to o btain the general formul a 

t-1 

x( t) ==cp( t, O)xo +L fjJ(t, T+ l)f(T) . (2.44) 
r=O 

Note that this equation is analogous to the general solution (2.23) of 
linear inhomogeneous first-order differential equations. In that ease, 
integral substitutes the summation. 

Consicler next the homogeneous ease when f( t) O for all t E N. Then 
the seeond term of (2.44) equals zero, and henee, the general solution of 
the resulting homogeneous equation is as follows: 

x( t) = fjJ(t, O)xo , (2.45) 

which is exaetly the same farmula as (2.18) for the solution of the ear­
respanding differential equations. 

Example 2.13 

We now solve the one-dimensional equation 

x(t +l) (t+ 1)2 
· x(t) +l 

with initial condition x(O) l. In this case n== l, A( t) = (t+ 1)2 , 

and f (t) == l. Therefore, 

fjJ(t, T) 2 2 2 t! 
( )

2 

t ·(t- l) · ... ·(T+ l) = Tl , 

and so 

(
t! ) 2 t-1 ( t! ) 2 

x(t) = O! · l+~ (T+ l)! ·l 

t-l 

= (t!)2 + (t!)2 L (( l )1)2 
r=O T+ l . 

t 
- ( ')2"" _l_ - t. f::o ( 7!)2 . 

Similarly to the case of linear differential equations, 4J( t, T) is called 
the fundamental (or transition) matrix of Equation (2.43). 
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Consicler next the special case, when A(t) = A and f(t) = f, that is, 
when the equation is time-invariant. Then the transition matrix has the 
special form 

lj>(t, T) (2.46) 

and therefore, the solution of the initial value problem 

x( t+ l) A· x( t)+ f, x(O) Xo 

can be written as 

x( t) At · xo + (~At-r-l) ·f . (2.47) 

Note that A 0 I in the term of r= t l. We mention that the matrix 
operations needed to implement this solution formula can be performed 
by using standard program packages. 

This formula is illustrated next. 

Example 2.14 

Consicler the initial value problem 

x( t+ l) = (~i) x( t)+ ( ~) , x(O) = (~) 

In this case n 2, 

f= (n, and xo=(~)· 
N o te first tha t 

A2= (11) (11) = (12) 01 01 01 ' 
A3= (12) (11) = (13) 01 01 01 ' 

and by finite induction one ma y easily verify that 
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Therefore, relation (2.47) implies that 

T 

l 

( )· 
Hence, the solution of the initial value problem is determined. 
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Finally, we remark that Theorem 2.3 can be modified for difference 
equations, and the details are left to the reader. 

2.2.3 z-transform 

In this section we introduce a very useful function transformation, \Vhich 
reduces the solution of linear difference equations with eonstant coeffi­
cients to the solution of algebraic equations. This transformation is 
called Z-transform, and is considered the discrete time counterpart of 
Laplace transforms. 

After an existence theorem the fundamental properties of theZ-transform 
are outlined, and theZ-transforms of the most frequently applied func­
tions are derived. At the end of this section the application of Z­
transforms to solve difference equations is discussed. 

DEFINITION 2.2 Let x( t) be a real- or vector-valued function deftned for 
all t E N. Then the Z- transform of x is deftned by the infinite series 

X(z) = f x(;) . 
t=O Z 

(2.48) 

Similar to Laplace transform, the Z-transform maps a function space 
into another function space. Here X(z) is the value of the transformed 
function at z. 

Our first result is an existence theorem. 
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THEOREM2.9 
Assume that 

lx(t)l ::; k· at(t =O, l, 2, ... ) (2.49) 

with same real eonstants k> O and a~ O. Then X(z) exists for alllzl >a. 

PROOF Note that under the assumption of the theorem, 

l
x(t)l<kat =k·(.!!_)t 
zt - lzl ' 

and therefore, series (2.48) is majorized by the convergent series 

k L .!!.._ 00 ( )t 
t=O lzl 

l 

The radius of convergence is the smallest real number a O such that 
series (2.48) converges for all z such that l z l > a. 

The most frequently used properties of Z-transforms are given next. 

THEOREM 2.10 
The following relations are true: 

(i) If x(t) =XI (t)+ X2(t), then X(z) =x l (z)+ X2(z). 

(ii) If x( t) = ax1 (t), then X(z) =aX 1 (z). 

(iii) Ifx(t) = x 1(t)at, where a is a constant, then X(z) X 1(zfa). 

(iv) If x( t) x 1 (t+ l), then 

and in general, if x(t) = x 1 (t+ n) with n being a positive integer, then 

(v) If x( t) = x 1 (t- l) then 'With x1 (r) =O (r < 0), 

l 
-X1(z), 
z 

X(z) 
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and in general, if x( t) = x 1 (t n) with same positive integer n with 
x 1 (T) = O (T < O), t hen 

l 
X(z) == -X1(z). z n 

PROOF Properties (i) and (ii) are obvious, (iii) can be shown as fol-
lows: 

X(z) ~ X1(t)at = ~ Xl(t) Xl (~a) 
L....- zt L....- (~)t 
t=O t=O a 

(iv) Simple calculation shows that in the general case, 

Select n l as a special case to have the first identity. 

(v) Since in the general case x1 (t) = x( t+ n) (t ~ n) and x( T) O 
(T < 0), the previous property im p lies that 

Divide both sides by zn to obtain the assertion. The first identity 

follows by selecting n = L l 

The Z- transforms of the most commonly used functions are summa­
rized in Table 2.2. These relations are proven next. 

Numbers l and 7 are proven by simple calculation: 

CX) 

l l L z 
l z 

t=O z 

and 
N-1 l l-L zt ==l· l z) t=O z 
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Table 2.2 Z-Transforms of Common 
Functions 

No. x(t) X(z) 
l l z T 
2 at 

z-a 

3 tat-1 z 
(z-a)2 

4 t rz=W 
5 

{at-l ift 2:: l _l_ 

o ift o z-a 

6 f (k i ) at-k if t 2:: l l 
(z-a) k 

lo if t o 
{l if O< t< N 1-z 7 

O otherwise :N 1(1 :) 

8 {l if t o 
O otherwise l 

Number 2 is the consequence of No. l and Item (iii) of Theorem 2.10. 
Number 3 is obtained by simple differentiation from No. 2: 

d z z 
z a 

and No. 4 is derived from the previous identity by selecting a= l. Num­
ber 5 is implied by No. 2 and Property (v) of Theorem 2.10. Number 6 
can be proven by using No. 5 and the (k l)th derivative with respect 
to a: 

oo (t l) at-k 
~ k-1 7 

l dk-1 oo at-l 
l)! dak-1 L 

t= l 

l 
(z- a)k · 

And finally, No. 8 is obtained from No. 7 by selecting N l. 
As an example, Figure 2.5 illustrates the discrete function at (t = O, l, 

2, ... ) and its Z-transform for a = 1.5. For the sake of simplicity, only 
nonnegative values of z are considered. 
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x, X l 

l •• x( t)= 1.51 
l 

5 l 
/' ~ 

l 
l 

4 l 
l 
l ,; l 

3 l 
l 
l 

2 
1 /11 
l· .. , 

.... l 

l 
... l 

l 
l 
l 

l 
2 3 4 5 6 t, z l 

l 
-l 1 

l 
l 

-2 
l 
l 
l 
l 

-3 l 
l 

~X(z) = 
l z-

Figure 2.5 A discrete function and its Z-transform. 

Z-transforms are very useful in solving linear difference equations \Vith 
eonstant coefficients. The methodology is very similar to that used in 
the case of differential equations. 

Consicler first the nth order problem 

x( t+ n)+ an-lx(t +n- l)+···+ a1x(t +l)+ aox(t) =f( t) (2.50) 

with initial values 

x( O) = xo, x(l) x1, ... , x( n- l) Xn-1 . 

Apply Z-transform on both sides of the equation and use Property (iv) 
of Theorem 2.10 to obtain equality 

+ ai[zX(z)- zx(O)] + a0X(z) F( z) , 

where X(z) and F(z) denote theZ-transforms of x( t) and f(t), respec-
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tively. Rearranging the terms 

X(z) == q(z) + F(z) , 
p(z) p(z) 

(2.51) 

where 

+ · · · +x( n 2)] + .. · + 

In the special case, when all initial values x0 , ... , Xn-l are equal to zero, 
q(z) == O. Therefore, the first term of (2.51) is zero. After X(z) is de­
termined, the solution x(t) is found by using theZ-transforms of known 
functions given in Table 2.2. As an important special case, assume that 
X (z) is a strictly proper rational function and the roots A 1, ... , Ar of the 
denominator of X(z) are distinct. Similarly to the case of differential 
equations, let 

be the partial fraction expansion of X(z). Then use No. 5 of Table 2.2 
to verify that 

{ 
o if t o 

x(t)== RAt-l+RAt-l+···+R \t-lift>l 
l l 2 2 rAr - · 

(2.52) 

Assume next that the roots Al, ... , Ar have multiplicities m 1 , ... , mr. 
In this more general case, 

and use No. 6 of Table 2.2 to obtain the solution 

x(t) t-1 t- l t-2 
r [ ( ) ~ Ril>.i + R;2 l A; + · · · 

(2.53) 
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for t ~ l and x(O) O. 
Similar to the application of Laplace transforms, this procedure can 

be summarized as follows: 

Step l Apply Z-transforn1 on both sides of the difference equation. 

Step 2 Solve the resulting algebraic equation. 

Step 3 Apply inverse transform to recover the solution of the original 
problem. 

Note that Figure 2.4 illustrates this procedure, when Laplace trans­
forms are replaced by Z-transforms. 

Example 2.15 

The Fibonacci numbers are defined by recursion 

x( t+ 2) x(t +l)+ x( t), x(O) =O, x(l) =l. 

By applying Z-transforms on both sides, we have 

z2 X(z) z2x(O) zx(l) = zX(z) zx(O) + X(z) , 

that is, 

z 
(z - I+zv's) (z - 1-zv's) . 

A calculation similar to that presented in Example 2.7 shows that the 
partial fraction expansion of X (z) is given as 

X(z) 
l+v's 
275 

z_ I+v's 
2 

and finall y No. 5 of Table 2.2 shows that 

x(t) =l+ V5 (l+ vs)t-1- 1- V5 (1- vs)t-1 
2VS" 2 2 
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Henee, the solution of the above seeond-order initial value problem 
is determined. 

Example 2.16 

Next we solve the initial value problem 

x (t + l) + 2x (t) = 4 t, x(O) =O. 

Applying Z-transforms on both sides yields to equation 

zX(z)- zx(O) + 2X(z) 
z 

z -4' 

where we used No. 2 of Table 2.2 with a 4. Solve this equation for 
X(z): 

X(z)- z 
- (z+ 2)(z 4) . 

It is easy to verify that the partial fraction expansion is as follows: 

X(z) = + , 
z+2 z-4 

and therefore, No. 5 of Table 2.2 implies that x(O) O and 

x(t) 
l 2 -( -2)t-1 + -4t-1 
3 3 

(t ~ l) . 

Henee, the solution of the above seeond-order initial value problem 
is determined. 

Consicler next the system 

x( t+ l) Ax( t) +f( t), x(O) xo , (2.54) 

where A is an n x n eonstant matrix and f is an n-dimensional function 
of the nonnegative integer t. Apply Z-transforms on both sides to get 
equation 

zX(z) - zx(O) = AX(z) +F( z) , 

where X and F are the Z-transforms of x and f. Assuming that z is not 
an eigenvalue of A, 

X(z) = (zl A)- 1 (zxo + F(z)) . (2.55) 

Function x( t) can t hen be recovered by applying the previous method 
for each component of X(z). 
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Example 2.17 

The seeond-order equation of the Fibonacci numbers presentedin Ex­
ample 2.15 can be transformed inta the following two-dimensional 
first-order equation: 

x(t+ l) (~D x(t), x(O) (n . 
Herex1 (t) x( t) and x2 (t) x( t+ l) are thenew variables. In this 
ca se, 

f (t) = ( ~ ) , and 

therefore, (2.55) implies that 

l (z-11) (o) ( 
-z-l l z z = )· 

Since x( t) =XI (t), we conclude that 

X(z) z 
z -l' 

and x( t) can be determined in the same way as demonstrated in Ex­
ample 2.15. 

Problems 

1. Does problem x = t · sin x, x( O) = l have a unique solution? 

2. Find the fundamental matrix for differential equation 

(
l o) o t x, x(l) =C) . 
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3. Apply the iteration method (2.7) to solv e the initial value problem 

±= tx, x(O) l . 
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4. Solve the initial value problem 

x(O) G) 
by using formula (2.23). 

5. Solve the initial value problem 

x(O) O) 
by using fermula (2.23). 

6. Solve the initial value problem 

x( t+ l)= c n x( t)+(~) . x(O) =G) 
by using formula (2.44). 

7. Solve the initial value problem 

x( t+ l)= (~n x( t)+ (D . x( O)= ( ~) 

by using fermula (2.44). 

8. Solve the initial value problem 

x(O) (i) 
by La place transform. 

9. Solv e the initial val u e problem 

x(O) O) 
by Laplace transform. 

10. Solve the initial value problem 

x(t +l)= c n x(t) + (~) , x(O) =G) 
by Z-transform. 
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11. Solve the initial value problem 

x(O) =O) 
by Z-transform. 

12. U seLaplace transform to solve equation 

x+ 3x + 2x 1, x(O) = x(O) o . 

13. Rewrite the seeond-order equation 

x+ 3x + 2x = 1, x( O) = x(O) = o 

as a system of first-order equations. 

14. Use Z-transform to solve equation 

x(t + 2) + 3x(t +l)+ 2x(t) = l, x(O) x(l) =O. 

15. Rewrite equation 

x(t + 2) + 3x(t +l)+ 2x(t) = l, x(O) = x(l) O 

as a system of first-order equations. 

16. Solve the resulting equation of Problem 13 by Laplace transform, 
and campare your results to that of Problem 12. 

17. Solve the resulting equation of Problem 15 by Z-transform, and 
campare your results to that of Problem 14. 

18. Which initial condition should be selected at t0 = O so that the 
trajectory of equation 

passes through the point 

(i) 
at t= l? 

19. Assume that f (Ji), x= (x i), and all partial derivatives a fi/ ax i 
are bounded in the neighborhood of the initial point. Prove that there 
exists a L > O such that inequality (2.4) holds in this neighborhood. 



106 chapter two: Mathematics of Dynamic Processes 

20. Formula te and verify Theorem 2.3 for linear differenee equations. 

21. Assume that A( t) is an invertible matrix for all t E [a, b]. Show 
that 

!!_A - 1 (t) -A - 1(t)Å(t)A - 1 (t). 
d t 

22. By substitution show that x( t) given in Equation (2.23) is the so­
lution of the initial value problem (2.13). 

23. Prove that the solution of the initial value problem 

x(t) = A(t)x(t), x(to) Xo 

satisfies the inequality 

for t 2: to. 

24. LetA be a eonstant n x n matrix. Show that 

25. Let B be a eonstant n x n real matrix. Show that if the eigenvalues 
of B are distinet and positive, then there is a real n x n matrix A sueh 
thatB eA. 



chapter three 

Characterization of Systems 

This chapter first introduces the mathematical concept of dynamic sys­
tems, and then methods for their solutions are presented. As we have 
seen in the previous ch a p ter, linear differential and difference equations 
are easy to solve; therefore, the main method for solving nonlinear sys­
tems is based on linearization and the numerical solution of the resulting 
linear equations. Speciallinear methods are also discussed in this chap­
ter, and decoropositions will be introduced to reduce specially structured 
high-dimensional problems to smaller dimensional ones. 

3.1 The Concept of Dynamic Systems 
Many situations in applied sciences can be modeled by dynamic equa­
tions. The term dynamic refers to phenomena that produce time-changing 
patterns and the characteristics of the pattern at one time being inter­
related with those of other times. 

If the time scale is assumed to be continuous, then the direction of 
the change in the characteristics is usually described by a differential 
equation because derivatives represent these directions. In the case of 
a discrete time scale, the characteristics of consecutive time periods are 
interrelated by difference equations. In dynamic systems theory, the 
systems characteristics are usually divided into three classes: 

l. All effects arriving into the system from the outside \vorld form 
the input of the system. 

2. The interna! variables are summarized as the state of the system. 

3. The output either comprises that portion of the system's state 
\Vhich can be directly determined by externa! measurements, or 
summarizes the response of the system to the input. 
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Let u( t), x( t), and y( t) denote the input, state, and output of a system 
at time period t. Then the system is represented as the block diagram 
shown in Figure 3.1. 

Dynami c 

Input system Output 
u (t) ·l state y (t) 

x (t) 

Figure 3.1 Block diagram representation of dynamic systems. 

A dynamic system with continuous time scale and state-space descrip­
tion is presented as 

x( t)== f( t, x( t), u(t)) (3.1) 

y(t) == g(t,x(t)), (3.2) 

where the first equation is known as the state transition equation and 
the seeond relation is known as the output equation. Some authors allow 
function g to depend also on the input. In this chapter we discuss only 
the form (3.2). I t is assumed that for all t 2:: O, 

x(t) E X, u(t) E U, 

where X ~ Rn and U~ Rm are called the statespace and inputspace 
of the system; furthermore, 

f: [0, oo) X X X U--+ Rn and g : [O, 00) x x --+ RP . 

This notation means that for all t E [0, oo) and x( t) E X and u(t) E U, 
the function val u e of f is in R n and the val u e of function g is in RP. 
Note that the dimensions of the input, state, and output are m, n, and 
p, respectively. It will usually be assumed that for all input functions 
u( t) and all initial states x 0 , the initial val u e problem 

x== f(t, x, u), x(O) xo 

satisfies the conditions of Theorem 2.1, that is, there i~ a unique state 
function x(t) (t 2:: 0). 

A dynamic system with discrete time scale is presented as 

x( t+ l)== f( t, x( t), u( t)) (3.3) 
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y(t) g(t,x(t)). (3.4) 

Analogous to the continuous time scale case, the first equation is called 
the state transition equation and the seeond relation is known as the 
output equation. It is no\v assumed that for all t =O, l, 2, ... , 

x(t) E X and u(t) E U, 

where X and U are the same as before; furthermore, 

f:NxXxU--1-X and g: N x x --1- RP, 

where N= {0, l, 2, ... }. Observe that for all initial vectors x 0 E X and 
input functions u, the initial value problem 

x( t+ l) = f(t, x( t), u(t)), x(O) = xo 

satisties the conditions of Theorem 2.8; therefore, the solution x( t) exists 
and is unique. 

The above concepts are illustrated next. 

Example 3.1 

Consicler a point mass m in the presence of an inverse square force 
field -kjr2, such as gravity. Assume that the mass is equipped with 
the ability to exert a thrust Ut in the radial direction and a thrust u 2 
in the tangential direction. This situation is illustrated in Figure 3.2 
and is usually referred as the satellite problem because it describes 
the dynamics of an orbiting satellite that has no frietian effects. First 
the equations of motion of this system will be derived. 

Figure 3.2 Illustration of the satellite problem. 
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The total energy of the system is called the Lagrangian, which is 
L K P,where 

is the kinetic energy and 

P== 
k 
r 

is the potential energy. It is known that Lagrange's equations in the 
coordinate q read 

d (åL) 
dt åq 

where F is the external force in the q direction. Therefore, we obtain 
equations 

mr .2 k 
mr8 + = u1 

and 

For the sake of simplicity, select m= l, andsolvethese equations for 
r and jj to get 

k 

.. 2iJr 1 
B=--+ -u2. r r 

If we introduce the notation r1 ==r, r2 r, 81 == B, and B2 =B, then 
these equations can be rewritten as follows: 

(3.5) 
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Assume finallythat the position parameters r and B form the output, 
then the output equations are 
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and (3.6) 

The resulting equations coincide with the general formulatian of dy­
namic systems with continuous time scale, where Ut, u2 are the inputs; 
r 1, r 2, fh, B2 are the state variables; and YI and Y2 are the outputs. 

Example 3.2 

The simple models of national economic dynamics are usually based 
on the variables 

Y(t) =national income (or national product) 

C(t) consumptian 

I(t) = investment 

G( t) = government expenditure. 

Variable Y(t) is thetotal amountearnedduring a period by allindivid­
uals (or the total value of goodsand services produced) in the economy, 
C(t) is the totalamount spent by individuals forgoodsand services, 
and I (t) is the total amount invested in time period t. Variable G (t) 
is the total amount spent by the government in the same time period. 

Obviously, 
Y(t) =C( t) +I( t) +G( t) . (3.7) 

Two additional assumptions are made: 

C(t) = mY(t) (3.8) 

and 
Y(t +l) Y(t) = rl(t), (3.9) 

where 

m marginal propensity to consume (O < m < l) 

r= growth factor (r >O). 

Nate that m is the fraction of the consumptian and the national 
income, and r is the fraction of the national income increase and in­
vestment. 
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Combine the above equations to get the dynamic relation 

Y(t +l)= Y( t)+ ri(t) = Y(t) + r[Y(t)- C(t)- G(t)] 

= Y(t) + r[Y(t)- mY(t)- G(t)], 

which can be simpliHed as 

Y(t +l) = [1 +r- rm]Y(t)- rG(t). (3.10) 

Consicler Y as a state variable and G as an input. Then this relation 
is a special case of the general formulatian (3.3), and, for example, (3.8) 
can serve as output equation, when consumptian is considered to be 
the most important variable to measure. Nate that Equation (3.10) is 
known as the Harrod-type model. 

3.2 Equilibrium and Linearization 
In many applications, the natural rest points of a dynamic system are 
much more interesting than the meclmnism of change. The rest points 
are known as equilibrium points and they are defined as follows: 

DEFINITION 3.1 Avector x is an equilibrium of a dynamic system with 
an input ftmction u if i t has the property that once the state reaclzes x i t renzains 
at x for all future time. 

In particular, if a system is described by the dynamic equation 

x( t)= f( t, x(t), u(t)) ' 

then an equilibrium is a state x satisfying 

f(t, x, u(t)) = O (3.11) 

for all t 2: O. If the system is described by the difference equation 

x( t+ l) =f( t, x( t), u( t)), 

then an equilibrium is a state x that satisfies 

x= f(t,x,u(t)) (3.12) 

for all t= O, l, 2, .... 
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Note that the existence of the equilibrium states and numerical meth­
ods for determining them can be discussed based on the general theory 
of Section 1.2.3. The details are not given here. 

Example 3.3 

Consicter the dynamic equations of harrnonie motion of a unit mass 
with position e( t) and velacity v(t): 

where a force input is assumed. Introduce the new state variables 
Xl = we and X2 = v. Then 

and 

By introducing matrices 

A= ( O w) -w O 

and 

this system can be written in the standard notation 

x= Ax+ bu, 

which now has the particular form 

here we assume that u( t) l for all t ~ O. The equilibrium is the 
solution of the algebraic equation 
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The solution of this equation is 

_ ( o w) -l (o) 
x=- -w O l 

Henceattheequilibriumstate,x1 = ~ andx2 =O, thatis, theposition 

is iJ = l.xl = --4 and the velacity is zero. w w 

Example 3.4 

Consicler next the dynamic economic system introduced in Exam­
ple 3.2. If Y is an equilibrium state of the system, then for all t 
o, 1,2, ... ' 

Y= [l+ r- rm]Y- rG(t) , 

~hich can be satisfied if G( t) is a eonstant Go, s~nce r=/=- O. Therefore, 
Y can be obtained by solving this equation for Y: 

l 
--Go. 
l m 

The values of the other variables at the equilibrium are obtained from 
Equations (3.8) and (3.9) 

- m 
C=--Go 

1-m 
and J o. 

Hence, theequilibriumofthesystemis givenbyvector (1/(1-m)Go, m/(1-
m)Go, 0). 

Example 3.5 

In this example we show that the sa tellite problem has no equilibrium 
point with zero inputs u1 (t) = u2(t) = O (t 2:: 0). From (3.5) and 
(3.11) we conclude that if there is an equilibrium, it must satisfy the 
equations 
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If k =f=. O, then the seeond and third equations contradiet each other. 
However, one may easily verify that with certain nonzero inputs u1 

and u2, the sa tellite problem does have equilibrium points. 
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The linearization of a nonlinear system is based on the approximation 
of the nonlinear functions f and g by linear Taylor's polynomials around 
the equilibrium point. Let x denote an equilibrium with input function 
u( t). Introduce matrices 

8 h (t x u) 8 h (t x u) · · · 8 h (t x u) axl ' ' ax2 ' ' 8xu ' ' 

Jx(t, x, u) 
8 h (t x u) 8 h (t x u) · · · 8 h (t x u) axl ' ' ax2 ' ' ax11 ' ' 

(t x u) 8 f,. (t x u) · · · 8 f n (t x u) ' ' ax2 ' ' ax.,. ' ' 

and 

Bh (t x u) Bh (t x u) · · · Bh (t x u) aul ' ' au2 ' ' aum ' ' 

Ju(t,x, u)= 
8h (t x u) 8h (t x u) · · · Bh (t x u) aul ' ' au2 ' ' au., ' ' 

Bf,.(txu) aul ' ' (t, x, u) · .. 8
8
'·· (t, x, u), 
U n, 

where f (ji), x = (xj), and u (uk)- Note that Jx(t, x, u) is an 
n x n matrix and Ju(t,x, u) is an n x m matrix. Note that they are 
the Jacobian matrices of f with respect to x and u, respectively, because 
the matrix elements are the partial derivatives of the components of f 
with respect to the elements of x and u. The linear Taylor's polynomial 
approximation of f is then given as 

f(t,x,u)~f(t, u)+Jx(t, u)·(x x)+Ju(t,x,u)·(u u). 

Assume first that the system is described by the differential equa­
tion (3.1). The above derivation implies that the linearized equation 
can be written as follows: 

(3.13) 

where 
and uo =u- u; 

furthermore 

A(t) = Jx(t,x, u(t)) and B(t) = Ju(t, x, u(t)) . 
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Assume next that the system is described by the difference Equa­
tion (3.3). Then the linearized equation has the form 

x 0(t +l)= A(t)xD(t) + B(t)u0(t) , (3.14) 

where x 0 , u 0 , A(t), and B(t) are the same as before. 
In cases when the output relation 

y= g(t,x) 

is nonlinear, it also has to be linearized in order to get a system with 
only linear relations. Let x denote the equilibrium, and y = g( t, x). 
Linearize the function g about x: 

y:::::: g( t, x)+ J9 (t, x)(x- x) , 

where J9 is the Jacobian of g with respect to x. By introducing the new 
output function y 0 = y- y, the linearized output relation has the form: 

Yo(t) = C(t)x0(t) (3.15) 

with 
C(t) = J9 (t,x). 

In the general case, where the system does not have an equilibrium 
state or we do not know what it is, we must proceed as follows. Select 
first an input function u(t), and solve the corresponding differential or 
difference equation. Let the solution be x 0 (t). Introduce the new vari­
able x 0(t) = x(t) - x0 (t) in the equation, then x0 (t) = O satisfies the 
resulting equation (that is, x0 =O is an equilibrium point); then, apply 
the above linearization method for this equation and zero equilibrium. 

Example 3.6 

The linearization process is applied now to the sa tellite problem, which 
was introduced in Example 3.1. For the sake of simplicity, select a = l, 
k = a3w2, and zero input ii1(t) = ii2(t) = O, and observe that 
functions 

r1(t) =a, r2(t) = 0, 81(t) = wt, 82(t) =w 

solve Equation (3.5). By using the above relations, we therefore have 

xa(t) = (a,O,wt,wf. 
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then these functions satisfy the differential equations 

We know from the construction of these equations that with zero input, 
vector X:0 = O forms an equilibrium. The elements of the Jacobian 
matrices J x and Ju are determined next at this equilibrium. Let !1, !2, 
j3, !4 denote the right-hand side functions. Note that only the seeond 
and fourth equations are nonlinear; therefore, the partial derivatives 
of only !2 and !4 have to be determined and only !2 and f4 are to be 
linearized. At the zero equilibrium state, these partial derivatives are 
as follows: 

a !2 ( )? 2k = w2 + 2k = w2 + 2w2 = 3w2' -a = x4 +w - + ( 1)3 
X1 X1 + 

o, 

aj2 -a = 2(xi + 1)(x4 +w)= 2w, 
X4 
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o, 

2(x4 + w)xz 
(x1+l)2 

o, 

l 

X1 +l 
l. 
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-2w, 

Hence, using Equation (3.13), the linearized equations are summarized 
as 

A similar but more complicated calculation than the one that was 
shown in Example 1.23 gives the fundamental matrix of the system: 

<P( t, to) = 

( 

4- 3cosw(t to) sinw(t to)/w O 2(1- cosw(t to))/w ) 

3w sin w( t - to) cos w( t to) O 2 sin w(t- to) 

6(-w(t-to)+sinw(t-to)) -2(w cosw(t-to))/w l (-3w(t-to)+4sinw(t-to))/w 

6w(-l+cosw(t to)) -2sinw(t-to) O -3+4cosw(t-to) 

This matrix is the basis for predieting the future states of the system. 
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3.3 Continuous Linear Systems 
In this section, dynamic systems of the form 

x( t) = A(t)x(t) + B(t)u(t), x(to) = xo (3.16) 

y(t) = C(t)x(t) (3.17) 

will be reexamined in order to find their solutions in particular forms. 
The differential equation is a special case of the general first-order inho­
mogeneous linear equation (2.12) with 

f(t) = B(t)u(t) . (3.18) 

Therefore, the entire solution methodology discussed in Sections 2.1.2 
and 2.1.3 is now applicable. Our discussions are divided into two parts. 
In the first part, methods based on the fundamental matrix are pre­
sented. Because the solution is obtained directly using the state vector, 
this methodology is called the state-space approach. The other method 
is based on Laplace transforms, and it is called the transfer function 
approach, because- as we willsee later-it is based on a special rela­
tion between the Laplace transforms of the input and output functions, 
w hi ch is known as the transfer function. N otice that the transfer func­
tion approach can be used only in the case of eonstant matrices A, B 
and C. 

3.3.1 State-Space Approach 
The general solution for functions x and y is obtained directly from 
relation (2.23). The resulting equations can be formulated as follows. 

THEOREM3.1 
The general solution of systent (3.16) and (3.17) is given by relations 

x( t)= 1>(t, to)xo + lt 1>(t, T)B(T)u(T) dT 
to 

(3.19) 

and 

y(t) = C(t)x(t) = C(t)1>(t, to)xo + rt C(t)1>(t, T)B(T)u(T) dT. (3.20) 
}to 

These solution formulas are illustrated in the following example. 
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Example 3.7 

Now we give the solution of the dynamic system 

x(O) (~) 

y= (1, l)x, 

which was introduced earlier in Example 1.13. Here (1, l) is a row 
vector. 

In Example 1.23 we derived the fundamental matrix: 

~(t, to) ( 
cos w(t- to) sinw(t- to)) 

- sinw(t- to) cosw(t- to) · 

Therefore, the state variable is 

x( t) ( 
coswt sinwt) (al) 

- sin w t cos w t 

+ {t ( c? s w (t - T) sin w (t - T) ) ( O) u( 
7

) dr lo s1nw(t- r) cosw(t r) l 

( 
cos wt) {t ( sinw(t 
sinwt +lo cosw(t 

r)) r) u( r) dr. 

As a special c ase, assume that u( t) = l, then the calculations coincide 
with those of Example 2.6, and the state vector becomes 

x( t) = _!_ ( l + (w - l) c?s wt ) . 
w -(w l) s1nwt 

The direct input-output relation can be derived as follows: 

y( t)= (1, l)x(t) = (coswt-sinwt)+ 1t (sinw(t-T)+cosw(t-T))u(T) dT. 

In the special case of u( t) = l we have 

(t)= (l l)~ (l+ (w- l) c?swt) 
y ' w -(w l) s1nwt 

l 
-(1 +(w- l)(coswt- sinwt)). 
w 
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Equations (3.19) and (3.20) have high practical significance, because 
the state and/or output can be directly computed at any future time 
period t with any a:rbitrary initial state x0 and input function u(t). 

The application ofEquations (3.19) and (3.20) consists of the following 
steps: 

Step l Determine the fundamental matrix 4J(t, r). 

Step 2 For the designated values of t, ap p ly Equations (3.19) and (3.20) 
to get x(t) andfor y(t). 

Note that Equations (3.19) and (3.20) have a special structure. The 
first terms d ep end only on the initial val u e x 0 , and the seeond terms 
depend only on the input. This property can be applied as follows. If 
the system has to be solved repeatedly with the same input but with 
several variants for the initial state, then the seeond terms have to be 
computed only once because only the first terms change. Similarly, if 
x 0 is fixed, hut the input u changes, then the first terms are fixed and 
only the seeond terms have to be recalculated. Finally we remark that 
in many cases the integrals in (3.19) and (3.20) cannot be determined 
analytically. In such cases, numerical integration methods are used. 
A summary of such algorithms can be found, for example, in [42] and 
in (44]. 

3.3.2 Transfer Functions 
In this subseetio n we assume that matrices A, B, and C of the dynami c 
system 

x Ax+Bu, x(O) xo (3.21) 

y=Cx (3.22) 

are constants. This system is called time invariant, which refers to 
the time-independence of the coefficient matrices. The methodology of 
the previous section can be used for solving this system 'vithout any 
limitation. An alternative method is based on the Laplace transform, 
which is the subject of this section. 

Note that Equation (3.21) is a special case of (2.35) 'vith f( t) ==Bu( t). 
Then relation (2.36) and the linearity of Laplace transforms imply the 
following result. 
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THEOREM3.2 
The general solution of system (3.21) and (3.22) can be given as 

X( s) == R(s)xo + R(s)BU(s) (3.23) 

and 
Y(s) = CR(s)xo + H(s)U(s) , (3.24) 

where 

R(s) =(si- A)- 1 and H(s) C(sl A)- 1B. (3.25) 

Matrix R( s) is ealled the resolvent matrix, and H( s) is ealled the 
transfer function. 

Nate that in (3.23) and (3.24) the first terms depend only on the initial 
state x 0 , and the seeond terms depend only on the input. Henee, if the 
initial state x 0 is zero, then the first term drops out, and if the input 
is zero, then the seeond term eaneels. The eomment made in the last 
paragraph of the previous seetian also applies in this case. 

In the special ease of a single-input, single-output system with zero 
initial state, Equation (3.24) reduees to the relation 

Y(s) = H(s)U(s) , 

where H, U, Y are sealars. In this ease, the transfer funetion is the 
fraetion of Y( s) and U(s): 

Y(s) 
H(s) = U(s) . 

The most important properties of R( s) and H( s) are discussed next. 

1HEOREM3.3 
R( s) is the Laplace transform of e At. 

PROOF Select u( t) O for all t 2:: O, then from (3.19) and (3.23) we 
knowthat 

and X(s) = R(s)xo. 

Applying Laplace transform on both sides of the first equation and cam­
paring the resulting equality to the seeond equation yield to the identity 

X(s) = E(s)xo = R(s)xo, 
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where E( s) denotes the La place transform of eAt. Because x 0 is arbi­
trary, the assertion follows. l 

COROLLARY 3.1 
H( s) is the Laplace transform of CeAtB, rvhich is a simple consequence of the 
theorem, the linearity of Laplace transforms, and relation H( s) == CR( s )B. 

In the first chapter we saw that by using appropriate matrix transfor­
mations, matrices can be transformed into special forms. These trans­
formations are equivalent to introducing the new variable 

x Tx 

in system (3.21) and (3.22), where T is a nonsingular matrix. Then 

i.== Tx ==TAx+ TBu == TAT- 1x + TBu 

and 

That is, the new system has the form 

(3.26) 

(3.27) 

with 
Ä== TAT-1

, B== TB, and 

THEOREM3.4 
Let H( s) and H(s) denote the transfer functions of systenz (3.21)-(3.22) 
and (3.26)-(3.27), respectively. Then 

H(s) = H(s). 

PROOF Simple calculation shows that 

H( s) ==C( si- Ä)- 113 
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= C(si A)- 1B = H(s). l 

The constructions of the resolvent matrix and the transfer function 
are ill ustrated next. 

Example 3.8 

Consicler again the system 

x(O) =O) 
y= (1, l)x, 

which was the subject of our earlier Examples 3.3 and 3.7. In this case, 

The resolvent matrix is 

R( s) (si- A)-1 

where the inversion can be verified by simple multiplication. There­
fore, the transfer function is obtained by simple algebra: 

H( s) C(sl- A)-1B _l_(l,l) ( s w) (O)= s+w . 
-w s l s2 + w2 

These results can be substituted into (3.23) to derive the input-state 
relation: 

X(s) 

and from (3.24) we have the input-output relation: 

l ( sw) (l) s+w Y(s) = 2 2 (1,1) 
0 

+ 2 2 U(s) s +w -w s s +w 
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As a particular case, assume that the input is selected as u( t) = 1 
for all t 2 O. Then item No. 2 of Table 2.1 implies that U(s) = 1/ s. 
Therefore, 

which coincides with the result obtained earlier in Example 2.10. Sim­
ilarly, 

Y(s) 
1 w s2 + s( -w + 1) + w --(s-w+- +l) = · . 

s2 + w2 s s( s2 + w2 ) 

The output y(t) can now be determined in the same way as it was 
earlier demonstrated in Example 2.7. No te first that the partial fraction 
expansion of Y (s) is given as 

1. _w-_1. S 
y (s) = .s:L + --'-'--

s 

w-1 -·W w 

Therefore, Nos. 2, 5, and 6 of Table 2.1 im p lythat 

l o 

y (t) = - ( 1 + (w - 1) (c os w t - sin w t)) , 
w 

which coincides with the result of Example 3.7. 
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Consicler finally the special case \vhen the initial state is zero. Then 
the solution farmula (3.24) reduces to 

Y(s) = H(s)V(s) . 

This simplified farmula is illustrated in the modified block diagram rep­
resentation sho\vn in Figure 3.3, \Vhich is essentially the same as the one 
presented earHer in Figure 3.1, bu t the input and output are replaced 
now by their Laplace transforms and the state variable is replaced by 
the transfer function. 

3.3.3 Equations in Input-Output Form 
In this section, a special linear, time-variant system is discussed, which 
has a single input and a single output. It is assumed that the input u( t) 
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Input 
U(s) 

Dynamic 
system 

Transfer function 

H(s) 

Output 
Y(s} 

Figure 3.3 Modified block diagram representation of dynamic systems. 

and output y( t) are interrelated by equation 

Y(n)(t) + Pn-lY(n-l)(t) + · · · + PliJ(t) + PoY(t) 

w here Pi and q i (O :::; i :::; n -l) are eonstants and u and y are real-variable 
real-valued functions. 

First we show that the above representation is equivalent to a tirst­
order n-dimensional system. This representation is usually called the 
phase variable form in the systems theory literature. We also note 
that a controllability canonical form of continuous time-invariant sys­
tems (w hi ch will be discussed later in C ha p ter 7) has the same form. 

THEOREM3.5 
The input and output of system 

o l o 
o o l 

*== o o o 
o o o 

o 
o 

l 
o 

o 
o 

o 
l 

o 
o 

x+ u 
o 
o 

-Po -Pl -p2 · · · -Pn-2 -Pn-1 l 

with output equation 

satisfy the input-output relation (3.28). 

(3.29) 

(3.30) 

PRO OF Let x i denote the components of x for i l, 2, ... , n. Then 
Equation (3.29) implies that 
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Xn = -poXl - · · ·- Pn-lXn +U· 

From the first n- l equations we conclude that 

· ·· (n-1) 
X2 = X1, X3 = X1, ... , Xn == X1 , 

and the nth equation implies that 

(n) (n-1) . 
X1 + Pn-lXl + · · · + P1X1 + PoX1 ==u. 

Introduce mapping 

A( ) (n) (n-1) . 
X1 = X1 + Pn-lXl + · · · + P1X1 + PoX1 , 

and note that the linearity of A implies that 

d dn-l 
( _ . ) _ ( (n-1)) dtA x1)- A( x l , ... , dtn-l A(xl) -A x1 . 

Because from (3.30) we have 

simple calculation shows that 

The definition of mapping A im pliesthat A( x1) == u, therefore, 

A(y) = QoU + Q1U + · · · + Qn-lU(n-l), 

which completes the proof. l 
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(3.31) 

(3.32) 

REMARK 3.1 The simple trick which constructs the output y by using 
the state x1 of the more simple system (3.31) is called superposition. l 



128 cl1apter three: Characterization of Systems 

Example 3.9 

Consicler the input-output form 

ii + 5y + 4y == 2u + u . 
In this case, n == 2, Pl = 5, Po = 4, q1 = 2, qo == L Therefore, 
system (3.29) and (3.30) can be written as 

y (l, 2)x. 

This theorem allows us to transform input-output forms inta the usual 
systems mod el and the n use an y of the methods of the previous sections. 
However, the direct use of Laplace transform on the input-output form 
is mo re efficient. 

Apply Laplace transform on both sides of Equation (3.28) to get 

+ .. · + p![sY(s)- y(O)] + poY(s) 

+ .. · + ql[sU(s) u(O)] + qoU(s), 

and sol ve this equation for Y (s): 

Y( ) = q( s) U( ) r( s) 
s p(s) s + p(s) ' (3.33) 

where 

p(s) = sn + Pn-lSn-l + ... + P1S + Po, 

( ) n-1 q s = qn-ls + · · · + q1s + qo, 

and r( s) is a polynomial of degree not greater than n - l s u ch t hat it 
becomes zero if all initial values u(O), ... , u<n-2) (O), y(O), ... , y( n-l) (O) 
are equal to zero. 
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Note that the coefficient of U(s) in Equation (3.33) is the transfer 
function: 

H(s) == q(s) . 
p( s) 

(3.34) 

Example 3.10 

Consicler again the input-output form 

y + 5y + 4y == 2it + u ' 

which was discussed in the previous example. Apply Laplace trans­
form on both sides of the equation to get 

[s2Y(s) -sy(O) -y(O)] +5[sY(s) -y(O)] +4Y(s) 2[sU(s) -u(O)] +U(s). 

Solvefor Y(s): 

Y(s) 2s +l U( s)+ (s+ 5)y(O) + y(O)- 2u(O) . 
s2 + 5s + 4 s2 + 5s + 4 

As a particular example, assume that all initial values of the input and 
output are zero, then 

2s +l Y(s) == 2 5 4 
U(s). 

s + s+ 

3.3.4 Combinations 
Transfer functions and their main properties allow us to rewrite the 
transfer functions of a large structured system in terms of the transfer 
functions of individual subsystems, ·which reduces a high-order calcula­
tion to a sequence of smaller order calculations. 

Figure 3.4 Series combination of systems. 

Consicler first a series combination of two systems, shown in Fig­
ure 3.4. If the initial states are zero, then 

and 
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Since 

combine the above relations to get 

Since 
u== u1 and 

we conclude that 
Y(s) H2(s)H1(s)U(s) . 

u 

Figure 3.5 ParaHel combination of systems. 

Hence, the transfer function of series con1bination of systems is the prod­
uct of the transfer functions of the subsystems: 

H(s) == H2(s)H1(s) . (3.35) 

Consicler next a parnllel combination of two systems, shown in Fig­
ure 3.5. Because U1 U2 U and Y== Y1 + Y2, 

that is, 
Y(s) == (H1(s) + H2(s))U(s) . 

Hence, the transfer function of parallel combination of systems is the 
sum of the transfer functions of the subsystems: 

H(s) == H1(s) + H2(s) . (3.36) 
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Consicler now the feedback structure shown in Figure 3.6. Then 

H1(s)[U(s) + H2(s)U2(s)] == Hl(s)[U(s) + H2(s)Y(s)] , 

that is, 

Solve this equation for Y (s): 

Hence, the transfer function of the feedback structure is given by relation 

(3.37) 

The above combinations enable us to quickly compute the transfer 
functions of complex arrangements, and in addition, complex transfer 
functions can be represented as combinations of subsystems having only 
simple transfer functions. 

u + y 

Figure 3.6 Feedback structure of systems. 

Example 3.11 

Consicler the structure shown in Figure 3.7 with the repe a ted feedback. 
The inner feedback loop can be substituted by a system with transfer 
function 

This system has a series earobination with the subsystem having trans­
fer function H3 (s). Therefore, the transfer function of the upper part 
of the ou ter feedback loop is 
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u y 

Figure 3.7 A structured combination of systems. 

Finally, use (3.37) again to get the transfer function of the entire com­
bination: 

H(s) = [I Hu(s)H4(s))- 1Hu(s) 

As a numerkal example, assume that 

l l 2 
--

1
, H3(s) = --, H4(s) =-. s- s l s 

T hen 

l l 
(l 

s s l l ' 

and 

l 
Hu(s) = ~ 

Example 3.12 

l 

s -l' 

s 
-s-2 

Consicler next an input structure with a strictly proper transfer function 

H( s) 
q( s) 
p(s) . 
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Letthedistinctrootsofpbe.\1, ... , Ar withmultiplicitiesm1, ... , mr. 
Then the partial fraction expansion of H( s) is as follows: 

H(s) = __ t-+ t + ... + tmi • 
r [ R·1 R·2 R· ] 
~ s- Ai (s- Ai) 2 (s- Ai)m; 

Introduce the transfer functions 

Rij 
Hij = ( , ) . s -/\i J 

(1 ~ i ~ r, l ~ j ~ mi) . 

Because H( s) is additive, the system can be represented as the paraHel 
combination of the subsystems ha ving the transfer functions Hi j. 

As a particular case, consicler transfer function 

Because 

H(s) = 
2s 
-l 

l l 
H(s) = -1 + --1 ' s- s+ 

we ma y select 

l 
Hn(s) = --

1 
, 

s-

and therefore, the paralle l combination representation is the one shown 
in Figure 3.8. Hence the original system with transfer function H( s) 
can be represented as a combination of the systems with the transfer 
functions H 11 (s) and H21 (s) of mo re simple structures. 

u 

Figure 3.8 ParaHel combination representation of Example 3.12. 
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Analog computers are based on certain realizations of the system equa­
tions. The above example shows such a realization, which is known as 
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the diagonal-form representation. In the conclusion of this section, so me 
other representations are introduced. 

Figure 3.9 Analog model with differentiators. 

Consicler first the simple input-output form 

y<n) + Pn-lY(n-l) + · · · + PlY + PoY =u , 

l 
P o 

y 

(3.38) 

where the right-hand side has no derivative of the input. Assume that 
a differentiator is available. Then the circuit shown in Figure 3.9 is a 
possible implementation. Here we assume that p0 f. O. If in general 
Po = Pl · · · = Pk = O with Pk+l l- O (O < k < n), then introduce 
the new variable z y( k+ l) which guarantees that the coefficient of the 
new variable becomes nonzero. This kind of system implementation, 
however, has only limited practical importance. Signals are usually cor­
rupted by noise, and the differentiation of noisy signals produces large 
errors. It is also well known (see, for example, [42]) that the integration 
of noisy signals can be performed in the accuracy of the noise itself. 
Therefore, in practical cases, differentiators are replaced by integrators. 
Note that the integrator is a block with transfer function 1/ s. Assuming 
that the highest-order derivative of y is available, use integrators Suc­
cessively to obtain all lower order derivatives as shown in Figure 3.10. 

In the case of the general input-output form 

we can use superposition as we did in proving Theorem 3.5. If x1 now 
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u + y 

Figure 3.10 Simple implementation with integrators. 

denotes the output of system (3.38), then 

Note that from x1 the output y can be obtained by successive application 
of differentiators, as shown in Figure 3.11. 

y 

u + 

Figure 3.11 Implementation with integrators and differentiators. 

As the next step, we can use a simple trick to eliminate the need for 
differentiators by noticing that \Ve have integrators and differentiators in 
series. The only thing \ve have to do is 1nove thelineswith differentiators 
over the requisite number of integrators. This construct is shown in 
Figure 3.12, and is called a controllability-form representation. 

An analogous representation can be obtained byequating the left- and 
right-hand sides of Equation (3.39). In the left-hand side, the representa-
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y 

u + 

Figure 3.12 A controllability-form representation. 

Figure 3.13 An alternative implementation with integrators and differentia­
tors. 

tion shown in Figure 3.10 is applied, and in the first step, differentiators 
are used in the right-hand side. This construct is illustrated in Fig­
ure 3.13. Similar to the previous case, we have to elimirrate the need 
for differentiators by using again the simple fact that serial connection 
of an integrator cancels the effect of a differentiator. This ide a leads us 
to the implementation shown in Figure 3.14, where the eonstants {30 , 

{31 , ... , f3n-1 are unknown. I t is easy to see that the selection f3i q i 
(O :::; i :::; n - l) is not satisfactory, since the feedback Iines from the 
top affect the quautities in between the integrators. Note that in Fig­
ure 3.12, no feedback of the input was used, so the above difficulty did 
not arise. The unknown f3i values can be determined as follows. Simple 
calculation shows that 

xo y 
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u 

Xo y 

Figure 3.14 An observability-form representation. 

and 

Xn-1 = Xn ; 

furthermore, 

Xn = f3ou- PoXo- P1X1 · · ·- Pn-!Xn-1 · (3.40) 

These relations imply 

(3) . j3 .. j3 . 
Xo = X2 + n-! U+ n-2U 
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(n-1) _ {3 {3 · {3 (n-2) x 0 -Xn-1+ 1u+ 2u+···+ n-1u , 

(n) 
X o Xn + f31 U+···+ f3n-1 U(n- 1) , 

that is, for k = l, 2, ... , n, 

Substitute this equation into relation (3.40) to obtain 

{3 U (n-2)) n-1 , 

which can be simplified as 

y(n) + Pn-1Y(n-l) + · · · + P1Y + PoY 

_ {3 (n-1) + ({3 + {3 ) (n-2) - n-1U n-2 Pn-1 n-1 U 

+ (f3o + Pn-1!31 + Pn-2!32 + · · · + P1f3n-1)u · 

Compare the right-hand side of this equation to that of Equation (3.39) 
to see t hat the f3i val ues should be selected so t hat 

f3n-2 + Pn-1f3n-1 qn-2 

f3o + Pn-1!31 + · · · + P2f3n-2 + P1f3n-1 = qo · 
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These relations can be summarized in matrix form as 

l o o o f3n-1 Qn-1 

Pn-1 l o o f3n-2 Qn-2 

(3.41) 

P2 P3 · · · l o /31 Q1 

P1 P2 · · · Pn-1 l f3o Q o 

We note that the implementation shown in Figure 3.14 with the f3i 
values obtained from Equation (3.41) is calledan observability-form rep­
resentation. 

A different approach is based on the transfer function 

H( s) 
sn + Pn-1sn-1 + · · · + P1S + Po 

of the system (3.39), which im p lies that 

Divide both sides by sn and rearrange the terms as follows: 

Y(s) 

and observe that for k == l, 2, ... , n, 1/ sk is the operation of integration 
k timesin succession. This idea is realized in the implementation shown 
in Figure 3.15, which is also called an observability-form representation. 

Similar to Figure 3.14, the above implementation can be modified as 
shown in Figure 3.16, which is also called a controllability-form repre­
sentation. 

Finally, \Ve note that the diagonal canonical-form representation ear­
responds to the diagonal canonical form to be discussed in Section 7 .l, 
the controllability form representations earrespond to the controllability 
canonical forms to be introduced in Section 7.2, and the observability 
form representations earrespond to the observability canonical forms to 
be discussed in Section 7.3. 
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u 

y 

Figure 3.15 Another observability-form representation. 

3.3.5 Adjoint and Dual Systems 

Consicler the time-variant linear system 

x(t) = A(t)x(t) + B(t)u(t) 

y(t) = C(t)x(t) . (3.42) 

DEFINITION 3.2 The adjoint of the above system is defined as 

Ya( t) Ca(t)xa (t) , (3.43) 

where 

The main relations between the adjoint and original systems are given 
by the following results. 



3.3 Continuous Linear Systems 141 

r-------~-i"-1 Pn-1 1-----------, 

.------~ Pn-21--------.. 

f3o 

Figure 3.16 Another controllability-form representation. 

THEOREM3.6 
The fundamental matrix of the adjoint system is given as 

where </>(t, to) is the fundantental n1atrix of the original sys tent. 

PRO OF Property (v) of Theorem 2.3 implies that 

a T T T 
at</> (to, t) = -A (t)</> (to, t) , 

and from Property (i) of the same theorem we know that 

The assertion then follows from Equation (2.19). l 

THEOREM3.7 
If systent (3.42) is tinze-invariant, tlzen the transferfunction of its adjoint is 

where H( s) is the transfer function of the original system. 
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PROOF Note that 

The dual of a linear system is defined next. 

DEFINITION 3.3 The dual of system (3.42) is defined as 

(3.44) 

where 

The fundamental matrix as weil as the transfer function of a dual 
system can be easily obtained from those of the original system. 

THEOREM3.8 
The fundamental matrix of the dual is given as 

where ~(t, t0 ) is the fundamental matrix of the original system. 

PROOF Simple calculation shows that 

d T [d ]T dt ~ (-to, -t) = dt ~( -t0 , -t) (~(-to, -t)A( -t)]T 

where we used Properties (iii) and (v) of Theorem 2.3. 
Furthermore, 
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and therefore, matrix <PT ( -t0 , -t) satisfies Equation (2.19) with coeffi­
cient ma trix A T (-t). Hence, <P T (-to, -t) is the fundamental ma trix of 
the dual. l 

THEOREM3.9 
If system (3.42) is time-invariant, then the transfer function of its dual is 

where H( s) is the transfer function of the original system. 

PROOF By definition, 

The above concepts and results are illustrated in the following exam­
ple. 

Example 3.13 

Consicler the system of our earlier Example 3.8: 

y= (l,l)x. 

The adjoint and dual systems are given as 

Ya = (0, l)xa 

and 
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respectively. We also know from Example 3.7 that 

Therefore, 

"'(t t ) == ( c?sw(t 
o/ ' 

0 
- s1nw(t 

to) sinw(t- to)) 
to) cos w (t - to) 

because the cosine function is even and the sine function is odd. Sim­
ilarly, 

(
cosw(t 
sinw(t 

( 
c os w (t to) sin w (t t0 ) ) T 

-sin w( t- to) cosw(t- to) 

to) sinw(t 
to) cosw(t 

to)) 
to) · 

It is also known from Example 3.8 that the transfer function of the 
original system is 

H(s) 
s+w 

therefore, 

and 

We mention here that dual and adjoint systems are often applied 
in systems theory. For example, they will be used in establishing the 
observability of linear systems based on controllability conditions, and 
observability canonical forms will be derived by using dual systems. 

3.4 Discrete Systems 
This seetian is devoted to the solution of discrete dynamic systems of 
the form 

x( t+ l) A(t)x(t) + B(t)u(t), x(O) == xo (3.45) 

y(t) == C(t)x(t) . (3.46) 
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Note that difference Equation (3.45) is a special case of the generallinear 
difference equation model (2.43) with 

f(t) = B(t)u(t) , (3.47) 

therefore, the methods discussed earlier in Sections 2.2.2 and 2.2.3 are 
applicable without limitations. 

The state-space approach is based on the general solution formula (2.44) 
and can be given as follows. 

THE O REM 3.10 
The general solution of system (3.45) and (3.46) is given as 

t-l 

x( t)= </>(t, O)xo +L <j>( t, T+ l)B(T)u(T) (3.48) 
T=O 

and 

t-l 

y( t) = C(t)x(t) C(t)<j>(t, O)xo +L C( t)</>( t, T+ l)B(T)u(T). (3.49) 
T=O 

The algorithm to compute x(t) and/or y(t) is the same as it has been 
shown for continuous systems. As an illustration consicler the following 
example. 

Example 3.14 

We now give the solution of the system 

x(t +l)=(~ i) x(t) +G) u(t), x(O) = (~) 

y( t) = (1, l)x(t) . 

In Example 2.14 we derived that 

(
l t- T) </>(t, T) = Q l ' 

therefore, (3.48) implies that 

lt-0 l lt-T-l O 
( ) ( ) 

t-1 ( ( 
x(t) = O l O +!; O l ) l) u( r) 
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7 

l 

and from (3.49) we conclude that the output is given as 

t-l 

y(t) (1, l)x(t) l+ L(t r)u(r). 
T=O 

In the particular case when u( t) l, the calculations coincide with 
those of Example 2.14 and the state vector is 

c2-r2) . 
This state function is illustrated in Figure 3.17, where the harizontal 

axis is x2(t) = t, and the vertical axis represents x1 (t). 

2 

7 l 
-~ 
8 

l 
2 

2 

Figure 3.17 The state function of Example 3.14. 

Note that Equations (3.48) and (3.49) are analogous to the continuous 
counterparts (Equations (3.19) and (3.20)); therefore, their applications 
and main properties are also similar. 

In the time invariant case, when A(t), B(t) and C(t) do not depend 
on t, the application of Z transforms is very attractive. The general 
solution formula (2.55) implies the following result. 
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THEOREM 3.11 
The general solution of the tin1e-invariant system (3.45) and (3.46) can be 
given as 

X( z) = R(z) · zx0 + R(z)BU(z) (3.50) 

and 
Y(z) = CR(z)zx0 + H(z)U(z), (3.51) 

where 

R(z) (zl- A)- 1 and H(z) = C(zi- A)- 1B. (3.52) 

Similar to the continuous c ase, R( z) is c all ed the res o l vent matrix 
and H( z) is called the transfer function. Analogously to Theorem 3.3, 
one may prove that z· R(z) is the z transform of At and H(z) does 
not change if a new variable x = Tx is introduced with a nonsingular 
matrix T. That is, Theorem 3.4 remains valid for discrete systems. 

Example 3.15 

In the case of the system discussed in the previous example, 

(
z-1 -1 )-

1 
l (z-1 l ) 

R(z) = O z- l = (z - 1)2 O z- l 

and 

l (z 1 1 ) (o) z H(z) =(l, l) (z 1)2 O z- l l = (z- 1)2 · 

Substitutethese results into (3.50) to get the input-state relation: 

l (z- l l ) (l) X(z) = (z 1)2 O z l z O 

l (z 1 1 ) (o) + (z- 1)2 O z l l U(z) 

= (z~ 1)2 [ ( z2 
~z) + (z~ 1) U(z)] ' 

and from (3.51) the input-output relation is derived: 
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Y(z) 
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l (z-1 l ) (l) 
(z-1)2(l,l) O z-l z O +(z 

z 
1)2 U(z) 

z z 
- + --l-)2U(z). z -l (z 

As a particular case, assume that the input u( t) = l for all t = 
O, l, 2, .... ThenitemNo.lofTable2.2impliesthatU(z) = zj(z-1). 
Therefore, 

X(z) 

and 

l ( z2 z + _z ) l ( 
1)2 (z- l) z~~l = (z- 1)3 

z3 - z2 +z 
Y(z) = (1, l)X(z) = (z_ l)3 . 

- 2z2 + 2z) 
z2 z 

The partial fr action representation of Y (z) is as folio w s: 

U se Nos. 8 and 6 of Table 2.2 to condude that the output is given as 

y( t) 
if t o 

t2+i+2 if t > o . 

Because at t O the two parts coincide, 

t 2 +t+ 2 
y(t) = 

2 
forall t;:::: O. 

Hence, the output of the system is determined. 

Note that the block diagram representation of discrete systems has 
the same form as shown in Figure 3.3, where variable s is replaced by 
z. Discrete systems in input-output form can be discussed in the same 
way as was demonstrated in Section 3.3.3 for continuous systerns. In 
addition, combinations and representations, as well as adjoint and dual 
systems are also defined in the same way as they were introduced earlier 
for continuous systems. The details are left to the reader as simple 
exercises. 
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3.5 Applications 
In this seetian same particular nonlinear and linear dynamic systems 
are introduced from different fields of applied sciences. In the first part, 
same applications in engineering are outlined, and in the seeond part, 
case studies from the social sciences are reported. Pick and choose: 
study only the ones you like. In this chapter these examples illustrate 
the concepts of an equilibrium point, in same cases linearization, the 
fundamental matrix and the transfer function. In subsequent chapters, 
these same examples vvill be used to illustrate principles of stability, 
controllability and observability, and other concepts in systems theory. 

3.5.1 Dynamic Systems in Engineering 
l. Our first system models harmanie motion. If we apply a force to a 
point mass attached to an ideal spring in a frietianless environment, the 
mass ·will asciilate sinusoidally. The input could be either a position 
command; a velacity command, which could be supplied by a velacity­
servo system; or both combined. 

1------to- ll (t) 

1--------+- x l (t) 

Figure 3.18 An undamped, spring-mass system. 

Let B be the position and v be the velacity of the mass 1vf sho\vn in 
Figure 3.18. It is ·weil kno,vn that 

(j= -1(8 +u' 

if the input is a force applied on the n1ass \vhen we assume that AJ = l. 
In Example 3.3 \Ve derived that ·with the ne\V parameter w = JK, the 
systeln equations can be sun1marized as 

(3.53) 

This is one real-·world system that could produce the equations we used 
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in Examples 1.13, 2.6, and 3.3. As shown in Example 3.3, the equilibrium 
point of this system for a step input is 

X=(~)· (3.54) 

This means if we apply a step input of force, the system will come to 
an equilibrium ·where the spring is stretched and the velocity is zero. 
We note that the complete solution of this system has been elaborated 
ear lier in the ex am p les. 

2. A linear seeond-order mechanical system may be the most com­
mon and most intuitive model of physical systen1s. In this example we 
investigate many different properties of linear seeond-order systems. 

The Newtonian equation for the spring-mass-dashpot system of Fig­
ure 3.19 is 

f(t) == MB+BÖ+KB' (3.55) 

B 

~9(t) 

Figure 3.19 A simple damped spring-mass-dashpot system. 

where M represents the mass of the object, B the viscosity, and K the 
elasticity. Notice that the case of M= l and B= O earresponds to the 
previous application, w hen we select u == f. This seeond-order equation 
can be reduced to a two-dimensional system of first-order equations by 
introducing the variablesXl ==()and X2 ==e. Then we have 

(3.56) 
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where u == f is the input of the system. Hence, in this case n == 2, 

b (1). (3.57) 

The equilibrium state of the system with eonstant force Jo is the 
solution of the equation 

which is as follows: 

and (3.58) 

That is, at the equilibrium state, the position is 1/ K times the force and 
the velacity is zero. 

The characteristic polynomial of matrix A is given as 

(
-A l ) 2 B K 

<p(A) ==det _K _fi. _A ==A + MA+ M , 
NI !'vi 

(3.59) 

therefore, the eigenvalues are 

-B± -jB2 - 41\1K 
(3.60) 

This farmula makes the computation of the fundamental matrix rather 
complicated. Therefore, the transfer function approach is more attrac­
tive. The transfer function is 

8(s) l 

F( s) 1\tl s 2 +B s+ J( 
(3.61) 

We now define two parameters ( and Wn because they have physical 
significance and create mathematical simplicity: 

and 

B 
(==2VKfi! (3.62) 

(3.63) 
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The undamped natural frequency, Wn, is the frequency at which the 
system would oscillate if the damping, B, were zero. When we substitute 
these new parameters, the transfer function becomes 

l w; 8(s) 
F( s) K s2 + 2(wns +w~ 

(3.64) 

This system exhibits four different types of behavior; they are defined 
uniquely by the value of the damping ratio, (. Figure 3.20 summarizes 
these responses. The mathematical details are omitted. 

h(t)b---
• t l 

Critical1y damped ron~ 1-t/ 
(pole is repeated) ' . / 
~=l ~l 

h(t)~ 

-ah:- 1-l/a't 

y\ 
~ 
t 

Overdamperl 
~>l 

/ 
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/ 
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// conjugate 
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' ' ' ' 

' \ 
\ 

\ 
\ 

l 
l 

l 

\ 

' l 
l 
l 
l 

l 
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/ 
/ 

/ 

',>1-,s~~=--_a_ ±f:- __ /// 
lrr=l s== cr=+=jro::::::nij 

Figure 3.20 Pole-zero diagrams and irnpulse respanses for seeond-order sys­
tems. 

The expression under the square root of Equation (3.60) is called 
the discriminant. It has special significance because its square root is 
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imaginary w hen B 2 < 4M K. Applying the quadratic form ula to the 
denominator of Equation (3.64) shows that the two roots are 

s1,2 = -(wn ± Wn ~ . (3.65) 

The roots are called the poles of the system. The ( and Wn parameters 
are most significant when ( < l and the discriminant is negative; there­
fore, it is preferable to rewrite Equation (3.65) in a way that directly 
illustrates the real and imaginary components: 

(3.66) 

where wd is a new parameter called the damped natural frequency. It is 
the frequency of the oscillation in response to, say, a step input, when 
the damping, B, is not zero. 

This important relation demonstrates that ( determines whether the 
discriminant is positive or negative. In particular, the roots are 

l. negative real w hen ( > l, 

2. repeated real when ( = l, 

3. complex w hen O < ( < l, 

4. purely imaginary when ( = O. 

To summarize, the potentially aseillatory behavior of the seeond-order 
system is characterized mathematically by \Vhether or not the poles are 
complex. First-order poles can only be real; therefore, a seeond-order 
denaminatar polynomial is the minimum orderthat allo\vs complex poles 
to exist. However, the poles of high-order systems can be real or com­
plex, depending on the numerkalvalues of the system's parameters. 

When possible, transfer functions are expressed in factored form like 
this: 

H( s) = (s+ z!)(s + z2) ... (s+ Zm) , 
(s+ PI)(s + P2) ... (s+ Pn) 

(3.67) 

\vhere Pi represents the ith pole and zk represents the kth zero. It 
is of conceptual value to plot the poles and zeros of a system on the 
camplex plane because the characteristic patterus of dynamic response 
in different regions are readily remembered. This plotting also provides 
the basis for analyzing stability. The details will be given in Chapter 4. 

The Laplace transform variable s exhibits the properties of a complex 
variable. It is a complex frequency variable defined by 

s= a+ jw 
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where a and w are, respectively, the real and imaginary parts. 
The four pol e configurations of the basic seeond-order system as func­

tions of ( are shown in Figure 3.20, along with a sketched impulse re­
sponse for each case. The right-triangle relationship between the real 
and imaginary parts and the undamped natural frequency of the system 
Wn should be noted. In particular, the damped natural frequency of the 
system Wd is specifled by the imaginary part, 

Wd=Wn~· 

Similarly, the real part -(wn earresponds to the inverse exponential 
decay time eonstant for the impulse response's envelope. A radial Iine 
from the origin is called a eonstant damping line because the angle from 
the negative real axis is given by 

( = cos e. 

So, if ( is constant, then the angle is eonstant as weil. A circle about 
the origin is at eonstant Wn· For the overdamperl case, the poles are 
arranged on either side of -1/T (which also equals -(wn for the ( = l 
condition). 

As a brief review of the mathematical techniques used in analyzing 
system responses, we willnow derive the time response of a linear MBK 
system with critical damping. The reader is encouraged to perform 
derivations of the impulse and step responses for the over- and under­
damperl systems. 

Find the step response for the MBK system of Figure 3.19. Let 
k= K, then 

8(s) 
F( s) 

l w;_ 
k s2 + 2wns + w; (3.68) 

for the particular case where ( is unity (critically damped). If f(t) is a 
unit step, then 

e (s) - 2_ ( w;_ ) 
- sk s2 + 2wns +w; (3.69) 

We will evaluate this by the method of partial fractions. In this case, 

8(s) 
A B C -+---+----s s+wn (s+wn) 2 · 

(3.70) 

To fin d A, multi p ly both sides of Equation (3. 70) by the denominator of 
the A term (in this case s), then let stake on a value that would make 
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the denominator equal zero (in this instance, 0). We find that 

To find C, multiply Equation (3.70) by (s+ wn)2 and then let s= -Wn 
to see that 

If we try the same trick for B, we will get 

B 
o 
-o 

which is indeterminate. So we must apply differentiation as we did 
earlier in Example 2.8. Multiply Equation (3.70) by (s+ wn)2 : 

l w~ 2 A 
-k-= (s+wn)- +(s+wn)B+C. s s 

Take the derivative with respect to s: 

s2 -w~A B 
--?- + . s-

And now eval u a te this at s = -w n: 

-l 
B=y· 

(3.71) 

(3.72) 

Therefore, in response to a unit step of force, the position becomes 

8(s) 
l -1 -w -+ + n 
ks k( s+ Wn) k(s + Wn) 2 • 

(3.73) 

From the table of La place transforms (Table 2.1), '\Ve fin d the resulting 
time response to be 

fJ( t) (t > O) , 

which can be simplified as 

fJ( t) (3.74) 
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Figure 3.21 Step respanses of linear seeond-order systems. 

Similar results for over- and underdamperl systems are presented in 
Figures 3.21 and 3.22 and in Table 3.1. 

3. An electrical system is discussed next. Assume \Ve apply an ideal 
voltage source to the ideal resistors, capacitor, and inductor shown in 
Figure 3. 23. 

From the theory of simple electric circuits we know that 

. R d. L 
Vs ='l L 1 + dt 'l L +ve (3.75) 

and 
. ve 
'lL- R2; (3.76) 

furthermore 
l j· ve= C 'le dt. (3.77) 

It is often useful to let the state variables be associated with the energy 
storage elements. So, let us set x1 iL, X2 ve, and u Vs, then 
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Figure 3.22 Step respanses and pole locations of linear seeond-order systems. 
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Table 3.1 Step Responses of Second-Order Systems 

Damping 
ra tio 
r ange 

( o 
Undamped 

0<(<1 
Underdamped 

(=l 

Critically 
damped 

(>l 
Overdamp ed 

Transfer function 

from (3.75) we have 

Frequency­
domain 
step response 

s(s+w.,,,ja)(s+aw.,.) 

Rt l l 
--Xl- -X2 +-U 

L L L 

and from (3.76) and (3.77), 

L 

Figure 3.23 A simple electrical system. 

Time-domain 
step response 

l- COSWnt 

1-

where cp = Are tan 

c 
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Introduce the following notation: 

(3.78) 

Then the above equations can be summarized as 

x= Ax+ bu. 

If the voltage across the capacitor is the output of interest, then the 
output is given as y (0, 1)x, that is, eT = (0, 1). 

For a unit-step input the equilibrium point is the solution of equation 

A·x+b·1 o, 

which is 

(3.79) 

Note that a step input applied to this system will produce a eonstant 
but nonzero steady-state voltage across the capacitor and a eonstant but 
nonzero current through the inductor. 

The solution of the system can be given in both state-space form and 
by the transfer function approach. The transfer function method is easy 
to apply, and easy calculation sho\vs that in this case 

H(s) (
s+RI l )-1(1) (0,1) L ~ y; 

S + CR2 Q 

1 (s+ck ) (y;o
1

) 
(s+fu)(s+-1-)+-1 (0,1) 1.. 2 s+fu 

L CR2 LC C L 

The solution in the state-space form is left as an easy exercise. 
4. A simple transistor circuit can be modeled as shown in Figure 3.24. 

In the output circuit h f e i b is a dependent current source. This time l et 
us relate the state variables to the input and output of the circuit. Let 
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the base current, ib, be x1 and the output voltage, Vout, be x2, then 

and 
eT = (0, l) . (3.80) 

L C 

c 
E 

Figure 3.24 A mid-frequency model for a simple transistor circuit. 

The A matrix looks strange with a column of all zeros, and indeed, 
the circuit does exhibit odd behavior. For exan1ple, as we will show, 
there is no equilibrium state for a unit step input of e8 • Bu t this is 
reasonable because the model is for mid-frequencies, and a unit step 
does not qualify. In response to a unit step, the output voltage will 
increase linearly until the model is no longer valid. 

If e8 is considered to be the input, then the system is 

(3.81) 

If u( t) = l, then at the equilibrium state: 

(3.82) 

That is, 
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(3.83) 

Since hfeiC f=. O, the seeond equation implies that X1 == O, and by 
substituting this value into the first equation we get the obvious con­
tradiction l l L = O. Hence, ·with nonzero eonstant input no equilibrium 
state exists. 

The fundamental matrix of this system can be determined easily. By 
introd ucing the notation a = -hi e l L and j3 = h f e l C, 

Å=(~~) . 
Note first that 

( 
a O) ( a O ) ( a

2 
O) 

j3 O j3 O = a/3 O = aA ' 

therefore, 

and so on. Finite induction sho\vs that 

Hence, 

1 ( ecd o) 
=I+ A· ~(e"t -l) = P(e'~-ll l . 

The transfer function of the above system can also be easily deter­
mined: 

H(s) = (0, l) (s ~(ja~) -l (t) 

_ (O l) l (s O ) (t) 
- ' s2 - as j3 s - a O 
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= 
1 

( (3, s- a) (t) = ---=-
s2- as O -as 

The state of the system can be then determined easily by using the above 
results for eAt or H(s). 

5. A hydraulic system is now presented. For the two-tank liquid reser­
vair system shown in Figure 3.25, if we ignore the effects of fluid inertia 
and assume that the system elements are linear, we can write the mass­
continuity equations in terms of the liquid levels h 1 and h2: 

Figure 3.25 A two-tank hydranlic system. 

A dh1 _ 
l dt -

A dh2 _ h1- h2 h2 
2 dt - R1 - R2 ' (3.84) 

where A1 and A2 are the cross-sectional areas of tanks l and 2. Rear­
ranging terms, we have 

(3.85) 

We find that in our general formulatian 

A= 
( 

l l ) -RIA! RIA! 

- ( R1
1
A2 + R2

1
A2) 

'(3.86) 



3.5 Applications 163 

b= (~l) . (3.87) 

If the output of interest is the flow Q1 through the connecting pipe, then 
we have 

R1 
(3.88) 

In standard matrix form, the output is expressed as a function of the 
state vector as 

(3.89) 

Therefore, in our standard notation, 

(3.90) 

In response to a unit step increase in water flow, the system will arrive 
at the following equilibrium point: 

(3.91) 

That is, the height of the water in each tank \vill have changed. 
This system can be solved by using both state space approach and 

transfer functions. The details are omitted. 
6. In our earlier Example 3, \Ve have examined a single input, single 

output electrical system. In this example, that earlier model will be 
extended in order to illustrate a multiple input electrical system model. 
Figure 3.26 shows an electrical net\vork ·with t\vo voltage sources. Single 
electric circuit theory implies that 

R. L di1 
v1 = 21 + 1 di+ ve (3.92) 

d. 
v2 = L2 df +ve (3.93) 

and 

ve = ~ j ( i1 + i2)dt . (3.94) 

Introduce the state variables x1 = i 1 , x 2 = i 2 , x3 = ve, and the input 
variables u1 = v1, u2 = v2 to obtain the following differential equations 
for the state variables: 



164 cl1apter three: Characterization of Systems 

Figure 3.26 A multiple input electrical system. 

Assume furthermore that the output of the system is y = ve. Introduce 
the following notation: 

and 
c= (0, o, l) . 

Then the above differential equations can be summarized as 

x= Ax+Bu 

y= Cx. (3.95) 

As a particular example, we will next determine the equilibrium state 
of this system with eonstant unit-step inputs u 1 = u2 = l. The equilib­
rium states are the solutions of equation 

( z 1 o ) G n + ( ~· ~ ) c) = (n 
which can be rewritten as 
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Figure 3.27 An inverted pendulum. 

The seeond equation implies that x3 = l and by substituting this value 
inta the first equation we see that x1 =O, and the third equation implies 
that x2 O. Hence, 

(3.96) 

is the unique equilibrium, \Vhich can be interpreted by noticing that after 
the capacitor reaches the voltage level of the inputs, no current \vill flow 
in the two loops. 

7. There are several mechanical problems- such as orbiting asatellite 
and controlling a racket that have the character of camplex balancing 
problems. As a simple version of this type of problem, let us consicler 
balancing a stick on your hand, as illustrated in Figure 3.27. 
. For simplicity, consicler balancing a stick of length L with all of its 
mass M concentrated on the top. Let the input, u(t), be the position 
of the person's hand (i.e., the bottom of the stick). The position of the 
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top of the stick will be 

y(t) u( t) +L sin e(t) . (3.97) 

Next we will write the equation for the sum of the moments about the 
pivot point of the stick: 

M g L sin e( t) =NI L2B(t) + u(t)M L cos e( t) . (3.98) 

The first term comes from gravity acting on the mass, M. The seeond 
term is due to the rotational inertial of the mass on the stick, and the 
last term shifts the inertial term down to the pivot point. 

Now this is a nonlinear system, and nonlinear systems are hard to 
analyze. So let's make our life easier by linearizing the system. If the 
stick is nearly at rest in the vertical position (where e is small), we can 
sa y cos e ~ l and sin e ~ e. After making these substitutions we can 
eliminate e from the two equations to get 

y(t) = !};[y(t) - u(t)] . (3.99) 

For ease of notation let us set L = l. Then, defining the velocity 
v(t) y(t), the system has the statespace representation 

( ~(t)) =(o 1) (y(t)) + ( o ) u(t). v(t) g O v(t) -g 
(3.100) 

There is only one equil:ibrium position: 

y(t) uo and v( t) ==o , 

where uo is a step input. To arrive at this equilibrium state, the top of 
the stick y(t) had to be moved over the same distance as the bottom, 
u0 . In this equilibrium state, the angle e and the velacity will be zero. 

Note that with zero input, the general solution of this system is the 
same as it will be in the case of the warfare model to be introduced in 
the next section, when we select h1 = -g and h2 = -1. For the actual 
solution, see that case study. 

8. Our next mod el deals with a cart of mass M that has two sticks on i t 
of lengths L 1 and L2 and masses of M1 and M2, as shown in Figure 3.28. 
If we assume small angles e1 and e2 , we can make the same linearization 
as before. Please note that in this problem, the input, u(t), is a force, 
not a position as in previous application. Let v( t) be the velacity of the 
cart. We can sum harizontal forces acting on the cart to get 
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Next we can sum torques about each pivot point to get 

(3.101) 

For simplicity, let M1 = M2 . Let us now define our state variables as 

u.(!)-+ 

Figure 3.28 A cart with two sticks. 

(3.102) 

to obtain ( after eliminating v from the equations of motion) the state 
equations x Ax + bu with 

(o o 1 o) ( o ) o o o l o 
A= 

a1 a2 O O ' b= l ' (3.103) = A1tl a3 a4 O O 
ML2 

where 

(M+ Jvf2)g ]yf2g 
al= 

1'1 L1 ' a2 = l\1Ll ' 

1'12g (JV! + lvf2)g 
(3.104) a3 = J'tfL2 ' a4 = 

1\1 L2 

Now 'vhat happens if we apply a unit step to the system, i.e., push 
the cart? It is easy to see that at the equilibrium state, x1 and x2 are 
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nonzero and X3 = X4 O, rueaning the levers must not be moving, but 
they are tipped. 

9. An electrical heating system \Vill be next examined. A temperature­
controlled oven is illustrated in Figure 3.29, where the oven temperature 
is controlied by the heat input u into the jacket. Introduce the following 
notation: 

A1 = inside jacket surface 

A2 = outside jacket surface 

el = heat capacity of insidespace 

c2 = heat capacity of jacket 

h1 = film coefficient for inside surfaces 

h2 film coefficient for outside surfaces 

To outside temperature 

T1 inside temperature 

T2 jacket temperature 

Figure 3.29 An electrical heating system. 
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Similarly to our earlier hydraulic system, we can easily formulate the 
heat balance equations for inside space and the jacket as follows: 

Introduce the state variables x1 = T1- To and x2 = T2- To, and assume 
t hat the output of the system is y = T1 -To. T hen by assuming that the 
outside temperature To is constant, the above equations can be rewritten 
as 

Y= XI· 

These equations can be summarized as 

(3.105) 

with output equation 
y= (1,0)x. 

10. The following lumped-parameter model for a nuclear reactor is 
based on [21]. N uclear fission reactors are described by the same basic 
dynamic principles, \Vhether they are thermal reactors or fast reactors 
and w hether the nuclear fuel is U235 , Pu239 , or U233 • The essential 
phenomenon is neutron-induced fission of these isotopes, with the ac­
companying release of other neutrons, usually two or three per fission 
event, thus making a self-sustaining neutron chain reaction possible. 

The basic concepts of reactor dynamics, common to all types of fission 
reactors, are reactivity, neutron generation time, and delayed neutrons. 

Reactivity is ho'v much the neutron reproductian factor k differs from 
unity. It is an integral property of the entire reactor. The lumped­
parameter (point-reactor) model is satisfactory only w hen k is near unity, 
\vhen the reactor is almost critical. The reactivity depends on the size 
of the reactor, the relative amounts and densities of various materials, 
and the neutron cross-sections for scattering, absorption, and fission. 
Because all of these are affected by temperature, pressure, and other 
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effects of fission ( arising primarily from the dissipation of kinetic energy 
of the fission fragments), the reactivity depends on the power history 
of the reactor. The computation of this reactivity feedback is one of 
the central problems of reactor dynamics. Furthermore, because the 
dynamic equations contain the product of reactivity and instantaneous 
power, the equations are generally nonlinear. 

The neutron generation time is the mean time for neutron reproduc­
tion. It is also an integral property of the entire reactor. It may be as 
short as 10-8 see for a fast reactor or as lang as 10-3 see for a ther­
mal reactor, where neutrons slow down consid erably and subsequently 
diffuse at thermal energies before eausing fission. The generation time 
depends primarily on the nun1ber of scattering collisions that a typical 
neutron undergoes before it escapes from the reactor or disappears in a 
nuclear reaction. These phenomena are called the leakage and absorp­
tion, respectively. 

Delayed neutrons, although representing lessthan one percent of the 
neutron productian in fission, are extremely important in determining 
the time scales in reactor dynamics. These neutrons are released in 
certain nuclear transitions that occur in a few types of highly excited 
fission fragments, and the relevant processes have half-lives of the order 
of a few seconds. 

When the reproductian factor is sufficiently large that the neutron 
chain reaction would be self-sustaining with only the prompt neutrons 
(neutrons released immediately in fission), the neutron generation time 
is dominant in determining the time scale. When the reactor is not too 
far from critical, in the regime where prompt neutrons alone would be 
insufficient to sustain a chain reaction, the relatively large delay times 
of the delayed neutrons are dominant, even though the delayed-neutron 
fraction is small. If all neutrons were prompt, it would be extremely 
difficult to control a reactor by conventional mechanical means, such 
as movement of fuel, neutron absorbers, or neutron reflectors, because 
of the high frequency response required to compensate for the short 
neutron generation time. 

The point-reactor equations are 

dD p /3 m 
- = --D+">.·D·+q dt l L t t 

i= l 

and 
dDi = /3i D , D 
dt l Ai i ' 

(3.106) 

where 

D = neutron d ensity (or power, etc.) 
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Neutron diffusion Fission 
~----t productian rate = kn/10 

~~--------~~~ 

q 
l 

l {Jikn/10 

Delayed-neutron precursors 
("Latent neutrons") 

Figure 3.30 Simplified neutron cycle for a nuclear reactor. 

Di = precursor d ensity (latent-neutron d ensity or latent power, etc. 

same units as D) 

t= time 

171 

p= reactivity (k 1)/k, the fractional change in neutron reproductian 

facto r 

{3 = delayed-neutron factor (2:::~ 1 /3i) 

l = neutron generation time 

Ai = decay eonstant for precursor decay 

q effective source strength (same unit as dD jdt) 

m = the number of delayed-neutron groups 

The parameters /3i, Ai, and l are assumed constant. The point-reactor 
model thus consists of m + l coupled first-order differential equations 
togethe r ·with the specification of the functions p( t) and q( t). In general, 
p is a function of D and the system is nonlinear; however, in the absence 
of reactivity feedback, p( t) is an explicit function of time and the system 
is linear. 
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Using our usual vector-matrix notation, this system's rnadel can be 
reformulated as follows. Assume that the state vector is given as x = 
(D, D 1 , D 2 , ... , Dm)T and the input is the effective source strength, that 
is, u= q. Then we have 

x=Ax+bu, (3.107) 

where 
.Al .A2 A3 · · · Am-l Am 

A= 
-.Al o o o o 

(3.108) 

o o o o -.Am 

is an (m + l) x (m + l) size matrix, and b = (1, O, O, ... , O)T is an 
(m + l )-dimensional vector. 

The equilibrium of the system (with eonstant q= qo) can be obtained 
by solving equation 

Ax+ bqo =O, (3.109) 

which is an (m + l) dimensional system of linear equations. Summing 
up the equations of (3.108) we get the relation 

which reduces to 

Hence, 

(
p-(3 l~ ) 
-l-+ y '8_f3i D+ qo =O, 

p yD +qo =O. 

- lqo 
D=-­

p ' 

and from the (i+ l)st Equation of (3.106) we conclude that 

f3i - -
-D-.A·D·=O l z z ' 

that is, 
- f3i -
Di= l.Ai D. 

(3.110) 

Criticality, defined as k = l (p = 0), is, strictly speaking, a non­
equilibrium situation; in the presence of a source, the critical reactor 
is divergent. A neutron source, inserted prior to reactor startup to 
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provide adequate detector readings, may be withdrawn as criticality is 
approached; nevertheless, neutrons from spontaneous fission and cosmic 
rays will always represent sources. In consequence, an operating reactor 
at steady power is always slightly subcritical, although the reactivity as 
given by Equation (3.106) is usually undetectably small. Thiswill be the 
case w hen fJ /l is large, and if the magnitude of the reactivity atpoweris 
very much smaller than the magnitude of the shutdown reactivity, then 
the source may be neglected in further calculations. 

3.5.2 Dynamic Systems in Social Sciences 
l. Our first example is known as the two-dimensional predator-prey 
model. Imagine an island populated primarily by goats and wolves. 
The goats survive by eating the abundant vegetation of the island, and 
the wo l ves survive by eating the goats. Let G (t) and W (t) de no te the 
goat andwolfpopulations at time t. The predator-prey model has the 
form 

G(t) aG(t) bG(t)W(t) (3.111) 

W(t) = -cW(t) + dG(t)W(t) (3.112) 

where a, b, c, and d are positive constants. Equation (3.111) tellsus that 
the prey population growth per unit time is proportional to the prey 
population, and the decrease rate is proportional to the product of the 
populations of prey and predator. The seeond equation im p lies that the 
predator growth is negatively proportional to the predator population 
(reflecting competition) and is positivelyproportional to the product of 
the two populations. If "YV(t) = O, then the first equation reflects the 
exponential growth rnadel 

G(t) = aG(t) , 

which has the solution 

G(t) = eat · G(O) . 

In the general c ase, i t is kno\vn t hat the solution is periodic (see for 
example, [17], Section 48). Figure 3.31 shows the solution in the special 
case, \vhen 

a = 0.25, b= 0.01, c= 1.0, and d= 0.01 ; 

furthermore, the initial values are given as 
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w 
40 

(G( O), W(O)) 

15 

75 125 G 

Figure 3.31 Predator-prey trajectory. 

G(O) = 80 and W(O) = 30 . 

The above mo del description does not have formal input. However, 
improved weather conditions can result in the increase of the growth 
rate of the goat population, since more vegetation means more food for 
the goats. Therefore, parameter a can be assumed to be controlied in 
this way by the nature. In this case, Equation (3.111) can be replaced 
by 

G(t) = (a+ u(t))G(t) - bG(t)W(t) . (3.113) 

The equilibrium (G, W) of system (3.111) and (3.112) is obtained by 
solving equation 

aG- bGW =o 

-cw +dGW =o. 

It is easy to verify that the two solutions are 

G = O, W = O and G 

Therefore, we have two equilibrium points. In the case of the first equi­
librium, both populations are zero, and in the case of the seeond equi­
librium, both populations are positive. The first equilibrium is trivial, 
so we will only discuss the case of the seeond equilibrium. 

We apply the linearization procedure to find the linear approximation 
of the system around the positive equilibrium. The practical value of 
linearization is the fact that the theory of linear systems can be applied 
to the linearized model. 
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The Jacobian of the right-hand side functions of (3.111) and (3.112) 
has the form 

(
a-bW -bG ) 

J( G, W)== dW -c+ dG ' 

therefore, at the positive equilibrium 

J(G, W) (~d 0 ) 

and consequently, with new variables G0 G ej d and vV0 ==W- afb 
from Equation (3.13) we obtain the linearized rnadel 

These equations can be easily rewritten in order to have the original 
variables: 

be (Hl_~) = _ bcW + ac 
d b d d 

(3.114) 

Note that the structure of this rnadel is very similar to that shown in 
Example 3.7. More details on interacting populations can be found, for 
example, in [28]. Finally, we note that the \Varfare mod el and epidemics, 
\Vhich will be disenssed later in this section, are mathematically special 
cases of this model. 

2. Our next rnadel is kno,vn as the cohort population model. Assume 
that the population of a country is divided in to age gro u ps (or cohorts). 
Let n denote the number of age groups, and let Pi(t) denote the popula­
tion of group i at time period t. vVe assume that this system is described 
by difference equations 

(i l, ... ,n l) 

and 

The first equation is interpreted as the surviving portion of group i 
sim p ly rnaving up to the (i + l )st age group after on e time period. 
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The seeond equation gives the number of individuals born during the 
last time period, where the coefficients b1, ... , bn represen t the birth 
rates in the different age groups. Assume furthermore that at time 
t, ui(t) individuals join the population of age group i from outside. 
Therefore, this situation can be modeled by the linear time-invariant 
discrete system 

p(t +l) A· p( t) +I· u( t) , (3.115) 

where 

p l 
b1 b2 b3 · · · bn-1 bn 

U1 
a1 o 

p2 
a2 

U2 

p p3 A= a3 u U3 

P n o an-l o U n 

If we are interested only in the total population, then we may select the 
output 

Po(t) = P1(t) + · · · + Pn(t) = (1, l, ... , l)p(t) . 

This model was originally introduced by Leslie [27], and matrix A 
in (3.115) is usually called the Leslie-matrix. The population structure 
can be predicted for any future time by solving the governing differ­
ence equation. Some properties of this system will be analyzed in later 
chapters. 

3. In the two-nation arms race model, let X(t) and Y(t) denote the 
arn1an1ent levels of the two nations at time t. The well-known Richard­
son's model [38] can be written as follows: 

X(t) = aY(t)- bX(t) +a (3.116) 

Y( t) cX(t) - dY(t) + f3 . (3.117) 

This model shows that the arms race of each nation is negatively pro­
portional to its armament level and positively proportional to the arma­
ment level of the other nation. Constants a, b, c, and d largely depend 
on the overall relations of the two nations. It is also interesting to note 
that Chestnut [7] describes cooperative security systems between the 
two nations based on systems theoretical concepts and methods. By 
introducing the notation 

A= (-b a) 
c -d ' f= (~) ' 
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this system can be rewritten in our general form 

x=Ax+f. (3.118) 

This system has no formal input in this formulation. Assume next that 
improved relations between the two nations can decrease the arms race, 
and the worsening of their relations ma y increase i t. If u( t) denotes a 
measure of the "goodness" of the relation of the two nations, then· the 
above model can be extended as 

X( t) ( -:-~)x( t)+ (~)u( t) , (3.119) 

where u(t) is a formal input. The original Richardson's model is the 
special c ase of this formulatian by se leeting the eonstant ·input u( t) = l. 
In this case the equilibrium can be determined by solving equations 

aY bX +a== O 

cX-dY+f3==0. 

Assume that bd # ac, then the solution is 

X= af3 +ad 
bd- ac 

and y= ca+ j3b . 
bd ac 

Assume that the output is defined as the armament level of the first 
nation. That is, 

y (l, O)x . 

Then the transfer function of the system is the following: 

H( s)== (1 O) (s+ b -a ) -I (a) 
' -c s+ d {3 

- (l O) l 
- ' s2 +(b+ d)s +(bd- ac) (s+ d a ) (a) 

c s+b j3 

= s+d a l (a) 
s2 + (b+ d)s +(bd- ac) ( ' ) f3 

sa+ (ad+ {3a) 
s2 + (b + d) s + (bd - ac) · 
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This transfer function allows us to determine the output of the system 
of any future time period by using the solution farmula (3.24). 

A natural generalization of this mod el to the multi-nation case can be 
given as follows: 

n 

Xi(t) L CXijXj(t) + f3i 
j=l 

(l~ i~ n) (3.120) 

where Xi(t) is the armament level of nation i in time period t; further­
more au < O and aij > O for j f. i. Introduce notation x = (Xi), 
A = (aij), and f = (f3i), then this model has the usual form (3.118). 
The equilibrium is the solution of equation 

Ax+f=O. 

If A -l exists, then vector 

gives the equilibrium. 
4. A warfare model can be formulated as follows. Assume that two 

forces are engaged in a war. Let X 1 and X 2 den o te the numbers of units 
in the two forces. The members of the fighting forces are characterized 
by their "hitting powers," which are the numbers of casualties per unit 
time that one member can inflict on the enemy. The hitting powers h1 

and h2 are determined by military technology. By assuming that the 
hitting power of each force is directed uniformly against all units of the 
enemy, we obtain the following relations: 

(3.121) 

U se the notation 

and 

to get the formulatian 
x=Ax. 

Note that this system is a special case of the linearized predator-prey 
model by selecting 

be 
d 

and 
ad 
-=-hl 
b 



3.5 Applications 179 

with zero eonstant terms. 
This first-order system can be easily rewritten to a single seeond-order 

equation. Differentiate the first equation of (3.121) to see that 

that is, 
(3.122) 

The characteristic polynomial of this equation is 

with eigenvalues --\1,2 == ±~. Therefore, the general solution of 
Equation (3.122) is given as 

and from the first equation of (3.121) we conclude that 

The coefficients c1 and c2 can be determined from the initial conditions: 

and the results are as follo\vs: 

Hence, 

= X10 cash (t.jiLJt;) - X2o[!f!; sinh (t~) , 
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and 

where cosh andsinhare the well-known hyperbolic functions. 

An alternative solution method is based on computing eAt and then 
applying the solution farmula (2.18). This method is illustrated next. 

Since 

we have 

and so on. Finite induction can be applied to show that 
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Therefore, 

(h h )mt2m (h h2)mt2m+l 
1 2 I+ "' 1 A 
(2m)! L (2m+ l)! 

ffik=eveu ffik=odd 

( 1Jlh)2mt2m 1 ( 1Jlh)2m+lt2m+l 
""""' vn1n2 I+ __ """"' vn1n2 A 
L (2m)! jh1h2 L (2m+ l)! 
m 1n 

( 

cosh(tvh1h2) -{fisinh(t~)) 
-ffi; sinh(tvhlh2) cosh(tvhlh2) 

Hence, 

x( t) 

( 

X10 cosh(tyfh1h2) - X2o/'i. sinh(tvh1h2) ) 
(h; '(3.123) 

-x1oy ~ sinh(t~) + x2o cosh(tvh1h2) 

vvhich coincides 'vith the result obtained earlier. 
For mo re details of this mod el, see, for example, [25] and [40]. 
5. Examining epidemics of disease in human population is a very im­

portant application of dynamic systems theory. Consicler a population 
of individuals, and assume that a disease spreads by contact between 
individuals. It is assumed that infected individuals either die, become 
isolated, or recover and beco1ne immune. Therefore, in any time period 
t the population consists of x(t) susceptible individuals, y(t) infected 
and circulating individuals, and z( t) further individuals 'vho either have 
been removed (die d or isolated) or are immune. The dynamics of the 
system are described by differential equations 

x= -o:xy 

y = o:xy - (3y 
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z {3y. 

The first equation shows that the decline in the number of susceptible 
individuals is proportional to the product of the numbers of susceptible 
and infected (hut still circulating) individuals. The first term of the 
right-hand side of the seeond equation shows the number of newly in­
fected individuals, and the seeond term gives the number of individuals 
who have been removed. The third equation means that these removed 
individuals increase the number of the third group. Note that z does not 
appear in the first two equations, therefore, it is sufficient to consicler 
the system consisting of only the first two equations: 

x= -axy 

iJ = axy {3y . (3.124) 

Mathematically, this system is a special case of the predator-prey mo del 
(3.111) and (3.112) by selecting a O and b= d. This analogy is ex­
pected, since when goats are eaten by wolves and susceptible individuals 
are infected, they are simply removed from their populations. A compre­
hensive summary on deterministic and stochastic models of epidemics 
can be found in (6]. 

6. In Example 3.2 we have introduced the Harrod-type national econ­
omy model 

Y(t +l) = (l+ r rm)Y(t) rG(t) , 

w here Y (t) is the national in come and G (t) is the government expendi­
ture. 

By using the notation of Section 3.4, in our case n= l, 

A( t) = l+ r- rm, B(t) =-r, and u(t) G(t) , 

when G( t) is considered as the input of the system. The solution of the 
system can be obtained by using Equations (3.48) and (2.47): 

t-1 

Y(t) =(l+ r- rm)tYo- L(l +r- rm)t-r- 1 · rG(T) 
r=O 

where Y0 = Y(O). Hence, the national income can be directly computed 
for any future time period t > O. 

7. Our next model is cancerned with the supply and demand of a single 
commodity. Assume that the demand function d(p) gives the demand 
of the commodity as a function of the price p. Function d is assumed to 
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be decreasing. The amount s(p) of the commodity t hat will be sup p lied 
by the producers also depends on the price. It is now assumed that 
function s is increasing. The above properties of functions d and s 
reftect the economic facts that higher market price results in the decline 
of the demand of the commodity, bu t i t leads to higher producers' profit, 
and therefore, the producers increase their productian levels. 

Let p(t) denote the price in time period t. The producer makes his 
decision on his productian level based on the current price, but the 
resulting supply is available only in the next time period. Therefore, the 
supply S(t) satisfies equation 

S(t +l) = s(p(t)) . 

When this supply shows up on the market, its price is determined by 
the demand function by adjusting it so that the entire supply is sold. 
Therefore, the demand D(t +l) at time period t+ l satisfies relation 

D( t+ l) = d(p(t +l)) . 

It is also assumed that the market is in equilibrium in time period t+ l, 
which means that the supply equals the demand: 

S(t +l) D(t +l) . 

That is, 
s(p(t)) = d(p(t +l)) . 

Let d- 1 denote the inverse of function d; then this equation can be 
rewritten as 

p( t + l) = d- 1 (s (p( t))) . (3.125) 

Hence, the price function is a solution of this nonlinear difference equa­
tion. The solution is made unique by specifying the initial price p(O). 

The equilibrium of Equation (3.125) is the solution of the nonlinear 
equation 

which is the fixed-point problem of function d- 1 (s(.)). If this function 
satisfies the conditions of Theorem 1.3, then process (3.125) converges 
to the unique equilibriun1. Sufficient conditions for these properties are, 
for example, the follo\ving: 

(a) d- 1(s(p)) exists for all p 2: O; 

(b) d- 1 (s(p)) 2: O for all p 2: O; 
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(c) (djdp)d- 1 (s(p)) exists and l(djdp)d- 1(s(p))l :::; K for all p ~ O, 
where K E [0, l) is a constant. 

Here we used the results of Exan1ple 1.5. The solution of the governing 
difference equation (3.125) is illustrated in Figure 3.32. The resulting 
rectangular spiral resembles a cobweb. Therefore, in the literature this 
model is usually called the cobweb modet. 

p= t 

p( l) =d- 1(s(p(O))) 

p(l) p(2) p(O) P 

Figure 3.32 Illustration of the cobweb model. 

As a special case assume that 

d(p) =ap+ ao, s(p) bp+ bo . 

The equilibrium price p is the solution of the equation 

ap + ao = bp + bo , 

which is 
_ bo ao 
p= 

a 
(3.126) 

Furthermore, Equation (3.125) now has the form 

ap( t + l) + ao = bp( t) + bo , 

that is, the governing difference equation is the following: 

p(t +l) b ( ) bo- ao -pt+---. 
a a (3.127) 
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If the initial price p(O) p0 , then from Equation (2.47) we conclude 
t hat 

( 
b) t t-1 ( b ) t- r -1 bo - a o 

p(t) = - Po +L - · --a a a 
r=O 

= G r Po + ~a_-_1_1 . _bo_a_a_o 

That is, the price can be computed easily for any future time period 
t> O. Note that the sequence p( t) is convergent if and only if lbl < jaj, 
and in this case, 

-1 bo ao 
lim p(t) = _ 

1 
· --

t-Hx) a 
a 

bo- ao 
--;;=t; ' 

which is the equilibrium price (see Equation (3.126)). 
This model is investigated in more detail in [29]. 
8. Our next application is a continuous system of interrelated markets. 

Assume t here are n commodities, and l et Pi (i = l, 2, ... , n) denote the 
price of commodity i. If si (p1, ... , Pn) is the supply from commodity i, 
then it is usually assumed that 

asi o -a >, 
Pi 

(j f i) . 

These conditions reflect the tendency that manufacturers produce those 
items that give them higher profit. It is also assumed that the demands 
for the different commodities are interrelated by the demand functions 
di (Pl, ... , Pn), where \Ve assume that 

and (j f i) . 

At each time period the difference di -si is the shortage if i t is positive, 
and a surplus if i t is negative. I t is also assumed that for each commodity 
the market price moves as directed by the shortage, rising if the shortage 
is positive, decreasing if negative, and does not change if zero. Therefore, 
the dynamics are governed by differential equations 

(3.128) 

for i = l, 2, ... , n, where K i is a strictly increasing function. 
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As a special c ase, assume t hat functions K i, di, and si are all linear, 
that is, 

where 

=L aijPj + aiO, 
j 

= L bijPj + biO ' 
j 

ki > O, aii < O, aij ~ O (j =l= i), bii > O, and bij ~ O (j =l= i) . 
(3.129) 

Introd uce the notation 

K diag(kt, ... , kn) , 

ao (aiO) , 

then Equation (3.128) can be rewritten as 

p= K· ((A- B)p + ao- bo) . (3.130) 

The equilibrium prices p of this system can be determined by solving 
equation 

K((A B)p + ao- bo) O . 

If (A - B) -I exists, then vector 

gives the equilibrium. The mathematical properties of this model are 
examirred in (3]. We mentio n that this mod el will be further examirred 
in later chapters. 

9. Oligopoly models have a very important role in economic theory. A 
simple version of the classical Cournot model is now introduced. 

Assume that N firms produce a homogeneous goodand sellit on the 
same market. Let d(p) derrote the market demand function. Assume 
d(p) is strictly decreasing; i t then has an inverse p( d). Let x 1 , ... , x N 
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denote the output of the firms and let Ck(xk) be the cost function of 
firm k, for k= l, ... , N. The profit of firm k is given as the difference 
of its revenue and cost: 

(3.131) 

For the sake of simplicity, assume that p and Ck (k l, 2, ... , N) are 
linear functions: 

p( s) as+ b ( s = t x l, a < o) 
l=l 

(3.132) 

First a discrete dynamic model is introduced. Let x 1(0), ... , xN(O) de­
note the productian levels of the firms in the initial time period t =O. At 
an y further time period t+ l (t 2:: O), the output selection of each firm is 
obtained by maximizing its profit ({'k(xl(t), ... ,Xk-l(t),xk,Xk+l(t), ... , 
x N (t)) by assuming that all other firms will select again the same outputs 
that they have selected in the preceding time period. This assumption 
is called the Cournot expectation. That is, xk(t +l) is the solution of 
the optimization problem: 

subject to Xk 2:: O . 

Because a< O, the objective function has a unique maximizer: 

l """" bk b xk(t +l)=-- L...txl(t) + --
2 li=k 2a 

(k= l, ... , N) , (3.133) 

by assuming that these values are nonnegative. Summarize these equa­
tions as the system 

x(t +l) = Acx(t) +fe , (3.134) 
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where 

and 

The equilibrium of this system can be obtained by solving the linear 
equations 

l ~ bk - b 
--~xz+--

2 l=f=k 2a 
(k l, 2, ... , N) . 

Add these relations for k l, 2, ... , N to obtain 

-~(N- l)S + _B_;_a_bN_ ' 

where s= 'L~=l Xk and B = b k. Therefore, 

and from (3.135) we have 

which has the solution 

B bN 
s=(N+l)a' 

l 
--(s 

2 

(3.135) 

_ _ bk b -B-b+(N+l)bk 
Xk = -s+ -a- = (N+ l)a (k= l, 2, ... , N) . 

A modified version of the above model is based on the assumption 
that at each time period, each firm forms expectations adaptively on the 
output sk 'Ll=f=k Xl of the rest of the industry according to the rule 

sf(t +l) sf(t) + mk (Lxz(t)- sf(t)) , 
l =f= k 

(3.136) 
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where mk is a positive constant. Then each firm maximizes its expected 
profit 

It is easy to verify that the profit maximizing output is 

l E bk b 
--sk (t+ l)+--

2 2a 

ffik "" l - ffik E bk - b == -- ~xl(t)- --sk (t)+--
2 l#k 2 2a 

(3.137) 

by assuming again that these values are nonnegative. Note first that by 
selecting mk == l (k == l, 2, ... , 1V), Equation (3.137) reduces to (3.133). 
In the general case, Equations (3.136) and (3.137) can be summarized 
as 

where x== (xk), sE == (sf), 

o 
o 

_mN _mN ... 

A a 2 2 
o m1 

m2 o 

ffi N ffi N 

o o 
m l l-m1 

m2 

o o 

l-m2 
--2-

l-m2 

(3.138) 

o 

o 

1-mN 
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and 

l 
fa =-

2a 

o 

The continuous counterpart of the above models can be introduced as 
follows. Assume again that the initial outputs x 1(0), ... ,xN(O) of the 
firms are known. At each time period t ~ O, each firm adjusts its output 
proportionally to its marginal profit. Since the marginal profit of firm 
k is the derivative of (/)k with respect to Xk, the system is driven by the 
differential equations 

(k= l, ... , N) , 

w hich can be summarized as 

x( t) M. A· x( t)+ f , (3.139) 

where M = diag( fil, ... , fiN) with positive diagonal elements, 

A (~~~ ~~ ::: -~-) 
a a · · · 2a 

and 
( 

fi1(b-b1)) 
f= fi2(b b2) 

fiN(b- bN) 

The equilibrium of this continuous system is the solution of equation 

MAx+f O, 

which is 

Here we used the fact that if fik > O (k l, 2, ... , N) and a < O, then 
both matrices A and M are invertible. 

Finally we remark that a summary of discrete and continuous oligopolies 
is presented in [35). 
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Problems 

l. Give the solutions (3.19) and (3.20) of the system 

. (tO) (l) x= O t x+ l u, 

y= (1, l)x. 

2. Derive the state solution (3.19) of system 

x(O) =C) . 
What is your result in the special case of u( t) = l? Compare the result 
to that of Problem 2.4. 

3. Find the state solution (3.19) for system 

x(O) = (~) , 

and in the special case of u( t) = l, c om p are the results to those of 
Problem 2.5. 

4. Fin d the transfer function for system 

x(O) =C) , 
if the output is y = (1, l)x. 

5. Find the transfer function for system 

x(O) =O) , 
if the output is y= (0, l)x. 

6. Deterrn.ine the transfer function for a system 

x= Ax+Bu 

y= Cx+Du. 
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7. The simple mechanical system shown in Figure 3.33 is described 
by equation 

y (1,0) (~~) , 

where x1 y and x2 = v. 

Input force u(t) Output position y( r) 
--------+ 

Friction force --3v(t) Velocity v(t) 

/ 

Figure 3.33 Illustration of Problem 7. 

Derive the solution (3.19) and (3.20) of this system. 

8. Find the transfer function for problem 

y= (l,O)x. 

9. Derive the state solution (3.48) of the system 

x(t +l) C;) x(t) + (~) u(t), x( O)= (i) . 
What is your result for u( t) = l? Compare the result to that of Prob­
lem 2.6. 

10. Derive the state solution (3.48) of the system 

x( t+ l) = ( ~;) x( t)+ (i) u( t), x(O) (~) , 

and in the case of u( t) = l, campare the result to that of Problem 2.7. 
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11. Find the transfer function for system 

x(t+l)= (~~)x(t)+(~)u(t), x(O) =C) , 
if the output is y (1, 1)x. 

12. Find the transfer function for system 

x(t +l)=(~~) x(t) +C) u(t), x(O) = (~) , 

if the output is y (0, l )x. 

13. The electric circuit shown in Figure 3.34 is described by the tirst­
order equation 

~i(t) 

Figure 3.34 Illustration of Problem 13. 

Find the transfer function and the solution of the system in the state­
space form. If u( t) = 1, does this system have an equilibrium state? 

14. Find the equilibrium state of the nonlinear system 

±1 == (x1 + x2)2 , 

y== xi + 2x2, 

and linearize it around the equilibrium. 
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15. Solve the equation 

fj + 5iJ + 6y = u + 3u , 

which is given in input-output form. Apply Theorem 3.5 to obtain an 
equivalent first-order system. 

16. Solve equation 

fj + 6iJ + 4y = u + 8u 

and apply Theorem 3.5 to obtain an equivalent first-order system. 

17. Derive the transfer function for system 

fj + 5y + 6y = u + 3u . 

18. Derive the transfer function for system 

fj + 6iJ + 4y = u + 8u . 

19. Find the transfer function for Figure 3.35: 

U(s) Y( s) 

Figure 3.35 Illustration of Problem 19. 

20. Find the transfer function for Figure 3.36: 

U( s) Y( s) 

Figure 3.36 Illustration of Problem 20. 
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21. Derive a simpleformulafor f
8
H(s), where H(s) is the transfer 

function of a time-invariant linear system. 

22. Leta, b E R n and A be an n x n real matrix. By using the simple 
relation 

derive an updating formulafor the transfer function of system 

y== Cx. 

23. Consicler systems 

x(t) == A(t)x(t) + B(t)u(t), x(to) == Xo 

and 
z(t) == A(t)z(t) + B(t)u(t), z(to) == Xo' 

where B(t) is an approximate of B(t). Derive an upper bound for 
llx(t)- z(t)ll· 

24. Let H( s) and H( s) denote the transfer functions of systems 

x== Ax+Bu 

y== Cx 

and 

z== Äz+Bu 

y== Cz 

where Ä is an approximation of A. By using the bound 

llx-1 _y-III< liX- YII·IIX- 1
11

2 

- l-liX- YII·IIX-1
11 ' 

(which holds for all real n x n matrices X and Y such that liX- Yl! < 
IIX- 1 11- 1, see for example, [44]) derive an upper bound for 
IIH(s)- H(s)ll· 

25. Redo Problem 23 for discrete systems. 
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chapter four 

stability Analysis 

In applied sciences, the term stability has a very broad meaning. Huw­
ever, in the theory of dynami c systems, stability is usually defined with 
respect to a given equilibrium. If the initial state x 0 is selected as an 
equilibrium state x of the system, then the state will remain at x for all 
future time. When the initial state is selected close to the equilibrium 
state, the system might remain close to the equilibrium or it might move 
away. In the first seetian of this chapter \Ve \vill introduce conditions 
that guarantee \vhenever the system starts near an equilibrium state, it 
remains near it, perhaps even converging to the equilibrium state as the 
time increases. These kinds of stability are called the Lyapunov-stability 
and asymptotkal stability, respectively. In the first part of this chapter 
we \Vill introduce the Lyapunov stability theory to examine Lyapunov 
stability and asymptotkal stability of linear and nonlinear systems. 

In many applications \Ve have to guarantee that the state of linear 
systems remains bounded, even converging to zero \Vith a certain con­
vergence rate as t---+ oo if zero input is ap p lied. These kinds of properties 
are defined as uniform and uniform exponential stability, which will be 
als o discussed in the first part of this chapter. 

Notice that Lyapunov stability, asymptotical stability, uniform and 
uniform exponential stability represent properties of the state of the 
system. Therefore, they are called intemal stability concepts. In the 
seeond part of this chapter, externat stability will be introduced and 
investigated for linear systems, 'vhen \Ve will find conditions that with 
zero initial state a bounded input always evokes a bounded output. In 
this case we will not be interested in the behavior of the state, only the 
input-output relation is considered. 

197 
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4.1 The Elements of the Lyapunov stability Theory 
In this section only time-invariant systems will be considered. Continu­
ous time-invariant systems have the form 

x(t) = f(x(t)) , (4.1) 

and discrete time-invariant systems are modeled by the difference equa­
tion 

x(t +l) f(x(t)) . (4.2) 

Here we assume that f: X ~ Rn, where X ~ Rn is the state space. 
We also assume that function f is continuous; furthermore, for arbitrary 
initial state x 0 E X there is a unique solution of the corresponding initial 
value problem x( to) xo, and the entire trajectory x( t) is in X. Assume 
furthermore that t 0 denotes the initial time period of the system. 

It is also known from the previous chapter that a vector x E X is an 
equilibrium state of the continuous system (4.1) if and only if f( x) =O, 
and i t is an equilibrium state of the discrete system ( 4.2) if and only if 
x= f(x). In this chapter the equilibrium of a system will always mean 
the equilibrium state, if it is not specifled otherwise. In analyzing the 
dependence of the state trajectory x( t) on the selection of the initial state 
x 0 nearby the equilibrium, the following stability types are considered. 

DEFINITION 4.1 

(i) An equilibrium point x is stable if there is an E o > O with the following 
property: For all E11 O < E 1 < Eo, there is an E > O such that if 
lix- xoll <E, then lix x( t) il < E1jor all t> to. 

(ii) An equilibrium point x is asymptotically stab le if it is s table and t here 
isanE > Osuchthatt:vheneveriix-x0 11 < E,thenx(t) ~ xast ~ oo. 

(iii) An equilibriunt point x is globall y asymptotically stable if i t is s table 
and with arbitrary initial state x 0 E X, x( t) ~ x as t ~ oo. 

The first definition says an equilibrium x is stable if the entire trajec­
tory x( t) is doser to the equilibrium than any small E1, if the initial state 
x 0 is selected close enough to the equilibrium. In the case of asymptotic 
stability x( t) has to converge, in addition, to the equilibrium as t ~ oo. 
If an equilibrium is globally asymptotically stable, then x( t) converges to 
the equilibrium regardless of how the initial state x 0 is selected. These 
concepts are illustrated in Figure 4.1. 
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In the systems theory literature our stability concept is sometimes 
called marginal stability, and asymptotic stability is called stability. In 
this book we will always use our terminologies. 

4.1.1 Lyapunov Functions 
Assume t hat x is an equilibrium state of a dynamic ( continuous or dis­
crete) system, and let n denote a subset of the statespace X such that 
X: E n. 

DEFINITION 4.2 A real-valued function V defined on n is called a Lya-
punov function, if 

(i) V is continuous; 

(ii) V has a unique globalnzini1nunz at x ·with respect to all other points in 
n; 

(iii) for an y state trajectory x( t) contained in n, V (x( t)) is nonincreasing in 
t. 

The Lyapunov function can be interpreted as the generalization of 
the energy function in mechanical systems. The first requirement sim p ly 
means that the graph of V has no breaks. The seeond requirement means 
that the graph of V has its lo\vest point at the equilibrium, and the third 
requirement generalizes the \Vell-known fact of mechanical systems, that 
the energy of a free mechanical system \Vith frietian always decreases, 
uniess the system is at rest. 
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THEOREM4.1 
Assume that there exists a Lyapunov function V on the spherical region 

n {x j lix XII <ca}, (4.3) 

·where c o > O is given, Jurthermare n ~ X. Then the equilibrium is s table. 

PROOF We present here the proof only for the discrete case, the 
continuous counterpart can be proven in the same way. 

Let c1 E (0, co) be arbitrary. Select c2 E (0, c1) sothat if lix xll < c2 
then Il f( x) xll < co. Such c2 exists, since f(x) =x and fis continuous. 
Therefore, if lix( t)- xll < c2 for some t ~ O, then lix( t+ l)- xll < co. 
Definenow 

m min{V(x) l c2 :::; lix- xll :::; co}, 

which exists, since V is continuous and the set 

is compact. Note that this set does not contain the equilibrium state x; 
therefore, m > V(x). The continuity of function V implies that there 
exists an c E (0, c2) such that V(x) <m as lix- xll <c. 

Finally we show that this c > O satisfies the conditions of Part (i) of 
Definition 4.1. Assume now that l!x(O) xll < c, then V(x(O)) < m. 
Since V(x(t)) is decreasing, for all t ~ O, V(x(t)) < m. Therefore, 
the definition of m implies that for all t, lix( t) xll < c2 < c11 which 
completes the proof. l 

THEOREM4.2 
Assume that in addition to the conditions ofTheorem 4.1, the Lyapunov func­
tion V(x(t)) is strictly decreasing in t, uniess x( t) =x. Then the stability is 
asymptotic. 

PRO OF We present again the proof only for the discrete case, because 
the continuous counterpart can be discussed in a similar way. 

Selectthe initial state as llx(O) -x Il <c, where c is defined in the proof 
of the previous theorem. We shall prov e that x( t) ~ x as t ~ oo. 

Assume that this limit relation does not hold. Since for all t, lix( t) 
xll < c2, we conclude that sequence x( t) (t O, l, 2, ... ) must have a 
convergent subsequence such that x(tk) ~ x* =/= x as k ~ oo. Since 
sequence x(tk +l) (k O, l, 2, ... ) is also bounded, it must also have a 
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convergent subsequence x( t k. + l) --7 x**. The strict monotonicity of 
the Lyapunov function implies that for all i= O, l, 2, ... , 

since tki+l ~ tki + l < t k •. 
By letting i --7 oo and using the continuity of the Lyapunov function 

we have 
V(x*)::; V(x**)::; V(x*), 

which implies that 
V(x**) = V(x*) . (4.5) 

Nate that since f is continuous, 

x**= .lim x(tki +l)= .lim f(x(tk.J) 
1,-l-00 1,-l-00 

==f (.lim x(tk;.)) = f(x*). 
1,-l-00 

This relation and ( 4.5) contradiet the s tri et monotonicity of the Lyapunov 
function. 

Thus, the proof is completed. l 

THEOREM4.3 
Assume t hat the Lyapunov function is defined on the entire state space X, 
V (x( t)) is strictly decreasing in t uniess x( t) = x, Jurthermare V (x) tends to 
infinity as any component of x gets arbitrarily large in magnitude. Then the 
stability is globally asymptotic. 

PROOF Only the discrete case is shown, since the continuous case 
is similar. Let x 0 E X be arbitrary. The monotonicity of the Lyapunov 
function implies that V(x(t)) ::; V(x0 ) for all t ~O. Therefore, sequence 
x( t) is bounded. The rest of the pro of is the same as it was given for the 
previous theorem. l 

REMARK 4.1 This Lyapunov theory provides an alternative way 
to prove the convergence of the iteration sequence introduced in The­
orem 1.3 by selecting the Lyapunov function V(x) = p( x, x*) for the 
difference equation x(t +l) = A(x(t)). l 
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Example4.1 

Consicler the differential equation 

which was earHer investigated in Examples 1.23 and 2.6. In Example 3.3 
we verified that the equilibrium is given as x= (l/w, o) r, and from 
Example 2.6 we know that 

cp( t t ) = ( cos w( t - t0 ) sin w( t 
' 

0 -sin w( t- to) cosw(t 
to)) 
to) · 

Assume that the initial state is selected from the neighborhood of the 
equilibrium, that is, 

where a and {3 are small in magnitude. The general solution far­
mula (2.23) implies that 

x( t) = ( c?swt sinwt) ( ljw{3+ a) 
s1nwt coswt 

cosw(t 
sin w( t 

r) sinw(t 
r) cosw(t 

( 
(l. + a) cos wt + {3 sin w t ) + ( ~ - ~ cos wt ) 

-(~+a) sinwt + {3 coswt ~ sinwt ' 

where we used same results from Example 2.6. Hence, 

x( t) 

and therefore, 

x(t) 

( 
~ + a cos wt + {3 sin wt ) 

-asinwt + {3 coswt ' 

x= ( ac?swt + {3 sinwt) . 
-as1nwt + {3 coswt 
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This farmula can be obtained also by observing that x( t) -x solves 
the homogeneous equation. Simple calculation shows that 

which implies that if o: and f3 are sufficientlysmall in magnitude, then 
lix( t)- xll <c for anypositive e > O. Thus, the equilibrium is stable. 
From this relation we also conclude that for t -+ oo, x( t) ~ x. Hence, 
the stability is not asymptotic. 

The stability of the equilibrium can also be verified directly by using 
Theorem 4.1 without computing the solution. Select the Lyapunov 
function 

V(x) =(x x)T(x- x)= lix- xll~. 

This is continuous in x; furthermore, it has its minimal (zero) value at 
x x. Therefore, to establish the stability of the equilibrium we have 
to show only that V (x( t)) is decreasing. Simple differentiation shows 
t hat 

d 
dt V(x(t)) = 2(x- x)T. x= 2(x- x)T(Ax+ b) 

with 

and b= G). 

Therefore, function V(x(t)) is a constant, which is a (not strictly) de­
creasing function. That is, all conditions of Theorem 4.1 are satisfied, 
which imply the stability of the equilibrium. 
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Theorems 4.1, 4.2, and 4.3 guarantee the stabiii ty, asymptotkal sta­
biii ty, and global asymptotkal stability of the equilibrium, if a Lyapunov 
function is found. Nate that failure in finding such Lyapunov functions 
does not imply that the system is unstable or that the stability is not 
asymptotkal or globally asymptotkaL 

In the previous discussions the stability, asymptotkal and global asymp­
totical stability of the equilibrium were examined. We can easily extend 
t hese concepts to an y particular solution Xo (t) of a linear or nonlinear 
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system. Assuine that xo(t) is a solution of Equation (4.1) or (4.2), and 
introduce the new variable 

x(t) == xo(t) + z(t) , 

then Equation ( 4.1) can be modified as 

z (t) f ( xo (t) + z (t)) - Xo (t) , 

and Equation ( 4.2) has the equivalent modified form 

z(t +l) f(xo(t) +z( t))- xo(t +l) . 

Notke that in both cases z(t) = O is an equilibrium. Therefore, the 
stability, asymptotkal stability and global asymptotkal stability of a 
trajectory x 0 (t) can be defined as the same concept applied to the new 
equilibrium of the modified continuous or discrete system. Therefore, 
the methods introduced above can be used in the more general case as 
well. 

The asymptotic stability of nonlinear systems can be examined via 
linearization as follows. Consicler the time-invariant continuous and dis­
crete systems 

x(t) == f(x(t)) 

and 
x(t +l) == f(x(t)) . 

Let J(x) denote the Jacobian of f(x), and let x be an equilibrium of the 
system. It is known from Section 3.2 that the method of linearization 
around the equilibrium results in the time-invariant linear systems 

xs(t) == J(x)xs(t) , 

and 
x 0 (t +l) = J(x)x8 (t) , 

where x 0 (t) == x( t) x. I t is also known from the theory of ordinary 
differential equations (see, for example, [18]) that the asymptotic sta­
bility of the zero vector in the linearized system implies the asymptotk 
stability of the equilibrium x in the original nonlinear system. Hence, 
the analysis of the asymptotical stability of nonlinear systems can be 
reduced to t hat of time-in variant linear systems, w hi ch is the topic of 
the next section. 
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4.1.2 The stability of time-variant linear systems 
Consicler first the time-variant continuous linear system 

x(t) == A(t)x(t) + b(t) , (4.6) 

where A(t) is an n x n matrix and b(t) is an n-dimensional vector. It 
is assumed that all components of matrix A( t) and b( t) are continuous 
functions for t ~ t0 . Let x be an equilibrium of this system, and let x( t) 
be any trajectory of the system. 

T hen 

x( t)== (A(t)x(t) +b( t))- (A(t)x +b( t)) A(t)(x(t)- x) ; 

therefore, x 0 (t) == x( t) - x satisfies the homogeneous equation 

x0 == A(t)xo . 

From Equation (2.18) we then know that 

x( t) -x cp( t, to)(xo -x) , (4.7) 

where x 0 == x(t0 ) and cp (t, t0 ) is the fundamental matrix. Hence the 
difference of the state and the equilibrium is given in a closed form. 

Consicler next the time-in variant diser e te linear system 

x( t+ l)== A(t)x(t) + b(t) , (4.8) 

and assume again that x is an equilibrium. Then 

x( t+ l)- x== (A(t)x(t) +b( t))- (A(t)x +b( t))== A(t)(x(t)- x) , 

therefore, x 0 (t) == x( t) - x satisfies the homogeneous equation 

Xo (t + l) == A (t) x 8 (t) . 

Then, similar to the continuous case, from the solution formula (2.45) 
\Ve kno\v that 

x( t) -x== cp( t, O)(x0 -x) , (4.9) 

\Vhere cp( t. O) is the fundamental n1atrix. Hence the difference of the 
state vector and the equilibrium is given again in a closed form. From 
Equations ( 4.7) and ( 4.9) we have the following result. 
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THEOREM4.4 

1. The equilibrium x is stableifand only if <P( t, t0 ) in the continuous case 
(or <P( t, O) in the discrete case) is bounded for t 2:: t0 (or t 2: O). 

2. The equilibrium x is asyn1ptotically s table if and on ly if <P( t, to) (or 
<P( t, O)) is bounded and tends to zero as t -T oo 

COROLLARY 4.1 
For systems ( 4.6) and ( 4.8) asymptotical stability and global asymptotical 
stability are equivalent, if the statespace is defined as the entire R n. 

We mention here that Theorem 4.4 can also be used to check the 
stability and asymptotical stability of time-invariant linear systems as 
\Vell, as it is illustrated in the following example. 

Example4.2 

Consicler again the system of the previous example. Since each com­
ponent of the fundamental matrix 

</J( t, to) ( 
cosw(t- to) sinw(t- to)) 

-sin w( t- to) cosw(t- to) 

is bounded, the system is stable. If t -T oo, then the elements do not 
converge to zero, therefore, the stability is not asymptotkaL 

In the systems theory literature a zero-input time-variant linear sys­
tem is called uniform stable, if <P( t, r) is bounded for all t 2:: T 2:: t0 . 
Similarly to Theorem 4.4 one can easily prove that uniform stability is 
equivalent to the condition t hat lix( t) Il :::; Q · llxo Il for all t 2:: r 2:: to 
with x( T) = x 0 and som e finite positive eonstant Q. (The equivalence of 
the norms of n-element real or camplex vectors implies that any vector 
norm can be used in this condition.) A zero-input time-variant linear 
system is called uniform exponentially stable if there exist finite positive 
eonstants Q and P such that for all elements of the fundamental matrix, 
I<Pij(t, r)l :::; Pe-Q(t-r). One can also prove that uniform exponential 
stability is equivalent to the assumption that with some finite positive 
eonstants Q' and P', JJx(t)JI :::; P'e-Q'(t-r)llxoll foranyt 2:: T 2:: to and 
xo where x( r) = xo. 

4.1.3 The Stability of Time-Invariant Linear Systems 
This seetian is divided into two parts. In the first part the stability of 
linear time-invariant systems given in state-space form is analyzed. In 
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the seeond part, methods based on transfer funetions are diseussed. 
In Chapter 2 we have derived closed formulas for the fundamental 

matrices ~(t, to) and ~(t, O) of eontinuous and diserete systems. 
Assuming t hat A 1 , A2 , ... , Ar are the distinet eigenvalues of A with 

multiplicities m1, m2, ... , mr, we eonclude from Equations (1.45) and 
(1.44) that for eontinuous systems 

r mi-l 

~(t, to) = eA(t-to) =L e.Xi(t-to) L (t to)lBil ' ( 4.10) 
i=l l=O 

and for diserete systems 

r mi-l 

1->(t, o) = At L A~ L tzcil , ( 4.11) 
i=l l=O 

where Bil and Cil are eonstant matriees. 
These formulas and Theorem 4.4 imply the following stability eondi­

tions. 

THEOREM4.5 

(i) Assu1ne that for all eigenvalues of A, Re Ai ::; O in the continuous case 
(or l A i l ::; l in the discrete case), and all eigenvalues ·with the property 
Re Ai = O (or IAil l) have single 1nultiplicity; then the equilibriunz is 
s table. 

(ii) The stability is asymptotic if and only if for all i = l, 2, ... , r, Re Ai < O 
(or jAil <l). 

PRO OF 

(i) If Re Ai < O (or IAil < l), then the ith term of (4.10) (or (4.11)) is 
bounded. If mi l, then this term reduces to 

which is bounded even if Re Ai =O (or IAil 1). 

(ii) Assume first that Re Ai < O (or IAil < l) for all i. Then in Equa­
tion (4.10) (or (4.11)) each term of the right-hand side tends to zero 
as t-+ oo. The eigenvalue conditions are also necessary, since the 
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derivation of relations (1.45) and (1.44) implies that all eigenvalues 
Ai show up in at least one term. 

l 

REMARK 4.2 Note that Part (i) gives only sufficient conditions for 
the stability of the equilibrium. As the following example shows, these 

conditions are not necessary. l 

Example4.3 

Consicler first the continuous system x Ox, where O is the zero 
matrix. Nate that all eonstant functions x( t) = x are solutions and 
also equilibriums. Since 

</J( t, to) = eO(t-to) I 

is bounded (being independent of t), all equilibriums are stab le bu t O 
' has only one eigenvalue Al = O with zero real part and multiplicity n, 

where n is the order of the system. 
Consicler next the discrete systems x(t + l) = Ix(t), when all 

eonstant functions x( t) = x are also solutions and equilibriums. Pur­
therm are, 

which is obviously bounded. Therefore, all equilibriums are stable, 
bu t the condition of Part (i) of the theorem is violated again. 

Based on Theorem 4.4 and Examples 1.19 and 1.20, the following 
extension of Theoren1 4.5 can be proven. The equilibrium is stable if 
and only if for all eigenval ues of A, Re A i :s; O (or l A i l :::; l), and if A i is a 
repeated eigenvalue of A such that Re Ai = O (or I.Ai l = l) then the size 
of each block containing Ai in the Jordan canonical form of A is l x l. 

COROLLARY 4.2 
If for at l east one eigenvalue of A, Re A i > O (or l A i l > l), t hen the system is 
unstable. 

REMARK 4.3 The equilibria of inhomogeneous equations are s table 
or asymptotically stableifand only if the same holds for the equilibria 

of the corresponding homogeneous equations. l 

The conditions of Theorem 4.5 are illustrated next. 
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Example4.4 

Consicler again the continuous system 

the stability of which was analyzed earlier in Exaroples 4.1 and 4.2 
by using the Lyapunov function method and the boundedness of the 
fundamental matrix. 

The characteristic polynomial of the coefficient matrix is 

therefore, the eigenvalues are Al jw and A2 = -jw. Both eigen­
values have single multiplicities, and Re A 1 = Re A2 = O. Hence, the 
conditions of Part (i) are satisfied, and therefore, the equilibrium is sta­
ble. The conditions of Part (ii) do not hold. Consequently, the stability 
is not asymptotkaL 

209 

If a time-invariant system is nonlinear, then the Lyapunov method is 
the most popular choice for stability analysis. If the system is linear, 
then the direct application of Theorem 4.5 is more attractive, since the 
eigenvalues of the coefficient matrix A can be obtained by standard 
methods (see for example, [42]). In addition, several conditions are 
known from the literature that guarantee the asymptotkal stability of 
time-invariant discrete and continuous systems even without computing 
the eigenvalues. In the remaining part of this section some of such 
conditions are presented. 

For continuous systems the following result has a special importance. 

THEOREM4.6 
The equilibrium of a continuous systent ( 4.6) is asymptotically s table if and 
on ly if equation 

(4.12) 

has positive definite solution Q ·with sonze positive definite matrix M. 

PRO OF 

(a) Assume first that Equation (4.12) has positive definite solution 
with arbitrary positive definite matrix M. 

Consicler the Lyapunov function V(x) == xTQx for the homo­
geneous equa tion x Ax. Select the state space X = R n, then 
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obviously V(x) is continuous and has a unique minimum point 
at x= O, which is the equilibrium of the homogeneous equation. 
Furthermore, 

unless x =J x = O. Therefore, the equilibrium of system x Ax is 
asymptotically stable, which follows from Theorem 4.2. 

(b) Assume that for all eigenvalues ,\i of A, Re,\ i < O. Let M be an y 
positive definite matrix. We show next that 

Q 1oo eArtMeAt dt 

is positive definite and satisfies Equation (4.12). 
Suppose that u =J O, then 

uTQu = 100 

uT eArtMeAtudt >O, 

since e At is invertible (see Theorem 2.2) and therefore, e At u =J O. 
Furthermore, 

=0 M=-M, 

since eAT.o = eA.o I, and both matrices eAt andeATt tend to 
zero as t-+ oo. 

l 

REMARK 4.4 In practical applications M is usually selected as the 
identity matrix. l 

Let cp(.-\) = An + Pn-lAn-l + · · · + P1A + Po be the characteristic 
polynomial of matrix A. Let Al denote any real eigenvalue, then the 
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linearfactorA-Al has positive coefficients, if Al <O. Assume next that 
al + j f3z is an eigenvalue of A, then at - j f3l is also an eigenvalue with 
the same multiplicity. Therefore, cp(A) is a multiple of the quadratic 
polynomial 

If al < O, then all coefficients of this polynomial are positive. Since cp( A) 
is the product of such linear and quadratic factors, we have the following 
result. 

THEOREM4.7 
Assume t hat all eigenvalues of n1atrix A have negative real parts. Then Pi > O 
(i= 0,1, ... ,n -1). 

COROLLARY 4.3 
If a ny of the coefficients Pi is negative or zero, the equilibrium of the system 
with coefficient matrix A cannot be asymptotically stable. This result can be 
used as an initial stability test. However, the conditions of the theorem do not 
imply that the eigenvalues of A have negative real parts, as i t ·will be illustrated 
in Example 4.6. 

Example4.5 

In the case of matrix 

A= ( O w) -w O 

the characteristic polynomial is cp (A) = A 2 + w2 . Since the coefficient 
of A is zero, the system of Example 4.4 is not asymptotkall y s table. 

The next condition is known as the Hurwitz criterion. It is based on 
the construction of the following determinants: 

6 2 =det (Pn-1 Pn-3) 
l Pn-2 

(

Pn-1 Pn-3 Pn-5) 
63 = det l Pn-2 Pn-4 

O Pn-1 Pn-3 
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Pn-1 Pn-3 Pn-5 · · · O O 
l P n-2 P n-4 · · · O O 
O Pn-1 Pn-3 · · · O O 
O l Pn-2 · · · O O 
O O Pn-1 · · · O O 

o 
o 
o 

o 
o 
o 

o 
o 
o 

......... 
· · · Po o 
· · · P1 o 
.. · P2 P o 

THEOREM4.8 
Assume t hat Pi > O (i = O, l, ... , n - l), then all eigenvalues of A have 
negative real parts if and only if all > O (i = l, 2, ... , n). 

The proof of this theorem is found, for example, in [15]. 

Example4.6 

Consicler polynomial 

which satisfies the conditions ofTheorem 4.7, since all of its coefficients 
are positive. However, in this case, 

61 = det( 2) = 2 > O 

and 

b ut 

(
240) 63 =det l 3 5 
024 

-12 <o. 

Hence the conditions of Theorem 4.8 are not satisfied. That is, the sys­
tem is not asymptotically stable. In Problem 4.15 the same conclusion 
is reached based on computing the roots of <p. 

In many practical cases, a similar result, the so-called Routh-criterion, 
is applied. Its details can be found for example in [31], and we mention 
that it is based on determining the number of sign changes in a Routh 
array constructed from the polynomial coefficients. 
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In many applications, especially in economics, the dynamic continuous 
systems are described by differential equation 

x=KAx+Bu, 

where matrix K is real positive definite, in most cases diagonal with 
positive diagonal elements. The following theorem is usually applied in 
establishing the asymptotical stability of such systems. 

THEOREM4.9 
Assume that K is positive definite and A + A T is negative definite. Then all 
eigenvalues ofKA have negative real parts, t hat is, the system is asymptotically 
stable. 

PRO OF From the eigenvalue equation of KA we know that 

KAv= AV, 

where A is an eigenvalue of KA with associated eigenvector v. Since K 
is nonsingular, v = K u with so me vector u. Therefore, 

KAKu=AKu. 

Premultiplying this equation by u.T, where overbar denotes camplex 
conjugate, yields the relation 

The transpose conjuga te of this equation is 

and by adding these equations, 

( 4.13) 

Since v =/:. O, u is nonzero. Therefore, 

and 
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which imply that 
,.\ + ~ = 2Re,.\ < O . 

Hence, the proof is completed. l 

COROLLARY 4.4 
Assume t hat A + A T is negative definite. Then all eigenvalues of A have 
negative real parts. 

PROOF Select K= I in the assertion of the theorem. l 

REMARK 4.5 An alternative proof of the theorem can be constructed 
based on the selection of the special Lyapunov function xTK- 1x. l 

For discrete systems, the above stability criteria can be modified ac­
cordingly. The details are given, for example, in (14]. An easy stability 
checkis implied by Theorem 1.8 and can be formulated as follows. If 
for some matrix norm, IIAII < l, then the equilibrium is asymptoti­
cally stab le. N o te that i t is possible t hat all discussed matrix norms 
(p= l, 2, oo and the Frobenius) are greaterthan one, and the system is 
still asymptotically stable. Such an example is presented next. 

Example 4.7 

In the case of matrix 

A= (0.5 O ) 
l 0.5 

theeigenvalues are,.\1 = A2 = 0.5. However, I!AIIoo = IIAII1 = 1.5, 
IIAII2 ~ 1.207, and IlAlip = vTS. Hence, theeigenvalues areinside 
the unit circle, bu t the norms are greater than one. 

In the seeond part of this section, stability conditions will be given 
based on the properties of the transfer function. 

The transfer function of the continuous system 

x= Ax+Bu 

y=Cx (4.14) 

and that of the discrete system 

x(t +l) Ax(t) + Bu(t) 
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y(t) = Cx(t) ( 4.15) 

have the common form 

H(s) C(si A)-1B , ( 4.16) 

as it was shown in Sections 3.3.2 and 3.4. Note that the poles of the 
system are de fin ed as all values of s s u ch t hat si A is singular. In 
special cases some poles may be cancelled in the rational function form 
of H(s), and they might not be explicitly shown. The equilibrium of 
system (4.14) (or (4.15)) with eonstant input is stable if all poles of 
H( s) have nonpositive real parts (or absolute values less than or equal 
to one) and all poles with zero real part (or unit absolute val u e) are 
single. Similarly, the equilibrium is asymptotically stable if and only if 
all poles of H( s) have negative real parts (or absolute val u e less than 
on e). Even in the c ase w hen som e poles are canceled by zeros, we still 
have to consicler all poles in the above criteria. 

Example4.8 

Consicler again the system 

which was discussed in earlier sections. Assume that the output equa­
tion has the form 

y=(1,1)x. 

The n 
s+w 

H(s) = 2 2 ' s +w 

as it was derived in Example 3.8. The poles are jw and -jw, which 
have zero real parts. Consequently, the equilibrium is stable but not 
asymptotically stable. 

A special stability criterion concerning single-input, single-output time­
invariant continuous systems \Vill be introducecl next. 

Consicler the continuous system 

x= Ax+ bu 

( 4.17) 
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where A is an n x n eonstant matrix, b and c are eonstant n-dimensional 
vectors. The transfer funetion of this system is 

w hi ch is obviously a rational function of s. Combine next this system 
with the feedback-type input u = ky, where k is a constant. Then the 
feedback system can be described by the differential equation 

x Ax+ kbcT x= (A+ kbcT)x . (4.18) 

The transfer function of the feedback is the l x l matrix (k), since in 
Figure 3.6, Y2 = kU2 • Then, from Equation (3.37) we conclude that the 
transfer function of the feedback system is 

(4.19) 

w h ich is also a rational funetion of s. 
Before presenting the stability criterion du e to N yquist, which shows 

the Connection between the asymptotkal stability of systems ( 4.1 7) 
and ( 4.18), we introduce the following definition. 

DEFINITION 4.3 
points 

Le t r( s) be a rational function of s. Then the locus of 

L( r) {a+ jbla = Re(r(jv)), b= Im(r(jv)), v E R} 

is called the response diagram of r. 

Note that L(r) is the image of the imaginary line Re(s) O under the 
mapping r. We sh all ass u me t hat L( r) is bounded, w h ich is the case if 
and only if the degree of the denominator of r is not less than that of 
the numeratar, and r has no poles on the lin e Re( s) = O. 

Example4.9 

Consicler again the system 

y= (l,l)x. 



4.1 The Elements of the Lyapunov Stability Theory 

From the previous example we know that the transfer function is 

s+w 
H(s) = 2 2 . s +w 

Now the locus L( H) will be determined. If s== jv (v E R}, then 

H(s) 
w v 

----+j.----

Therefore, L (H) consists of the points 

x== Rez = -v2~w2 , y= Imz v 
-v2+w2 . 

This parameterized curve can be directed with increasing values of v 
as it is shown by Figure 4.2 for the special case of w == l. A direct 
relation between x and y can be obtained as follows. 

From the first equation we have 

and the seeond equation implies that 

y 

v =-I-0 y Im(L(H}) v= I-O 

x= 1{_e(L(H)) 

v=l+O v= -1 +o 

Figure 4.2 Graph of L( H). 

217 
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N o te tha t this locus is not bounded, since H (s) has the poles s = ±j w 
on the Iine Re( s) =O. 

THEOREM 4.10 
Assume that H 1 has a bounded response diagram L( HI). If H 1 has v poles in 
the half-plane Re( s)> O then H has p+ v poles in the half-plane Re( s) >O 
if the point (l/k)+ j· O is not on L(H1), and L(HI) encircles (l/k)+ j· O p 
times in the clockwise sense. 

PROOF Note first that if C is a simple closed curve, then singulari­
ties of function Hi (s)/ H1 (s) (where "prime" denotes derivative) are the 
poles and zeros of H 1 inside C. Rewrite H 1 as 

and note that the residue of Hi/ H1 at every pole of H 1 of multiplicity 
mi is -mi, and that the residue at every zero of multiplicity mi is mi; 
furthermore, 

H{(s) 
H1(s) 

hi(s) +--s+ si H1 (s) ' 

where hi/ H 1 is analytic near s= -si. By applying the residue theorem 
to all such expansions with -si being inside C, we conclude that 

_l_ f H{(s) ds =z 
27rj Je H1 (s) P' 

(4.20) 

where z and p are the numbers of zeros and poles of H1 inside C, re­
spectively. 

By direct integration we know that 

_1_ j Hi(s) ds 
21rj H1 (s) 

l 
-
2 

.lnH1(s), 
1fJ 

and therefore, by inte gr a ting around a closed curve C no change is 
obtained in the magnitude of In H1 but the argument of H1 is changed 
by 21r E, where E is the number of times the image of C encircles the 
origin in the H1 plane. Hence, z p = E. 

Conside r next the transfer function H (s) of the feedback system ( 4.18). 
The zeros of H(s) are the same as the zeros of H1, and the poles of H(s) 
are the zeros of 1-k H 1 . Select C as a contour consisting of the imaginary 
axis. Note that L(H) encircles the origin if and only if L(H1 ) encircles 
the point l/ k. Then the result follows from relation ( 4.20). l 
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COROLLARY 4.5 

Assume that system (4.17) is asymptotically stable with eonstant input and 
that L(Hl) is bounded and traversed in the direction of increasing v and has 
the point (l/k)+ j· O on its lejt. Then the feedback system (4.18) is also 
asymptotically stable. 

This result has a lot of applications, since as we will see in Chap-
ter 9 - feedback systems have a crucial role in constructing stabiliz­
ers, observers, and filters for given systems. Figure 4.3 illustrates the 
conditions of the corollary. The application of this result is especially 
convenient if system ( 4.17) is given and only appropriate values k of the 
feedback are to be determined. In such cases the locus L(Hl) has to be 
computed first, and then the region of all appropriate k values can be 
determined easily from the gr a ph of L( H 1). 

lm lm 

stability conditions hold Stability conditions are violated 

Figure 4.3 Illustration of Nyquist stability criteria. 

4.2 BIBO stability 
In the previous seetio n, internal stability of dynami c time-in variant sys­
tems was exan1ined, \v hen same properties of the state were investigated. 
In this seetian the external stability of dynamic systems is discussed, 
which is usually called the BIBO (Bounded Input-Bounded Output) 
stability. Here we drop the simplifying assumption of the previous sub­
seetian that the system is time-invariant. We \vill hence examine time­
variant systems. 
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DEFINITION 4.4 A dynamic system is called BIBO s table if for zero initial 
conditions, a bounded input always evokes a bounded output. 

This kind of stability can be exaroined by using the direct input­
output relations: 

y(t) C(t)cf>(t, to)xo + {t C(t)cf>(t, r)B( r)u( r) dr ( 4.21) 
}to 

and 

t-1 

y( t) = C(t)cf>(t, O)xo +L C(t)cf>(t, r+ 1)B(r)u(r) (4.22) 
T=O 

for continuous and discrete time-variant linear systems, respectively. 
In BIBO stability we always assume that the initial state is zero; 

therefore, ( 4.21) and ( 4.22) reduce to relations 

with 

and 

with 

respectively. 

y( t) = {t T( t, r)u(r) dr 
l to 

T(t,r) C(t)cf>(t,r)B(r), 

t-l 

y( t) L T( t, r)u(r) 
T=O 

T(t,r) = C(t)cf>(t,r + 1)B(r), 

( 4.23) 

(4.24) 

For continuous systems, a necessary and sufficient condition for BIBO 
stability can be formulated as follows. 

THEOREM 4.11 
LetT( t, r) = (tij(t, r)), then the continuous time-variant linear system is 
BIBO stableifand only if the integral 

( 4.25) 

is bounded for all t ~ to, i and j. 
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PRO OF 

(a) Assume first that for all t 2: to, i and j, 

furthermore, 

(t ~ to and all j) . 

Then 

::; [2.Jtij(t, T)l ·luj(T)I dT::; L K;pj, 
J J 

hence the output is bounded. 

(b) Assume next that the integrals (4.25) are not all bounded. Then 
there exists a pair (i0 ,j0 ) such that for all N> O, 

with some t N > t0 . Select now the input function as 

( ) { 
l if ti0 j 0 (t N, T) ~ O 

u· T -1" - -1 otherwise, 
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Hence, the output is not bounded, which completes the proof. 

l 

COROLLARY 4.6 
Integrals ( 4.25) are all bounded if and on ly if 

I(t) 1.~ L LJtii(t, r)i dr 
~ J 

( 4.26) 

is bounded for t 2:: t0 • Therefore, it is sufficient to show the boundedness of 
only one integral in order to establish BIBO stability. 

The discrete counterpart of this theorem can be given in the following 
w a y. 

THEOREM 4.12 
Let T(t, r) = (tij (t, r)), then the discrete time-variant linear system is BIBO 
s table if and on ly if the sum 

t-l 

I( t) L ltij(t, r)l ( 4.27) 
r=O 

is bounded for all t 2:: l, i and j. 

Since the proof of this result is analogous to the continuous case, the 
details are left to the reader as an exercise. 

COROLLARY 4.7 
The sums ( 4.27) are all bounded if and on ly if 

t-1 

LLL1tij(t,r)l ( 4.28) 
T=O i j 

is bounded. Therefore, it is sufficient to verify the boundness of only one sum 
in order to establish BIBO stability. 

Consicler next the time-invariant case, when A(t) = A, B(t) B, 
and C( t) =C. From the above theorems and the definition of T( t, r), 
we have immediately the following sufficient condition. 
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THEOREM 4.13 
Assume that for all eigenvalues Ai of A, Re.A.i < O (or I.A.il < 1). Then the 
time-invariant linear continuous (or discrete) system is BIBO stable. 

Example 4.10 

Consicler again the continuous system 

y= (l,l)x. 

In this case the results of Example 2.6 imply that 

tj>(t r) = ( cosw(t- r) sinw(t- r)) 
' - sinw(t- r) cosw(t- r) 

therefore, 

T( t, r) ( 1 1) ( c os w (t - r) sin w (t - T) ) ( O ) 
' -sin w( t- r) cosw(t- r) l 

= sinw(t- r)+ cosw(t- r) , 

and 

I(t) = l1 sinw(t- T)+ cosw(t- T)l dT. 

We will now show that this integral is not bounded. Note first that by 
introducing the new integration variable x = w(t- r), 

liwt I(t) = - l sin x+ cosxl dx. 
w o 

Observe next that 

12

" l sin x+ cosxi dx =I:~ (sin x+ cosx) dx +h:" (-sin x- cosx) dx 
4 4 

3 7 

] -ii [ ]-ii r;; cosx +sin x ~ 1 ii + cosx- sin x ~1!" = 4v2. 
4 4 

Hence by se leeting t = 27i iV/ w, 

I(t) = .!_40N, 
w 
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which tends to infinity as N ---+ oo. That is, this system is not BIBO 
stable. 

Finally we nate that BIBO stability is not implied by an observation 
that a certain bounded input generates bounded output. All bounded 
inputs must generates bounded outputs in order to guarantee BIBO 
stability. 

4.3 Applications 
In this seetian the applications of the stability analysis of dynamic sys­
tems will be illustrated via particular systems arising in engineering and 
social sciences. 

4.3.1 Applications in Engineering 
l. Consicler the simple harrnonie oscillator introduced in Chapter 2, and 
given in Application 3.5.1-1, which is summarized below: 

Is i t stab le? 
To answer this question we must find the eigenvalues of A. Nate that 

the characteristic equation has the form 

cp( A) =det( A AI) det ( =~ -~) = A
2 + w2 

. 

The eigenvalues are the roats of cp: 

A1,2 = ±jw. 

These values are also called the poles of the system. The poles are 
single and on the imaginary axis. Therefore, the system is stable, but 
not asymptotically stable, which means that if we leave it alone in its 
equilibrium state, it will remain stationary. B ut if we jerk on the mass it 
willasciilate forever. There is no damping term to remave the energy, so 
the energy will be transferred back and forth between potential energy 
in the spring and kinetic energy in the mass. A good approximation of 
such a harrnonie oscillator is a pendulum clock. The more expensive it 
is (i.e., the smaller the damping), the less often we have to wind it (i.e., 
add energy). 
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2. What about the damped linear seeond-order system of Applica­
tion 3.5.1-2; is it stable? From Equation (3.66) we know that the eigen­
values are 

)q,2 = -(Wn ± Jwn .J1=(2 . 

The locations of the poles de p end on the val u e of (. Refer to Equa­
tion (3.66) and Figures 3.20 and 3.22, and note that if ( > O the poles 
are in the left half of the A-plane and therefore, the system is asymptot­
ically stable. If ( O, as in the previous problem, the poles are on the 
imaginary axis; therefore, the system is stable, but not asymptotically 
stable. If ( < O, the poles are in the right half-plane and the system is 
unstable. 

3. For the electrical system of Application 3.5.1-3 the characteristic 
polynomial of matrix A of (3. 78) has the form 

( -A_ R1
) (-A_ ~l ) + _1 O , 

L CR2 LC 

which simplifies as 

Since Rt, R2, L, and C are positive numbers, the coefficients of this 
equation are all positive. The eonstant term equals A1A2, and the coef­
ficient of A is - (A 1 + A2). Therefore, 

and 

If the eigenvalues are real, then these relations hold if and only if both 
eigenvalues are negative. If they were positive, then A1 + A2 > O. If 
they had different signs, then A1A2 < O. Furthermore, if at least one 
eigenvalue is zero, then A1A2 =O. Assume next that the eigenvalues are 
complex: 

A1,2 =ReA± j l mA . 

T hen 

and 

Hence A1 + A2 < O implies that ReA < O. 
In summary, the system is asymptotically stable, since in both the real 

and camplex cases the eigenvalues have negativevalues and negative real 
parts, respectively. 
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4. For the transistor circuit model (3.80) of Application 3.5.1-4, the 
characteristic equation is 

-" o)= 0 , 
-.-\ 

which can be simplified as 

The roots are 

Therefore, the system is stable, hut not asymptotically stable. 
5. To access the stability of the hydraulic system of Application 3.5.1-5, 

we must solve its characteristic equation 

(
-a-,\ a ) 

det b -(b+ c) -A =O ' 

where a= 1/R1A17 b= l/R1A2 , and c= l/R2A2 . This equation is 
simplified as 

,\
2 + .-\(a + b + c) + ac = O . 

Note that a, b, and c are all positive numbers, therefore, 

and 

Hence both roots are negative or they are complex conjugate numbers 
with negative real parts. In either case the roots are in the left half of 
the .-\-plane, and the system is asymptotically stable. 

6. In the case of our multiple input electrical system the stability can 
be easily examirred by d etermirring the characteristical polynomial of the 
coefficient matrix. By expanding the determinant with respect to the 
first row we have the following result: 

(

-K-,\ 0-.1._) L1 L1 
cp(.-\) = det O -,\ -1 

l l 
2 

c c -.\ 

R 2 l l .-\ 
=(---.\)(.\ +-)--(0+-) 

L1 CL2 L1 C 
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Therefore, the eigenvalues are the roats of the cubic equation 

Notice that all coefficients are positive, that is, the necessary conditions 
of Theorem 4. 7 are satisfied for the asymptotical stability of the system. 
In order to verify that the system is asymptotically stable, we will apply 
Theorem 4.8. We compute first the following determinants: 

R R 
~l = det( L

1
) = L

1 
> O 

~2 =det ( J;ll l CL~L2 
CL1 + 

Because all the three determinants are positive, Theorem 4.8 implies 
that the system is asymptotically stable. 

7. To find the eigenvalues for the stick-balancing problem of Applica­
tion 3.5.1-7, find the roots of the characteristic polynomial 

rp(A) = det(A ~Al)= det ( ~~ ~~) = >.2 ~g, 

which are 
>.1,2 = ±vg. 

One is in the right half-plane and the other is in the left half-plane, so 
the system is unstable. The instability is understandable, since without 
an input to control the system, if you are not upright ·with zero velacity 
the stick will fall over. 

8. For the cart with two sticks model of Application 3.5.1-8 we must 
solve the characteristic equation 

( 

->. o 1 o) 
det O - >. O l = O 

a1 a2 ->. O 
a3 a4 O->. 
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of matrix A in Equation (3.103). By expanding the determinant with 
respect to its last column, we have 

(
-A O l) 

A O -A O =O. 
a1 a2 -A 

Simple calculation shows that it simplities to equation 

I t is easy to see t hat A 2 is real, since the discriminant is 

Furthermore, 

and 

w hi ch im p ly that there are two distinct positive solutions for A 2 . Hence, 
there are two positive and two negative eigenvalues, which implies the 
instability of the system. 

The fact that the system is not asymptotically stable follows alsofrom 
Theorem 4. 7, since there are a negative and two zero missing coefficients. 

9. The stability of the electrical heating system can be also examined 
by computing the characteristic polynomial of the coefficient matrix: 

Because all coefficients are positive, similar to the case of the electrical 
system discussed in Application 3, we see that the system is asymptoti­
cally stable. 

10. For the nuetear reactor model the characteristic polynomial of the 
coefficient matrix has the following form: 

-A Al A2 A3 ···Am-l Am 

Cf?m(A) 
-Al- A O o o o 

det 

o o o o -Am-A 
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We can expand this determinant with respect to its last column to obtain 
the recursion 

If m= O, then 
p-j3 

<po(A) =-l-- A, 

and if m = l, then /31 = j3 implies that 

(
p- (3 ) <f?l(A)= -l--A (-Al A)- f31Al 

l 

If p is positive, then the system is unstable and the reactor is called 
supercritical. If p is zero, then the t\vo eigenvalues are 

and 

Hence the system is stable, but not asymptotically stable. In this case 
the reactor is called critical. If p < O, t hen the eonstant and the coeffi­
cient of A are both positive. Hence the system is asymptotically stable, 
and the reactor is called subcritical. 

In the more general case, if m > l a similar but more complicated 
derivation is needed. 

4.3.2 Applications in the Social Sciences 
l. Consicler first the nonlinear predator-prey rnadel (3.111) and (3.112), 
which is now repeated for convenience: 

G(t) aG(t) bG(t) "YV(t) 

W(t) = -cW(t) + dG(t)W(t) . 
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Before examining the stability of the system we introduce the new nor­
malized variables 

d g(t) == -G(t) 
c 

and 
b 

w(t) == - W(t) , 
a 

then the system reduces to 

g( t) == ag( t)(l - w(t)) 

w(t) -cw(t)(l- g(t)) ( 4.29) 

with the nonzero equilibrium g == w == l. 
A Lyapunov function will be now constructed that will guarantee the 

stability of this equilibrium. 
Divide Equation ( 4.29) to get 

which implies that 

. g . w o cg - c- + aw - a- == . 
g w 

By integrating each term we obtain 

cg - c In g + a w - a In w == C , ( 4.30) 

where C is a constant. 
Define next the Lyapunov function 

V (g, w) cg c In g + a w - a In w (4.31) 

for g, w > O. I t is continuous, and for every trajectory i t is constant, 
so it is (not strictly) decreasing. The unique minimum of V is at the 
equilibrium (1,1), which can be proven as follows. 

Note first that equations 

av l 
ag c C· ==0 g 

av l 

8w a a·-==0 w 
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have the unique solution (1,1); furthermore, the Hessian of function V 
is diag(cjg2 ,ajw2 ), which is always positive definite. Hence function 
V is strictly convex and therefore, (1,1) is the only global minimizer of 
V. Consequently, V satisfies the conditions of Theare m 4.1; t herefor e, 
the positive equilibrium is stable. We will next show that the stability 
is not asymptotic. For fixed values of C, the points (g, w) satisfying 
Equation (4.30) form a closed curve shown in Figure 4.4. Hence g(t) 
and w(t) do not converge to the equilibrium (1,1). A computer study 
of the predator-prey mod el is reported in (44], where the closed curve 
solutions are determined by using numerical methods. 

w 

g 

Figure 4.4 Closed curve solutions of the predator-prey model. 

The linearized predator-prey rnadel (3.114) has the coefficient matrix 

( ~ o) 

with characteristic polynomial 

( 
') , 2 be ad , 2 

lpA A +d· =A +ac. 

Therefore, the eigenvalues are j ..j(iC and -j ..j(iC, \v hi ch satisfy the con­
ditians of Part (i) of Theorem 4.5. Hence the equilibrium is stable and 
the stability is not asymptotic. Nate that the same result is obtained as 
in the case of the original nonlinear system. 

2. In the case of the cohort population model, the coefficient matrix 
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of the governing difference equation (3.115) is 

A 

b1 b2 b3 · · · bn-1 bn 
al 

( 4.32) 

where bi ~ O (i l, ... , n) and ai ~ O (i = l, ... , n - l). The system is 
asymptotically stableifand only if all eigenvalues of A are inside the unit 
circle. An easy sufficient condition using only the matrix elements can 
be formulated in the fallovving way. The system is asymptotically stable 
if for some matrix norm, IlA Il < l, because it implies that all eigenvalues 
of A are inside the unit circle (see Theorem 1.8). By selecting Il · lloo, 
Il · l h, and Il · 1!2, the following sufficient conditions are obtained for the 
asymptotical stability of the system: 

(i) b1 + b2 + · · · + bn < l, ai < l (1 ::; i ::; n l) ; 

(ii) bi + a i < l ( i = l, ... , n - l), b n < l ; 

( 1·1·1·) "'n b2 "'n-l 2 l 
L....Ji=l i + L....Ji=l ai < · 

Hence, each of these conditions implies the asymptotical stability of 
the system. 

3. In the case of the arms-races model (Equations (3.116) and (3.117)), 
the coefficient matrix has the form 

A (
-b a) 
c -d (a,b,c,d >O) ( 4.33) 

with characteristic polynomial 

cp( A) (-b A)( -d- A)- ac A2 + A(b +d)+ ( -ac +bd) . 

If A1 and A2 are the eigenvalues, then 

which imply that both eigenvalues have negative real parts if and only if 
b+ d and -ac +bd are bot h positive. Hence the system is asymptotically 
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stable if and only if ac < bd. The condition has sense, since a and c show 
how armament levels increase, and b and d show how they decrease. 

4. The warfare mode l (3.121) is based on matrix 

A= ( O -h2) ' 
-hl o (4.34) 

where h1 and h2 are positive constants. The characteristic polynomial 
of this matrix is 

and the eigenvalues are Jh1h2 and -Jh1h2. Because we have a positive 
eigenvalue, the system is unstable. 

5. In Section 3.5.2 we saw that the nonlinear epidemics rnadel (3.124) 
is a special case of the predator-prey rnadel (3.111) and (3.112) by se­
lecting the special parameter values a = O and b = d. Therefore, the 
stability of nonlinear epidemics can be discussed in an analogous man­
ner. It is easy to see that system (3.124) has infinitely many equilibrium 
points (x, O), where x 2:: O is arbitrary. Simple calculation shows that 
the linearized rnadel has the following form: 

(
o -ax ) 
O ax {3 x 8 ' 

where we used the notation of Equation (3.13). The eigenvalues of the 
coefficient matrix are A1 = O and A2 ax - {3. Therefore, the sys­
tem is unstable for x 2:: {3/a and stable for x < {3ja. The stability 
is not asymptotical. The case x 2:: {3 j a re presents an expanding, very 
dangerous epidemic. 

6. The Harrod-type national economy rnadel (3.10) has the form 

Y(t +l) = (1 +r- rm)Y(t) - rG(t) , 

where Y (t) is the national in come and G (t) is the government expendi­
ture. Assume that G(t) has the form 

G(t) = aY(t) + {3 , 

that is, it is a linear function of the national income. In this case the 
rnadel simplifies to the time-invariant difference equation: 

Y(t +l) (l+ r rm ra)Y(t)- r{3 . 

The only equilibrium of this modified system is the solution Y of equa­
tion 

Y (l + r rm ra) Y r {3 , 
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which is 

No te that Y does not depend on the growth factor r, and i t is asymp­
totically stable if and only if 

-l< l+ r- rm ra< l . 

These conditions are equivalent to relations 

a> 1-m 

and 
2 

O<r< 
1

, 
a+m-

which can be interpreted as a relatively large share of the government 
in the economy, which has a small growth factor. 

7. In Application 3.5.2 we saw that the nonlinear cobweb model (3.125) 
has the form 

p(t +l) = f(p(t)) ' 

where 
f(p) = d- 1(s(p)) . 

It was also verified that this system has an asymptotically stable 
unique equilibrium if 

(a) j(p) exists for all p~ O; 

(b) f(p) ~O for all p~ O; and 

(c) f' exists and lf'(p)l s; K for all p~ O, where K E [0, l) is a fixed 
constant. 

8. The linear continuous rnadel of interrelated market dynamics is 
governed by differential equation (3.130) with the coefficient matrix 

K· (A- B), (4.35) 

where K diag(k1, ... , kn) (ki >O, i= l, 2, ... , n) and A= (aij) and 
B = (bij) are n x n eonstant matrices. From assumptions (3.129) we 
know that 

and (j =l= i) . 
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Theorem 4.9 implies that all eigenvalues of matrix ( 4.35) have negative 
real parts if (A - B) + (A - B) T is negative definite, since K is positive 
definite. Observe that the diagonal and off-diagonal elements of this 
matrix are 

2(aii bii) and 

respectively. Then Theorem 1.9 implies that all eigenvalues of this ma­
trix lie in the domain 

D= B1 U B2 U··· U En 

where 

Therefore, if for all i, 

- 2(aii bii) > L~)(aij + aji) (bij + bji)] , 
j=/=i 

( 4.36) 

then all eigenvalues are in the left half-plane. Hence, we proved that 
condition ( 4.36) is sufficient for the asymptotical stability of the system. 
In the economic theory, condition ( 4.36) is summarized by saying t hat 
matrix (A - B) + (A - B) T is strictly negatively diagonally dominant. 

9. Consicler next the simple discrete oligopoly problem (3.134). Note 
that the matrix Ac of coeffi.cients of the governing difference equation 
has the special form 

l l 
A == --1 +-I 

c 2 2 ' 

where l == (l) and I is the identity matrix. 

( 4.37) 

We first show that the eigenvalues of l are O and N. The eigenvalue 
equation of matrix l can be \Vritten as 

VI+ V2 + ... + VN == AVk (k== l, ... ,N). 

If--\ O, then any vector v= (vk) satisfying the relation VI+·· ·+vN =O 
is an associated eigenvector. If--\ f O, then VI == v2 = · · · = VN == v*, 
and therefore, 

JVv* ==-\v* . 

Hence, the nonzero eigenvalue is 1V. 



236 chapter four: stability Analysis 

Consequently, the eigenvalues of Ac are -1/2 ·O+ 1/2 ·l = 1/2 and 
-1/2 ·N+ 1/2 · l = (1- N)/2, which are inside the unit circle if and 
only if N= 2. Hence, this model is asymptotically stableifand only if 
it is a duopoly. 

The modified discrete model (3.138) with adaptive expectations is 
based on the coefficient matrix 

A - 2 2 2 
(

_!!l l+ !!!.J _l-mi ) 
a - ml -mi (l - m)I ' (4.38) 

where for the sake of simplicity we assume that m1 = m 2 = · · · = m N = 
m. The eigenvalue equation of Aa can be rewritten as 

(ml- ml)u+ (1-m)Iv =AV. ( 4.39) 

Add the 1/2-multiple of the seeond equation to the first equation to see 
t hat 

That is, either A = O or u -(1/2)v. The eigenvalue A = O is inside 
the unit circle. If A =f. O, then substitute u = -(1/2)v into the seeond 
equation of ( 4.39): 

m 
--(1- I)v +(l- m)Iv =AV , 

2 

which is equivalent to the eigenvalue equation of matrix 

The eigenvalues of this matrix are 

which are inside the unit circle if and only if 

(4.40) 

Therefore, this system is asymptotically stable for all N > O if m is 
sufficiently small. 
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The optimal value mopt of m can be determined by n1inimizing the 
largest eigenvalue of matrix ( 4.40), which ensures the fastest order of 
magnitude in the speed of the convergence of the solution to the equi­
librium as t-+ oo. This optimization problem is formulated as follows: 

_2_ mopt 
N+ l 

-- the objective function 

----Il m(~+ l) l 

-ll-~1 

2 3 

Figure 4.5 Finding the optimal value mopt· 

m 

The objective function is shown in Figure 4.5, \vhere the value of mopt 

is found by solving equation 

which implies that 

'l7topt = 
4 

+2 

m 
1--

2 ' 

The continuous oligopoly model (3.139) is based on the coefficient 
matrix M · A, where M = di ag( m 1 , ... , m N) is positive definite, since 
mi >O for all i; furthermore, 

A (~; ~~ ::: -~-) 
a a · · · 2a 

From Theorem 4.9 we know that this system is asymptotically stable, if 
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A+ AT is negative definite. Note that 

A+AT (~.~~.~:::~.~) =(21+21)a 

2a 2a · · · 4a 

with eigenvalues 

(2. O+ 2 · l)a 2a and (2 · N + 2 · l )a = (2N + 2)a , 

which are always negative since we have assumed that a < O. Hence, 
this system is always asymptotically stable. 

Problems 

l. Discuss the stability of the system 

where t is the time. 

2. Is system 

stable? Is it asymptotically stable? 

3. Is the following system stable? Is it asymptotically stable? 

4. Discuss the stability of the mechanical system 

y= (l,O)x 

introduced in Problem 3.7. 
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5. Examine the stability of the discrete system 

x( t+ l) C;) x( t)+ (~)u( t). 

6. Discuss the stability of this discrete system 

x( t+ l)= O;) x(t) + (i) u( t). 

7. Is the electric circuit system 

introduced in Problem 3.13 asymptotically stable? 

8. Examine the stability of the system 

x(3
) + 2x + 3± + 5x == u . 

9. Examine the stability of this system 

x<5) + 3x<4 ) + x<3 ) + 2x + 3± + 5x ==u. 

10. Find the values of a sothat system 

is stable, or asymptotically stable. 

11. Examine the stability of the system 

which is the generalization of Example (4.1) (with u =f. 0). 
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12. What is the condition thatfunction V(x) == llx-xll~ is a Lyapunov 
function for system 

x== f(x) , 

where f : n -4 n is a continuously differentiable function and x is the 
only equilibrium? 
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13. Assume that f : R n -+ R n is continuously differentiable, f(O) == 
O, and llf'(x)ll2 < l for all x E Rn. Provethat with arbitrary x(O) 
x 0 E R n, the sequence x( t + l) f (x( t)) converges to zero. 

14. Let 

A (-2 -1) 
l -4 . 

(i) Show that the eigenvalues of A have negative real parts. 

(ii) Select M I in Theorem 4.6. Find matrix Q, which satisfies Equa­
tion (4.12). 

15. Find the roots of the polynomial 

and show that a system with this characteristic polynomial is unstable. 

16. Illustrate Theorem 4.9 with matrices 

K (i!) and A (-4 l) 
2-6 . 

17. Given 

is the system stable? 

18. Is system 

BIBO stable? 

. (-14 -2) (l) x= 4 -23 x+ . l u 

y (1, O)x 

19. Is the following system BIBO stable? 

y (l,l)x 
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20. 

(i) Prove Theorem 4.1 for the continuous case. 

(ii) Prove Theorem 4.2 for the continuous case. 

(iii) Prove Theorem 4.3 for the continuous case. 

(iv) Prove Theorem 4.12. 
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21. Assume that all eigenvalues of an n x n real matrix A have neg­
ative real parts. Show that A -l exists and 

22. Prove the following generalization of Theorem 4.6. All eigenval­
ues of matrix A have real parts less than -a < O if and only if for every 
symmetric, positive definite matrix M there exists a positive definite 
solution Q of equation 

23. Show that if A is a real n x n matrix, then the continuous system 
x( t) =Ax( t) is asymptotically stableifand only if the discrete system 
x( t+ l) = eAx(t) is asymptotically stable. 

24. Interpret the conditions of Definition 4.2 and Theorem 4.2 for the 
continuous system 

x(t) = f(x(t)) 

with the Lyapunov function V(x) =(x x)TG(x- x), where f is con­
tinuously differentiable, and G is a real, constant, symmetric, positive 
definite matrix. 

25. Repeat the previous problem with Lyapunov function 

V(x) =(x- x)TG(x)(x- x) 

where G(x) is a real, continuously differentiable, symmetric, positive 
definite matrix for all x. 
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chapter five 

Contro Ilability 

In previous chapters we have been cancerned with the analysis of linear 
and nonlinear dynamics. We have developed closed formulas for pre­
dieting future states and outputs, and in addition, stability pro b lems 
have been discussed. On the other hand, in control theory the control 
problem is to find an input that eauses the state or the output to behave 
in a desired way. As an example, consicler again the satellite problem 
discussed earHer in Example 3.6. Let x 1 be a desired future state of 
the satellite, that is, its desired positions, radial and augular velocities. 
Find an input function that will drive the state to x 1 in a finite time. A 
more restrictive problem is w hen an entire trajectory x( t) is given, and 
we wish to find an input function such that the entire state trajectory 
coincides with x( t). 

In this chapter conditions \vill be introduced for the existence of state 
and output control and in addition, an input \Vill be found that performs 
the desired control. 

DEFINITION 5.1 A dynamic systent ·with initial condition x(t0 ) == x 0 is 
said to be controllable to state x 1 at t 1 (> t0 ) if there exists an input u( t) such 
that x(t1 ) x 1. This concept is illustrated in Figure 5.1. 

5.1 Continuotts Systems 
In this section the controllability of the continuous dynamic system 

x= A(t)x + B(t)u, x(to) = xo (5.1) 

y C(t)x (5.2) 

243 
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x(t) Input u(t) 

Figure 5.1 Concept of controllability. 

End 
point 
~ 

will be analyzed. We assume that A( t), B(t), and C( t) are n x n, n x m, 
and p x n, respectively, and they are continuous in [to, oo). Our discussion 
will start with the general case, then special results on time-invariant 
systems will be demonstrated. 

5.1.1 General Conditions 

The general solution (3.19) of continuous linear systems implies that the 
system is controllable to x1 at t1 if and only if there exists an input u(t) 
such that 

Since </J( t0 , t 1) is nonsingular, this relation is equivalent to equation 

1
tt 

<!J( to, t1)x1- xo = <P( to, r)B(r)u(r) dr, 
to 

(5.3) 

where we used Properties (i), (ii), and (iii) of Theorem 2.3. 
Introduce the mapping 

1
t1 

A(u) = <!J( to, r)B(r)u(r) dr 
to 

on the set of the m-dimensional continuous functions. This mapping 
must not be confused with the system matrix A( t). Note that the range 
of thismappingis in Rn. It is obvious that there exists an input u(t) 
for all x 1 E R n which leads the state to x 1 at t 1 if and only if the range 
R( A) is the entire R n. 
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LEMMA5.1 
Vector v is in R( A) if and on ly if i t belongs to the range space of matrix 

(5.4) 

PRO OF 

(a) Assume first that v E R(W(t0 , tt)), then there exists a vector a 
such that 

v = W(t0 , tl)a. (5.5) 

Select input 
(5.6) 

then 

therefore, v E R(A). 

(b) Assume next that v tf_ R (W(t0 , tt)), then there exists a vector 
w from the null-space of W(t0 , tl) which is not orthogonal to v. 
This fact is the consequence of the well-known property of n x n 
symmetric matrices that their range and n ull spaces are orthogonal 
complementary subspaces in Rn (see Theorem 1.10). That is, 

and 

We shall now verify that v tf_ R(A). Contrary to this assertion 
assume that v E R( A). Then with some function ii( t), 

l tl 

v= <f>(t0 , r)B('r)u(1) d1. 
to 

Therefore, 

(5.7) 

The definition of W im p lies that 
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where Il · ll2 is the p = 2 norm of real vectors introduced in Defini­
tion 1.8. Since the integrand is continuous and nonnegative, i t has 
to be identically zero. Consequently, for all T E [t0 , t 1], 

and by taking the transpose of both sides, 

(all T E (to, t!]) 

which contradiets relation (5.7). Thus, the proof is completed. 

l 

REMARK 5.1 There exists an input u( t) that drives the state of the 
continuous linear system from xo to x1 at time t1 > to if and only if 
<P( to, t1)x1 - xo E R(W(to, t1)). This condition is equivalent to the 
existence of a vector a such that 

(5.8) 

From part (a) of the proof of the theorem, we conclude that on e particular 
input that drives the system to x 1 at time t 1 is given as 

u( t) = BT (t)<PT (to, t)a. (5.9) 

In using this equation we have to compute first matrix W(t0 , t 1). In 
most cases, numerical integration is needed. Then we sol ve linear equa­
tions (5.8) for a, for example, by Gauss elimination (see [42]). The 
method shows whether a solution exists or not. If no solution exists, 
then the system is not controllable to x 1 at t 1. If there is at least one 
solution a, then an appropriate input can be obtained by the above for­
mula. We note that computer programs are available to perform Gauss 
elimination. 

In summary, an algorithm that verifies whether the system can be 
controlied to x 1 at time t 1 or not, and in the case of controllability gives 
an appropriate input, consists of the following steps: 

Step 1 Compute the fundamental matrix </J( t, t0 ). 

Step 2 Determine matrix W(to, h) by using Equation (5.4). 
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Step 3 Find vector d= 4> (t0, tl)x1 x 0. 

Step 4 U se Gauss elimination to determine whether linear equation 

W(t0 , tl)a =d 

has a solution. If it does, then the system can be controHed to x 1 

at t 1, otherwise not. 

Step 5 If a is a solution of the previous step, then determine function 
u( t) by farmula (5.9). 

l 

This algorithm is illustrated by the following example. 

Example 5.1 

Assume that the state of the system 

x(O) = (~) 

has to be controlied to the final state 

x(l) =C) 
Step l. Simple calculation shows that 

_ ( e2(t-r) (t 7 )e2(t-r)) 
q>( t, r) - O e2(t-r) 

(see Problem 1.17). 

Step 2. Using Equation (5.4) we have 

W(O, l) 
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The matrix elements are calculated by elementary integration: 

and 

So, 

Step 3. 

4 

l e 11 -4T 

[-T-]0 - (-1)-dT 
-4 o -4 

e-4T l 
=--[-Jo 

4 -16 

-l+ 5e-4 

16 

=- +- Te- 47dT 111 
-4 2 o 

11 5e-4 

-4 + 2 16 

l 13e-4 

32 

W(O l)~ ( 0.02381 - 0.05678) . 
' - 0.05678 0.24542 

Simple matrix-vector algebra shows that 

( 
e-2 - e-

2
) ( 1) (O) ( O ) ( O ) 

d= O e-2 l O = e-2 ~ 0.13534 · 

Step4. We have next to solve the linear equations 

( 
0.02381 - 0.05678) ( a1 ) ( O ) 

- 0.05678 0.24542 a2 = 0.13534 ' 
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which can be rewritten as 

0.02381al -0.05678a2 = O 

-0.05678al +0.24542a2 0.13534 . 

From the first equation we have 

0.02381 
a2 = 

0
_
05678 

a1 ~ 0.41934al , 

and by substituting this expression inta the seeond equation we get a 
single equation for a1: 

( -0.05678 + 0.24542 x 0.41934)a1 = 0.13534, 

which implies that 

a1 ~ 2.9336 and so a2 ~ 1.2302. 

Step 5. And finally, the input is the following: 

( 

e-2t o ) 
u(t) ~ (0, l) te-2t e-2t a e-2t( -2.9336t + 1.2302) . 

Lemma 5.1 implies the follo,ving important theorem. 

THEOREM5.1 
The continuous systent is controllable front any initial state x( to) == x0 to an 
arbitrary state x 1 attinte t 1 > t0 if and only ifntatrix W(t0 , t 1) is nonsingular. 

REMARK 5.2 If a continuous linear system is controllable from an 
arbitrary initial state xo at an y t0 to any state x1 at arbitrary t 1 > t0 then 
the system is called completely controllable. l 

Example5.2 

Consicler again the system modeled by the differential equation 

x(O) O) . 
In Example 2.6 we have seen that 

l/J(t,r) ( 
cosw(t- r) sinw(t- r)) 

- sinw(t- r) cosw(t- r) · 
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Therefore, 

W(O, t l) 

{

0

t
1 

( COSW( -T) sin w( -T)) ( 0) (O, l) ( C~SW( -T) -sin w( -T)) dr 
lo -sin w( -T) cosw( -T) l smw( -T) cosw( -T) 

l tt ( . ) smwT . 
= (- s1nwr, coswr) dr 

0 COSWT 

rtl ( sin2 WT - sinWTCOSWT) dr 
- lo - SillWT COSWT cos2 WT 

)· 
We shall next prove that this matrix is nonsingular for all t 1 > O, 
that is, the system is controllable to all desired X1 at all t1 > O. The 
determinant of W (O, t 1) can be written as 

ty sin2 2wt1 

4 16w2 

cos2 2wt1 - 2 cos 2wt1 +l 
16w2 

which equals zero if and only if 

Introduce the new variable a = 2wt1 > O, then this equation is equiv­
alent to relation 

Consicler next function 

a2 
cosa=l--2 . 

<p(a) 
a2 

cosa-1+-
2 ' 

then easy calculation shows that <p(O) =O and for all a > O, 

<p1 (a) - sin a + a > O . 

Hence <p( a) > O for all a > O, and therefore, the determinant of 
W(O, t1) is nonzero for all t1 > O. 
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Matrix W(t0 , tl) is usually called the controllability Gramian. Its 
properties are summarized next. 

THEOREM5.2 
Matrix W(t0 , t 1) satisfies the following properties: . 

(i) It is symmetric. 

(ii) It is positive semidefinite. 

(iii) (ajat)W(t, t1) A(t)W(t, tl) + W(t, t1)AT(t)- B(t)BT(t), 
W(t1,t1) ==O. 

(iv) W(to, t1) == W(to, t)+</> (to, t)W(t, t1) </>T (to, t). 

PRO OF 

(i) Because the integrand in (5.4) is symmetric, W(t0 , t1) is also sym­
nletric. 

(ii) Let v be an y real vector, then 

(iii) We shall use the well-known fact that for smooth functions, 

d jtl jtt ar 
dt t f(t, T) dT == -f(t, t)+ t at (t, T) dT, 

which can easily be proven by using the definition of derivatives. 
In our case, 

a 
at W(t, t1) -<f>( t, t)B(t)BT (t)<f>T (t, t) 
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(iv) 
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1tl 
+ t <f>(t,r)B(r)BT(r)(A(t)<f>(t,r))T dr 

furthermore, the continuity of the integrand of W(t, t1) implies 
that W(t1, t1) =O. 

W(to, t1) = {t </>(to, r)B( r)BT (r)<f>T (to, r) dr 
}to 

= W(to, t)+ <f>( to, t)W(t, t1)<PT (to, t) . 

l 

In the control theory literature some authors say that a dynamic sys­
tem is completely controllable if i t is controllable from an arbitrary initial 
state xo to x1 = O at every future time t1 > to. Similarly, a dynamic 
system is called completely reachable if for all t1 >to and X t, the system 
is controllable from x 0 O to x1 at time t1. In our analysis we will use 
our Definition 5.1 of controllability, since it contains the usual concepts 
of controllability and reachability as special cases by selecting x1 = O 
and x 0 O, respectively. We mention in addition that some authors use 
the following modified version of the controllability Gramian: 

Wm(to,tl) rtl <f>(tl,r)B(r)BT(r)<f>T(tt,r)dr' l to 

obtained by replacing to by t1 in the integrand of (5.4). Since <f>( to, t 1) is 
nonsingular, W m(to, t1) is nonsingular if and only if W(t0 , t 1) is nonsin­
gular. Therefore, it makes no difference in proving controllability which 
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version of the controllability Gramian is used. The form of W m(to, t l) 
has the obvious advantage that it is formally analogous to that of the 
controllability Gramian (5.25) of discrete systems, where the possible 
nonsingularity of matrix A(t) makes it impossible to define and use 
both versions. However, we decided to use the original form W(t0 , t 1 ) 

for the continuous case, since in examining duality and in deriving ob­
servability conditions later in Chapter 6, this form will have important 
ad van tages. 

We conclude this seetian with an easy-to-check sufficient condition for 
complete controllability. The great advantage of this condition is the fact 
that it does not require the knowledge of the controllability Gramian. 
The major disadvantage of this approach is that it gives only sufficient 
condition, therefore, in many cases we cannot decide if the system is 
completely controllable based on only this condition. 

Define first the sequence of n x m n1atrix functions as following: 

Ko(t) = B(t) 

Ki(t) = -A(t)Ki-1 (t)+ Ki-l (t), i= l, 2, ... 

First \Ve show by finite induction that for all i ~ O, 

This identity is obviously true for i = O. Assume that it is true for an 
i~ O, then by using the inductive hypothesis and part (v) ofTheorem 2.3 
we have 

ai+l 
8ri+l [l/>( t, r)B(r)] 
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THEOREM5.3 
Assume that with same positive integer q, B (t) is q-times continuously differ­
entiable, and A( t) is (q l )-tintes continuously differentiable on the in terval 
[to, t1], Jurthermare for same t* E [to, t1], 

rank(Ko(t*), K1(t*), ... , Kq(t*)) =n. 

Then system (5.1) is completely controllable. 

PROOF Assume that with some t* the rank condition holds, bu t the 
system is not completely controllable. Then W(t0 , t 1 ) is singular, and 
part (b) of the proof of Lemma 5.1 im p lies that there is a vector w such 
that 

WT fj;(to, t)B(t) = OT 

for all t E [t0 , t 1]. Define vector zT wT fj;(t0 , t*), then 

ZT fj;(t*, t)B(t) = OT . 

By substimting t= t* we see that 

Simple differentiation shows that for i= l, 2, ... , q, 

0 = ::i [zT ej>( t*, t)B(t)] = zT ej>( t*, t)K;(t) , 

and the substitution t = t* gives the equation 

(i=1,2, ... ,q). 

Hence, 

which contradiets the rank condition of the theorem. Thus the proof is 
complete. l 

The assertion of the theorem is illustrated by the following example. 

Example5.3 

Consicler again the system of the previous example. In this case, 

Ko( t) = B(t) (n 
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By selecting q == l, the rank of matrix 

( o -w) (Ko(t), K1 (t)) = l O 

is n = 2; therefore, the system is completely controllable. 

Notice that the type of matrix (K0 (t*), K 1 (t*), ... , Kq{t*)) is n x (qm), 
where n is the dimension of the state and m is the dimension of the 
input. If qm < n, then the rank condition of Theorem 5.3 cannot be 
satisfied even if the system is completely controllable. Therefore, the 
rank condition of the Theorem is only suffient hut not necessary. In the 
special case of time invariant systems (that is, when A( t) and B( t) are 
eonstant matrices) we have 

K 0 (t) =B 

therefore, 

which has the same rank as matrix 

(B,AB,A2B, ... ,AqB). 

We willsee in the next subseetian that a time invariant system is com­
pletely controllable if and only if this matrix 'vith q == n - l has full 
rank, showing that in this special case, the condition of Theorem 5.3 
with q = n - l is sufficient and necessary. 
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5.1.2 Time-Invariant Systems 
In this seetian the special case will be discussed ·when A(t) and B( t) are 
time-independent. 

Introduce first the controllability matrix 

K (B,AB,A2 B, ... ,An-lB). (5.10) 

Note that in K, matrices B,AB,A2B, ... ,An-lB are the blocks, and 
they are placed next to each other horizontally. 

Our first result is as follows. 

LEMMA5.2 
The null space and range space ofW(t0 , t1) for all t 1 > to coincide with the 
n ull space and range space of matrix 

Wr == KKT. (5.11) 

PROOF Since both W(t0 , tl) and W r are symmetric, and from The­
orem 1.10 we know that the null and range spaces of n x n symmetric 
matrices are orthogonal complementary subspaces in R n, i t is sufficient 
to show that the null spaces coincide, that is, N(W(t0 , t 1 )) = N(Wr). 

(a) Assume first that v E N(W(t0 , tl)). Then W(t0 , t 1 )v =O, there­
fore, 

Since the integrand is continuous and nonnegative, 

(for all r E [t0 ,tl]). 

Use the exponential Taylor' s series to see that 

f ~!BT(AT)k(to T)kv 
k=O 

O· 
' 

therefore, for all k ~ O, 
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That is, 
BTv BT Arv=···= BT(AT)n- 1v =O. (5.12) 

These relations are equivalent to the property that 

which implies that 
Wrv=KKTv O. 

Hencev E N(Wr). 
(b)Assumenextthatv E N(Wr ). ThenKKT v= O, thatis, vTKKT v= 

O. This equation is equivalent to relation liKT vii~ = O which im pliesthat 
Kr v = O, and therefore, relations (5.12) are valid. Note first that the 
Cayley-Hamilton theorem implies that for l ~ n, Al is the linear earn­
bination of I, A, ... , A n-1 and therefore, for all k~ O, 

n-1 

(At)k = L O:kl(t)Al 
l=O 

with some functions O:kl(t). Therefore, 

n-1 

eAt = LJJl(t)Al' 
l=O 

where fJl(t) is a function of t for l =O, l, ... , n- l. Therefore, 

since for l= O, l, ... , n- l, 

The symmetry of matrix W(t0 , t I) implies that 

hence v E N(W(t0 , t 1)), which completes the proof. l 

Before formulating the main theorem of this section we remind the 
reader that the rank of a matrix is the maximal number of the linearly 
independent rows (or columns) of the matrix. 
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THEOREM5.4 
The time-invariant continuous linear system is completely controllable if and 
only if the rank of the con trollability matrix K equals n. 

PRO OF 

(a) First we provethat N(KT) N(WT)· Assume that v E N(KT), 
the n 

and multiply by matrix K to get 

KKTv =O. 

That is, W Tv= O. Hence v E N(WT)· 
Assume next that v E N(W T), then by using the same reason­

ing as shown at the beginning of part (b) of the proof of Lemma 5.2 
we conclude that KT v = O, that is, v E N(KT). 

(b) From Theorem 1.10 we know that R(K) and N (KT) are orthogonal 
complementary subspaces in R n, and the same is also true for 
R(WT) and JV(WT ). Because we proved that N(KT) = N(WT ), 
we conclude that R(K) = R(W T). 

(c) We know from Lemma 5.2 that 

R(W(to,ti)) = R(WT) = R(K), 

and therefore, W(t0 , t 1) is nonsingular if and only if rank(K) n. 
The assertion then follows from Theorem 5.1. 

l 

REMARK 5.3 N o te that the conditions of the theorem hold if and only 
if the rows of matrix K are linear! y independent. Because row ranks and 
column ranks of matrices are always equal, in many applications it is 
easier to find n independent columns from matrix K rather than prove 
the independence of the n (usually very long) rows. In the case of high­
dimensional matrices, the rank of K can be obtained by using standard 
computer packages. l 
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Example 5.4 

Consicler again the system 

x(O) = (~), 

which was the subject of our earlier Example 5.2. In that example, we 
exaroined the con trollability of the system by proving that the control­
lability Gramian W (O, t 1) is nonsingular. The same result now will 
be obtained based on the controllability matrix K. In this case, n= 2, 
and 

K= (B, AB)=(~~) 
Obviously rank(K) = 2 for all w =f. O. 

No te that the direct application of the con trollability matrix is mu ch 
more attractive than the computation of the controllability Gramian 
even in cases w hen the integral can be given in closed forms. 

Example 5.5 

Consicler now the satellite problem, presented in Example 3.6. The 
contro Ilability of this system is now examined. In this case, n = 4, 

A= (3~0 2 ~ ~ 2~) , 
-2w O O 

B=(!!) 
therefore, the contro Ilability matrix becomes 

Observe that the first four columns are Iinearl y independent; therefore, 
rank(K) = 4. That is, the system is completely controllable. 

Next assume that one of the inputs is inoperative. Is the system still 
controllable? 

259 
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Set U2 O, then B reduces to Bl (0, l, o, o) T, and so 

2 3 l O -w2 O 

(

o 1 o -w
2

) 

K1 = (Bt,ABr,A Br,A Bt) = O O _ 2w O 

O -2w O 2w3 

Observe that the last column is the ( -w2 )-multiple of the seeond col­
umn. Therefore, rank(Kt) < 4, and the system with the only input 
u1 is not completely controllable. 

Now if u1 =O, then B reduces to B2 = (0, O, O, l)T; therefore, 

It is easy to establish that for w -=/= O, rank(K2) 4. That is, the 
system with the only input u2 is still completely controllable. Because 
Ut is the radial thrust and u2 is the tangential thrust, we conclude that 
loss of radial thrust does not destroy complete controllability, bu t the 
loss of the tangential thrust does. These two models are illustrated in 
Figure 5.2. 

m 

Figure 5.2 Controllable and noncontrollable sa tellite models. 

Assume next that the system 

x= Ax+Bu 
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y=Cx 

is not completely controllable, then the rank r of the controllability 
matrix K is less than n. In this case, the controllable and uncontrollable 
state variables can be clearly identified by using the following result. 

THEOREM5.5 
Assume that r < n, then there exists a nonsingular matrix T such that 

Å= TAT-1 =(Ån ~12) 
O A22 

- (Bt) B=TB= O, 

(5.13) 

where the sizes of the matrices Ä 11, Ä 12, and Ä22 are r x r, r x (n- r), and 
(n r) x (n- r), respectively, and B1 has r rows and C1 has r columns. 
Furthermore, 

(i) System (Å11 , B1 , C1) is conzpletely controllable. 

(ii) The transfer function ofsysten1s (A, B, C) and (Åu, B1, Ct) coincide. 

PROOF Because the rank of K is r, we find r linearly indepen­
dent columns, which are now denoted by c 1 , c2 , ... , er. Select vectors 
Vr+l, Vr+2, ... , Vn SUCh that { Ct, C2, ... , Cr, Vr+l, Vr+2, ... , Vn} is a basis 
in R n, and de fine matrix 

Then direct calculation shows that this matrix satisfies the assertion. 
The detalls are left as an exercise. 

Notice that the contraHability matrix of system (Å11 , B1 , C1) has the 
form 

and has the same rank r. Therefore, the first r ro w s are linear! y inde­
pendent, and there are r linear! y independent columns. Because matrix 
Å 11 is r x r, the Cayley-Hamilton theorem implies that these columns 

- - - - l-
are from matrices B~, A11B 1 , ... , AI! B 11 which proves that matrix 
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(B 11 ÄuB11 ... , Äi!1B1) has full rank. Since it is the controllability 
matrix of system (Ä11 , B1, C!), Assertian (i) is verified. 

In proving(ii),noticefirstthatthetransfer functionsofsystems (A, B, C) 
and (Ä, B, C) coincide, because they differ from each other only in a 
state variable transformation. Observe furthermore that the transfer 
function of system (Ä, B, C) can be written as 

where * denotes a block, the particular form of which is not important 
now. Therefore, 

- l­Au)- B1 , 

which completes the proof of the theorem. l 

REMARK 5.4 Notice that system (Ä, B, C) can be rewritten as 

Since x2 does not depend on the input, it is not controllable; further­
more, (i) implies that variable x1 is completely controllable. l 

The controllability of a time-invariant linear system (A, B, C) can be 
examined not only by determining the rank of the controllability matrix, 
but also by using the following result. 

THEOREM5.6 
System (A, B, C) is completely controllable if and only if matrix AT has no 
eigenvector a that is orthaganal to the columns of B. 

PRO OF Assume first that there exists such a vector q. Then q T A = 
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A.qT and qTB =O. Therefore, 

so the rows of K are linearly dependent. Hence, the system is not com­
pletely controllable. 

Assume next that the system is not completely controllable. Then it 
can be transformed to the form (5.13). Let q 2 denote any eigenvector of 
AI2 with associated eigenvalue A., then 

and 

Thus the proof is completed. l 

COROLLARY 5.1 
System (A, B, C) is completely controllable if and on ly if the rank of nzatrix 
(si A, B) is njarall s. 

PROOF Notice that the rank of (si- A, B) is lessthan n if and only 
if there exists a nonzero vector q such that 

qT(si- A, B)= oT. 

This equation is equivalent to relations AT q = sq and qTB = oT. 
Hence, q is an eigenvector of A T that is orthogonal to all columns of B. 
l 

Example 5.6 

Consicler again the system of Example 5.4, w hen n 2, 

A= ( O w) -w O 
and 

In this case, 

(
s -w l) (si-A,B)= w sO. 



264 cllapter five: Controllability 

Notice that the first and third columns are always independent, there­
fore, the rank of the matrix is n for all s. Hence, the system is com­
pletely controllable. 

5.1.3 Output and Trajectory Controllability 
In many applications the entire state vector x is not of interest, and only 
a subset of its components or same linear combinations of its components 
are allthat matters. Assume that instead of the state x an output vector 

y= C(t)x (5.14) 

is to be controlled. This type of control, which is called the output 
control, is examined next. The main existence theorem is as follows. 

THEOREM5.7 
There exists an input u(t) that drives the output of the system 

x A(t)x + B(t)u, x(to) xo 

y C(t)x (5.15) 

to y 1 at t1 >to if and only iJY1 C(t1)4>(t1, to)xo lies in the range space of 
C(t1)4J(t1, to)W(to, tl). 

PROOF Equation (5.8) implies that the system can be controHed to a 
state x 1 at t 1 > t0 if and only if it can be represented as 

with s orne vector a. Therefore, the output vectors y 1 to which the system 
can be controHed at t 1 have the form 

Avector y 1 can be written in this form if and only if 

which completes the proof. l 
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COROLLARY 5.2 
The output can be controlied to any arbitrary y 1 at t 1 >to if and only if 

rank(C(tl)cj>(tb to)W(to, tl)) p, (5.16) 

where p is the dimension of the output. 

This rank condition is illustrated by the following example. 

Example5.7 

Consicler again the system of the previous example: 

x(O) =O) 
with the output equation 

y (1,0)x. 

Notice that C (1, 0), both cp(t1, to) and W(to, t1) are nonsingular 
matrices as it was shown in Part (iii) ofTheorem 2.3 and in Example 5.2. 
Because the output is single, p = l. Therefore, the nonsingularity of 
theproduct cp(t1, to)W(to, t l) implies thatwith the nonzero rowvec­
tor C, C(t1)cp(t1, to)W(to, t1) is nonzero, therefore, its rankequals l. 
Hence, the rank condition (5.16) is satisfied. Consequently, the output 
of this system is controllable to any final output Yl at any future time 
t1 >to. 

The state and output controllability problems were cancerned with 
driving the system to a given state and output at a future time t 1 . In 
man y applications, the contro l of the entire state function x( t) or output 
function y(t) is needed. That is, an input is to be determined such that 
the entire trajectory of the state or output coincides with a desired func­
tion. This problem is illustrated in Figure 5.3. This trajectory control 
problem is no\v discussed onfy for time-invariant continuous systems: 

x Ax+Bu, x(O) = xo (5.17) 

y Cx. (5.18) 

If the state trajectory is given, then check the initial condition first. If 
it is not satisfied, then no centroi exists. Othenvise, by substituting the 
given state trajectory into Equation (5.17), a linear system of equations 
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x(t) or y(t) Input u(t) 

Target trajectory 

Figure 5.3 Trajectory contro l. 

is obtained for the unknown components of the input vector. If these 
linear equations have no solution, then the state trajectory cannot be 
controHed as required. Otherwise, any solution is a suitable input. 

Example 5.8 

Assume that the state of the system 

x(O) 

has to be controHed to be 

x( t) = ( wt~: l) (t ~O). 

Notice first that the initial condition is satisfied. Substituting this tra­
jectory into the differential equation we have 

( 2wt ) == ( O w ) ( wt
2 

+ l ) + ( O ) (t) 
2 -w O 2t l u ' 

which can rewritten as 

2wt == 2wt 

2 = -w(wt2 +l)+ u( t). 

The first equation is always satisfied, and from the seeond equation we 
get the required input: 
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If the output trajectory is given, t hen the application of La place trans­
forms is the appropriate method to find the suitable input function. 
From Theorem 3.2 we know that the Laplace transforms of x(t) and 
y(t) are given as 

X( s)= R(s)xo + R(s)BU(s) (5.19) 

and 
Y(s) = CR(s)x0 + H(s)U(s) , (5.20) 

where R( s) is the resolvent matrix and H( s) is the transfer function. 
If the output trajectory is given, then function Y (s) is determined by 
applying the Laplace transform. Then solve the linear Equation (5.20) 
with parameter s to recover function U (s). And finall y, use the inverse 
Laplace transform to determine the unknown input u(t). 

Example 5.9 

Consicler again the system 

x(O) = (~) 

y= (1, l)x. 

Assume that the output of this system is to be controlied to have y( t) = 
l for all t 2: O. In Example 3.8 we have shown that 

R(s) _ l ( s w) 
- s2 +w2 -w s 

and 
s+w 

H(s) = 2 2 ; s +w 

therefore, Equation (5.20) has now the special form 

l (l l) l ( s w) (l) s+ w U( ) 
' s 2 + w 2 -w s O + s2 + w2 s ' s 

where we used item No. 2 of Table 2.1. Simplifying this equationshows 
t hat 

l s-w s+wu - = + (s) 
s s 2 + w 2 s 2 + w 2 ' 

from which we have w U(s) = -, 
s 

that is, u( t) =w for t > O. 
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This result can be also verified by simple substitution of the state 
components 

and 

the input u( t) == w and output 

y(t) = (1, l)x l 

into the systems equations. 

Finall y, we mentio n that this approach can be used if the state trajec­
tory is given; however, the procedure illustrated in Example 5.8 is less 
complicated. 

5.2 Discrete Systems 
In this seetian the controllability of the discrete linear system 

x( t+ l)= A(t)x(t) + B(t)u(t), x(O) == xo (5.21) 

y(t) == C(t)x(t) (5.22) 

will be examined. We assume that the types of matrices A( t), B (t), and 
C(t) are n x n, n x m, and p x n, respectively. 

The general solution (3.48) of discrete linear systems implies that this 
system is controllable to x1 at t 1 if and only if there exists an input u( t) 
such that 

tl-1 

x1 = lj>(tb O)xo + L lj>(t1, T+ l)B(T)u(T) . (5.23) 
r=O 

Introd uce the mapping 

h-1 

A( u) L lj>(t1, T+ l)B(T)u(T) (5.24) 
r=O 

on the set of m-dimensional functions defined on N {0, l, ... }. Note 
that the range of this mappingis in R n. 

LEMMA5.3 
Vector v is in R( A) if and only if i t belongs to the rang e space of matrix 

tl-1 

W(O, t1) = L lj>(tb T+ l)B(T)BT(T)lj>T (t1, T+ l). (5.25) 
r=O 
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PROOF The proof is analogous to that of Lemma 5.1. 

(a) Assume first that v E R (W(O, t 1)), then there exists a vector a 
such that 

v= W(O, h)a. (5.26) 

Select input 
(5.27) 

then 

tl-1 

A( u) L <jJ(tb r+ l)B(r)BT(r)<jJT(t 1 , r+ l)a 
r=O 

=W( O, t1)a =v; 

therefore, v E R(A). 

(b) Assume next that v tf. R(W(O, t l)). Then-similad y to the proof 
of Lemma 5.1 - there exists a vector w from the null space of 
W(O, tl) that is not orthaganal to v. That is, 

W(O,t1)w =O and 

We shall now verify that v tf. R(A). In contrary to this assertion, 
assume that v E R( A). Then with same function u( t), 

tl-1 

v= L <jJ(t 11 r + l)B(r)u(r). 
r=O 

Therefore, 

h-1 

O# wT v= L wr <jJ(t 11 r+ l)B(r)u(r). (5.28) 
r=O 

The definition of w im p lies that 

h-1 

O= wTW(O, t 1)w = L wT <jJ(tr, r+ l)B(r)BT(r)</JT (t11 r+ l)w 
r=O 

tl-1 

== L IIBT(r)tjJT(tt,r + l)wll~. 
r=O 
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Since all terms are nonnegative, for all T= O, l, ... , t 1 - l, 

Take transpose on both sides to get 

(all T = O, l, ... , t 1 l) , 

which contradiets to relation (5.28). Thus, the proof is completed. 

l 

COROLLARY 5.3 
There exists an input u( t) w h ich drives the state of the discrete linear system 
to x 1 at time t 1 > O if and only if x1 </> (t~, O)x0 belongs to R(W(O, t l)), 
that is, if 

with some vector a. The algorithm verifying controllability is similar to that 
shown for continuous systems. 

From the lemma we conclude the following result, which is the discrete 
case counterpart of Theorem 5.1. 

THEOREM5.8 
The discrete system is controllable from initial state x 0 to arbitrary state x 1 at 
time t 1 > O if and only ifW(O, t!) is nonsingular. 

REMARK 5.5 If a discrete linear system is controllable from arbitrary 
initial state x 0 at O to arbitrary state x 1 at an y t 1 ~ n, then the system is 
called completely controllable. l 

COROLLARY 5.4 
From part (a) of the proof of the lemma we conclude that a particular input 
that leads the system to x 1 at t 1 >O is given as 

where vector a is a solution of equation 

(5.29) 
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Example 5.10 

Consicler the discrete system modeled by difference equation 

x(t +l)=(~ i) x(t) +(n u(t), x(O) = (~) 
From Example 3.14 we know that 

l/J( t, r) (
l t- T) 
o l . 

Therefore, 

l) (t! T- l, l) 

where we used the relations 

l+ 2 + ... + (tl l) 

and 

Finall y we show that for all t1 2: 2, this matrix is nonsingular, that is, 
the system is completely controllable. 

The determinant ofW(O, it) can be written as 

271 

6t l + 2 - 3ti + 6t l - 3) 

ti ( 2 --t - 12 l l)' 
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which is nonzero for t1 2:: 2. Hence, at t1 2:: 2, arbitrary state x 1 can be 
obtained from arbitrary initial state x 0 , but for t 1 = l this is not true. 
We can demonstrate this statement by using relations (5.23) directly 
for t1 = l: 

Xt = l/>(1, O)xo + l/>(1, l)B(O)u(O) 

= ( ~ u ( ~) + o n (n u(O) 

= o) + (n u( O) ( utO)) . 

Therefore, a state is feasible at t1 = l if and only if its first component 
equals 1. Then its seeond component gives the desired input value 
u( O). 

An alternative method to find the input sequence {u( O), u(l), ... , u(t 1 -

l)} that drives a discrete system to a given final state X t =x( t t) is based 
on solving directly Equation (5.23) for the unknowns u( O), u(l), ... , u(t1 -

l). This procedure is illustrated next. 

Example 5.11 

Assume that in the case of the system of the previous example the final 
state is given as 

x(2) = (i) . 
In this case, Equation (5.23) can be rewritten as follows: 

x(2) A 2x0 + (Abu(O) + bu(l)) 

with 

and 

That is, 

(i) = ( ~ ~) ( ~) + (i) u( O)+ (~)u( l), 

which has the simplified form 

(o) ( u(O) ) 
l = u( O) + u(l) · 
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The only solution is u( O) =O and u( l) = l. 

It is easy to modify Theorem 5.2 for discrete systems. Properties (i) 
and (ii) hold in the same way, and (iii) has to be modified accordingly. 
The details are left as an exercise to the reader. 

Consicler next the time-invariant case, when A(t), B(t), and C(t) are 
constant. Introduce again the controllability matrix 

K (B,AB, ... ,An-1B). 

By modifying the proof of Lemma 5.2 similarly to Lemma 5.3 the 
reader can easily verify that Lemma 5.2 holds also for discrete systems 
with t1 2:: n, and Theorem 5.4 has to be modified as follows. 

THEOREM5.9 
The time-invariant discrete linear system is completely controllable if and only 
if rank(K) n. 

Example 5.12 

In the case of the system exaroined in the previous example, n = 2 
and 

K=(B,AB) (~D, 

which is nonsingular; therefore, rank(K) = 2. Hence, arbitrary x1 

can be obtained at arbitrary t1 2:: 2. Note that the same result was 
obtained in Example 5.10; however, the direct use of the controlla bility 
matrix is mu ch more attractive than the direct computation of W (O, t 1) 
and its examination. 

Finally, we mention that Theorems 5.5 and 5.6 remain valid, and the 
output and trajectory controllability of discrete systems can be discussed 
analogously to the continuous case. The details are left as an exercise to 
the reader. We conclude this seetian with an example of output contro l. 

Example 5.13 

Consicler again the system given in Example 5.11 with the output equa­
tion y {l, l )x. Assume that the input sequence has to be determined 
that results in the final output y(2) = 5. 

From Example 5.11 we see that 

y(2) = (1, l)x(2) (1, l) [ ( ~) + c) u(O) + (n u(l)] , 
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that is, 
5 l + 2u(O) + u(l) . 

Notice that this equation has inifinitely man y solutions, we ma y select, 
for exan1ple, u( O) ==O and u( l) == 4. 

5.3 Applications 
In this seetian some systems arising in engineering and the social sciences 
are examined, and the controllability conditions introduced earlier in this 
chapter are illustrated. 

5.3.1 Dynamic Systems in Engineering 
l. Consicler the simple harmanie oscillator (3.53) introduced in Chap­
ter 2 and given in Application 3.5.1-1, which is summarized below: 

Is it controllable? 
To answer this question let us campute the contraHability matrix K 

(b, Ab). Since 

A= ( O w) -w O 
and b (n. 

K (b, Ab) = ( ~ ~) . 

Note that rank(K) 2. Therefore, the system is completely control-
lable. 

2. What about the damped linear seeond-order system of Applica­
tion 3.5.1-2; is it controllable? In this case, 

A= ( O _1 ) , 

and, therefore, 

This matrix has a full rank; therefore, the system is completely control­
lable. 
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3. For the electrical system of Application 3.5.1-3, 

A b (~) 
Therefore, 

K= (t- ) 
0 L~ 

The rank of K is 2, therefore, the system is completely controllable. 

Figure 5.4 An expanded LRC circuit. 

lovestigating the controllability of this electrical circuit \Vas not very 
interesting. So, let us change it as sho\vn in Figure 5.4. Is this circuit 
controllable? Let us first find A, B, and C. Our first question is what 
is the order of the system? Because there are four independent energy 
storage devices ( two inductors and t\vo capacitors), i t should be fourth 
order. Next, what state variables should be used? Uniess your physical 
intuition suggests more convenient variables, choose the energy related 
variables, i. e., the currents in the inductors and the voltages across the 
capacitors. Now we can apply Kirchhoff's la\v to both circuits. The 
equations are as follo\vs: 

which can be re\vritten as 

d ve 
d t 

l l --ve+ -u 
L L 

l . 
-2L c 
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Since the equations for the left and right circuits are the same, except 
for the subscripts, we can write four differential equations as 

iL1 o -l o o iL1 y;; 
vål 

l o o ve l c1 + 
iL2 o o o iL2 

vå2 o o l -1 
vc2 C2 C2R2 

Let the output be the voltage across the right capacitor: 

y 

Now let us form the controllability matrix, K: 

K= 

-l 
L1C1R1 

l l l 
C1R1 L1C1 CiRi 

l -1 
L2 L2C2R2 

l 
- C~R~ 

It is easy to see that if 

u. 

then rows l and 3 as well as rows 2 and 4 are identical. Therefore, the 
system is not controllable. Intuitively, this makes sense. If we have two 
identical circuits in parallel, there is no single input that will drive one 
circuit to one state and the other to a different state. 

4. For the transistor circuit rnadel (3.80) of Application 3.5.1-4 we 
know that 

and b=(t). 
Therefore, 

Because rank(K) = 2, the system is completely controllable. 
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5. To assess the controllability of the hydraulic system of Applica­
tion 3.5.1-5, we can compute K as follows. Note first that 

(
-a a ) 

A= b -(b+c) ' 

\v here 

l 
a= 

l 
c 

d= l . 

Therefore, 

K (d -ad) o bd . 

Because rank(K) 2, \Ve kno\V that the system is controllable. That 
is, if someone picks arbitrary h 1 and h2, you can find a u(t) that will 
drive the system to this state. 

Figure 5.5 A three-tank hydraulic system. 

Let us expand this problem a little as sho\Vn in Figure 5.5. wiake the 
system symmetric with R1 = R2 1/2 and A1 = A3 = (2/3)A2, and 
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we get 

d (Xl) (-3 3 0) (Xl) (bl 0 0) (Ul) dt X2 == 2 -4 2 X2 + 0 b2 0 u2 , 

X3 0 3 -3 X3 0 0 b3 U3 

where b1 , b2 , and b3 are positive constants. Now the question is, if 
someone requests arbitrary tank heights h1 , h2 , and h3 can you find an 
input trajectory that will produce it? 

We will consicler three cases: 

(i) Only input u1 is applied. 

(ii) Only input u2 is used. 

(iii) Only input u3 is applied. 

We have 

(

-3 3 o) 
A== 2 -4 2 

o 3-3 
and 

The A matrix is 3 x 3 so we will have to campute three blocks of the 
controllability matrix, which is (B, AB, A 2B): 

(

bl o o : -3bl 3b2 o : 15bl -2lb2 6b3) 

K= O b2 O : 2bl -4b2 2b3 : -14bl 28b2 -14b3 

o o b3 : o 3b2 -3b3 : 6bl -2lb2 15b3 

Now let us try to control this system with the first input only, that is, 
let b1 l and b2 = b3 O. In this case, 

K 
( 

1 o o: -3 o o: 15 o o) 
ooo: 200:-1400 ' 

000: 000: 600 

we do have three linearly independent columns, which are the first, 
fourth, and seventh. Therefore, rank(K) = 3, and the system is con­
trollable with the first faucet only. However, le t us now set b2 l and 
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(

o o o: o 3 o: o -21 o) 
K = O l O : O -4 O : O 28 O • 

o o o : o 3 o : o -21 o 

and we no longer have three linearly independent ro\vs, since the first 
and third rows are identical. So the system is not controllable by the 
seeond faucet alone. 

If one sets b1 = b2 =O and ba l, then 

K 
(

ooo:oo o:oo 6) 
o o o : o o 2 : o o -14 

o o l : o o -3 : o o 15 

Nate that the rows are linearly independent again, ;ank(K) = 3. 
Consequently, the system is completely controllable with the third faucet 
only. 

6. In the case of the multiple input electrical system \Ve kno\v that 

( 

_ _B_ o 
L t 

A= O O 
l l 
cc 

and B 
(

.l o) 
~· i2 . 

The controllability matrix K has now the form 

K 
( 

l 0 -R y;; Tf 
o .l o 

L2 

o o 

l -1 ) CL'f CL~L2 

Notice that the first three columns are linearly independent, therefore, 
rank(K) = 3, and the system is completely controllable. 

7. To check the controllability of the stick-balancing problem of Appli­
cation 3.5.1-7, campute again the controllability matrix 

K=( 0-g) 
-g o 

of the system. Because the rank of K is 2, the system is completely 
controllable. 



280 chapter five: Controllability 

8. For the cart with two sticks of Application 3.5.1-8, we have matrices 

A (
o o 1 o) o o o l 
a1 a2 O O 
a3 a4 O O 

and 

Simple calculation shows that the controllability matrix is as follows: 

Thiswill have rank lessthan 4 if 

Substitute the definitions of a1, a2, a3, a4, c, and d to obtain equality 

which is equivalent to relation 

Therefore, if L1 =1- L2, the realization is completely controlla b le. As a 
consequence, an input can be found that keeps both sticks upright. 

9. Our electrical heating system was illustrated in Figure 3.29 and is 
a seeond order system with matrices 

and 

The controllability matrix K is now the following: 
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which has full rank. Therefore, the system is completely controllable. 
10. In the case of m = l in the nuclear reactor rnadel of Applica­

tion 3.5.1-10 we have 

and b (~) . 

Therefore, the controllability matrix K has the form 

The rank of K is 2, so the system is completely controllable. 

5.3.2 Applications in the Social Sciences 
l. Consicler first the predator-prey model (3.112) and (3.113) with the 
input "controHed by nature": 

G(t) = (a+ u(t))G(t)- bG(t)W(t) 

W(t) -cW(t) + dG(t)W(t) . (5.30) 

From Section 3.5.2 we know that \vith zero input u O, the only positive 
equilibrium is 

- a 
W= b. 

The system is first linearized. If f 1 and !2 denote the right-hand sides 
of Equations (5.30), then 

ajl a+u b W, ajl = -bG ajl =G 
aG aw ' au ' 

aj2 d W, aj2 -c+dG, aj2 =o. 
aG a w au 

Therefore, Equation (3.13) implies that the linearized equations have 
the form 

. be c 
Go= --ltVo +-u 

d d 

(5.31) 



282 chapter fi.ve: Controllability 

where 

Go= G-G= G 
c 

and Wo= W-W= W 
d 

It is obvious that variables G and W are controllable if and only if 
G 0 and W0 are controllable; therefore, it is sufficient to examine the 
controllability of system (5.31). 

By using the notations of Section 5.1.2, 

A ( ~ o ) and B=O)' 

and the controllability matrix K is as follows: 

K (B,AB) =o O) 

From Theorem 5.3 we conclude that the system is completely control­
lable, since rank(K) = 2. 

This interesting result shows t hat both (the predator and pre y) pop­
ulations are completely controlied by controlling only the growth rate of 
the prey population. 

2. Consicler next the cohort population rnadel (3.115). For the sake of 
simplicity select n= 3. Then 

B= O l O (
100) 
o o l 

The controllability matrix is the following: 

Because the first three columns are linearly independent, rank(K) 
3. That is, the system is completely controllable. This result is not 
surprising, since the populations of the three age groups are directly 
controlied by the corresponding input components. 

Assume next that immigration into the population is permitted only 
in the youngest age group, group l. Then matrix B is replaced by vector 
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b (l, 0, O)T, and the controllability rnatrix is 

with rank(K) = 3. Therefore, the entire population is cornpletely con­
trolied by controlling the population of the youngest age group. After 
one time period, this control has its effect on the seeond age group; the 
third age group is then affected after one additional time period and so 
on. Hence, this control will indirectly control all other age groups as 
well after a certain time delay. 

Assurne next that immigration is perrnitted only into the seeond age 
group. Then b= (0, l, O)r, and 

Observe that rank(K) = 3, that is, the systern is cornpletely controllable 
again. Sirnilarly, if only the third age group is controlled, the b 
(0, O, l)r, and 

with rank(K) = 3. 
In explaining the last two results note that the control of any age 

group i ~ 2 will have its effect on the first age group via the newhorn 
population after one time period. And then, all other age groups are 
affected by aging. 

3. Consicler the rnodified arms races rnadel (3.119), where 

A= (-b a) 
c -d and 

The contraHability rnatrix is 

K_ (a -ba + a{3) 
- {3 ca- d{3 · 

This rnatrix has full rank if and only if 

a( ca d{3) {3( -bo:+ a{3) =f: O , 
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that is, 
o? c+ af3(b d) - af32 f:. O . 

This relation holds if and only if 

~ =1- d - b ± J (b - d) 2 + 4ac . 
f3 2c 

Hence, the system is completely controllable except for two special values 
of a/ f3 depending on the coefficients a, b, c, and d. 

4. Let us now modify the warfare model in the following way. Assume 
that a guerrilla organization hel ps the seeond nation in its war. Then 
mod el (3.121) is modified as 

(5.32) 

where u is the force of the guerrilla organization and h3 is its hitting 
power. This time-invariant system is characterized by matrices 

and 

The controllability matrix of this system has the form 

K 

which has full rank. Hence, the system is completely controllable, which 
means that the guerrilla organization is able to drive the war to any 
state (X1 (t1), (X2(tl))T by the appropriate selection of its activity u( t). 

5. Consicler again the epidemics model (3.124), and assume that the 
number of infected and circulating individuals can be influenced by an 
input u (e.g., better and more frequent screening). The corresponding 
mathematical model then can be written as 

x= -axy 

y axy f3y u. (5.33) 

It is easy to see that with zero input (u = 0), (x, O) is an equilibrium 
state, where x ~ O is arbitrary. The linearized model has the following 
form: 
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The controllability of this linear system can be investigated on the basis 
of its controllability matrix 

K ( 
O ax ) 
-l-ax+f3 

If x =!=O, then this matrix is nonsingular; that is, the system is completely 
controllable. If x O, then K is singular; that is, the system is not 
controllable. 

6. In the case of the Harrod-type national economy model (3.10) we 
can consicler G(t) as input. Then 

A= (1 +r rm) and B= (-r) , 

and since n = l (that is, this is a single-dimensional case), the contral­
lability matrix K equals B, which is a nonzero constant. Therefore, it 
has full rank. Hence, the system is completely controllable. 

7. Consicler no-w the linear cobweb model (3.127), and assume that 
the demand function can be influenced by an appropriate input u as 
d(p) = ap + ao + u. In this case the mod el is modified as 

p( t+ l)= ~p( t)+ - ao- u 
a a 

and by introducing a new input 

bo ao- u 
u=----

a 

the model reduces to 

p( t + l) = ~p( t) + ii . 
a 

(5.34) 

This system is obviously completely controllable, since the controllability 
matrix is K= (1), \vhich is nonzero and hence nonsingular. 

8. We \Vill now modify the model (3.128) of interrelated markets sim­
ilar to the previous case by introducing the inputs ui, which add to the 
eonstants aiO of the demand functions. Their meaning is the same as 
\Vas presented for the input of the previous model. In this case, sys­
tem (3.130) is modified as 

p= K((A B)p + ao- bo+ u) . (5.35) 
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Introduce the transformed input 

u(t) =K· (ao bo+ u(t)) , 

and note that any value of u( t) can be obtained by the suitable selection 
of u( t): 

u(t) = K- 1u(t) +ho- ao . 

Therefore, the controllability of systems (5.35) and 

p =K( A- B)p +u (5.36) 

are equivalent. The controllability matrix 

(I,K(A-B), ... ,[K(A B)Jn-1
) 

of system (5.36) has full rank, since the first n columns are linearly 
independent. Hence, system (5.35) is completely controllable. 

9. Consicler finally the oligopoly problem. Assume that the government 
can control the market (\vith certain tax breaks, export subvention, etc.) 
by a single input u( t), which shows the cost reduction of the firms per 
unit output. Therefore, the modified cost functions are 

(k 1, 2, ... , N) , 

and as the consequence of the additional term uxk, the discrete model 
(3.134) is modified as 

x(t + 1) 
1 

Acx(t) +fe- -lu(t) , 
2a 

(5.37) 

where l is no\v the -?'f-dimensional vector with all components being 
unity. Consicler the solution z( t) (t O, 1, ... ) of the initial value prob­
lem 

z(t + 1) Acz(t) +fe, z(O) =O. 

Then y(t) x( t)- z(t) (t= O, 1, ... ) satisfies the difference equation 

y(t + 1) = Acy(t) 
1 

2
a l u( t) ; (5.38) 

furthermore, y(O) = x(O). It is obvious that system (5.37) is completely 
controllable if and only if the same holds for system (5.38) Note first 
t hat 

1-N 
A ·1=--1 

c 2 ' 
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which implies that the controllability matrix is the following: 

K (_!_.12.·~·1 ~(1-N)N-11). 
2a ' 2a 2 ' · · · ' 2a 2 

The columns of this matrix are dependent; therefore, systems (5.38) 
and (5.37) are not completely controllable. 

Assume next that the cost of each firm is controlied by different input 
components as 

(k = l, 2, ... , N) . 

Then model (3.134) is modified as 

x(t +l)= Acx(t) +fe 
l 

2a u(t) . (5.39) 

Introduce again function y(t) x(t) - z(t), where z(t) is the same as 
before, to get system 

l 
y(t +l) = Acy(t) - -Iu(t) . 

2a 

In this case the controllability matrix is as follows: 

(5.40) 

which has full rank, since the first N columns are linearly independent. 
Hence, systems (5.39) and (5.40) are completely controllable. 

Finally, we note the the controllability of the alternative oligopoly 
models (3.138) and (3.139) can be examined in an analogous manner. 

Problems 

1. Examine the controllability of system 

. _(t o) (l) x- O t x+ l u. 

2. Is system 

completely controllable in [0, l]? U se Theorem 5.1. 
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3. Compute matrix W(t0 , t l) for the system described below, and 
illustra te Properties (i) and (ii) of Theorem 5.2. Select the [0, l] interval. 

4. Determine if the system 

is completely controllable by using the controllability matrix (5.10). 

5. Use Theorem 5.1 to determine if this system 

is completely controllable in [O, 1]. 

6. Compute matrix W(to, tl) for system 

and illustra te Properties (i) and (ii) of Theorem 5.2. Select the [0, l] 
interval. 

7. Determine if system 

is completely controllable by using the controllability matrix (5.10). 

8. Is there any input for system 

x(O) = O) , 
which controls the trajectory to 

in the interval (0, l]? 
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9. Isthere any input for system 

x(O)=(n, 
which controls the trajectory to 

in the interval [0, l]? 

10. Is the electric circuit system 

di(t) . Ldt + (R1 + R2)z(t) = u(t) 

introduced in Problem 3.13 completely controllable? 

11. Discuss the controllability of the mechanical system 

introduced in Problem 3.7. 

12. Is the system 

x( t+ l) = (;;)x( t)+ (~)u( t) 
completely controllable? U se Theorem 5.8, and select t 1 = 2. 

289 

13. U se the con trollability matrix K to d etermine if the following 
system is completely controllable: 

x( t + l) = (; ; ) x( t) + ( ~) u(t) . 

14. U se Theorem 5.8 and t 1 2 to determine if the following discrete 
system is completely controllable: 

x( t+ l) = (~;)x( t) + C) u( t) . 
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15. Use the controllability matrix K to determine if the following 
system is completely controllable: 

x( t+ l) = O ;) x( t) + (i) u(t) . 
16. Is the output of the system 

y= (1, l)x, 

controllable in [0,1]? 

17. Is the output of the system 

y= (0, l)x, 

controllable in [0,1]? 

18. Discuss the output controllability of system 

x Ax+Bu 

y= Cx+Du. 

19. Provethat foranyn x n continuous matrix A(t) there is a contin­
uous n-vector b( t) such that system 

x(t) = A(t)x(t) + b(t)u(t) 

is completely controllable. That is, if time-dependent b is allowed, ap­
propria te single-dimensional input always can control the system. 

20. (i) Prove Lemma 5.2 for discrete systems. (ii) Prove Theorem 5.9. 

21. Assume that the time in variant system x Ax+ Bu is completely 
controllable, and matrix Ä is sufficient! y close to A and B is sufficient! y 
close to B. Prove that system x Äx + Bu is also completely control­
lable. 
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22. Let a be a real eonstant Prove that the time invariant linear 
system x = Ax + Bu is completely controllable if and only if x = 
(A +al) x + Bu is completely controllable. 

23. Provethat system x = Ax+ Bu is completely controllable if and 
only if system x= Ax+ BBT v is completely controllable. 

24. Let m be the degree of the minimal-polynomial of A. Show that 
rank(K) = rank(B,AB, ... ,Am- 1B). 

25. Show that matrices K and eA K have identical range spaces, 
where K is the controllability matrix of system x Ax+ Bu. 
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chapter six 

Observability 

In the case of many practical systems, the state cannot be measured di­
rectly; only the input and output are known. However, complete knowl­
edge of the state is needed for predietians and to describe the dynamic 
law driving the system. In certain cases we are able to determine the 
state on the basis of the applied input and observed output values; in 
other cases we cannot. In this chapter we will discuss the observability 
of the state of dynamic systems. 

DEFINITION 6.1 The initial state x 0 of a continuous (or discrete) system 
is said to be observablein interval [t0 , t 1] if the trajectories of u( t) and y(t)for 
t E [t0 , t 1) (or for t O, l, ... , t 1 - l) uniquely deternzine x 0 . This concept is 
illustrated in Figure 6.1. 

Figure 6.1 Concept of observability. 

Unknown 
state 
trajectory 

In this chapter, practical conditions will be derived for the observabil­
ity of the initial state and methods will be introduced for determining 

293 
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it. In the first part of this chapter continuous linear systems will be dis­
cussed, and in the seeond part discrete linear systems will be examined. 
We will introduce and use an analogy between the derived observabil­
ity criteria and the conditions for the complete controllability of linear 
systems. 

6.1 Continuous Systems 
In this seetian the observability of the initial state x0 of the continuous 
linear system 

x A(t)x + B(t)u, x( to) = Xo (6.1) 

y= C(t)x (6.2) 

will be examined, where A(t), B(t), and C(t) are continuous matrices 
for t ~ t0 and their sizes are n x n, n x m, and p x n, respectively. By 
using the methodology of this chapter, the o bservability of the state of 
the system at any time period t* (t* ~ t0 ) can be examined, since we can 
always consicler t* as the initial time period, and the input, state and 
output of the system can be considered only for t ~ t*. 

6 .1.1 General Condi tians 
The general solution farmula (3.20) for the output of a continuous linear 
system can be written as 

C(t)lj>(t, to)xo = y(t) -1t C(t)lj>(t, r)B(r)u(r) dr. (6.3) 
to 

Assume that for an interval [to, t1] the values of u( t) and y( t) are known; 
then, for all t E [to, t1], the right-hand side of Equation (6.3) is known. 
Our first condition for the observability of the initial state x0 is based 
on the mapping 

B(x)(t) = C(t)lj>(t, t0 )x 

with domain Rn and range in the set of the p-dimensional continuous 
functions. Once again we note that there must not be confusion be­
tween this mapping and the system matrix B (t). The n ull s pace of this 
mapping is defined as 

N(B) = {x l B(x)(t) =O for all t E [to, tt]} . 

I t is obvious from the linearity of mapping B that Equation ( 6.3) uniquely 
determines xo if and only if N(B) = {0}. 
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Before particular observability conditions are derived, the relation be­
tween the observability of system (6.1) and (6.2) and the controllability 
of its adjoint system 

z -A T (t)z + CT (t)v 

(6.4) 

will be analyzed. 
We know from the previous chapter that the state of the adjoint sys­

tem can be controlied to z1 in the interval [t0, t1] if and only if vector 
</>T (t1 , t0)z1 - z 0 belongs to the range space of mapping 

Here we use the fact that the fundamental matrix of Equation (6.4) 
is given as 4>T(t0, t) (see Section 3.3.5). Our analysis is based on the 
following results. 

LEMMA6.1 
R(Aa) and N(B) are orthaganal contplementary subspaces in an. 

PROOF Assume first that r E R(Aa) and s E N(B). Then 

with some input function v( t), and 

C(t)</J(t,t0 )s ==O 

for all t E [t0, t 1]. Therefore, 

because the integrand is zero for all t. 
Assume next that for a vector s, rTs ==O with all r E R(Aa)· We shall 

provethat s E N(B). Note first that by selecting the input function as 
v( t) == C(t) </J( t, t0)s, we conclude that vector 
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belongs to R(Aa)· Consequently, 

0 rTs == {t
1 

sTcpT(T,to)CT(;)C(;)cp(;,to)sdT 
}to 

l 
t l 

= IIC(;)</J(;, to)sll~ dT, 
to 

which implies that C( ;)</J( T, t0 )s = O for all t E (to, t 1], that is, s E N(B). 
Thus, the proof is complete. l 

COROLLARY 6.1 
System (6.1) and (6.2) is observable in interval [t0 , t t] if and only if the state 
of the adjoint system (6.4) can be controlled to arbitrary state z1 at time t 1 

from any initial state z0 at t 0 • Because the adjoint of the adjoint system is 
the original system, the state of system ( 6.1) and ( 6.2) can be controlled to 
any arbitrary state x1 at t1 front any initial state xo at to if and only if its 
adjoint is observable in the interval [t0 , t l]. Therefore, the observability of any 
continuous linear system can be exmnined by using the methodology of the 
previous chapter. This idea will be used in the discussions to follow. 

Use Lemma 5.1 to see that R(Aa) coincides with the range space of 
the controllability Gramian of the adjoint system, which is now denoted 
by 

(6.5) 

The following result is therefore, the obvious consequence of Lemma 6.1 
and Theorem 1.10. 

LEMMA6.2 
Vector v is in N(B) if and only if it belongs to the null space of matrix 

M( to, t!). 

Our first observability criteria are given in the following theorem. 

THEOREM6.1 
It is possible to determine x0 'With in an additive eonstant vector, which is in 
N(M(t0 , tt)). IfM(t0 , tt) isnonsingular, thenx0 canbedetermineduniquely. 
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PROOF Let x 0 and x0 be two solutions of Equation (6.3). Then 

<J(t)q)(t, to)xo <J(t)q)(t, to)X:o (for all t E [to, t1]) , 

which can be written as 

<J(t)q)(t, to)(xo - X:o) = O (for all t E [to, t1]). 

This relation holds if and only if 

xo -X:o E N(B), (6.6) 

that is, if x 0 and x0 differ by a vector belonging to N(B). 
IfM(t0 , t 1) isnonsingular, then N(M(t0 , t 1)) = {0}. From Lemma6.2 

we conclude that N(B) {O}; therefore, (6.6) holds if and only if x 0 -

x0 = O. Hence, Equation (6.3) has a unique solution. l 

REMARK. 6.1 If the initial state x 0 of a continuous linear system can 
be uniquely determined on the basis of input and output values on an y 
interval [to, t1] (t1 >to), then the system is called completely observable. 
l 

The algorithm that decides \vhether a given system is completely ob­
servable or not consists of the following steps: 

Step l Campute the fundamental matrix q)( t, T). 

Step 2 Determine matrix M(t0 , t 1). 

Step 3 Find rank(M(t0 , t 1)). If it equals n, then the system is com­
pletely observable; othenvise it is not. 

We note here that standard computer packages are available for deter­
mining q)(t, T), for computing M(t0, tr) by numerical integration, and 
for finding the rank of M( to, tr). 

If the system is observable, then x 0 can be determined in the following 
way. Equation (6.3) implies that at t = t0 , 

<J(to)xo = y(to) , 

and select sequentially different values of t< 1), t<2), ... , t Ck) and substitute 
them into Equation (6.3). Then a system of linear equations is obtained 
for the unkno\vn xo: 

<J(to)xo = y(to) 
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t(i) 

C(t(i))4>(t<i), t 0 )x0 ==y( t( i))- f C(t(i))4>(t(i), r)B(r)u(r)dr 
l to 

for i == l, 2, ... , k. If there is a unique solution, it has to be selected as 
x 0 . Otherwise select a new value tCk+l), and check the uniqueness of the 
solution of the new system of equations, which has the same equations 
as the previous system and in addition the new equation with this newly 
selected t< k+ l). Repeat this process until a unique solution is obtained. 

Example 6.1 

Consicler again the system 

x(O) == xo, 

y== (l,l)x, 

which was the subject of earHer examples. In Example 2.6 we have 
seen that 

4>(t, r) ( 
cosw(t- r) sinw(t- r)) 
sin w (t r) cos w (t r) · 

Therefore, 

M(O, t1) 

sinwr) (l) (l l) ( c?swr sinwr) dr 
COSWT l ' - SlnWT COSWT 

l it (COSWT sinWT) ( 
. COSWT 

O Sin T+ COSWT 
sinwr, sinwr + coswr)dr 

= {t 1 (l- 2sinwrcoswr cos2 wr sin
2
wr) d 

lo cos2 wr- sin2 wr l+ 2 sinwr coswr r 

{t 1 (l sin 2wr cos 2wr ) d 
==lo cos 2wr l+ sin 2wr r 
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The nonsingularity of this matrix can be examined by computing its 
determinant, which is 

• 4 t t 2 _si_n_w_l 
l- w2 

sin2 wt1 cos2 wt1 
w2 
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sin4 wt1 + sin2 wt1 (l - sin2 wt1) 2 sin2 wt1 
------------2----------- =tl- 2 . w w 

Introduce the new variable a wt 1, then the determinant equals 

which is positive for all a > O. Hence, M( O, t I) is nonsingular for 
all t1 > O; therefore, the initial state Xo is observable for all t1 > O. 
Hence the system is completely observable. 

Matrix M(to, t 1) is usually called the observability Gramian. Since it 
is the controllability Gramian of the adjoint system (6.4), Theorem 5.2 
implies the following result. 

THEOREM6.2 
Matrix M(t0 , t 1) satisfies the following properties: 

(i) It is symmetric. 

(ii) It is positive sen1idejinite. 

(iii) (8 j8t)M(t, t1) == -AT (t)M(t, t1)-M(t, t1)A(t)-CT (t)C(t), M(tr, t1) : 
o. 

(iv) M( to, t1) =M( to, t)+</> T(t, to)M(t, t1)</>(t, to). 

6.1.2 Time-Invariant Systems 
In this seetian the special case of time-invariant systems will be dis­
cussed. That is, assume that matrices A( t), B( t), and C( t) are time­
independent. 

Introduce first the observability matrix 

L= 

c 
CA 
CA2 

CAn-l 

(6.7) 
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From the corollary of Lemma 6.1 we get the following results. 

LEMMA6.3 
The null space and range space ofM(t0 , t t) for all t 1 > t0 coincide with the 
n ull space and range space of matrix 

(6.8) 

THEOREM6.3 
The time-invariant continuous linear system is observable for arbitrary t1 > t0 
if and only if the rank of the observability matrix L equals n. 

Note that the condition of the theorem holds if and only if the columns 
of matrix L are linearly independent. 

Example 6.2 

Consicler again the system 

x(O) = xo, 

y (1, 1)x 

which was the subject of our earlier Example 6.1. In that example 
we examined the observability of the system by verifying that the ob­
servability Gramian M (O, t 1) is nonsingular. The same result will be 
obtained now based on the observability matrix L. Nate that in this 
case n = 2, and 

L=(c)=( 11) CA -ww · 

Obviouslyrank(L) = 2forall w =f. O. Hencethesystemiscompletely 
observable. This example illustrates that the direct application of the 
observability matrix is much mo re attractive ( similar to controllability) 
than the computation of the observability Gramian even in cases w hen 
the integrals can be given in closed form. 

Example 6.3 

Consid er next the sa tellite problem, which was the subject of o ur earlier 
Example 5.5. The observability of this system is now examined. In this 
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case n 4 and 

A== (3~00 2 ~ ~ +) . 
-2w O O 

Assume first that the radius T and angle e can be measured. Then Xl 

and X3 are the components of the output; therefore, 

c (
l o o o) 
0010 

and the observability matrix has the form 

l o o o 
o o l o 

L= ( g:2) o l o o 
o o o l 

3w2 o o 2w 
CA3 o -2w O o 

o -w2 0 o 
-6w3 o O -4w2 

It is easy to see that the first four rows are linearly independent, so 
rank(L) == 4. That is, x0 is completely observable. 

Assume next that only the radius is measurable. In this case 

c1 == (l, o, o, o) , 

and 

Observe that the last row is the ( -w2 ) multiple of the seeond row. 
Therefore, rank(L1 ) < 4, that is, the system is not observable with 
the only output Yl == x1. 

Assume now that only the angle () is measurable. In this case 

c2 =(o, o, 1,o), 

and 

301 
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It is easy to see that rank(L2) = 4, that is, the system is completely 
observable with the only output Y2 = X3. 

In summary, the loss of the measurements on the radius does not 
destroy observability, bu t the loss of measurements of the angle () does. 
This property is illustrated in Figure 6.2. 

State State 

r 

Only output r 

Figure 6.2 Observable and non-observable satellite models. 

Note that observability does not depend on the properties of B; hence 
all resnits of this seetian remain true if B is time-dependent. 

N o te that for l arge systems, the rank of matrix L can be determined 
by using standard program packages. 

Similar to the case of controllability, one can easily verify the following 
results. 

THEOREM6.4 
Assume that the rank r of matrix L is less than n. Then there exists a nonsin­
gular matrix T such that 

Å 

(6.9) 

where the sizes ofmatrices Å11, Å21, Å22 are r x r, (n-r) x r, (n-r) x (n-r), 
respectively, and B 1 has r rows and C 1 has r columns. Furthermore, 

(i) system (Å11 , B1, C1) is completely observable, and 
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(ii) the transfer function of systems (A, B, C) and (Ål t, :81, C1) coincide. 

REMARK 6.2 Notice that system (6.9) can be rewritten as 

Because the output does not depend on x2, this variable is not observ­

able, and part (i) implies that x1 is completely observable. l 

THEOREM6.5 
System (A, B, C) is completely observable if and only if matrix A has no 
eigenvector q that is orthaganal to the rows of C. 

COROLLARY 6.2 
System (A, B, C) is completely observable if and only if the rank of matrix 
(si- AT, CT) is n for all s. 

Example 6.4 

Consider again the system of Example 6.2, where n 2, 

A= ( O w) -w O 
and c (1, l) . 

In this case, 

( 
s w l) 

-w s l · 

Notice that for s w, the first and third columns are independent; 
otherwise the seeond and third columns are independent. Hence, the 
rank of the matrix is always n, that is, the system is completely ob­
servable. 

6.2 Discrete Systen1s 
In this section the observability of the discrete linear system 

x(t +l)= A(t)x(t) + B(t)u(t), x(O) = xo (6.10) 
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y(t) C(t)x(t) (6.11) 

will be examined. We assume that the sizes of matrices A( t), B(t), and 
C( t) are n x n, n x m, and p x n, respectively. 

The general solution (2.44) of linear difference equations implies that 

t-1 

y( t) = C(t)tj>(t, O)xo +L C(t)tj>(t, T+ l)B( T)u(T) . 
T=O 

Assume that the values of u( t) and y( t) are known for t= O, l, 2, ... , t 1 -

l. Then the right-hand side of equation 

t-1 

C(t)tj>(t, O)xo y( t) L C(t)tj>(t, T+ l)B(T)u(T) (6.12) 
T=O 

is known. Similar to the continuous case, the observability of the initial 
state x 0 is based on the mapping 

B(x)(t) = C(t)tj>(t, O)x (6.13) 

with domain R n and the r ange in the set of the p-dimensional functions 
defined on the set {0, l, 2, ... , t1 1}. The null space of thismappingis 
given as 

N(B) {x l B(x)(t) O for all t E {0, l, 2, ... , t1 l}} . 

The linearity of mapping B implies that Equation (6.12) uniquely de­
termines x 0 if and only if N(B) {0}. 

LEMMA6.4 
Vector v is in N (B) if and only if i t belongs to the n ull space of matrix 

tl-1 

M(O,t1) =L 1>T(T,O)CT(T)C(T)tj>(T,0). (6.14) 
T=O 

THEOREM6.6 
It is possible to determine x 0 rvithin an additive eonstant vector, which is in 
N(M(O, t 1 ) ) . .lfM(O, t l) is nonsingular, then x 0 can be determined uniquely. 

REMARK 6.3 If the initial state x 0 of a discrete linear system can be 
uniquely determined on the basis of input and output valnes for t = 
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O, l, ... , t 1 with t 1 2: n, then the system is called completely observable. 
The algorithm to determine whether a given discrete linear system is 
completely observable is the same as was given for continuous systems. 
l 

Example 6.5 

Consicler again the discrete system of Example 3.14: 

x( t+ l)= (~D x( t)+ (n u( t), x(O) = xo 

y(t) = (1, l)x(t) , 

from which we know that 

(
l t T) 4J(t,T)= Q l . 

Therefore, 

t
1-l(lQ) (l) (lT) M(O, h) = ~ T l l (1, l) o l 

By using the relations 

and 

we obtain that 

The determinant of M(O, t1) can be written as 

tr(tl + 1)(2tl +l) 
6 

tr 2 -(tl -l)> o. 
12 

tl (tl + 1)(2tl +l) 
6 
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Hence, for t1 > 2, M(O, t1) is nonsingular and the initial state is 
observable, but for t1 = lit is not. If t1 = l, then we have only one 
observation y( O) of the one-dimensional output, which is not sufficient 
to determine the two-dimensional initial state Xo. 

It is easy to modify Theorem 6.2 for discrete systems. Properties (i) 
and (ii) hold in the same way, and (iii) has to be modified accordingly. 
The details are left as an exercise to the reader. 

Consicler next the special case, when A and C are eonstant matrices. 
Introduce again the observability matrix 

c 
CA 

L= CA2 

CAn-l 

One may easily verify that Lemma 6.3 remains true for discrete systems 
with t 1 ;::: n, and Theorem 6.3 has to be modified as follows. 

THEOREM6.7 
The time-invariant discrete linear system is observable at arbitrary t 1 2 n if 
and only if the rank of the ab servability matrix L equals n. 

Example 6.6 

In the case of the discrete system being exaroined in the previous ex­
ample, n = 2 and 

which is nonsingular. That is, rank(L) = 2. Hence, for all t 1 ;::: 2, the 
initial state Xo is observable. Nate that the same result was obtained 
in the previous example, bu t the direct use of the observability matrix 
is much easier than the computation of M(O, t l) and its examination. 
Assume next that the following measurements are known: 

u(O) =l, y(O) = 2, y(l) =O. 

We willnow find the initial state xo. At t= O, 

2 y (O) = (l, l) x (O) = (l , l) x 0 , 
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and at t= l, 

Q= y(1) = (1, 1)x(1) = (1, 1)[0 i) Xo +(n u(O)] 

(1, 2)xo +u( O) . 

These equations simplify as 

(1, l)xo 2 

(1, 2)xo = -l, 

that is, 

The unique solution is 

Finally, note that Theorems 6.4 and 6.5 remain valid in the case of 
discrete systems. 

6.3 Duality 
In Section 6.1.1 the relation between the observability of a linear system 
and the controllability of its adjoint system \vas analyzed. In the case 
of time-in variant systems, similar properties hold for the d u al. T hese 
results are the subjects of this section. 

We first remind the reader (see Section 3.3.5) that dual systems are 
defined as follows: 

(i) The dual of the time-invariant continuous system 

Pc: x= Ax+Bu 

y=Cx 

is given as 
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where z, v, and w denote the state, input, and output, respectively. 

(ii) The dual of the time-invariant discrete system 

Pd: x( t+ l) =Ax( t)+ Bu( t) 

y(t) Cx(t) 

is given as 

w( t) BT z( t), 

where z, v, and w denote the state, input, and output, respectively. 

The original systems are called primal, and they are denoted by Pc 
and Pd, where the subscripts refer to the types (continuous or discrete) 
of the systems. Similarly, Dc and D d denote the duals. Primal and dual 
systems are ill ustrated in Figur e 6. 3. 

Primal Dual 

~ 

Figure 6.3 Primal-dual systems. 

N o te first that the construction of a dual system is very similar to 
that of a linear programming problem. Obviously, the dual of a dual 
system is the primal, which is implied by the simple property that the 
transpose of the transpose of a matrix equals the matrix itself. The 
most important relation between the primal and dual systems can be 
presented as follows. 

THEOREM6.8 
The primal of a time-invariant continuous (or discrete) system is completely 
controllable if and on ly if its dual is completely observable. 
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PROOF This assertion follows from Theorems 5.4, 5.9, 6.3, and 6.7, 
and from the observations that with K p being the controllability matrix 
of the primal and L n being the observability matrix of the dual, 

l 

REMARK 6.4 Because the dual of the dual is the primal, we have the 
following modification of the theorem: 

The primal of a time-invariant continuous (or discrete) system is com-
pletely observable if and only if its dual is completely controllable. l 

Example 6.7 

For the continuous linear system 

y (l,l)x, 

its dual is 

w= (O,l)z. 

Similarly, for the discrete linear system 

x( t+ l) = o i) x(t) + (n u(t), 
y(t) = (1, l)x(t) , 

the dual is as follows: 

z(t +l) = c n z(t) + c) v(t) 
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w(t) = (0, 1)z(t) . 

Hence, the duals are determined in both cases. 

The concept of duality has many applications in linear systems the­
ory. The observability of a time-invariant system can be examined by 
the controllability of its dual, and the controllability of a time-invariant 
system can be investigated by examining the observability of its dual. 
Further applications will be introduced in the next chapter, w hen dual­
ity will be used in deriving observability canonical forms; duality will be 
applied also in Chapter 8 in obtaining standard observable realizations 
of given transfer functions. Since the concept of duality is a consequence 
of the developments of this and the previous chapters, it is introduced 
here; however, its main applications will be discussed in later chapters 
of this book. 

6.4 Applications 
In this seetian we present some applications of the observability theory 
and duality of linear systems in engineering and in the social sciences. 

6.4.1 Dynamic Systems in Engineering 
l. Consicler the simple harmanie oscillator (3.57) introduced in Chap­
ter 2 and given in Application 3.5.1-1, which is summarized below: 

Also let the output be y = x 1 ; therefore, 

CT=(1,0). 

Is it observable? 
To answer this question let us campute the observability matrix 

Since rank(L) = 2, the system is completely observable. 
2. What about the damped linear seeond-order system of Applica­

tion 3.5.1-2; is it observable? In this case, 

h=(1) 
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Let the output be position; therefore, 

eT (l, 0) . 

Let's compute the observability matrix L: 

The rank(L) = 2; therefore, the system is completely observable. 
3. For the electrical system of Application 3.5.1-3, 

l ) ' 
CR2 

b ( ~) . 

Let the output be the voltage across the capacitor, then 

eT (0, l) . 

Let's campute the observability matrix L: 

L=(1~)· 
C CR2 

Since rank(L) 2, the system is completely observable. 

311 

In vestigating the o bservability of this electrical circuit was not very 
interesting. So, let us investigate the modified circuit of Figure 5.4 that 
has the following equations: 

iLt o o iLt 

v el o o vet 
+ u. 

iL2 o iL2 

vc2 
l -1 

vc2 C2 C2R2 

Let the output be the voltage across the right capacitor. That 

and so 
eT= (0,0,0, l). 
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Now let us form the observability matrix, L: 

00 o 
00 l 

L c2 
0 0 c~12 
00 a 

We do not have to calculate the eonstants a and b, because we can al­
ready see that the system is not observable because the first two columns 
are zero. What will happen if we change the outputs, so that 

eT= (0, 1,0, l). 

The new observability matrix L* is 

L*= 

l 
-l 

CtRt 

-=-L+ k LtCt C1R1 
2 l 

LtRtCf -CfR{ 

o 

-l 
C~R2 

l 2 
+ C 3 R 2 L2R2C2 2 2 2 

l 

If L1 L2, G1 = G2, and R1 R2, then columns l and 3 and columns 2 
and 4 are identical and the system is not observable. Otherwise, the 
system is observable. 

4. For the transistor circuit model (3.80) of Application 3.5.1-4, 

h=(t)· 
If we l et the output be the voltage across the capacitor, 

ef = (0, l) . 

Let's campute the observability matrix L 1 : 

Since rank(L1) 2, the system is completely observable. 
However, if we l et the output be the b ase current 

er= (1, O) , 
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the new observability matrix L2 is 

The rank of L 2 is only l; therefore, the system is not completely o b­
serva b le from the base current. This makes sense, because ib depends 
on e8 and hie. I t is independent of the voltage across the capacitor. So 
we cannot devise an experiment that will allow us to determine Vc(O) by 
observing only ib. 

5. To access the observability of the hydraulic system of Applica­
tion 3.5.1-5, we can compute L as follows. Because 

(
-a a ) 
b -(b+ c) 

and 

by selecting 
cf (0, l) 

we get 

The rank of L 1 is 2, so the system is completely observable. 
Once again let us expand the system to the three-tank system of Fig­

ure 5.5. In this case, 

ci (1, O, 0), 

ciA2 = (-3,3,0), 

ciA~ ( -3, 3, O) ( -~ -~ ~) 
o 3-3 

(15, -21, 6) . 

So 

( 

1 o o) 
L2 = -3 3 O . 

15 -21 6 

The rank is 3, so the system is observable by looking at the level of 
water in tank one. However, let us now change the output vector to 

ci = (0, l, O) , 
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t hen 

cf A2 == (2, 2) , 

( 

-3 3 o) cf A~ == (2, -4, 2) 2 -4 2 
o 3 -3 

( -14,28, -14) . 

So 

L3 ( ~ -! ~) . 
-14 28 -14 

Since the first and third columns are identical, rank(L3 ) < 3; therefore, 
the system is not observable with tank two only. The physical reason 
for thisisthat you could have the initiallevelin tank-l high and that in 
tank-3 low, or vice versa, and you cannot tell the difference by looking 
at level of tank-2. 

6. In the case of the multiple input electrical system 

( 
o _ _L) 

A== O O -11 

, 

l l 
2 

c c o 
c (0, o, l) ' 

therefore, the observability matrix is 

Because this is a square matrix, it has full rank if and only if its deter­
minant is nonzero. By expanding the determinant with respect to its 
first row we have 

Therefore, the system is observable. 
7. To campute observability of the stick-balancing problem, let the 

output be the position of the end of the stick. That is, 

cf (1,0), 
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then we can compute the observability matrix: 

The rank of L 1 is 2, so the system is completely observable. 
Next let the output be velocity of the end of the stick. That is, 

cf (0, l) , 

and the observability matrix is as follows: 

Again, the rank of Lz is 2, so the system is completely observable. 
However, if we let the output vector be 

cf ==(a, b) 

and compute 

L _ (a b) 3 - bg a ' 

we find the rank of L3 is less than 2, if 

which means this system could be unobservable with certain outputs. 
8. For the cart with two sticks model of Application 3.5.1-8, 

A and 

If we let 
eT (1, O, O, O) , 

then we can compute observability matrix L as 

L= 
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and if 've switch column 2 and column 3, we have 

L* 

Since a2 f=. O, the rank of L* is 4; therefore, the system is completely 
observable. Here we used the fact that a triangle (or a diagonal matrix 
in the further special case) with nonzero diagonal elements is always 
nonsingular. 

9. In the case of our electrical heating system we have 

A=( and C= (l, O) , 

therefore, the observability matrix has the form 

Since this matrix is lower triaugular with nonzero diagonal elements, 
rank(L) = 2, consequently the system is observable. 

10. In the case of m l in the nuclear reactor model of Applica­
tion 3.5.1-10 we have 

and 

If we let 
eT (1, 0) , 

t hen 

The rank of L is 2, so the system is completely observable. 

6.4.2 Applications in the Social Sciences 
l. Consicler first the linearized predator-prey model (3.114) and assume 
that the output y is the predator population. Then the resulting system 
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is given as 

y=W. (6.15) 

By using the notation of Section 6.1.2 we have 

A (a~do) and c (0, l) 

and, therefore, the observability matrix is 

Since rank(L) = 2, the system is completely observable. 
Consicler next the linearized model (5.31) and assume again that the 

predator population is the output. Then we have the systems model 

· be c 
Gö = --Wö +-u 

d d 

(6.16) 

This system is also completely observable, since A and C are the same 
as before. Without showing any application of duality, we note that the 
dual of this system is given as 

. be 
Z2 = --Zt +v 

d 

w 
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2. Consicler now the three-dimensional cohort populationrnadel (3.115), 
and assume that the total population is the output and immigration is 
permitted to all age groups. Then the system has the form 

(6.17) 

Since 

and c (1,1,1)' 

the observability matrix can be written as 

This matrix has full rank if L is nonsingular. N o te t hat this property 
depends on the particular values of the mod el parameters ai and bi. For 
example, if 

l 
and -

2 

then the first two ro,vs are the same, which implies that rank(L) < 3. 
That is, the system is not observable in this case, and the state vector 
cannot be determined uniquely. 

Assume next that the output is the population of the oldest group. 
Then matrix A does not change, but in this case 

c= (0, o, l) ' 

and, therefore, 

which has full rank. Hence, based on the measurements on only the old­
est population, the system becomes completely observable. This result 
can be explained by nating that after certain time delay all other age 
groups will enter the oldest population group. 
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3. In the case of the arms races rnadel (3.119), assume that the output 
is X(t), that is, nation l can observe its own armament level but cannot 
monitor the armament level of the other nation. In this case the rnadel 
has the form 

y( t) == (1, O)x(t) . (6.18) 

The observability matrix 

has full rank; therefore, the system is completely observable. That is, 
observations on u( t) and y( t) uniquely determine the state. 

4. Assume that in a warfare (model (5.32)), each nation can monitor 
her own force X 1 only, that is, the output from the viewpoint of the first 
nation is X l· The resulting mod el is 

(6.19) 

Since 

and C== (1, O) , 

the observability matrix is 

No te t hat rank(L) = 2, \v hi ch im p lies that the system is completely 
observable. 

1\!Iodi:fy the above rnadel by assuming that the output is X 1 + X2 , 

which is the total combined force of the two nations. In this case A 
does not change, but C== (1, l) and, therefore, 

L-(1 l) - -hl -h2 . 
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This matrix has full rank if and only if h1 =f. h2 • Hence, the system is 
completely observable if and only if h1 =f. h2. 

5. The linear epidemics model was discussed in Application 5.3.2-5, 
where an input u wa.s introduced to influence the number of infected 
and circulating individuals. Assuming that their number is the output, 
then the model can be written as follows: 

y= (0, l)x, 

where x 2:: O is a:rbitrary. The observability matrix of this system is the 
following: 

Since the first column is zero, rank(L) = l. Hence, the system is not 
observable. This result is expected, since neither the governing differ­
ential equation nor the output equation depends on x 1 . Therefore, x 1 

cannot be observable. 
6. Consicler next a Harrod-type national economy and assume that 

consumptian C(t) is observed a.s output. Then model (3.10) is modified 
as 

Y(t +l) = [1 +r- rm]Y(t)- rG(t) 

C(t) = m· Y(t) , (6.20) 

where G is the input. Any observation of C(t) immediately gives the 
corresponding value of Y(t) = (1/m)C(t); therefore, the system is com­
pletely observable. 

7. We fin d a similar situation in the case of the linear cobweb mo del (5.34), 
when we assume that, for example, the supply is the observed output. 
This situation is modeled a.s 

b 
p(t +l) = -p( t)+ u(t) 

a 

y(t) = bp( t)+ bo . (6.21) 

Note that any observation on y( t) implicitly implies the corresponding 
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value of the state variable, since from the output equation, 

l 
p(t) == b(y(t)- bo) . 

Hence, the system is completely observable. 
8. Consicler next the rnadel (5.36) of interrelated markets with the 

additional assumption that the output is the average price (1/n)(pl (t)+ 
· · · + Pn (t)). The corresponding rnadel is now 

p = K(A- B)p +u 

l 
y=-lTp, 

n 

where l T= (l, l, ... , 1). The observability matrix 

L 
( 

lT ) 1 lTK(A- B) 

n l T[K(A ~ B)]n-1 . 

(6.22) 

is n x n, and, therefore, the system is completely observable if and only 
if L is nonsingular. A trivial case of a singular L occurs when the sum 
of the rows of matrix K(A- B) has identical elements, that is, when 
the sum is the eonstant multiple of l T. 

9. In the case of an oligopoly, assume that we are interested in only 
the total output of the industry. Then rnadel (5.38) is completed by the 
corresponding output equation as 

l 
y( t+ l) = Acy(t)-

2
a lu(t) 

y(t) =l T y(t) , 

where y( t) is the sum of the elements of vector y( t), 

o _l 
2 

(6.23) 
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and we used the fact that measuring l T x( t) is equivalent to measure 
l T y( t), since 

where z( t) is known. (For the details, see the derivation of system (5.38).) 
Before determining the observability matrix, observe that 

Therefore, 

TA 1-N T 
l c=-2-1 . 

L= 
( 

1-flT ) 

e-:t
2
i-;-le 

with rank(L) = l. Hence the system is not observable. That is, from 
measurements of the total output of the industry it is impossible to 
determine the individual outputs of the firms. 

Problems 

l. Discuss the observability of system 

y= (1,1)x. 

2. Examine the observability of system 

y= (1,1)x. 

U se Theorem 6.1, and select t0 =O. 

3. Compute matrix M(t0 , tt) for system 

y (1, 1)x, 
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and illustra te the Properties (i) and (ii) of Theorem 6.2. Select the [0, l] 
in tervaL 

4. Examine the observability of the following system by using the 
observability matrix 

y (1, l)x. 

5. U se Theorem 6.1 to examine the observability of this system: 

y= (0, l)x. 

Select t0 O. 

6. Compute matrix M(t0 , tl) for system 

y= (0, l)x, 

and illustrate Properties (i) and (ii) of Theorem 6.2. Select t0 = O. 

7. Examine the observability of system 

y= (0, l)x, 

by using the observability matrix (6.7). 

8. Is the electric circuit 

introduced in Problem 3.13 completely observable? 
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9. Discuss the observability of the mechanical system 

y (1, O)x 

introduced in Problem 3.7. 

10. Is the discrete system 

x( t + l) = ( ~ ~) x( t) + ( ~) u( t) 

y( t) = (1, 1)x(t) 

completely observable? Use Theorem 6.6, and select t 1 = 2. 

11. U se the observability matrix L to determine if the following sys­
tem is completely observable: 

y(t) = (1, 1)x(t) . 

12. U se Theorem 6.6 to determine if the following discrete system is 
completely observable: 

x(t+ l) (~n x( t)+ G) u(t) 

y(t) = (0, 1)x(t) . 

13. Discuss the observability of system 

x(t+l) (~~)x(t)+ (i)u(t) 

y(t) = (0, 1)x(t) 

by using the observability matrix L. 
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14. Discuss the observability of system 

x= Ax+Bu 

y Cx+Du. 

15. Find the dual of the system 

y {l,l)x. 

16. Find the dual of the system 

y= (0, l)x. 

17. Find the dual of the system 

y= {l,O)x. 

18. Find the dual of the system 

x(t+l) (;;)x(t)+(~)u(t) 

y(t) = (1, l)x(t) . 

19. Find the dual of the system 

x(t+l) = (~;)x(t)+ G)u(t) 

y(t) (0, l)x(t). 

20. (i) Prove Lemma 6.3. 

325 
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(ii) Prove Theorem 6.3. 

(iii) Prove Theorem 6.6. 

chapter six: Observability 

(iv) Prove Lemma 6.3 for discrete systems with t 1 ~n. 

(v) Prove Theorem 6.7. 

21. Provethat foranyn x n continuous matrices A( t) and B(t) there 
is a continuous row vector eT (t) such that system 

x(t) = A(t)x(t) + B(t)u(t) 

y(t) = eT (t)x(t) 

is observable. 

22. Assume that the time invariant system x = Ax + Bu, y Cx 
is observable, and A, A and C, C are sufficiently close to each other. 
Prove that x = Ax +Bu, y = Cx is also observable. 

23. Let a be a real constant. Prove that the time invariant linear 
system x = Ax + Bu, y Cx is observable if and only if x = (A + 
al) x+ Bu, y = Cx is observable. 

24. Prove that system x = Ax+ Bu, y = Cx is observable if and 
only if system x= Ax+ Bu, y= CTCx is observable. 

25. Let m be the degree of the minimal-polynomial of A. Prove that 

rank(L) rank ( C: ) 
CAm-1 



chapter seven 

Canonical Forms 

In this chapter so me special transformations of time-invariant linear sys­
tems will be introduced, and their properties will be discussed. These 
special forms make the computer solutions and the investigation of the 
systems properties mu ch easier. 

LetA, B, and C be eonstant matrice~ of the size n x n, n x m, and 
p x n, respectively. For the sake of simplicity, the continuous system 

x= Ax+Bu 

y=Cx (7.1) 

or the analogous discrete system 

x( t+ l) =Ax( t) +Bu( t) 

y(t) Cx(t) (7.2) 

will be called the (A, B, C)-system. 
Introduce the new state variable 

x Tx, (7.3) 

where T is a nonsingular matrix. U se the first equations of the systems 
models (7.1) and (7.2) to derive 

x= Tx =TAx+ TBu (TAT- 1)Tx + (TB)u 

(TAT- 1)x + (TB)u 

327 
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or 

x( t+ l) = Tx(t +l)= TAx( t)+ TBu(t) (TAT- 1)Tx(t) + (TB)u(t) 

= (TAT)- 1x(t) + (TB)u(t) . 

Similarly, the output equations can be transformed as 

The above derivations imply that by introducing the new variable (7.3), 
the (A, B, C)-system is transformed into an (Ä, B, C)-system, where 

Ä TB, and C = CT-1 
. (7.4) 

The original (A, B, C)-system and the transformed (Ä, B, C)-system 
have some common properties: 

(i) First we remind the reader that in Theorem 3.4 we proved that 
the two systems have the same transfer function for continuous 
systems, and in Section 3.4 we mentioned that this property also 
holds for discrete systems. 

(ii) If one of the two systems is completely controllable (or completely 
o bservable) t hen the same holds for the other system as weil. This 
assertion can be proven as follows. Let K and K denote the contral­
lability matrices, and let L and L denote the observability matrices 
of systems (A, B, C) and (Ä, B, C), respectively. Nate first that 

K= (B, ÄB, ... , Ä n- 1B) (TB, TAT- 1TB, ... , TA n-lT- 1TB) , 

where we used the fact that for k 2:: l, 

Therefore, 

K=T·(B,AB, ... ,An-lB) T·K, 

and since T is nonsingular, rank(K) = n if and only if rank(K) = 



7.1 Diagonal and Jordan Forms 329 

n. Similarly, 

and, therefore, rank(L) n if and only if rank(L) n. 
Transformation (7.4) allows us to transform a system into special 
forms without losing the essential properties of the system, which 
can then be solved much easier than the original system, and cer­
tain properties (such as controllability, observability, etc.) can be 
verified immediately without further calculation. These special 
forms are the sub ject of this chapter. This transformation princi­
p le is illustrated in Figure 7.1. Finally, we note that all results of 
this chapter hold for both discrete and continuous systems. 

This is 
difticult 

Original system 

solution or 
properties 

Figure 7.1 Princip le of the transformation method. 

7.1 Diagonal and fordan Forms 

Transform system 

solution or 
properties 

Assume first that matrix A can be diagonalized by similarity transfor­
mation. That is, 
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with so me nonsingular matrix T. Introduce the new variable x = Tx, 
then the transformed system has the property that Ä is diagonal. There­
fore, the (Ä, B, C)-system has the very special form 

(7.5) 

where for k = l, 2, ... , n, 

(7.6) 

Here we use the notation 

and u= (ul) . 

If the input function is known, then all functions Uk are also known. 
Therefore, the solution of the original system is reduced to solving n 
independent single-dimensionallinear differential equations, which is a 
much easier task than the solution of the original n-dimensional linear 
differential equation. After the xks are determined, the original state 
variable is obtained as x = T- 1x. If the new coeffi.cient matrix Ä is 
diagonal, then the transfer function of the system can be written as 

H(s) C(si- Ä)- 1B 

- ( l l ) -C dia g ~, . .. , s _ An ·B ; 

therefore, the (i, j) element of H (s) is as follows: 

"" - l L....J cizblj · --,\- . 
l s- l 

This observation implies that H( s) is the sum of functions of the form 
1/(s Al)Dl, where Dz is a matrix with (i,j) element cilblj· Hence, 
H( s) is the parall el combination of these special transfer functions. 
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In the general case, matrix A can be transformed into Jordan canon­
ical form: 

TAT- 1 = 

where for j= l, 2, ... , s, 

o 

is a vth-order square matrix, Ai being an eigenvalue. 
Note that the details of diagonal and Jordan form transformations 

were discussed in Section 1.3.2. 
By introducing the new variable x Tx, the transformed system has 

the property that Ä is block-diagonal. Therefore, the (Ä, B, C)-system 
has the special form 

(7.7) 

where for j = l, 2, ... , s, vectors Xj and Uj are Vj-dimensional, and if 
the input u is known, then all functions Uj are also known. Therefore, 
the solution of the original system is reduced to the solution of s Vj­

dimensional problems. Similar to the diagonal case, this reduction saves 
a lot of computations. In addition, in solving each block, the special 
structure of matrix J i makes the solution very simple, as is shown next. 

Consicler the jth block of Equation (7.7): 
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(7.8) 

From the last equation Xjv:i can be obtained easily, because it is only 
a single-dimensional equation. After x iv:i is determined, x j,vj _ 1 can be 
obtained from the (vj -l)st equation, which is again single-dimensional. 
Continuing this process until the first equation, all components of Xj 
are determined recursively in the backward order x j v:i , x j v.1 _ 1 , ... , x j 2 , 

Xjl· Note that at each step only a single-dimensionallinear equation is 
solved, which makes this process very attractive. 

Example 7.1 

We first solve the diagonal system 

.i-1 = 2 · x1 +et , x1 (O) =O 

.i-2 = x2 + 2et , x2(0) O 
i3 = X3 + 3et, x3(0) O. 

Note that this system consists of three independent single-dimensional 
equations. By applying standard techniques from the theory of linear 
differential equations, we have the solutions 

Hence, the solution is obtained very easily. 

Example 7.2 

Next the system 

x1 = i1 + + et , x1 (O) O 
.i-2 = i2 + + 2et, x2(0) O 
x3 = + 3et, x3(0) =O 

with a Jordan block coefficient matrix, is solved. 
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The last equation is a single-dimensional problem with solution 

By substituting this function in to the seeond equation, a single-dimensional 
problem is obtained for x2: 

The solution of this problem is 

And finall y, substitute this function into the first equation to get the 
single-variable equation for XI: 

XI(O) =o' 

which has the solution 

Hence, the solution is obtained again very easily. 

Nate that standard computer packages are available to transform ma­
trices inta diagonal or Jordan canonical form. 

7.2 Controllability Canonical Forms 
In this and also in the next section, single-input and single-output sys­
tems of the forms 

x= Ax+ bu 

(7.9) 

and 

x( t+ l) = Ax(t) + bu(t) 

y( t) eT x( t) (7.10) 
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are discussed, where A is an n x n eonstant matrix and vectors b and c 
are n-dimensional. 

First we verify the first type of controllability canonical forms. 

THEOREM7.1 
Assume that system (A, b, eT) is completely controllable, thenit can be trans­
formed inta an (Ä, b, cT)-system, where 

o o o ... o a o l 
l o o ... o al o 

Ä= o l o ... o a2 and h= o (7.11) 

o o o ... l an-l o 

PROOF Because system (A, b, eT) is completely controllable, the 
rank of the controllability matrix is n. In our case, 

which is n x n; therefore, it is nonsingular. 
Select the transformation matrix T = K- 1. Note first that its rows 

tf, ... , t'[; satisfy relation 

(

t T) l 
t T 

2 2 n-1 
t k (b, Ab, A b, ... , A b) = I , 

which holds if and only if 

and (l=/=k). (7.12) 

Therefore, relations (7.12) imply that 
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and 

where 

Ä=TAT- 1 (1) A(b,Ab, ... ,An-lb) 

O O O··· O ao 
l O O··· O a1 

O l O··· O a2 

O O O··· l an-l 

Thus, the proof is completed. l 

REMARK 7 .l There is nothin g special ab out vector c. l 

335 

An algorithm to fin d canonical form ( 7.11) consists of the following 
steps: 

Step l Find matrix K. 

Step 2 Compute T K- 1 . 

Step 3 Determine Ä, b, and c_T by using relations (7.12). 

Example 7.3 

This algorithm is now illustrated in the case of system 

y (l, l)x, 
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which was examined in earlier chapters. 
Step l: The definition of the con trollability matrix im pliesthat 

Step 2: By inverting K, 

~(O w) 
w l o 

Step 3: Use relations (7.12) to get 

Å TAT-1 == l (o w) ( O w) (o w) == (o -w2
) 

w l O -w O l O l O 

and 

=eT ·T-l= (1,1) (~~) = (1,w). 

COROLLARY 7.1 
Expanding the characteristic polynomial of Å with respect to the last column, 
it is easy to verify that it equals 

(7.13) 

Since A and Å are similar matrices, this is the characteristic polyno­
mial of A as weil. Therefore, the method presented in the proof of the 
theorem can also be considered as a numerical method for constructing 
the characteristic polyno1nial of real matrices. Note that this n1ethod 
can be used if there exists a real vector b such that b, Ab, ... , A n-l b 
are linearly independent. 

Example 7.4 

Consicler matrix A of the system of the previous example. Its charac­
teristic pol ynomial is 

<p(A) det(-A w) A2 +w2 . -w -A 
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From the previous example we know that 

therefore, a0 = -w2, a1 = O, and from Equation (7.13), 

which coincides with the result obtained by the direct computation of 
<p( A). For small n, the method has no practical importance, but for 
large values of n i t certainly does. 

A seeond type of controllability canonical form is presented next. 

THEOREM7.2 
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Assume that system (A, b, eT) is completely controllable, thenit can be trans­
formed into an (Ä, b, cT)-system, 'Where 

o l o o o 
o o l o o 

Ä and h= (7.14) 

o o o l o 
ao a1 a2 · · · an-l l 

PRO OF First we prove that vectors 

tT tT A tT An-l n' n , ... , n 

are linearly independent, where t~ denotes the last row of K- 1, as in the 
proof of the previous theorem. Assume not, then there exist eonstants 
o:o, 0:1, ... , O:n-1 such that at least one O: k is nonzero and 

(7.15) 

Multiply this equation by b to get 

Observe that relation (7.12) implies that the first n - l terms of the left­
hand side are equal to zero, and the last term equals O:n-1 · l O:n-l· 

Therefore, O:n-l =O, and (7.15) reduces to equation 

(7.16) 
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Multiply this equation now by Ab to get 

Similar to the previous case, from relations (7.12) we conclude that 
an_2 O. Therefore, the last term of the left-hand side ofEquation (7.16) 
equals zero. Continuing the same process by multiplying the resulting 
equation by A 2 b, and so on, one can easily verify that all coefficients 
no, a1, ... , an-l are equal to zero. 

Select now the transformation matrix 

T= 

and denote the columns of by c1, ... , Cn. Then 

I' 

which holds if and only if 

and o (li=k). 

Therefore, relations (7.12) imply that 

t;: o 
t;:A O 

b= Tb = b 

t;:An- 2 O t;: A n-l l 

and 
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o l o o 
o o l o 

o o o l 

where 

Thus, the proof is completed. l 

REMARK 7.2 No special property holds for vector c. Note that this 
canonical form is the same as the model (3.29) and (3.30) for systems 
given in input-output form. l 

COROLLARY 7.2 
Similar to the case of the canonical form (7.11), the common characteristic 
polynomial of Å and A is the one given by Equation (7.13). 

The algorithm for determining the canonical form (7.14) consists of 
the following steps: 

Step l Compute matrix K. 

Step 2 Fin d matrix T. 

Step 3 Compute Å, b, and eT by using Equation (7.4). 

Example 7.5 

Consicler again the system 

y= (1, l)x. 

The canonical form (7.6) willnow be determined. 
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Step 1: In Example 7.3 we derived that 

and, therefore, 

T l t 1 = -(O,w), T l t 2 = -(1, O). 
w w 

Step 2: Simple substitution shows that 

T=_!_(lO). 
w Ow 

Step 3: Invert T: 

T-l= (w o) o l ' 

and use relations (7.4) to get 

Å TAT-
1 ~ ( ~ ~) ( -~ ~) ( ~ n ( -~2 ~) 

b T b ~ o ~) (n = (n , 
and 

c7 cT-1 = (l, l) ( ~ n (w, l) . 

From the last row of Ä. we see that the common characteristic polyno­
mial of Ä. and A is 

which coincides with the result obtained in the previous example. 

The above canonical forms remain valid for multiple-output systems, 
when the input is still one-dimensional, since only A and b are trans­
formed into special forms. In the general case of multiple inputs, the 
transformation to a canonical form becomes more complicated. As Ex­
ample 7.6 will show, the proofs of Theorems 7.1 and 7.2 cannot be 
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ap p lied in the general case. However, a multi-input canonical form is 
given as 

(
~11 ~12 · · · ~ls) 

- A21 A22 · · · A2s 
A= : : ·. : . . . . 

Äs1 Äs2 ···Äss 

and 

where the types of matrices 

and 

Äkl = 

o 
o 

o 

l 
o 

o 

o 
l 

o 

o 
o 

l 
(k,k) (k,k) (k,k) (k,k) 

ao al a2 · · · avk-1 

o o o 
o o o 
o o o 

(l i= k) 

o o o 
(k,l) (k,l) (k,l) 

ao al · · · avL-l 

- (7.17) 

are vk x vk and vk x vl, respectively. Furthermore, the type of matrix 

0···000···0 
0···000···0 

0···000···0 
0· .. 010···0 

is Vk x m, where unity sho\VS up only at the kth element of the last ro\v. 
Note that v1 + v2 +···+Vs =n. Other canonical form variants are also 
known from the literature. 

Example 7.6 

Consicler the system 

. (10) (10) x= 01 x+ 01 u 
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y (l,l)x, 

which is completely controllable, since the rank of the controllability 
matrix 

K= (B, AB) (
1010) 
o l o l 

is obviously 2. We can show, however, that there is no vector b, such 
that matrix (b, Ab) is nonsingular. In o ur case Ab b; therefore, the 
two columns of this matrix always equal. Hence, this matrix is always 
singular. 

7.3 Observability Canonical Forms 
Assume now that system (7.9) or (7.10) is completely observable. Then 
its dual is completely controllable; therefore, the dual can be transformed 
into controllability canonical forms. Take the duals of these canonical 
forms to get the observability canonical forms of the original system. 
This principle is illustrated in Figure 7.2 and is summarized by the 
following theorems. 

Original system 

Observability 
canonical form 

Dual system 

Controllabil ity 
canonical form 

Figure 7.2 Computation of observability canonical form. 

THEOREM7.3 
Assume that system (A, b, eT) is completely observable; it can then be trans-
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formed into an (Å, b, eT)-system, where 

o l o o 
o o l o 

Å= and eT= (l, o, ... ,o, o). (7.18) 

o o o l 

ao a1 az · · · an-l 

THEOREM7.4 
Assume that system (A, b, eT) is completely observable; it can then be trans-
formed into an (Å, b, eT)-system, 'Where 

O O··· O ao 
l O · · · O a1 

Å= 01···0 a 2 

O O··· l an-l 

and eT = (o, o, ... , o, l) . (7.19) 

A general algorithm to find any of the observability canonical forms 
consists of the following steps: 

Step l Determine the dual system. 

Step 2 Find the corresponding controllability canonical form of the 
dual. 

Step 3 Campute the dual of the resulting canonical form. 

Example 7.7 

Consicler again the system 

y (l,l)x, 

which was the subject of the examples of the previous section. The 
observability canonical forms given in the above two theorems will be 
determined. 

Step 1: The dual system can be written as follows: 

. (o -w) (l) z= w O z+ l v, 
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w= (0, l)z. 

(a) Step 2: The canonical form (7.11) of the dual is based on the 
transformation matrix 

(
1-w)-l l(ww) 
l w - 2w -11 · 

Therefore, 

~ ( w w) ( O -w) ( l -w) 
2w -1 l w O l w 

( o -w2
) 

l o ' 

and 

c'); = c};T-1 = (0, l) C -~) (l,w). 

Step 3: Therefore, the corresponding observability canonical form 
(Å, b, eT) is the following: 

-T -r , and c = bn (1, O) . 

(b) Step 2: The canonical form (7.14) of the dual is based on the 
transformation matrix 

T ~ (-1 l) 
2w ww ' 

since from Part (i) we have that 

T l tn = -(-1, l), 
2w 

and simple calculation shows that 

t~ An 
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It is easy to verify that 

therefore, 

Å =TA T-1= l (-11)(0-w)(-wl) 
D D 2w ww w O wl 

( -~2 ~) , 

hv =Tbv L(-~~) (i)= (n 
and 

ej;= cj-;T- 1 = (0,1) (-~i)= (w, l). 

Step 3: Thecorrespondingobservabilitycanonicalform (Å, b, eT) 
is the following: 

- -r (o ) A= An= l O ' (w) -T -r 
1 

, and c =b n (0, l). 

In the case of multiple outputs, the observability canonical forms are 
more complicated. As an example, \Ve mention a variant of general 
observability canonical forms, \Vhich is associated to the general contral­
lability canonical form (7.17): 

(
~11 ~12 · · · ~ls) 

- A21 A22 · · · A2s 
A= . . . . . . . . . .. . . 

Åsl Ås2 ···Ass 

where the types of matrices 

and C 

O O O (k,k) . . . ao 
l O O (k,k) 

. . . al 

O l · · · O a(k,k) 
2 

(7.20) 
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and 
O O··· O a~k,l) 

O O · · · O aik,l) 

Åkl == O O · .. O a~k,l) 

O O··· O aS~'~1 

(l =l= k) 

are lik x lik and lik x llz, respectively. Furthermore, the typ e of matrix 

o o ... o o 

o o ... o o 
ck== o o ... o 1 

o o ... o o 

o o ... o o 

is p x lik, where only the kth element of the last column equals unity. 
Note, that similarly to the general controllability canonical form (7.17), 
lll + ll2 + · · · + ll8 == n. 

7.4 Applications 
In this seetian we further develop the application examples introduced 
and discussed ear lie r. 

7.4.1 Dynamic Systems in Engineering 
l. The simple harmanie oscillator was described with 

eT== (1, 0) . 

We showed in Example 1.13 that 

A== ( O w) == (~ ~) (jw O ) (~ . ) -w O J -J O .! J.. 
2 2 

Nating that 
A T- 1ÅT, 
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we find that the diagonalized representation is 

Å (
jw O ) 
O -jw 

Finally, \Ve note that the controllability and observability canonical 
forms were derived in Sections 7.2 and 7.3. 

2. Our damped linear seeond-order system was described with 

A=(-~ l), b (1) , 
and 

eT== (1, 0) . 

This is an observability canonical form (7.18); therefore, we know that 
the system is completely observable \Vithout computing the matrix L as 
\Ve did in Chapter 6. 

3. The electrical system of Application 3.5.1-3 was described with ma­
trices 

A ( l 
c 

), h=(~), and 

Let us generalize this problem as follows: 

b(~), and 

(0, l) . 

eT== (0, l) . 

The canonical form (7.11) of this generalized systemwillnow be deter­
mined. From Chapter 5 \Ve have 
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and we know that K = T- 1, so we can campute 

-f)= L (a21-a11). 
L a21 O l 

Use Equation (7.4) to get 

= _1_ ( O a21(ay1 + a12a21) au(a21a11 + a22a21)) . 
a21 a21 a21a11 + a22a21 

Hence, 

From (7.4) we also conclude that 

We can check this result by computing the characteristic polynomial of 
the original A matrix and nating that its coefficients are the same as 
the negatives of the coefficients in the last column of Ä. Since 

4. For the transistor circuit mo del of' Application 6.4.2-4, we have 

A= ( o) h6" o ' b= (t) , and cf (0, l) . 
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Let us find an observability canonical form by the technique of Sec­
tion 7.3. In our case, with suitable choices for a and {3, 

(-aO) 
A= {30 ' b=(!), and cf = (0,1). 

The algorithm is as follows: 
Step 1: Get the dual from Section 6.3 to find 

(
-a {3) 

An== O O ' bv =(n , and 

Step 2: Get the controllability form for the dual: 

therefore, 

Tv= -l ( -~-~)=o~) . 
From (7.4) we know that 

and 

Cfv cfvTI/ = (±.o) (~ ~) 
Step 3: Get dual of result: 

cf=(1,o). 

This is the observability canonical form (7.18). We can check this result 
by computing the characteristic polynomial of the original A matrix: 

(
-a- A o) 

rp(.:\) == det {3 -A 
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The negatives of the coefficients of this polynomial, a0 = O and a 1 = -a, 
are indeed the terms in the bottom row of A, so our work is correct. 

With er= (1,0), which we introduced in Chapter 6, no observability 
canonical form is possible, because the system is not completely observ­
able. The metlwd cannot be used, since L2 1 has to be computed. But 
L 2 is singular ( seeond colurnn is zero ); therefore, L2 1 does not exist. 

5. There are an infinite nurnber of ways of selecting the state vari­
ables for a given system. Some of them have physical significance and 
some have mathematical convenience. For the hydraulic system of Ap­
plication 3.5.1-5 we willshow five different representations. We will also 
illustrate these five representations with block diagrams. But first let us 
look at the tu;o-tank hydrv:ul'ic system: 

A= b=(i'), 
and 

T ( l l ) 
c = R1'-R1 . 

Let us note that the A matrix is full and, therefore, this system is the 
sameasthat of Application 7.4.1-3. Therefore, we willnot repeatthat 
analysis. 

However, let us now look at one particular instance of the three-tank 
system presented in Application 5.3.1-5. We will present five different 
forms to represent this system. 

A. The first is caJled physical variables because the state variables 
have physical significance. They are the heights of the water levels in 
the tanks. This representation is 

( 
-3 3 o) 

A= 2-4 2 , 
o 3-3 

eT = (1, 0, O) . 

This representation is illustrated in Figure 7.3. 
B. Let us find first a controllability canonical form. Since 

(
l -3 15) 

K= O 2 -14 = T-1 , 

o o 6 
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U(s) 

Figure 7.3 Physical variable representation for the three-tank hydraulk exam­
ple. 

( 1~1) T= o!t . 
o o l 

6 

Therefore, from Equation (7.4) \Ve have 

Ä= (~: ~) (-~ _: ~) (~ -~ -~!) 
o o t o 3 -3 o o 6 

(
o o o) 
l o -21 ' 
o l -10 

and 

eT eTT-l = (1, O, O) (~-~-i~) = (1, -3, 15) . 
o o 6 

This representation is illustrated in Figure 7.4. 
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U(s) 

Figure 7.4 ContraHability canonical form for hydraulic example. 

C. Next we would like to find an observability canonical form. Let us 
do this with the metl1od of Section 7.3. First using the techniques of 
Section 6.3, find the dual: 

( 
-3 2 o) 

AD = AT = 3 -4 3 l 

o 2 -3 
ej;= (1,0,0). 

Next find the controllability canonical form for this dual. Since 

KD = O 3 -21 = T[/ , (l -3 15) 

we know that 

Then from (7.4), 

o o 6 

TD = (~ ~ ~) . 

o o .! 
6 

AD= TDADTr/ = (~ ~ ~) (-: -~ ~) 
o o l o 2 -3 

5 

(o o o) 
l o -21 ' 
o l -10 

(l -3 15) 
o 3 -21 

o o 6 
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bn Tnbn = (~~i) (~) (~) 
o o i o o 

and 

C:b cbTr/ = (1,0,0) (~-i_;~) = (1, -3, 15). 
o o 6 

Finally take the dual of result: 

Å= o o l ' (
o 1 o) 

cT=(l,O,O). 
o -21 -10 

This representation is illustrated in Figure 7.5. Nate that x1 is on the 
right in this drawing. 

The contraHability canonical form is sometimes called the method 
of phase variables. In this method, the state variables consist of one 
variable and its n- l derivatives, as in Theorem 3.5. 

U(s) 

Y(s) 

Figure 7.5 Observability canonical form for the hydrology system. 

D. Next l et us fin d a representation for this system with a diagonalized 
matrix. 
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Step 1: From the original A matrix, find the characteristic equation 

that is, 

or 

Because there are no repeated roats, we know that our Ä. matrix is 

(
o o o) 

Ä.= o -3 o . 
o o -7 

However, we still need to campute b and e, T. To these we need to 
campute the eigenvectors in order to find the transformation matrix. 

Step 2: The eigenvectors are determined as follows. 
If).= O, then the hon1ogeneous equation is 

therefore, 

is a solution. 
If).= then we have equations 

with solution 

X= (j) . 
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If A= -7, then 

which has a solution 

Step 3: Assemble the eigenvectors to get T- 1: 

(l l 3) 
T- 1 = l O -4 , 

l -1 3 

and by inversion, 

T - 7 o -7 . l (4 6 4) 
14 l -2 l 

Step 4: Find the resulting matrices by (7.4), 

Å=TAT- 1 =__!:_(~ ~-~) (-~-! ~) (~ ~-!) 14 l -2 l o 3 -3 l -1 3 

= o -42 o = o -3 o ' 1 (o o o) (o o o) 
14 o o -98 o o -7 

and 

(l l 3) e,T = eTT-l = (l, 0, O) l 0 -4 
l -1 3 

(1,1,3). 

This method of representation is popular because you can immedi­
ately see \vhat the eigenvalues of the system are. This representation is 
illustrated in Figure 7.6. 
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+ Y(s) 

+ 

Figure 7.6 Diagonalized matrix form for the hydrology system. 

E. We can also represent this system with a transfer function. Simple 
calculation shows that 

==(1,0,0) (s~} s~34 ~2 )-

1 

(~) 
o -3 s+ 3 o 

First, find the inverse matrix (si - A) - 1 . There are man y techniques 
for finding the inverse of a matrix. Here we will use the cofactor matrix 
technique. The c o facto r of a23, for example, is formed by eliminating 
the seeond row and the third column from the original matrix and mul­
tiplying the determinant of the resulting 2 x 2 matrix by ( -1 )2+3 • Thus, 
cofactor of a 23 is form~d as 

cof(a23 ) = 

5 (s+ 3 -3) ( -1) det 
0 

_
3 

== 3s + 9 . 
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The other cofactors can be found by a similar process to produce 

( 

8
2 + 7 8 + 6 28 + 6 6 ) 

cof(A)= 3s+9 s2 +6s+9 3s+9 . 
6 2s + 6 s2 + 7 s + 6 

Now the adjoint matrix can be formed by transposing the cofactor ma­
trix: 

( 

s2 + 7 s + 6 3s + 9 
adj(si A)= [cof(A)]T = 2s + 6 s2 + 6s + 9 

6 3s + 9 

The inverse can be now computed as 

(si_ A)_ 1 = adj(si A) 
det(si- A) 

where det( si - A) s3 + 10s2 + 21s. 
Finally the transfer function becomes 

2s ~ 6 ) . 
+ 7s +6 

H(s) = 
(s+1)(s+6) 
s( s + 3) (s + 7) · 

This representation is illustrated in Figure 7.7. 

U(s) (s+l)(s+6) Y(s) 

s(s+3)(s+7) 

Figure 7.7 Transfer function for the hydrology system. 

We could make the calculation easier by observing that (si A)- 1b 
can be obtained by solving linear equations \vith coefficient matrix si-A 
and right-hand side vector b. And then, the solution vector has to be 
multiplied by eT. 

N o te t hat a partial fraction expansion of this transfer function pro­
duces 

__;_(s_+___;_1).....;_(s_+_6....;.._) __ 2/_7 + _1_/2_ + _3/_14 
s(s+3)(s+7)- s s+3 s+7' 

which is the same result that can be observed from the diagonalized 
matrix of Figure 7.6. 

Many more representations for systems are possible, and indeed are 
used in the Systems and Controlliterature. But with these five examples 
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we hope to convince the reader that you can easily change from any one 
form to any other. Therefore, the particular representation technique 
does not limit the generality of the methods presented in this book. 

6. Since the multiple-input electronic system has two input variables, 
the usual canonical forms cannot be obtained. However the more general 
forms (7.17) and (7.20) can be used. The details willnot be given here. 

7. The stick-balancing problem is modeled by matrices 

A (~ ~) ' eT (1, 0) . 

Note that this is already in an observability canonical form (7.18), which 
has an immediate consequence, we know that the system is completely 
observable without computing the observability matrix L. 

8. In Application 3.5.1-8 we introduced the problem of trying to con­
tro! two sticks mounted on a cart. The description of the problem was 
based on matrices 

A= 

and 
eT (1,0,0,0). 

We willnow find the diagonal form of this system. 
From Application 4.4.1-8 we know that the characteristic equation of 

A is 

therefore, 

Since a1a4 - a2a3 > O and a1 + a4 > O, there are two distinct positive 
roots for A 2 . Consequently, the eigenvalues are 

Al= a1, A2 =-al, A3 a2, A4 = -a2 

with 

a1 
{ a1 + a4 + 

2 r 
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and 

The eigenvector equations are 

that is, 
-AiXl +x3 =0 

-AiX2 +x4 o 
a1x1 +a2X2 -AiX3 =0 
a3XI +a4x2 o. 

Select x 1 = l, the n 

and 
-a1-Ai + -Ay 

X4 = . 
a2 

Therefore, the transformation matrix is as follo\vs: 

l l 
-l 

T 

-al(Xl +o:r a10:1 -o:r 
a2 a2 

Hence, simple calculation sho,vs that 
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CT (1,1,1,1). 

9. The electrical heating system of Application 3.5.1-9 has a general 
2 x 2 coefficient matrix and B is the first basis vector. Therefore, it is 
the special case of the one being discussed earlier in this seetian (Appli­
cation 3 of the electrical system) with the selection of L= l. Therefore, 
the calculations are not repeated here. 

10. The nuclear reactor was described with 

b 0)• and eT (1, 0) . 

This is almost the same as Application 7.4.1-3, so we willnot repeat the 
calculation. 

7.4.2 Applications in the Social Sciences and Economics 
l. Consicler first the linearized predator-prey model (6.16), where the 
coefficient matrix has the form 

furthermore 

and eT (0, l) . 

Weillustrate first how this system can be diagonalized. 
The characteristic polynomial of A is 

be da 
cp( A) = A 2 + d · = A2 + ac ; 

therefore, the eigenvalues are A1 = jfo and A2 = -jfo. In order to 
use Theorem 1.11 for finding the diagonalizing transformation matrix 
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T, we first have to fin d the eigenvectors of matrix A. The eigenvector 
associated to .\. 1 is the solution of the homogeneons linear equation 

( -jfo ~~ ) (xn) =(o). 
-Jfo X12 0 

By selecting x12 = dfo, the first component implies that 

that is, 
be 

jbe. xu = 

Therefore, 
X1 = (jbe, dyfaC)T . 

Similarly, the eigenvector associated to .\.2 is the solution of equation 

(jfC .-~ ) (x21) = (o) . 
b Jfo X22 0 

Select again X22 dfo to obtain X21 -j be. T hat is, x 2 (-j be, dylaC) T. 
The transformation matrix isthen determined by using Equation (1.29) 
and (7.4): 

Since 

( 
jbe -jbe) -l 
dvfaC dfo 

l ( dfo jbe) 
= 2jbedfo -dfo j be · 

relations (7.4) imply that 

Ä= (jfo o ) o -jfo ' 

-j ( l ) 
2bd -1 

(7.21) 
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and 
== dylaC(l, l) . 

Hen c e the system is diagonalized. 
2. The general cohort population mode l ( 6.17) is based on matrices 

b1 b2 · · · bn-1 bn 
a1 O · · · O O 

A O a2 · · · O O B== I 

O O ···an-l O 

and 

c == (l, l, ... 'l) . 

As an example, we willtransform matrix A into the form Ä given by 
the canonical form (7.14). 

Note first that matrix A has a structure similar to the coefficient 
matrix of the canonical form (7.14). Based on this similarity it will be 
easier to construct the transformation matrix directly rather than to use 
the general method given in Section 7.2. 

Permute first the components P1, P2, .. . , P n of the state vector as 
(Pn, Pn-b ... , P2, P1), and also, introduce the new input vector (un, Un-b 
... ' 
u2 , u 1). This permutation of the state and input components result in 
the corresponding permutations of the rows and columns, and, therefore, 
the resulting matrix has the form 

o an-l o o 
o o an-2 ... o 

A1 

o o o ... al 

bn bn-1 bn-2 · · · b1 

This form is now closer to (7.14), since the nonzero elements have the 
same locations. Next, all coefficients an-b ... , a2, a1 will be transformed 
to be equal to one. Select a diagonal transformation matrix T== diag(x1, 
... , xn), where the x~ s are unknown. Since T- 1 diag(ljx1, ... , 1/xn), 
from (7.4) we have 
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o 
o 

o o o ... al Xn-1 
x,. 

b Xn b Xn b Xn • • • b x., 
n Xl n-l X2 n-2 X3 l Xn 

We now select the x~ s to satisfy relations 

Xn-l 
···=al--

If x 1 l, then we have 

Hence, the transformed matrix is as follows: 

Å= 

where 

and 

o l 
o o 

o o 

o 
l 

o 

o 
o 

l 

Xn 

Thus, the required canonical form is determined. 

363 

l . 

(7.22) 

(7.23) 

3. In the case of the arms races rnadel (6.18), the computation of the 
observability canonical form (7.18) \vill be illustrated. 

Nate first that the dual of the problem has the form 

. (-b c) (l) z= a -d z+ O v' 

w (a, f3)z . (7.24) 

The controllability canonical form (7 .11) of the dual \vill be first deter­
mined, and the desired observability canonical form is its dual. From 
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the proof of Theorem 7.1 we know that the transformation matrix is as 
follows: 

T (
l -b)-l =~(a b) . 
O a a O l 

Therefore, the controllability canonical form of the dual is given by ma­
trix 

~(a b) (-b c) (l -b) 
a O l a -d O a (

o ac- bd) 
l -b d 

and vectots 

and 

C= CT-1 = (a,/3) (~ -!) (a,-ab+f3a). 

Therefore, the dual system is 

::. (O l)-+( a )-
x = ac bd -b - d x -ab + {3a u ' 

y= (l, o)x . (7.25) 

By using the general formulatian (7.18) we have 

n 2, ao = ac- bd, and 

Hence, the required canonical form is obtained. 
4. The o bservability canonical form of the warfare mo del ( 6.19) is a 

special case of the above results, since by selecting 

the arms-races model reduces to the warfare model. Hence, the above 
result implies that the observability canonical form of this model is as 
follows: 

y (l, o)x . (7.26) 
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5. In Application 6.4.2-5 we savv that the linear epidemics model is 
based on matrices 

(
o -ax ) 

A= O ax- (3 ' b (-n ' and eT= (0,1), 

where x ~ O is arbitrary. By selecting x f3 /a, matrix A reduces to 

( o -(3) A= O O . 

If XI and x2 denote the state components, then the system reduces to 
the follovving: 

y= X2. 

Introduce the new variable x2 -(3x2, then these equations are trans-
formed as 

This form is a J or dan canonical form, since the modified coefficient ma­
trix 

is a special 2 x 2 Jordan block vvith eigenvalue ,\ = O. 
6. The Harrod-type national economy model (6.20) is based on the 

l x l matrices 

A= (l+ r- rm), B (-r) , and C = (m) . 

Here A can be considered diagonal; therefore, this system can be con­
sidered also as given in diagonal form. 
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7. Similar to the previous application, the linear cobweb rnadel (6.21) 
is based on the l x l matrices 

A G)' B (l) , and C (b) . 

Therefore, this system also can be considered as given in diagonal form. 
8. The rnadel (6.22) of interrelated markets is cornpletely controllable, 

as was verified in Application 5.3.2-8; however, it is not always observ­
able. In order to illustrate a special canonical form of the system, con­
sider the following numerical example: 

(-2 l) 
A= O -3 ' B (l -1) 

o l ' and K O~) . 
Then the system has the particular form 

(l o) ( -3 2) o 2 o -4 p+ u 

(-3 2) (l o) o -8 p+ o l u (7.27) 

with output equation 

The diagonal form of this systern can be obtained as follows. First the 
eigenvalues of the coefficient matrix are determined. Since this rnatrix 
is triaugular, the eigenvalues are the diagonal elements A1 -3 and 
A2 = -8. Simple calculation shows that the associated eigenvectors are 

and 

therefore, the transformation n1atrix is 

T (l 2)-l l (5 2) 
o -5 = 5 o -1 . 
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Use finally relations (7.4) to get the transformed system: 

(7.28) 

We can check our results by verifying that the transfer functions of the 
original and this diagonal representation coincide. Simple calculation 
shows that the transfer function of system (7.27) is the following: 

H( s) = (~ ~) (s+ 3 -2 ) -
1 

(l O) 
2'2 O s+8 01 

(l l) l (s+8 2 ) 
= 2' 2 (s+ 3)(s + 8) O s+ 3 

( 
l s+5 ) 

= 2(s+3)'2(s+3)(s+8) · 

The transfer function of the transformed system (7.28) is given as 

- (l 3) (s+ 3 O ) -1 l (5 2) 
H(s)= 2'-2 O s+8 '5 0-1 

(l 3) l (s+ 8 O ) (5 2) 
= 2'-2 5(s+3)(s+8) O s+3 0-1 

(l 3) l ( 5s + 40 2s + 16) 
= 2'-2 5(s+3)(s+8) O -s-3 

( 
l s+5 ) 

= 2(s+3)'2(s+3)(s+8) · 

Hence, H(s) = H(s). 
9. In our last example we shall diagonalize the coeffi.cient matrix Ac 

of the oligopoly medel (6.23). Note first that the coeffi.cient matrix can 
be written as 

A c 
l l 

--l+ -I 
2 2 ' 
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and in order to find the nonsingular matrix T which transforms this 
matrix into the diagonal form, we need to determine first the eigenvalues 
of Ac and the associated eigenvectors. In Section 3.5.2 we have seen 
that the eigenvalues of matrix l are Al O and .\2 = N; furthermore 
any vector u (ui) \Vith the property u1 +u2+· · ·+uN =O is associated 
eigenvector to A1 O, and any vector having identical components is 
an eigenvector associated to .\2 = N. Therefore, a complete system of 
eigenvectors is given as 

-N+l l l l 
l -N+l l l 
l l and ... ' 

-N+l l 
l l l l 

where the first N -l vectors are associated to .\1 =O and the last vector 
is associated to .\2 =N. From Equations (1.29) and (7.4), we conclude 
that the transformation matrix is as follows: 

T= 

-N+l 
l 
l 

l 
l 

l l l 
-N+l··· l l 

l 

l 
l 

l l 

···-N+ 11 
l l 

Look for this inverse matrix in the special form 

T= 

a b··· b c 
b a··· b c 
b b ... b c 

b b··· a c 
c c ... c d 

then equation T- 1T =I implies that 

(-N+l)a+(N 2)b+c=l 

a+ (-N+ l)b +(N- 3)b +c= O 

a+ (N- 2)b +c= O 

-l 
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(N-l)c+d l. 

Simple calculation shows that the solution of these equations is the fol­
lowing: 

Hence 

o, l 
and c == d == N . 

-1 o l 
-1 l 

T=~ l 
o -11 
l l . . . l l 

and, therefore, from relation (7.4) we conclude that 

l 

2 l 

2 

o 

o 

l 
2 

1-N 
-2-

Note that the diagonal elements are the eigenvalues of Ac as they should 
be. 

Problems 

l. Diagonalize system 

y (l,l)x. 

2. Diagonalize system 

y (l,O,O)x. 
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3. Repeat Example 7.1 for system 

with the eonstant input u( t) l. 

4. Repeat Example 7.2 for system 

with the input funetion u( t) t. 
5. Solve the system 

y= (l, O, O)x 

chapter seven: Canonical Forms 

x( O)= O) 

x(O) = (~) 

with the eonstant input u( t) = l by the transformation method. Solve 
first the diagonal form obtained in Problem 7.2, and then eompute the 
solution from Equation (7.3). 

6. Find the eontrollability eanonieal form (7.11) for system 

y= (0, l,O)x. 

7. Find the eontrollability eanonieal form (7.11) for system 

y = (l, O, O)x. 
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8. Find the controllability canonical form (7.11) for system 

y= (1, 1,0)x. 

9. Find the controllability canonical form (7.14) for system 

y= (0, 1,0)x. 

10. Find the controllability canonical form (7.14) for system 

y (1, O, O)x. 

11. Find the controllability canonical form (7.14) for the system 

y (1,1,0)x. 

12. Find the observability canonical form (7.18) for system 

(
101) (o) 

X= ~ii x+ ~ u 

y= (0, 1,0)x. 
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13. Find the observability canonical form (7.18) for system 

y = (1, O, O)x. 

14. Find the observability canonical form (7.18) for the system 

y= (1, l,O)x. 

15. Find the observability canonical form (7.19) for system 

y= (0, l,O)x. 

16. Find the observability canonical form (7.19) for system 

y= (l,O,O)x. 

17. Find the observability canonical form (7.19) for the system 

y (l, l,O)x. 

18. Verify directly that the canonical forn1s (7.11) and (7.14) are com­
pletely controllable. 
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19. Verify directly that the canonical forms (7.18) and (7.19) are com­
pletely observable. 

20. Verify the corollary of Theorem 7.1 by showing that the charac­
teristic polynomial of matrix 

o o o ... o a o 
l o o ... o al 

A o l o ... o a2 

O O O··· l an-l 

is 
cp(A) An- an-lAn-l - · · · a1A ao . 

21. Systems x Ax + bu and z = Åz + bu are related by the state 
transformation z = Tx. Provethat matrix T is unique if and only if the 
systems are completely controllable. 

22. Is the statement of the previous problem true for multiple input 
system? 

23. Reformula te and verify the statement of Problem 7/21 for observ­
able systems. 

24. Explain how the method introduced in the proof of Theorem 7.1 
can be used to compute the eigenvalues of a real n x n matrix A. 

25. Assume that A is a real n x n matrix with distinct eigenvalues. 
U sing the diagonal form of A findan n-element real vector b such that 
system 

x Ax+ bu 

is completely controllable. 
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chapter eight 

Realization 

In Chapter 6 we were cancerned with the problem of estimating the 
initial state of a system on the basis of input and output measurements 
in an interval [t0 , t1]. In this chapter, an even more difficult problem 
is addressed, namely, how to recover the system's modelitself based on 
the known relation between the input and output of a system. 

We know from Chapter 3 that the input and output of a continuous 
linear system are interrelated by equation 

y( t) == C(t)<jJ(t, to)xo + {t C(t)<jJ(t, r)B(r)u(r) dr , (8.1) 
}to 

and for discrete linear systems this equation is modified as 

t-l 

y( t) C(t)<jJ(t, O)xo +L C(t)<jJ(t, r+ l)B(r)u(r) . (8.2) 
7=0 

1v1atrix 
T(t, r) C(t)<jJ(t, r)B( r) (8.3) 

for continuous systems and matrix 

T(t, r) C(t)<jJ(t, r+ l)B( r) (8.4) 

for discrete systems are called the weighting patterns. 

DEFINITION 8.1 A zueighting patten-z T( t, r) is said to be realizable in 
[t0 , t 1] if there exist 1natrices A( t), B(t), and C( t) such that (8.3) (or (8.4)) 
is satisfied for all t E [to, t1] with ljJ being the fundamental matrix of the 
(A (t), B (t), C (t)) continuous (or discrete) system. 

375 
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In the first section of this chapter, the realizability of weighting pat­
terus is discussed. Necessary and sufficient conditions will be given and 
the uniqueness of the realization will be analyzed. 

In the case of time-invariant systems, the problem of realizability can 
also be addressed in a different way. If U and Y denote the La place (or 
Z) transforms of the input and output, then from Chapter 3 we know 
that for continuous systems, 

Y( s)= CR(s)xo + H(s)U(s) , (8.5) 

and for discrete systems, 

Y(z) = CR(z)zx0 + H(z)U(z) , (8.6) 

where R(s) (or R(z)) is the resolvent matrix, and H(s) (or H(z)) is 
tl!e transfer function. The form of the transfer function is the same for 
continuous and discrete systems: 

H(s) = C(sl- A)-1B ; (8.7) 

only the variable s is renamed as z in the discrete case. 

DEFINITION 8.2 A transfer function H( s) is said to be realizable if t here 
exist eonstant matrices A, B, and C such that (8.7) holds for all s. 

Similar to the realizability problem of weighting patterns, necessary 
and sufficient conditions will be developed for the realizability of given 
transfer functions. 

After a realization of a weighting pattern or transfer function is found, 
a new question arises. Is i t possible to reduce the dimension of the state 
variable in order to simplify the system and to reduce construction and 
computation costs? In this chapter we also give methods to find a real­
ization with minimal dimensional state variable, and, in addition, nec­
essary and sufficient conditions will be presented to determine whether 
a given realization is minimal or not. 

8.1 Realizability ofWeighting Patterns 
In this section, necessary and sufficient conditions are given for the re­
alizability of a given weighting pattern. Only continuous systems are 
discussed, since the realizability of weighting patterus of discrete sys­
tems is analogous. The details are left as an exercise. 
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8.1.1 Realizability Conditions 
LetT( t, r) be a bivariable function of t, T ;:::: to, where to ;::=:O is given. 

THEOREM8.1 
T( t, r) is realizable if and only if it is separable as 

T(t,r) IJ(t)(;(r) (8.8) 

with continuous functions l) and(;. 

PROOF (a) If T( t, r) is realizable, then there exist continuous func-
tions B, C and a fundamental matrix <P such that 

T(t,r) = C(t)</>(t,r)B(r). 

By using Property (ii) of Theorem 2.3 we conclude that with some t*, 

T(t,r) = C(t)</>(t,t*)</>(t*,r)B(r). 

Then select 

IJ(t) = C(t)</>(t, t*) and (;(r)= </>(t*,r)B(r) 

to get the form (8.3). 
(b) Assume next that relation (8.8) holds. Then we verify that (O, (;(t), 

IJ( t)) is a realization of T( t, T). O b serve first that in the case of A( t) = O, 

</>(t, r) = e0 ·(t-T) =I, 

and, therefore, with selecting B = c; and C = l), 

C(t)<!>(t,r)B(r) IJ(t)I(;(r) = IJ(t)(;(r) T(t,r), 

which completes the proof. l 

COROLLARY 8.1 
IfT(t, r) is realizable ·with a system having n-dimensional state, then part (a) 
of the proof im p lies t hat there are n1atrices l) (t) with n columns and (;(T) with 
n rows such that (8.8) holds. 

A realization procedure can beformulatedas follows: 
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Step l Factor the weighting pattern as T( t, r) = D(t)G(r). 

Step 2 Select A O, B G, and C D. 

Example 8.1 

Consicler the real-valued function 

T(t,r) t+r. 

Since 

T( t, r) = (t, l) · ( ~) , 

T (t, r) is realizable in [O, oo) with a system ha ving two-dimensional 
state, where 

A=O, B(t) (!),and C( t) (t, l) . 

Next we show that no realization exists with single-dimensional 
state variables. Contrary to this assertion, assume that there exist con­
tinuous real functions D and G such that 

t + r = D (t) · G (r) for all t, r 2:: O . (8.9) 

Select r O; then for all t 2:: O, 

t= D(t) · G(O) , 

that is, 
D(t)=a·t 

with same eonstant a. Similarly, select t =O to show that 

G(r) f3·r 

with same eonstant {3. Then (8.9) can be rewritten as 

t + r = a{3tr for all t, r 2:: O , 

which must not hold as the selection r= O, t =l O shows. 

In the case of realizable weighting patterns, the realization is not nec­
essarily unique: 



8.1 Realizability of Weighting Patterns 379 

THEOREM8.2 
Assume t hat (A( t), B( t), C(t)) is a realization of T( t, T) in [to, t 1], and P(t) 
is invertible and differentiable for all t E [t0 , t 1]. Then (Å(t),B(t), C(t)) is 
also a realization of T( t, T) with 

Å(t) P(t)A(t)P- 1(t) + P(t)P- 1 (t), B(t) = P(t)B(t) 

and 
C(t) C(t)P- 1(t). 

PROOF Introduce the new variable z( t)= P(t)x(t) in system (A( t), 
B( t), C(t) ). Then 

z(t) = P(t)x(t) + P(t)x(t) P(t)[A(t)x(t) + B(t)u(t)] + P(t)x(t) 

= P(t)[A(t)P- 1 (t)z(t) + B(t)u(t)] + P(t)P-1 (t)z(t) 

= Å(t)z(t) + B(t)u(t) , 

and 
y(t) = C(t)x(t) = C(t)P- 1(t)z(t) = C(t)z(t). 

Since introducing the new state variable z does not change the input­
output relation, the weighting pattern T( t, T) is also realized by the 
system (Å( t), B(t), C( t)). l 

REMARK 8.1 Realizations (Å( t), B( t), C( t)) and (A( t), B( t), C( t)) 
have the same dimensions in the state variables. The next example 
shows that even the dimension of the state variable in a realization of a 
given weighting pattem is not necessarily unique. l 

Example 8.2 

Consicler system 

y= (l, O)x. 

Since the input has no effect on the seeond component x2 of x and the 
output does not depend on X2, the input-output relation is determined 
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only by the first equation 

and output relation 
y= Xl' 

which is a single-dimensional realization of the same input-output re­
lation. 

In many applications we look for periodic realizations of a given weight­
ing pattern, when A( t), B(t), C(t) are periodic with the same period. I t 
can be proved that T( t, T) is realizable by a periodic system (A( t), B( t), 
C (t)) if and only if i t is realizable and t here is a T > O s u ch t hat 

T(t,T) = T(t +T, T+ T) 

for all t and T. 

8.1.2 Minimal Realizations 
In most cases, especially in system design, it is important to reduce the 
dimension of the system. In this seetian we introduce methods that can 
be used to determine whether a realization of a given weighting pattern 
has minimal state dimension or not, and in addition, if a realization is 
not minimal how to find a minimal realization. 

DEFINITION 8.3 A realization (A( t), B( t), C( t)) of a given weighting 
pattern is called minimal in an interval [t0 , t 1] if there is no other realization 
with lower dimensional state variable. 

First a necessary and sufficient condition is presented for the mini­
mality of a given realization. 

THEOREM8.3 
A realization (A (t), B (t), C (t)) is minimal in an in terval [to, t 1] if and on ly if 
the controllabil ity Gramian W (to, t 1) and the observability Gramian M ( t0 , t 1) 

are both nonsingular. 

PROOF (a) Assume first that realization (A(t), B( t), C( t)) isnotmin­
imaL Then there exists a realization 

z = Ä(t)z + B(t)u 
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y C(t)z (8.10) 

with dim z < dim x. Let v and n denote the dimensions of z and x, 
respectively. Since (A( t), B(t), C( t)) is a realization, 

T(t,r) = C(t)cp(t,r)B(r) C(t)<jJ(t,to)<P(to,r)B(r) 

= D(t)G(r) 

with 

D( t) = C(t)q)(t, t0 ) and 

The corollary of Theorem 8.1 implies that 

T(t,r) = :Ö(t)G(r), 

where :Ö has v columns and G has v rows, since (Å( t), B( t), C( t)) is a 
realization of T( t, r) with v-dimensional state. 

The definitions of W(t0 , t 1) and M(t0 , t 1 ) imply that 

Note that DT(t):Ö(t) has v columns and G(r)GT(r) has v rows; there­
fore, the ranks of both integrals are not larger than v. This implies that 

rank(M(to, tt)W(to, t1)) ~ v< n. 

Hence at least one of matrices M(t0 , t 1 ) and W(t0 , t 1 ) must be singular. 
(b) Assume next that at least one of matrices M(t0 , t 1 ) and W(t0 , t 1 ) 

is singular. From Property (ii) of Theorems 5.2 and 6.2 we know that 



382 chapter eight: Realiza tio n 

both matrices are positive semidefinite. The corollary of Theorem 1.14 
implies that there exist nonsingular matrices P and Q such that 

and (8.11) 

where 8 1 and 8 2 arediagonalmatrices oftheformdiag(l, ... , l, O, ... , O) 
with the additional properties that rank(S1) = rank(W(t0 , t 1)) and 
rank(S2) rank(M(to, t1)). 

Next we prove that for all t, 

and 

Simple calculation shows that matrix 

Z(t) = PS1P-1G(t) - G(t) 

satisfies equation 

since 
S1=Si sr, 

Nate that for all vectors z, 

and 

(8.12) 
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and, therefore, zT(t)z = o. Consequently zT(t) o, which implies 
that Z( t) =O for all t. 

The other identity of (8.12) can be proven in the same w a y; therefore, 
the details are omitted. 

From (8.12) we have 

Since at least one of W( to, t1) and M( to, t1) is singular, either 8 1 or 8 2 
has lower rankthan n. Letr denote the rank ofmatrix Q- 1S2QPS1P-1, 

thenit is less than n, and Theorem 1.15 implies that 

(8.14) 

where D 1 has r columns and G1 has r rows. 
Observe next that (8.13) implies that 

T(t, T) D(t)G(T) (D(t)Dl)(Gl G( T))= :Ö(t)G(T) 

with 
:Ö(t) = D(t)Dt and (8.15) 

Note that :Ö( t) has r columns and G( T) has r rows. 
Apply finall y part (b) of the proof of Theorem 8.1 to see that 

Å=O, B(t) = G(t), and c( t) =:Ö( t) (8.16) 

is a realization of T(t, T) with r-dimensional state variable. Hence re­
alization (A( t), B(t), C( t)) is not minimal, which completes the proof. 
l 

COROLLARY 8.2 
Theorems 5.1 and 6.1 imply that a realization is minimal if and only if it is 
completely controllable and con1pletely observable. 

Example 8.3 

Consicler the system 

y= (1,1)x. 
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In Exaroples 5.4 and 6.2 we verified that the system is completely con­
trollable and completely observable. Therefore, it is a minimal realiza­
tion of its weighting pattern. In other words, the same input-output 
relation cannot be represented by a single-dimensionallinear system. 

Example 8.4 

Consicler again the satellite problem, which was discussed earlier in 
Exaroples 5.5 and 6.3 with the inputs being the radial and tangential 
thrusts and the outputs beingthe radius r and angle B. Then thesystem 
is completely controllable and completely observable; therefore, i t is a 
minimal realization. 

COROLLARY 8.3 
Part (b) of the proof ofTheorem 8.3 provides an algorithm to reduce the dimen­
sion of the state variable in a given nonminimal realization. The steps of the 
algorithm are as follows: 

Step l Campute W(t0 , t 1), M(t0 , t!), D( t), and G( T). 

Step 2 Find decompositions (8.11). 

Step 3 Campute matrix 

Step 4 Find factorization (8.14). 

Step 5 Computematrices D( t) and G( T) byusingrelations (8.15) andfind 
the lower dimensional realization as given in Equations (8.16). 

We mention that each matrix manipulation of this algorithm can be 
performed with standard computer packages. 

This algorithm is illustrated next. 

Example 8.5 

Consicler now the system 

y= (1, O)x, 
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which was the subject of our earlier Example 8.2. Since n = 2 and 

with rank(K) = l <n, the system is not controllable, therefore, this 
is not a minimal realization. We willnow reduce the dimension of 
this realization by using the above algorithm. Assume for the sake of 
simplicity that to = O and t1 = l. Since the system is time-invariant, 
we do not lose generality by this assumption. 

Step 1: Since the fundamental matrix is 

(
et-to 0 ) 

<P( t, to) = O et-to ' 

(
1 
(e-t O ) ( 1) (e-t O ) W(O, l) =Jo O e-t O (l, O) O e-t dt 

and 

M(O,l) [ (~ ~~) 0) (1,0) (~ ~~) dt 

Furthermore, 

(
et O) t D(t)=(l,O) Oet =(e,O) 

and 

(
e-T O ) ( 1) (e-T) G(r) = O e-T O = O · 

Step 2: It is easy to see that decompositions (8.11) hold with 

and 

385 
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Step 3: In this case, 

(~~) 

Step 4: Obviously rank(E) l and 

E (~) (1,0), 

and, therefore, we ma y select 

and G1 (l, O). 

Step 5: And finally, a lower dimensional realization is given by 
the l x l matrices 

Hence, the reduced dimensional realization is given as 

Since the state is single-dimensional, we obtained a minimal realiza­
tion. 

REMARK 8.2 We know from Example 8.2 that system 
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is also a realization of the same input-output relation. Therefore, mini­
mal realizations need not to be unique. Note furthermore that the origi­
nal system was time-in variant; how ev er, the application of the algorithm 
resulted in a time-variant system. That is, the dimension reduction pro­
cedure resulted in a more complicated system structure. We will see, 
however, in the next section that by using a slight modification of the 
above algorithm time-invariant nonminimal systems can be reduced to 
lower dimensional time-invariant realizations. That is, time invariance 
can be preserved by dimension reductions. l 

8.1.3 Time-Invariant Realizations 
Among the realizations of a given weighting pattern time-invariant real­
izations have a special role, since the solution and the verification of the 
properties (e. g., controllability, observability) of such systems are much 
easier tasks than those in the general case. 

THEOREM8.4 
T( t, T) has a time-invariant realization if and only if 

(i) T( t, T) D(t)G(T) with differentiable D and G. 

(ii) T(t, T) == T(t- T, 0). 

PROOF (a) Assume first that T(t, T) has a time-invariant realization 
(A, B, C). Then 

therefore, we may select 

D(t) == CeAt and 

which are differentiable. Furthermore, 

T(t, T) == CeA(t-r)B == CeÅ[(t-r)-O]B T( t T, O). 

(b) Assume next that T( t, T) satisfies Conditions (i) and (ii). Note 
first that all conditions of Theorem 8.1 are satisfied; therefore, T( t, T) 
is realizable, and there is a minimal realization. Let the corresponding 
factorization of T (t, T) be given as 

(8.17) 
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and let M(t0 , t l) and W(t0 , tl) denote the corresponding controllability 
and observability Gramians, respectively. From Theorem 8.3 we know 
that M(t0 , t1) and W(t0 , t l) are both nonsingular. 

No te first that Condition (i) im p lies that T( t, T) is differentiable with 
respect to both variables. Therefore, :Ö and G are differentiable func­
tions. 

Use Conditian (ii) to get 

Post-multiply both sides by G-T (T) and integratethe resulting equality 
on [t0 , t 1] with respect to T to see that 

where W(to, t1) is the controllability Gramian, and 

(8.18) 

Solvethis equation for :Ö( t): 

:Ö(t) = :Ö(t)Ä. (8.19) 

with 
- - - l A= -W l(to, t1)W- (to, t1). (8.20) 

By transpesing (8.19), 

which implies that 

that is 
:Ö(t) = Ö(O)eÅt . 

And finally, use Conditian (ii) to show that 

T(t, T) = T(t T, O) :Ö(t- T)G(O) 
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Hence, (Ä, G(O), :Ö(O)) is a time-invariant realization of T( t, r). l 

REMARK 8.3 Assume that the minimal realization (which was intro­
duced in part (b) of the proof) has v-dimensional state variable. Then :Ö 
has v columns and G has v rows; therefore, both matrices W and W 1 are 
v x v, and the same holds for matrix Ä. Consequently, (Å, G(O), :Ö( O)) 
is a time-invariant minimal realization. Hence, part (b) of the proof 
provides a method for constructing a time-invariant minimal realiza­
tion, assuming that a time-variant minimal realization is known. This 
algorithm can be summarized as follows: 

Step l Compute :Ö(t) and G(r) from the given minimal realization. 

Step 2 Determine matrices w l (to, tl) and W( to, tl). 

Step 3 Find matrix Ä by using Equation (8.20), and compute G(O) 
and :Ö( O). Then the time-invariant minimal realization is given by 
(Ä,G(O),:Ö(O)). l 

Example 8.6 

In Example 8.5 we saw that 

(8.21) 

is a minimal realization of a two-dimensional time-invariant system. 
We now illustra te the above algorithm to obtain a time-invariant min­
imal realization. 

Step 1: For the sake of simplicity, select to = O and t1 = l, then 

Step 2: Simple calculation shows that 

and 
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Step 3: Therefore, from (8.20), 

Since 

G(O) = D(O) = 1 , 

the time-invariant minimal realization is as follows: 

y= x. 

Nate that this result is also known from Example 8.2. 

On the basis of Theorems 8.3 and 8.4 the following two-stage process 
can be proposed to find a time-invariant minimal realization of a given 
weighting pattern: 

Step l Find a minimal realization by the repeated application of the 
algorithm suggested by the proof of Theorem 8.3. 

Step 2 Starting from this minimal realization, apply the algorithm of 
Theorem 8.4 to obtain a time-invariant minimal realization. 

Assume next that a nonminimal time-invariant realization is known. 
The above algorithm can obviously be used for finding a minimal time­
invariant realization; however, more simple procedures are available in 
this special case. In this section two such algorithms are discussed. The 
first method is a slight modification of the algorithm of Theorem 8.3, 
and the seeond one is based on separating the controllable and non­
controllable, the observable and nonobservable states as was shown in 
Chapters 5 and 6. 

The first method modifies the algorithm of Theorem 8.3 as follows: 
Replace matrices W( to, t1) and M( to, t1) by W r= KKT and Mr= 

LTL, respectively, where K is the controllability matrix and L is the 
observability matrix of the given realization. Apply the algorithm of 
Theorem 8.3 with W T and Mr, then i t results in a minimal realization 
of the same form (0, G 1 · G( t), D( t) · D 1) as the original algorithm, 
where in this case 

and D(t) = ce-At . 
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In addition, similar to the proof of Theorem 8.4, one can easily show 
that after the above minimal realization is determined, the time-invariant 
realization 

(G1AWrGf (G1 WrGf)-1
, G1B, CD1) (8.22) 

is also minimal. 

Example 8.7 

Consicler again the system 

y (l,O)x. 

We first apply the modified algorithm to determine a minimal time­
variant realization. 

Step 1: Since 

K = (b, Ab) = ( ~ ~) 
and 

we have 

Step 2: Since 

Wr=Mr (v'2o) (l o) (v'2o) o l 00 o l ' 

in decomposition (8.11) we may select 

and 

Step 3: Therefore, 
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Step 4: Obviously rank(E) = l and 

E= ( ~) (1, O), 

and, therefore, we may select 

and G1 (l, O). 

Step 5: And finall y, 

and 

Note that the resulting realization ((O), (e-t), (et)) is the same one 
that was obtained earlier in Example 8.5. 

Next, realization (8.22) is determined. Simple calculation shows that 

= (2) . (2)- 1 l, 

and 

CD1=(l,O)(~) (1). 

Therefore, realization (8.22) has the form 

i=z+u 

y z, 

which is the same result that was obtained in Example 8.2. 
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Nate that the above modified algorithm is much more attractive than 
the original algorithm where the computation of matrices W(t0, t1), 
W 1 (to, t1), and M(to, t1) usually requires the application of numerical 
integration. That is a difficult task w hen the elements of the integrands 
are complicated functions. However, the computation of matrices W T 

and Mr in the modified algorithm invalves only elementary matrix op­
erations. 

An alternative approach is based on separating the controllable and 
noncontrollable, and observable and nonobservable, states. First apply 
Theorem 5.5 to transform the system to the special form 

i Åz+Bu 

y== Cz, 

where 

Å== (Ån ~12), 
O A22 

B_ (B1) - o ' 

and system (Å11 , ::81, C1) is completely controllable and has the same 
input-output relation as the original system. Apply next Theorem 6.4 
to the three nonzero blocks of Å, then the following decoroposition is 
obtained: 

where 

(i) System (Alt, B1, C1) is completely controllable and observable, 
hence minimal realization. 

(ii) The input-output relation of systems (A, B, C) and (Å11 , B t, C1) 
coincide. 

(iii) System 

is completely controllable. 
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(iv) System 

is completely observable. 

(v) System (Ä44, O, O) is neither completely controllable nor observ­
able. 

We note that the actual values of the possible nonzero blocks are not 
all unique, but the dimensions of the various blocks are unique. The 
resulting system (Äu, B t, C1) is a time-invariant minimal realization. 

From Examples 8.2 and 8.5 we know that the minimal realization of a 
given weighting pattern in not unique. However, time-invariant minimal 
realizations are equivalent in the sense that they are related by state 
transformations. 

THEOREM8.5 
If systems (A, B, C) and (Ä, B, C) are both time-invariant minimal realiza­
tions of the same weighting pattern, then there exists nonsingular 1natrix T 
such that 

B TB, and 

PROOF Since both systems are realizations of T( t, r), 

Replace t by s + t, then equation 

(8.23) 

is obtained. 
(a) Premultiply the above equation by eAT seT and postmultiply it 

by BT e-Ar r, and integratethe resulting equation on [O, t 1] with respect 
to s and r: 
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That is, 

(8.24) 

where M 0 and W 0 are the two integrals on the right-hand side. 
Since (A, B, C) is a minimal realization, both M(O, t 1 ) and W(O, t 1 ) 

are nonsingular, and, therefore, Equation (8.24) im p lies that 

(8.25) 

with 

and 

Substitutet= O into Equation (8.25) to get 

I= T1 ·I· T, 

that is, T 1 == T- 1. Note that from (8.25), 

Differentiate both sides andsubstitutet 0: 

that is, 
Ä.= TAT- 1

. 

(b) Premulti p ly Equation (8.23) by eAT s eT and integratethe resulting 
equation on [0, t 1] with respect to s; furthermore select t r = 0: 

that is, 
M(O, t1)B = MoB . 

Since M(O, t 1 ) is invertible, 

B l - -M(O, t1)- MoB = T1B 

that is, B TB. 
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(c) Postmultiply Equation (8.23) by BT e-A r r and in tegrate the result­
ing equation on [0, t 1) with respect to r; furthermore select t == s == 0: 

that is, 

Since W(O, t1 ) is invertible, 

that is, C== CT- 1
. 

Thus, the proof is completed. l 

Example 8.8 

In the previous example we saw that 

z==z+u 

y=z 

is a minimal realization. Therefore, all minimal realizations have the 
form 

z= z +Tu 
l 

y 

where T is a nonzero constant. Here we use the fact that a l x l 
transformation matrix T is nonsingular if and only if i t is nonzero, and 
in this case its inverse is the reciprocal. 

8.2 Realizability of Transfer Functions 
In this section, necessary and sufficient conditions will be given for the 
realizability of a given transfer function. Then, minimal realizations will 
be discussed. Since transfer functions have identical forms for continuous 
and discrete systems, all the results of this seetian apply to both cases. 
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8.2.1 Realizability Conditions 
First we nate that the transfer function 

H( s)= C(sl- A)- 1B 

397 

is a matrix with all elements being strictly proper rational functions of 
s. This observation follows immediately from the facts that det( si A) 
is the ( -1)n-multiple of the nth degree characteristic polynomial of A, 
all of its subdeterminants are polynomials of degree less than n, and 
the elements of (si A) -l are the ratios of t hese subdeterminants and 
det( si- A). We will first verify that this property is also sufficient for a 
rational matrix function to be the transfer function of a continuous (or 
discrete) linear system. 

THEOREM8.6 
Let H( s) be a matrix with each element being a rational function. Then there 
exists a linear system with transfer function H( s) if and only if all elements of 
fl( s) are strictly proper. 

PROOF (a) The necessary part has been shown above before formu-
lating this theorem. 

(b) The sufficiency part will be proven by constructing a particular 
realization of the transfer function. In the systems theory litera ture, two 
particular constructions have special importance. They are presented 
bel o w. 

Method l. Assume that 

p(s) sr+ Pr-lSr-l + · · · + PlS + Po 

is the least common multiple of the denaminatars of the elements of 
H( s). Then all elements of p( s )H( s) are polynomials: 

(8.26) 

where H 0, H 1 , ... , Hr-l are eonstant matrices. 
De fine 

o I o o o 
o o I o o 

Ac= Be= 
o o o I o 

-pol -pli -p2I · · · -Pr-II I 
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and 

Cc= (Ho, Hl, ... ,Hr-l), 

where each block of Ac and Be is m x m (m being the dimension of the 
input). We willprovethat (Ac, Be, Cc) is a realization of H( s). That 
is, we will verify that 

Cc(Is- Ac)-1Bc == H(s). 

Note first that (Is- A 0 )-1B 0 is the solution of the equation 

(Is- Ac)X Be, 

which can be written as 

sX1 o I o o x1 o 
sX2 o o I o x2 o 

sXr-1 o o o I Xr-1 o 
sXr -pol -pli -p2I · · · -Pr-11 X r I 

From this equality we conclude that 

(i 1,2, ... ,r- l) (8.27) 

and 

From (8.27), 

Nowsubstitutethese relations into (8.28) to see that 

p(s)X1 ==l. 

Therefore, 

s sr-1 
p( s) l, ... , Xr == p( s) I . 
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Hence, 

l 
= p(s)p(s)H(s) H(s), 

which completes the proof. 

Method 2. Expand H( s) about lsl oo to get 

H( s) Los- 1 + L1s-2 + L2s- 3 + .... 

Define p( s) as before; furthermore, let 

o I o o Lo 
o o I o L1 

A o Bo 

o o o I Lr-2 
-pol -pli -p2I · · · -Pr-11 Lr-1 

and 
Ca= (I,O, ... ,O,O), 

where each block of Ao and Co is p x p (p being the dimension of the 
output). We willnow provethat (Ao, Bo, C 0 ) is also a realization of 
H( s), that is, 

H( s) Co(si- Ao)- 1Bo. 

Note that Example 1.25 implies that 

l ( l l 2 ) -Ca I+-Ao+-A0 +··· Bo s s s2 
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therefore, for proving the identity of the infinite series, it is sufficient to 
verify that for k O, l, 2, ... , 

(8.29) 

As a first step, observe that 

Co = (I,O, ... ,O,O), 

CoAo = (0, I, ... , O, 0), 

C0A~-l = (0, O, ... , O, I) , 

which imply the relations 

That is, (8.29) holds for k O, l, 2, ... , r- l. Hence we have to prove 
that (8.29) also holds for larger values of k. It is sufficient to show 
that matrices Lk and CoA~Bo satisfy the same recursive relations, 
since they are equal for k ~ r - l. Introduce next the notation Mk = 
C o A~ Bo. Consicler first the polynomial 

The coefficient of s-Ck+l) is zero for all k 2: O. That is, 

which gives the recursion 

(8.30) 

Note next that from Section 7.2 we know that p( s) is the characteristic 
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polynomial of matrix 

o l o o 
o o l o 

o o o l 

-po -pl -p2 · · · -Pr-l 
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It is also known from matrix calculus that the elementary operations of 
block matrices with commutative blocks are performed with the blocks 
in exactly the same way as they are performed with matrices having 
scalar elements. Therefore, p(Ao) = O, that is, 

Ao = -pol- P1Ao - · · · - Pr-1A0-1 . 

Premultiply this equality by CoA~ and postmultiply the resulting 
equation by Bo to get 

that is, 

Since this recursion coincides with (8.30), the proof is completed. l 

The algorithm suggested by Method l can be summarized as follows: 

Step l Find the least common multiple p( s) of the denominators of 
the elements of H( s). 

Step 2 Compute matrix polynomial p(s)H(s) to get matrices Ho, H1, 
... ,Hr-1· 

Step 3 Determine Ac, Be, and Cc. 

The algorithm suggested by Method 2 is summarized next: 

Step l Find the least common multiple p( s) of the denominators of 
the elements of H( s). 

Step 2 Expand H( s) about jsj = oo to get matrices Lo, L1, ... , Lr-l· 

Step 3 Determine Ao, Bo, and Co. 
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COROLLARY 8.4 

By using dual ity, two more representations of H( s) can be obtained. Use 
Methods 1 and 2 for the dual-transfer function 

and determine the duals of the resulting representations. This idea leads to 
representations (Ä.o, Bo, Co) and (Åc, Be, Cc), where 

Å o 

and 

O O··· O -pol 

I O··· O -p1I 

O I ···O -p2I 

Co = (O,O, ... ,O,I) 

with p x p blocks in Ä.o and C o; furthermore, 

00···0 -pol 
I O··· O -pli 

Åc = O I··· O -p2I Be= 

00 ···I -Pr-II 

and 

with m x m blocks in Ä.c and Be. 

(g 
~b 

Note that representations (Ac, Be, Cc) and (Åc, Be, Cc) are com­
pletely controllable and (Ao, Bo, C o) and (Åo, Bo, Co) are completely 
observable. Therefore, they are called the standard controllable and 
standard observable realizations, respectively. O bserve furthermore t hat 
these realizations are analogous to the controllability and observability 
canonical forms discussed earlier in Sections 7.2 and 7.3. 

The above methods are illustrated next. 
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Example 8.9 

Consicler the transfer function 

H(s) = Ct ~ ) 
where the input and output are two-dimensional. That is, m p = 2. 

Step l: Observe that 

p( s) = s (s - l) = s 2 s . 

That is, r = 2, PI = -l and Po = O. 
Step 2, Method 1: Simple calculation shows that 

(
s- l s ) p(s)H(s) = s s- l (11) (-1 o) 

s l l + o -1 ' 

that is, 

Hl= CD and ( -1 o) Ho= O -1 . 

Step 3: Hence, 

o o l o o o 
o o o l o o 

A c ................ Be 

o l o l o o o l 

o o o l 

and 

Cc = ( -l O : l l ) . 

o -1 : 11 
Step 2, Method 2: Note first that 

l (10) (01) l 
::::s 01 + 10 ·1-
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= ~ ( 1 o) + (o 1) (~ + _!__ + _!__ + .. ·) 
s O l l O s s2 s3 

1 (l l) (o 1) ( 1 1 ) 
= -; l l + l O s2 + + · · · · 

Therefore, 

Step 3: Hence, 

o o l o 
l l 

o o o l l l 
Ao= ................ Bo 

o l o o l o 
l o 

o o o l 

and 

Co = (l o: o o) . 
o l: o o 

Hence, the standard controllable and observable realizations are de­
termined. 

8.2.2 Minimal Realizations 
Assume that the (A, B, C)-system is a realization of a given transfer 
function H( s). The n from the previous seetian we know t hat 

l 
H( s) =C( si- A)- 1B = <p( s) P( s) , (8.31) 

w here <p( s) is the characteristic polynomial of A, and each element of 
P(s) is a polynon1ial of degree lessthan n, where matrix A is assumed 
to be n x n. 

First a sufficient condition is presented for the minimality of a given 
realization (A, B, C). 
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THEOREM8.7 
Assume that there is no polynomial of degree at least one which is a common 
factor of <p(s) and all elements ofP(s). Then realization (A, B, C) is minimal. 

PROOF Assumethatrealization (A, B, C) isnotminimaLThen there 
is a realization (Ä., B, C) with smaller dimension in the state variable. 
Then 

l 
cp(s)P(s) 

l -
cp(s)P(s), 

where (/J( s) is the characteristic polynomial of Ä, and, therefore, the 
degree of <P is lessthan that of <p. Hence, there must be a cancellation in 
the numeratar and denominator of the left-hand side. l 

REMARK 8.4 The conditions of the theorem are not necessary in 
general for the minimality of a given realization as is illustrated in the 
following example. l 

Example 8.10 

Consicler realization (A, B, C) with 

Since the controllability and observability matrices are 

and 

K (B,AB)= (10:10) 
o l: o l 

with rank(K) = rank(L) = 2, the realization is completely control­
lable and completely observable. Therefore, i t is minimal. However, 

cp(s) = (s- 1)2 
, 

and 
_l_I 
s -l ' 

which implies that there must be cancellation in the numeratar and 
denaminatar of fraction (8.31). 
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We will next prove that if there is either a single input or a single 
output, t hen the conditions of Theorem 8. 7 are necessary. 

THEOREMB.B 
Assume that realization (A, B, C) is minimal and has either a single input or 
a single output or both. Then there is no common Jaet or ·with degree at [east 
one of <p(s) and all elements ofP(s ). 

PROOF Assume that there is a cancellation, then by using standard 
controllable (if dim(u) = l) or standard observable (if dim(y) = l) real­
ization we can obtain a smaller dimensional realization than (A, B, C). 
l 

Assume that either the input, the output, or both are single, and 
(A, B, C) is a realization of a given transfer function. An algorithm to 
find a minimal realization consists of the following steps: 

Step l Cancel (if necessary) all common factors of <p(s) and all ele­
ments of P( s). 

Step 2 Fin d the standard controllable realization (if dim( u) = l) or 
the standard observable realization (if dim(y) = l). 

Example 8.11 

Consicler again the system 

y (l,O)x, 

which was earlier examined in Examples 8.5 and 8.7. The transfer 
function has the form 

( s l o ) -l (l) ( l ) H( s) =(l, O) O s- l O = s- l . 

Since there is no common factor in the denaminatar and numerator, 
Step l of the algorithm is omitted. 

Step 2: Since p( s) = s l, r l and Po -l. Therefore, 
p(s)H(s) (l),andHo (1). Thefactthatr =m= limpliesthat 
each of matrices Ac, Be, and Cc has only one l x l block: 

Ac = (1), Be= (1), and Cc= (1). 
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Hence, the resulting minimal realization 

i z+u 

y z 

coincides with our earlier results. 

8.3 Applications 
This seetian presents som e real-life applications of the realization theory. 
As in the previous chapters, engineering exaroples are first introduced. 
Case studies from the social sciences and economics are presented in the 
seeond subsection. 

8.3.1 Dynamic Systems in Engineering 
l. In Chapters 5 and 6 we found that the harrnonie motion system is 
completely controllable and observable; therefore, it is minimal. 

2. The seeond-order meehanieal system is also completely controllable 
and completely observable, so it is also minimal. 

3(a). The simple seeond-order eleetrieal system is completely control­
lable and o bservable, so i t is minimal. 

3(b). In Chapter 5 we found that if L1 = L2, e1 e2, and R1 = R2, 
then the fourth-order system was not observable; therefore, it is not 
minimal. The input-output behavior of this special system is described 
by the last two equations: 

and 

We can see that this input-output behavior is not affected by L1 , e1 , 

and R 1 . Therefore, these elements can be removed from the circuit 
without affecting the input-output behavior. 

Now let us ask if our reduced seeond-order system given above is 
minimal. We can campute the controllability matrix: 
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This matrix is of full rank: 

det(K) 
l 

C2L~ =l= 
0 

. 

Therefore, it is completely controllable. Now let us compute the observ­
ability matrix 

) 
This matrix is also of full rank, therefore, this reduced seeond-order 
system is minimal. 

4(a). vVith ef the transistor circuit is controllable and observable, 
therefore, it is minimal. 

4(b). With er, we have 

A=(;~) , b ( ~) , er= (l, O) , 

with a= -hie/ L and f3 =h Je/C. 
The input-output behavior is completely described by the first equa­

tion and output relation: 

y= Xl. 

Therefore, the right half of the circuit is irrelevant, and the system is 
not minimal. 

5(a). The simple two-tank hydraulic system is observable and control­
lable, so it is minimal. 

5(b). The three-tank system with only input u2 and output x 2 was 
described by equations 

x=(-~-~ ~)x+(~) u 
o 3 -3 o 

y= (0, l,O)x. 

This system is neither controllable or observable. Therefore, it is not 
minimal and we must be able to find a reduced order system that has 
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the same input-output behavior. Le t us write 

±1 = -3x1 +3x2 
±2 = 2xl -4x2 + 2x3 +u 
x3 = 3x2 -3x3 

and 

Now define 

and then adding the first and third equations above we will get 

X4 = -3x4 +6x2 
±2 = 2x4 -4x2 +u 

and 

This is a seeond-order system with 

(-3 6) 
A= 2-4 ' eT= (0, l) . 

This system is minimal, which is proven as follows. Nate first that 

which has full rank. Therefore, the system is completely controllable. 
Furthermore, 

which has also full rank. Therefore, the system is completely observable. 
Because it is completely controllable and completely observable, it is 
minimal. 

Now what is the physical significance of this? I t means that if the only 
input is inta the middle tank and the only output is from the middle 
tank, then the two side tanks can be combined inta one tank without 
affecting the input-output behavior of the system. 

6. The multiple input electronic system is controllable and observable 
(see Applications 5.3.1-6 and 6.4.1-6), therefore, the system is minimal. 

7. The single stick-balancing problem is controllable and observable, 
so it is minimal. 
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8. The cart with two inverted pendulums is controllable if L1 =!= L2 
and is always observable. Therefore, our realization is minimal. So let 
us now find out what happens if the lengths of the two pendulums are 
equal. Assume L 1 == L2, and l et 

a2 = a3 = {3, with a=/= {3 , 

and let 'Y= -1/MLl. Then 

(
o o 1 o) 

A= 0001 
a{300 ' 
{3 a O O 

and 
eT = (l, O, O, O) . 

Find a minimal realization: 
Step 1: Using H(s) cT(si- A)- 1b, find the transfer function: 

( -~ _; -~ -!) -1 (~) 
-{3 -a O s 'Y 

H( s) (1000) 

The product of the seeond and third factor is the solution of equations 

( 

S 0 -l 0) ( V1 ) ( 0 ) 0 S 0 -1 V2 0 
-a -{3 s O V3 'Y 
- {3 -a O s V4 'Y 

that is, 
SV! -V3 0 

sv2 -v4 O 
-av1 - {3v2 +sv3 'Y 
-{3v1 -av1 +sv4 ='Y . 

Since a =!= {3, the symmetry in v1 and v2 and also in V3 and V4 implies 
that v1 v2 ==V and v3 V4 =·V*. Hence 

sV- V*== O 

- (a + {3) V + s V* = 'Y . 
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From the first equation, V* = s V; hence, the seeond equation im p lies 
t hat 

V(s2 (a+ {J)) 1 . 

That is, 

V=--'--
s2 (a+J)) and V*= S( 

s2 - (a+ J)) 

In summary, 

S( 
V1 = 'll2 = 2 ( a) s - a+fJ 

and 'U3 = V4 = 2 ( a) , 
s - a+fJ 

and, therefore, 

H(s) =(l o o o)(~~) = v1 = - 2 -
1 -v3 s (a+ J)) · 

V4 

Step 2: Find the standard controllable realization: With the notation 
of Method l of the proof of Theorem 8.6, 

p( s) = s2 
- (a + J)) ; 

therefore, 
r 2, P1 =O, and Po = -(o:+ J)) , 

and since 
p(s)H(s) {, H 0 = {, and H1 =O . 

Therefore, 

Be= (n . Cc= (,,o) , 

that is, 
Zl = Z2 

z2 = (a+ J))z1 +u 
Y= (Zl 

is the minimal realization. 
We can easily check the results as follows: 
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l. Minimality: 

Kc (~ ~) , rank(Kc) 2, 

and 

Le = ( 6 ~) , rank(Lc) 2 . 

2. Transfer function: 

Hc(s) = ('y, O) (-(as+ /3) -~)-t (n 

(!,0) l (l)= 1 
s2 - (a + ,B) s s2 - (a + ,B) · 

This me ans t hat if the lengths of the p end ulums are the same t hen 
the above seeond-order system is the best model for the cart with two 
inverted pendulums in the sense that the state dimension cannot be 
reduced further. However, as with the original system this minimal 
realization is unstable. 

9. Our electrical heating system had been shown earHer to be control­
lable and observable, therefore, it is minimal. 

10. The nuclear reactor system was completely controllable and ob­
servable; therefore, it is minimal. 

8.3.2 Applications in the Social Sciences and Economics 
l. In Sections 5.3.2 and 6.4.2 we derived that the linearized predator-prey 
mod el 

. be c 
Gs = --Ws +-u 

d d 

y= Ws (8.32) 
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is completely controllable and completely observable. Therefore, The­
orem 8.3 implies that there is no lower dimensionallinear system with 
the same input-output relation. 
Next we show that the same conclusion can be reached by using the 

transfer function approach suggested in Section 8.2. Since in this case 

c= (0, l) ' 

the transfer function has the form 

s ....f c 

( 

b 

) 

-1 

H( S) = (0, l) - dba ; ( 3 ) 

a c 
b 

s2 + ac · 

Since the numeratar is a constant, this fraction cannot be simplified by 
a polynomial of degree at least one. Hence, Theorem 8. 7 im p lies that 
system (8.32) is a minimal realization of its transfer function. 

2. The cohort population model (6.17) is ahvays completely control­
lable, as established in Section 5.3.2. Ho\vever, in Section 6.4.2 \Ve de­
rived that it is not always completely observable. Therefore, it is not a 
minimal realization. As an illustration, consicler the numerical example 

p(t +l) (
Q Q 2Q) 
Q O O p( t)+ u( t) 
o a: o 

y = (1, l, l)p ' (8.33) 

where the population is assumed to be divided into three groups, the 
input is three-dimensional, and there is a single output, the total popu­
lation. Here Q > O is a given parameter. 

The transfer function is 

(
s-Q-Q-2Q)-l 

H( s)== (1, l, l) -Q s O , 
o -Q s 

since B ==I. Note that H(s) is a row vector, which can be determined 
directly without matrix inversion. If h1, h2, and h3 denote the compo-
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nents of H( s), then they satisfy equation 

That is, 
h 1 (s a) - h2 a = l 
-h1a +h2s -h3a l 
-2h1a +h3s = l . 

Simple calculation shows that the solution is 

That is, 

l 

s 2a 

H(s) = (1, l, l) . 
s 2a 

(8.34) 

Since system (8.33) has a three-dimensional state variable, and the de­
gree of the denominator of H( s) is only one, the system is not a minimal 
realization of this transfer function. From the proof of Theorem 8.8 we 
know that the standard observable realization of this transfer function 
gives a lower dimensional realization. In this case, Method 2 of the proof 
of Theorem 8.6 is illustrated. 

Step 1: Obviously p( s) s 2a, r l, and Po -2a. 
Step 2: Next we expand H(s) about lsl = oo: 

l 
l ( 2a 4a

2 
) = (1, l, 1)- l+-+-+ ... 

s s s2 
s 

H(s) = (1, l, 

which implies that Lo = (1, l, 1). 
Step 3: Therefore, 

Ao = (2a), Bo= (1,1,1), and Ca (1) , 

that is, the following minimal realization is obtained: 

z(t +l) = 2az(t) + (1, l, l)u(t) 

y(t) = z(t) . (8.35) 
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We can easily check that the transfer function of this system is (8.34), 
since 

Co(si- Ao)- 1Bo =l· (s 2a)- 1 (1, l, l)= (l, l, l) == H(s) . 
s- 2a 

The same minimal realization can be obtained by using a simple el­
ementary approach, which can be used only in certain special cases. 
Premultiply the difference Equation (8.33) by the row vector (1, l, l) to 
get 

(1, l, l)p(t +l) = (2a, 2a, 2a)p(t) + (1, l, l)u(t) , 

and by introducing the ne\V state variable 

z (l,l,l)p 

we get relations (8.35). 
3. The arms racesmodel (6.18) was investigated earlier in Sections 5.3.2. 

and 6.4.2, and we verified that except for very special cases the system is 
completely controllable and is always completely observable. Therefore, 
it is almost always a minimal realization of its input-output relation. 
Since 

A (
-b a) 
c -d ' B=(~) , and C= (l, O) , 

the transfer function has the form 

H( s) (l O) (s+ b -a )-l (a) 
' -c s+ d {3 

(1 O) l 
' (s + b)( s + d) ( s+d a ) (a) 

ac c s+ b {3 

sa+ (ad+ a{3) 
s2 + s (b + d) + (bd - a c) 

Since the input and output are both single-dimensional, the system is 
a minimal realization if and only if this transfer function cannot be 
simplified by a linear polynomial, that is, \vhen the numerator and de­
nominator have no common root. The only root of the numerator is 

s 
{3 

-d- a-, 
a 
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and the roats of the denaminatar are 

- (b + d) ± J (b - d) 2 + 4ac 
2 

Hence, the system is minimal if and only if 

-d af!_ =/= -(b+ d)± J(b- d) 2 + 4ac . 
a 2 

Simple calculation shows that this relation is equivalent to the following: 

:= =/= d - b ± J (b - d) 2 + 4ac . 
(3 2c 

Nate that the same condition was found in Section 5.3.2 to be necessary 
and sufficient for the complete contraHability of the system. 

4. For the warfare rnadel (6.19) we saw in Sections 5.3.2 and 6.4.2 
that the system is completely controllable and completely observable, 
and, therefore, it is a minimal realization. The same conclusion can be 
obtained by examining the transfer function of the system. In this case, 

l 
(1, O) 2 h h s l 2 

Since the only roat of the numeratar is zero and the roats of the denam­
inatar are ± ~ =/= O for positive values of h1 and h2, this fr action 
cannot be simplified by a polynomial of degree at least one. Therefore, 
Theorem 8.7 implies the minimality of this system. 

5. The linear epidemic rnadel of Application 6.4.2-5 was shown to be 
completely controllable for x =/= O, but not observable. Therefore, it is 
not minimal. A minimal realization can be determined as follows. Nate 
first that the systems equations can be rewritten as 

i:= ( -ax)y 

iJ = (ax- (3)y u 

with y being the output. Since x does not depend on the input u and 
the output is independent of x, the same input-output relation can be 
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obtained by only the seeond equation, which has a single-dimensional 
state variable. 

6. The Harrod-type national economymodel (6.20) is single-dimensional; 
therefore, the dimension of the state variable cannot be further de­
creased. 

7. The same holds for the linear cobweb model (6.21), which also has 
a single-dimensional state. 

8. The dynamic model (6.22) of interrelated markets is completely 
controllable, as shown in Section 5.3.2. However, it is not always com­
pletely observable; therefore, the system is not minimal. For the sake of 
convenience we repeat the system here: 

p == K(A B)p +u 

l 
y == -l T p . (8.36) 

n 

In this case, 

H( s) == _!_l r(sl- K( A- B)]- 1 , 
n 

since the coefficient of u is the identity matrix. 
Consicler the special case, when themarketsare independent, that is, 

w hen 
A== diag(au, ... , ann), B diag(bll, ... ,bnn) 

with aii < O and bi i > O for i == l, 2, ... , n. I t is also assumed that 

K== diag(kt, ... , kn) , 

where ki >O for i== l, 2, ... , n. Therefore, 

H(s) ==.!_l r diag(s- k1(au- bu), ... , s kn(ann- bnn))- 1 
n 

== .!_ (Q1(s) Qn(s)) 
n p(s) ' .. ·' p( s) ' 

where n 

p( s) == IJ (s- ki(aii- bii)) 
i= l 
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and for all k, 
n 

Qk(s) = II (s- ki(aii- bii)) . 
i=l,i:fk 

The necessary and sufficient condition that p( s) and all Q k (s) (k = 
l, 2, ... , n) have no common divisor of degree at least one is that the 
numbers ki(aii- bii) are all different. Hence, Theorem 8.7 implies that 
this is the necessary and sufficient condition for the minimality of the 
system. 

9. Consicler finally the oligopoly model (6.23), which is not controllable 
and is not observable. Therefore, the dimension of the state variable can 
be reduced. In this case, 

and 

therefore, 

A= -~ o l 
B=--1 

2a ' 

s~~ ... ~ 
-l 

l s! ... l 
2 2 2 

H(s) =-~·l T ~ ~ s ... ~ l . 
2a 

! ! ! ... s 
2 2 2 

We can avoid the matrix inversion by observing that 
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where the h~s satisfy the linear equations 

sh1 + ~h2 + !h3 + .. · + !hn l 

~hl + sh2 + ~h3 + .. · + ~hn = l 

~h1 + ~h2 + sh3 + · · · + ~hn = l 

419 

Observe that these equations are symmetric in the unknowns; therefore, 
h1 = h2 = · · · = hn =h. The first equation implies that 

that is, 
l 

h=---. 
s+ 

Hence 
H(s) = 

n l 

and by using the notation of the proof of Theorem 8.6, p( s) = s + 
((n - 1)/2) and Ho ( -n/2a). Therefore, the standard controllable 
realization is minimal and has the form 

y 

Problems 

n l ---z+u 
2 

-n -z. 
2a 

l. Is the weighting pattem 

T(t,r) t+r+tr+l 

realizable? Find a realization of T( t, r). 

2. Find a realization of the weighting pattem 

(tT t) T( t, r)= T 1 . 
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3. Find a realization of the weighting pattern 

T( t, r) (
t+ T tr +l) 
l+r l+r 

4. Fin d the weighting p a ttem for system 

5. Fin d the weighting p a ttem for system 

y (O,l)x. 

6. Is the following system minimal? If not, giv e a minimal realiza­
tion. U se the state-space approach. 

y (1, l)x. 

7. Is system 

y= (0, l)x 

minimal? Use the state-space approach. 

8. Is system 

y == (1, l)x 

minimal in [1, 2]? 
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9. Is system 

y (l, l)x 

minimal? Use the state-space approach. Use relation (8.22) to obtain a 
time-invariant minimal realization. 

10. Illustrate Theorem 8.2 for system 

y (l, l)x 

with 

11. Find a time-invariant realization of the weighting pattem 

T(t,r) t-r. 

U se the algorithm suggested by Theorem 8.4 and select [to, t 1] = [0, l]. 

12. The system 

has a time-variant nlinimal realization 

y e3t. z. 

Repeat Example 8.6 to find a time-invariant minimal realization. Select 
the unit interval [0, 1]. 

13. Find the standard controllable realization of the transfer function 

H( s) = (2, 2) . 
s l 
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14. Find the standard observable realization of the transfer function 

H( s) = (2, 2) . 
s-1 

15. Find a time-invariant minimal realization for the system 

y (1,1)x, 

using the transfer function approach. 

16. By using the transfer function approach, show that the system 

y= (0, 1)x 

is minimal. 

17. By using the transfer function approach show that the system 

y (1, l)x 

is not minimal. Find a minimal realization. 

18. Discuss the minimality of the mechanical system 

y= (1,0)x 

that was introduced in Problem 3.7. 

19. Let A(t) be an n x n continuous matrix. Provethatthere exist 
continuous n-dimensional vectors b( t) and c( t) such that system 

x(t) A(t)x(t) + b(t)u(t) 
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y(t) eT (t)x(t) 

is minimal. 

20. (i) Provethat the standard controlla b le realization is completely 
controllab le. 

(ii) Prove that the standard observable realization is completely ob­
servable. 

21. Can you find values of parameter a such that system 

y (l, O)x 

is not minimal. 

22. Assume that realization x = Ax+ Bu, y = Cx is minimal, and 
matrices Å, B, C are sufficient! y goodapproximations of A, B, C. Prove 
that system z Ä. z + B v, w C z is also minimal. 

23. Prove Theorem 8.6 by using uncoupled representation of each 
element of H( s) and the f act that 

o l o 
o o l 

A 

o o o 

o 
o 

l 

b 

is a realization of the l x l transfer function 

H(s) = dn-lsn-l + · · · + d1s +do . 
sn + an-lsn-l + · · · + a1s + ao 

o 
o 

o 
l 

24. Can the Fibonacci sequence (see Example 2.15) be generated by a 
first order linear difference equation? 

25. Assume that in an interval [t 0 , t*], 

p 

liT( t, T)- L Dk(t)Gk(r)ll <c:. 
k=l 
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Show that 

C(t) = (D1(t), ... ,Dp(t)) 

is a realization of the approximating weighting pattern 

p 

T( t, r) 
k= l 

Assume that the initial states are zero, bound the discrepancy between 
the outputs of the true and approximating systems. 



chapter nine 

Estimatian and Design 

In Chapter 5 we investigated the controlla bility of linear systems by rna­
nipulating the inputs to cause the system to behave in a desirable way. 
In that approach, we assumed that the input function was generated 
by some process external to the system itself, and that this input was 
applied to the system. This kind of control is called open-loop control. 
However, it is usually more effective to determine the input on a con­
tinuing basis as a function of the behavior of the system. This kind 
of control is called closed-loop control, and usually the system is called 
a feedback system, since the states or outputs are fed back (in perhaps 
modified form) to the input. 

For the sake of simplicity, only continuous time invariant systems will 
be considered in this chapter; discrete systems can be analyzed in an 
analogous manner. Consid er, therefore, the system 

x Ax+Bu (9.1) 

y Cx. (9.2) 

In the case of state feedback \Ve assume that 

u(t) ==ii( t)+ Kx(t) , (9.3) 

where ii( t) is the external input, and K is a given eonstant matrix. That 
is, the K-multiple of the state is fed back to the input. In the case of 
output feedback, Equation (9.3) is modified as 

u( t) ii( t)+ Ky(t) ==ii( t)+ KCx(t) . (9.4) 

That is, in the case of output feedback, matrix K is replaced by KC. 
We can substitute Equations (9.3) and (9.4) into Equation (9.1) to get 

425 



426 chapter nine: Estimatian and Design 

the modified systems equations: 

x (A+ BK)x +Bu (9.5) 

and 

x (A+ BKC)x +Bu. (9.6) 

That is, the new coefficient matrices are A+ BK and A+ BKC, respec­
tively. Note that output feedback has many applications if only some 
state variables (or their linear combinations) bu t not all of them are 
available for feedback. 

Closed-loop control systems have several advantages over open-loop 
control systems. First, in many cases the iinplementation of the open­
loop contro l requires a very sophisticated (and, therefore, expensive) 
computing device to determine the inputs required to lead the system to 
a desired behavior. Seco n d, a weil-designed feedback system is inherently 
less sensitive to the accuracy of the mathematical rnadel of the system. 
Third, a feedback system can automatically adjust to unforeseen systen1 
changes or to unanticipated disturbance inputs. Fourth, feedback can be 
used to alter the dynamics of the system, e.g., to decrease the response 
time or broaden the bandwidth. 

This chapter is devoted to analyzing feedback systems and introducing 
som e applications of feedback systems to construct o bservers. 

9.1 The Eigenvalue Placement Theorem 
As stated before, one im portant feature of feedback is that even unstable 
systems can be made stable, and stab le systems can be made faster. We 
know from Chapter 4 that the speed of a time-invariant linear system 
depends on the locations of the eigenvalues of the coefficient matrix; 
therefore, it is natural to ask how much influence feedback can have on 
the eigenvalues of a system. An answer for this question is presentedin 
the next result, which is known as the eigenvalue placement theorem. 

THEOREM9.1 
Let A be an n x n eonstant realtnatrix and b a real n-vector such that b, 

Ab, A 2b, ... , A n-
1 b are linear ly independent. Then, given any nth degree 

polynomial p(.\) =An +Pn-1An-1 + · · · +p1.\+po, there is an n-dimensional 
real row vector kr such that the characteristic polynomial of matrix A + b kr 
is the given polynomial p().). 
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PROOF Consicler the system described by differential equation 

x Ax+ bu. (9.7) 

The assumption of the theorem implies that this system is completely 
controllable, and, therefore, Theorem 7.2 implies that there exists a non­
singular matrix T such that 

o l o o o 
o o l o o 

Å=TAT-1 = , and b= Tb = 

o o o l o 
a0 a1 a2 · · · an-l l 

IfkT (kl, ... , kn) is an y vector, then 

o o o o 
o o o o 

bkT 

o o o o 
k1 k2 k3 · · · kn 

therefore, 

o l o o 
o o l o 

Å+ bkT = 

o o o l 

From the corollary of Theorem 7.2 we know that the characteristic poly­
nomial of Å + bkT is the polynomial 

so, by selecting 

k1 = -ao- po, k2 -al Pl, ... , kn -an-l- Pn-1 (9.8) 

the characteristic polynomial of Å+ 'b:kT becomes p().). 
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Finally, we show that vector k T = k. TT satisfies the assertion. Simple 
calculation shows that 

Therefore, matrix A + hk T is similar to Ä + "b k. T, which implies that 

they have the same characteristic polynomial. l 

The construction of vector kT consists of the following steps: 

Step l Thansform system (9.7) to contraHability canonical form (7.14) 
by applying the algorithm of Theorem 7.2. 

Step 2 Campute vector k_T by using Equation (9.8). 

Step 3 Determine vector kT = k.TT. 

COROLLARY 9.1 
Assume that for an n x n real matrix A and an n-vector c, vectors c T, c T A, 
eT A 2 , ... , eT A n-l are linearly independent. Then, given any nth degree 
polynomial p( A) A n + Pn-1 A n-l + · · · + P l A + po, t here is a real n-vector 
k such that the characteristic polynomial of matrix A+ kcT is the given 
polynomial p(A). 

This assertion is a simple consequence of the theorem and the duality 
principle discussed earlier in Section 6.3. 

Example 9.1 

Consicler matrix 

A = ( -~ ~) and vector b (n , 
and define polynomial p( A) = A2 + 2A +l. We now illustrate the 
above algorithm. 

Step 1: From Example 7.5 we know that canonical form (7.14) of 
this system is given by 

- ( o l) 
A= -w2 O ' T .!_(l o) . 

w Ow 

Step 2: Since ao -w2, a1 = O, Po = l, and Pl 
relations (9.8) we have 

2, from 

and k2 -al - Pl O - 2 = -2 . 
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That is, 
i(T (w2 - l, -2). 

Step 3: Finally, 

We can check this result by simplycomputing the characteristic poly­
nomial of matrix A + hk T. In this case, 

( o w) ( o O) ( O w) = + l = l -w O w- w -2 -z; -2 

with characteristic polynomial 

( 
-,\ w ) <p(,\)= det -t _2 _ ,\ 

No te that the same result is obtained by the following direct method, 
which is very useful in the case of low-dimensional systems. Assume 
that k T = (kl, k2), then 

The characteristic polynomial of this matrix is as follows: 

( 
-,\ w ) 2 2 <p(,\) =det -w+ kl k

2 
_ ,\ = ,\ - ,\k2 +(w - wk1 ) . 

Equating the like coefficients of this polynomial and those of polyno­
mial p(,\) = ,\2 + 2,\ +l, we obtain the equations 

which imply that k1 = (w2 - 1)/w =w- 1/w and k2 = -2. 

429 

Finally, \Ve remark that Theorem 9.1 remains true in the more general 
case of multiple inputs and/ or multiple outputs. We present the follow­
ing theorem without proof. 
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THEOREM9.2 
Assume that system (A, B, C) 'With n-dimensional state variables is com­
pletely controllable (or observable), and l et p be a given nth degree polynomial. 
Then there exists matrix K such that the characteristic polynomial of matrix 
A + BK (or A + KC) is the given polynomial p. 

This theorem is illustrated in the following example. 

Example 9.2 

Consid er the same coefficient matrix 

w hi ch was investigated in the previous example. Assume furthermore 
that p(-\) = -\2 + 2-\ +l, but assume now that 

That is, the system now has a two-dimensional input. If kij (i, j = 
l, 2) denote the elements of matrix K, then 

A+BK = ( O w)+ (O l) (k11 k12) 
-w O l l k21 k22 

( 
k21 w+ k22 ) 

= -w + ku + k21 k12 + k22 · 

The characteristic polynomial of this matrix is given as 

cp(-\) = det ( k21 - A w + k22 ) 
-w + ku + k21 k12 + k22 -\ 

(w+ k22)( -w+ ku + k21). 

Byequating the like coefficients of this matrix and those of polynomial 
p( A) = A 2 + 2A + l we get the following equations: 

k21 + kt2 + k22 = -2 
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We have two equations for four unknowns; therefore, we can choose 
arbitrary values of two of the unknowns. For example, select k21 = 
k12 O in order to obtain a diagonal matrix K. Then the above 
equations red uce to 

(w- 2)( -w+ ku) -l, 

that is, 

k u 
-l 2w -l 

k22 = -2. --+w and w 2 w-2 

Hence, 

K= ( -~). o 

We can check this result by sim p ly calculating matrix A + BK and 
determining its characteristic polynomial. In our case, 

A+BK= ( o w)+ (O 1) ( w2

::_~-1 o) 
-w O 11 O -2 

( 
o w- 2) 

-w+ w2
-2w-1 -2 
w-2 

with characteristic polynomial 

( 
-.\ w 2 ) 2 cp(.\) = det _ 2 _ .\ = .\ + 2.\ + l , 

which coincides with p(.\). 

9.2 ()bservers 

431 

In many practical systems, the entire state vector may not be available. 
In physical systems, some components of the state are inaccessible in­
terna! variables, \vhich either cannot be measured or the measurements 
require the use of very costly measurement devices. Therefore~ it is not 
feasible, or it is very expensive, to measure all state components. We 
may face similar situations in large social or eecnornie systems, when 
the measurements of all state variables are very expensive due to the 
extensive surveys and the camplex record keeping procedures. 
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A common way to estimate the state of a system is to build a model 
of the original system, and then measure the state of this model. This 
trivial solution is shown in Figure 9.1 for continuous systems, and it is 
known as the open-loop observer. 

Input 

u(t) 

,-- -
l 
l 

Observer 1 
l 
l 

L __ 

Figure 9.1 Open-loop observer. 

Original 
system 

x= Ax+ Bu 
y= Cx 

Mo del 
z= Az +Bu 

Output 

y(t) 

State 
- - - - ~ estimate 

1 z(t) 
l 
l 
l 
l _ __ _j 

The estimate z( t) provided by the measurements from the model does 
not utilize the available information on the output y( t) of the original 
system. If the initial state z(O) equals x(O), and the model is accurate, 
then it will follow the original system exactly. However, if x(O) is not 
available, and the model is started with an initial state, that differs from 
x(O), then z(t) may differ from x(t) for all future times. If we denote 
the error x( t)- z( t) in the state variables by Xe(t), then Xe satisfies the 
differential equation 

(9.9) 

since 

Xe x z= (Ax+ Bu) - (Az +Bu) = A(x z) = Axe . 

T here is no guarantee, in general, t hat with increasing t, this error X e 

will die out. We know from C ha p ter 4 that Xe (t) -t O as t -t oo if and 
only if all eigenvalues of A have negative real parts. 

In the case of discrete systems, the error Xe satisfies the homogeneous 
difference equation 

Xe(t +l) = Axe(t) , (9.10) 

and the error tends to zero as t -t oo if and only if all eigenvalues of 
A are inside the unit circle. In both cases, this kind of stabilization 
depends on the locations of the eigenvalues of A. 
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In many cases the model is useless, since if the system is not asymp­
totically stable, the error does not tend to zero, even llxe(t) Il may tend 
to infinity as t ---? oo. Forthese reasons, closed-loop observers have been 
developed, where the output y of the original system is campared to the 
computed output C z of the model, and the error y e = y C z is fed 
back to this system, as shown in Figure 9.2. 

Input 
Original 
system 

u {t) i= Ax+ Bu 
-------~ 

l 
Observer 1 

y =Cx 

Mode l 
z= Az +Bu Kye 

l 
L_ 

Figure 9.2 Closed-loop observer. 

Output 

y{t) 

y{t) 

-------, 
l 

+ l 

z(t) 

l 
l 
l 

------' 

This observer has the mathematical representation 

z = Az +Bu- K(y- Cz) 

= (A+KC)z+Bu Ky. 

State 
estimate 
z(t) 

(9.11) 

Simple calculation shows that the error Xe satisfies the relation 

:Xe =x- z= (Ax+ Bu)- ((A+ KC)z +Bu- Ky) 

=Ax Az-KCz+KCx (A+KC)(x-z), 

that is, 

:Xe = (A+KC)xe. (9.12) 
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Assume now that the original system is completely observable. Then 
Theorem 9.2 implies that there exists a matrix K such that A + KC 
has any desired characteristic polynomial. Select p().) to be a poly­
nomial having roots with negative real parts; then the homogeneous 
Equation (9.12) becomes asymptotically stable. Hence, Xe(t) --+ O as 
t--+ oo. A simplified scheme for this observer is presented in Figure 9.3. 

System Observer 

u(t) i Ax+ Bu y(t) 
z= (A+ KC)z + Bu-Ky 

y= Cx 
~ 

Figure 9.3 Simplified closed-loop observer. 

Observer (9.11) is illustrated in the following example. 

Example 9.3 

Consicler the system 

y == (1, l)x, 

State 
estimate 

z(t) 

which was the subject of our earlier Exaroples 9.1 and 9.2. Since C is 
a two-dimensional row vector, K must be a two-dimensional column 
vector. If k1 and k2 denote the components of K, then 

A+KC 

with characteristic polynomial 

cp(.X) 

The roots of this polynomial have negative real parts if and only if 
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Select,forexample,k1 = k2 = -w,then'fJ(A) A2+2Aw+w2 with 
the single eigenvalue A -w. Hence system (9.11) has the form 

9.3 Reduced-Order Observers 
The observer discussed in the previous seetian gives the estimates of 
all state variables. This results in some redundancy, since certain linear 
combinations of t hese state variables ( specifled by the rows of matrix C) 
are already known. In this seetian a new method will be introduced to 
elimina te this redundancy. I t uses a lower dimensional observer, which 
gives only the information required to recover the entire state. For the 
original development of reduced-order observers, see (29]. Our discussion 
will focus on continuous systems, but discrete systems can be treated in 
an analogous manner. The details are left to the reader as an exercise. 

Consicler the time-invariant linear continuous system 

x= Ax+ Bu 

y=Cx, (9.13) 

where we assume that matrix C has linearly independent rows. That is, 
if y is p-dimensional and p :::; n, then i t is assumed that rank( C) = p. 
Let matrix D be selected such that matrix 

T (~) (9.14) 

is nonsingular. Since the ro\vs of C are linearly independent, s u ch D 
exists. Introduce the new variable x = Tx, which can be partitioned as 

x (;) , 

where z is (n-p)-dimensional, and y is the output of the original system. 
Hence, we may assume \vithout loss of generality that p components of 
the state of the original system can be measured directly. When matrices 
A and B are partitioned accordingly, the system can be rewritten as 

(9.15) 
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Multiplying the lower part by a matrix K and adding the resulting 
equation to the upper part yields the relation 

= (An+ KA21)(z + Ky) 

Introduce now the new variable 

x= z+Ky, 

then the above equation shows that it satisties relation 

(9.16) 

Nate that u and y are measurable; only x is unknown. This unknown 
state can be o b served by merely modeling this system as 

(9.17) 

and measuring the state z of this system. Let Xe denote the error x- z, 
then subtract Equations (9.16) and (9.17) to get 

(9.18) 

The reader can verify that if the original system (9.13) (or equiva­
lently (9.15)) is completely observable, then the reduced system (9.17) 
is also completely observable. Therefore, Theorem 9.2 implies that there 
exists a matrix K such that system (9.18) is asymptotically stable, from 
which we conclude that Xe(t) ~ O as t ~ oo. Hence, state x is ob­
servable, and then, the unmeasurable part z of the state of the original 
system is o btained as 

z=x-Ky, 

which follows from the definition of vector x. An example for reduced 
o b servers will be presented in the next seetio n. 
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9.4 The Eigenvalue Separation Theorem 
Consicler the time-invariant linear continuous system 

x Ax+Bu 

y Cx, (9.19) 

and assume that it is completely controllable. Assume furthermore that 
the entire state is available for feedback. This feedback structure is 
shown in Figure 9.4. The input of the feedback system is 

ii u+ Kex; 

therefore, 

x= Ax+ B(u +Kex)= (A+ BKe)x +Bu. (9.20) 

From Theorem 9.2 we know that the eigenvalues of this new coefficient 
matrix A + BKc can be placed in any desired positions. 

x (t) 

Figure 9.4 Feedback controller. 

When the state is not available, \Ve propose making use of the observer 
introduced in Section 9.2: 

z = (A+ Ko C) z+ Bu- Koy . (9.21) 

Then, the observed state z is fed back to the system, as shown in Fig­
ure 9.5. Therefore, in this case, 

x= Ax +B(u + Kez) =Ax+ BKez +Bu 

and 

z (A+KoC)z+B(u+Kez) -Ko(Cx) = 

KaCx +(A+ KoC + BKe)z +Bu. 
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System Observer 

u(t) + x = Ax + Bu y(t) 
1-----i.__~ 1----floo-1 i= (A+ K0C)z +By- K0y 

+ y= Cx 

z (t) 

Kc ~-+--------------_.. 

Figure 9.5 Feedback controller with observer. 

Thus, we obtain the following system: 

(:) (-~CA+K~~~BKJ (~)+(~)u. 
Next we replace z by the new variable Xe ==x z using the transforma­
tion 

Then easy calculation shows that 

x== Ax+ BKc(x- Xe) +Bu== (A+ BKc)x- BKcxe +Bu 

and 

Xe == x z [Ax+ BKc(x- Xe) +Bu] 

-[-KoCx +(A+ KoC + BKc)(x- Xe) +Bu] 

== (A+ KoC)xe . 

These equations can be summarized as 

y (C, O) (::) . (9.23) 

This derivation and Equations (9.22) and (9.23) have the following 
consequences: 
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l. The observation error Xe is uncontrollable from the input u. This 
is as expected, since the error tends to zero as t -+ oo regardless of 
what input is selected. 

2. The characteristic polynomial of the composite system is the prod­
uct of the characteristic polynomials of matrices A + BKc and 
A+KoC. 

The seeond property is known as the eigenvalue separation theorem, 
and it follows from the simple fact that the characteristic polynomial of 
the coeffi.cient matrix of system (9.22) can be factored as 

det ( A+B~c .\I -BKc ) 
A+KoC -,\I 

det (A+ BKc- .\I)· det( A+ Ko C- .\I) . 

This means that the insertian of an observer into a feedback system does 
not affect the eigenvalues of the original system. That is, an observer 
does not change stability or dynamic response. It does, however, add 
additional modes. 

Example 9.4 

Consicler the system 

y= (1, l)x, 

which is known from our Exaroples 5.4 and 6.2 to be completely con­
trollable and completely observable. 

Since y = X1 + x2 is the measurable output, introduce the new state 
variables x1 and y. Since 

and 

-2wx1 + wy +u, 
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we have the transformed system 

(9.24) 

This system is not asymptotkall y s table, since the roots of its char­
acteristic polynomial 

(-w - A) (w A) - w (-2w) = A 2 + w2 

are ±jw. 
First we apply the feedback (9.20) for system (9.24) with Kc 

(kb k2). Then 

( 
-w w ) 

- -2w + k1 w+ k2 

with characteristic polynomial 

Note that by selecting k2 = -w and k1 = 3w /2, the eigenvalues 
become ~ (-w± j w). Hence the system becomes asymptotically stab le. 

The reduced observer for the unmeasurable state component x1 will 
be constructed next. U se relations (9.15) to see that in this case, 

Au = -w, A12 =w, A21 -2w, A22 w, B1 O, and B2 = l . 

If Kc = (kc ), then 

Au+ KcA21 -w+ kc( -2w). 

Since this is a l x l matrix, its only eigenvalue is -w 2wk0 , which 
is negative, for example, by selecting kc = O. Use equation (9.17) to 
find that the reduced observer has the form 

z= -wz+wy, (9.25) 
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u (f) + system observer 

+ 
(9.24) 

-----)Jo-
(9.25) 

(;w.-w) 

Figure 9.6 Feedback controller with observer for Example 9.4. 

which is the first equation of the systems rnadel (9.24). The combi­
nation of the resulting feedback and reduced observer is shown in 
Figure 9.6. 
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In many applications, the original system may change due to such 
effects as warrning up, wearing out, fatigue, and so on. In such cases the 
observer will no longer be an exact copy, which can be source of many 
problems: instability, low speed, poor performance, and so on. The 
usual way to overcome this difficulty is to design an adaptive observer, 
which follows the changes of the original system. The mathematical 
details are not presented here; they can be found in adaptive control 
literature. However, som e basic ideas of adaptive control systems will 
be discussed in Chapter 10. 

9.5 Applications 
This section is devoted to the discussion of some applications of feedback 
systems in engineering and the social sciences. 

9.5.1 Dynamic Systems in Engineering 
l. The reduced-order observer for our harmanie motion model was 

derived in Example 9.4. We \vill not do anything else with it. 

2. For the seeond-order meehanieal system, assume that the original 
model parameters are J( l'vf = l, B 2. This would make 
( = l = Wn, with s 1,2 = -1, and would produce, according to 
Equation (3.74), a step response of 

B( t) l - (1 + t)e-t . 

Now suppose your boss says this is not fast enough: he wantspoles 
at -2 ± j2, i.e., ( V2/2 and Wn 2V2,. How can you move 
the poles without changing the physical elements M, B, and K? 
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Measure the output position and measure or campute the output 
velocity, and use these with feedback to place the poles where they 
are desired. The original system is described with equation 

If we feed back the states through vector kT and add this to the 
input u, we will find that the new input to the system is 

so the feedback system has the form 

The coefficient matrix is 

with characteristic polynomial 

cp( .A) 

Or, in the notation of Section 9.1, 

and 

so 

we obtain equations 

K 
lY! 

l 

+ 

Po, 

) 
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and 

Now, at the beginning of this problem we said that K M== l, 
B 2, and that we wanted 

>\1,2 -2 ± j2 . 

Therefore, the desired characteristic polynomial is 

cp(A) ==(A+ 2- j2)(A + 2 + j2) 

= A2 + 4A + 8, 

so 

Po = 8, P1 4. 

Therefore, our desired feedback gains are 

and 

Therefore, we have shown that feedback can alter the dynamics 
of a system. In this example we have rnaved the poles from one 
place in the s-plane to another in order to establish certain desired 
system properties. 

3. For our seeond-order L-R-C circuit, assume that we would like to 
use feedback to move the poles or adjust the sensitivity of the 
system, hut we cannot gain access to measure the state variables. 
(Perhaps the circuit is modeling something sealed inside a con­
tainer, s u ch as the human skull.) What can we do? Weil, we 
can build an observer and use its state variables for control. The 
original system is 

b= (t) 
eT (0, l) . 

After applying feedback, \Ve have the ne\v coefficient matrix 
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Next we want to make sure the observer is stable. The character­
istic polynomial is 

Therefore, the feedback system will be stab le if 

and, because au < O (we are not allowing negative resistance or 
inductance values), 

The feasible region is shown is Figure 9.7. 

Figure 9.7 Region of stability for Application 9.5.1-3. 

4. If we construct an observer for the transistor circuit, we have 

A+kci = ( -~ ~) + (~~) (I,o) 

Since the matrix is lower triangular, the eigenvalues are A.1 = O and 
A.2 = k1 - a. If k1 < a, then the system is stable but the stability 
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is not asymptotic. If k1 > a:, then the system is unstable. The zero 
eigenvalue shows in general that no asymptotical stability occurs. 
Physically, it means that there is no feedback that makes the error 
of the initial state converge to zero as t~ oo. 

5. The behavior of the two-tank hydraulic system of Application 3.5.1-
5 is very sensitive to the resistance R1. Suppose that this resistance 
is increasing due to rust, or deposits of cholesterol or algae. How 
can you make the output less sensitive to changes in R1? By using 
feedback. Our original system was described with 

(
hl(t)) ( x(t) = h2(t) ' A= ( 1 1 )),h (Ao\), 

- R1A2 + R2A2 

and assume now that eT (0, 1/ R1). 
Let us now measure the height of the fluid in each tank as shown 
in Figure 9.8, and use this in a feedback loop: 

u= u+kTx, 

where u is the input with feedback and u is input without feedback. 
The feedback model is the following: 

Figure 9.8 The two-tank system of Application 3.5.1-5 with the addition of 
water-level sensors to be used for feedback. 

From 
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we have 

) 
From these equations we can find that the transfer function is 

H(s) = 

where C1 is equal to R1 k1R1R2- k1RI- k2R1R2. Now, if we 
want to talk about the sensitivity of a system, we must specify the 
sensitivity of what, to what, evaluated at what frequency or time. 
A good choice for this system is to look at the sensitivity of the 
steady-state value of the step-response with respect to R1. To find 
this, let us first take the derivative of the step~response, H( s)/ s 
(which we will call SR(s)), with respect to R 1 : 

8SR(s) 

8R1 

-R2[2s2(R1R2A1A2) + s(R2A1 + 2R1A1 + R2A2 2k1R1R2A2) + C2] 

s[s2(Rr R2A1A2) + s(R1R2A1 + Rt A1 + R1R2A2 - k1Rt R2A2) + C1]2 ' 

where C2 is equal to l-k1R2-2k1R1-k2R2. To make this problem 
tractable, let us now make some simple numerical substitutions: let 
R1 = R2 A1 A2 = l. 

8SR(s) 

8R1 

We are only interested in the steady-state, or low-frequency, char­
actedstics of the step-response, so we can use the final val u e theo­
rem derived in Application 3.5.1-9 as 

lim f(t) = lim sF(s) 
t-+CXJ s-+0 

to find 
lim s 8SR(s) = 3kl + k2- l 
s-+0 8R1 [l 2kl - k2]2 

We can get the transfer function, step-response, and sensitivities 
for the original system without feedback by merely setting k1 = 
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k2 O in the above equations. We will find that the sensitivity S 
of the steady-state value of the step-response, SR, with respect to 
R1 for the system without feedback is 

However, if we let kt and k2 assume reasonable values, such as 10, 
then the sensitivity of the feedback system becomes 

s~~= o.o46, 

w hi ch is mu ch smaller. This shows that feedback reduces the sen­
sitivity of the steady-state value of the step-response with respect 
to Rt. 
In general, adding feedback transfers sensitivity from the hard­
to-change elements in the forward path to the easily changeable 
elements in the feedback path. 

6. We will now discuss our multiple input electrical system. We know 
that its coeffi.cient matrix has the forn1 

A 
( 

_.ll. o 
L1 
o o 
l l cc 

Instead of applying feedback, \Ve wish now to select the values of 
parameters L 1 , L 2 and R such that the eigenvalues of the system 
be At = .:\2 = A3 = -1. 
In Application 4.4.1-6 \Ve have computed the characteristic poly­
nomial of A: 

3 2R ( l l) 
cp(.\) =). +). Lt +). CLt + CL2 + 

R 

therefore, the parameters satisfy equations 

R 
=3, 3, and l . 

For any fixed val u e of C, the solutions of these equations are 

3 

8C' 
3 

C' and 
9 

R= 8C' 
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and with these numerical values all eigenvalues become -l. 

7. Again, for the stick-balancing problem, assume we would like to 
use feedback to move the poles or adjust the sensitivity, but we 
have no way of measuring the position or angle of the stick on the 
person's hand, so we build an observer. 
The original system is described with 

A= (o 1) gO ' 
eT (1,0). 

The following observer can be obtained: 

What are the requirements to make the observer stable? Since 

the asymptotical stability conditions are, therefore, 

and g+k2<0, 

which implies 

8. For two sticks on a cart problem, assume we have the same prob­
lem, namely that we want to use feedback to alter the dynamics or 
sensitivity but we cannot measure the state variables. So we build 
an o bserver. 
The new coefficient matrix is 
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Now let us provethat the observer can be made stable by finding 
the roots of the characteristic polynomial: 

We want all roots to be negative, for example, A1 == A2 == A3 
A4 ==-l, then 

cp (A) = (A + l) 4 A 4 + 4A 3 + 6A 2 + 4A + l . 

Camparing the like coefficients 

-kl== 4 

which can be easily solved for the unknowns kb k2, k3 , and k4 , 

kl == -4 

-4a4 4 
k2=--­

a2 
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Hence, selecting the above values for the feedback, the feedback 
system becomes asymptotically stable. 

g. The electronic heating system mathematically is the special c ase of 
our earlier Application 3 with L l, therefore, the results of that 
case automatically can be applied. 

10. Mathematically, the nuclear reactor problem is the same as the 
electric L-R-C circuit of A pplication g. 5.1-3, so we will do nothing 
else with it. 

9.5.2 Applications in the Social Sciences and Economics 
l. Consicler first the linearized predator-prey model (6.16), which is 

repeated here for the sake of convenience: 

. be c 
Go== --Wo+ -u 

d d 

da Go 
b 

y= Wo. (g.26) 

Assume that the goat population cannot be measured; only the 
input u and the number of wolves y can be observed. 
As an exan1ple, an observer for this system will be constructed. 
The general form is given by Equation (g.11). Note first that in 
this case 

(
o _!!f) 

A= d: ~, b 0)• and eT= (0, l) . 

In order to find the suitable feedback, we have to construct matrix 
k. In our case, k is a two-dimensional column vector. If k1 and k2 

derrote the coeffi.cients of k, then 

N o te t hat the characteristic polynomial of this matrix is 
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From Application 4.4.1-3 we know that the roots of cp(.\) have 
negative real parts if and only if 

and 
da 

ac k1b >O. 

For example, select k1 = O and k2 = -l. Then 

and, hence, an observer (9.11) is given as 

( o _!zE.) (E.) ( o) 
Z = dba -f Z + O U - -l Y . (9.27) 

2. Assume that the population of at least one age group in the cohort 
population model (3.115) cannot be measured. Then an observer is 
supposed to be constructed analogously to the previous case. The 
details are left to the reader as an exercise. 

3. In the case of the arms races model (6.18), assume again that na­
tion l is unable to o bserve the armament leve l of the other nation, 
and, therefore, it is willing to use an appropriate observer of the 
form (9.11). In this case, 

A (
-b a) 
c -d ' 

b (~), and eT (1, 0) . 

Matrix K is a column vector again with unknown coefficients k1 

and k2 , and, therefore, 

A+ KC = ( -~-~)+(Z~) (1,0) (
-b+ k1 a) 
c+ k2 -d . 

The characteristic polynomial of this matrix is as follows: 

cp(.\) = (-b+ k1 .\)(-d-.\)- a( c+ k2) 

The resulting observer is asymptotically stable if and only if 

and 
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Case (i): hd- ac ~O 

k l 
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C ase (ii): hd- a c> O 

Figure 9.9 Feasible set for (k1, k2). 

The feasible set (kb k2) is shown in Figure 9.9. 
The k1 and k2 intercepts are 

a c 
l1 =b-­d 

and c. 

Note that in the case when bd- ac > O, k1 k2 = O belongs to 
the feasible set. If K O, no feedback is needed; the mod el itself 
is asymptotically stable. If bd ac ::::; O, then, for example, 

and 

is an appropriate selection, and the resulting observer has the form 

(9.28) 

4. Consicler next the warfare model (6.19), where we assume that 
each nation can monitor only its own casualties. An observer is, 
therefore, needed to observe the casualties of the other nation. We 
can proceed similar to the previous model. The details are omitted. 

5. The linear epidemics model of Application 6.4.2-5 can be written 
as 

x= (o -ax ) ( o) 
O ax - {3 x + -1 u 

k l 
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y= (O,l)x. 

Since this system is not observable, an observer cannot be con­
structed. We illustrate this fact here by examining the possible 
eigenvalue locations of the matrix A + KC. In our case, 

(
o k1- ax ) 

- O k2 + ax - /3 · 

The eigenvalues of this matrix are )q = O and .\2 k2 +ax- /3. 
Since O is an eigenvalue for all values of k1 and k2 , the system 
cannot be made asymptotically stable. 

6. In the case of the Harrod-type national economy rnadel presented 
in Application 6.4.2-6, we have the matrices 

A=(l+r-rm), B (-r), and C (m). 

Since they are l x l, matrix K of the observer feedback must be 
also l x l. In this case, 

A + KC l + r - rm + km , 

and since the system is discrete, the feedback system is asymptot­
ically stable if and only if 

-l < l + r rm + km < l , 

that is, 
-2+rm-r rm-r -----<k<---. 

m m 

7. We face a similar situation in the c ase of the linear cobweb mo del 
of Application 6.4.2-7. Since no\v 

A (~b)' B= (1), and C= (b) , 

a feedback K= (k) makes the system asymptotically stableifand 
only if 

b 
-1 <- + bk <l. a 
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These relations are equivalent to the inequalities 

a+b k a-b ---< <--. ab ab 

8. The Application 6.4.2-8 of interrelated markets is not always ob­
servable, as was shown. Therefore, in such cases, no observer can 
be constructed. 
Consid er again the numerical example of Application 7.4.2-8, which 
had the form 

If a feedback is constructed \vith matrix 

then the modified coefficient matrix is as follows: 

(
-3 + k21 2 + ) 

k2 -8 + 0.. 
2 2 

The characteristic polynomial of this matrix has the form 

~(A) ( -3 + ~1 
-A) ( -8 + k; -A) - k; ( 2 + ~1 ) 

-- \ 2 - \ (kl +2 k2 ) ( 4 k 5 k ) /\ /\ 11 + 2 - 4 l - 2 2 . 
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The eigenval ues have negative real parts if and only if 

11 <o and 
5 

24 - 4kt - - k2 > o 2 . 

Note that k1 k2 == O is feasible, which means that the original 
system is asymptotically stable. That is, it can serve as an observer 
without any feedback. However, faster speed can be obtained by 
the appropriate selection of k1 and k2. 

9. In the case of an oligopoly, assume that the time scale is discrete 
and the fi.rms behave according to the Cournot assumptions. The 
resulting dynamic model was derived in Section 3.5.2 as 

where 

Ac= 

and 

x(t +l) = Acx(t) + bcu(t) , 

-! ... o 

u(t) = l . 

l 
hc=-

2a 

(9.29) 

We have shown in Section 4.4.2 that this system is asymptotically 
stable if and only if N = 2, and it can be stabilized for arbitrary 
nun1ber N of firms by adaptive expectations. We conclude this see­
tian by investigating the possibility of a feedback-type stabilizator. 

u(t)= l + 

Figure 9.10 Feedback for the oligopoly model. 

Figure 9.10 shows the feedback structure. Note that the feedback 
matrix is a row vector in order to have a scalar feedback that can 



456 cl1apter nine: Estimatian and Design 

be ad d ed to the original input of the system. The resulting system 
has the form 

x(t +l) Acx(t) + bc(u(t) + kT x(t)) 

= (Ac + bckT)x(t) + bcu(t) , (9.30) 

which is asymptotically stable if and only if all eigenvalues of ma­
trix Ac +be k T are inside the unit circle. Simple calculation shows 
t hat 

( 

.J-(bl- b)k1 -2
1 

(b1- b)k2- Å -.hCb1- b)k3 ~ · · · *(bl - b)kN- ~) "n 1 "' 1 "" -:C I i' I .l(b2- b)k1 - -(b2- b)k2 -(b2- b)k3-- · · · -(b2 b)kN-?. 1'' r l 2n l 2n l 2 1'' r 
2n (b3 b)kl - 2 2,;(b3- b)k2- 2 2,;(b3 b)k3 · · :r;;:(b3- b)kN- 2 

.. . .. . .. . . . . .. 

.. .. . .. . 
..};; (b N - b)k1 - ~ f; (b N - b)k2 - ! -};;,(b N - b)k3 - ! · · · ..};; (b N b)kN 

Note that the eigenvalues of Ac + bckT depend on the particular 
selection of the coeffi.cients k1, k2, ... , k N. 

For the sake of simplicity, consicler the spedal case w hen b1 = b2 = 
· · · = b N. Let b* denote the common value and assume t hat b* =/= b. 
Select the ki val ues as 

kl= k2 = ... 

T hen 
.!. o o ... o 
2 l o- o ... o 

2 l o o 2 ... o 
. . ..... . . 

o o o ... ~ 

with eigenvalues being equal to 1/2. Hence the feedback system is 
asymptotically stable. 
In the general case when the bi values are different, we can proceed 
in the following way. Rewrite system (9.29) as 

x(t +l) Acx(t) +(be- l)+ lu(t) , 

where l (1, l, ... , l)T. Then the above feedback rule results in 
the system 
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x(t +l) Aox(t) +(bo- l)+ l(u(t) + kT x(t)) 

= (Ac + lkT)x(t) +(be- l)+ lu(t) . (9.31) 

By selecting k1 k2 = · · · kN = 1/2, Ac + lkT becomes (1/2)1 
again. Hence, system (9.31) is asymptotically stab le. 

Problems 

1. Apply the algorithm of Theorem 9.1 for system 

andpolynomialp(A) = A2 + 2A +l. 

2. Apply the algorithm of Theorem 9.1 for system 

and polynomial p( A) A 3 + l. 
3. Apply the algorithm of Theorem 9.1 for system 

and polynomial p( A) = A3 . 

4. Apply the algorithm of Theorem 9.1 for system 

and polynomialp(A) = A2 +A+ l. 
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5. Apply the algorithm of Theorem 9.1 for system 

and polynomial p( A) = A 3 + 2A l. 

6. Apply the corollary of Theorem 9.1 for system 

and polynomial p( A)= A2 + 2A +l. Select eT (l, O). 

7. Apply the corollary of Theorem 9.1 for system 

X=(HDx+O)u 
and polynoinialp(A) = A3 +l. Select eT (1, l, 1). 

8. Apply the corollary of Theorem 9.1 for system 

X=(Hnx+O)u 
and polynomial p( A) A3 • Select eT = (1, l, 1). 

9. Apply the corollary of Theorem 9.1 for system 

and polynomial p( A) A2 +A+ l. Select eT= (l, 1). 

10. Apply the corollary of Theorem 9.1 for system 

X=O~Dx+(r)u 
and polynomial p( A) A3 + 2A l. Select eT = (0, l, O). 
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11. Show that the algorithm of Theorem 9.1 cannot be applied for 
matrix 

A (~~~) . 
001 

12. Construct an observer (9.12) for systern 

y (1, O)x. 

13. Construct an observer (9.12) for system 

y (1, l, l)x. 

Place the roots of the observer at -2, and -3. 

14. Construct an observer (9.12) for systern 

y (l,l,l)x. 

15. Construct an observer (9 .12) for system 

y (1, l)x. 

16. Construct an observer (9.17) for system 

y (l,O)x. 
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17. Construct an observer (9.17) for system 

y= (1, 1)x. 

18. Repeat Example 9.4 for system 

y (1,0)x. 

19. Repeat Example 9.4 for system 

y= (1, 1)x. 

20. Construct oh servers andreduced-order observers for discrete sys­
tems. 

21. Let 4>1 (t, r) and </>2 (t, r) be the fundamental matrices of a sys­
tem x( t) A(t)x(t) + B(t)u(t) and the corresponding feedback system 
z( t) =(A( t)+ B(t)K(t))z(t) + B(t)u(t), respectively. Show that 

22. LetA, B, K be eonstant matrices. Let R 1 (s) and R 2 (s) denote the 
resolvent matrices of the system x= Ax+ Bu and the corresponding 
feedback system z = (A+ BK)z + Bu. Show that 

23. Prove that the time in variant system x = Ax+ Bu is completely 
controllable if and only if the corresponding feedback system z (A + 
BK)z +Bu is completely controllable. That is, state feedback does not 
destroy controllability. 
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24. Let x == Ax + B u be a time in variant linear system, and assume 
that with some matrices A 1, R and invertible Q, 

AQ - QA1 == BR . 

Find the state feedback such that the characteristic polynomials of ma­
trices A 1 and A+ BK coincide. 

25. Find the feedback matrix K which minimizes IlA+ BKII(X)· 
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chapter ten 

Advanced Topics 

In this chapter, the fundamentals of four modern areas of systems the­
ory are briefly outlined. In the first seetian we discuss conditions that 
guarantee t hat the state of a system is always nonnegative. This prop­
erty is important because in many applications the state must not be 
negative. For example, productian output, population, armament level, 
water flow, and so on must always be nonnegative. The seeond see­
tio n contains the description of a special filter that minimizes the mean 
square error of the final state. The third seetian is devoted to adaptive 
control systems, where the control is based on continuous measurements 
of the state and/or output. In the last section, the basics of neural 
networks and neural computing are outlined. 

10.1 Nonnegative Systems 
Consid er first the time-in variant discrete system 

x(t +l) =Ax( t), x(O) xo (10.1) 

with zero input, where A is an n x n eonstant matrix. 
First we state a necessary and sufficient condition for the nonnegativ­

ity of this system. 

DEFINITION 10.1 A n1atrix A is nonnegative if all elements of A are 
non negative. This property is den o t ed as A 2:: O. 

THE O REM 10.1 
The state x( t) of system (10.1) is nonnegative for all t 2:: O with arbitrary 
nonnegative initial state xo if and only if A 2:: O. 

463 



464 chapter ten: Advanced Topics 

PRO OF 
(a) Assume first that A 2:: O. We will use finite induction to verify 

that x( t) 2:: O for all t 2:: l, if x 0 2:: O. For t l, 

x(l) Ax(O) = Axo 2:: O, 

since both A and x0 are nonnegative. Assume next that for some t, 
x(t) 2:: O. Then 

x (t + l ) Ax (t) 2:: O , 

which provesthat x( t) 2:: O for all t. 
(b) Assume now that akl < O with some k and l, where A = (aij)· 

Select x0 = (O, ... , O, l, O, ... , O) T, where the lth component equals unity 
and all other components are equal to zero. Then 

x(l) = Ax(O) (all, ... , akl , ... , anz)T, 

which is not nonnegative, since the lth element is negative. l 

Assume that in system (10.1) the zero input is replaced by a constant, 
that is, the system is described with the difference equation 

x(t +l) Ax(t) +b, x(O) = x0 , (10.2) 

where b is a eonstant vector. In this more general case, Theorem 10.1 
can be extended as follows. 

THE O REM 10.2 
The state x( t) of syste111 (l 0.2) is nonnegative for all t 2:: O with arbitrary 
nonnegative initial state x 0 if and only if A 2:: O and b 2:: O. 

REMARK 10.1 The nonlinear version of Equation (10.2) can be writ-
ten as 

x(t +l)= f(x(t)), x(O) = xo. 

Starting from an y nonnegative initial state x 0, the state remains nonneg­
ative for all future times if and only if f(x) 2:: O for all x 2:: O. l 

Consicler next the continuous system 

x=Ax, x(O) xo (10.3) 

·with zero input. Before deriving necessary and sufficient conditions for 
the nonnegativity of this system, a special class of matrices is introduced. 
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DEFINITION10.2 Matrix A= (aii) iscalleda Metzler matrixifaii ~O 
for all i -#j. 

THE O REM 10.3 
The state x( t) of systent (10.3) is nonnegative for all t ~ O with arbitrary 
nonnegative initial state xo if and only if A is a Metzler matrix. 

PRO OF 
(a) Assume first that for all j -# i, aii > O. We will prove that starting 

from a nonnegative initial state, no component of the state becomes 
negative. The continuity of functions xi (t) im pliesthat if an y component 
of x becomes negative, it has to be zero before. Assume that for some 
to ~ O, x( to) ~ O, but with some i, xi(to) O. 

If xi(t0) = O for all j -# i, then for all t ~ t 0, x(t) = O. Otherwise, 
Equation (10.3) implies that 

±i(to) =L aijXj(to) >O, 
j:f:i 

since each term is nonnegative and at least one tenn is positive. Hence 
xi must not become negative. 

Since the solution of Equation (10.3) depends continuously on the 
elements of A, the weaker condition aii ~ O (j -# i) is also sufficient. 

(b)Assumenowthatwithsomek # l,akz <O. Selectx0 = (0, ... ,O, a, O, 
... , O)T, where the lth component equals a > O and all other compo­
nents equal zero. Then 

n 

xk(O) =L akjXj(O) = akz · xl(O) aklO: <O, 
j=l 

which implies that xk(t) <O for small positivevalues of t. l 

Consicler next the slightly more general case, \Vhen the input is con­
stant. Then Equation (10.3) is modified as 

x= Ax+ b, x(O) = xo , (10.4) 

where b is a eonstant vector. In this case, the previous theorem can be 
extended as follows. 
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THEOREM 10.4 
The state x( t) of system (10.4) is nonnegative for all t 2: O with arbitrary 
nonnegative initial state x 0 if and only if b 2: O and A is a Metzler matrix. 

REMARK 10.2 The nonlinear version of Equation (10.4) can be writ-
ten as 

x= f(x), x(O) = xo. 

Similar to Theorem 10.3, one may easily prove that starting from arbi­
trary nonnegative initial state x 0, the state remains nonnegative for all 
future times if and only if 

(i=1,2, ... ,n) 

for all x i 2: O (j = l, 2, ... , n), where fi denotes the ith component of 
function f. l 

The practical consequence of the above theorems is that if you are 
modeling a system where you know the state variables must always be 
nonnegative, then you should check the above conditions to make sure 
the state really ren1ains always nonnegative. 

In the next part of this section, conditions will be presented for the 
existence of nonnegative equilibria of systems (10.2) and (10.4). 

It is known from Section 3.1 that a vector x is an equilibrium state of 
the discrete system (10.2) if and only if it satisfies equation 

x Ax+b. (10.5) 

Assume that B I- A is invertible, then 

Obviously, x~ O for all nonnegative vectors b if and only if B- 1 2: O. 
A vector x is the equilibrium state of the continuous system (10.4) if 

and only if 
Ax+ b o. (10.6) 

Ass u me t hat A is nonsingular, t hen 

This vector is nonnegative for all nonnegative b if and only if 

with B=-A. 
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N o te t hat in the ab o ve two cases the nonnegativity of the inverse of 
a matrix, rather than the nonnegativity of the matrix itself, guarantees 
the nonnegativity of the equilibrium. In the following theorem, necessary 
and sufficient conditions will be presented for the nonnegativity of the 
inverse of a real square matrix. 

THEOREM 10.5 
Let B be an n x n real matrix. The inverse B-1 exists and is nonnegative if 
and only if there exists an n x n real matrix D such t hat 

(i) D 2:: O, 

(ii) I- DB 2:: O, and 

(iii) all eigenvalues ofi DB are inside the unit circle. 

PRO OF 

(a) If B- 1 exists and is nonnegative, then select D = B- 1 . Then 
I - DB = O, and, therefore, Conditions (i), (ii), and (iii) are obviously 
satisfied. 

(b) Assume now the existence ofmatrix D satisfying Conditions (i), (ii), 
and (iii). Note first that Conditian (iii) and Example 1.24 imply that 
I- (I- DB)= DB is invertible. Therefore, D and B are both nonsin­
gular. Example 1.24 also implies that 

(DB)- 1 I+ (I- DB) +(I- DB)2 + · · · 2:: O 

since each term in the right-hand side is nonnegative as the consequence 
of Conditian (ii). Hence, from (i) we conclude that 

which completes the proof. l 

DEFINITION 10.3 An n x n real ntatrix B = (bij) is called an M­
matrixifD = diag(bn, b22, ... , bnn)-1 satisfies conditions (i), (ii), and (iii) 
of Theorem 1 0.5. 
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Note that for an M-matrix, 

I- DB== 
( 

o 
_Qn 

b22 

_L_L >. 
bnn bnrt 

(lO. 7) 

therefore, bii > O for all i and bij ::; O for all j =/= i. Consequently, if B is 
an M-matrix, then -B is a Metzler matrix. 

Metzler matrices are also closely related to nonnegative matrices, since 
if A is a Metzler matrix, then A+ al 2:: O, where a is sufficiently large. 
Select, for example, 

a m?-x{ -aii l aii <O} . 
t 

As the conclusion of this section, a sufficient condition is presented 
for an n x n real matrix to be an M-matrix. 

THE O REM 10.6 
Let B be an n x n real matrix such that 

(i) bii > O for all i, and bij ::; O for all j =/= i; 

(ii) bii > I:i#i lbiilforall i. 

Then B is an M-matrix. 

PROOF Matrix D == diag(b11, b22, ... , bnn)- 1 is nonnegative, and 
relation (10.7) implies that I - DB 2:: O. That is, matrix D satisfies 
Conditions (i) and (ii) of Theorem 10.5. From (10.7) we have 

Therefore, Theorem 1.8 implies that for all eigenvalues A of I - DB, 

I.AI ::; III DBIIoo < l· 

Therefore, matrix D satisfies Conditian (iii), which completes the proof. 
l 
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Finally, we note that some of the systems discussed in Section 3.5 
satisfy the conditions of Theorems 10.2 and 10.4. In particular, Ap­
plications 3.5.2-2 and 3.5.2-6 have nonnegative coefficient matrices and 
Applications 3.5.1-4, 3.5.1-5, 3.5.1-7, 3.5.1-8, 3.5.1-10, 3.5.2-3, and 3.5.2-
8 are based on Nietzler matrices. In these applications, the states always 
remain nonnegative. 

10.2 The Kalman-Bucy Filter 
In the previous chapters, only deterministic systems were discussed. 
That is, we assumed that all inputs could be specifled exactly and all 
outputs could be measured without measurement errors. In practice, 
these assumptions are rarely satisfied, since input and output compo­
nents are usually corrupted by all manner of unpredictable fluctuations 
and distur bances. 

The most common approach for analyzing the effect of such noise is 
based on probabilistic or statistical models, where random elements are 
added to the input and output components. The resulting stockastic 
system has the form 

x( t) Ax( t)+ Bu( t)+ B 1 w( t) 

y( t) = Cx(t) +v( t) , (10.8) 

where w(t) is the input noise and v(t) is the output noise. The com­
ponents of w( t) may represent fluctuation in the input signal, unknown 
disturbances to the system, or their combinations. Vector v(t) repre­
sents uncertainties or deviations in the output measurements. For the 
sake of simplicity, only time-invariant systems are considered. 

Assume that the following conditions hold: 

l. System (A, B, C) is completely controllable and completely ob­
servable. 

2. The processes w and v are assumed to have zero means and to be 
white, that is, for all t, 

E[w(t)] O 

E[v(t)] =O, (10.9) 

and for all t and T, 
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(10.10) 

where Q and R are given (positive semidefinite) covariance matri­
ces, and 

8(t- r) {
l if t T 

O otherwise . 

3. Processes w and v are uncorrelated with one another, that is, for 
all t and r, 

(10.11) 

4. The initial state x 0 of the system at time to is assumed to be a 
random variable with 

E[xo] :Xo 

and 
E[(xo- :Xo)(xo- :Xo)T] = S , (10.12) 

where x0 is a given vector and S is a given (positive semidefinite) 
covariance matrix. 

Assume that for all t E [to, T) the noisy output measurements y( t) 
are available where T > to is given. The problem is now to estimate the 
final state x(T) as accurately as possible. By selecting the mean square 
principle for measuring the goodness of the estimator, we wish to find 
the estimator x(T) of x(T) that minimizes the mean square error 

n 

E[llx(T)- x(T)II 2
] LE[(xi(T) Xi(T)) 2

J : (10.13) 
i= l 

where Il · Il is the l2-norm, n is the size of A, x= (xi) and x= (xi)· 
In Section 9.2, a solution for the deterministic version of the same 

problem was introduced by constructing an observer, which consisted of 
the model of the original system and a correction term being propor­
tional to the output error. It can be proven (see, for example, [12]) that 
the best state estimator in the above stocl1astic case has a similar form, 
as given in the following theorem. 

THEOREM 10.7 
Under the above conditions, the best least square estimator of the state of 
system (10.8) is given by the state z(t) of the Kalman-Bucy filter: 

z( t) (A+ K(t)C)z(t) +Bu( t)- K(t)y(t), z(to) = :Xo , (10.14) 
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where 
(10.15) 

with P (t) being the solution of the matrix Riccati e quatian 

P(to) = S (10.16) 

The scheme of the Kalman-Bucy filter is shown in Figure 10.1. 

Input 
no i se 

Input 

l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 
l 

Kalman-Bucy : 
filter 1 

l 
l 
l 
l 
l 
L __ 

w (t) 

u (t) 

System 

x= Ax+ Bu+ B1w 
y Cx 

Riccati 
equation 

Output 
no i se 
v {t) 

+ 

Noisy 
output 
y {t) 

- l 

+ 

l 

State 
estimate 
z(t) 

z = (A + K(t)C)z + Bu K(t)y 1---e--..:..: ___.... 
l 
l _ _______ _J 

Figure 10.1 Scheme of the Kalman-Bucy filter. 

The application of the I<:alman-Bucy filter is limited because of the 
time dependence of matrix K(t), \vhich makes the computation and, 
therefore, the \V ho le construct very complicated in man y cases. However, 
this difficulty can be eliminated in the follo\ving way. Note first that as 
t-+ oo, the solution P(t) of the Riccati equation converges to a steady 
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state, which is the solution for P =O. That is, this steady state P solves 
equation 

O AP+PAT -PCTR-1CP+BlQBf. (10.17) 

Then K( t) also converges as t oo, and the limit matrix K is as follows: 

(10.18) 

If we substitute K for matrix K( t) in (10.14), then the resulting steady­
state filter has the form 

z= (A+ KC)z +Bu Ky . 

This concept is especially useful when the original system (10.8) is 
asymptotically stable (or can be stabilized), since for large values of 
t the effect of the initial state of the system dies out, and, therefore, 
x(t) and y(t) are stationary processes. In addition, the algebraic Ric­
cati equation (10.17) is much easier to solvethan the Riccati differential 
equation (10.16). 

10.3 Adaptive Control Systems 
In recent years, increasing attention has been given to systems that 
are capable of accommodating unpredictable changes, whether these 
changes arise within the system or externally. This property is called 
adaptation and is a fundamental characteristic of living organisms, since 
they attempt to maintain physiological equilibrium in order to survive 
under changing environmental conditions. In the system theory litera­
ture, there is no unified definition for adaptive control systems. There­
fore, we will consicler a system adaptive if it satisfies the following cri­
teria: 

l. continuously and automatically measures the dynamic character­
istics of the system; 

2. compares the measurements to the desired dynamic characteristics; 

3.. m.odifies its own parameters in order to maintain desired perfor­
mance regardl~~ of the environmental changes. 

An adaptive contro l system, therefore, consists of three blocks: perfor­
mance index measurement, comparison-decision, and adaptation mech­
anism. It is always assumed that there is a closed-loop control on the 
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performance index. A common configuration of an adaptive system is il­
lustrated in Figure 10.2. An important class of adaptive systems, model 
reference adaptive systems is easy to implement. One particular scheme 
forthese systems is given in Figure 10.3. Note that the set of given per­
formance indices is replaced by a reference model. The output of this 
model and that of the adjustable system are continuously campared by 
a typical feedback comparator, and the difference is used by the adapta­
tion mechanism either to modify the parameters of the adjustable system 
or to send an auxiliary input signal to minimize the difference between 
the performance indices of the two systems. 

Unknown 
peturbation 

Know n 
peturbation 

_I_np_u_t -.......----~~oo-~ Ad j u stab l e t--------1---.--0_u_tp_u....,t 

f systm 
l 

Adaptive 
mechanism 

r 

Performance index 
measurement 

Set of given 
performance indices 
----------+-~ Compensation f.of-------~ 

Figure 10.2 Common configuration of an adaptive system. 

Another often-used class of adaptive systems is given by the adaptive 
model-following control systems. These control systems also use a model 
that specifles the design objectives, as illustrated in Figure 10.4. The 
mathematical model is formulated as follo\VS. Assume that the reference 
model is given as 

(10.19) 

and the plant to be controHed is 

y= Apy+Bpup. (10.20) 
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Input 

+ 

Signa1 
synthesis 

adaptation 

Figure 10.3 A model reference adaptive system. 

Figure 10.4 An adaptive model-following control system. 

The plant control input is given by the relation 

(10.21) 

In this formulation, ÅM, BM, Ap, Bp are given eonstant matrices; 
x and y are the states of the reference model and the plant; and uM 
and up are their inputs. The coefficient matrices Kp, KM, and Ku are 
unknowns; they are defined so that if the error vector e x-y is initial­
ized as e( O) = O, thenit remains zero for all future time periods. We can 
subtract Equation (10.20) from (10.19) and substitute relation (10.21) 
to obtain the following inhomogeneous differential equation: 

(10.22) 
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Perfeet model following requires, therefore, that 

AM Ap+Bp(Kp KM)=O 

(10.23) 

since these equations imply that for all real vectors y and UM of appro­
priate dimensions, Equation (10.22) becomes homogeneous, and so the 
solution of the resulting hon1ogeneous equation with zero initial condi­
tian is the zero vector for all t 2:: O. We can rewrite Equation (10.23) 
as 

(10.24) 

The necessary and sufficient condition for the existence of matrices 
Kp, KM, and Ku that satislies Equation (10.24) is the following: 

rank(Bp) rank(Bp, Ap- ÅM) = rank(Bp, BM) . (10.25) 

These conditions mean that all columns of both matrices Ap- AM and 
BM are in the subspace spanned by the columns of matrix Bp. Note 
that Equation (10.24) can be solved by using Gauss elimination (see, for 
example, [42]). 

Usually the initial condition of the error vector e differs from zero. In 
such cases we require that e( t) ---+ O as t---+ oo, that is, Equation (10.22) 
is asymptotically stable. We know from Chapter 4 that this additional 
condition holds if and only if all eigenvalues of matrix ÅM BpKM 
have negative real parts. 

Assume that the rank conditions (10.25) hold. Then from Equa­
tion (10.24) we can obtain at least one solution for K p KM and Ku. 
Denote these solutions by R* and K[;-. Assume that the rank of matrix 
(Bp, AMBP, ... , A~- 1Bp) is n, where ÅM is assumed to be nxn. Then 
Theorem 9.2 implies that there exists a matrix KÅJ such that all eigen­
values of ÅM -B pKÅJ have negative real parts, that is, system (10.22) 
is asymptotically stable. Then the selection 

Kp KNr+R* 

Ku =Ku 
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gives an asymptotically stable, perfeet model-following control system. 
Equation (10.24) are illustrated in the following example. 

Example 10.1 

Assume that 

Ap ( 2
1 2

1
) ' Bp (l 2) 

l 2 ' 

Here Equation (10.24) has the form 

(l 2) (k u k12) = ( 2 l) 
l 2 k21 k22 2 l ' 

where matrix K p - KA1 is denoted by (rij) and Ku is denoted as 
(kij ). Expanding the above operations, we get the following system 
of linear equations: 

where the repeated equations are omitted. It is easy to see that r 11 = 
r12 = l, ku 2, k12 = l, r21 r22 = k21 = k22 = O solvethese 
equations. Hence, we may select 

and K u 

There are still infinitelyman y possibilities for selecting matrix KM, 
since only K p -KM is specified. We wish to make this selection so 
that matrix AA1 - BpKM has eigenvalues with only negative real 
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parts. Note that in this case n = 2 and the rank of matrix 

(Bp,AMBP) (
1212) 
l 2 l 2 

is unity; therefore, Theorem 9.2 cannot be applied to find an appropri­
a te ma trix K M. However in this special ca se an e a sy method can be 
used. Try to select KM so that 

that is, 

If KM = (kij ), then this equation has the form 

(l 2) ( ~11 
l 2 k21 

It is easy to see that = l, k12 = l, k21 k22 = O are solutions. 
Therefore, the selection of 

K u 

is satisfactory in order to construct an asymptotically stable adaptive 
system. 

We can check o ur results by computing first matrix AM -B pK1u. 
In this case, 

(
-1 o) o -1 =-I. 

Furthermore, check identities 

and 

BpKu 

477 

As the above example illustrates, Theorem 9.2 sufficient but 
not necessary conditions for the existence of the desired feedback. We 
note here that a ne\v sufficient and necessary condition \vas introduced 
by [42]. 
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In the conclusion of this section, a practical example based on [30] 
and (19] is presented which illustrates how adaptive systems really work. 
Figure 10.5 shows a typical state variable feedback control system with 
a time delay. 

Figure 10.5 A typical state variable feedback contro l system with a time dela y 
and a target-selective adaptive controller. 

For this control scheme, the target-selective adaptive controller con­
structs an adaptive signal that depends on the frequency, amplitude, 
and waveform of the target movement, as well as on the time delay 
and dynamics of the plant. When this adaptive signal is applied to the 
time-delay system, it allows zero-latency tracking and improves dynamic 
performance. The system input ui (t) is composed of two parts: the ref­
erence source, u8 (t), and the adaptive signal, Ua (t). When u8 (t) is not a 
known target waveform, ua(t) is turned off; ui(t) then equals u 8 (t) and 
the closed-loop transfer function becomes 

Y(s) 
Ui(s) 

hT(sl A)- 1bKe-80 
l+ kT(sl- A)-lbJ(e-sO · 

(10.26) 

The term in the numerator is a pure time delay that remains in 
spite of the feedback. The similar term in the denominator produces 
ph ase lag t hat red uces the allowable gain. Of the other symbols, Y (s) 
represents the scalar output, Ui(s) the scalar system input, I the n x n 
identity matrix, A the n x n system matl·ix, K the scalar gain, the 
l x n feedback vector, h T the l x n output coefficient vector, and b 
the n x l input coefficient vector. Superscript T indicates the transpose 
operation. The dimensions of the vectors and matrices are such that the 
numerator and the denominator of Equation (10.26) are scalars. The 
feedback vector kT and the gain J{ must be selected to achieve stability. 

Next we introduce four examples of compensation for plant time de­
lays in systems with predietable inputs. The first campensates for the 
time delay and plant dynamics, the seeond campensates for the time 
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delay and provides arbitrary pole placement, the third campensates for 
the time delay without requiring control gain changes, and the fourth 
campensates for the time delay while leaving the transient response un­
changed. 

In the first example, compensation for time delay and system dynam­
ics, the system output is made identically equal to the reference input: 
y( t) == u 8 (t). The system input, ui(t), is the sum of u8 (t), the reference 
source, and U a (t), the generated adaptive signal. W hen u8 (t) is not a 
known predietable target waveform, ua(t) is turned off. When u 8 (t) is 
a known predietable target waveform, ua(t) augments u 8 (t) to achieve 
zero-latency tracking. 

Applying the requiren1ent Y (s) = U s (s) to Equation (10.26) produces 

For notational sin1plicity, we omit the function's argument when it is 
camplex frequency, s. Solving for Ua yields 

[ 
e8 (} kT(si- A)- 1b 

Ua = hT(si- A)- 1bK + hT(si- A)- 1b 1] Us. (10.27) 

The time dela y e, the matrix A, and the vectors b, k T, and h T must 
be known. If u8 (t) can be estimated, then ua(t) can be computed in 
advance. For this example, the output \Vas made equal to the input; we 
compensated for both the time delay and the plant dynamics. However, 
it may be unnecessary, or computationally efficient in real-time computer 
control, to compensate completely for the system dynamics. 

This seeond example, compensation for time delay with pole adjust­
ment, demonstrates that it is possible to cancel the effects of the time 
delay and also place the poles at any desired location. Let the desired 
new forward gain coefficient be J( a and the desired new feedback vector 
be kr. Substituting these requirements in Equation (10.26) yields 

[ 
hT(si- A)- 1bl(a ] 

Y= 1+k:f(si-A)-1bl(a Us 

Solving for U a yields 

(10.28) 
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The first term of the right-hand side is the relationship of Ua to fu-
ture values of the reference input. The remaining two terms represent 
the differential relationship between Ua and current value of Us. For a 
known input reference Us, one can readily campute Ua. Thus, the sys­
tem response can be modified to have a desired characteristic response 
and no time delay. 

I t may be necessary to cancel the effects of the time delay without in­
serting new gains, that is, kr = kT and Ka K. For this requirement, 
we obtain a simplified case of Equation (10.28) 

l J u l+ kT(sl- A)- 1bK s . 
(10.29) 

This form has simple implementation requirements and lends itself easily 
to real-time computer control. It is used when the closed-loop system 
time delay is unacceptable hut the system pole locations are not critical. 

In the case of compensation without ekanges in pole locations, the 
auxiliary input from Equation (10.28) acts not only to cancel the effects 
of e-so on the closed-loop system numerator, hut also eliminates the 
effect of e-so on the pole locations. To leave the closed-loop poles in 
the same location as in Equation (10.26), the system response to known 
targets may be specifled as 

Substituting this requirement into Equation (10.26) yields 

y 

Solving for Ua produces 

(10.30) 

Note that this is not the same result obtained by placing a predietar of 
us(t +B) before the summing junction in Figure 10.5. Such a predietar 
would le ave the effect of the time dela y in the denaminatar. 

Input signal waveforms may be predietable for human tracking of cer­
tain visual target waveforms and robetic tracking of objects on a rnaving 
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platform. Both applications have large signal-processing time delays. 
Observations of human tracking indicate that input adaptation does oc­
cur and zero-latency tracking results. Although present robotic visual 
systems do not use such adaptive techniques, it may be advantageous. 

The human eye movement control system performs in a manner sug­
gesting target-selective adaptive control. When a target starts moving, 
there is a 150 msec delay before the eye starts moving, as shown in Fig­
ure 10.6 (upper). When the target stops, the eye continues to follow the 
predicted target for 150 msec; see Figure 10.6 (lower). However, when a 
human tracks a predietable target, the brain identifies the target within 
on e half-cycle and generates an adaptive signal, Ua (t), t hat makes the 
phase error approach zero as shown in Figure 10.7. 

o 

Position 

Eye 
Target 

o ·. 

····· ...... . 

············ ... 

· ... 2 

5 deg 

Time 
.. (see) 

···· .... 

Time 
(see) 

Figure 10.6 Performance of the human eye m ovement contro l system. 

This change to zero-latency tracking is a result of control signal changes 
and not to changes in plant characteristics. The extraocular plant -
consisting of the eyeball, the extraocular muscles, the nerve fibers, and 
the suspensory tissues cannot change quickly. Neurophysiological 
studies suggest that changes in the plant or controller take hours or 
days to o cc ur. T hus, the rapid performance change is being eaused by 
the brain, presurnably by changing the system input, u i (t). 

The full rnadel for the eye movement control system is shown in Fig­
ure 10.8. The smooth pursuit branch of this rnadel acts as a velacity 
tracking system. The dynamics of the extraocular plant are very fast 
campared to the dynamics of the smooth pursuit branch, and the lim­
iter does not affect the operation of the adaptive controller. For the 
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Figure 10.7 Human tracking of a moving target. 
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human eye movement system, the order of the system and the control 
and output vectors are l so that the following valnes are appropriate. 

A 
l 

T 

l 
b=--

T 

h=l 

k= l. 

The system's input, ui(t), is the sum of the target reference signal, 
u8 (t), and the adaptive signal, ua(t), that must be computed. To obtain 
zero-latency tracking, y( t) must equal u 8 (t). Putting all this information 
inta Equation (10.26) gives 

Solving for Ua gives 

+ l)Us . (10.31) 

The e80 term shows that predietians must be made. However, the 
smooth pursnit system is a velacity tracking system, not a position 
tracking system, so the controller must be able to prediet future valnes 
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u.\. + 

Figure 10.8 The target selective adaptive control mod el for human eye move­
ment. 

of target velocity. For example, if u8 (t) is the present target velocity, 
i t must be ab le to produce iLs (t + O), where O is the time dela y of the 
smooth pursuit system. Also, the controller must modify this predie­
tian to compensate for the dynamics of the system in accordance with 
Equation (10.32). Therefore, the compensation signal, Uc, of Figure 10.8 
becomes 

(10.32) 

This compensation signal allows the smooth pursuit system to overcome 
the time delay. To synthesize this signal, the adaptive controller must 
be able to both prediet future values of the target velocity and com­
pute first derivatives. These are reasonable computations for the human 
brain. Therefore, Equation (10.32) is the algorithm that is in the box of 
Figure 10.8 labeled Target Selective Adaptive Controller. 

We used six predietable \vaveforms and seven techniques for predict­
ing, including a Kalman filter similar to that of Section 10.2. All yielded 
behavior comparable to human tracking. So \ve concluded that humans 
can prediet certain \vaveforms and they do use mental models of their 
eye tracking systems. These mental models adapt for variations due to 
fatigue, age, and temperature. The behavior of \Varming up is just fine­
tuning the mental model. When the mental model is for the combination 
of the human and the rnachine being controlled, the whole model must 
be adaptive. For example, \vhen S\vitching from a Lear jet to a Piper 
Cub, the pilot must change his or her mental model of the airplane. 



484 chapter ten: Advanced Topics 
l 
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10.4 Neural Networks 
l 

The field of artificial :neural networks is arguably the fastest growing 
field in artificial intelligence. An artificial neural network is a massively 
parallel, adaptive computer system usually having multiple inputs and 
multiple outputs. During the past few years, neural networks have been 
used in a wide variety of applications, such as signature recognition in 
banks, loan underwriting in mortgage companies, planning and control 
of robot arm trajectories, process control, analyzing infrared images of 
asteroids, and nonlinear optimization [10). 

Neural network technology has several advantages over conventional 
methods. Neural networks can deal with noisy and imprecise data, learn 
automatically from training data, adapt to a changing environment, de­
grade gracefully in the face of component failure, generalize to new situa­
tions, and (once trained) execute quickly. However, neural networks also 
suffer several weaknesses. The first is a lack of semantic interpretability. 
The information is stored as values of the interconnecting weights, and 
it is impossible to understand the behavior of a network by looking at 
the weight values. Second, input training sets can be faulty because of 
undesired or unwanted information, inappropriate training parameters, 
or bad initialization of connection weights. U nfortunately, i t is difficult 
to detect such problems. Third, testing and validatian are difficult with 
neural networks. The cost of testing a large hardware network may 
exceed the cost of manufacture. 

Neural networks can be used in control systems. Traditional con­
tro! systems have controllers, a controlied system, and a feedback loop. 
Typical controllers include proportional plus integral (PI) controllers, 
proportional plus integral plus derivat i ve (PID) controllers, Smith Pre­
dietar controllers, and Model Reference Adaptive Controllers as shown 
in Section 10.3. As systems grew bigger, multiple controllers and mul­
tiple feedback loops have been used. However, the size and camplexity 
of newer systems is pushing the limits of traditional techniques. Many 
advanced control systems are being built with knowledge-based systems 
such as expert systems and neural networks. There are many examples 
of neural networks in control systems [l]. One reason for their popularity 
is their adaptive nature. Examples of desired behavior are presented to 
a neural network and it learns to control the process. In a head-to-head 
test of a neural network, a self-tuning regulator, and a Lyapunov rnadel 
reference controller (24], the neural network was the most ro bus t in the 
face of rnadel mismatches. It was seeond for control effort, tracking 
error, and noise rejection. I t finished last only for convergence speed. 
Therefore, neural networks can now be used as adaptive controllers in 
many control processes. 
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There are dozens of different types of neural networks [16]. The main 
differences are in their method of training and weight adaptation. We 
will now explain the type called backpropagation. We ehoase it because 
it is the most common type used in control systems [l] and it can be 
used to illustrate most of the techniques used in other types of networks. 

Theextremely simple neural network of Figure 10.9 has two nodes in 
the input layer, two n odes in its solitary hi d den layer, and two n odes in 
the output layer. The theoretkal basis of this kind of neural networks 
is given by the farnous Kolmogorov's theorem (see, for example, [20]) 
that states that any continuous function f : [0, l]n ---1- Rm can be im­
plemented exactly by a three-layer neural network having n elements in 
the input layer, (2n + l) elements in the hidden layer, and m elements 
in the output layer. We mention t hat the elements in the hi d den and 
output layers have special ( usually irrational) nonlinear transfer func­
tions. If one approximates these nonlinear functions by linear relations, 
the number of linear terms might be large. Therefore, neural networks 
may have thousands of nodes in each layer and perhaps many hidden 
layers. The weights between the layers are adjustable. This network is 
fully connected, that is, every node is connected to every node in the 
adjacent layers. Many networks are not fully connected. To explain how 
this network learns, assume that all the weights are initially 0.5. Apply 
a O to input-l and a l to input-2 and specify that the desired outputs 
are l and O, respectively, for output-l and output-2. This network will 
have the values shown in Table 10.1. 

Input 
layer wii 

Figure 10.9 A simple neural network. 

Hidden 
layer wj{ 

Output 
layer 

To explain our notation, Wij represents the weight between the ith 
input node and the jth hidden node, and Wjk represents the weight 
between the jth hidden node and the kth output node. 

As a first step in training this network, we will change the weights 
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Table 10.1 I~itial Values for a Simple Neural Network 

l 
Weights 

! 
Weights 

between l between 
input and Hi d den hidden and Out~ ut Desired 

nidden nod e output no e outputs, Errors, 
layers, wi_j values, hj layers, W_jk values, x k d k Ek 

0.5 0.5 0.5 0.5 l. O 0.5 
0.5 0.5 
0.5 0.5 
0.5 0.5 0.5 0.5 0.0 -0.5 

between the output layer and the hidden layer with the following equa­
tion: 

(10.33) 

where {3 is the learning rate, xk(t) is the actual output, and Ek(t) is the 
error, w hi ch is defined as the difference between the desired and actual 
outputs, i.e., Ek(t) = dk(t) xk(t). This equation is an approximation 
to the Wiener-Hopf equation. For computation simplicity, it uses an 
estimate of the gradient of the error with respect to the weights instead 
of the actual gradient [19]. In the neural network literature, this equation 
is often called the Delta Rule. Using this equation and a learning rate 
{3 of 0.5, we can change the weights between the output layer and the 
hidden layer (the Wjk's), and the state of the network will change to the 
one shown in the seeond section of Table 10.2. One application of this 
equation is shown with the circles and arrows on Table 10.2. 

That worked for the Wjk 's bu t we cannot use Equation (10.33) for the 
weights between the input layer and the hidden layer (the WijS) because 
we do not know what the error is. The technique narned backpropagation 
by Rumelhart et al. (39] assigns a weighted share of the blame to each 
of the Wij 's. The backpropagation weight-changing formula is 

Wij(t +l)= Wij(t) + {3hj(t) L Wjk(t)Ek(t) . 
k 

(10.34) 

Using this equation we find that the wi/s do not change in this cycle, 
because the syrornetry of o ur networ k eauses the term 

L Wjk(t)Ek(t) 
k 

in Equation (10.34) to be zero. 
But let's not give up yet. Let us present the input again and let the 

network learn some more. After the seeond presentation of the input we 
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Table 10.2 Changing the Weights between the Hidden and Output Layers 

Input Hidden Output Des i red 
nod e Weights, nod e Weights, nod e outputs Errors1 

Time values Wij values, hj Wij values, X k d k Ek 

Initial o 0.5 0.5 ~ ~ ~ 
1.0 0.5 

va lues o .s 
t 

0.5 
0.5 0.5 

1 0.5 0.5 \ 0.5 0.5 0.0 -0.5 

' After o 0.5 0.5 
111

o.625 
using 0.5 0.375 
Eq. o .s 0.625 
10.33 1 0.5 0.5 0.375 

After o 0.5 o .s 0.625 
u sing 0.5 0.375 
E q. 0.5 0.625 
10.34 1 0.5 0.5 0.375 

have 

XI = 0.625 and Et = 0.375 , 

x2 = 0.375 and = -0.375 

as shown in the first section of Table 10.3. So once again we use Equa­
tion (10.33) to ehange weights behveen the hidden and output layers 
and we get the results shown in the seeond seetion of Table 10.3. Next 
we apply Equation (10.34), backpropagation, and this time the Wij do 
change as shown in the third seetion of Table 10.3. One applieation of 
this equation is shown with the eircles and arrows on Table 10.3. This 
eoneludes our seetion on the simple weight-adjusting equations. 

Next we sho\v the network learning the desired pattern. Table 10.4 
shows repeated applieation of the desired input-output pattern. We 
repeated it over and over again until the network finally learned. Af­
ter 40 presentations of that input-output pattern ( 40 training eyeles or 
40 epoehs), output-l is elose to l and output-2 is elose to O, as desired. 

The example of Table 10.4 used a learning rate {3 of 0.5. With a 
learning rate of 0.25, the network eonverged slower. However, with a 
learning rate of 1.0, output-l oscillated as shown in Table 10.5. In other 
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Table 10.3 The Seeond and Third Training Cyeles 

Hi d den Output 
Input nod e nod e Desired 
nod e Weights, values, Weights, values, outputs Errors, 

Time values Wi.i h· Wi.i X k d k Ek .7 

2nd cycle. o (~ ~ ~ 
0.625 1.0 ___. ~ C akulate l .s ~ --new hj, xk 0.5 0.6 -------01r---~ and Ek 1 0.5 0.5 0.375 0.375 

l .....__........ 
After o 0.5 0.5 0.742 
using 

l 
0.5 0.304 

Eq.10.33 0.5 0.742 
1 \ 0.5 0.5 0.304 

After o ,~.523 0.5 0.742 
using 0.523 0.304 
Eq.10.34 0.523 0.742 

1 0.523 0.5 0.304 

3rd cycle. o 0.523 0.523 0.742 0.777 1.0 0.223 
Calculate 0.523 0.304 
new X k 0.523 0.742 
and Ek 1 0.523 0.523 0.304 0.319 0.0 -0.319 

After o 0.523 0.523 0.829 
using 0.523 0.254 

10.33 0.523 0.829 
1 0.523 0.523 0.254 

After o 0.541 0.523 0.829 
using 0.541 0.254 
Eq.10.34 0.541 0.829 

1 0.541 0.523 0.254 
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words, the network did not learn. Problen1s like this are very common 
with simple neural networks. 

Table 10.4 Forty Cycles of Training with f3 o. s 

Hi d den Output 
Input nod e n ode Desired 
n ode Weights, values, Weights, values, outputs Errors, 

Time values Wi:j h j Wij X k d k Ek 

o o 0.5 0.5 0.5 0.5 l. O 0.5 
0.5 0.5 
0.5 0.5 

1 0.5 0.5 0.5 0.5 0.0 -0.5 

1 o 0.5 0.5 0.625 0.625 l. O 0.375 
0.5 0.375 
0.5 0.625 

1 0.5 0.5 0.375 0.375 0.0 -0.375 

5 o 0.545 0.545 0.875 0.955 1.0 0.045 
0.545 0.216 
0.545 0.875 

1 0.545 0.545 0.216 0.236 0.0 -0.236 

20 o 0.518 0.518 0.963 0.997 1.0 0.003 
0.518 0.073 
0.518 0.963 

1 0.518 0.518 0.073 0.075 0.0 -0.075 

40 o 0.510 0.510 0.979 0.999 1.0 0.001 
0.510 0.041 
0.510 0.979 

1 0.510 0.510 0.041 0.042 0.0 -0.042 

The input-output pattern that ·we have been using is simple, but 
hardly worthwhile. Useful problems would surelyhave more complicated 
input-output patterns. For example, suppose \Ve want to implement the 
Boolean functions AND and Exclusive OR as described in Table 10.6. If 
both inputs are O, then \Ve \Vant both outputs to be O, whereas if both 
inputs are l then \Ve want only output-l to be l. If only one input is l, 
then we vtant only output-2 to be l. No\v this example is starting to 
show the powerful pattern-recognition capabilities of a neural net\vork. 
It can detect many different patterns in the input data. An analogy 
would be a neural network that accepted as inputs a person's height, 
weight, age, temperature, blood pressure, pulse, and cholesterol levels, 
and produced as outputs recommendations of normal, infiuenza, hyper­
tension, etc. But back to our simple six-node net\vork, first we apply 
pattern number l, i.e., t\vo Os as the input and two O's as the desired 
output, and allow the \Veights to adapt. Then \Ve apply pattern num-
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Table 10.5 Outpht Oscillations Caused by Increasing f3 to 1.0 

l 
Hidden Output 

Input n ode nod e Desired 
n ode Weights, values, Weights, values, outputs Errors, 

Time values W·ii h.i W i-i X k d k Ek 

1 o 0.5 0.5 0.5 0.5 1.0 0.5 
0.5 0.5 
0.5 0.5 

1 0.5 0.5 0.5 0.5 0.0 -0.5 

2 o 0.5 0.5 0.75 0.75 1.0 0.25 
0.5 0.25 
0.5 0.75 

1 0.5 0.5 0.25 0.25 0.0 -0.25 

5 o 0.686 0.686 0.972 1.334 1.0 -0.334 
0.686 0.120 
0.686 0.972 

1 0.686 0.686 0.120 0.165 0.0 -0.165 

20 o 0.629 0.629 0.501 0.629 1.0 0.370 
0.629 0.027 
0.629 0.501 

1 0.629 0.629 0.027 0.034 0.0 -0.034 

40 o 0.966 0.966 0.619 1.197 1.0 -0.197 
0.966 0.010 
0.966 0.619 

1 0.966 0.966 0.010 0.020 0.0 -0.020 

ber 2 and let the weights adapt. We continue with patterns 3 and 4. It 
might seem that with each new pattern the weights will change, destroy­
ing previous learning. But the hope is that with repeated application 
of these patterns, the network will learn to differentiate between the in­
puts. Unfortunately, this simple network does not learn and, as shown in 
rrable 10. 7, during the fifth cycle the outputs become ridiculously large. 

To overcome these and other problems, neural network researchers 
have proposed dozens of additions to our basic Equations (10.33) and 
(10.34). The first addition that we present is the activation function, 
for which we will use a saturation, or limiting, element (many other 
functions are being used). This is on e of the few properties of artificial 
neural networks that is analogous to a property of biologkal neural net­
works. Real neurons have a maximum firing rate. As the input becomes 
more intense they gradually approach their upper limit. Rumelhart et 
al. [39] proposed using a sigmaidal activation function for every node in 
the network. The following equation explains this property using a node 
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Table 10.6 Training File for AND and EXOR Functions 

Pattern Desired output-l, Desired output-2, 
number Input-l Input-2 logic AND logic EXOR 

l o o o o 

2 l o o l 

3 o l o l 

4 l l l o 

Table 10.7 Attempted Training with Multiple 
Examples 

Cycle and Input Output 
pattern nod e nod e Des i red 
numbers values values outputs Errors 

1-1 o 0.0 0.0 0.0 
o 0.0 0.0 0.0 

1-2 l 0.5 0.0 -0.5 
o 0.5 l. O 0.5 

1-3 o 0.375 0.0 -0.375 
l 0.625 l. O 0.375 

1-4 l 0.666 l. O 0.334 
l 1.623 0.0 -1.623 

4-1 o 0.0 0.0 0.0 
o 0.0 0.0 0.0 

4-2 l 0.004 0.0 -0.004 
o 0.102 1.0 0.898 

4-3 o 0.105 0.0 -0.105 
l 3.092 l. O -2.092 

4-4 l -0.276 1.0 1.276 
l -20.79 0.0 -20.79 

5-l o 24.92 0.0 -24.92 
o 22730.5 0.0 -22730.5 

491 
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in the output layer as an example. The limited output is 

(10.35) 

Thus, the output nodes constrained by sigmaidal activation functions 
will be restricted to the range of plus or minus l. When sigmaidal 
activation functions (Equation (10.35)) were added to all of the nodes 
in our network, the problem of runaway outputs was solved, as shown 
in Table 10.8. 

However, also as shown in Table 10.8, this network failed to learn. In 
particular, for pattern l, output-2 is stuck at a high value (0.693) when 
it should be O. The network is stuck in a local minima. One way to 
ameliorate this problem is to randomize the weights; either initially or 
after the network gets stuck. For this simple network, randomizing the 
initial weights works. For example, w hen we l et the initial Wij 's equal 
0.5, -0.3, -0.5, and 0.3, and the initial Wjk's equal 0.3, -0.5, -0.5, 
and 0.3 (which was an arbitrary choice), we get the results shown in 
Table 10.9. The network learns the desired responses. 

There is another less ad hoc technique for helping a neural network 
to escape from local minimum: adding rnamentum terms. Remember, 
our task was to vary the weights and search for values that reduced the 
error between the actual and desired outputs to the smallest possible 
val u e. Howeve r, we should not expect the er ror function to look like a 
bowl. It is just as Iikely that it has many hills and valleys, as shown in 
Figure 10.10. 

Parameter value 

Figure 10.10 Error function of a neural network. 

The network of Table 10.8 was stuck in a valley. Adding rnamentum 
might helpit escape. To see how, imagine a boy on a shiny sled sliding 
down a snowy slope. When they get to a small valley, they get stuck. 
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Table 10.8 Network Training with {3 = 0.5, but with the Addition of 
Sigmoidal Activation Functions 

C y de Pattern Desired Desired 
number Output-l output-l Output-2 output-2 number Wi.i Wjk 

l 0.490 0.305 l 0.622 0.0 0.622 0.0 
0.493 0.305 2 0.622 0.0 0.622 1.0 
0.490 0.464 3 0.573 0.0 0.623 1.0 
0.493 0.464 4 0.530 1.0 0.666 0.0 

lO 0.470 0.132 l 0.266 0.0 0.492 0.0 
0.481 0.132 2 0.274 0.0 0.480 1.0 
0.470 0.312 3 0.266 0.0 0.489 1.0 
0.481 0.312 4 0.258 1.0 0.539 0.0 

100 1.445 2.501 l 0.782 0.0 0.477 0.0 
1.492 2.501 2 0.257 0.0 0.475 1.0 
1.445 0.151 3 0.262 0.0 0.484 1.0 
1.492 0.151 4 0.624 1.0 0.540 0.0 

1000 4.625 5.968 l 0.018 0.0 0.693 0.0 
4.627 5.968 2 0.022 0.0 0.661 1.0 
4.625 -2.739 3 0.022 0.0 0.661 1.0 
4.627 -2.739 4 0.968 1.0 0.070 0.0 

Now imagine t hat the boy attacks the slope again, this time starting 
higher up the hill. This time they will be going faster when they reach 
the bottom; they will have more momentum. It is quite likely that they 
will continue across the small valley, up the hill, over the crest, and into 
the deeper valley on the other side. The principle is that if you are go­
ing in a good direction, then keep going in that direction. To accelerate 
training and help the network escape from local minimum, we will add 
rnamentum terms to our \Veight-adjustment equations. The rnamentum 
terms are proportional to the amount of the previous \veight adjust­
ment. With the addition of the rnamentum terms, Equations (10.33) 
and (10.34) become 

and 

Wij(t +l) Wij(t) + /3hj(t) L Wjk(t)Ek(t) 
k 

+ a(f3hj(t l) L Wjk(t- l)Ek(t -l)) . (10.37) 
k 

Typically, the rnamentum coefficient a is set between 0.5 and 0.9. Ta­
ble 10.10 shows the neural network with the rnamentum terms (a 0.5) 
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Table 10.9 Network Training with f3 = 0.5 and Sigmoidal Activation 
Functions, but with Arbi~rarily Assigned Initial Weights 

l 

C y de 
l 

Pattern Desired Desired 
number Output-l number W·i:i w:ik output-l Output-2 output-2 

l 0.482 0.349 l 0.525 0.0 0.475 0.0 
-0.308 -0.438 2 0.525 0.0 0.429 l. O 
-0.494 -0.468 3 0.446 0.0 0.481 l. O 

0.303 0.319 4 0.424 l. O 0.491 0.0 

lO 0.480 0.123 l 0.247 0.0 0.517 0.0 
-0.280 -0.756 2 0.275 0.0 0.463 1.0 
-0.677 -0.415 3 0.237 0.0 0.506 1.0 

0.100 0.316 4 0.252 1.0 0.511 0.0 

100 1.077 1.721 l 0.048 0.0 0.502 0.0 
0.757 -3.961 2 0.238 0.0 0.480 l. O 

-1.852 -0.126 3 0.214 0.0 0.492 l. O 
-1.898 -0.206 4 0.629 1.0 0.536 0.0 

1000 5.756 3.452 l 0.001 0.0 0.062 0.0 
5.752 -8.013 2 0.022 0.0 0.946 1.0 

-5.501 6.746 3 0.022 0.0 0.946 1.0 
-5.503 6.625 4 0.966 l. O 0.063 0.0 

learning the input-output pattern. It learned faster and better than the 
network of Table 10.9.1 

We will now show one more teehnique to help the network stay out 
of loeal minimum, the addition of bias tern1s to the weight-adjustment 
equations. We add a bias term to eaeh node in the hidden and output 
layers. We ehoase bias values randomly within the range 0.0 to 1.0. 
Table 10.11 shows the training behavior of our network with the addition 
of bias terms. It has learned in spite of setting the all the initial weights 
to 0.5. 

To generalize all t hat we have learned a bo ut neural networ ks, l et us 
now examine a sensitivity analysis of our network. We started with our 
best network, namely that with (3 0.5, a 0.5, two units in the 
hidden layer, bias values randomly seleeted between plus and minus 1.0, 
and initial values of 0.5 for all nodes. Then we varied eaeh parameter 
throughout its feasible range and examirred the residualerror after 100 
training eyeles. Figure 10.11 shows the results. 

Figure 10.11 shows the normalized error in the network, 

E 
0.5 ~k(dk Xk(t))2 

number of output units ' 

after 100 training eycles. Figures showing these errors after 500 and 
1000 training eyeles had similar shapes but less variation. Whieh means 
that if you are willing to wait 1000 eyeles for your network to learn, then 
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(/3) learning 
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0.8 
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0.1 

-0.3-0.2-0.1 

Error 
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Parameter 

Figure 10.11 Sensitivity analysis of a neural network. 

you can get away with nonoptimal parameters. Analogously, if you have 
all year to teach your dog to shake hands, then reward her with lettuce. 
B ut if you want her to learn in a day, re\vard her with beef jerky. 

In this sensitivity analysis we varied the learning rate {3 from O to 
1.2 and found that as {3 increased from O to 0.1, the error fell rapidly. 
Thereafter, increases in {3 produced small decreases in error. 

Changing the momentum term a from -0.3 to +0.6 had little effect. 
But changes from 0.6 to 0.9 decreased the error. Finally, as a increased 
to 1.0 and beyond, the error jumped and produced overfiow errors. The 
network is very sensitive to a in this region. 

We ch ange d the number of units in the hi d den layer, n, from l to 
12. The error was smallest for n = l. It is a common finding in the 
neural network literature that the error as a function of number of units 
in the hi d den layer is bo,vl-shaped [4]. With too few units, the hi d den 
layer lacks sufficient richness; \Vith too many units, the noise increases 
because the net is underconstrained. 

In this neural network, the bias values \vere randomly selected between 
±b. For the sensitivity analysis we varied b from O to 1.2. This had 
almost no effect on the error. Changes in the initial values of the n odes 
als o h ad small effect. 

In this sensitivity analysis, \Ve only varied one parameter at a time. 
However, there are interactions between the parameters. For example, 
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l 

Table 10.10 Network Training with f3 = 0.5, Sigmoidal Activation Functions, 
and Arbitrarily Assigned 1 Initial Weights, bu t with the Addition of 
Momentum Terms 1 

C y de Pattern Desired Des i red 
number Wi:i Wjk number Output-l output-l Output-2 output-2 

l 0.495 0.262 l 0.759 0.0 0.701 0.0 
-0.306 -0.530 2 0.746 0.0 0.652 1.0 
-0.494 -0.565 3 0.677 0.0 0.680 1.0 

0.301 0.232 4 0.634 l. O 0.681 0.0 

lO 0.475 -0.278 l 0.249 0.0 0.514 0.0 
-0.368 -1.120 2 0.276 0.0 0.458 1.0 
-0.662 -0.780 3 0.240 0.0 0.503 1.0 

0.073 -0.002 4 0.250 l. O 0.523 0.0 

100 0.219 -0.241 l 0.042 0.0 0.378 0.0 
-0.957 -4.055 2 0.201 0.0 0.673 1.0 
-2.154 -0.714 3 0.197 0.0 0.656 1.0 
-2.031 -0.068 4 0.692 1.0 0.458 0.0 

1000 -4.978 -0.336 l 0.001 0.0 0.046 0.0 
-4.994 -7.937 2 0.018 0.0 0.954 1.0 
-5.291 -7.970 3 0.018 0.0 0.954 l. O 
-5.302 7.181 4 0.972 1.0 0.053 0.0 

as we have shown before, if we change both the bias terms and the initial 
weights to zero, then the network does not learn. 

The results shown in Figure 10.11 are specHic for the network and 
problem that we were studying. With a different desired input-output 
behavior, the sensitivity analysis would yield different results. 

Many other variations of the basic weight-adjustment equations have 
been tried. Some had no effects and others had significant effects. For 
example, eliminating hj from Equation (10.34) had almost no effect on 
performance. Also, dividing the seeond term of Equation (10.34) by the 
number of elements in the output layer, as is commonly done, had little 
effect, whereas multiplying the seeond term of Equation (10.34) by the 
derivative of the activation function, Equation (10.35), did enhance per­
formance. Also, a technique called simulated annealing greatly improves 
the performance of neural networ ks. However, we will not consid er an y 
more enhancements of our basic equations. 

In this section we used a neural network as a tool to perform a task: 
we trained a neural network to implement the Boolean functions AND 
and Exclusive OR. A lot of confusion exists about neural networks be­
cause two extremelydiverse groups are using neural networks: (1) tool 
users, who use neural networks to accomplish tasks like pattern recog­
nition and controlling systems, and (2) modelers, who use them to help 
understand biological systems. Most importantly, the two groups have 
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Table 10.11 Network Training with f:J = 0.5, Sigmoidal Activation Functions, 
Momentum Terms, and all Initial Weights Equal to 0.5, but with the Addition 
of Rand om Bias Terms 

C y de Fattern Desired Desired 
number Output-2 output-2 number Wi.·i w.ik Output-l output-l 

l 0.492 0.243 l 0.770 0.0 0.896 0.0 
0.495 0.249 2 0.805 0.0 0.822 1.0 
0.492 0.446 3 0.734 0.0 0.836 1.0 
0.491 0.442 4 0.838 1.0 0.901 0.0 

lO 0.448 -0.467 l 0.194 0.0 0.636 0.0 
0.457 -0.492 2 0.264 0.0 0.379 1.0 
0.438 -0.078 3 0.296 0.0 0.399 1.0 
0.450 -0.129 4 0.146 1.0 0.561 0.0 

100 -0.160 -0.233 l 0.317 0.0 0.504 0.0 
-0.069 -0.302 2 0.194 ! 0.0 0.523 1.0 
-0.209 -0.168 3 0.283 0.0 0.586 1.0 
-0.128 0.010 4 0.158 1.0 0.524 0.0 

1000 -5.392 -3.322 l 0.001 0.0 0.058 0.0 
-5.393 -7.627 2 0.029 0.0 0.946 1.0 
-5.165 -7.884 3 0.016 0.0 0.978 1.0 
-5.161 7.250 4 0.926 1.0 0.051 0.0 

little in common. For example, the most popular algorithm among tool 
users is the backpropagation algorithm. But few modelers of biological 
systems would use this algorithm, because (1) it is not Iikely that any 
one neuron is going to be able to tell any other neuron that it is wrong 
(therefore, how can the error be determined?) and (2) in backpropa­
gation, neural networks information flo,vs in t\vo directions: first input 
information flows forward through the net,vork and then error informa­
tion flows backward through the network. Biological neural networks do 
not have such bidirectional information flows. 

This has been a very simple primer on neural networks. There are 
many techniques besides backpropagation for weight adjustment. Fur­
thermore, many more enhancements could be added to our basic weight­
adjustment equations. This example only used six nodes, and neural 
networks sometimes use millions of nodes. Our reason for including this 
simple example \vas merely to illustrate the idea in a manageable size 
problem. Modern controllers often use a combination of neural networks 
and rule-based expert systems. The neural networks learn, adapt, and 
control the process during normal operation. If a pipe or a value breaks, 
the neural net,vork should fail, because that type of example should not 
have been included in the neural network training file. However, the 
engineers should be good at figuring out \vhat to do in case of failures. 
For example, they could prescribe turning off an upstream valve if a pipe 
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breaks. This type of knowledge would be best suited for a rule-based 
system that would take over from the neural network in case of abnormal 
events. \ 
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