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Preface

How is this book different from scores of other books on systems theory?
First, it is more rigorous mathematically. All developments are based
on precise mathematical arguments, many being innovative and origi-
nal. But no derivations are included just because they are elegant; each
derived theorem or lemma is used later in the book. Second, the theory
is general; often it applies to (1) linear and nonlinear systems, (2) con-
tinuous and discrete systems, and (3) time invariant and time varying
systems. Third, modern, computer-oriented methods are presented, not
graphical techniques. Fourth, it has examples from most major fields
of engineering, economics, and social sciences, with special emphasis on
electrical engineering.

This book is self-contained. It starts with a solid mathematical foun-
dation in Chapters 1 and 2. These chapters have all the mathematical
developments that will be used later in the book. However, these chap-
ters can be skimmed if the results are already known to the reader or
if the reader is uninterested in the mathematical details. This rigorous
presentation of basic principles allows fast, efficient development of later
material.

This text was primarily written for first-year graduate students in
electrical engineering, although it is suitable for graduate students in
other engineering fields as well as those in economics, social sciences, or
mathematics. It would also be suitable for some advanced undergrad-
uate students. The prerequisites are the fundamentals of calculus and
matrix algebra only. The instructor can select the examples and appli-
cations that match the students’ backgrounds. For example, for a course
in electrical engineering the instructor may wish to present the second,
third, fourth, sixth and ninth problems of the Engineering Applications
sections. These five systems are introduced in Chapter 3 and are re-
peated in various forms in each of the subsequent chapters. For such a
class the instructor might present some of the other problems just for
the fun of it. On the other hand, an economics professor might ignore
the engineering applications and study instead the economics examples.

iT



x Preface

This book is an outgrowth of courses taught over the last two decades
to electrical, mechanical, systems, chemical and biomedical engineers
at the University of Arizona and Carnegie Mellon University and to
economics students at the Budapest University of Economics, Hungary.

The objective of this book is to help students develop their capabilities
for modeling dynamic systems, examining their properties, and applying
this knowledge to real-life situations. These objectives are served by four
main features of the book. The theoretical foundation and the theory of
nonlinear and linear systems are given in a comprehensive, precise way.
A unified approach is presented for continuous and discrete systems. We
develop a unified treatment of controllability and observability that is
valid for both time-invariant and time-varying systems. In selecting the
theoretical material and methodology to be covered in this book, we con-
centrated mainly on modern, computer-oriented techniques and omitted
the old-fashioned, pre-computer age (mostly graphical) methods.

For example, in this text we present only four techniques for assessing
stability of a system: Lyapunov functions, the boundedness and con-
vergence of the state transition functions, the location in the complex
plane of the eigenvalues of the coefficient matrix or the location in the
complex frequency plane (s-plane) of the poles of the transfer function,
and the Hurwitz criterion. Proving stability with Lyapunov functions
is general: it also works for nonlinear and time-varying systems. It is
good for proving stability and asymptotical stability. However, proofs
based on Lyapunov functions are difficult, and failure to find a Lyapunov
function that proves a system is stable does not prove that the system
is unstable. The second technique we present requires checking if the
state transition function is bounded and even converges to the zero ma-
trix if ¢ — oo. This method can be used for both time-invariant and
time varying linear systems. The third technique is based on finding the
location in the complex plane of the eigenvalues of the time-invariant
coefficient matrix or finding the poles of the transfer function. This task
is sometimes difficult because it requires finding and factoring the char-
acteristic equation of the system. However, many computer packages are
now available to do this job. Finally, we present the Hurwitz technique
because it can assess the stability of a system without factoring poly-
nomials. Routh’s criterion is similar to the Hurwitz approach, so it is
not presented here. These techniques were developed in the nineteenth
century. In the twentieth century, many more techniques were developed
to help assess the stability of a system without factoring polynomials,
such as Bode plots, Nyquist’s criterion, Sylvester’s condition, Kalman’s
extension of Lyapunov’s criterion, and the root locus technique. We do
not present any of these because for real world problems no one would
ever apply them by hand. One would use a computer program that
implemented the method. And if one were to use a computer program,
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you might as well have it solve the characteristic equation. Many com-
mercial software packages implement common linear systems techniques.
We think the users of this book would benefit by having one of these
computer programs available. Advertisements in technical publications
such as the IEFEE Control Systems Magazine and IEEE Spectrum and
the article by Foster [13] describe many appropriate software packages.

In this book, theory is illustrated by simple numerical examples that
are easy to follow and help the student understand the essence of the
methodology. At the end of each chapter we present real-life applica-
tions. They are selected from most major fields of engineering with spe-
cial emphasis on electrical engineering, social sciences, and economics.
In addition to the illustrative examples and applications, we present
homework problems at the end of each chapter. The last five or six
homework problems in each chapter need a deep understanding of the
material and an ability to develop mathematical proofs.

The organization of the book is as follows. Chapter 1 presents the
mathematical background that will be used in later chapters. It is self-
contained and presents all the material that will be needed later. Chap-
ter 2 contains the basics of differential and difference equations as well
as Laplace and Z transforms. In Chapter 3, characterizations of non-
linear and linear systems are discussed both in state space form and by
using the transfer function method. The stability of dynamic systems
is analyzed in Chapter 4. Conditions are derived for marginal stability,
asymptotical stability, global asymptotical stability, uniform stability,
uniform exponential stability and BIBO stability. We present a unified
general approach that can be used for continuous and discrete and for
nonlinear and linear systems. Controllability and observability are stud-
ied in Chapters 5 and 6, respectively. In Chapter 6 we also introduce
the concept of duality, which has many theoretical and practical conse-
quences. In solving and examining the properties of dynamic systems,
special forms, called canonical forms, are often used. These canonical
forms are introduced in Chapter 7. System realizations and minimal
realizations are discussed in Chapter 8, where conditions for the realiz-
ability of weighting patterns and transfer functions are also introduced.
Special system structures, such as the use of observers for constructing
feedback compensators, are analyzed in Chapter 9. In Chapter 10 we
introduce four advanced topics: nonnegative systems, Kalman filters,
adaptive control, and neural networks.

There are several major additions to this second edition. New sta-
bility concepts are introduced and analyzed in Chapter 4. We added
illustrative examples in all chapters, and we added five to six “theoreti-
cal” homework problems to each set. These theoretical problems can be
very useful for stimulating graduate students to think about the main
concepts and the main results of the chapters. Engineering applications



xii Preface

Number six and nine are new, and their different aspects are examined
in each chapter. With these new case studies we put a greater emphasis
on electrical engineering application.

There is enough material for a full academic year course, but for grad-
uate students the essence of the book can be covered in a three-unit,
one-semester course. The first edition of this book, with certain omis-
sions, has been used in a one-semester, three-unit, graduate course at
the University of Arizona. A chapter-dependency chart is illustrated in
Figure 0.1, which should help instructors tailor individual course pro-
grams.

Figure 0.1 Chapter dependency chart.

In preparing the manuscript we obtained significant help from our
students, especially from Jerome Yen, Dan Liu and Ling Shen who care-
fully read the manuscript, checked for misprints and understandability,
and prepared the solutions for the homework problems. We also thank
Jerome Yen for writing the neural network programs used in Chap-
ter 10. Mo Jamshidi provided us with helpful critiques. The figures
were composed by Morgan, Cain and Associates of Tucson, Arizona.
Our most special thanks should be addressed to our families, who pro-
vided the needed support and personal understanding while we prepared
the manuscript.

Ferenc Szidarovszky
and

A. Terry Bahill
Tucson, AZ



Introduction

The technological revolution of the past century occurred because people
learned to control large systems composed of nature, machines, people,
and society. When they used and improved devices to help them con-
trol such systems, they found that they could control bigger and bigger
systems. To show this evolution to bigger systems let us consider trans-
portation systems. A horse-drawn coach was handled quite well by the
coachman, using simple direct controls. The early automobile was simi-
larly controlled in a direct manner. However, modern automobiles have
a multitude of devices to help the driver control the vehicle: electronic
automatic transmission, power steering, and four-wheel anti-lock brakes,
to mention a few. To fly an airplane the pilot needs control devices to
translate his manual actions into the large forces required to move the
wing control surfaces. Some of the devices he uses amplify his strength
and others augment his intelligence. On many airplanes the intelligence
devices are so good the pilot can put the airplane on autopilot and let
the plane fly itself. As systems become more complicated, the human
does less of the controlling and the machine does more. If we make a
manned voyage to Mars, humans will play a small role in controlling the
spacecraft.

The design of control devices is called control engineering. Early con-
trol devices were mechanical, and their design was mainly intuitive.
However, recent control devices are algorithms embedded in comput-
ers, and their design is very mathematical. The linear systems tools
presented in this book comprise the basic mathematical portion of the
control engineer’s toolkit. This introduction discusses these tools, but
does so in nonmathematical terms. It is meant to motivate the main
concepts and help the reader see the forest through the trees.

Chapters 1 and 2 of this book present the mathematical basis for
understanding the concepts, methods, and derivations in later chapters.
The material presented may at first be foreign to you, but we encourage
you to bear with us, because after you master this material the rest of
the book will be easy.
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Chapter 3 shows how we model dynamic systems. The term “dy-
namic” means that the patterns describing the system change with time
and the characteristics of the patterns at any time period are interre-
lated with those of earlier times. A system is a process that converts
inputs to outputs. A system accepts inputs and, based on the inputs
and its present state, creates outputs. A system has no direct control
over its inputs. An example of a system used in everyday life is a traffic
light. It accepts inputs, such as pedestrians pushing the walk button or
cars driving over sensors, and based on its current state, creates outputs
that are the colors of the lights in each direction. Defining the state of
a system is one of the most important, and often most difficult, tasks
in system design. The state of the system is the smallest entity that
summarizes the past history of the system. The state of the system and
the sequence of inputs allows computation of the future states of the
system. The state of a system contains all the information needed to
calculate future responses without reference to the history of inputs and
responses. For example, the current balance of your checking account is
the state of that system. There are many ways that it could have gotten
to the current value, but when you are ready to write a check that his-
tory is irrelevant. The names of the states are often composed of a set
of variables, called state variables. For systems described by difference
or differential equations, these state variables are often the independent
variables of these dynamic equations. If the time scale is assumed to
be continuous, then the system is described with differential equations,
whereas if the time scale is assumed to be discrete (as for computers),
then the system is described with difference equations. For sequential
logic circuits (computers) the outputs of the memory elements are usu-
ally the state variables. However, it is important to note that the choice
of state variables is not unique. Most physical systems can be described
with many different sets of state variables.

In Chapter 4 we analyze stability and instability of systems. With-
out giving a formal definition we can say that in an unstable system
the state can have large variations and small inputs may produce very
large outputs. A common example of an unstable system is illustrated
by someone pointing the microphone of a public address (PA) system
at a speaker; a loud high-pitched tone results. Often instabilities are
caused by too much gain. So to quiet the PA system, decrease the gain
by pointing the microphone away from the speakers. Discrete systems
can also be unstable. A friend of ours once provided an example. She
was sitting in a chair reading and she got cold. So she went over and
turned up the thermostat on the heater. The house warmed up. She got
hot, so she got up and turned down the thermostat. The house cooled
off. She got cold and turned up the thermostat. This process continued
until someone finally suggested that she put on a sweater (reducing the



Introduction xv

gain of her heat loss system). She did and was much more comfortable.
We called this a discrete system because she seemed to sample the en-
vironment and produce outputs at discrete intervals about 15 minutes
apart.

In Chapter 5 we mathematically analyze controllability. Informally, a
system is controllable if we can construct a set of inputs that will drive
the system to any given state. A real world example of an uncontrollable
system is illustrated by a mother in a grocery store with two toddlers.
The mother cannot control the states; she can never get the exact be-
havior she wants. But continual action by an intelligent controller can
restrain the children to acceptable behavior. Notice that this is not an
unstable system; the children are always within the confines of the store.
Stability and controllability are not the same.

In Chapter 6 we mathematically analyze observability. Informally,
observability means that by controlling the inputs and watching the
outputs of a system we can determine what the states were. A person
driving a car is a nonobservable system. Most aspects of the car can
be observed, but we cannot put electrodes inside the driver’s skull to
observe the driver’s states and control signals. When engineers must
control nonobservable systems, they sometimes build observers. In one
prosthetic system, electrical signals recorded from the upper arm of an
amputee were used to control a prosthetic arm. This technique was not
successful until a computer was placed in between the human’s arm and
the prosthetic device. The computer contained a type of observer that
modeled the body’s internal states.

There are different ways to say the same thing. Here are three ways
to describe events in a particular baseball game. Joe hit two home runs.
Joe homered twice. Two home runs were hit by Joe. These all say
about the same thing. But each would be best in certain situations.
Similarly, the canonical forms, presented in Chapter 7, show how the
same system can be represented in many different mathematical ways.
Most canonical forms can be used for most systems, but for any given
situation one may be more useful.

When building a new system, management would like to know if the
system the engineers design is the simplest one that satisfies the cus-
tomer’s requirements. Suppose a customer asked for a system that
receives radio station KUAT FM, and the engineers come up with a
design for an AM-FM-tape system. Is the engineer’s system minimal?
No, a simpler system could be built. (However, given the realities of
manufacturing, it may not be less expensive.) In Chapter 8 we present
mathematical tools to help build a system and determine if it is minimal.

As shown in Chapter 9, adding feedback loops can reduce the sensi-
tivity to variations in certain parameters, increase rejection of output
disturbances, and change system dynamics. For example, have a friend
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hold a book in her hand with her elbow at her hip and her forearm
perpendicular to her body. Instruct her to close her eyes and hold her
arm steady. In a few minutes, as her muscles get tired, her arm will sag.
Now allow her to open her eyes and look at the book. She will be able
to hold her arm steadier because the visual feedback loop has reduced
her sensitivity to muscle fatigue. Once again ask her to close her eyes.
This time push down on the book. The book will move quite some dis-
tance before she can reject your disturbance and return it to its original
position. Now allow her to open her eyes and do the same thing. Using
visual feedback she will be better at rejecting your disturbances. Finally,
when feedback is used to change system dynamics, it is usually used to
speed up the system. Imagine using flash cards to help a fifth grader
learn the multiplication tables. First do it without feedback. Show him
a card, wait for his answer, put it down, and show him another. He will
learn, but very slowly. Next give him feedback.

For example, if you show him the card with 7 x 3, and he
says, “21.7

Respond with, “Very Good.” :-)

<That symbol is a smiling face turned on its side.>
However, if he says, “22.”

Respond with, “No. It is 21.” :-(

<'That is a frowning face turned on its side.>

He will learn faster with feedback. Notice that you can tailor the
feedback to get almost any dynamic you want. If you give him ten
cents for each correct answer and take away five cents for each incorrect
answer, he will learn much faster.

In Chapter 10 we present four advanced tools of systems theory. If the
state variables of a model are, for example, human body temperature and
blood pressure, then we know that they should never become negative;
if they could, then the model is wrong. In Section 10.1 we present simple
mathematical tools that can be used to check if a system’s state variables
always remain nonnegative, and we discuss the main properties of such
systems.

In Section 10.2 we present a Kalman Filter. It represents a class
of adaptive systems often used in signal processing to separate signals
from noise. These filters are designed to extract signals from white
noise. However, white noise would have equal energy at all frequen-
cies, therefore it is impossible to make; so, real systems use bandlimited
white noise, which is called pink noise. The human auditory system
uses adaptive filters to extract signals from noise. At a party most peo-
ple are able to listen to one person (the signal) in spite of many back-
ground conversations (noise). However, when they walk away and start
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conversing with another person (with different frequencies, intonations,
and accents), they must change their filters. Some of us have difficulty
understanding the first few sentences with a new conversant, while our
filters are still adapting. Following one voice out of many is easy in
person, but difficult over a telephone, unless the speaker has increased
the signal-to-noise ratio by talking directly into the mouthpiece. Some
hearing aids have been fitted with Kalman Filters. They are better at
separating signals from noise.

Section 10.3 presents a different type of adaptive system, a type used
to control time-varying systems. Many systems change with time due to,
for example, bearing wear, warming of lubricants, or fatigue of muscles.
When controlling such systems the controller must also change with
time. One of the biggest challenges in designing adaptive systems is
proving that the resulting systems are stable. In this section we present
techniques for designing stable adaptive control systems.

Artificial neural networks are computer systems composed of a very
large number of adaptive units connected in parallel. They are useful
for pattern recognition and have been used, for example, in banks to
verify signatures on checks. Because they can recognize patterns of
input variations and specify appropriate outputs, they have also been
used as controllers in control systems. The basic operation of neural
networks is explained in Section 10.4.

This brief overview of systems theory was provided to help motivate
the mathematical analysis that follows. We hope that knowledge of
these mathematical techniques will help engineers design systems for
the betterment of mankind.



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


http://taylorandfrancis.com

chapter one

Mathematical Background

1.1 Introduction

This chapter provides the foundation for understanding the mathemat-
ical details to be discussed in later chapters of this book. It is devoted
to two fundamental topics of applied mathematics: metric spaces and
matrices. We will see in later chapters that many problems in dynamic
systems theory can be solved by evaluating the solutions of linear and
nonlinear algebraic equations as well as by computing the solutions of
ordinary differential and difference equations. The most commonly used
techniques are iterative, which determine a sequence of real (or complex)
numbers, vectors, or functions that converge to the desired solutions.
The theory of metric spaces and contraction mapping establishes the
basis of such methods. This theory will be outlined in the first part of
this chapter. In the second part we present the basic properties of linear
structures, which will be needed in analyzing linear systems. In this
section, norms, transformations, and function of matrices are discussed.

1.2 Metric Spaces and Contraction Mapping Theory

Metric spaces and special mappings defined in metric spaces play very
important roles in the solution methodologies of linear and nonlinear
algebraic, difference, and differential equations. The solutions of these
equations are real or complex vectors, scalars, or functions defined on
discrete or continuous time scales. Therefore, the convergence analysis
of iteration methods for solving such equations requires the concept of a
certain kind of distance between vectors, scalars, and functions. A uni-
fled approach using metric spaces is given in this section. The elements
of this theory are outlined below.



2 chapter one: Mathematical Background

1.2.1 Metric Spaces

If A and B are any sets, then A x B denotes the Cartesian product of A
and B:
AxB={(z,y)|z€AyeB}. (1.1)

If A and B are single-dimensional intervals, then A x B is the rectangle
shown in Figure 1.1.

Y4

U

"

A

Figure 1.1 Cartesian product in one dimension.

DEFINITION 1.1  Apair (M, p) is called a metric space if M is a set, and
p is a real valued function defined on M x M with the following properties:

(i) Forallz,ye M, p(x,y) > 0,and p(x,y) = Oifand only if x = y.
(ii) Forallz,y € M, p(z,y) = p(y, x).
(iii) Forall z,y,z € M, p(z,z) < p(z,y) + p(y, 2).

Function p is called metric, which represents the distance between
elements of set M. Property (i) requires that the distance of different
elements is always positive, and the distance of any element from it-
self is zero. Property (ii) represents the symmetry of the distance, and
Property (iii) is known as the triangle inequality, which states that the
direct distance between two elements is never larger than the sum of
their distances from a third element.

Example 1.1

Let M be the set R (or C) of real (or complex) numbers, and define
plz,y) = |x — yl|. Properties (i) and (ii) are satisfied obviously, and
the triangle inequality is the obvious consequence of the well-known
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inequality |a + b| < |a| + |b], whenweselecta =z —y, b=y — 2,
and a + b = x — z. Hence, (M, p) is a metric space.

Example 1.2

Let M be the set R™ (or C") of the n-dimensional real (or complex)
vectors.
(A) Select the metric function as

poo(X7 y) = m?X]xi - y1[ ) (12)

where 1; and y; are the ith components of vectors x and y, respectively.
Properties (i) and (ii) are satisfied, and (iii) can be verified as follows.
From the previous example we know that for all ¢,

|zi — zi| < |z — yil + |y — 2] - (1.3)
Assume that
Poo(X,2) = max |z; ~ zi| = |z, — 2| -
Then

Poo(x, Z) = Ixiu - Zinl < lmiu - yinl + |yiu - zi()l

< max|z; — yil + max |y; — 2i| = poo(X,¥) + ooy, 2) -
Figure 1.2(a) illustrates this distance.
(B) Select now the function

p(xy) =D |z —uil . (1.4)
i=1

We can easily show that (M, p; ) is also a metric space because prop-
erties (i) and (ii) are satisfied, and (iii} can be proven by adding inequal-
ities (1.3) for 7z = 1,2, ..., n. Figure 1.2(b) shows this distance.

(C) The most commonly used metric function defined on n-dimensional
vectors is given as

N 1/2
p2(x,y) = {Z s - yilz} : (1.5)
t=1

Properties (i) and (ii) are obvious again, and the triangle inequality
can be proven by applying the Cauchy-Schwarz inequality, which can
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be stated as follows: If u = (u;) and v = (v;) are real (or complex)
n-dimensional vectors, then

n 2 n n
(z il w) <3 hl S .
3==1 =1

i=1

Use the triangle inequality and the Cauchy-Schwarz inequality for
vectors X —y and Yy — Z to get

n

n
pa(x,2)? = Y |z —zl? < llmi -yl + |yi — 2]
i=1

i=1

i=1

n n n
= Z |z — il + Z lys — z* + 22“% = Yillyi — 2]
i=1 i

i=1

n n n 1/2
< Zm—yi|2+2fyi—zi|2+2{21mi—yiF}
i=1 =1 i=1

n 1/2
{Z lyi — Zi|2}

i1

n 1/2 n 17272
{ Ifﬂi“yilz} + {ZHH—ZJQ}
i—1 i=1

(P20, y) + paly, 2)]% .

Il

Figure 1.2(c) illustrates this distance.
Hence, R™ (or C") is a metric space with distances pu, p1, and pq.

Note that the above three metric functions pe, p1, and ps are all special
cases of the more general Minkowski distance

n 1/p
pp(x7 y)= {Zk’% - yi|p} ’ (1'6)
i=1

where p > 1 is a given constant.
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Example 1.3

Let M be the set Cla, b] of the continuous functions on the finite closed
interval [a, b]. Define

o(f,9) = Jnax, |f(z) - g(2)], (1.7)

which is illustrated in Figure 1.3.

f(x)

P, &)

g(x)

|

St ——————— e

=Y

Figure 1.3 Distance of continuous functions.

We now prove that (M, p) is a metric space. Note first that the
continuity of function | f(x) — g(z)| implies that the maximum exists.
Properties (i) and (ii) are obvious, and the triangle inequality can be
proven as in the case of distance po, of n-dimensional vectors.

Example 1.4
If M is any set, then we can define

_flifz#y
p(zy) = {0’ ooy (1.8)

Properties (i), (ii), and (iii) can be proven easily. The resulting metric
space (M, p) is called discrete.

Let (M, p) be a metric space, and M; C M. Define function p; on
M, x My as p1{z,y) = p(z,y) (z,y € M1). Then (M, ;) is also a
metric space and is called the subspace generated by subset M;.

An open ball with center z € M and radius 7 > 0 is defined as

B(z,r) ={y |y € M, p(z,y) <r}, (1.9)

and the set

B(z,r) ={y |y e M,plz,y) <r} ~ (110)
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is called the closed ball with center x and radius r.

Let M, C M. A point x € M, is called an interior point of M if for
some 7 > 0, B(z,7) € M;. A point z € M is called a boundary point of
M if for all ¥ > 0, B(z,7) contains points that belong to M; and points
that do not belong to M;.

A set M, is called open if each point of M; is interior. A set M, is
closed if M — M, is open. Note that the empty set is considered to be
both open and closed.

DEFINITION 1.2 Asequence {x,} of elements of M is said to be conver-
gent and to have the limit point z* € M, if p(xn,x*) — 0as n — oo. This
property is denoted as x, — * or as limp 0 T, = z*.

First we prove that the limit point of any convergent sequence is
unique. In contrast to the assertion, assume that z* and =** are both
limit points of sequence {x,}. Then

0 < p(z*,z™) < p(a™, zn) + p(@0, ) = p(Tn, %) + p(Tp, T) .

Since both terms of the right-hand side converge to zero, p(z*,z**) = 0.
Hence, z* = x**.

Let M7 C M be a closed set, and assume that for alln > 1, z,, € M,
and sequence z, converges to an z* € M. We will next prove that
z* € M;. Assume in contrast to the assertion that z* € M;. Since
My is closed, M — M is open. Therefore, there is a ball B(z*,r) with
some r > 0 that is in M — M;. Convergence z,, — z* implies that
for sufficiently large values of n, p(x,,2*) < r, that is, z, € B(z*,r)
implying that z,, € M — M; contradicting the assertion that z,, € M;.
This property of closed sets can be formulated by saying that a closed
set M contains all limit points of sequences from M;.

DEFINITION 1.3 A sequence {x,} of elements of M is called a Cauchy
sequence if p(Tyn,ZTm) — 0asn,m — co.

THEOREM 1.1
If {zn} is convergent, then it is also a Cauchy sequence.

PROOF  Let the limit point of {z,,} be denoted by z*. Then

0 < p(Tn,m) < pEn, 3%) + P(&",Tn) = p(ns2") + p(Tmy 7 -
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Because both terms of the right-hand side converge to zero, we conclude
that p(z,,Zy,) — 0asn, m — oo.

REMARK 1.1 A Cauchy sequence is not necessarily convergent, as
the case of metric space (M, p) with M = (0,00) and p(z,y) = |z — y|
illustrates. Consider sequence =, = 1/n (n > 1), which has no limit
point in M (the zero limit does not belong to M), but for n,m — oo,

(1/n) - 1/m) —0. 1

DEFINITION 1.4 A metric space (M, p) is called complete if all Cauchy
sequences of elements in M have limit points in M.

It is well known from calculus that in the set of real (or complex)
numbers all Cauchy sequences are convergent, so R (or C) is com-
plete. The convergence of vectors in any of the discussed distances means
component-wise convergence. Because each component is a real {or com-
plex) number, R*(or C") is also complete. The convergence in Cla, b]
is the well-known uniform convergence. It is also well know from calcu-
lus that the limit function of uniformly convergent continuous functions
defined on a closed interval [a, b] is also continuous implying that Cla, b]
with distance (1.7) is also complete.

In the next theorem we prove that p(z,y) is a continuous two-variable
function.

THEOREM 1.2
Ifr, — x*andy, — y* forn — oo, then p(zn, yn) — p(z*,y*) for n — oo.

PROOF By applying the triangle inequality we have

2(Zn,Yn) < p(2n, %) + p(2™,yn) < p(Tn, %) + p(z™, ™) + (¥, Un) »

that is,
o(Zn,Yn) — p(x",y") < p(2n, ) + p(Yn, ¥") .

By interchanging z, with z* and y,, with y* we conclude that
oz, y") = p(xn, yn) < p(z™,20) + p(Y" Yn) -
Hence

0 < p(zn yn) — p(z", ") < p(Tn. ") + 0(Yn, ¥7)
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where the right-hand side tends to zero as n — co. Thus, p(zy,yn) —
plz*,y*) for n — oo. i

In the next section, mappings between metric spaces will be defined
and their main properties will be examined. These properties then will
be applied in proving the contraction mapping theorem, which will be
very useful in showing the existence of a unique state trajectory in con-
tinuous systems.

1.2.2  Mappings in Metric Spaces

Any iteration method consists of the repeated application of a certain
mapping. In order to analyze the convergence of iteration procedures,
the basic properties of such mappings have to be investigated. This
section is devoted to this subject. Assume that (M, p) and (M’, p’) are
two (not necessarily different) metric spaces. The domain D{A) and
range R{A) of a single-valued mapping A from M to M’ are defined as
follows:

D(A) = {z |z € M and A(z) is defined} ,
R(A) = {z' | £’ € M’ and there exists z € D(A) such that ' = A(z)} .

Obviously D(A) C M and R(A) C M’. The domain and range of
mappings are illustrated in Figure 1.4.

M

Figure 1.4 Domain and range of mappings.

DEFINITION 1.5  Mapping A is said to be continuous at a point x €
D(A), if for every sequence {z,, } from D(A) converging to z, A(z,) — A(x)
asn — oo.
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Similarly, a mapping A is said to be continuous if it is continuous at every
x € D(A).

DEFINITION 1.6~ Mapping A is called bounded if there exists a nonneg-
ative constant K such that for all z,y € D(A),

p'(A(z), A(y)) < K - p(z,y) - (1.11)

Bounded mappings are illustrated in Figure 1.5.

M M
—T\\ AT
X \ /
p(x.y) ) ( p(A(x»A(y))
y
(31 LA

Figure 1.5 Bounded mappings.

Note first that every bounded mapping is continuous, because if z*, z,, €
D(A) (n > 1) and z,, — z*, then

0< p(A@n), A") < K - plan,a") .

Since the right-hand side converges to zero, A(z,) — A(z*) as z, — z*.
It is easy to see that a continuous mapping is not necessarily bounded.
As an example, consider M = M’ = R, p(z,y) = |z — y|, o = p, and
A(z) = z2. In this case, for all z # y,

P(A(), A) _ |o° — 92 _ 4y
p(z,y) lz -yl ’

which can be arbitrarily large, if z and y are sufficiently large positive
numbers.
A special class of bounded mappings is defined next.

DEFINITION 1.7  Mapping Ais called a contraction if it is bounded with
aconstant 0 < K < 1.
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Example 1.5

Let M = M’ = R, p(z,y) = |z — y|, p’ = p, furthermore let A be
a differentiable function on some interval D C M. Assume that for
allz € D, |A/(z)] £ K, where A’ is the derivative of A. Then for all
z,ye D,

p'(Alz), A(y)) = |Alx) — A(y)| =14"(©)] - |z — y]
SK-Ix—y!:K-p(x,y), (112)

where £ is between z and y. Hence, mapping A is bounded with
constant K.

Example 1.6

Let M = M' =R"™ p' = p=p, (p = 1,2, 00), and assume that A is
adifferentiable function ona convexset D C M. Assume furthermore
that for all x € D, |(04;/0z;)(x)| < ay; where A = (4;) and
X = (x;). The mean-value theorem of the derivatives of multivariable
functions implies that forall x and y € D,

400 - AW =D D) (a—y)  (=12....m).
=1 """

Select first p = 1, then

p1A(), A ZIA (9 - 4y < 33 |52 E)

lzj — ysl
i=1 j=1
n n
34,
=> (II] > 5z (& )
i=1 i=1 J
n
<Ky - Z |z —y;] = Kip1(x,y) ,
=1
where
Ky =max ) o . (1.13)

J i=1
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Select next p = 2, then the Cauchy-Schwarz inequality implies that

2
pa(A(X), AW = D 14i(x) = AP =) ) 56 - (25— )
i=1 i=1 j=1 7
n n 8A 2 n
< Z 5—;(55) lej —yj|?
i=1 \j=1 J j=1
J J
n n OA. 2
SZ Z ) 7‘(éz) 'pQ(Xay)za
— — Z;
i=1 \ j=1
that is,
p2(A(x), A(y)) < K2 - p2(x,y)
with
1/2
Ko=) o} . (1.14)
i=1 j=1
Select finally p = oc. Then
= |DA;
Poo(A (), Aly)) = max |As(x) — Ai(y)| < max ) 12— (&) - |; — wy
g=117"7
" 194,
<max ) 1 =—(€)] - max|z; — 45 < Keopoo(x,¥)
2 = 8117_7' 2
where
Koo :maxz oj - (1.15)

Hence, A is a bounded mapping with constants K, (p = 1, 2, 00).
Note that in the special case of the linear function

A(x) = Ax+f,

where A = (a;;) is an n x 7 real matrix and f is an n-element real
vector, (0A;/0x;)(x) = aij. Consequently, we may select a;; =
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|35, hence the above bounds have the special forms:
n
Ky =max ) _layl,
7=

1/2

ki3 k13
Ey={> "> Jayl (1.16)

i=1 j=1

and

n
Ky = mf}xz laiz] -

j=1

It is easy to verify that these bounds hold even if A, f, and x are
complex.

Example 1.7

Let M = M’ = Cla, b] with the metric defined in Example 1.3. As-
sume that function & is continuous on [a, b] X [a, b] and f is continuous
on [a, b]. Define mapping A on M as

b

AW)(z) = / Kz, s)y(s) ds + f(z) (117)

a

where y € M is a continuous function, and the left-hand side is the
value of mapping A(y) at . Hence, we choose D(A) = M and
R(A) C M'. 1tis easy to show that mapping A is bounded, since for
ally,z € M,

p(Aly), A(2)) = max [A)(z) - A2) ()]

z€[a,b

b
< - . _
< mox / k(. 8)] - [y(s) — =(s)] ds
b
< mox [ k(@9 ds - mox lu(o) - 2(0)] = K - p(0,2),

where

b
I = max/ [k(z, s)|ds .
z€[a,b] J,

Consequently, mapping A is bounded.
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Example 1.8

Let M be the set C1{a, b] of the continuously differentiable functions
on [0, 27] with the distance defined in Example 1.3. Define mapping
A(y) = y' with D(A) = M. We shall now verify that this mapping
is notbounded. Consider functions y(z) = sinnz (n > 0), z(z) = 0.
Then

A(y)(x) =ncosnx and  A(z)(z)=0,

therefore,

p(A(y), A(2)) = xg[loz?%cﬂ [n-cosnz—0|=n.

Since
ply, z) = max | [sinnz — 0] =1,
2T

no finite K satisfies Definition 1.6. Hence, mapping A is not bounded.

The last example shows that differentiation as a mapping is not bounded.
This is the reason why in Section 2.1.1 differential equations will be be
rewritten as integral equations. The resulting integral mappings will be
not only bounded, but also contractions, and therefore the results of the
next section can be easily applied.

1.2.3 Contraction Mappings and Fixed Points

The main result of this section is formulated as a theorem, which gives
sufficient conditions for the existence of the unique solution of fixed-
point problems of the form z = A(z), where A is a mapping with D(4)
and R(A) being the subsets of the same set M. As we will see later, the
computation of equilibrium states and state trajectories of a dynamic
system requires the solution of such fixed-point problems.

THEOREM 1.3

Assume that metric space (M, p) is complete, My C M is a closed set. Let
mapping A be a contraction such that D(A) = My and R(A) C M,. Then
the fixed-point problem x = A(x) has a unique solution in My, furthermore it
can be found as the limit of the iteration sequence

1 = A(zg), (xo € M, arbitrary)

xz = A(z1)
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Tny1 = A(‘TTL)

(1.18)

PROOF  The proof contains several steps.

(a)

(b)

()

(d)

First we prove that the iteration sequence is a Cauchy sequence.
The repeated application of the triangle inequality implies that for
m>n,

P(l'ml'm) S ,0($m xn+1) + p($n+la$n+2) +oee+ P($m~1,$m) .
(1.19)
From the definition of contractive mappings we see that for all
k>1,

p(zr, Tri1) = p(A(zr-1), Alzy)) < K- p(z-1,28)
= K- p(A(zr-2), A(Ts-1))
< K% p(zp_n,zp1) < - < KFp(zo, 1) -
Combining this relation with (1.19) yields the inequality
P(Zn, Zm) < p(zo, 1) - [K™ + K+l 4 Km_l]

K"

< plzo, 1) - (K™ + K™ 4] = p(zo, 71) - 1-K°

Since 0 < K < 1, the right-hand side converges to zero as n — oo,
which implies that p{(zn,zm) — 0as m > nand n — co.

Since metric space (A, p) is complete, sequence {z,} converges to
an element z* € M. Note that for all n, z,, € M;. Since M is a
closed set, z* € M,.

Next we show that z* is a fixed point of A. Mapping A is bounded,
therefore it is continuous. Letting n — oo in the iteration equation
ZTns1 = A(zy) we have 2,47 — z* and A(z,) — A(z*), and the
uniqueness of the limit implies that z* = A(z*).

Finally we verify that the fixed point is unique. Assume that z*
and z** are fixed points of A such that z* # 2**. Since A is a
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contraction mapping,
p(z”,2™) = p(A(z”), A(z™)) < K- p(a™, 2™

with K < 1. Divide both sides of this inequality by p(z*,z**) > 0
to get the relation
1<K,

which contradicts the definition of K. Hence the proofis complete.

COROLLARY 1.1
The iterations of mapping A can be defined by the following recursion:

Al= A, A(z) = A(A*(z))  (allz € My). (1.20)

It is easy to verify that the assumption of the theorem that A is a contraction
can be replaced by the weaker condition that for some k > 1, A¥ is a contraction.

The iteration process (1.18) is illustrated in Figure 1.6 and can be
summarized as follows:
Step 1 Select an initial approximation z,q € M.
Step 2 Compute Zypew = A(Zold)-

Step 3 If p(Znew,Zold) is less than an error tolerance €, then accept
ZTpew a8 the solution and stop. Otherwise set Tolg = Znew and go
back to Step 2.

Figure 1.6 [Illustration of fixed-point iteration.
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At the conclusion of this section, a numerical example is presented.

Example 1.9

Consider the special case when M = M is the closed interval [1, 2]
and mapping A is defined as

A(x):%(m-FE) .

Obviously M is complete and M is closed. Forall z € [1,2],

A(x)§é<2+%)=2

and

A(z)2%(1+§>=1,

sincex < 2,2/ <2/1 =2,z >1,and 2/7 > 2/2 = 1. That s,
A(z) € M. Purthermore,

1-2l<t

d 1
}%A(z)\ﬂi) x2___-2"<1,

therefore, Example 1.5 implies that mapping A is a contraction. Thus,
all conditions of Theorem 1.3 are satisfied. Select g = 2, then the
iteration sequence is the following:

1 2
=-(2+2)=15
1 2( +2> y

1 2
== [15+ -2 ) ~ 1.4166667
o 2( +1.5) 1.41 ,

and in a similar manner

T3 & 1.4142157, T4 7~ 1.4142136,

and so on. Note that the only fixed point in {1, 2] of mapping A is v/2,
which equals z4 to the accuracy shown.

Finally, we note that some applications of these results to the theory
of iteration methods are discussed, for example, in [2, 42], and in [8].
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1.3 Some Properties of Vectors and Matrices

In the theory of linear systems, the metric properties of finite-dimensional
vectors and matrices have important roles. For example, the stability
analysis of dynamic systems requires the investigation of the convergence
of the state vector as time approaches infinity, which can be performed
easily by using the concepts of the first part of this section. In the second
part, special matrix transformations and decompositions are discussed.
They will be useful in transforming linear systems to special forms. In
the third part of this section, matrix functions are introduced and an-
alyzed, which will be applied to solve linear difference and differential
equations, governing discrete and continuous systems, in closed form.

1.3.1 Norms of Vectors and Matrices

In the previous section distances of vectors were introduced, but they
do not measure explicitly the magnitude of a single vector. However, in
analogy to the definition of the absolute values of real numbers being
their distances from zero, the length (or norm) of a vector x is defined
as its distance p(x,0) from the zero vector.

DEFINITION 1.8 The p-norms (p = 1,2,00) of an n-element real or
complex vector x = (x;) are defined as follows:

n

Il = |zl

i=1

n 1/2
x|z = {leilg} ; (1.21)
i=1

and
Ieloo = mave ]

These vector norms are illustrated in Figure 1.7. We note that ||x||2
can also be written as vX*X, where x* is the conjugate transpose of x
(or the usual transpose of x in the real case).

The main properties of vector norms are given next.

THEOREM 1.4
The p-norms of n-element real or complex vectors satisfy the following prop-
erties:
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¥ 4 x=(x,, x,)
W
Ix,|
11l o
I, x
4—-——|x1|———+—lx2|—b|

Figure 1.7 Vector norms in R

(i) x| = 0, and ||x|| = 0 if and only if x = O, where 0 is the zero vector
with all elements equal to zero.

(ii)  For an arbitrary real (or complex) number o, ||ox|] = |af - ||x]}.

@) x+yl <)l +llyl

PROOF
(i) |x|| = p(x,0) is always nonnegative, and is zero if and only if
x=0.

(ii) Thisproperly follows immediately from the definition of the vector
norms.

(i) [x+yll = p(x, —y) < p(x,0)4+p(0, —y) = |Ix[+[—yl = x|+ ¥l

REMARK 1.2  Any real-valued function defined on the set of the n-
element real {or complex) vectors satisfying conditions (i), (ii), and (iii)
is called a vector norm. It can be proved (see Problem 1.21) that any
two vector norms defined on the set of the n-element real (or complex)
vectors are equivalent to each other, that is, if |- || and || - |’ are two norms,
then there exist positive constants a; and a, such that for all vectors x,

ar[lx]| < x|l < ez} .

DEFINITION 1.9  Let || - || be a given norm of n-dimensional real (or
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complex) vectors. The matrix norm generated by this vector norm is given as
A = max{][Ax{ | x| =1}.

Since vector norms are continuous and the set § = {x | ||x|| = 1} is
closed and bounded, the maximum exists.
The fundamental properties of matrix norms are summarized next.

THEOREM 1.5
Let || - || be a matrix norm generated by a vector norm. Then

(@) ||A| = 0,and ||Al| = Oifand only if A = O, where O is the zero matrix
with all elements equal to zero.

(ii) For an arbitrary real (or complex) number o, | Al = |af - |A].
(i) ||A+BJ| < |A] +|B].
(iv) ||AB] < ||A[-[IB].

PROOF  Properties (i) and (ii) are obvious, and (iii) is the consequence
of the inequality

|A +B| = max A +B)x|| = max |Ax + Bx||
< max(|Ax]| + [Bx]) < max | Ax] + ms [Bx|

=[A] +[B] .
The last property can be shown as follows:

IAB|| = max | ABx|| = max | A(Bx)|| < max([|A[ - |Bx]])

= J[AJ]- max B = | A] - B

REMARK1.3 Any real-valued function defined on thesetof then x n
real (or complex) matrices satisfying conditions (i)-(iv) is called a matrix

norm.
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For p = 1,2,00, let || - ||, denote the matrix norm generated by the
vector norm | - |lp.
THEOREM 1.6

If A is an n x n real (or complex) matrix with (i, j) element a;;, then
"
ATl = max " la|
i=1

and

n
1Al = max Y Jas |
=1

Let A* = AT denote the conjugate transpose of A, and let X* denote the largest
eigenvalue of matrix A*A. That is, \* is the largest real numiber such that
A*Ax = N'x with some nonzero vector x. Then

1Allz = VA*.

PROOF  Let|x|; =37 |z:i| = 1. Then

Al = 1> auzs]| <D0 lagl -l

i=1 jj=1 i=1 j=1

=33 agl Izl =) (|$j| 'Zlaiﬂ)
1 i=1 i=1

n
j=14=
n

n n
< |z;] - max E lai;| = max E lass] -
7 . J =
i=1 1=1

Jj=1

In order to show that the last expression on the right-hand side is the
maximum of || Ax||; we find a vector x with unit norm that gives equal-
ities everywhere in the above inequality. Assume that

n n
maxz lai;) = Z laijol .
(A =1

then the selection
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o [tifj=jo
71 0if 5 # do

is satisfying.

Assume next that ||x|l.c = max; |z;| = 1. Then

n n
[Ax[leo = max > aim; SIH3X§:|aﬁ|W$ﬂ

j=1 j=1

n k23
< max > fay] - max || = max> Jag].
b= J b=

It is easy to show that in this case vector x with

i — 1if0,i0j20
7T -1 if(li“j <0

gives equalities everywhere in the above inequality, where i is selected

as
n n
miaxz lassl = laios] -
J=1 Jj=1

Assume finally that ||x||2 = {37, |2:|*}*/? = 1. Then
IAXIE = (Ax)*(Ax) = x*(A*A)x.

Since matrix A*A is Hermitian, all eigenvalues are real and the maxi-
mum of the above quadratic form is the largest eigenvalue A*, and the
maximum occurs when x is selected as an eigenvector associated to A*
(see, for example, [43]).

Thus, the proof is complete. 1

DEFINITION 1.10 A vector norm || - || and a matrix norm || - || are called
compatible if for all vectors and matrices such that Ax exists,

Ax|| < Al - x|l - (1.22)

THEOREM 1.7
Let || - || be any vector norm, then it is compatible with the matrix norm that
is generated by || - |l
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PROOF  Note first that the norm of the vector z = (1/]|x]|) - x equals
1. Therefore

X

lAx( = fIx] - ”A T

= Il 1
< max[lAzl[ - fjx[| = Al fIx]l,
which completes the proof. i

REMARK 1.4 It can be easily verified that for every matrix norm
satisfying Properties (i), (ii), (iii), and (iv) of Theorem 1.5 there is at
least one vector norm with which the matrix norm is compatible. The
construction of one of these vector norms is the following. Let x = (z;)
be an n-dimensional vector. Construct matrix

x]O"'O
T2 00

X=|.. . (1.23)
2, 0+ 0

and define the norm of vector x as the matrix norm of matrix X. Note
that a given vector norm may be compatible with more than one matrix

norm. Such a case is presented next. |

DEFINITION1.11  The Frobenius norm of n x n real (or complex) matrices
is defined as

1
2

JAIF =< > Tlagl? - (1.24)

i=1j=1

By using the triangle inequality and the Cauchy—Schwarz inequality it
is easy to see that this matrix norm satisfies all properties of Theorem 1.5
and is compatible with the vector norm || - ||2.

Example 1.10

Consider vectors
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and matrices

101

A:(}i), B=|011

110

The norms of these vectors and matrices can be determined as follows.
Simple calculation shows that

xlh=1+1=2, |xle=vPFTZ=v3 [xlew=max{1;1} = 1
Iyl =1+2+1=4, |yl = VI T2 5 12 = V6, llyllw = max{1;21} = 2;

|A]L = max{1l +1;2+ 1} =3,

|AllF

{12+22+12+12}1/2:ﬁ7

Al = max{1+2;1+1} =3,

and
IBlli = [|IBlloc = max{1+1;1+1;1+1} =2,
IBllp = {12+ 12+ 12+ 12 412 4 12}/2 = V6.
Note that
wa-(31) (1) -(5)
and
101 101 211
B'B=[011 011 | =121
110 110 112

By using standard software to find eigenvalues of real symmetricmatri-

ces, we find that the eigenvalues of A* A and B*B are (1/2)(7++/45)
and 1, 1, 4, respectively. Hence,

1
Al = 4/5(7+v45) ~ 26180 and  |Bf2=v4=2.

In the next part of this subsection, important relations between ma-
trix norms and the eigenvalues of square matrices are discussed. These
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results locate the eigenvalues into finite regions which allow us to se-

lect appropriate initial approximations of the eigenvalues in applying
iteration methods for finding them.

THEOREM 1.8
Let || - || be a matrix norm. If X is an eigenvalue of matrix A, then |A| < J|A||.

PROOF  The eigenvalue equation Ax = Ax implies that
ALl = fax] = lax] < [A]- fix]]-
Dividing by ||x|| # 0 yields the assertion. |

The assertion of the theorem is illustrated in the next example.

Example 1.11
Consider the matrix
12
- (32).
In Example 1.10 we derived that its p = 1,2, oo, and Frobenius

normsare 3, v/ 1/2(7 + v/45),3,and v/7, respectively. The characteristic
polynomial of A is

oW\ =(1-N2-2=X—2x-1,

therefore, the eigenvalues of A are

2+ /8
A2 = 2‘[:11\/5.

That is,
M=1-v2=~ 04142,

and
Ao =1+12~24142.

Note that the smallest norm of A equals

/1
37+ V/45) =~ 2.6180,

which bounds the absolute values of both eigenvalues.
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It is possible to restrict even further the domain [A] < JJA]j for the
location of the eigenvalues of A by the following result, which is known
as the Gerschgorin theorem

THEOREM 1.9
[The Gerschgorin Theorem] For i =1,2,...,n, let
n
T = Z |aij| s (125)
F=1
i

and let B, denote the closed ball with center a;; and radius r;. Then all eigen-
values of A lie in the domain

D=B,UBU.--UB,. (1.26)

PROOF  Let A be an eigenvalue of A with associated eigenvector
x = (z;). Letig be determined by the relation

|50 | = mlgxxlrci\ .

The eigenvalue equation of matrix A implies that for all ¢,
n
/\.’IIZ‘ = Z @i5Tj .
j=1

Therefore, by selecting ¢ = ¢y and subtracting a;,,z;, from both sides,

()‘ a’mln ‘7‘2() E al()J:EJ 3

:;é 0

which implies that

n n
l()‘ - a‘inio)ziol = Z iy T j < Z la'i()j| : |$]| .

i#ig i#ig

Divide by {z;,| # 0 to get

|z;]
!/\ a‘loml < Z lal(1]| | ]| — Z Ialo][ =Ty «
Tip

l#lo ,7‘1()
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Hence, A € B;,, which proves the assertion. |

This theorem is illustrated next.

Example 1.12

In the case of matrix A discussed earlier in Example 1.11, we have the
domains

B ={\ ’ A -1 <2}

and

By =[x } A-1l<1).
Because the first disk contains the second one,

BlUBQZBlz{)\ ‘ |/\—1i§2}‘

The resulting region is illustrated in Figure 1.8.

Figure 1.8 lllustration of Example 1.12.

REMARK1.5 Sincetheeigenvalues of A and AT are the same, define

n
'I',JI-1 = Z |aij| s (127)
=1

it



28 chapter one: Mathematical Background

and let B denote the closed disk with center a;; and radius r7. Then

all eigenvalues of A lie in the domain
p"=pBfuBfu..-uBL (1.28)
I

We close this section with an important property of real matrices,
which will have important applications in later chapters.
Let A be an n x m real matrix. Let R(A) denote the range space of
A:
R(A) = {y | Ax = y with some x} ,
and let N(AT) denote the null space of AT:

N(AT) = {x| ATx =0} .

THEOREM 1.10
R(A) and N(AT) are orthogonal complementary subspaces in R, that is:

(i) Ifue R(A)andv € N(AT), then uTv = 0.
(i) If for avector v e R™, uTv = Qwithall u € R(A) thenv € N(AT).

PROOF

(i) Assume first that u € R(A) and v € N(AT). Then u = Ax with
some x, and ATv = 0. Therefore,

ulv = xTAT)v =xT(ATv) =xT0=0.

(ii) Assume next that for a vector v, ulv = 0 with all u € R(A).
Note that Ax € R(A) with x = ATv; therefore we may select
u=Ax = AATv. Hence,

0=ulv=vTAATv = (ATV)T(ATv) = |ATv|2,
which implies that ATv = 0, thatis, v € N(AT).

COROLLARY 1.2
Arbitrary x € R™ can be uniquely represented as x = u+v, whereu € R(A)
and v € N(AT).
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PROOF Letuy,us,...,u;beanorthogonal basisin R(A), and extend
it to an orthogonal basis uj, up,...,ug, vy, ve,...,va_i of R*. Then
V1,Vg2,...,Vy_k is a basis of N(AT). Therefore, all x € R" can be
represented as

x=ajuy - +ogpug+ v+ o+ B g Vaok -
Select
u=auy +-o+apug and v=01vi+t- At Buk Vit

to obtain the desired representation.
Assume next that there are two representations:

X=u+v=1ua+v.

Then

<

—d=

=

_V,

where u — @ € R(A) and vV — v € N(AT). Because these vectors are
orthogonal,

e =)y = (w-@)T(u-) = (@ -v)T(u-0)=0.
Therefore, u = i1 and v = v, which completes the proof. i

COROLLARY 1.3
In the previous decomposition, ||x||3 = |lull3 + |Iv]|3.

PROOF  Since u and v are orthogonal,
%13 = lu+v||3 = (u+v)T(u+v)

—uwTu+u'v+viu+viv=ulu+viv= llu”g + HV“% .

REMARK 1.6  The above corollary is also known as the theorem of
Pythagoras in n-dimensional Euclidean spaces. |



30 chapter one: Mathematical Background

1.3.2  Special Matrix Forms

In the discussion of linear systems, special matrix transformations and
certain canonical matrix forms are often applied. They are the subjects
of this subsection.

Assume first that an nxn matrix has n distinct eigenvalues, A1, Ao, ...,
An. Let the associated eigenvectors be denoted by xi,xs9,...,x,. We
remind the reader that a scalar A and vector x # 0 are an eigenvalue
and an associated eigenvector of a matrix A, if Ax = Ax. First we prove
that these eigenvectors are linearly independent. Assume that there are
constants ¢i,¢s,. .., ¢y, such that

C1Xy +CoXo 4+ -+ Xy, =0

and at least one ¢; # 0. Multiply this equation first by A; and then by
matrix A to get equalities

/\101)(1 + )\162)(2 4+ Alcnxn =0

and
Are1Xy + AgeaXg + -+ ApepXn, =0,

where we used the fact that Axy = A\pxy for k = 1,2,...,n. Subtracting
the second equation from the first one we have

()\1 - )\Q)CQXQ + - (/\1 — /\n)cnxn =0.

Therefore, we conclude that if vectors xy, X2, ..., X, are linearly depen-
dent, then by dropping x;, the remaining vectors xo,...,X, are still
linearly dependent. If we continue this idea sequentially dropping vec-
tors Xa,...,Xn_-1, we will conclude that vector x,, itself forms a linearly
dependent set of vectors. Since x,, # 0 (being an eigenvector), this is a
contradiction.

This observation implies the following important theorem.

THEOREM 1.11
Assume that the eigenvalues \; of the n x nmatrix A are distinct. Then there
is a nonsingular matrix T such that

TAT-1 = diag(0rg,. .., A, (1.29)

where this notation means a diagonal matrixwith diagonal elements Ay, .. ., Ap.
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PROOF  Equations

Axi:)\ixi (i:l,'Z,...,n)
can be summarized as

A (X1, Xg) = (X1, .., Xp) - diag(A, .. )

where (x1,...,x,) denotes the n-column matrix with column vectors
X1,...,Xp. Define T = (x1,...,%,)”!, which exists, since columns
Xi,..., X, are linearly independent. Premultiply the above equation by
T to get relation (1.29). I

REMARK 1.7  The proof of the theorem suggests the following diag-
onalization algorithm:

Step 1 Find the eigenvalues A; and associated eigenvectors x; of ma-
trix A.

Step 2 Form matrix (x1,Xsz,...,Xn)-

Step 3 Invert this matrix to obtain T.

For finding the eigenvalues and eigenvectors of matrix A and for
inverting matrix T, standard computer programs are available. i

REMARK 1.8  The assertion remains true even in the slightly more
general case, when the distinct eigenvalues Ay, . . ., A have multiplicities
™1, ..., M, and for each 4, there are m; linearly independent eigenvec-
tors associated to ;. However, in the general case, the theorem does not
hold, but the matrix can be transformed into a Jordan canonical form.
That is, there exists a nonsingular matrix T such that

TAT ! = ) (1.30)
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withs > r,and forj =1,2,...,s,

A1 o
A1
Jj = : (1.31)
Al
0 Ai

Note that the order of J; is not greater than m;, and in each Jordan
block J; the same eigenvalue forms the diagonal; however, the same
eigenvalue can be found simultaneously in different Jordan blocks.

A Jordan canonical form with 2 x 2,3 x 3,2 x 2, and 1 x 1 blocks is
illustrated in Figure 1.9, where all elements not indicated are equal to

Zero. I

Fmm————

_________ J D IS
; | :
} 7\2 ! 1 1
i P l
: }‘2 1 I
! A, : :
i S I
e | I | doo
| | |
i 1 7‘3 I 1
) 1 1
| N
T T T T
| | | >"4
i 1 l
3 2 ]

Figure 1.9 A special Jordan canonical form.

In general, matrix transformations TAT ! with nonsingular matrices
T are called similarity transformations, and matrices A and TAT 1 are
called similar. Tt is well known from linear algebra that the characteristic
polynomials of similar matrices are the same, therefore they have the
same eigenvalues.

An important consequence of the above theorem is known as the
Cayley-Hamilton theorem:
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THEOREM 1.12
[The Cayley—Hamilton Theorem] Let A be an n x n real or complex matrix,
and let ¢ denote its characteristic polynomial. Then

p(A) =0,

where O 1s an n x n matrix with all elements equal to zero.

PROOF  Because the characteristic polynomials and eigenvalues of
n x n matrices depend continuously on the matrix elements, it is suffi-
cient to show that the assertion holds for matrices with distinct eigen-
values. In this case (1.29) implies that

A =T diag(\y,...,A\)T.
Therefore, forall j > 1,
AT = (T diag(\1,. .., An) - TUT ™ - diag(A,..., An) - T)
oo (T - diag(A,. .., M) - T)
=T (diag(Ai, .-, An))) - T =T -diag(M,...,A\)- T,
which implies that for all finite polynomials

p(A) = ag +a A+ aA® + - 4 apF

k
p(A) = a;T7' - diag(M,..., M) - T
j=0

k
=T"! Zajdiag(/\{,...,)\%) T
§=0

=T - diag(p(A1),...,p(A))T .

Ifp =y, thenp(\) =0(=1,2,...,n),hence p(A) = 0. |
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Example 1.13

Consider matrix

0w
A=(25)

where w > 0 is a given constant. Note this matrix has an important
role in analyzing harmonic motions (see Example 3.3). The diagonal
form of A will now be determined. The characteristic polynomial of
A is as follows:

. —)\ W _\2 2
@(A)-det(_w _)\> = A"+ w,

where det(-) denotes the determinants of matrices. Therefore, the
eigenvalues are A\ = jw, A2 = —jw, where j = v/ =1. The eigen-
vector associated with A is the solution of the homogeneous linear
equation

e = () ()= (8).

Select 17 = 1, then 135 = 5. Therefore, x; = (1,5)T. One can
similarly verify that xo = (1, —4)7 is an eigenvector associated with
A2. Since the eigenvalues are different, Equation (1.29) can be applied,
which implies that with T = (x1,x2)7 !,

_m-1. g . _ 11 jw 0
A=T dzag()\l,/\g) T = (] m]) ( 0 —jw) (

In this case, the Cayley—Hamilton theorem can be easily demon-
strated because

—w? 0 w? 0
@(A):A2+w21:( 0 _w2)+(0w2):0.

[T TS
ol R,

Note that the construction of the diagonal and Jordan canonical forms
of square matrices require the computation of the eigenvalues and the
eigenvectors. A summary of such methods is presented for example
in [42] and in [43].

In the diagonal transformation (1.29} and the Jordan form (1.30),
matrix T is nonsingular. In many cases, transformations with more
special matrices are important. Such a special case is given next.
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THEOREM 1.13
Let A be an n x n veal or complex matrix. Then there exists a (unitary) matrix
U such that U~! = U*, and UAU* is upper triangular.

PROOF  Finite induction is used for n. If n = 1, then A is a scalar,
and therefore U = 1 is satisfactory. Assume next that the assertion
holds for n — 1. Let A be an n x n matrix, and let A; be an eigenvalue
of A with associated eigenvector x;. Select vectors X, ..., x, insuch a
way that {x;,x2,...,%,} is an orthonormal system, and define matrix
U; = (x1,%2,...,Xn)" Obviously Uj is a unitary matrix, since

b XiX1 ... X]Xn
£ . . .
U, Ul =] ¢ | (x1,...,Xp) = : : =1,

X

*

* *
n XpX1 oo XX

where the diagonal elements equal 1 and the off-diagonal elements are
all equal to zero. Observe that

UlAU{ = UlA(Xl,Xg, P ,Xn)
= Ul(Axl,sz,... ,Axn)
= Ul(/\lxl,AXQ, . .,AXn)

X3
= ol (Aaxg, Axg, L AXG)

*

Xn

The elements in the first column of the product are A\ixix; = Ay,

Aixix1 =0,..., \ix;x; = 0. Therefore, the first columnis (A,0, ...,0)7,
and so
« (A al
ovi - (537,
where a7 is an (n — 1)-element row vector, 0 is the (n — 1)-element zero

column vector, and A, is an (n — 1) x (n — 1) matrix. By the inductive
hypothesis, there exists an (n — 1)-order unitary matrix U, such that
U,A U} is upper triangular. Define

107
Us = (0U2> '
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where 07 is the (n — 1)-dimensional zero row vector. Note that Us is

also unitary, since
,_ {107\ /107
UsUs = (0 U2> (0 U;)
(1 of
- \0U,U;

107
(%) -x

Finally we show that U = U3U; satisfies the assertion of the theorem.
Note first that

UU* = U3U,UTU; = UsIU; = U0 =1,
that is, U is unitary. Furthermore,

UAU" = U3U; AU U;
{107\ /A aT) /107
T \0U, 0 A;/\0U}
(A alus
T\ 0 UA U )
which is upper triangular. |

In the special case, when A is real and symmetric, a much stronger
result holds.

THEOREM 1.14

Assume that A is an n x n real symmetric matrix, then there exists a real
orthogonal matrix Q such that

QT =Q '  and  QAQT =diag(\1,.... ), (1.32)

where A1, Az, ..., Ay are the eigenvalues of A.
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PROOF  First we show that all eigenvalues of A are real. Let A; be
an eigenvalue of A with associated eigenvector x;, then

AX1 - )\1X1 .

Premultiplying this equation by x} and dividing by x}x; # 0 yields the
relation
A = A
X1X1

Observe that both the numerator and the denominator are real, since
x31Ax = (x]AX)" = x]Axy

and
* * *
xix; = (x]x1)" = x[x; .

Hence A is real, and therefore the associated eigenvector can also be
selected as areal vector because the homogeneous equation (A—AI)x =
0 has real coefficients.

The construction presented in the proof of the previous theorem im-
plies that U can be selected as real.

We prove finally that the selection Q = U satisfies the assertion. Be-
cause Q is real, Q* = QT. By denoting the upper triangular matrix
QAQT by A;,

AT = (QAQT)T =QATQT = QAQT = A, .

Hence A, is diagonal, which completes the proof. |

REMARK 1.9 It is known that the eigenvectors xi,...,x, of a real
symmetric n X n matrix A can be selected as an orthonormal system.

That is, x7x; = land x'x; = 0 (i # j;4,5 = 1,...,n). Then we
may select Q = (x1,..., x.)T. The eigenvalues and eigenvectors can be
determined by using standard computer packages. |
COROLLARY 14

Assume that A is a real, symmetric, and positive semidefinite matrix, that is,
for arbitrary vector v, vT Av > 0. Then there exists a nonsingular matrix T
such that

A =T diag(1,...,1,0,...,0)0T. (1.33)
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PROOF  Let Ay,..., A denote the nonzero eigenvalues of A, then
A>0(=12,...,k)and

A = QT -diag(\1,..., M) - Q= QT - diag()1,...,\,0,...,0)Q.
Observe that the second factor can be rewritten as

diag(x/)\l,..., /\k,l,...,l)~diag(1,...,1,0,...,0)

~diag(\/)\ /\k,l,...,l) :
therefore the selection

T:dmg(\/ﬁ,..., /\k,l,...,l)Q

satisfies the assertion. |

Example 1.14

Decomposition (1.33) will now be constructed for matrix

A-(11).

First the method suggested in the proof of the theorem is illustrated.
Method 1. The characteristic polynomial of A is

@(A) = det 1A 1 =(1-X?—1=X2-2X;
1 1-A

therefore Ay = 2, Ay = 0. Similar to the previous example, one may
easily verify that the normalized eigenvectors are

X1 (L, DT and  xy = —(1,-1)7T,

Sl-
[V

1
R

which implies that

(]

From (1.32) we conclude that

A = Q%diag(\, ..., 2\)Q
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EIHETE

The factored form (1.33) of A canbe obtained in the same way as shown
in the proof:

=(EB) G|
(DN (G

A special method is illustrated next.

Method 2. For matrices of small order, the computation of the
decomposition is reduced to a system of nonlinear equations that can
be easily solved in many cases. Find matrix T as

ab
r-(ca)
where a, b, ¢, and d are considered to be unknown. Since rank(A) =
1, the decomposition has the form

A — 11y fac 10 ab
T\11)  \bd 00 cd/’
Compare the corresponding components on the two sides to get the
system of equations

2’ =1
ab=1
b =1

For example, ¢ = b = 1lisasolution. The second row of T is arbitrary.
Select for example ¢ = 1, d = —1 to guarantee that T is nonsingular.

39
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Hence we obtain the decomposition
11y /11 10 11
11/ \1-1 00 1-1/"

Note that this result differs from the previous decomposition; however,
simple calculation shows that it also satisfies Equation (1.33).

Our next result is a special factorization of real (or complex) matrices.

THEOREM 1.15
Let A be an m x n matrix with rank(A) = r (< min{m,n}). Then there
exist matrices Ay and By, such that Ay has v columns and Bq has r rows;

furthermore,
A =AB;. (1.34)

PROOF Let A = (a;,as,...,a,) and assume that a; ,a,,,...,a;
form a basis of the columin space of A. Thenforallj =1,2,...,n,

T
a; = E Oy - iy
k=1

with some constants ¢y, which implies that

r T
A:(E akl'aiku-"7§ akn'aik)
k=1 k=1

5

Hence the selection
A1 = (ah,.,.,air), B1 = (Olkj)
satisfies the assertion. 1

Example 1.15

Consider again matrix
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Because the first column gives the basis of the column space,

A:(1~al,l-a1):a1-(1,1):(i)(l,l).

Therefore, we may select

A12(1> and Blz(l,l).

1.3.3 Matrix functions

In obtaining and analyzing the solutions of linear difference and differ-
ential equations, which govern the state transitions of dynamic linear
systems, special functions of real matrices have an important role. In
particular, the computation of matrix powers and matrix exponentials
are used in such investigations. This subsection is devoted to defining
and examining matrix functions.

Assume that the complex power series

f(z)Zao+a12+agz2+---+akzk+-'-

is convergent for |z| < R.

DEFINITION 1.12  Let A be a square matrix, then f(A) is defined as the
sum of the series

apl +a1A +azA% 4+ apgAF 4 (1.35)

if this matrix series converges.

Example 1.16

Assume that AY = 0 with some N. Then forallk > N, A¥ = O.
Therefore f{A) exists and

fA) =aol + a1A + A%+ +ay_ 1 AVTL. (1.36)

Hence, f(A) is given in a finite form.
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Example 1.17
Assumethat R > land A2 = A. Then forallk > 2, A* = A, and

FIA) =apl+ Y arA® = agl+ <Z ak> A =apl + (f(1) - ag)A .
k=1 k=1

(1.37)
This formula is easy to compute.

Example 1.18

Assume that A = diag(A1,..., A\,) with [\ < R(@=1,2,...,n).
Then

f(A) = Z ak d’iag()\?, e 7/\ﬁ
k=0

o oo
diag (Z ap ko Z ak/\ﬁ>
k=0 k=0

= diag(f(M), .- f(Mn)) - (1.38)

Hence, a closed form representation is obtained again.

Example 1.19
Let A be a v-order Jordan block

Al @)

Al
A_:

0 A

—_
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to have

A=)+N.
Since N¥ = O,

k = ()\I"}‘N)k = )\kI+ (i) )\k"lN_}_ cee b (VI_C.]_) )\k—u+1Nu—1

for all £ > v. Therefore,

=§%Ak kz;) g/\kz () N

where we used the fact that for [ > &,

(-
Therefore,
v—1 1
ZNlZ( )MM F=DONE S O0). (1.39)
=0 k=0 =0

The matrix form of this representation is the following:

FO) 1 F' (N -
£

) g f

»—-|»-. B2

i f
i
I

)—-A’,_. N[»—- C»-[,_‘

(A
A)

(A
‘(A
(A
ey

S
i S
ey

o el
Note that a finite representation is obtained.

Example 1.20

Assume now that A is a Jordan canonical form

Ji 0
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Since
Jk O
AF = % :
o
we have
f(J1) o
J
F(A) = o) - (1.40)
0 f(3s)

Each diagonal block of this matrix can be determined by using the
method of the previous example.

Matrix functions are usually determined by using special matrix trans-
formations. This principle is based on the following result.

THEOREM 1.16
Assume that f(A) exists, and furthermore T is a nonsingular matrix of the
same order as A. Then

F(TAT™ Yy = TfFA)T . (1.41)

PROOF Note first that for k > 1,
(TATY* = (TAT™Y) - (TATY) ... . (TAT™!) = TAFT! .

Therefore,

(oo} o0
FTAT™!) = ap(TAT HF = ) "0, TA* T
k=0 k=0

=T (iakAk) T !'=T.fA)- T,

k=0

COROLLARY 1.5
IfA =T diag(M1,..., An) - T, then the result of Example 1.18 implies
that

f(A) =T diag(f(M), ..., f(M)) T (1.42)
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COROLLARY 1.6
In the general case A = T~ .J - T, where J is a Jordan canonical form given
in Example 1.20. Therefore,

f(Jv) 0

F(A) =T . Fitz) . T. (1.43)

0 A

The theorem suggests the following algorithm for finding matrix func-
tions:

Step 1 Transform matrix A to a special form A = TAT !,
Step 2 Find f(A).
Step 3 Compute f(A) as T™1f(A)T.

Note that the first step can be performed by using standard computer
packages. Several packages even compute special matrix functions, such
as matrix exponentials (see Example 1.22 for definition).

Example 1.21

Let £ be a positive integer, and let the eigenvalues of matrix A be
A1, A2, ..., A with multiplicities mq, mg, . . ., m,. We will present a
special representation of A*. The result of this example will be used
later in solving linear difference equations with constant coefficients.
It is known from relation (1.30) that there exists a nonsingular matrix
T such that

J1 O
Ja
A=T"" ) T,
0] Js
where each matrix J; is a Jordan block. From Equation (1.41) we con-
clude that
Ji @
3
At=T71. , T.
@) J¢

s

Consider first one block J% with order v;. Select function f(z) = 2°,
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then Equation (1.39) implies that
Ty —1
-1 !
ZN]“ B AT =N D My,
=0

where A; is the eigenvalue in block J;, and M is a constant matrix.
If v; < m;, then My = O forl > v;. Therefore,

¢ 0
s o
At=T"'>" Jt T
j=1 O
o o
0 0
m;—1 O
= T-lzx Z t M, T.
Jj=1 O
0] o

Because each eigenvalue appears in at least one Jordan block,

m;—1
Z,\t > ey, (1.44)
i=1 =0

where C;; is a constant matrix. We mention that this representation
will have many applications in later chapters.

Example 1.22

Let A be a square matrix and £ be a real constant. In linear systems

theory, the matrix exponential eAt hasspecial importance, since in Sec-
tion 2.1.2 we will see that the solutions of time-invariant linear differ-
ential equations can be easily constructed using these matrix functions.
A special representation of this matrix exponential will be introduced
next. Qur derivation and the final result are analogous to those of the
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previous example. Select now f(z) = e?, and if Jj is a Jordan block,
then from (1.39) we have

v;—1

-1
4 1, b
eJit — Z Ngl_'tle)\,t — ehit Z Ky,
=0 ) =0

where K ; is a constant matrix. A similar argument that was shown
in the previous example yields to our final formula:

mi—l

;
At =St 3 By, (1.45)
=1

1=0

where B;; is a constant matrix. Like the previous example, this repre-
sentation will be applied frequently in later chapters.

The derivations presented in Examples 1.21 and 1.22 have only the-
oretical importance. In practical problems, matrices eAt and At are
computed directly without repeating the above derivations. Such direct
methods will be introduced in Example 1.23.

Since matrix exponentials are often used in the theory of continuous
systems, we now summarize their basic properties.

THEOREM 1.17
The following relations are true:

() eA0=1.
(i) Leht=A. Al

(iii) eAt . eAT — eA(t+T).
(iv) (eAt)—l - e—At‘
(v) IfAB = BA, then At . Bt = o(A+B)t,

PROOF
(i) Use the definition of matrix functions to get Ao O 14
(1/1N0 + (1/200% +..- =1L

(ii) Simple differentiation shows that

d Ar_d (1 gk S N
i T dt (;0 Kl kzzl Kl



48 chapter one: Mathematical Background

_ - 1 E—1,k—1 _ o 1 L At
_A;(k_l)!A t _AlZ;EAt_Ae )

(iii,v) We first prove that if MN = NM, then eM . N M+N

Note that the Cauchy product of infinite series implies that

- 5% (&2 (1))

n=0

=Y M Ny = MN

m/!

The assumption that matrices M, N commute has been used in applying
the binomial theorem for matrices. If M and N do not commute, then,

for example,
(M +N)? = (M + N)(M + N)
= M? + MN + NM + N?

# M? 4+ 2MN + N2

For proving relations (iii) and (v), select
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M=Atf, N=A7 and M=Atf, N=Bt,

respectively.

(iv) From (i) and (iii) we conclude that

oAt A _ A-Ar O I,

which implies the assertion.

Example 1.23

Consider matrix
0w
a=(0%)

which was the subject of our earlier Example 1.13. The matrix eAt will
now be determined. In order to illustrate the methodology, several
alternative approaches will be used.

Method 1. First we use the definition of matrix functions. Note
first that

01
A =w B, where B = (_10),

2 —w? 0 2 3 3 4 4
A= 0 —w?) =Y LA°=—-wB,A" =w’l, etc.

In general,

Ak [(FD)7WT ik =2m
TlDmOEBifk=2m 1.

Therefore,
A 1 Ak
€ = Z -k‘:—‘ t

2mt2m 2m+1t2m+1

> -y I+ > (=™ T —— B

m. m
(k=uven) {(k=odd)

49
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= cos(wt)I + sin(wt)B

cos{wt) sin{wt)

- <~sin(wt) cos(wt)) '

Method 2. Next we apply the diagonal transformation of A,
which was derived in Example 1.13. Combine that result with rela-
tion (1.42) to obtain

eAt =T! -diag(ej“’t,e_j“’t)T

_ 1 1 ejwt 0
\J-J 0 edvt
edwt f g—idwt  giwl_ p—jwt
o2 25
_~€"u"—e_7u" e,7w1.+e~7wl,
23 2

_ ( cos(wt) sin(wt)) '

— sin{wt) cos(wt)

D= M=
|

R, NS,

\—/

Method 3. Now we apply the special form (1.45). Because the
eigenvalues of A are distinct, 113 = mg = 1. Therefore,

Al = MIBg + M Boyg (1.46)
where matrices B1p and Bgg are to be determined. We can easily
formulate two equations for the two unknowns in the following way.
First, substitute £ = 0 into the above equation to get

I=Bjo+ B,
where we used property (i) of Theorem 1.17. .
Differentiate Equation (1.46) with respect to ¢ and substitute t = 0
into the resulting relation to have
A = MBio + A2Bag = jwByo — jwBao .
Here we used property (ii) of Theorem 1.17. From the first equation,
Byy =1-Bio,

and by substituting this relation into the second equation,

A = jwB1p — jw(I - Byo),
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which implies that

. . . 1_d
. jw w 2 T3
Bio=-—(A = — W
10 = 5o, (A +Jwl) 2jw<—ij) (1 1)
2 2
and .
17
B20=I—Blo=( ?2).
il
2 2
Hence

[T ST

1 1

At (2 )ejwt+( ?2>e—jwz
1 ~211
2 2 2

_ [ cos(wt) sinwt) \
( )

— sin{wt) cos(wt)

Discrete time-invariant systems are usually analyzed based on the
properties of matrix At, which are summarized next.

THEOREM 1.18
The following relations are true:
(i) A°=1
(ii) Al =A. AL
(iii) At- AT = AT,
(iv) (AY)~! = (A1) assuming that A is invertible.
(0) IfAB = BA, then At . B! = (AB)".

Because the proof of this theorem follows immediately from the defi-
nition of matrix powers, the details are left as an exercise.

Example 1.24

In the previous example, A for matrix

A=(8)

was determined by first observing and then proving the general form
for A, A2, A3, ..., A*. In most cases the general expression for Atig
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complicated, usually it is hard (if not impossible) to guess from some
initial terms. In this example we show two systematic methods for
finding A* for the above matrix.

Method 1. By using the diagonal transformation of A (which was
determined in Example 1.13), we have

At =T diag((jw)', (—jw))T

1
(11 (jw)t 0 3
-G ()
_ (%[(jw)‘ + (=jw)] §1=(jw)’ + <~jw)f]> .
$lGw)t = (=) 3{Gw)* + (—jw)']

Ift = 2m, then (jw)* = (—jw)" = (- 1)m ,and ift = 2m+1, then
(jw)t = j(—1)™wt and (—jw)* = —j(~1)™w'. Hence, if £ = 2m,

then Al — ((—1())mw‘ (_15)mWL) 7

and if t = 2m + 1, then
0 (=1)myt
t
A= (*(—1)%‘ 0 ) '

Method 2. Next we use Equation (1.44), which has now the form:

. Nl

Al = (jw)'Cip + (—jw) Cao .
By substituting t = 0,
I =Cyo+ Coo,
and by substituting £ = 1,
A = jwCig + (—jw)Cayq .

The two equations for C1g and Cyp have the solution:

1 J
=-1- LA
Cro=31-35;
and

Coy = -I + -—A
2w
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Therefore,

. 1 ] . 1 ]
A* = ()51 - - AT+ (~jw) 1+ 2= A]

= 2 + (=G T+ [~ + (—jw)]A,

which coincides with the result obtained by using the previous method.

We conclude this section with a special matrix function, which will be
applied in later chapters of this book.
Example 1.25

Let A be a square matrix, and assume that all eigenvalues of A are
inside the unit circle of the complex plane. Consider the function

1
fl)=——=14z+22+22+...,
1—-2
then

fA)=T+A+A%+ ...

Note first that in the case of the above series, R = 1. Therefore,
Examples 1.19 and 1.20 imply that the infinite matrix series f(A.) is
convergent. Hence, A 5 Oask — oo

Next we prove that f(A) = (I — A)~!. Consider the equation

I-AM = (T+A+A*+-- +AHT-A), (t>0)
and let{ — co. Then
I=f(A)-I-4),
which implies that (I — A)~! exists and equals f(A).

Finally we note that the results of this example have many applica-
tions in matrix theory.

Problems

1. Assume that in Definition 1.1, condition (iii) is modified as fol-
lows:

(iii') Forallz,y,z € M, p(z,z) < plz,y) + ply, 2).
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Prove that (i) and (iil’) imply condition (ii).

2. Prove that conditions (ii) and (iii) of Definition 1.1 and the as-
sumption that p(z,z) > 0 for all z € M imply that p(z,y) > 0 for all z,
y = 0.

3. Let M =R!and p(z,y) = (z — y)? Is (M, p) a metric space?

4. Construct a metric space that has closed balls B; and Bj such that
B is a proper subset of B,, but the radius of B, is larger than that of B;.

5. Assume that (M, p;) and (M, p2) are metric spaces. Prove that
(M, p) is also a metric space with p = p; + pa.

6. Let M = M’ =R! and A(z) = In z with D(A) = (0, 0). If pand
p’ are defined as in Example 1.1, is mapping A bounded?

7. Assume that (M, p) is a complete metric space, M1 C M is closed,
D(A) = My, and R(A) C M;. Assume furthermorethatforallz, y € M,
p(A(z), A(y)) < p(z,y). Constructan example such that mapping A has
no fixed point in Mj.

8. Construct an example such that under the conditions of the pre-
vious problem mapping A has infinitely many fixed points.

9. Solve equation ze* = 1/2 by fixed-point iteration.

10. Let A beann x nreal matrix such that ||A{| < 1 with some matrix
norm. Prove that equation x = Ax + b has a unique solution for all
beR™

11. Bound the eigenvalues of matrix

112
A=]|-111
021

by using the p = 1, 0o and Frobenius norms.

12.  Apply first Theorem 1.9 for matrix

112
A=1{-111],
031

and then, apply again for A7. Which case gives better results?
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13.

14.

15.

16.

17.

18.

19.

20.

Find the null space of matrix
112
A=}-111
023
Diagonalize and find decomposition (1.33) for matrix
12
a=(57)

Find decomposition (1.34) for matrix

- ().

Find eAt for

A= (22
Find At for .1
A (22).
Find A’ for .
A= (2 2) :
Find A for )1
A= (52)

(i) Prove the triangle inequality for Example 1.3.

(ii) Prove Theorem 1.5 for the Frobenius norm.
(iii) Prove Theorem 1.18.

21.

X,

22. Discuss an improvement of the Gerschgorin Theorem by using
the fact that the eigenvalues of A and D~'AD are the same for all

55

Prove that the vector norms of n-element real (or complex) vectors
are equivalent to each others. Thatis, if || -- - ]| and || - - - |’ are two vector
norms, then there are positive constants a; and ag such that for all vectors

arllxl| < fix|l” < az|ix]| -

nonsingular diagonal matrices D.
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23. Using Theorem 1.8 and the fact that the characteristic polynomial
of matrix
000---0 —ag
100:--0 —ay
A_]010--0 —ay
000---1—ay_y
is o(A) = A" + ap1 A" ! + -+ 4+ a3\ + ag, show that all roots of this
polynomial satisfy inequalities

Al €14 maxo<i<n—1{]ail}

Al € maz{l;lagl + |a1] + - + lan-1]},

and

n-1

A<y =1+ Jail?.
i=0

24. Let A be an n x n real symmetric matrix and assume that A; and
An are the smallest and largest eigenvalues of A. Prove that

- xTAx
min —— = A;
x£0 X' X
and
xTAx
max = A,
x0 xT'x

25. Let A and B be n x n real matrices. Show that

e® — e

a-p

e —eBj < 1A - B

where ||Al| < ¢ and ||B|| < S.



chapter two

Mathematics of Dynamic
Processes

This chapter introduces conditions for the solvability of ordinary differ-
ential and difference equations, which will be fundamental in describing
dynamic processes. In addition, the general solutions of such equations
will be constructed in linear cases. In the constant coefficient cases,
Laplace transforms and Z-transforms serve as the most commonly used
solution methods. Their definitions and main properties are also dis-
cussed in this chapter.

2.1  Solution of Ordinary Differential Equations

Dynamic systems with continuous time scale are usually modeled by a
system of linear or nonlinear differential equations. Without defining
the state of the system formally we mention that the unknown of the
differential equations is usually the state of the dynamic system under
consideration. Therefore, the determination of the state requires the
solution of the governing differential equations, and the examination of
the properties of the state is based on those of the solution of differential
equations. In this section the existence and uniqueness of the solutions
of such equations are discussed, and methods will be introduced to find
them.

2.1.1 Existence and Uniqueness Theorems

In this subsection, conditions will be developed for the existence and the
uniqueness of the solution of initial value problems of ordinary differen-
tial equations. Because the solution represents the state of the corre-
sponding dynamic system, the results of this subsection are often used
to determine whether or not a given differential equation represents a

57
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dynamic system. If no solution exists, then no state can be defined, and
if the solution is not unique, then there is a multiple state for the system.
In the theory of dynamic systems, we usually assume the existence of
the unique state.

Consider the first-order explicit differential equation

x = f(t,x) , (2.1)

where x : I — R" is an unknown real-variable, vector-valued function,
and f: I x X — R"™, where [ is an interval of the real line and X C R™.
A function x is called the solution of the given differential equation
on an interval I} C I, if for all t € I}, x(¢) and %x(t) exist, x{t) € X;
furthermore x(t) = f(¢,x(2)).
In order to have a solution, function f must satisfy certain conditions,
as the following example illustrates.

Example 2.1
Letn=1,1 =R, X = Rand

0 if £ is rational
fltz) =g(t) = { 1 if t is irrational.
We can easily show that Equation (2.1) has no solution. Assume that
there is a solution z(t) on an interval I} = [a, b], then the left-hand
side & of the differential equation is integrable on I;. Therefore, the
right-hand side must also be integrable on /1. But g is not integrable,
which can be shown as follows. Consider the Riemann sum of function

g: N
R=Y g(&)(ti —tiy),
i=1

wherea =ty < t; < --- <ty =b,and foralli, & € [t;_1,t] If&
is rational for all 7, then g(¢&;) = 0, therefore, B = 0. If ; is selected
to be irrational for all 7, then

N
R:Z(ti—ti_l):tN—to:b—a#O.

i=1

If N — o0, we obtain different limits 0 and b — a for R. Hence
1, 9(t) dt does not exist.

Assume next that t; € I, and xg € X are given. The initial value
problem of the differential equation is given as

x=f(t,x), x(to) = xg . (2.2)
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That is, a solution which passes through the point (tg,xg) is to be de-
termined as illustrated in Figure 2.1. In systems theory, x(t) usually
denotes the state of the system at time ¢, and xg is the initial state
when tg = 0.

Solution of the
initial-value
problem

Figure 2.1 Initial value problem.

If to # 0, then by introducing the new independent variable ¢’ =t — i,
the initial value of ¢’ becomes zero.

The previous example shows that an initial value problem does not
need to have a solution. The next example shows even if it has a solution,
the solution does not need to be unique.

Example 2.2

Consider the one-dimensional initial value problem

t=+]z], =(1)=0

with I = X = R. Obviously the zero function (z1(t) = 0) satisfies
both the differential equation and the initial condition. Consider next
the function

ift <
I2(t):{0 ift <1

(5h)%ift > 1.

Easy calculation shows that z2(1) = 0, x4 is differentiable, and

m.z(t):{oz\/EzT ift <1

2550 - =5t = Vx| ift > 1.

Hence xg also solves the initial value problem. Therefore, z1(t) and
Z5(t) are both solutions. That is, the solution is not unique.
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Note that in the above example, function f = \/m is continuous.
Therefore, even stronger conditions are needed to guarantee the unique-
ness of the solution. In contrast to this example, in dynamic systems
theory we always assume that the governing dynamic relations (differ-
ential or difference equations) and the initial values uniquely determine
the solutions. Otherwise the future behavior of the system is absolutely
unpredictable. These additional conditions and the resulting existence
and uniqueness theorem are discussed next.

Consider the initial value problem (2.2), where I = [tg — a, ¢ + a] and
with some norm let

X ={x| [x=—x| <b}, (2.3)

where b > 0 is given. Assume that f is continuous on [ x X, and fur-
thermore it satisfies the Lipschitz condition, that is, there is a constant
L > 0 such that

IE(tx1) — £(t, %2)| < L - lx1 — x2| (24)

for all ¢t € I and x1,x3 € X. After proving Theorem 2.1 we will present
an easy way to check if the Lipschitz condition holds for a given function
f.

Since f is continuous,

Q= max [f(t,x)]

T melxX

exists and is finite. Define finally

a=min<{a b1 e
- 7(2’[/ b

where € > 0 is a small number. Sets I and X are illustrated in Figure 2.2.

The main result of this section can be now formulated as follows.

THEOREM 2.1
Under the above conditions, the initial value problem has a unique solution on
the interval Iy = [tq — o, to + ¢.
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Figure 2.2 Illustration of Theorem 2.1 in one dimension.

PROOF

(a)

(b)

First we prove that the initial value problem (2.2) is equivalent to
the fixed-point problem

x(t) = xo + / £(r, x(7)) dr . (2.5)

to

Assume first that x is the solution of (2.2). Integrate both sides on
interval [to, t] to get relation

x(t) — x(to) = / £(r,x(r)) dr,

to

and use the initial condition x{tg) = x¢ to obtain (2.5). Assume
next that x is a solution of the fixed-point problem (2.5). Differen-
tiate both sides and use the fact that £(7, x(7)) is continuous in 7
to derive

x(t) = £(t,x(¢)) .

Now substitute ¢ = ty into (2.5) to get the initial condition.

Next we will verify that the fixed-point problem (2.5) satisfies all
conditions of Theorem 1.3 which implies that there is a unique
solution.

Define M as the function space C(Iy) (that is, the set of the
continuous functions defined on I,) with distance p(x;,x3) =
maxey, ||x1(t) — x2(t)]]. Select

M, = {x(t) | x € M, x(to) = o, ||%(t) — %ol < b forallt € I},
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and mapping

A(X)t) = xo + / f(r,x{r))dr. (2.6)

7 to

The right-hand side gives the value of function A(x) at .

We know from Section 1.2.1 that M is a complete metric space,
and because all conditions in defining M; are closed (= or <), M;
is a closed subset in M. Note that A(x) is defined on the entire
M, because f is continuous and therefore, the integral exists in
the right-hand side of (2.6). Hence, we may select D{(A) = M;.
Next we verify that R(A) C M;, thatis, if x € M;, then A(x) € M;.
Obviously, A(x) is continuous, since for continuous f and x the
right-hand side of (2.5) is differentiable with derivative f(¢, x(¢)).
Simple substitution shows that A(x)(to) = xo; furthermore for all
tely,

1AG)E) — %ol = / £(r, x(7)) dr

to

< / (7, x()|| dr

<Q lt—to) <Q-a<h.

Therefore, A(x) € M.
Finally we show that mapping A is a contraction on M;. Let
Xi, X2 € Ml, then

p(A(x1), A(x2)) = max X +/ f(r,x1(7)} dr — %0

to

— /t f(7,x2(7)) dr
= rtrég}(})( ‘/to (f(r,x1(7)) — £(7, %2(7))) dr
< max 5 1£(7, x1 (7)) — £(7, x2(7))|| dT

¢
< rtrg(})\ /t() L |x1(7) — xo(7)| dr
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i
/ dr
to

< L.
< p(x1,%2) max

= p(x1,%2) - Lo .

Since Lo < 1, mapping A is a contraction, which completes the
proof.

REMARK 21  In practical problems we can usually check if condi-
tion (2.4) holds. Assume that all partial derivatives of £ with respect to
the coordinates of x are bounded. If they are all continuous on X, then
they are also bounded. Then the mean-value theorem of derivatives

implies that (2.4) holds (see Problem 2/19). i

REMARK 2.2  The proof of this theorem and that of Theorem 1.3 sug-
gest an iteration method for solving the initial value problem (2.2). Select
the initial approximation for the solution as x¢(t) = x¢. Obviously, this
constant function belongs to M;. Construct the iteration sequence by

the recursion .

xp1(t) = xo + t f(r, xx (7)) dT, (2.7)

which uniformly converges on Ij to the unique solution of the initial
value problem. 1

The iteration method (2.7) is illustrated next.

Example 2.3

Consider the one-dimensional initial value problem

T =z, z(0) =1,

which has the unique solution z(¢t) = e‘. In this case the iteration

method (2.7) has the special form

Tr(t) =1 +[) :Ek(’/")d’r.

Selecting
.'II()(t) =1 y
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we get the iteration sequence

it
ml(t):1+/ ldr =1+t,
0

2

¢
t
xg(t)=1+/0(1+7‘)drzt+§,

¢ 7-2 t2 t3
13(t)=1+/ (1+T+—2—)dT=1+t+§—+§,
0 !

and so on. It is easy to show by using finite induction that 2 (¢) is the
kth degree Taylor’s polynomial of e*. Hence, zx(t) — €’ ast — co.

This method, however, has only limited practical value, since in many
cases the convergence is very slow and the integration can be performed
only by using numerical techniques. Therefore, this method is used only
in certain special cases. A summary of modern computer methods for
solving initial value problems can be found for example, in {42] and
in [36].

Higher order initial value problems can be transformed into higher
dimensional first-order initial value problems. Consider the nth order
one-dimensional explicit ordinary differential equation

™ = f(t,m,x',...,x(”‘l)) (2.8)
with initial conditions
z(to) = zo,&(to) = o, ...,z V(tg) =z . (2.9)
Here ¢ and % are the first and second derivatives, respectively. For
k> 2, z*®) denotes the kth derivative of z.
Introduce the new variables

. . -1
T =Z,T9=23,83 =%,...,zn =D

then z(™ = #,,. Therefore, we obtain the following problem:

i‘1=.’1:2

iQ::Itg
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In-1 = Tn
-"En = f(tyl'lal'%--wxn) (210)
with initial values
. _ . (n-1)
:L‘l(to) = :Eo,:l:g(to) = Z0,-- - ,.’I:n(to) =TIy . (211)

Note that the resulting equations form an n-dimensional first-order ini-
tial value problem.

Example 2.4

Consider the second-order initial value problem
E=t+z+23  z(0)=z(0)=1.

By introducing the variables z; = z and zo = %, Equation (2.10) can
be written as

Ii?1=.7}2
s 2
$2—t+.’L‘1+IE2,

and the initial conditions (2.11) are 11 (0) = z2(0) = 1. Hence, the
second-order initial value problem is reduced to the initial value prob-
lem of a system of first-order differential equations.

2.1.2  Solution of Linear Differential Equations

The state of continuous linear systems is obtained by solving the gov-
erning linear differential equation, which therefore, is the basis for deter-
mining the state and investigating the properties of the state of linear
systems. We discuss this problem area in this subsection. First the
existence of the unique solution is examined, and then the solution is
determined in a closed form, which makes the computation procedure
very attractive.

In this section the solutions of linear ordinary differential equations of
the form

% = A(t)x + £(t) (2.12)
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are examined, where A(t) is an n X n matrix, and f(¢) is an n-element
vector. It is assumed that all elements a;; of A and all elements f; of f
are continuous functions of ¢ on a closed finite interval I C R.

Note that the right-hand side function is continuous, and ||A(t)|| is
bounded, since it is continuous. Furthermore, the right-hand side of the
differential equation satisfies the Lipschitz condition:

(A (8)x1 + £(2)) — (A(t)x2 + £(1)]] = [|A(E)(x1 = x2)]|
<A@ - fix1 — xa]]

< L-|lx1 — %2

for all ¢t € I and x3, x2 € R"™, where L is an upper bound for |A(?)].
Consequently, the initial value problem

x=Al)x+£(),  x(t) =xo (2.13)

has a unique solution for all {y € [ and x9 € R™. By using a slight
refinement of the proof of Theorem 2.1 we can verify that the unique
solution is defined on the entire interval I.

Consider first the corresponding homogeneous equation:

x=A(t)x . (2.14)
Let tg € I, and for k = 1,2,...,n consider the initial conditions
X(lf()) = ey, (215)

with ey being the kth basis vector (0,...,0,1,0,...,0)T, where the kth
element equals 1 and all other elements equal 0. Let x; denote the
unique solution of this initial value problem with fixed k, and construct
the i X n matrix

&t te) = (x1(8), x2(t), ..., xn(t)) -

THEOREM 2.2
For all t € I, matrix ¢{t, o) is nonsingular, and the general solution of the
homogeneous Equation (2.14) is given as

x(t) = &(t, to)c (2.16)

where ¢ is a constant vector.
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PROOF  First we prove that (2.16) satisfies the homogeneous equation
with arbitrary ¢ € R™. If ¢ = (¢), then

x(t) = > crxal(t)
k=1

therefore,
X() =Y enki(t) = > crA)xi(t) = At) D cpxilt) = A()x(2) .
k=1 k=1 k=1

Nextwe verify that ¢(¢, g) isnonsingular, thatis, its columns x; (¢), . . .,
Xy (t) are linearly independent for all ¢ € I. In contrast to this assertion
assume that there is a ¢; € I such that

alxl(tl) + a2x2(t1) + -+ anxn(tl) =0 y
where the constants «y, .. ., &, are not all zero. Define function
z(t) = a1x1(t) + aoxa(t) + -+ + anxn(t)

and note that it satisfies equation (2.14), since it has the form of (2.16)
with ¢ = {a3). Furthermore z(t;) = 0, that is, function z solves the
initial value problem

z = A(t)z, z(t1) =0.

The linear independence of the basis vectors e, (1 < k < n) implies that
z(tp) # 0, hence z(t) is not identically zero. Note that function x(t) = 0
also solves this initial value problem, and we obtained a contradiction
to the uniqueness of the solution.

Finally we show that any solution x(t) of the homogeneous equation
canbe written in the form of (2.16). Let x(¢) be a solution with x(tg) = xq,
then x satisfies the initial value problem

x = A(t)x, x(to) = %o - (2.17)
Consider next the function
Z(t) = ¢(ta tO)XO )

which is a solution of the homogeneous differential equation; further-
more,

z{tg) = (X1(t0),- .., Xn(to))xo = {€1,...,€x)x0 =1 -xp =Xg .
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Hence x and z solve the same initial value problem. The uniqueness of
the solution implies that z(t) = x(t) for all t € I, which completes the

proof.

COROLLARY 2.1
From the end of the proof we conclude that the particular solution of the initial
value problem (2.17) is given as

X(t) = ¢(t,t0)X0 . (218)
Matrix ¢(t, o) is called the fundamental (or the transition) matrix of

equation (2.14).

THEOREM 2.3
The fundamental matrix satisfies the following properties:

i) @(to,to) =1;
(i) (t,t1)p(t1,t0) = @(t,t0);
(iii)  P(t1,t0) " = P(to, t1);

(iv) (0/0t)9(t,to) = A(t)(t, t0);

(U) (a/at)d)(tOv t) = ——d)(t(h t)A(t)

PROOF

(i) The construction of the transition matrix implies that
(f)(to,to) = (Xl(to), - ,Xn(t())) = (el, . ,en) =1.

(ii) The solution of the initial value problem (2.17} is x(t) = ¢ (¢, to)xo.
Denote x1 = ¢(t1,t0)xq, then x(t) obviously satisfies the initial
value problem

x = A(t)x, x(t1) =x1 .
From formula (2.18), however, we know that its solution is
(t,t1)x1 = P(t, t1)P(t1,t0)xo0 ;

therefore, the uniqueness of the solution implies that this function
equals x:

ot t1)@(t1, to)xo = b (¢, to)x%o .
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Vector xg is arbitrary, which implies the assertion.
(iif) Substitute ¢t = to into (ii) and use (). -

(iv) Simple calculation shows that

2 bltsto) = ZOAD, - Xal0) = (D) )

= (A@t)x1(t),.. ., A(t)xn (1)) = A(t)(xa(t), ..., Xn(t))
= A(t)b(t,10) -
(v) From property (iii) we know that
P(to, t)p(t,fo) =1.
Differentiating both sides with respect to ¢ yields the relation
0 0
51200, )(t to) + d(to, 1) 5t to) = O,

which implies that
d d _
5;0(t0,1) = —(to, 1) 5, H(t,10)$ ™ (t: o)

= —d(to, ) A()O(L, t0)d ™ (1, t0) = —d(to, 1) A(H) -

REMARK 2.3  Assume that the n x n matrix X(¢) satisfies the matrix
initial value problem

X(t) = A(t)-X(@), X(to)=1I. (2.19)

Then X(t) = ¢ (¢, to), which follows from the uniqueness of the solution
of the initial value problems (2.14) and (2.15). |
Example 2.5

Asaparticular numerical example, we now solve the initial value prob-
lem
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- (2h)e o= ()

using the above results.

First the fundamental matrix will be determined by solving the
initial-value problem (2.14) and (2.15).

For k = 1, we have the problem

- (54)m = (2)

If ;3 and x3 denote the components of X, then this equation can be
rewritten as
1 = txy + txo, :Cl(to) =1

.ig = 2t.’L‘2, Ig(to) =0.
The second equation is separable:

dﬂ?g

—= =2t

dt 2
from which we have d

92 _ ot

T2

and by integration
logzy = t* +logC,

where the integration constant is log C. Hence,
Ty = Cet’ .
The initial condition implies equality
0 = z2(to) = Ce®,
therefore, C = 0, and z4(t) = 0. Then the first equation simplifies as
Ty =tzy, xi{te)=1.

By separating the variables we get

— =iz
a 1,
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or d
L
=L tdt .
1

By integration
2
logzy = 5 +logC,
S0
12
$1(t) =Ce7 .

The initial condition implies that

2

to?
1=$1(t0) =Ce™2 5

therefore,

and hence
12142

.’131(15) =€

For k = 2, we have the similar problem

x=(pa)x xw=(]).

which can be rewritten as
Ty = txy +txo, .’El(to) =0

i‘g = 2t$2, .’Ez(to) =1.

We have already derived the general solution of the second equation,
and this new initial condition implies that

1= z5(to) = Celv”

S0

C=et

and hence s L a
To(t) = " 7,

Substituting this function into the first equation, an inhomogeneous
linear equation is obtained:

2 2
Iy =tz +tel Tt , $1(t0) =0.
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From the previous case we know that the general solution of the cor-
responding homogeneous equation is

12

z1(t) =Ce7 .

Assume now that C also depends on ¢, and substitute this formula to
the inhomogeneous equation:

1
2

i 1A

. . 2
Ce'T + Cte'T =tCeT +tel’ ~t0

which implies that
12

N2
C =te? ,

therefore, )
1.

C=eT 0" 4k

with some constant k. So,
12 2 12 2 2 12
z1(t) =(eT 7 4 k)eT = TN 4 ke .

iR

The initial condition 21 (%) = 0 implies that k = —e~ 2, and hence

12-1g2
p)

z1(t) = et —to®

The columns of ¢(t,ty) are the above solution vectors:

12142 121y 2,2
1) = | € ° —e 7  +e 0
¢( > 0) - 1242 .
0

0 e

If tg = 0, then

12 ﬁ+ t2
(t,0) = e _6226 .
#(t,0) (O o

We can easily show that this matrix as X(t) satisfies relations (2.19)
withtg = 0:

a (£,0) = te% —ter + 2tet”
A 2tet’

12 (2 2
B t eT —e7 4 et _ t i
- (44) ( N ) = (521 #0),
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and

$(0,0) = (é “11“) -1,

Then the solution formula (2.18) implies that

_ e% —eé +et2 1 . 6t2
X(t)—ﬁ(o etz >(1>—(6t2> .

The inhomogeneous equation (2.12) will be solved next. Look for the
solution in the form

x(t) = o(t,to)k(t) , (2.20)

which is a modification of (2.16), where k now depends on ¢. Since
@(t,to) is nonsingular, an arbitrary vector-valued function can be rep-
resented in this form. Simple substitution shows that x(t) is a solution
if and only if

a ' .

5: Pt to)k(t) + B¢, to)k(t) = At)d(t, to)k(¢) + £(t) -

By using properties (iii} and (iv) of Theorem 2.3, we conclude that this
equation is equivalent to relation

k(t) = p(t, to) THE(t) = (o, )E(2) .

If tg is any point in I, then

k(t) = K qb(t(),T)f(T) dr + k1 y

where kj is a constant vector. Substituting this expression into (2.20),
t
x(t) = ¢t to)ki + [ @(t, to)d(to, 7)E(T) dT |
to
that is, ,
x(0) = 9l tolls + [ o8, ME(r)dr (2.21)
to

where we used property (ii) of Theorem 2.3. This formula gives the
general solution of the inhomogeneous equation.
The solution of the initial value problem

X =A{)x+1£(t), x(tg) = Xg (2.22)
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can be obtained by substituting the general solution formula (2.21) into
the initial condition. Since

to

x(to) = dlto,to)ka + | P(to, T)E(T) dr = Thky =k |

to

the initial condition is satisfied if and only if k; = x¢. Hence the partic-
ular solution of (2.22) has the form

x(t) = (t, to)xo + | @(t,T)E(r)dr . (2.23)

to

In many applications, the coefficient matrix is periodic, that is, there
is a T > 0 such that for all ¢t > 0, A(t +T) = A(t). It can be proven
that the fundamental matrix for a periodic matrix A(¢) can be written

in the form R
Pt to) = P(t)e it p=1tyy |

where R is a constant (possible complex) matrix having the same size
as A(t), and P(¢) is a continuously differentiable matrix function that
also has the same size and period as A(t) and is invertible for all ¢.
This form is known as the Floquet decomposition. We mention here
that the computation of this decomposition is rather complicated and
involves computing the natural logarithm of an invertible matrix. For
details see, for example, [32], and for a special case, see Problem 2/25.

Consider next the special case when A(t) = A, that is, when the
coefficient matrix is constant. Then the fundamental matrix can be
easily obtained as it is given by the following theorem.

THEOREM 2.4
IfA(t) = A, then
P(t,to) = eAli=to) (2.24)

PROOF ltissufficientto show that this matrix satisfies conditions (2.19).
Use properties (i), (ii), and (iii) of Theorem 1.17 to conclude that

(ﬁ(to,to) = eA'O =1

9 94 Ay Aty _ A At A
atqb(t,to) = e = Ae e

= A1) = Ag(t, o) .
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These equations complete the proof. |

Example 2.6

Now we solve the initial value problem

(L)) - (2)

InExample 1.23 we computed At for this particular coefficient matrix.
Therefore, (2.24) implies that

Bt to) = ( cosw(t — to) sinw(t-—to)) ,

—sinw(t — ty) cosw(t — to)

and from (2.23) we conclude that
B cosw(t —0) sinw(t — 0)
x(t) = (—smw(t ~0) cosw(t — > ( )
/t cosw(t — 7) sinw t-—T)
+
o \ —sinw(t —7) cosw(t — 1)
t oo B
_ ( c?swt> +/ (smw(t T)) gr
—sinwt o \cosw(t—T)
( coswt) 1 (1 —coswt)
= . += ("
—sinwt w sinwt

1 (1+(w—1)coswt)'

w\ —(w-—-1)sinwt

i

Hence the solution of the initial value problem is determined.

Finally we mention that matrix exponentials (and therefore, the fun-
damental matrix) can be determined by using standard computer pack-
ages.

2.1.3 Laplace Transform

In this subsection we introduce a very useful function transformation,
known as Laplace transform. It allows us to reduce the solution of lin-
ear differential equations with constant coefficients to the solution of
algebraic equations, which are easier to solve.
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Laplace transforms are defined as follows.

DEFINITION 2.1 Let x(t) be a real- or vector-valued function defined for
t > 0. Then the Laplace transform of x is defined as the improper integral

X(s) = /0 T stetdt, (2.25)

where s is a complex variable.

Note that Laplace transforms are mappings from a function space into
another function space. In the above notation X (s) denotes the value
of the image function at s.

The abscissa of convergence is the smallest real number ¢ such that
the integral (2.25) exists for all s such that Res > o, where Re means
the real part of a complex number.

In the first part of this subsection the fundamental properties of the
Laplace transform are summarized and then the Laplace transforms of
some well-known functions are determined. The application of Laplace
transforms for solving differential equations will be discussed in the third
part of this section.

We start our analysis with an important existence theorem.

THEOREM 2.5
Assume that x is integrable and

|z(t)] < ke’ (t>0) (2.26)

with some real constants k > 0 and o. Then X (s) exists for all Res > ¢.
PROOF Lets = s + jsz, then

o o0 o0 ,
/ |z(t)e™ | dt < / ket - €7 dt = k / el eIt gy
0 0 0

oo
= k/ elr=st gy,
0

which is finite for all s; > o. |

The most used properties of Laplace transforms are summarized as
follows.
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THEOREM 2.6
The following relations are true:

(i)
(ii)
(iii)

(iv)

(v)

{vi)

(vii)

(viii)

Ifz(t) = z1(t) + z2(t), then X (s) = X1(s) + X2(s).
Ifz(t) = az1(t), then X(s) = aXi(s).
If z(t) = 21 (t — L) with some A > 0, where z1(t) = 0 for t < 0, then

X(s) =72 Xa(s) -
If (t) = z1(t)e™ with some real constant ., then

X(s)=Xi(s—a).
Ifz(t) = x1(%) (T > 0), then

X(s) =T X(sT) .
If x(t) = £1(t), then

X(s) = —z1(0) +sX1(s),
and in general, if z(t) = =" (t), then
X(s) = —z"V(0) - sz{"2(0) — - — ™1z (0) + "Xy (s) .
Ifa(t) = [y z1(7) dr, then
X(s) = S Xu(s)

and in general, if z(t) = fot o Jy T e () drndrae L dT,

then )
X(s) = S—nXl(s) .

If - is the convolution of x1 and x4, that is, if
oo
z(t) = (z1 * T2)(t) = / T1(t — T)zo(T) dT
0

then

X(s) = X1(s) - Xafs) -
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PROOF Properties (i) and (ii) are the simple consequences of the
linearity of the integral. Relations (iii) through (vii) can be shown by
simple calculations based on the elementary facts of integral calculus:

(i) X(s) = f0°° z(t)e st = f0°° 1t — DN)e st dt.
Introduce the new variable 7 = t — A, then this integral equals

/ Ty (r)e™ e dr = e"SA/ z1(7)e” T dr = e %2 X1 (s)
-A 0

where we used the fact that z;(7) = 0 for 7 < 0.
(V) X(s) = [y mu(t)ete st dt = [Pz (t)e C~Vdt = X3 (s — ).

V) X(s) = [y zi(k)e tdt = [[° T zy(r)e™T7dr =T - X(sT),
where we introduced the new variable 7 = t/T.

(vi) Integrating by parts,
X(s) = / E1(t)e™* dt = [z (t)e P ——/ z1(t)(—s)e "t dt
0 0

= —z1(0) + s X1(s),

and the general case can be proven by the repeated application of
the above formula. Let z1;(t) denote the kth derivative of z(t).
Then

X(s) = Xyn(s) = _zgn—l)(o) +5 Xin-1(s)
==z V(0) + 5 [~z (0) + 5+ X1 n-a(s)]
= 2" D(0) — 5 20 7P(0) + Xy nals) = -

—2"(0) -5 z7P(0) - - 2"V (0) -

— "oz (0) + 5™ Xi(s)

{(vii) Using the previous identities and observing that z; = & (or z; =
z(™), furthermore z(0) = 0 (or z(0) = £(0) = --- = z(»~V(0) = 0),
we obtain identities
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X1(s) =s-X(s) (or X1(s) = s - X(s)),

from which the assertions follow immediately.

(viii) Interchange the integrals and use identity (iii) to have

X(s) = /Ow (/Ooo 21(t — )3 (7) dT> et dt
= /OOO (/000 zi(t — r)e " dt) 2o(7) dr

- / " Xi(s)e™T - w(r) dr

= X;(s)- Xo(s). 1

The Laplace transforms of the most commonly used functions are
summarized in Table 2.1. These relations are verified next.

Table 2.1 Laplace Transforms of Common

Functions
No. z(t) 1 X(s)
t 1
1 e® ——
) st 1ift >0 1
umt step = 0 otherwise s
3 " 2
4 theat (T_%;—rx
5 cos wt ﬁ
6 sinwt T
t —
7 e* coswit E__—Z)—{’m
t .
8 e**sinwt [
l/eif0<t<ce 1 e
? 6E(t) - {O otherwise 3_5(1 —¢ )
10 | unit impulse §(¢) = limg_,g 6.(t) 1
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Numbers 1, 3, and 9 are proven by simple integration:

o0 (e o) 1
/ e et dt = / elomtgt = —— (Res > a),
0 0 Ss—a

o] e~ st o] e~ st
/ the"stdt = [t” . —} - / nt"1. dt
0 —S o 0 -

n /mt“*le‘stdt: M/oot”—%—“dt...
s Jo 1}

g2

nl [

_ n!
- e st dt = —— |
L 0 Sn-+—1

Ii

and

oo £ 1 1
/ Se(t)e st dt = / —e"Stdt = —(1—e7%) ,
Jo Jo € S€

Select @ = 0 in No. 1 to prove identity 2. Use No. 3 and Property (iv)
of Theorem 2.6 to verify No. 4. Note that No. 5 and No. 6 are implied
by identities

edwt + e Jwt P [
coswt = ————— | sinwt = ——————
2 27
and the linearity of the Laplace transform. Use again property (iv) of
Theorem 2.6 and the previous cases to show No. 7 and 8. The last row
of the table is verified by letting € — 0 in the result of No. 9:

Se—SE
=1

1
lim — (1~ e7°%) = lim
e—0 §€ e—0 8

?

where we used the L'Hospital rule.

As an example, Figure 2.3 illustrates function ¢™ and its Laplace trans-
form for n = 2. For the sake of simplicity, only nonnegative values of ¢
and s are considered.

Note that function &, is very seldom used in practical cases. However,
it has a great theoretical importance because the unit impulse function
is defined as its limit for € - O.

Laplace transforms are very useful in solving linear ordinary differ-
ential equations with constant coeflicients. The main idea is based on
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X, X4
54 x(y=1*

alt
34
2__

T 6

X(S)=—?

S

I 2 3 4 5 1s

Figure 2.3 A function and its Laplace transform.

Property (vi) of Theorem 2.6 reducing differential equations to algebraic
equations, which are easy to solve. Consider first an nth order initial
value problem

2™ fap 2D 4 paid 4 aez = f(2)

2(0) = z0,%(0) = o, ...,z (0) = z* ) . (2.27)

Apply the Laplace transform on both sides, and use Property (vi) of
Theorem 2.6 to obtain equality

[~z™=D(0) - sz D(0) — -+ — s 1z(0) + s" X (s)] +
+ e [-3TD(0) - szB(0) — - - — s 22(0) + X (s)]
+ -0 4 a1 [—2(0) + sX(s)] + ag X (s) = F(s),

where X (s) and F(s) are the Laplace transforms of z(¢) and f(t), re-
spectively. This equation can be rewritten as

X(s) q(s) + F(s)

T p(s) T pls)

(2.28)

where

1

p(s)=s"+an18" "+ +ais+ag,
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and

g(s) = " 1(0) + s"[£(0) + an_12(0)] + - -
+ 5[z 2(0) + a1z (0)

+ o agz(0)] + [ V(0) + ap12TH0) 4 - - 4 0y 2(0)]

Note that in the special case when all initial values z(0) = £(0) = --- =
z»=1(0) = 0, g(s) = 0. That is, the first term becomes zero. After
X(s) is computed, z(t} has to be determined. In special cases we can
use the results of Table 2.1. As an example, assume that F(s) is a
rational function. Then X(s) is also rational. Assume that X(s) is
strictly proper and the roots A1, ..., A, of its denominator are distinct.
Then the partial fraction expansion of X (s) is as follows:

Ry R, R,

o Vi wh i s (2.20)

where Ry,..., R, are constants. Use No. 1 of Table 2.1 to conclude that
z(t) = RieMt + Rpe*®t ... 4 Rye*t | (2.30)

Assume next that the roots A,..., A, have multiplicities my,...,m,.
Then the partial fraction ezpansion of X(s) can be written as

[ Ra Ris Rim,
X(s) = ; L ayvhil e w Rl P )\i)mi:I : (2.31)

where the numbers R;; can be determined by using elementary methods,
which will be illustrated in Example 2.7. To recover z(t), use No. 4 of
Table 2.1:
" ot R0t Rim.tmi_l
z(t) = e [Ru LRETRI st s ] : (2.32)

i=1
This procedure can be summarized as follows:
Step 1 Apply Laplace transform on both sides of the differential equa-
tion.
Step 2 Solve the resulting algebraic equation.

Step 3 Apply inverse transform to recover the solution of the original
problem.
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Figure 2.4 illustrates this procedure.

Original space Transform space

Original problem Algebraic equation

Laplace transform

Solution of
algebraic equation

Inverse transform

Solution of transformed
problem

Solution of original
problem

Figure 2.4 Application of Laplace transforms in solving differential equations.

Example 2.7

First we solve the initial value problem
Z -3+ 2z =4, z(0) =0, z(0)y=1.
By using Laplace transform on both sides of the equation we have
—#(0) — s2(0) + 82X () — 3(=2(0) + sX(5)) + 2X (s) = % ,
which implies that
X(s)(s® —3s+2) = % +1.
Therefore,

1+1 s+4

X = D69 G- D6=D)

Because the denominator has distinct roots, relations (2.29) and (2.30)
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canbe used. The unknown coefficients of the partial fraction expansion

s+4 __&_’_ R2 R3
s(s—1)(s—2) s s—1 s§-2

(2.33)

can be obtained by applying one of the following methods.

Method 1 (Algebraic approach). Multiply both sides by
s(s — 1)(s — 2) and rearrange the terms to get

s+4=5*(Ry + Ry + R3) +s(~=3R; — 2Ry — R3) + (2R;) .
Comparing the like coefficients, the linear equations
Ri+Ry+Ra=0
—3R; —2R, - R3 =1
2R; =4
are obtained; therefore, the solution is
Ry =2, Rg=-5, R3=3.

Thus, we conclude that

X(s):gm 5 3

5 s—-1 s=-2"

and (2.30) implies that the solution is as follows:

z(t) = 2e°* — bel'? + 3¢t = 2 — Be' + 3% .

Method 2 (Residue method). First multiply bothsides of (2.33)
by s and then evaluate the resulting equation at s = 0 to get

s+4 Ry R
T | _o=Ry+ + _
(s—l)(s—2)|s—0 ! S(s—l 3—2) ls=0,

which implies that

Ry

Il
|
o

(-1)(=2)
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Next multiply both sides of (2.33) by (s — 1) and evaluate at s = 1:

s+4 R, Rs
——vls=1 = R -1 — s=1}
s(s—2)'s"1 2+ (s )(s +s—2)l 1

therefore,

And finally, multiply both sides of (2.33) by (s — 2) and evaluate at
$ = 2. The resulting relation is

s+4 Ry Ry
Srt L =R _gy s,
3(8_1)|s~2 3+ (s )(S +S_1>| 2

that is,
2-+4
Ry = —=3.
2T o1
Note that this is the same result we derived before.

Example 2.8

Next we solve the initial value problem
I—-2=12{0)=0z(0)=1.
By using Laplace transform on both sides of the equation we have
. 2 1
—z{0) — sz(0) + s* X (s) — (—z(0) + sX(s)) = <

which can be rewritten as

5 1

X(s)s*—s)=~+1.
s

Therefore,
1+14 s+1
X{(s) = i = .
(s) s(s—1) s%(s—-1)

Note that the roots of the denominator are A\; = 0 and Ay = 1 with
multiplicities m; = 2 and mg = 1. Therefore, X (s} can be written in
the more general form of (2.31), which specializes to the following;:

s+1 R11 ng R21
— = — . 2.34
s2(s—1) s + 52 + 51 (2.34)
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The unknown constants 11, /2, and Ra; canbe determined by using
either of the methods shown in the previous example.

Method 1. Multiply both sides by s?(s — 1) and rearrange the
terms:

s+1=5*Ry1 + Ro1) + s(=Ryy + Ry2) + (—Ri2) .

Compare the like terms to get the linear equations

Rii+Ru=0
—Rpyy+Rip=1
~Ria=1.

The solution is

Ry = -2, Ry = -1, Ry =2.

Method 2. Multiply both sides of (2.34) by s? to get equation

s+1 R
:R11$+R12+82'i.
s—1 s—1
Substitute s = 0 to conclude that Ri2 = —1. Because Rj; is mul-

tiplied by s, it cancels at s = 0. That is, R;; cannot be determined
directly. However, by differentiating both sides, multiplier s disap-
pears. The resulting equation becomes

(3—1)—(3+1)=RH+32_ — Ry 49 Ry

(s—1)? (s—1)2 s—1°
Evaluate this equation at s = 0 to conclude that
Ry =-2.

Multiply next both sides of (2.34) by s — 1 and evaluate at s = 1:

s+1 R R
ls=1 = Ra1 + (s — 1) (T11+5—122) ls=1,

52

which implies that Ry; = 2.
Therefore,
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and from relation (2.32) we have the solution:
z(t) =¥ (-2 —t) + et 2= -2t +2et.

In the general case, when a root A; has multiplicity m;, multiply first
Equation (2.31) by (s — A;)™¢, then differentiate the resulting equation
0,1,2,...,m; — 1 times and substitute s = A; to these equations to
recover the constants R;1, Ria, ..., Rim,-

Our next example illustrates a case when X (s) is rational but not
strictly proper.
Example 2.9
Assume that the Laplace transform of a function is

52 S -

Then it can be rewritten as the sum of a polynomial and a strictly proper
rational function:

X(S) = Xl(S) + Xz(s)

with
25 —1
X =land X = —.
1(s) = 1 and Xs(s) G0
Simple calculation shows that
1 1
X =~
2(s) s + s—1

Then the last row of Table 2.1 and relation (2.30) imply that
z(t) = z1(t) + 22(t) = 6(t) + -1+l 1
=6()+1+e.
Consider next the system
X =Ax+1(t), x(0) =x¢ , (2.35)

where A is an n X n constant matrix and f is an n-dimensional function
of t. By applying the Laplace transform on both sides, we have equation

—x(0) + sX(s) = A - X(s) + F(s) ,



88 chapter two: Mathematics of Dynamic Processes

that is,
(sI — A)X(s) =x0 + F(s) .

Assuming that s is not an eigenvalue of A, sI — A is invertible and
X(s) = (sI — A)"(xo + F(s)) - (2.36)

The components of x(t) can then be recovered by applying the above
methods.

Example 2.10

Consider again the initial value problem

(23 (2). o= (3)

of Example 2.6. In our case,

A= (_3‘5) Cf) = ((1’) Jand %o = (é) .

By using No. 2 of Table 2.1 we have

s—w\ '/ 1

w s 1/s
_ 1 S w 1
T 2402\ —ws 1/s

ws? 1/w + {(1-1/w)s
—_ s(s2+w?) _ s s 4w?
—w+1 —w1 !

s24w? 524w

X(s)

and from Nos. 5 and 6 of Table 2.1 we have

x(t) = (‘37 +(1- %)Coswt> _1 (1 + (w— l)coswt> |

— w1 = _ _ .
=22 sinwt w (w—1)sinwt
Hence, the solution is determined.

In cases when we cannot recognize z(t) from X (s) by using Table 2.1
and/or elementary methods, the following general result may be useful.
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THEOREM 2.7
Assume that o is the abscissa of convergence in the Laplace transform of z(t).
Then z(t) can be determined with the inversion formula

1 oo+ joo
z(t) = 2—7;7—/ X(s)etds, (2.37)

()—joo

where oy > o is arbitrary.

REMARK 2.4  Note that the integration domain may be any vertical
line in the complex plane that lies in the region of convergence.

The proof of this result can be found for example in {26]. We note that
the integral (2.37) is usually difficult to compute, therefore, the direct use
of the inversion formula is not an easy task. However, one may apply
numerical integration and standard computer programs to determine

the values of the integral (2.37) for given values of t.

2.2 Solution of Difference Equations

Dynamic systems with discrete time scale are usually modeled by a sys-
tem of difference equations. The solution of the difference equations
represent the state of the dynamic system. Therefore, the determination
of the state requires the solution of the governing difference equations.
Similar to the differential equation case discussed earlier in Section 2.1.2,
this section gives a summary of the existence and solution methodology
of nonlinear and linear difference equations.

2.2.1 General Solutions

In this subsection, the existence of the unique solution of the initial value
problem of difference equations is discussed. Similar to the differential
equation case, the results of this subsection are useful in determining
whether or not a given difference equation really represents a dynamic
system with discrete time scale.

Consider the first-order explicit difference equation

x(t + 1) = £(¢,x(t)) (2.38)

where x : N — R™ is an integer variable vector-valued unknown function
(here N = {0,1,2,...}) and f : N x X — R"™, where X C R". A
function x is called the solution of the above difference equation if for
all t € N, x(¢) € X and Equation (2.38) is satisfied. In the case of
difference equations, we will always assume that the initial time is zero.
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This assumption will make all further formulations easier without losing
the essence of the problems. If the initial time tg # 0, then we have to
introduce a new time-variable ¢ = t — 3. Note furthermore that there
is an obvious analogy between the difference equations (2.38) and the
iteration process (1.18) for solving fixed-point problems.

Note first that function f and set X should satisfy certain conditions
in order to have a solution, as illustrated in the following example. If no
solution exists, Equation (2.38) cannot describe the behavior of dynamic
systems.

Example 2.11

Consider equation

o(t +1) = /()] - 1.
Note first that function
ftz) =+ -lz| -1

is defined only for = 0. Therefore, we must select £(0) = 0 in order
to start the solution. Then

2(1) = VRO - 1= -1,
which cannot be substituted into function f. Hence no solution exists.

Our main existence result can be summarized as follows.

THEOREM 2.8
Assume that forall x € X and t € N, f(t,x) € X. Then there is a unique
solution in X starting from any arbitrary initial value x(0) = x; € X.

PROOF  If x(0) € X, then £(0,x{0)) exists and is in X. Therefore,
x(1) € X. By induction, assume that x(t) € X. Then f(t,x(t)) exists

and is in X, that is, x(t + 1) € X. Hence, the proof is completed. |
Higher order difference equations are given by the recursion
z(t+n)= flt,z@),zt+1),...,z(t +n—-1)), (2.39)
and in order to guarantee the uniqueness of the solution, the initial

values
z(0) = zo,z(1) = x1,...,z(n - 1) = T3 (2.40)
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are given. As in the case of higher order ordinary differential equations,
it is possible to transform Equation (2.39) into a first-order system of
the form (2.38). This transformation is based on the introduction of the
new variables

z1(t) = z(t), z2(t) = z(t + 1),. .., xzn(t) =zt + n— 1) .

Then we have the first-order system

.'El(t + 1) = ICQ(t)

z2(t + 1) = z3(t)

Ta(t+1) = za(1)

Talt +1) = f(t,z1(t), ..., za(t)) (2.41)
of difference equations with initial values

z1(0) = g, 22(0) = z1,...,2,(0) =21 . (2.42)

Example 2.12

Consider the second-order initial value problem
z(t +2) =t +z(t) + z(t + 1), z(0)==z(1)=1.

Introduce the new variables 1 () = z(t) and za(t) = z(t + 1), then
Equation (2.41) can be rewritten as

.’L‘l(t + 1) = .’L‘g(t)
To(t + 1) =t + x4 (t) + za(2)?,
and the initial conditions (2.42) are

21(0) = 2,(0) = 1.
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2.2.2  Solution of Linear Difference Equations

The state of discrete linear systems is obtained as the solution of the
governing linear difference equation, which therefore, is the basis for
determining the state and investigating the state properties. In this
subsection the solution of linear difference equations is examined; the
closed form solution introduced next is often applied in solving practical
problems.

Consider the linear difference equations of the form

x(t + 1) = A(t)x(¢) + £(t) (2.43)

where A(t) is an n x n matrix and f(¢) is an n-vector defined for all
t € N. Obviously this equation satisfies the conditions of Theorem 2.8
with X = R"™; therefore, for all x, € R™, there is a unique solution
satisfying the initial condition x(0) = xp.

First, a general formula will be derived for the solution of Equa-
tion (2.43). The repeated application of Equation (2.43) gives the solu-
tions:

x(1) = A(0)xo + £(0) ,
x(2) = A(L)x(1) + £(1)

— A(1)A(0)xo + A(L)E(0) + £(1)
x(3) = A2)x(2) +£(2)

= A(2)A(L)A(0)xo + A(2)A(1)F(0) + A2} (1) +£(2) ,
and so on. By using finite induction, it is easy to see that, in general,

x(t) = A(t — )A(t — 2)... A(1)A(0)xq +

T
[\~

At — 1At —2). .. A(r +1DE(r) +£(t — 1) .

7=0

I

The third term, f(t — 1), can be considered as the extension of the
summation for 7 = t — 1, because in this case, 7 +1 > t — 1, so
A(t—1)A(t—2) - -- A(T+1) represents an “empty” product with identity
matrix value. Introduce the notation

Ht,7) = At —DAE—2)-...  A(7)
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to obtain the general formula

t-—~1

X(t) = B(t,0)%x0 + Y_ (t, 7 + 1)f(7) . (2.44)
=0

Note that this equation is analogous to the general solution (2.23) of
linear inhomogeneous first-order differential equations. In that case,
integral substitutes the summation.

Consider next the homogeneous case when £(¢) = 0 for all t € N. Then
the second term of (2.44) equals zero, and hence, the general solution of
the resulting homogeneous equation is as follows:

x(t) = &(t,0)xg , (2.45)

which is exactly the same formula as (2.18) for the solution of the cor-
responding differential equations.

Example 2.13

We now solve the one-dimensional equation
pt+1)=(t+1)%-z(@)+1

with initial condition (0) = 1. Inthiscase n = 1, A(t) = (¢ + 1)?,
and f(t) = 1. Therefore,

2
Pt T) =t (t-1)" ... (r+1)? = (;) ,

and so

- 0 @15

= (t)? Z (T,

Similarly to the case of linear differential equations, ¢(t,7) is called
the fundamental (or transition) matrix of Equation (2.43).
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Consider next the special case, when A(t) = A and f(t) = f, that is,

when the equation is time-invariant. Then the transition matrix has the
special form

B(t,7)=A"T, (2.46)
and therefore, the solution of the initial value problem
x(t+1)=A-x(t)+£,  x(0)=x

can be written as
t—1
x(t) = At xq + (Z A"T‘l) . (2.47)
=0

Note that A = I in the term of 7 = ¢ — 1. We mention that the matrix
operations needed to implement this solution formula can be performed
by using standard program packages.

This formula is illustrated next.

Example 2.14

Consider the initial value problem

x(t+1) = (éi>x(t)+ (g’) (0) = (é) .

In this casen = 2,

(2 () ()

Note first that
2 (11 11y (12
A _(01 01/ \o1/"
3 (12 11y (13
2= (51 (61)=(s1)

and by finite induction one may easily verify that

w-(30).
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Therefore, relation (2.47) implies that

w=(1) (S0

=0

-6z

=0

- (1SR (59)
t t '

Hence, the solution of the initial value problem is determined.

Finally, we remark that Theorem 2.3 can be modified for difference
equations, and the details are left to the reader.

2.2.3 Zz-transform

In this section we introduce a very useful function transformation, which
reduces the solution of linear difference equations with constant coeffi-
cients to the solution of algebraic equations. This transformation is
called Z-transform, and is considered the discrete time counterpart of
Laplace transforms.

After an existence theorem the fundamental properties of the Z-transform
are outlined, and the Z-transforms of the most frequently applied func-
tions are derived. At the end of this section the application of Z-
transforms to solve difference equations is discussed.

DEFINITION 2.2 Let (t) be a real- or vector-valued function defined for
all t € N. Then the Z-transform of x is defined by the infinite series

X(z) =) z(t) (2.48)

t
z
t=0

Similar to Laplace transform, the Z-transform maps a function space
into another function space. Here X(z) is the value of the transformed
function at z.

Our first result is an existence theorem.
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THEOREM 2.9
Assume that
)] < k-o'(t=0,1,2,...) (2.49)

with some real constants k > 0and o > 0. Then X (2) exists for all |z| > o.

PROOF  Note that under the assumption of the theorem,

and therefore, series (2.48) is majorized by the convergent series

2 ()

t=0
i

The radius of convergence is the smallest real number ¢ > 0 such that
series (2.48) converges for all z such that |z| > 0.
The most frequently used properties of Z-transforms are given next.

THEOREM 2.10
The following relations are true:

() Ifx(t) = z1(t) + 22(t), then X(2) = X1(2) + Xo(2).

(i) Ifz(t) = az(t), then X(z) = aXq(2).
(iit) If z(t) = z1(t)at, where a is a constant, then X (z) = X1(z/a).
(iv) Ifz(t) = z1(t + 1), then

X(z) = z-Xi(z) — z- 1(0) ,
and in general, if x(t) = x1(t + n) with n being a positive integer, then
X(z)=2" X1(2) = 2" 2,(0) = 2" () — - — 2z (0 — 1) .

(v) Ifz(t) =x1(t — 1) then with z,(7) = 0 (7 < 0),

X(z)= %Xl(z) ,
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and in general, if x(t) = z1(t — n) with some positive integer n with

z1(7) = 0 (1 < 0), then
1
X(z) = ;Xl(z) .
Properties (i) and (ii) are obvious, (iii) can be shown as fol-

PROOF
lows: -
X(Z) = Z Zt S 7

i=o (2)

N T (t +n) n i
X(Z)=t-zo 1 = =z tz—; ez >
— " (i fIIlz(TT) .'E;(OO) xl(ll) o xli:—: ]_))

=0
= 2" Xy ( )’Zn'ml(o)—Zn_l-an(l)—'“—z-m(n—1).

Select n = 1 as a special case to have the first identity.
(v) Since in the general case z;(t) = z(t +n) (t > n)and z(7) = 0
(T < 0), the previous property implies that
X1(2) = 2"X(2) .

Divide both sides by 2™ to obtain the assertion. The first identity

follows by selecting n = 1.
The Z-transforms of the most commonly used functions are summa-

rized in Table 2.2. These relations are proven next.
Numbers 1 and 7 are proven by simple calculation:

t___ozt_l—%_l——z’
and
N—l1 . 1___(%)N_ 1 — N
2t 1-1 N1 -2)
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Table 2.2 Z-Transforms of Common

Functions
No. z(t) X(z)
1 1 Zfl
2 at z
Z—0Qa
-1
3 ta* Reeok
4 t =7
at=lift > 1 1
5
0 ift=0 z-a
(12_11 atFift > 1 1
6 - GmaF
0 ift =0
. lif0<t< N 1—zN
0 otherwise 2ZN-T(1=2)
lift=0
8 {0 otherwise 1

Number 2 is the consequence of No. 1 and Item (iii) of Theorem 2.10.
Number 3 is obtained by simple differentiation from No. 2:

ita iigﬁ_i z oz
da 2t da z—a (z—a)?’

t=0 t=0

and No. 4 is derived from the previous identity by selecting ¢ = 1. Num-
ber 5 is implied by No. 2 and Property (v) of Theorem 2.10. Number 6
can be proven by using No. 5 and the (k — 1)th derivative with respect
to a:

o t—1 at—k 1 dk—1 2 g1
Z( ) zt z(k—l)!dak—lg zt

t=1

1 N | 1

T (k-1)da*tz—a  (z—a)k’

And finally, No. 8 is obtained from No. 7 by selecting N = 1.

As an example, Figure 2.5 illustrates the discrete function a* (t = 0,1,
2,...) and its Z-transform for ¢ = 1.5. For the sake of simplicity, only
nonnegative values of z are considered.



2.2 Solution of Difference Equations 99
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Figure 2.5 A discrete function and its Z-transform.

Z-transforms are very useful in solving linear difference equations with
constant coefficients. The methodology is very similar to that used in
the case of differential equations.

Consider first the nth order problem

zt+n)+anz(t+n—1)+ -+ ar1z(t + 1) + aox(t) = f(t) (2.50)
with initial values

z(0) =zg,z(1) = z1,...,z(n = 1) =Tp_1 .

Apply Z-transform on both sides of the equation and use Property (iv)
of Theorem 2.10 to obtain equality

[2"X(2) — 2"z(0) — 2" *z(1) — - - - — zz(n — 1)]
+ o1V X(2) = 22 (0) - 2P Ex(1) — - —2zz(n - 2)] 4 e
+ a1[2X(2) — 22(0)] + a0 X (z) = F(2) ,

where X (z) and F(z) denote the Z-transforms of z(¢) and f(t), respec-
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tively. Rearranging the terms

(2.51)

where

plz) = 2" +an12" '+ Farz+ao,
g(z) = z[a12(0) + -+ + @p-1z(n — 2) + z(n - 1)] + 22[a2$(0)

+odaln—2)] + -+ 2" Han_12(0) + z(1)] + 2"z(0) .

In the special case, when all initial values zg, .. ., z,—-1 are equal to zero,
g(z) = 0. Therefore, the first term of (2.51) is zero. After X (z) is de-
termined, the solution z(t) is found by using the Z-transforms of known
functions given in Table 2.2. As an important special case, assume that
X(z) is a strictly proper rational function and the roots Ay, ..., A of the
denominator of X(z) are distinct. Similarly to the case of differential
equations, let

R, + Rs . R,

zZ— A z—/\2+ ”+z-/\,~

X(z) =

be the partial fraction expansion of X(z). Then use No. 5 of Table 2.2
to verify that

0 ift=0
=(t) = {Ry\i‘l RS 4+ RIS > 1 (2.52)

Assume next that the roots Ai,..., A, have multiplicities my,...,m,.
In this more general case,

_ 2 Ry Rio Rim,
@) _i}; [Z‘/\i - (z — )2 e (Z—/\i)mi] 7

and use No. 6 of Table 2.2 to obtain the solution

T

w(t) = [Rﬂxg‘l + Ria (tzl) A2y

i=1

+Rim, ( t_‘ ! ) /\f"”“] (2.53)
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for t > 1 and z(0) = 0.
Similar to the application of Laplace transforms, this procedure can
be summarized as follows:

Step 1 Apply Z-transform on both sides of the difference equation.
Step 2 Solve the resulting algebraic equation.

Step 3 Apply inverse transform to recover the solution of the original
problem.

Note that Figure 2.4 illustrates this procedure, when Laplace trans-
forms are replaced by Z-transforms.

Example 2.15

The Fibonacci numbers are defined by recursion

z(t+2) =z(t+1)+2(t), z(0)=0, z(1)=1.
By applying Z-transforms on both sides, we have

22X (z) — 222(0) — zz(1) = 2X (2) — 22(0) + X (2),

that is,

z z

X(Z):zz—z—lz(z_%ﬂ(z_%g)'

A calculation similar to that presented in Example 2.7 shows that the
partial fraction expansion of X (z) is given as

1+V5 1-V5

_ 2v'5 _ 2v5
X(Z)—Z__1+\/5 L 1=5

2 2

and finally No. 5 of Table 2.2 shows that

2v/5 2 25 2

() - (=)

x(t):1+\/5(1+\/5>t—1_1—\/5(1—\/5)“1

Sl
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Hence, the solution of the above second-order initial value problem
is determined.

Example 2.16
Next we solve the initial value problem

z{t+1) +2z(t) =4, z2(0)=0.
Applying Z-transforms on both sides yields to equation

z
z—4"

2X(2) — zz(0) +2X(2) =

where we used No. 2 of Table 2.2 with a = 4. Solve this equation for

X(z): ;

(z+2)(z—-4)°

1t is easy to verify that the partial fraction expansion is as follows:

X(z) =

=

2
4+ 3
z—

X(2) = o

Z+2

and therefore, No. 5 of Table 2.2 implies that 2(0) = 0 and

() = %(—2)‘”1 + §4t-1 (t>1).

Hence, the solution of the above second-order initial value problem
is determined.

Consider next the system
x(t +1) = Ax(t) + £(¢), x(0) = %o , (2.54)

where A is an n X n constant matrix and f is an n-dimensional function
of the nonnegative integer t. Apply Z-transforms on both sides to get

equation
2X(z) — zx(0) = AX(z) + F(2) ,

where X and F are the Z-transforms of x and f. Assuming that z is not
an eigenvalue of A,

X(z) = (21 — A)"Hzxo + F(2)) . (2.55)

Function x(¢) can then be recovered by applying the previous method
for each component of X(z).
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Example 2.17

The second-order equation of the Fibonacci numbers presented in Ex-
ample 2.15 can be transformed into the following two-dimensional
first-order equation:

x(t+1) = <(1) 1) x(t), x(0) = ((1)) .

Here 21(t) = z(t) and z2(t) = z(t + 1) are the new variables. In this

case,
01 0 0
A-(ll), f(t)—(o), and xo—(1>,

therefore, (2.55) implies that

X(z) = (j z——ll)‘l (2)
(T (O)- (=)

Since z(t) = x1(t), we conclude that

z
X(Z):zz—z—l’

and z(t) can be determined in the same way as demonstrated in Ex-
ample 2.15.

Problems
1. Does problem & =t - sinz, (0) = 1 have a unique solution?

2. Find the fundamental matrix for differential equation

(1) 0-():

3. Apply theiteration method (2.7) to solve the initial value problem
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4. Solve the initial value problem

(1) (). o)

by using formula (2.23).

5. Solve the initial value problem

()= () w0 ()

by using formula (2.23).

6. Solve the initial value problem

x(t+1)=(;;>>€(t)+(é) ; X(O):(i)

by using formula (2.44).

7. Solve the initial value problem

x(t—%—l):(gé)’c(t)"‘(i) ) X(O):((1)>

by using formula (2.44).

8. Solve the initial value problem

(33 (3). 0= ()

by Laplace transform.

9. Solve the initial value problem

() (t) ()

by Laplace transform.

10. Solve the initial value problem

X(HUZ(;)x(t)Jr(é) : X(O)ZG)

by Z-transform.
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11. Solve the initial value problem

x(t+1)___<(2);)x(t)+<}> , X(O):((1)>

by Z-transform.

12. Use Laplace transform to solve equation
T+3z+2x=1, z(0) = 2(0) =0.

13. Rewrite the second-order equation
Z4+3T+2z=1, z(0) =2(0) =0

as a system of first-order equations.

14. Use Z-transform to solve equation

z(t +2) +3z(t+ 1) + 2z(t) =1, z(0)==2(1)=0.
15. Rewrite equation

z(t+2)+3z(t+1)+22() =1, z(0) =z(1) =0

as a system of first-order equations.

16. Solve the resulting equation of Problem 13 by Laplace transform,
and compare your results to that of Problem 12.

17.  Solve the resulting equation of Problem 15 by Z-transform, and
compare your results to that of Problem 14.

18. Which initial condition should be selected at ¢5 = 0 so that the

trajectory of equation
. 11 1
<= (2)x+ (o)

passes through the point

att =17

19.  Assumethatf = (f;),x = (z;), and all partial derivatives 9 f; / 9z ;
are bounded in the neighborhood of the initial point. Prove that there
exists a L > 0 such that inequality (2.4} holds in this neighborhood.
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20. Formulate and verify Theorem 2.3 for linear difference equations.

21. Assume that A(t) is an invertible matrix for all ¢ € [a, b]. Show

that
C‘l—ltA—l(t) = ~A M )AW)AT(2) .

22. By substitution show that x(t) given in Equation (2.23) is the so-
lution of the initial value problem (2.13).

23. Prove that the solution of the initial value problem
z(t) = A(t)x(t), x(te) =9
satisfies the inequality

' A(r dr
lz(®)ll2 < llzollzete AT

fort > tp.

24. Let A be a constant n x n matrix. Show that
t
eAt =I+A/ eATdT.
0

25. LetBbeaconstant n x n real matrix. Show that if the eigenvalues
of B are distinct and positive, then there is a real n x n matrix A such

that B = .



chapter three

Characterization of Systems

This chapter first introduces the mathematical concept of dynamic sys-
tems, and then methods for their solutions are presented. As we have
seen in the previous chapter, linear differential and difference equations
are easy to solve; therefore, the main method for solving nonlinear sys-
tems is based on linearization and the numerical solution of the resulting
linear equations. Special linear methods are also discussed in this chap-
ter, and decompositions will be introduced to reduce specially structured
high-dimensional problems to smaller dimensional ones.

3.1 The Concept of Dynamic Systems

Many situations in applied sciences can be modeled by dynamic equa-
tions. The term dynamic refers to phenomena that produce time-changing
patterns and the characteristics of the pattern at one time being inter-
related with those of other times.

If the time scale is assumed to be continuous, then the direction of
the change in the characteristics is usually described by a differential
equation because derivatives represent these directions. In the case of
a discrete time scale, the characteristics of consecutive time periods are
interrelated by difference equations. In dynamic systems theory, the
systems characteristics are usually divided into three classes:

1. All effects arriving into the system from the outside world form
the input of the system.

2. The internal variables are summarized as the state of the system.

3. The output either comprises that portion of the system’s state
which can be directly determined by external measurements, or
summarizes the response of the system to the input.

107
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Let u(t), x(t), and y(¢) denote the input, state, and output of a system
at time period t. Then the system is represented as the block diagram
shown in Figure 3.1.

Dynamic
Input system Output
u(r) State y(t)
x (1)

Figure 3.1 Block diagram representation of dynamic systems.

A dynamic system with continuous time scale and state—space descrip-
tion is presented as

x(t) = £(t, x(t), u(t)) (3.1)

y(t) =gt x(?)) , (3.2)

where the first equation is known as the state transition equation and
the second relation is known as the output equation. Some authors allow
function g to depend also on the input. In this chapter we discuss only
the form (3.2). It is assumed that for all ¢ > 0,

x(t) € X, u(t) e U,

where X C R™ and U C R'™ are called the state space and input space
of the system; furthermore,

f:[0,00) x X xU—>R" and g:[0,00) x X - RP .

This notation means that for all ¢ € [0,00) and x(t) € X and u(t) € U,
the function value of f is in R™ and the value of function g is in RP.
Note that the dimensions of the input, state, and output are m, n, and
p, respectively. It will usually be assumed that for all input functions
u(t) and all initial states xg, the initial value problem

x = f(t,x,u), x(0) = xq
satisfies the conditions of Theorem 2.1, that is, there is a unique state
function x(t) (t = 0).

A dynamic system with discrete time scale is presented as

x(t +1) = £(t, x(t), u(t)) (3.3)
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y(t) = gt x(t)) - (3.4)

Analogous to the continuous time scale case, the first equation is called
the state transition equation and the second relation is known as the
output equation. It is now assumed that for all t = 0,1,2,...,

x(t)e X and u(t) e U,
where X and U are the same as before; furthermore,
f NxXxU—=X and g:Nx X — RP,

where N = {0,1,2,...}. Observe that for all initial vectors xg € X and
input functions u, the initial value problem

x(t + 1) = (¢, x(t), u(t)), x(0) = xo

satisfies the conditions of Theorem 2.8; therefore, the solution x(t) exists
and is unique.
The above concepts are illustrated next.

Example 3.1

Consider a point mass m in the presence of an inverse square force
field —k /72, such as gravity. Assume that the mass is equipped with
the ability to exert a thrust u1 in the radial direction and a thrust uy
in the tangential direction. This situation is illustrated in Figure 3.2
and is usually referred as the satellite problem because it describes
the dynamics of an orbiting satellite that has no friction effects. First
the equations of motion of this system will be derived.

Figure 3.2 Illustration of the satellite problem.
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The total energy of the system is called the Lagrangian, which is
L = K — P, where

1
K = om(i* +1°6°)

is the kinetic energy and

P=_=
T

is the potential energy. It is known that Lagrange’s equations in the
coordinate g read

d (0L oL

) -Z =,

dt \ 0¢ g

where F' is the external force in the ¢ direction. Therefore, we obtain
equations

Lk

mi — mrd”° + - =w
r

and

2ridm + r26m = TUs .

For the sake of simplicity, select m = 1, and solve these equations for
7 and § to get

. k
P =rf? — 5 + U1
T
s 200 1
o W1,
r

If we introduce the notationry = 71,79 = 7,8, = 6,and 85 = 9, then
these equations can be rewritten as follows:

7.”1:7"2

. k
T9 =T193— — -+ U1
L1

0y = + —usp. (3.5)
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Assume finally that the position parameters r and £ form the output,
then the output equations are

yp=7m1 and y2=108;. (3.6)
The resulting equations coincide with the general formulation of dy-
namic systems with continuous time scale, where u1, ug are the inputs;

r1, T2, 81, 02 are the state variables; and y; and y are the outputs.

Example 3.2

The simple models of national economic dynamics are usually based
on the variables

Y (¢) = national income (or national product)
C(t) = consumption
I(t) = investment

G(t) = government expenditure .

Variable Y'(¢) is the total amount earned during a period by all individ-
uals (or the total value of goods and services produced) in the economy,
C(#) is the total amount spent by individuals for goods and services,
and I(t) is the total amount invested in time period ¢. Variable G(t)
is the total amount spent by the government in the same time period.
Obviously,
Y(t) =C(t) +I(t) + G(t) . (3.7)

Two additional assumptions are made:
C(t) =mY (¢) (3.8)

and

Y(t+1) =Y () =rl(t), (3.9)

where

m = marginal propensity to consume (0 < m < 1)

r = growth factor (r > 0} .

Note that m is the fraction of the consumption and the national
income, and 7 is the fraction of the national income increase and in-
vestment.
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Combine the above equations to get the dynamic relation
Yit+1)=Y@t)+rit) =Y (@) +r[Y () — C@1) — G(t)]
=Y @) +r[Y () —mY(t) - G(t)],
which can be simplified as
Yit+1)=[14+r—-rm]Y()—rG(t). (3.10)

Consider Y as a state variable and G as an input. Then this relation
is a special case of the general formulation (3.3), and, for example, (3.8)
can serve as output equation, when consumption is considered to be
the most important variable to measure. Note that Equation (3.10) is
known as the Harrod-type model.

3.2 Equilibrium and Linearization

In many applications, the natural rest points of a dynamic system are
much more interesting than the mechanism of change. The rest points
are known as equilibrium points and they are defined as follows:

DEFINITION 3.1 A vector X is an equilibrium of a dynamic system with
an input function wif it has the property that once the state reaches X it remains
at X for all future time.
In particular, if a system is described by the dynamic equation
x(t) = £(t, x(t), u(?)) ,

then an equilibrium is a state X satisfying

f(t,x,u(t)) =0 (3.11)
for all ¢ > 0. If the system is described by the difference equation

x(t + 1) = £(t,x(t), u(t)),

then an equilibrium is a state X that satisfies

x = f(t,%,u(t)) (3.12)

forallt=0,1,2,....
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Note that the existence of the equilibrium states and numerical meth-
ods for determining them can be discussed based on the general theory

of Section 1.2.3. The details are not given here.

Example 3.3

Consider the dynamic equations of harmonic motion of a unit mass
with position 8(¢) and velocity v(%):

f=v

0= —w?d+u,

where a force input is assumed. Introduce the new state variables
r1 = wfand £9 = v. Then

T; = wl = wv = wxy
and

By =0=—w0+u=—-wwd)+u=—-wr; +u.

A= (L9
b= (7).

this system can be written in the standard notation

By introducing matrices

and

x = Ax+ bu,

which now has the particular form

x=(_o%)x+(9)u

here we assume that u(t) = 1 for all £ > 0. The equilibrium is the
solution of the algebraic equation

(20)2+ ()= ()
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The solution of this equation is

(50D ()

Hence at the equilibriumstate, Z; = % and Zo = 0, that s, the position

€l o
SE =

oA 1= _ 1 o
is @ = 51 = _z and the velocity is zero.

Example 3.4

Consider next the dynamic economic system introduced in Exam-
ple 3.2. If Y is an equilibrium state of the system, then for all t =
0,1,2,...,

Y=[1+r—-—rm]Y —rG(t),

which can be satisfied if G(t) is a constant Gy, since 7 # 0. Therefore,
Y can be obtained by solving this equation for Y:

1
1-m

Y:

Gy .

The values of the other variables at the equilibrium are obtained from
Equations (3.8) and (3.9)

="

Gy and I[=0.
1—-m

Hence, the equilibrium of the system is givenby vector (1/(1—-m)Gg, m/ (1~
m)Go, O)

Example 3.5

In this example we show that the satellite problem has no equilibrium
point with zero inputs u1(t) = u2(t) = 0 (¢ > 0). From (3.5) and
(3.11) we conclude that if there is an equilibrium, it must satisfy the

equations
To = 0
k.
’1“19% s 0
i
A, =0
_2921”2 —0.
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If £ # 0, then the second and third equations contradict each other.
However, one may easily verify that with certain nonzero inputs u;
and usg, the satellite problem does have equilibrium points.

The linearization of a nonlinear system is based on the approximation
of the nonlinear functions f and g by linear Taylor’s polynomials around
the equilibrium point. Let X denote an equilibrium with input function

G(t). Introduce matrices

2L (t,x,u) 5L (t,x,u) -+ 51(t,x,u)
S (t,x,u) S2(t,x,u) -+ §22(t,x,u)

Ja(t,x,u) = | 9=
0L (s af. ot
a_erl(t,x,u) 9 (t x,u) - %ﬂ(t,x,u)
and

3
f1 L(t, %, u) %(t,x,u) gjl (t,x,u)

2% a5 Lo

Ju(taxy 'Ll) = Iy (t’ % 11) auz (t’ X, u) OUap (t7 X, 1.1) 7

where £ = (f;), x = (z;), and u = (u). Note that J.({,x,u) is an
n x n matrix and J,(¢,x,u) is an » X m matrix. Note that they are
the Jacobian matrices of f with respect to x and u, respectively, because
the matrix elements are the partial derivatives of the components of f
with respect to the elements of x and u. The linear Taylor’s polynomial
approximation of f is then given as

ft,x,u) = f(t,%,0) + J.(¢,%X,0) - (x - X) + J,(¢,%,0) - (u—10) .

Assume first that the system is described by the differential equa-
tion (3.1). The above derivation implies that the linearized equation
can be written as follows:

X5 = A(t)xs + B(t)us , (3.13)

where
Xs=X—X and us=u-—1;

furthermore

A(t) =J.(t,%,1(t)) and  B(t) = I, (¢, %, Q) .
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Assume next that the system is described by the difference Equa-
tion (3.3). Then the linearized equation has the form

xs(t + 1) = A(t)xs(t) + B(t)us(t) , (3.14)

where xg, ug, A(t), and B(t) are the same as before.
In cases when the output relation

y = g(t,x)

is nonlinear, it also has to be linearized in order to get a system with
only linear relations. Let X denote the equilibrium, and ¥ = g(t, X).
Linearize the function g about x:

y= g(t,)_C) + Jg(t,)_C)(X - }_() )

where J g4 is the Jacobian of g with respect to x. By introducing the new
output function ys = y — ¥, the linearized output relation has the form:

ys(t) = C(t)xs(t) (3.15)

with
C(t) = J,4(t,%) .

In the general case, where the system does not have an equilibrium
state or we do not know what it is, we must proceed as follows. Select
first an input function @(¢), and solve the corresponding differential or
difference equation. Let the solution be xq(#). Introduce the new vari-
able x5(t) = x(t) — x0(t) in the equation, then Xs(t) = 0 satisfies the
resulting equation (that is, X5 = 0 is an equilibrium point); then, apply
the above linearization method for this equation and zero equilibrium.

Example 3.6

Thelinearization process is applied now to the satellite problem, which
was introduced in Example 3.1. For the sake of simplicity, selectc = 1,
k = o%w?, and zero input @1(t) = G2(t) = 0, and observe that
functions

r(t) =0, Tao(t) =0, 61(t) =wt, 6a(t) =w
solve Equation (3.5). By using the above relations, we therefore have

Xo(t) = (0,0,wt,w)” .
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Introduce the new variable x5 = (21, T2, Z3, 3:4)T with
Ly =r—-o
Ty =179
T3 = 01 —wt
Ty = 92 - W,

then these functions satisfy the differential equations

T1 =2

. \ k
$2=(I1+1)(x4+w) —m'f-ul
Si:3 — X4

. 2(334 +w)$2 1

T4 1 +1 T + 1u2

We know from the construction of these equations that with zero input,
vector X5 = 0 forms an equilibrium. The elements of the Jacobian
matrices J, and J,, are determined next at this equilibrium. Let f1, fo,
fa, fa denote the right-hand side functions. Note that only the second
and fourth equations are nonlinear; therefore, the partial derivatives
of only f2 and f4 have to be determined and only f3 and fy4 are to be
linearized. At the zero equilibrium state, these partial derivatives are

as follows:
8f2 2 2k 2 2 2 2
L2 Yt = w” + 2k = w4+ 2w° = 3w
o, (x4 + w) +($1+1)3 w” + w” + 2w w?,
0fs  Bfr 0
8.’1)2 - 6.'133 -
Ofa
_ = > =2
14 2(z1 + D(zy + w) = 2w,

o

8u1
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0
o _,
5'11,2
Ofs _ 2wqtw)zy 1 w0
8z (z;1+1)? (@ +1? 7
Ofs _ —2(@4tw) =
Oxs N T;+1 -
of
o _,
81}3
0fy  —2z9 0
oxy x+1
on
8u1
of+ 1 1
Ouy, x4+ 1
Hence, using Equation (3.13), the linearized equations are summarized
as
itl 0 1 00 I 00
T2 | 3w?2 0 02w To + 10 Uy
.’ffg - 0 0 01 I3 00 Uo )
:i:4 0 —2w0 0 T4 01
A similar but more complicated calculation than the one that was
shown in Example 1.23 gives the fundamental matrix of the system:
d)(ta tO) =
4 — 3cosw(t — tg) sinw(t — tg)/w 0 2(1 — cosw(t — tg))/w
Bwsinw(t - tg) cosw(t — tg) 0 2sinw(t — tg)
6(—w(t — tg) +sinw(t — tp)) —2(w — cosw(t — tg))/w 1 {(~3w(t — ig) + 4sinw(t — tg))/w
6w(—1+ cosw(t — tg)) —2sinw(t — tg) o] -3 + dcosw(t ~ tg)
This matrix is the basis for predicting the future states of the system.
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3.3 Continuous Linear Systems

In this section, dynamic systems of the form
x(t) = A(®)x(t) + B(t)u(), x(tg) = xp (3.16)
y(t) = C(t)x(t) (3.17)

will be reexamined in order to find their solutions in particular forms.
The differential equation is a special case of the general first-order inho-
mogeneous linear equation (2.12) with

£(t) = B(t)u(t) . (3.18)

Therefore, the entire sclution methodology discussed in Sections 2.1.2
and 2.1.3 is now applicable. Our discussions are divided into two parts.
In the first part, methods based on the fundamental matrix are pre-
sented. Because the solution is obtained directly using the state vector,
this methodology is called the state-space approach. The other method
is based on Laplace transforms, and it is called the transfer function
approach, because — as we will see later — it is based on a special rela-
tion between the Laplace transforms of the input and output functions,
which is known as the transfer function. Notice that the transfer func-

tion approach can be used only in the case of constant matrices A, B
and C.

3.3.1 State-Space Approach

The general solution for functions x and y is obtained directly from
relation (2.23). The resulting equations can be formulated as follows.

THEOREM 3.1
The general solution of system (3.16) and (3.17) is given by relations
i
x(t) = ¢(t, to)xo + | @, 7)B{r)u{r)dr (3.19)

to

and
y(t) = C(t)x(t) = C(t)p(t, to)xg +/t C(t)o(t, r)B(m)u(r)dr . (3.20)

These solution formulas are illustrated in the following example.
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Example 3.7

Now we give the solution of the dynamic system

(0 )ws (D) w0- (1)

y=(1,1)x,
which was introduced earlier in Example 1.13. Here (1,1) is a row

vector.
In Example 1.23 we derived the fundamental matrix:

cosw(t — to) sinw(t — tp)
—sinw(t — tg) cosw(t —tp) ) °

@(t,to) = (

Therefore, the state variable is
X(t) = coswt sinwt 1
T\ —sinwt coswt / \ 0
t .
cosw(t — 7) sinw(t — 7) 0
+/0 (—sinw(t—T) cosw(t — ) 1 u(r)dr

S ) B W Gt e PETS

As a special case, assume that u(t) = 1, then the calculations coincide
with those of Example 2.6, and the state vector becomes

x(t) = 1 (1+(w— 1)coswt> .

—(w = 1)sinwt

The direct input-output relation can be derived as follows:
t
y{t) = (1, D)x(t) = (cos wt—sinwt)+/ (sinw{t—7)+cosw(t—7))u(r)dr.
Jo

In the special case of u(t) = 1 we have

1+ (w~—1)coswt
—(w — 1} sinwt

y(t) = (1, 1)% ( > = 5(1 + (w - 1)(coswt — sinwt)) .
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Equations (3.19) and (3.20) have high practical significance, because
the state and/or output can be directly computed at any future time
period t with any arbitrary initial state xg and input function u(z).

The application of Equations (3.19) and (3.20) consists of the following
steps:

Step 1 Determine the fundamental matrix ¢(t, 7).

Step 2 For the designated values of ¢, apply Equations (3.19) and (3.20)
to get x(¢) and/or y(t).

Note that Equations (3.19) and (3.20) have a special structure. The
first terms depend only on the initial value xg, and the second terms
depend only on the input. This property can be applied as follows. If
the system has to be solved repeatedly with the same input but with
several variants for the initial state, then the second terms have to be
computed only once because only the first terms change. Similarly, if
Xg is fixed, but the input u changes, then the first terms are fixed and
only the second terms have to be recalculated. Finally we remark that
in many cases the integrals in (3.19) and (3.20) cannot be determined
analytically. In such cases, numerical integration methods are used.
A summary of such algorithms can be found, for example, in [42] and
in [44].

3.3.2  Transfer Functions

In this subsection we assume that matrices A, B, and C of the dynamic
system

% = Ax + Bu, x(0) = x¢ (3.21)

y =Cx (3.22)

are constants. This system is called time invariant, which refers to
the time-independence of the coeflicient matrices. The methodology of
the previous section can be used for solving this system without any
limitation. An alternative method is based on the Laplace transform,
which is the subject of this section.

Note that Equation (3.21) is a special case of (2.35) with £(¢) = Bu(¢).
Then relation (2.36) and the linearity of Laplace transforms imply the
following result.
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THEOREM 3.2
The general solution of system (3.21) and (3.22) can be given as

X(s) =R(s)xo + R(s)BU(s) (3.23)
and

Y(s) = CR(s)xo + H(s)U(s), (3.24)
where

R(s)=(sI-A)"' and H(s)=C(sI-A)"'B. (3.25)

Matrix R(s) is called the resolvent matriz, and H(s) is called the
transfer function.

Note that in (3.23) and (3.24) the first terms depend only on the initial
state xg, and the second terms depend only on the input. Hence, if the
initial state xg is zero, then the first term drops out, and if the input
is zero, then the second term cancels. The comment made in the last
paragraph of the previous section also applies in this case.

In the special case of a single-input, single-output system with zero
initial state, Equation (3.24) reduces to the relation

Y(s) = H(s)U(s)

where H, U, Y are scalars. In this case, the transfer function is the
fraction of Y(s) and U(s):

The most important properties of R(s) and H(s) are discussed next.

THEOREM 3.3
R(s) is the Laplace transform of eAt,

PROOF  Select u(t) = 0 for all t > 0, then from (3.19) and (3.23) we
know that

x(t) = e“'xq and X(s) =R(s)xo .

Applying Laplace transform on both sides of the first equation and com-
paring the resulting equality to the second equation yield to the identity

X(s) = E(s)xp = R(s)x0 ,



3.3 Continuous Linear Systems 123

where E(s) denotes the Laplace transform of eAt. Because xq is arbi-
trary, the assertion follows. |

COROLLARY 3.1
H(s) is the Laplace transform of CeAAB, which isa simple consequence of the
theorem, the linearity of Laplace transforms, and relation H(s) = CR(s)B.

In the first chapter we saw that by using appropriate matrix transfor-
mations, matrices can be transformed into special forms. Thege trans-
formations are equivalent to introducing the new variable

x =Tx
in system (3.21) and (3.22), where T is a nonsingular matrix. Then

% = Tx = TAx + TBu = TAT % + TBu

and
y=CT !x%.

That is, the new system has the form

X = Ax+Bu (3.26)
y = Cx (3.27)
with _ _ _
A =TAT}, B = TB, and C=CT7!.
THEOREM 3.4

Let H(s) and H(s) denote the transfer functions of system (3.21)~(3.22)
and (3.26)—(3.27), respectively. Then

H(s) = H(s) .
PROOF  Simple calculation shows that
H(s) = C(sI - A)"'B
=CT '[sTT™' - TAT !]"'TB

= CT HT(sT - A)T~"'TB
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= CT!T(sI - A)" T 'TB

=C(sI-A)"'B=H(s). |

The constructions of the resolvent matrix and the transfer function
are illustrated next.

Example 3.8

Consider again the system

(L) (e o)

y = (1,1)x,

which was the subject of our earlier Examples 3.3 and 3.7. In this case,

A=(4BLS), B:(?), x0:<é), and C=(1,1).

The resolvent matrix is

R = (r-a7 = (37) = (L29).

where the inversion can be verified by simple multiplication. There-
fore, the transfer function is obtained by simple algebra:

1 S w 0 s+ w
v =1
H(s) = ClsI- A" B = 575 (LD (_w ) (1) SRt

These results can be substituted into (3.23) to derive the input-state
relation:

- n(23) () k() () oo
(D))o

and from (3.24) we have the input-output relation:

Yo = a0 (09) (5) + emve
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s —w s+ w

= + Uls).

52 +w2 s'~’+w2

As a particular case, assume that the input is selected as u(t) = 1
for all £ > 0. Then item No. 2 of Table 2.1 implies that U(s) = 1/s.
Therefore,

2
O IR (L B e
s2+w? \ —w+1 St ’

which coincides with the result obtained earlier in Example 2.10. Sim-
ilarly,

s+ s(—w+1) 4w
s(s? + w?)

1 w
Y(S):m(ﬁ‘~w+;+l):

The output ¥(t) can now be determined in the same way as it was
earlier demonstrated in Example 2.7. Note first that the partial fraction
expansion of Y'(s) is given as

+wT~1.S y;_I.w

Y(.S’): 824’&}2—32-'—&]2‘

o |1~

Therefore, Nos. 2, 5, and 6 of Table 2.1 imply that

y(t) = —(1 + (w — 1){coswt — sinwt)) ,

1
w
which coincides with the result of Example 3.7.

Consider finally the special case when the initial state is zero. Then
the solution formula (3.24) reduces to

Y(s) =H(s)U(s) .

This simplified formula is illustrated in the modified block diagram rep-
resentation shown in Figure 3.3, which is essentially the same as the one
presented earlier in Figure 3.1, but the input and output are replaced
now by their Laplace transforms and the state variable is replaced by
the transfer function.

3.3.3 Equations in Input-Output Form

In this section, a special linear, time-variant system is discussed, which
has a single input and a single output. It is assumed that the input u(z)
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Dynamic
Input system Output
U(s) Transfer function Y (s)
_—
H(s)

Figure 3.3 Modified block diagram representation of dynamic systems.
and output y(t) are interrelated by equation
y (@) + proay () + -+ prg(t) + poy ()

= Guo1u" (@) + -+ qrat) + gou(t) ,  (3.28)

where p; and ¢; (0 < i < n—1) are constants and u and y are real-variable
real-valued functions.

First we show that the above representation is equivalent to a first-
order n-dimensional system. This representation is usually called the
phase variable form in the systems theory literature. We also note
that a controllability canonical form of continuous time-invariant sys-
tems (which will be discussed later in Chapter 7) has the same form.

THEOREM 3.5
The input and output of system

0 1 0 -+ 0 0 0
o 0 1 --- 0 0 0
X = oo e : x+1°|u (3.29)
0 o 0 .-~ 1 0 0
o 0 o0 --- 0 1 0
~Po ~P1 —P2 *** —Pn-2 —DPn-1 1

with output equation
Yy =1(q0,q1,---,qn-1)X (3.30)

satisfy the input—output relation (3.28).

PROOF  Let z; denote the components of x for¢ = 1,2,...,n. Then
Equation (3.29) implies that

.’i?lzillg

:ﬁozmg
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Tp-1 = Tn

Tn = ~PoZ1 =~ — Pp—1Tn +U.
From the first n — 1 equations we conclude that

. .. . n-1)
$2:x11$3:$1»---7$n—z1 ?

and the nth equation implies that

(n—1)

l'(ln) + Pn-17;

+ -+ P11+ pez1 = u. (3.31)
Introduce mapping

Azy) =2V + ppo1a( ™V + -+ puiy + poms
and note that the linearity of A implies that

d ) dn—l
—A(xl) = A(Il), ceay dtT‘f

7 Alz) = A (x(ln‘l)) .

Because from (3.30) we have

Y= qoT1 + @i+ + quogzY (3.32)

simple calculation shows that

A(y) = @Az1) + qAE) + -+ a1 4 (m(ln_l))

d d

= @A(z1) + 1 EA(xl) R Qn—lm"q(m]) .

The definition of mapping A implies that A(z;) = u, therefore,
Ay) = qou+ i+ + grou®Y,

which completes the proof. |

REMARKS3.1 Thesimple trick which constructs the outputy by using
the state z; of the more simple system (3.31) is called superposition.



128 chapter three: Characterization of Systems

Example 3.9

Consider the input-output form
J+5y+4dy =20+ u.

Inthiscase, n = 2, p1 = 5,pp = 4, ¢1 = 2, gqp = 1. Therefore,
system (3.29) and (3.30) can be written as

- (4= (1)

y=(1,2)x.

This theorem allows us to transform input—output forms into the usual
systems model and then use any of the methods of the previous sections.
However, the direct use of Laplace transform on the input—output form
is more efficient.

Apply Laplace transform on both sides of Equation (3.28) to get

[s"Y () = 8" 'y(0) — - -+ = sy (0) =y (0)] + paa[s”TIY(s)
- 5"2y(0) — - — sy™(0) -y "D (0)]
+ -+ pufsY (s) — y(0)] + poY (s)
Gl IU(s) 5 2u(0) - — uD(0)]

+ -+ qu[sU(s) — w(0)] + qU(s),

and solve this equation for Y (s):
Y(s) = £]LS—)U(S) + r(s) , (3.33)

where
p(s) = " + pno18™ 1 4+ + p1s + po,

1

q(s) = gn_15"" + - + @15 + qo,

and r(s) is a polynomial of degree not greater than n — 1 such that it
becomes zero if all initial values w(0), ... ,u("_g)(O),y(O), .. ,y(”‘l)(O)
are equal to zero.
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Note that the coefficient of U(s) in Equation (3.33) is the transfer
function: (s)
q(s
H(s) =L 3.34)
) (

Example 3.10

Consider again the input-output form
g+ +4y=2u+u,

which was discussed in the previous example. Apply Laplace trans-
form on both sides of the equation to get

[5°Y (5) = sy(0) =5(0)] +5[sY (s) —y(0)] +4Y (s) = 2{sU (s) ~u(0)] +U (s) -
Solve for Y'(s):

25 +1 (s + 5)y(0) + 9(0) — 2u(0)
32+5s+4U(S)+ s24+5s+4 ’

Y(s) =

As a particular example, assume that all initial values of the input and
output are zero, then

2541

Yis) = ——
(8)= =775 74

U(s).

3.3.4 Combinations

Transfer functions and their main properties allow us to rewrite the
transfer functions of a large structured system in terms of the transfer
functions of individual subsystems, which reduces a high-order calcula-
tion to a sequence of smaller order calculations.

u=u, Y,=U, Y, =Y

> HI = > H') c o

Figure 3.4 Series combination of systems.

Consider first a series combination of two systems, shown in Fig-
ure 3.4. If the initial states are zero, then

Yl(s) = Hl(s)Ul(S)

and
YQ(S) = HQ(S)UQ(S) .
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Since
Ua(s) = Y(s),

combine the above relations to get
Ya(s) = Ha(s)H1(s)U1(s) .

Since
U=1U; and Y=Y,

we conclude that
Y (s) = Ha(s)H1{s)U(s) .

U,

Figure 3.5 Parallel combination of systems.

Hence, the transfer function of series combination of systems is the prod-
uct of the transfer functions of the subsystems:

H(s) = Ha(s)Hy(s) . (3.35)

Consider next a parallel combination of two systems, shown in Fig-
ure 3.5. Because Uy = Uy =Uand Y =Y + Yo,

Y(s) =Y1(s) + Ya(s) = Hi(s)U1(s) + Ha(s)Uz(s) ,

that is,
Y(s) = (Ha(s) + Ha(s))U(s) .

Hence, the transfer function of parallel combination of systems is the
sum of the transfer functions of the subsystems:

H(s) = Hy(s) + Ha(s) . (3.36)
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Consider now the feedback structure shown in Figure 3.6. Then
Y(s) = Yi(s) = Hi(s)Ur(s) = Hi(s) - [U(s) + Y3(s)]
= Hi(s){U(s) + Ha(s)Ua(s)] = Hi(s)[U(s) + Hz(s) Y (s)] ,

that is,
Y(s) = Hi(s)U(s) + Hi1(s)H2(s)Y(s) .

Solve this equation for Y (s):
Y(s) = [T~ Hi(s)Ha(s)] " "Hi(s)U(s) .
Hence, the transfer function of the feedback structure is given by relation
H(s) = [I - H;(s)Hy(s)] "' H;(s) (3.37)
The above combinations enable us to quickly compute the transfer
functions of complex arrangements, and in addition, complex transfer

functions can be represented as combinations of subsystems having only
simple transfer functions.

Figure 3.6 Feedback structure of systems.

Example 3.11

Consider the structure shown in Figure 3.7 with the repeated feedback.
The inner feedback loop can be substituted by a system with transfer
function

H(s) = [ - Hy(s)Hy(s)] " Hy(s) .
This system has a series combination with the subsystem having trans-

fer function Hg(s). Therefore, the transfer function of the upper part
of the outer feedback loop is

Hy(s) = Ha(s)Hr(s) = Ha(s)[L — Hi(s)Ha(s)] " Hi(s) .



132 chapter three: Characterization of Systems

H, > H, Y%

Figure 3.7 A structured combination of systems.

Finally, use (3.37) again to get the transfer function of the entire com-
bination:

H(s) = [I - Hy (s)Hy(s)] " Hy (s)
= I — Hy(s)(I — Hy(s)Ha(s)) " Fi, (s)Ha(s)] " Hla(s)

x [I = Hy(s)Ha(s)] " 1H, (s) .

As a numerical example, assume that

Hl(.‘j) = g, HZ(S) = Py 3(3) = , H4(3) ==
Then
Hi(s) = (1- Sty 31
S} = —_ — —_—— —
! ss—1" s 1-_-1L s2—s—1"
s(s—1)
1 s—1 1
H = =
u(s) s—1s2—s5—-1 s2—-s5-1"
and
1
1 2 1 s s s
H = (1— “y -1 — s2—s5—1 — .
(s) = 32—s~1s) s2—s5-1 1——5(52_25_1) 3 —s2—5—2

Example 3.12

Consider next an input structure with a strictly proper transfer function

H(s):%.
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Let thedistinctrootsof pbe Ay, .. ., A, with multiplicitiesmy, ..., m,.
Then the partial fraction expansion of H(s) is as follows:

[ Ra Rig Rim,
H“%*Z;L—AJF@—MV+'”+®—&VJ'

Introduce the transfer functions

Because H(s) is additive, the system can be represented as the parallel
combination of the subsystems having the transfer functions H;;.
As a particular case, consider transfer function

2s
H =

(8) = 55—

Because ] i
H =
S s

we may select

1 1

H = — H = —
11(5) s_1° 21(3) s+1’

and therefore, the parallel combination representation is the one shown
in Figure 3.8. Hence the original system with transfer function H(s)
can be represented as a combination of the systems with the transfer
functions Hy;(s) and Hy;(s) of more simple structures.

1
s—1

'.—-

—

+

©

Figure 3.8 Parallel combination representation of Example 3.12.

Analog computers are based on certain realizations of the system equa-
tions. The above example shows such a realization, which is known as
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the diagonal-form representation. In the conclusion of this section, some
other representations are introduced.

dle oo 4 4 d 4

A
A

y n) dt dt ¥y dt

Figure 3.9 Analog model with differentiators.
Consider first the simple input—output form
y(n) +pn_1y(ﬂ‘1) +o Py =u, (3.38)

where the right-hand side has no derivative of the input. Assume that
a differentiator is available. Then the circuit shown in Figure 3.9 is a
possible implementation. Here we assume that py # 0. If in general
po =p1 = --- = pr = 0 with pry1 # 0 (0 < & < n), then introduce
the new variable z = y(*+1) which guarantees that the coefficient of the
new variable becomes nonzero. This kind of system implementation,
however, has only limited practical importance. Signals are usually cor-
rupted by noise, and the differentiation of noisy signals produces large
errors. 1t is also well known (see, for example, [42]) that the integration
of noisy signals can be performed in the accuracy of the noise itself.
Therefore, in practical cases, differentiators are replaced by integrators.
Note that the integrator is a block with transfer function 1/s. Assuming
that the highest-order derivative of y is available, use integrators suc-
cessively to obtain all lower order derivatives as shown in Figure 3.10.

In the case of the general input-output form
y™ tpp 1y Vgt poy = guo 1wV it gou, (3.39)

we can use superposition as we did in proving Theorem 3.5. If 17 now

Y
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y(m y(n—l)

%/ i Mo

e

Y+
) O:“

Figure 3.10 Simple implementation with integrators.

denotes the output of system (3.38), then

. -1
Y =qoT1 + 11 + - + gz

Note that from z1 the output y can be obtained by successive application
of differentiators, as shown in Figure 3.11.

e
N
Figure 3.11 Implementation with integrators and differentiators.

As the next step, we can use a simple trick to eliminate the need for
differentiators by noticing that we have integrators and differentiators in
series. The only thing we have to do is move the lines with differentiators
over the requisite number of integrators. This construct is shown in
Figure 3.12, and is called a controllability-form representation.

An analogous representation can be obtained by equating the left- and
right-hand sides of Equation (3.39). In the left-hand side, the representa-
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Figure 3.12 A controllability-form representation.

d
a Dn-i
S ) YW y(”“)l l ¥ l y
dt
d
. q,
do

Figure 3.13 An alternative implementation with integrators and differentia-
tors.

tion shown in Figure 3.10 is applied, and in the first step, differentiators
are used in the right-hand side. This construct is illustrated in Fig-
ure 3.13. Similar to the previous case, we have to eliminate the need
for differentiators by using again the simple fact that serial connection
of an integrator cancels the effect of a differentiator. This idea leads us
to the implementation shown in Figure 3.14, where the constants Gy,
Bi,-..,Pn—1 are unknown. It is easy to see that the selection 8; = ¢;
(0 € 4 < n—1) is not satisfactory, since the feedback lines from the
top affect the quantities in between the integrators. Note that in Fig-
ure 3.12, no feedback of the input was used, so the above difficulty did
not arise. The unknown [; values can be determined as follows. Simple
calculation shows that
To =Y
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u

Figure 3.14 An observability-form representation.

and
Tg =x1 + Br_1u,
1 = T2 + Br_au,
ftn—2 = Zp_1+ ﬂlu )
fi;n—l =ZTn ,
furthermore,
Tn = ot — PoTo — P1TL — -+ — Pn—1Tn_1 - (3.40)

These relations imply

Zog =21 + Bno1U = To + Bnogt + Bn_10

:1;([) ) &g+ Bpo1l + Br—2t = &3 + B3t + Pn_2l + Bo_1ll
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CE[()n—l) =Zn-1+ /Blu + ﬁQiL +ot 5n—lu(n~2) )

:L,én) =Tn+ U+ -+ ﬂn»lu(n_l) r
that is, for k =1,2,...,n,

2 =y — Bopu — Brpgrt — - = BpogulY

Substitute this equation into relation (3.40) to obtain
y™) = Bou — iy — -+ = BpyutD

= —poy — p1(¥ — Bn—1%) — P2(§ — Bn—2u — Brn_11)

— o = a0 = Bru— Bats — - — B u™Y)
which can be simplified as

y(n) + pn_ly(n_l) + e + ply + poy
= ﬂn—lu(n~1) + (B2 + pn—lﬂn—l)u(n_Q)
EERRR (/61 + pn—lﬁ? +pn-2/33 + e +p2ﬁn—1)i1’

+ (Bo 4+ pr-1B1 + Pr—202 + - + p15n-1)u .

Compare the right-hand side of this equation to that of Equation (3.39)
to see that the 3; values should be selected so that

ﬁn—l = (qn-1

:Bn~2 +pn—1ﬁn—1 = gn-2

BL+pn_i1fo+ - +p3bn2+p2bn1 =@

Bo 4+ prn-1f1 -+ + p2fn-2+p1Bn-1 = qo .
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These relations can be summarized in matrix form as

1 0--- 0 0O /Bn—l Gn—1
Pn—1 1-.- 0 0 )Bn'—Z Gn—-2
oo e : = : . (3.41)
pz psz--- 1 O B1 q1
P1 Pz Pn-1l Bo o

We note that the implementation shown in Figure 3.14 with the g;
values obtained from Equation (3.41) is called an observability-form rep-
resentation.

A different approach is based on the transfer function

Gn-18"" @15+ qo
" + P18t 4o+ p1s+pg

H(s) =

of the system (3.39), which implies that
(8" +pn_18™ L 4+ p1s+po)Y(s) = (gno18™ 1+ +q1s+qo)U(s) .

Divide both sides by s™ and rearrange the terms as follows:

L (—pY(s) + aU(s)

Sn

Y(s) = (=po¥ (5) + @U(s)) +

e %(72)“_15/(8) + Qn—-lU(s)) )

and observe that for k = 1,2,...,n, 1/s* is the operation of integration
k times in succession. This idea is realized in the implementation shown
in Figure 3.15, which is also called an observability-form representation.

Similar to Figure 3.14, the above implementation can be modified as
shown in Figure 3.16, which is also called a controllability-form repre-
sentation.

Finally, we note that the diagonal canonical-form representation cor-
responds to the diagonal canonical form to be discussed in Section 7.1,
the controllability form representations correspond to the controllability
canonical forms to be introduced in Section 7.2, and the observability
form representations correspond to the observability canonical forms to
be discussed in Section 7.3.
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-1 9,2
O—{/FO-{7 e
— g >
+ +
~Po R4
4 4
Figure 3.15 Another observability-form representation.
3.3.5 Adjoint and Dual Systems
Consider the time-variant linear system
x(t) = A(t)x(t) + B(t)u(t)
v(t) = C{t)x(t) . (3.42)
DEFINITION 3.2 The adjoint of the above system is defined as
Xa(t) = Aq(t)xa(t) + Ba(t)ue(t)
Ya(t) = Ca(t)xa(t) (3.43)

where
Au(t)y=—AT(t), Bu(t)=CT(t), and C.(t) =BT(t).

The main relations between the adjoint and original systems are given
by the following results.
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~Po P
Y

Figure 3.16 Another controllability-form representation.

THEOREM 3.6
The fundamental matrix of the adjoint system is given as

()ba(t! tO) = d)T(th t) y

where ¢(t,to) is the fundamental matrix of the original system.
PROOF  Property (v) of Theorem 2.3 implies that

=" (to,1) = ~AT (DT (to, 1)

and from Property (i) of the same theorem we know that
¢T(t07t0) =1.

The assertion then follows from Equation (2.19). |

THEOREM 3.7
If system (3.42) is time-invariant, then the transfer function of its adjoint is

H,(s) = -H(-s),

where H(s) is the transfer function of the original system.
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PROOF  Note that
H,(s) = Co(sI — A,) 7 'B, = BT (sI + AT)~'CT
= [-C(-sI - A)'B]" = —[C(—sI - A)~'B]T
=-HT(-s). 1
The dual of a linear system is defined next.
DEFINITION 3.3  The dual of system (3.42) is defined as
%a(t) = Aq(t)xa(t) + Ba(t)ug(t)
ya(t) = Ca(t)xa(?) (3.44)
where
Aq(t) = AT(-t), Bgy(t) =CT(t), and Cyut) =BT(t).

The fundamental matrix as well as the transfer function of a dual
system can be easily obtained from those of the original system.

THEOREM 3.8
The fundamental matrix of the dual is given as

Balti to) = ¢ (—to,—1),

where ¢(t, to) is the fundamental matrix of the original system.

PROOF  Simple calculation shows that

T
$67 00 = [ Got-t0, -] = bt -A (o]

= AT(—t)¢T(_t0’ _t) )

where we used Properties (iii) and (v) of Theorem 2.3.
Furthermore,
¢T(_t07 “’t()) = IT =1 ]
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and therefore, matrix ¢ (—to, —t) satisfies Equation (2.19) with coeffi-
cient matrix AT(—t). Hence, (j)T(—to, —t) is the fundamental matrix of
the dual. |

THEOREM 3.9
If system (3.42) is time-invariant, then the transfer function of its dual is

Hy(s) = H(s)
where H(s) is the transfer function of the original system.
PROOF By definition,

Hu(s) = Ca(sI — Ag) "By = BT (sT - AT) ' CT

=[C(I-A)"'BT=HT(s). |

The above concepts and results are illustrated in the following exam-
ple.

Example 3.13

Consider the system of our earlier Example 3.8:

e= (L0%) e ()

y=(1,1)x.

The adjoint and dual systems are given as

. 0w 1
o= (L00) e (1)

Ya = (0, 1)x,

and

. 0-— 1
Xd:(w u(;)xd+(1)ud

Yd = (07 1)Xd,
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respectively. We also know from Example 3.7 that

é(t,to) = (

cosw(t —tg) sinw(t — tp)
—sinw(t —tg) cosw(t — tg)

Therefore,

¢a(t>t0) - ¢T(t07t) = ¢(t7t0) s

because the cosine function is even and the sine function is odd. Sim-
ilarly,

cosw(t — to) sinw(t —tp) r
—sinw(t — tg) cosw(t — ty)

ba(t,to) = $T(~t0, ~1) = (

_ <cosw(t — 1) ~sinw(t —tg)) .

sinw(t —tp) cosw(t —to)

It is also known from Example 3.8 that the transfer function of the
original system is

s4+w
H(s) = it
therefore,
Ha(s) = 0 = 52,
and st
H,(s) = ok

We mention here that dual and adjoint systems are often applied
in systems theory. For example, they will be used in establishing the
observability of linear systems based on controllability conditions, and
ohservability canonical forms will be derived by using dual systems.

3.4 Discrete Systems

This section is devoted to the solution of discrete dynamic systems of
the form

x(t+1) = A(®)x(t) + B@)u(®),  x(0) =xo (3.45)

y(t) = C(&)x(2) - (3.46)
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Note that difference Equation (3.45) is a special case of the general linear
difference equation model (2.43) with

£(t) = B(t)u(t) , (3.47)

therefore, the methods discussed earlier in Sections 2.2.2 and 2.2.3 are
applicable without limitations.

The state—space approach is based on the general solution formula (2.44)
and can be given as follows.

THEOREM 3.10
The general solution of system (3.45) and (3.46) is given as
t-1
x(t) = ¢(t,0)x0 + Y _ $(t, 7 + 1)B(r)u(r) (3.48)
=0

t—1
y(t) = C(t)x(t) = C(t)p(¢,0)xp + Z Ct)p(t,7+1)B(r)u(r). (3.49)

T7=0

The algorithm to compute x(¢) and/or y(t) is the same as it has been
shown for continuous systems. As an illustration consider the following
example.

Example 3.14

We now give the solution of the system

x(t+1) = ((1) })x(tH ((Du(t)» x(0) = (é)

y(8) = (1, 1)x(t) .

In Example 2.14 we derived that

$(t,7) = (ét‘lT) ,

therefore, (3.48) implies that

0 (2" (0) 567 (1)
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t—1
1 t—7-1
(o) 5 (),

and from (3.49) we conclude that the output is given as
t—1

y(t) = (LDx(t) = 1+ Y (t —7)u(7).
7=0

In the particular case when u(t) = 1, the calculations coincide with
those of Example 2.14 and the state vector is

o-(3) (7 (F).

This state function is illustrated in Figure 3.17, where the horizontal
axis is xa(t) = ¢, and the vertical axis represents x1(¢).

x (N4 . _xiex,+2
=22t
2
24
7%
8 f
I
j
I
| —1 ! —
] T L Ll
1 2 X,(t) =t
2

Figure 3.17 The state function of Example 3.14.

Note that Equations (3.48) and (3.49) are analogous to the continuous
counterparts {Equations (3.19) and (3.20)); therefore, their applications
and main properties are also similar.

In the time invariant case, when A(¢), B(¢) and C(t) do not depend
on t, the application of Z transforms is very attractive. The general
solution formula (2.55) implies the following result.
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THEOREM 3.11
The general solution of the time-invariant system (3.45) and (3.46) can be
given as
X(z) = R(2) - zx¢ + R(2)BU(2) (3.50)

and
Y (z) = CR(2)zx + H(2)U(2), (3.51)

where
R(z)=(zI-A)"' and H(E)=C(I-A)™'B. (3.52)
Similar to the continuous case, R(z) is called the resolvent matriz
and H(z) is called the transfer function. Analogously to Theorem 3.3,
one may prove that z - R(z) is the z transform of A' and H(z) does
not change if a new variable X = Tx is introduced with a nonsingular

matrix T. That is, Theorem 3.4 remains valid for discrete systems.

Example 3.15

In the case of the system discussed in the previous example,

re= (7000 = (0L

and

H(z)z(l,l)(?},‘l)“z(zalziJ ((1)) :Tzle?

Substitute these results into (3.50) to get the input-state relation:

X(z)=(‘z—:1T)2<zglzi1>z<é)
e (o) (5) e
il (]

and from (3.51) the input-output relation is derived:
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(;-_1—1)—2(1,1) <261Zi1>z<(1]) +(_Z__Z_1?U(Z)

22—z z z z

- (z —1)2 + (z—l)zU(z) - ;:—-i+ (z—l)ZU(z)'

Y(z) =

As a particular case, assume that the input u(t) = 1 forall t =
0,1,2,.... Thenitem No. 1 of Table 2.2 implies that U (z) = z/(z— )
Therefore,
1 2 z 1 25— 222 + 2z
X = — z-1 = ———
=t (e g~ (A
and 5 y
=242z
Y(z) = (1,1)X(z) = 22+ 2
() = (L1x(6) = 22

The partial fraction representation of Y (z) is as follows:

2 2 1
YE =1+ gt g Y oo

Use Nos. 8 and 6 of Table 2.2 to conclude that the output is given as

1404040=1 ift=0

y(t) = t—1 t—1 t—=1Y 24440 .
0+2<0 2" ) (1)) = e >0,

Because at ¢t = () the two parts coincide,

2 4+t+2
y(t):——tQ——t— forall t>0.

Hence, the output of the system is determined.

Note that the block diagram representation of discrete systems has
the same form as shown in Figure 3.3, where variable s is replaced by
z. Discrete systems in input—output form can be discussed in the same
way as was demonstrated in Section 3.3.3 for continuous systems. In
addition, combinations and representations, as well as adjoint and dual
systems are also defined in the same way as they were introduced earlier
for continuous systems. The details are left to the reader as simple
exercises.
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3.5 Applications

In this section some particular nonlinear and linear dynamic systems
are introduced from different fields of applied sciences. In the first part,
some applications in engineering are outlined, and in the second part,
case studies from the social sciences are reported. Pick and choose:
study only the ones you like. In this chapter these examples illustrate
the concepts of an equilibrium point, in some cases linearization, the
fundamental matrix and the transfer function. In subsequent chapters,
these same examples will be used to illustrate principles of stability,
controllability and observability, and other concepts in systems theory.

3.5.1 Dynamic Systems in Engineering

1. Our first system models harmonic motion. If we apply a force to a
point mass attached to an ideal spring in a frictionless environment, the
mass will oscillate sinusoidally. The input could be either a position
command; a velocity command, which could be supplied by a velocity-
servo system; or both combined.

N
\ M ———u(t)

——x,{1)

Figure 3.18 An undamped, spring-mass system.

Let 6 be the position and v be the velocity of the mass M shown in
Figure 3.18. It is well known that

0=—-Kf+u,
if the input is a force applied on the mass when we assume that M = 1.

In Example 3.3 we derived that with the new parameter w = VK, the
system equations can be summarized as

x:(_f‘g)wr(?)u. (3.53)

This is one real-world system that could produce the equations we used
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in Examples 1.13, 2.6, and 3.3. As shown in Example 3.3, the equilibrium
point of this system for a step input is

% = (é) . (3.54)

This means if we apply a step input of force, the system will come to
an equilibrium where the spring is stretched and the velocity is zero.
We note that the complete solution of this system has been elaborated
earlier in the examples.

2. A linear second-order mechanical system may be the most com-
mon and most intuitive model of physical systems. In this example we
investigate many different properties of linear second-order systems.

The Newtonian equation for the spring-mass-dashpot system of Fig-
ure 3.19 is

f(t)=Mb6+ B+ K8, (3.55)

B
11
1]

K

ANV~ —— 70

M

—0))

I

Figure 3.19 A simple damped spring-mass-dashpot system.

NNNNSAN\N

where M represents the mass of the object, B the viscosity, and K the
elasticity. Notice that the case of M = 1 and B = 0 corresponds to the
previous application, when we select v = f. This second-order equation
can be reduced to a two-dimensional system of first-order equations by
introducing the variables x; = 8 and x5 = #. Then we have

gf(iD:(_(%_; —17%) (i;)wL(%)u (3.56)
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where u = f is the input of the system. Hence, in this case n = 2,

0 1 0
M M M

The equilibrium state of the system with constant force fy is the
solution of the equation

(5-2) () (3)»- ()

which is as follows:

1
1= Efo and

81
81
[ ]
H
o

(3.58)

That is, at the equilibrium state, the position is 1/K times the force and
the velocity is zero.

The characteristic polynomial of matrix A is given as

B A 1 \_.,B. K

therefore, the eigenvalues are

. TBE VBZ_4MK
L2 = oM '

(3.60)

This formula makes the computation of the fundamental matrix rather
complicated. Therefore, the transfer function approach is more attrac-
tive. The transfer function is

O(s) 1
F(s) Ms2+Bs+K ' (3:61)

We now define two parameters ¢ and w, because they have physical
significance and create mathematical simplicity:

B
= 3.62
¢ VKM ( )
and
K
Wy =4 — . (3.63)

M
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The undamped natural frequency, wp,, is the frequency at which the
system would oscillate if the damping, B, were zero. When we substitute
these new parameters, the transfer function becomes

O(s) 1 w?
F(s) K s+ 2(wps+w2 '

(3.64)

This system exhibits four different types of behavior; they are defined
uniquely by the value of the damping ratio, (. Figure 3.20 summarizes
these responses. The mathematical details are omitted.

(=0
(<1 Undamped
o h(t)
N Underdamped
AN h(1)
OO ®¢O N 60( I3
T o J%)\\ - Unstable
N SN e t j(l) A h(n)
SN
AN PR Ve
\\ - W, R t
Complex N7 * RN
conjugate ———» > \\
h(t)l pole J/ N
\
t '/ ®, \\
Critically damped @, V1-{? o \
(pole is repeated) ! o C\(c\e !
(=1 A s ®o ‘.
R R e 2 T —>
—a/t —_1\\—1/(11 Co, 7 i o)
T e ]
Ve
\ // //
N /,’Complex K
\ .~ __conjugate ’,
k() \\_4\/ pole ///
~ \\+ S|.2=—Gij(ﬂ ///
t S~ e
Overdamped i el
{>1

§=0C + jo

Figure 3.20 Pole-zero diagrams and impulse responses for second-order sys-
tems.

The expression under the square root of Equation (3.60) is called
the discriminant. It has special significance because its square root is
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imaginary when B%? < 4M K. Applying the quadratic formula to the
denominator of Equation (3.64) shows that the two roots are

s12 = —Cwn twnv/(?—1. (3.65)

The roots are called the poles of the system. The ¢ and w,, parameters
are most significant when ¢ < 1 and the discriminant is negative; there-
fore, it is preferable to rewrite Equation (3.65) in a way that directly
illustrates the real and imaginary components:

81,2 = —Cwn & Juny/1 — ¢% = —Cwp * jwq , (3.66)

where wy is a new parameter called the damped natural frequency. It is
the frequency of the oscillation in response to, say, a step input, when
the damping, B, is not zero.

This important relation demonstrates that ¢ determines whether the
discriminant is positive or negative. In particular, the roots are

negative real when ¢ > 1,
repeated real when { = 1,

complex when 0 < { < 1,

= w =

purely imaginary when ¢ = 0.

To summarize, the potentially oscillatory behavior of the second-order
system is characterized mathematically by whether or not the poles are
complex. First-order poles can only be real; therefore, a second-order
denominator polynomial is the minimum order that allows complex poles
to exist. However, the poles of high-order systems can be real or com-
plex, depending on the numerical values of the system’s parameters.

When possible, transfer functions are expressed in factored form like
this:

_ (st m)(st 7). (s + zm)

(s+p1)(s+p2)...(s+pn)

where p; represents the ith pole and z; represents the kth zero. It
is of conceptual value to plot the poles and zeros of a system on the
complex plane because the characteristic patterns of dynamic response
in different regions are readily remembered. This plotting also provides
the basis for analyzing stability. The details will be given in Chapter 4.

The Laplace transform variable s exhibits the properties of a complex
variable. It is a complex frequency variable defined by

H(s)

, (3.67)

§ =0+ jw
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where o and w are, respectively, the real and imaginary parts.

The four pole configurations of the basic second-order system as func-
tions of { are shown in Figure 3.20, along with a sketched impulse re-
sponse for each case. The right-triangle relationship between the real
and imaginary parts and the undamped natural frequency of the system
wp should be noted. In particular, the damped natural frequency of the
system wy is specified by the imaginary part,

wqg = wnV1-—¢2.

Similarly, the real part —-(w, corresponds to the inverse exponential
decay time constant for the impulse response’s envelope. A radial line
from the origin is called a constant damping line because the angle from
the negative real axis is given by

¢ =cosf .

So, if ¢ is constant, then the angle is constant as well. A circle about
the origin is at constant w,,. For the overdamped case, the poles are
arranged on either side of —1/7 (which also equals —{w,, for the ( =1
condition).

As a brief review of the mathematical techniques used in analyzing
system responses, we will now derive the time response of a linear M BK
system with critical damping. The reader is encouraged to perform
derivations of the impulse and step responses for the over- and under-
damped systems.

Find the step response for the MBK system of Figure 3.19. Let
k = K, then

O(s) 1 w3
F(s) k4 2w,s+w? (3.68)

for the particular case where ¢ is unity (critically damped). If f(¢) is a
unit step, then

o(s) = S—lk ( v ) LY (369)

$242wns+w2 ) ks(s+wn)?

‘We will evaluate this by the method of partial fractions. In this case,

1 w2 A B c
ks(s+wn)? s *3 + wy + (s +wn)? ' (3.70)

B(s) =

To find A, multiply both sides of Equation (3.70) by the denominator of
the A term (in this case s), then let s take on a value that would make
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the denominator equal zero (in this instance, 0). We find that

1
A=~
k
To find C, multiply Equation (3.70) by (s -+ w,)? and then let s = —w,
to see that
—wn,

C:
k

If we try the same trick for B, we will get
0
B=-
0

which is indeterminate. So we must apply differentiation as we did

earlier in Example 2.8. Multiply Equation (3.70) by (s + wp)?:

w? A

—sﬁ =(s+w)* =+ (s+wn)B+C. (3.71)
s

=

Take the derivative with respect to s:

1-w?2 s?2-w?
- = A+B. .
P 2 + (3.72)
And now evaluate this at s = —w,,:
-1
B=-—.
k

Therefore, in response to a unit step of force, the position becomes

-1 —Wn
ks R twn) R Fwn)?

(3.73)

From the table of Laplace transforms (Table 2.1), we find the resulting
time response to be

-1 -1
4 et et (t>0),

o) = k k

el e

which can be simplified as

| —

0(t) = ~[1 — (1 + wyt)e "] . (3.74)

-~
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y(0) 4
2.0+
1.8 1
1.6+
1.4
1.2
1.0
0.8
0.6
0.4

0.2 1

6 8 10 12 14 wet

N
N

Figure 3.21 Step responses of linear second-order systems.

Similar results for over- and underdamped systems are presented in
Figures 3.21 and 3.22 and in Table 3.1.

3. An electrical system is discussed next. Assume we apply an ideal
voltage source to the ideal resistors, capacitor, and inductor shown in
Figure 3.23.

From the theory of simple electric circuits we know that

d
vs =t Ry + EiLL + ve (3.75)
and ve
ic =1L — iR, =1L — R (3.76)
furthermore .
Ve = E/ZC dt . (3.77)

It is often useful to let the state variables be associated with the energy
storage elements. So, let us set 1 = iy, T3 = v, and u = v,, then
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Jjo A

s plane

L, s=o+ o

a¥Y

Figure 3.22 Step responses and pole locations of linear second-order systems.
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Table 3.1 Step Responses of Second-Order Systems

Damping Frequency-
ratio domain Time-domain
range Transfer function | step response step response
h/2 lA)2
(=0 52—+’L—)12'— s—(sz—m—) 1 — coswpt
Undamped
w2, w?,' e~ Cwnt 7 )
0<¢<1 52 +2§Zn,s+w?,, s(s?+2Cwns+tw?) 1= \/_.1_———? st (wn 1=¢Hite
Underdamped
where ¢ = Arc tan ———"lc’a
=1 “"3 ""12: 1 1 tle—wnt
=1 Grun)? Soron)? = (L+wnt)e
Critically
damped
1 “"Jz: 3 1+ 1 ( —awpt 2 —w"t/u)
¢> GFan/a(sFawn) | SGeTwn/e)sFawn) aole —ate
Overdamped
C = 1-;—&2
[3
from (3.75) we have
. Ry 1 + 1
Iy =——21 — =22+ —u
L L L’
and from (3.76) and (3.77),
. 1 1
T —x —
=T R 2
R, L
A~ LIk
—_—
iL

Figure 3.23 A simple electrical system.
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Introduce the following notation:

R _1 1
L L L

A:(i b ) b:(()). (3.78)
C CRy

Then the above equations can be summarized as

X =Ax+bu.
If the voltage across the capacitor is the output of interest, then the
output is given as y = (0, 1)x, that is, ¢ = (0,1).

For a unit-step input the equilibrium point is the solution of equation

A-%+b-1=0,

1
- Ri1+R2
x:( R ) . (3.79)

Ri+R>

which is

Note that a step input applied to this system will produce a constant
but nonzero steady-state voltage across the capacitor and a constant but
nonzero current through the inductor.

The solution of the system can be given in both state—space form and
by the transfer function approach. The transfer function method is easy
to apply, and easy calculation shows that in this case

+

S

N

-

~—
)
TN
(=2 S
~—~

H(s) = (0,1) (

1
~c StTm

N—
SN

[ SIE
~—

')—‘

R RiTRay
32+3(T‘+cizz)+( Lngz)

The solution in the state-space form is left as an easy exercise.

4. A simple transistor circuit can be modeled as shown in Figure 3.24.
In the output circuit hs.%; is a dependent current source. This time let
us relate the state variables to the input and output of the circuit. Let
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the base current, %;, be z; and the output voltage, vy, be o, then
—"Lli/i 0 1
o L
<= (af o)x+(8)=

T =(0,1) . (3.80)

and

b iy

Figure 3.24 A mid-frequency model for a simple transistor circuit.

The A matrix looks strange with a column of all zeros, and indeed,
the circuit does exhibit odd behavior. For example, as we will show,
there is no equilibrium state for a unit step input of e;. But this is
reasonable because the model is for mid-frequencies, and a unit step
does not qualify. In response to a unit step, the output voltage will
increase linearly until the model is no longer valid.

If e; is considered to be the input, then the system is

ke 1
x:( L >x+<L>u. (3.81)
e 0

If u(t) = 1, then at the equilibrium state:

ki 0\ [z 1 0
L (T =<). (3.82
(o) () (6) - (6 )

That is,



3.5 Applications 161

hse
C

Z =0. (3.83)

Since hys./C # 0, the second equation implies that £, = 0, and by
substituting this value into the first equation we get the obvious con-
tradiction 1/L = 0. Hence, with nonzero constant input no equilibrium
state exists.

The fundamental matrix of this system can be determined easily. By
introducing the notation o = ~hse/L and 8 = hse/C,

al
A=(22).
a0\ (a0 a? 0
2= (50) (50) = (550) =

A=A A=A . aA=0A’=0a -aA =c’A,

Note first that

therefore,

and so on. Finite induction shows that

AF =of 1 A
Hence,
0 k-1 A 3k 0 kik
At a” AL 1 at
:I -——-——:I A_.—. ——
¢ +;§I i tAy kz=1 r

1 et 0
=T+ A. (e — = et N
+ a(e 1) <ﬁ(ea—-1) 1)

The transfer function of the above system can also be easily deter-
mined:
-1
s—al 1
_ L
16 =00 (°7) (%)

007 (5.2,) (%)
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1 1 s
T2 -as (ﬁ’s—a)(0>:s2—a3'

The state of the system can be then determined easily by using the above
results for eAt or H(s).

5. A hydraulic system is now presented. For the two-tank liquid reser-
voir system shown in Figure 3.25, if we ignore the effects of fluid inertia
and assume that the system elements are linear, we can write the mass-
continuity equations in terms of the liquid levels h; and hs:

E uif)

Q| Q:
Figure 3.25 A two-tank hydraulic system.
dhy  hy—ho
Al dt - Rl +U(t),
dh hy—1/ h
Azl 2 (3.84)

dt R Ry’

where A; and A, are the cross-sectional areas of tanks 1 and 2. Rear-
ranging terms, we have

d 1 1 1

Ehl = —R1A1h1 + TA ho + Zu(t) ,

d 1 1 1

£h2 = m—z-hl — (m—z + m) ha . (3.85)

We find that in our general formulation

.—RlAl RlAl

ha(2) 1 L
1
x(t) = ( h, (t)> , A= . (R11A2 N R21A2) , (3.86)
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_ (A
b-<0>. (3.87)

If the output of interest is the flow @; through the connecting pipe, then
h
we have hy — by

Q1= 2

(3.88)

In standard matrix form, the output is expressed as a function of the

state vector as 1 1 b
Y R I 1
Q= (31' +) (h) . (3.89)

Therefore, in our standard notation,

T 1 1
= — - —
C (Rl y R1> . (390)

In response to a unit step increase in water flow, the system will arrive
at the following equilibrium point:

5= (ng;b) . (3.91)

That is, the height of the water in each tank will have changed.

This system can be solved by using both state space approach and
transfer functions. The details are omitted.

6. In our earlier Example 3, we have examined a single input, single
output electrical system. In this example, that earlier model will be
extended in order to illustrate a multiple input electrical system model.
Figure 3.26 shows an electrical network with two voltage sources. Single
electric circuit theory implies that

v1 = Riy + L4 +ve (3.92)
Up = Lg% + ve (393)

and )
ve = 5/@1 +d)dt . (3.94)

Introduce the state variables 2y = #},29 = iz,23 = v, and the input
variables u; = v1,u2 = v2 to obtain the following differential equations
for the state variables:

. R Loy
Iy = lel leg Llul
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Figure 3.26 A multiple input electrical system.

Lo = 1:):+1u
2T L, L,
I3 = -5T1 + =T2 -
et ot

Assume furthermore that the output of the system is y = v¢. Introduce
the following notation:

R 1 1
—z; 0 —1; z; 0
A= 0 o—LLz, B= 01,% ,
1 1
& & 0 00
and
C =(0,0,1) .

Then the above differential equations can be summarized as

x = Ax 4+ Bu
y=0Cx. (3.95)
As a particular example, we will next determine the equilibrium state

of this system with constant unit-step inputs u; = us = 1. The equilib-
rium states are the solutions of equation

R 1 - 1
-*-LT 0 —E X1 L—l 0 1 0
0 0-4 T |+ 0 & ={0]},
11 ? = 2 1 0
which can be rewritten as
R 1 1
——I——ZI3+—=0

2 L 7
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|
|
1
I
|
|

Figure 3.27 An inverted pendulum.

1 1

e e — =0
LoV,

1 1
Eiil‘*‘all—fzzo

The second equation implies that Z3 = 1 and by substituting this value
into the first equation we see that Z; = 0, and the third equation implies
that To = 0. Hence,

0

wi
I!
o

(3.96)
1

is the unique equilibrium, which can be interpreted by noticing that after
the capacitor reaches the voltage level of the inputs, no current will flow
in the two loops.

7. There are several mechanical problems — such as orbiting a satellite
and controlling a rocket — that have the character of complex balancing
problems. As a simple version of this type of problem, let us consider
balancing a stick on your hand, as illustrated in Figure 3.27.
~ For simplicity, consider balancing a stick of length L with all of its
mass M concentrated on the top. Let the input, u(t), be the position
of the person’s hand (i.e., the bottom of the stick). The position of the
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top of the stick will be
y(t) = u(t) -+ Lsin4(¢t) . (3.97)

Next we will write the equation for the sum of the moments about the
pivot point of the stick:

MgLsin6(t) = ML*6(t) + w(t)ML cos 6(t) . (3.98)

The first term comes from gravity acting on the mass, M. The second
term is due to the rotational inertial of the mass on the stick, and the
last term shifts the inertial term down to the pivot point.

Now this is a nonlinear system, and nonlinear systems are hard to
analyze. So let’s make our life easier by linearizing the system. If the
stick is nearly at rest in the vertical position (where 6 is small), we can
say cosf =~ 1 and sinf ~ 6. After making these substitutions we can
eliminate @ from the two equations to get

§(t) = Zly(t) - u(t)] . (3.99)

For ease of notation let us set L = 1. Then, defining the velocity
v(t) = y(t), the system has the state space representation

(10 - () (M) (2)ur. a0
There is only one equilibrium position:

g{t) = ug and o(t) =0,

where ug is a step input. To arrive at this equilibrium state, the top of
the stick y(¢) had to be moved over the same distance as the bottom,
ug. In this equilibrium state, the angle § and the velocity will be zero.

Note that with zero input, the general solution of this system is the
same as it will be in the case of the warfare model to be introduced in
the next section, when we select h; = —g and hy = —1. For the actual
solution, see that case study.

8. Our next model deals with a cart of mass M that has fwo sticks on it
of lengths L and L, and masses of My and Ma, as shown in Figure 3.28.
If we assume small angles 8; and 65, we can make the same linearization
as before. Please note that in this problem, the input, u(t), is a force,
not a position as in previous application. Let v(t) be the velocity of the
cart. We can sum horizontal forces acting on the cart to get

Mo = —Migb1 — Magls +u .
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Next we can sum torques about each pivot point to get
My (0 + L161) = M6
Mo (o + Lofly) = Magbs . (3.101)

For simplicity, let M; = M>. Let us now define our state variables as

Figure 3.28 A cart with two sticks.

T = 01 Ip = 92 I3 = 91 Iy = 92 (3102)

to obtain (after eliminating © from the equations of motion) the state
equations x = Ax + bu with

0010 0
0001 0
A= b= .
a1a200 [’ —KIITI ’ (3.103)
az as 00 T,
where
(M + Ma)g Mg
a1 = —=%77 az = ;
l\lLl ML,
_ l‘/fgg . (I\/I +A’Iz)g
8= ML, R Vi (3.104)

Now what happens if we apply a unit step to the system, i.e., push
the cart? It is easy to see that at the equilibrium state, Z; and Zy are
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nonzero and T3 = T4 = 0, meaning the levers must not be moving, but
they are tipped.

9. An elecirical heating system will be next examined. A temperature-
controlled oven is illustrated in Figure 3.29, where the oven temperature
is controlled by the heat input u into the jacket. Introduce the following
notation:

Aj = inside jacket surface

Ao = outside jacket surface

C; = heat capacity of inside space

Cy = heat capacity of jacket

hi = film coefficient for inside surfaces
hy = film coeflicient for outside surfaces
Ty = outside temperature

11 = inside temperature

T» = jacket temperature

Figure 3.29 An electrical heating system.
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Similarly to our earlier hydraulic system, we can easily formulate the
heat balance equations for inside space and the jacket as follows:

CITI = Alhl(T2 - Tl)

CoTy = Ashy(Ty — T3) +A1hi(Th — To) +u .

Introduce the state variables x; = T1 — T and x9 = T3 — Tg, and assume
that the output of the system is y = T} —Tp. Then by assuming that the
outside temperature T is constant, the above equations can be rewritten
as

Alhlx Alhlm
I = —
' Cl ! Cl 2
j’,’ o 141]741‘r A]_hl +A2h,2$ + 1 u
2 = 02 1 Cz 2 02
Yy=2a .
These equations can be summarized as
_Azhy Aihy 0
X=| ARl _ A A | X+ (;,)u (3.105)
C2 C> Cs

with output equation
y=(1,0)x.

10. The following lumped-parameter model for a nuclear reactor is
based on [21]. Nuclear fission reactors are described by the same basic
dynamic principles, whether they are thermal reactors or fast reactors
and whether the nuclear fuel is U235, Pu?3® or U233, The essential
phenomenon is neutron-induced fission of these isotopes, with the ac-
companying release of other neutrons, usually two or three per fission
event, thus making a self-sustaining neutron chain reaction possible.

The basic concepts of reactor dynamics, common to all types of fission
reactors, are reactivity, neutron generation time, and delayed neutrons.

Reactivity is how much the neutron reproduction factor k& differs from
unity. It is an integral property of the entire reactor. The lumped-
parameter (point-reactor) model is satisfactory only when & is near unity,
when the reactor is almost critical. The reactivity depends on the size
of the reactor, the relative amounts and densities of varicus materials,
and the neutron cross-sections for scattering, absorption, and fission.
Because all of these are affected by temperature, pressure, and other
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effects of fission (arising primarily from the dissipation of kinetic energy
of the fission fragments), the reactivity depends on the power history
of the reactor. The computation of this reactivity feedback is one of
the central problems of reactor dynamics. Furthermore, because the
dynamic equations contain the product of reactivity and instantaneous
power, the equations are generally nonlinear.

The neutron generation time is the mean time for neutron reproduc-
tion. It is also an integral property of the entire reactor. It may be as
short as 1078 sec for a fast reactor or as long as 1072 sec for a ther-
mal reactor, where neutrons slow down considerably and subsequently
diffuse at thermal energies before causing fission. The generation time
depends primarily on the number of scattering collisions that a typical
neutron undergoes before it escapes from the reactor or disappears in a
nuclear reaction. These phenomena are called the leakage and absorp-
tion, respectively.

Delayed neutrons, although representing less than one percent of the
neutron production in fission, are extremely important in determining
the time scales in reactor dynamics. These neutrons are released in
certain nuclear transitions that occur in a few types of highly excited
fission fragments, and the relevant processes have half-lives of the order
of a few seconds.

When the reproduction factor is sufficiently large that the neutron
chain reaction would be self-sustaining with only the prompt neutrons
(neutrons released immediately in fission), the neutron generation time
is dominant in determining the time scale. When the reactor is not too
far from critical, in the regime where prompt neutrons alone would be
insufficient to sustain a chain reaction, the relatively large delay times
of the delayed neutrons are dominant, even though the delayed-neutron
fraction is small. If all neutrons were prompt, it would be extremely
difficult to control a reactor by conventional mechanical means, such
as movement of fuel, neutron absorbers, or neutron reflectors, because
of the high frequency response required to compensate for the short
neutron generation time.

The point-reactor equations are

dD _p-8 .
=Dy 1§:1/\1D1+q
and
aD;  f;
=—D-X\D;, .
=D - AD (3.106)
where

D = neutron density (or power, etc.)
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Neutron Non-fission
leakage absorption

y A

Neutron diffusion > Fission

loss rate =n/l, production rate = kn/l,
X XXx— (L-Pkall, ;
q Agl ) | 1Bkn/l,
! r ¥

Neutron Delayed-neutron precursors
source (“Latent neutrons™)

Figure 3.30 Simplified neutron cycle for a nuclear reactor.
D, = precursor density (latent-neutron density or latent power, etc.
same units as D)
= time
p = reactivity (k — 1)/k, the fractional change in neutron reproduction
factor
3 = delayed-neutron factor (3 iv, B;)
| = neutron generation time
A; = decay constant for precursor decay
g = effective source strength (same unit as dD/dt)

m = the number of delayed-neutron groups

The parameters ;, A;, and [ are assumed constant. The point-reactor
model thus consists of m + 1 coupled first-order differential equations
together with the specification of the functions p(t) and ¢(¢). In general,
p is a function of D and the system is nonlinear; however, in the absence
of reactivity feedback, p(t) is an explicit function of time and the system
is linear.
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Using our usual vector-matrix notation, this system’s model can be
reformulated as follows. Assume that the state vector is given as x =
(D, D1, Ds,..., D)7 and the input is the effective source strength, that
is, v = q. Then we have

% = Ax+bu, (3.107)
where
28X X2 X3 Amoy A
B\ 00w 0 0
P (3109
Bo 0 00 0 —An
is an (m + 1) x (m + 1) size matrix, and b = (1,0,0,...,0)7 is an

(m + 1)-dimensional vector.
The equilibrium of the system (with constant ¢ = gg) can be obtained
by solving equation
Ax+bg =0, (3.109)

which is an (m + 1) dimensional system of linear equations. Summing
up the equations of (3.108) we get the relation

p—_é+1§:ﬂ D+go=0 (3.110)
l l o 1 0 3 .
which reduces to P
-l—D +qg =0
Hence,
p=_l0
P
and from the (¢ + 1)st Equation of (3.106) we conclude that
%D -aDi=o0,
that is,
_ G =
D;=+—D.
I

Criticality, defined as £k = 1 (p = 0), is, strictly speaking, a non-
equilibrium situation; in the presence of a source, the critical reactor
is divergent. A neutron source, inserted prior to reactor startup to



3.5 Applications 173

provide adequate detector readings, may be withdrawn as criticality is
approached; nevertheless, neutrons from spontaneous fission and cosmic
rays will always represent sources. In consequence, an operating reactor
at steady power is always slightly subcritical, although the reactivity as
given by Equation (3.106) is usually undetectably small. This will be the
case when D/! is large, and if the magnitude of the reactivity at power is
very much smaller than the magnitude of the shutdown reactivity, then
the source may be neglected in further calculations.

3.5.2  Dynamic Systems in Social Sciences

1. Our first example is known as the two-dimensional predator—prey
model. Imagine an island populated primarily by goats and wolves.
The goats survive by eating the abundant vegetation of the isiand, and
the wolves survive by eating the goats. Let G(t) and W(t) denote the
goat and wolf populations at time ¢. The predator-prey model has the
form

G(t) = aG(t) - bG ()W (¢) (3.111)

W(t) = —cW(t) + dG(t)W (t) (3.112)

where a, b, ¢, and d are positive constants. Equation (3.111) tells us that
the prey population growth per unit time is proportional to the prey
population, and the decrease rate is proportional to the product of the
populations of prey and predator. The second equation implies that the
predator growth is negatively proportional to the predator population
(reflecting competition) and is positively proportional to the product of
the two populations. If W(t) = 0, then the first equation reflects the
exponential growth model

G(t) = aG(t)
which has the solution
G(t) = e* - G(0) .
In the general case, it is known that the solution is periodic (see for
example, [17], Section 48). Figure 3.31 shows the solution in the special
case, when

a=0.25 b=001l, ¢=10, and d=0.01;

furthermore, the initial values are given as
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Figure 3.31 Predator-prey trajectory.

G(0) = 80 and W(0) = 30 .

The above model description does not have formal input. However,
improved weather conditions can result in the increase of the growth
rate of the goat population, since more vegetation means more food for
the goats. Therefore, parameter a can be assumed to be controlled in
this way by the nature. In this case, Equation (3.111) can be replaced
by

G(t) = (a + u(t))G(t) — bG()W (2) . (3.113)

The equilibrium (G, W) of system (3.111) and (3.112) is obtained by
solving equation

aG — bGW =0
—cW +dGW =90.

It is easy to verify that the two solutions are

_ - - c = a
= W =0 d =~ W=-=.
G =0, and G 7 5

Therefore, we have two equilibrium points. In the case of the first equi-
librium, both populations are zero, and in the case of the second equi-
librium, both populations are positive. The first equilibrium is trivial,
so we will only discuss the case of the second equilibrium.

We apply the linearization procedure to find the linear approximation
of the system around the positive equilibrium. The practical value of
linearization is the fact that the theory of linear systems can be applied
to the linearized model.
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The Jacobian of the right-hand side functions of (3.111) and (3.112)

has the form - b
a— _
G W) = ( dw —c+d6’) '

therefore, at the positive equilibrium
- - o —be
J(G7W>:<ad d) ’
20

and consequently, with new variables Gs = G — ¢/d and W5 = W —a/b
from Equation (3.13) we obtain the linearized model

. be
= —-——W,
Gs Vs
. d
Ws = 265 .

b

These equations can be easily rewritten in order to have the original
variables:

G:“%(”"“%)L%vm%

. ad c ad ac
W_b(G d)_bG = (3.114)
Note that the structure of this model is very similar to that shown in
Example 3.7. More details on interacting populations can be found, for
example, in [28]. Finally, we note that the warfare model and epidemics,
which will be discussed later in this section, are mathematically special
cases of this model.

2. Our next model is known as the cohort population model. Assume
that the population of a country is divided into age groups (or cohorts).
Let n denote the number of age groups, and let P;(t) denote the popula-
tion of group ¢ at time period . We assume that this system is described
by difference equations

Pi+1(t+1):aipi(t) (7*:13771'_1)

and
Pl(t + 1) = blpl(t) R ann(t) .

The first equation is interpreted as the surviving portion of group i
simply moving up to the (¢ + 1)st age group after one time period.
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The second equation gives the number of individuals born during the
last time period, where the coefficients by,...,b, represent the birth
rates in the different age groups. Assume furthermore that at time
t, u;(t) individuals join the population of age group ¢ from outside.
Therefore, this situation can be modeled by the linear time-invariant
discrete system

pit+1)=A p(t)+1-ut), (3.115)
where
P, by ba bz - bp_y by w
al 0
Pz as U
p py P3 5 A = 013 , u= u’3
P‘n, O Gt 0 Un

If we are interested only in the total population, then we may select the
output
Py(t)y=P(t)+---+ P,(t) = (1,1,...,1)p(t) .

This model was originally introduced by Leslie [27], and matrix A
in (3.115) is usually called the Leslie-matrix. The population structure
can be predicted for any future time by solving the governing differ-
ence equation. Some properties of this system will be analyzed in later
chapters.

3. In the two-nation arms race model, let X(¢) and Y'(¢) denote the
armament levels of the two nations at time t. The well-known Richard-
son’s model [38] can be written as follows:

X(t) = aY(t) —bX(t) + (3.116)

Y(t) =cX(t) —dY(t) + 8 . (3.117)

This model shows that the arms race of each nation is negatively pro-
portional to its armament level and positively proportional to the arma-
ment level of the other nation. Constants a, b, ¢, and d largely depend
on the overall relations of the two nations. It is also interesting to note
that Chestnut [7] describes cooperative security systems between the
two nations based on systems theoretical concepts and methods. By
introducing the notation

() ae(12) (),
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this system can be rewritten in our general form
X=Ax+f. (3.118)

This system has no formal input in this formulation. Assume next that
improved relations between the two nations can decrease the arms race,
and the worsening of their relations may increase it. If u(¢) denotes a
measure of the “goodness” of the relation of the two nations, then the
above model can be extended as

k() = (“i _Z) x(£) + (g) u(t) | (3.119)

where u(t) is a formal input. The original Richardson’s model is the
special case of this formulation by selecting the constant input u(f) = 1.
In this case the equilibrium can be determined by solving equations

aY —bX +a=0

cX-dY +p5=0.
Assume that bd # ac, then the solution is

af + ad and l-/:coz—i—ﬂb

Xzbd—ac bd —ac

Assume that the output is defined as the armament level of the first
nation. That is,
y=(1,0)x.

Then the transfer function of the system is the following:

wo=an (2,22

:(1’0)32+(b+d)i+(bd—a0) (idSib} (;)

1 «
TS24 (b+d)s + (bd — ac) (s+da) (ﬁ)

sa+ (ad + fa)
2+ (b+d)s+ (bd —ac)
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This transfer function allows us to determine the output of the system
of any future time period by using the solution formula (3.24).

A natural generalization of this model to the multi-nation case can be
given as follows:

Xi(t) = Xn:ainj(t) +6;  (1<i<n) (3.120)
=1

where X;(t) is the armament level of nation ¢ in time period ¢; further-
more ;; < 0 and a;; > 0 for j # 4. Introduce notation x = (X)),
A = (wj), and £ = (f;), then this model has the usual form (3.118).
The equilibrium is the solution of equation

Ax+f=0.
If A~! exists, then vector
%=—A"f

gives the equilibrium.

4. A warfare model can be formulated as follows. Assume that two
forces are engaged in a war. Let X; and X5 denote the numbers of units
in the two forces. The members of the fighting forces are characterized
by their “hitting powers,” which are the numbers of casualties per unit
time that one member can inflict on the enemy. The hitting powers hy
and hg are determined by military technology. By assuming that the
hitting power of each force is directed uniformly against all units of the
enemy, we obtain the following relations:

X1 = —ho Xo

Xo

—h Xy (3.121)

Use the notation

_ Xl ~_ 0 —hz
x_(X2> and A—(*hl 0)
to get the formulation

x = Ax.

Note that this system is a special case of the linearized predator—prey
model by selecting

%C = hy and ﬁl = —hy
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with zero constant terms.
This first-order system can be easily rewritten to a single second-order
equation. Differentiate the first equation of (3.121) to see that
X1 = —haXo = hiha X1,

that is, )
X1 — h1ho X7 = 0. (3.122)

The characteristic polynomial of this equation is
A% — hihy =0

with eigenvalues Ay 2 = £+/hihs. Therefore, the general solution of
Equation (3.122) is given as

X]_(t) — Cletvhlhz +626—i\/h1h2

¥

and from the first equation of (3.121) we conclude that

1. (R omms /h T
Xg(t) = —E;Xl = —C] h—let hiha + c2 ﬁl-e—t hiha .
2

The coefficients ¢; and ¢, can be determined from the initial conditions:

X1(0) =c1 +ea =139

h
X5(0) = \/ h_;(‘cl +e2) =m0 s

and the results are as follows:

('——1— x —”ﬁzm c-—l +\/h2
/1—2 10 I 20 | » 2~2 T10 h1$20 .

Hence,

1 ! s 1 h Yy v
Xi(t) = 3 <$10 =1/ %9320) etViha 4 3 (Ilo + 14/ Ezﬂ’ﬂzo) e tVhhe
1 1
ha
= T1p cosh (t hﬂlg) — T904y/ — sinh (t hlhg) ,
h,l
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and

ha

1 {h (hy _, s
+ 3 <$10+ Ej-:vzo) ﬁ—;e tvhiha
hi .
= —104/ h—; sinh (t hlhz) + xog cosh (t hlhg) ,

Xo(t) = -+ (mw _ h_2x20> b v
1

where cosh and sinh are the well-known hyperbolic functions.

An alternative solution method is based on computing eAt and then
applying the solution formula (2.18). This method is illustrated next.

Since

A2 (hl(;w h10h2> = hihol |

we have

A3 =A% A =hhA,
At = A% A? = (hihy)T,

A% = A3-A? = (hiho)’A

and so on. Finite induction can be applied to show that

Ak _ (hlhz)mI if k=2m
o (hlhg)mA if k=2m +1.
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Therefore,
A 1 Kk (hlhz)mtzm (h1h2)mt2m+1
L@ L Tamr 1 2 Teme

h h 2m42m 2m+142m+1
= 3 MR s M A
(2m)! hihg 4~ (2m + 1)!

m

1
= cosh(ty/h1h2)I + \/—h_l-hzz sinh(¢v/h1ho) A

COSh(t V h’th) —\/%Sinh(tv hth)
wﬂ—;sinh(t\/h_llg) cosh(tv/hihz)

Hence,
x(t) = eAL (-’510)
T20

z10 cosh(tvhiha) — 3204/ 32 '“ sinh(tv/hih2)

= ,(3.123
_;pm\/%sinh(t«/hlhg) + xog cosh(t/h1hg) ( )
which coincides with the result obtained earlier.

For more details of this model, see, for example, [25] and [40].

5. Examining epidemics of disease in human population is a very im-
portant application of dynamic systems theory. Consider a population
of individuals, and assume that a disease spreads by contact between
individuals. It is assumed that infected individuals either die, become
isolated, or recover and become immune. Therefore, in any time period
t the population consists of z(t) susceptible individuals, y(t) infected
and circulating individuals, and z(t) further individuals who either have
been removed (died or isolated) or are immune. The dynamics of the
system are described by differential equations

T = —ary

y = azy — By
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z=py.

The first equation shows that the decline in the number of susceptible
individuals is proportional to the product of the numbers of susceptible
and infected (but still circulating) individuals. The first term of the
right-hand side of the second equation shows the number of newly in-
fected individuals, and the second term gives the number of individuals
who have been removed. The third equation means that these removed
individuals increase the number of the third group. Note that z does not
appear in the first two equations, therefore, it is sufficient to consider
the system consisting of only the first two equations:

T = —Qazy

¥ =azxy— Py . (3.124)

Mathematically, this system is a special case of the predator-prey model
(3.111) and (3.112) by selecting a = 0 and b = d. This analogy is ex-
pected, since when goats are eaten by wolves and susceptible individuals
are infected, they are simply removed from their populations. A compre-
hensive summary on deterministic and stochastic models of epidemics
can be found in [6].

6. In Example 3.2 we have introduced the Harrod-type national econ-
omy model

Yi+D)=01+r—rm)Y () -rG(¥) ,

where Y(¢) is the national income and G(t) is the government expendi-
ture.
By using the notation of Section 3.4, in our case n =1,

Aty =1+r—rm, B(t) = -, and u(t) = G(t)

when G(t) is considered as the input of the system. The solution of the
system can be obtained by using Equations (3.48) and (2.47):

-1
Y(t)= (1 +7r—rm)Y,; - Z(l +r—rm)T e G(r)
T=0

where Yy = Y (0). Hence, the national income can be directly computed
for any future time period ¢t > 0.

7. Our next model is concerned with the supply and demand of a single
commodity. Assume that the demand function d(p) gives the demand
of the commodity as a function of the price p. Function d is assumed to
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be decreasing. The amount s(p) of the commodity that will be supplied
by the producers also depends on the price. It is now assumed that
function s is increasing. The above properties of functions d and s
reflect the economic facts that higher market price results in the decline
of the demand of the commodity, but it leads to higher producers’ profit,
and therefore, the producers increase their production levels.

Let p(t) denote the price in time period t. The producer makes his
decision on his production level based on the current price, but the
resulting supply is available only in the next time period. Therefore, the
supply S(t) satisfies equation

St +1) = s(p(t) -

When this supply shows up on the market, its price is determined by
the demand function by adjusting it so that the entire supply is sold.
Therefore, the demand D(t + 1) at time period ¢ + 1 satisfies relation

D(t+1) = d(p(t + 1)) .

It is also assumed that the market is in equilibrium in time period ¢t + 1,
which means that the supply equals the demand:

S(t+1)=D(t+1).

That is,
s(p(t)) = d(p(t +1)) .

Let d~1 denote the inverse of function d; then this equation can be
rewritten as

p(t +1) = d Y(s(p(t))) . (3.125)

Hence, the price function is a solution of this noniinear difference equa-
tion. The solution is made unique by specifying the initial price p(0).

The equilibrium of Equation (3.125) is the solution of the nonlinear
equation

p=d7(s(p))

which is the fixed-point problem of function d=*(s(.)). If this function
satisfies the conditions of Theorem 1.3, then process (3.125) converges
to the unique equilibrium. Sufficient conditions for these properties are,
for example, the following;:

(a) d~(s(p)) exists for all p > 0;
(b) d~'(s(p)) = 0 for all p > 0;
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(c) (d/dp)d='(s(p)) exists and |(d/dp)d~1(s(p))] < K for all p > 0,
where K € [0,1) is a constant.

Here we used the results of Example 1.5. The solution of the governing
difference equation (3.125) is illustrated in Figure 3.32. The resulting
rectangular spiral resembles a cobweb. Therefore, in the literature this
model is usually called the cobweb model.

d-1(s(p)) 4

p(2)=d"'(s(p(1)))3

-~

1 p=d G O)
p(1) p(2) p(0) P

Figure 3.32 Illustration of the cobweb model.
As a special case assume that
d(p) =ap+ao,  s(p)=bp+bo.
The equilibrium price 7 is the solution of the equation

aﬁ+a0:bﬁ+b01

which is bo — oo
p=-—— (3.126)
Furthermore, Equation (3.125) now has the form
ap(t + 1) + ap = bp(t) + bg ,
that is, the governing difference equation is the following:
p(t+1) = gp(t) + b—°;—a° : (3.127)
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If the initial price p(0) = po, then from Equation (2.47) we conclude

that
b t t—1 b t—-7-1 bO —ap
p(t) = (a) po + Tgo (a) B

bt (g)t—]. bo—ao
_(E> Pot Ty T

That is, the price can be computed easily for any future time period
t > 0. Note that the sequence p(t) is convergent if and only if 8] < |al,
and in this case,

-1 bo—ao-bg—‘ao

tl—lfgop(t)_g—l a a-b '
which is the equilibrium price (see Equation (3.126)).

This model is investigated in more detail in [29].

8. Our next application is a continuous system of interrelated markets.
Assume there are n commodities, and let p; (i = 1,2,...,n) denote the
price of commodity i. If s;{(p1,...,pn) is the supply from commodity ¢,
then it is usually assumed that

8Si asi . .
>0, —<0 i) .
. p; (G#1%)

These conditions reflect the tendency that manufacturers produce those
items that give them higher profit. It is also assumed that the demands
for the different commodities are interrelated by the demand functions

di(p1,-..,Pn), where we assume that
ad; ad; L,
<0 and >0 1) .
Bp: s (G#14)

At each time period the difference d; — s; is the shortage if it is positive,
and a surplus if it is negative. It is also assumed that for each commodity
the market price moves as directed by the shortage, rising if the shortage
is positive, decreasing if negative, and does not change if zero. Therefore,
the dynamics are governed by differential equations

pi = Ki(di(py, - -, pn) = si(p1,-- -, 0n)) (3.128)

for i =1,2,...,n, where K is a strictly increasing function.
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As a special case, assume that functions K, d;, and s; are all linear,
that is,

Ki(di = si) = ki - (d; — 1), di(p1,-..,Pn)

= Zaijpj+ai0a 5i(p1y -+ -2 Pn)
J

= Zbijpj + bio ,

7

where

ki >0, a; <0, aijZO (j#z), by > 0, andbijSO (j#l)

(3.129)
Introduce the notation
p=(), K = diag(ky,... kn) ,
A = (ay) , B = (by) ,
ap = (aio) , b = (bio) ;
then Equation (3.128) can be rewritten as
p=K- ((A-B)p+ag—bp) . (3.130)

The equilibrium prices p of this system can be determined by solving
equation
K((A-B)p+ag—bg)=0.

If (A — B)~! exists, then vector
p=—(A~B) !(ag - by)

gives the equilibrium. The mathematical properties of this model are
examined in [3]. We mention that this model will be further examined
in later chapters.

9. Oligopoly models have a very important role in economic theory. A
simple version of the classical Cournot model is now introduced.

Assume that NV firms produce a homogeneous good and sell it on the
same market. Let d(p) denote the market demand function. Assume
d(p) is strictly decreasing; it then has an inverse p(d). Let z1,...,Tn
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denote the output of the firms and let Ci(zi) be the cost function of
firm k, for k = 1,...,N. The profit of firm % is given as the difference
of its revenue and cost:

N
i1, TN) = kP (Z mz) —~ Cr(zz) - (3.131)
=1

For the sake of simplicity, assume that p and Cy (kK = 1,2,...,N) are
linear functions:

N
p(s)=as+b (s = le, a < O) (3.132)
=1

Cr(zr) = brzr + & (zr 20, b >0).

First a discrete dynamic model is introduced. Let z4(0),...,zx5(0) de-
note the production levels of the firms in the initial time period £ = 0. At
any further time period ¢+ 1 (¢t > 0), the output selection of each firm is
obtained by maximizing its profit wx(z1(t),...,Z-10), 2k, Ths1{t), .- -,
zn(t)) by assuming that all other firms will select again the same outputs
that they have selected in the preceding time period. This assumption
is called the Cournot expectation. That is, zp(t + 1) is the solution of
the optimization problem:

maximize zi | a Zzl(t) +ar | +b | — (b +ck)
£k
subject to a3 > 0.

Because a < 0, the objective function has a unique maximizer:

b, —b
2a

me(t+1) = =5 S w() +

15k

(k=1,...,N),  (3.133)

by assuming that these values are nonnegative. Summarize these equa-
tions as the system

x(t+1) = Ax(t)+ £, (3.134)
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where 0 1.1 _1
T 373 3
z 1l g _1..._1
x=|%|, A, = ‘2. -2 .2 :
N 1 :1 :1
-3 53 0
and
by —b
1] b-0
fo=—
7 2a
by — b

The equilibrium of this system can be obtained by solving the linear
equations

by — b
L (k=1,2,...,N). (3.135)
17k

Add these relations for £ =1,2,..., N to obtain

B -~ bN
2¢ '

= ——(N -5+

where § = ZQI:I Iy and B = ZL\;I bi. Therefore,

. B-bN
T (N+1a’
and from (3.135) we have
1 b —-b
Tp= —(5 - Bk) + 2,
2a

which has the solution

b —b  —B—b+(N+1)b
a (N +1)a

i:k:-—§+ (k:1,2,...,N).

A modified version of the above model is based on the assumption
that at each time period, each firm forms expectations adaptively on the
output sp =), ~k T1 of the rest of the industry according to the rule

sEE+1) =sf®) +mp | Y m(t) - sE(t) |, (3.136)
1k
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where m,, is a positive constant. Then each firm maximizes its expected
profit

i (a (sg(t +1) + zk) +b) — (bpTr + cx) -

It is easy to verify that the profit maximizing output is

1 b —b
ot +1) = =557 ( o

1 b —b

=3 t) + my Zml ~sk + kQ
1#k @
1-m b — b
- Zz[ ksf(t)—i— ’”20 (3.137)
I#k '

by assuming again that these values are nonnegative. Note first that by
selecting my, = 1 (k= 1,2,..., N), Equation (3.137) reduces to (3.133).
In the general case, Equations (3.136) and (3.137) can be summarized

as
(s}f?((ttilf)> = Aa (st((tt))) + £, (3.138)

where x = (z1), s& = (sF),

0 my _my _1-my
2 2 2

my _mg —l-my

g 2 0
_my _my _izmy

_ 2 2 0 0 2
A, =

0 my mi 1—m1

mo 0 mo 1—m2 @)

my my --- 0 O 1—mp
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and
by —b
by — b
1 by - b
f, = —
7 2 0
0
0

The continuous counterpart of the above models can be introduced as
follows. Assume again that the initial outputs z1(0),...,zx(0) of the
firms are known. At each time period ¢ > 0, each firm adjusts its cutput
proportionally to its marginal profit. Since the marginal profit of firm
k is the derivative of ¢y with respect to x, the system is driven by the
differential equations

ag(t) = mg - | 2azk(t) +a Y @i(t) +b—by (k=1,...,N),
I#k

which can be summarized as

x(t) =M A -x(t) +f, (3.139)
where M = diag(my,...,my) with positive diagonal elements,
2¢ a - a my(b—by)
A |22t e | MROTR)
a a - 2a my{b—by)

The equilibrium of this continuous system is the solution of equation
MAX+f =0,

which is
x=—(MA)"'f = —A7IMIf .

Here we used the fact that if mg >0 (k=1,2,...,N) and ¢ < 0, then
both matrices A and M are invertible.

Finally we remark that a summary of discrete and continuous oligopolies
is presented in [35].
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Problems

1. Give the solutions (3.19) and (3.20) of the system

1o 1
T — 1
e (§9)x+ (1)
y=(1l1)x.

2. Derive the state sotution (3.19) of system

= (1)xr (Du 0= (1).

What is your result in the special case of u(t) = 1? Compare the result
to that of Problem 2.4.

3. Find the state solution (3.19) for system

(e 0=,

and in the special case of u(t) = 1, compare the results to those of
Problem 2.5.

4. Find the transfer function for system

(e () 0- (),

if the outputis y = (1, 1)x.

5. Find the transfer function for system

= (Ga)x()e =0-(3),

if the outputis y = (0, 1)x.

6. Determine the transfer function for a system

X = Ax + Bu

y = Cx+ Du.
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7. The simple mechanical system shown in Figure 3.33 is described

by equation
d Iy _ 0 1 Iy 0 .
()= (0-0) () ()

y = (1,0) (2) :

where ; = y and z3 = v.

Tnput Torce u(r) Output position v(7}

Friction force --3v(r)
liE-

3

//Q/////////

Figure 3.33 Illustration of Problem 7.

Derive the solution (3.19) and (3.20) of this system.

8. Find the transfer function for problem

k= (0 _g)x+(5)u

9. Derive the state solution (3.48) of the system

x(t+1):(é;)x(t)+<(l)) u(t), x(0) = (}) .

What is your result for u(t) = 1? Compare the result to that of Prob-
lem 2.6.
10. Derive the state solution (3.48) of the system

x(t+1) = <§;>x(t)—|— (i) u(t),  x(0) = ([1)) ,

and in the case of u(t) = 1, compare the result to that of Problem 2.7.
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11. Find the transfer function for system

X(t+1) = (;;>X(t)+ ((1)) u(t),  x(0) = G) ,

if the outputis y = (1, )x.

12.  Find the transfer function for system

X(t+1) = (g;>x(t)+ G) ut),  x(0) = (é) ,

if the outputis y = (0, 1)x.

13. The electric circuit shown in Figure 3.34 is described by the first-
order equation

LED 4 (R, + Ry)i(t) = u(t)

y(t) = Rai(?)

L R,
B0 M 7
+
u(t) D i(r) §R2 y()

Figure 3.34 Illustration of Problem 13.

Find the transfer function and the solution of the system in the state-
space form. If u(t) = 1, does this system have an equilibrium state?

14. Find the equilibrium state of the nonlinear system
iy = (z1+72)°,

Ty =e 1772 1,

y=$%+23:2,

and linearize it around the equilibrium.
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15. Solve the equation
J+5y+6y=1a+3u,

which is given in input—-output form. Apply Theorem 3.5 to obtain an
equivalent first-order system.

16. Solve equation
J+6y+4y =14+ 8u

and apply Theorem 3.5 to obtain an equivalent first-order system.

17. Derive the transfer function for system
J+5y+6y=1u+3u.

18. Derive the transfer function for system
j+6y+dy=u+8u.

19. Find the transfer function for Figure 3.35:

U(s) Y(s)
— >

_1 1
s—1 s+1

@ f—

Figure 3.35 Illustration of Problem 19.

20. Find the transfer function for Figure 3.36:

Ufs) 1 + .12 Y(s)
si4s 3 1

t =

[
+

—

Y
1
—

Figure 3.36 Illustration of Problem 20.
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21. Derive a simple formula for Ed's‘H(S)r where H(s) is the transfer
function of a time-invariant linear system.

22. Leta,b e R™and A be an n x n real matrix. By using the simple
relation T
A~lab" A~!
1+bTAla

derive an updating formula for the transfer function of system

(A+abT)"1 = A-!

%= (A+abl)x+Bu

y =Cx.
23. Consider systems
x(t) = A(x(t) + BH)u(t), x(to) = %o

and _
z(t) = A(t)z(t) + B(t)u(t), z(to) =xo,
where B(t) is an approximate of B(t). Derive an upper bound for

llx(2) = z®I-

24. Let H(s) and H(s) denote the transfer functions of systems

x=Ax+Bu
y =Cx

and
%z = Az + Bu
y =Cz

where A is an approximation of A. By using the bound

X =Y - I Xt)
= IX =Y - X

X~ -y~ <
1

(which holds for all real n x n matrices X and Y such that X - Y|| <
[X~1|~!, see for example, [44]) derive an upper bound for
[H(s) — H(s)|-

25. Redo Problem 23 for discrete systems.
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chapter four

Stability Analysis

In applied sciences, the term stability has a very broad meaning. How-
ever, in the theory of dynamic systems, stability is usually defined with
respect to a given equilibrium. If the initial state xq is selected as an
equilibrium state X of the system, then the state will remain at X for all
future time. When the initial state is selected close to the equilibrium
state, the system might remain close to the equilibrium or it might move
away. In the first section of this chapter we will introduce conditions
that guarantee whenever the system starts near an equilibrium state, it
remains near it, perhaps even converging to the equilibrium state as the
time increases. These kinds of stability are called the Lyapunov-stability
and asymptotical stability, respectively. In the first part of this chapter
we will introduce the Lyapunov stability theory to examine Lyapunov
stability and asymptotical stability of linear and nonlinear systems.

In many applications we have to guarantee that the state of linear
systems remains bounded, even converging to zero with a certain con-
vergence rate as t — oo if zero input is applied. These kinds of properties
are defined as uniform and uniform exponential stability, which will be
also discussed in the first part of this chapter.

Notice that Lyapunov stability, asymptotical stability, uniform and
uniform exponential stability represent properties of the state of the
system. Therefore, they are called internal stability concepts. In the
second part of this chapter, erternal stability will be introduced and
investigated for linear systems, when we will find conditions that with
zero initial state a bounded input always evokes a bounded output. In
this case we will not be interested in the behavior of the state, only the
input—output relation is considered.

197
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4.1 The Elements of the Lyapunov Stability Theory

In this section only time-invariant systems will be considered. Continu-
ous time-invariant systems have the form

%(t) = £(x(1)) | (4.1)

and discrete time-invariant systems are modeled by the difference equa-
tion
x(t+ 1) = f(x(t)) . (4.2)

Here we assume that f : X — R"™, where X C R" is the state space.
We also assume that function f is continuous; furthermore, for arbitrary
initial state xg € X there is a unique solution of the corresponding initial
value problem x(tg) = Xp, and the entire trajectory x(¢) is in X. Assume
furthermore that ty denotes the initial time period of the system.

It is also known from the previous chapter that a vector X € X is an
equilibrium state of the continuous system (4.1) if and only if £f(X) = 0,
and it is an equilibrium state of the discrete system (4.2) if and only if
% = f(X). In this chapter the equilibrium of a system will always mean
the equilibrium state, if it is not specified otherwise. In analyzing the
dependence of the state trajectory x(¢) on the selection of the initial state
Xo nearby the equilibrium, the following stability types are considered.

DEFINITION 4.1

(i) Anequilibrium point X is stable if there is an eq > 0 with the following
property: For all €1, 0 < &, < &, there is an € > 0 such that if
|X = xo|| < &, then | X — x(¢){| < &1 forall t > tq.

(ii)  An equilibrium point X is asymptotically stableif it is stable and there
isan e > 0 such that whenever || X — xo|| < €, then x(t) — Xast — oo.

(iii)  An equilibrium point X is globally asymptotically stable if it is stable
and with arbitrary initial state xo € X, x(t) — Xast — oo.

The first definition says an equilibrium X is stable if the entire trajec-
tory x(t) is closer to the equilibrium than any small 1, if the initial state
Xg is selected close enough to the equilibrium. In the case of asymptotic
stability x(¢) has to converge, in addition, to the equilibrium as ¢t — oo.
If an equilibrium is globally asymptotically stable, then x(¢) converges to
the equilibrium regardless of how the initial state x; is selected. These
concepts are illustrated in Figure 4.1.



4.1 The Elements of the Lyapunov Stability Theory 199

Unstable

i
Asymptotically
stable /

/

/
’/
Globally

~— ‘as/ymptotically
stable”

Figure 4.1 Stability concepts.

In the systems theory literature our stability concept is sometimes
called marginal stability, and asymptotic stability is called stability. In
this book we will always use our terminologies.

41.1 Lyapunov Functions

Assume that X is an equilibrium state of a dynamic (continuous or dis-
crete) system, and let 2 denote a subset of the state space X such that
x e Q.

DEFINITION 4.2 A real-valued function V defined on Q is called a Lya-
punov function, if

(i) 'V is continuous;

(ii) V has a unique global minimum at X with respect to all other points in
&

(iii)  for any state trajectory x(t) contained in Q, V(x(t)) is nonincreasing in
t.

The Lyapunov function can be interpreted as the generalization of
the energy function in mechanical systems. The first requirement simply
means that the graph of V has no breaks. The second requirement means
that the graph of V has its lowest point at the equilibrium, and the third
requirement generalizes the well-known fact of mechanical systems, that
the energy of a free mechanical system with friction always decreases,
unless the system is at rest.
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THEOREM 4.1
Assume that there exists a Lyapunov function V on the spherical region

Q={x | |[x~-x| <eo}, (4.3)
where eg > 0 is given, furthermore Q@ C X. Then the equilibrium is stable.

PROOF  We present here the proof only for the discrete case, the
continuous counterpart can be proven in the same way.

Let &1 € (0, &p) be arbitrary. Select &5 € (0,e;1) so thatif ||x — X| < &
then ||f(x) — X|| < €o. Such &5 exists, since f(X) = X and f is continuous.
Therefore, if [|x(t) — X|| < &2 for some ¢t > 0, then ||x(t + 1) — X|| < £q.
Define now

m=min{V(x) e < ||lx — x| <eo},

which exists, since V is continuous and the set
{x|e2 < lix— x| < eo}

is compact. Note that this set does not contain the equilibrium state %;
therefore, m > V(X). The continuity of function V implies that there
exists an ¢ € (0,¢e2) such that V{x) < mas ||x - x}| < e.

Finally we show that this € > 0 satisfies the conditions of Part (i) of
Definition 4.1. Assume now that ||x(0) — X|| < ¢, then V(x(0)) < m.
Since V(x(t)) is decreasing, for all ¢t > 0, V(x(t)) < m. Therefore,
the definition of m implies that for all ¢, {|x{t) — X|| < &2 < &;, which

completes the proof.

THEOREM 4.2

Assume that in addition to the conditions of Theorem 4.1, the Lyapunov func-
tion V (x(t)) is strictly decreasing in t, unless x(t) = X. Then the stability is
asymptotic.

PROOF  We present again the proof only for the discrete case, because
the continuous counterpart can be discussed in a similar way.

Select the initial state as | x{0) —X|| < &, where ¢ is defined in the proof
of the previous theorem. We shall prove that x(f) — X ast — oc.

Assume that this limit relation does not hold. Since for all ¢, {|x(t) —
x| < e2, we conclude that sequence x(t) (¢t = 0,1,2,...) must have a
convergent subsequence such that x(¢;) — x* # X as k — oo. Since
sequence x(t; + 1) (k = 0,1,2,...) is also bounded, it must also have a
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convergent subsequence x(tz, + 1) — x**. The strict monotonicity of
the Lyapunov function implies that for all¢ = 0,1, 2,. ..,

V(X(tki+1)) < V(x(tki + 1)) < V(X(tki)) ’ (44)

since ty, ., <ig, +1 <ip,.
By letting ¢ — oo and using the continuity of the Lyapunov function
we have

Vx*) < V(™) S V(x7),

which implies that
V(x™)=V(x"). (4.5)

Note that since f is continuous,

*ok

X

I

lim x(tg, + 1) = lim f(x(tx,))

I

£ (Alim x(tk,,.)> = f(x").

1—00

This relation and (4.5) contradict the strict monotonicity of the Lyapunov
function.
Thus, the proof is completed. i

THEOREM 4.3

Assume that the Lyapunov function is defined on the entire state space X,
V (x(t)) is strictly decreasing in ¢ unless x{t) = X, furthermore V (x) tends to
infinity as any component of x gets arbitrarily large in magnitude. Then the
stability is globally asymptotic.

PROOF  Only the discrete case is shown, since the continuous case
is similar. Let xg € X be arbitrary. The monotonicity of the Lyapunov
function implies that V(x(t)) < V(xg) forallt > 0. Therefore, sequence
x(t) is bounded. The rest of the proof is the same as it was given for the

previous theorem.

REMARK 4.1  This Lyapunov theory provides an alternative way
to prove the convergence of the iteration sequence introduced in The-
orem 1.3 by selecting the Lyapunov function V{(z) = p(z,z*) for the

difference equation z(t + 1) = A(z(t)).
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Example 4.1

Consider the differential equation

(L) (0)

which was earlierinvestigated in Examples 1.23and 2.6. InExample 3.3
we verified that the equilibrium is given as X = (1/w,0)7, and from
Example 2.6 we know that

¢(t’t0):< cosw(t — tg) sinw(t~—t0)> '

—sinw(t —tg) cosw(t — tg)

Assume that the initial state is selected from the neighborhood of the
equilibrium, that is,
1/w+ o
x(0) = ,
0= (")

where o and 3 are small in magnitude. The general solution for-
mula (2.23) implies that

() = coswt sinwt ljw+a
X =\ Zsinwt coswt Jéi

[ () ()

( ( +a)coswt+ﬁsinwt> N (% - %coswt)

—(£ + a)sinwt + Beoswt L sinwt

where we used some results from Example 2.6. Hence,

() = :1; + acoswt + Bsinwt
- ~asinwt + G coswt ’

and therefore,

x(t) - % = acoswt + Bsinwt
T\ —asinwt + Bcoswt |
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This formula can be obtained also by observing that x(t) — X solves
the homogeneous equation. Simple calculation shows that

which implies that if o and (3 are sufficiently small in magnitude, then
[Ix(t) — || < forany positivee > 0. Thus, the equilibrium is stable.
From this relation we also conclude that for t — 00, x(t} /4 X. Hence,
the stability is not asymptotic.

The stability of the equilibrium can also be verified directly by using
Theorem 4.1 without computing the solution. Select the Lyapunov
function

V(x) = (x - 9T (x - %) = x - .

This is continuous in X; furthermore, it has its minimal (zero) value at
X = X. Therefore, to establish the stability of the equilibrium we have
to show only that V (x(t)) is decreasing. Simple differentiation shows
that

%V(X(m —ox—R)T % = 2(x - R)T(Ax + b)

a=(_0y) wa w=(7).

That is, with x = (z1,29)7,

%V(X(t)) =2 (Il - %Iz) (_;;a:i 1)

= 2(wz1z2 — T2 —wr1Tz +22) =0.

with

Therefore, function V' (x(t)) is a constant, which is a (not strictly) de-
creasing function. That is, all conditions of Theorem 4.1 are satisfied,
which imply the stability of the equilibrium.

Theorems 4.1, 4.2, and 4.3 guarantee the stability, asymptotical sta-
bility, and global asymptotical stability of the equilibrium, if a Lyapunov
function is found. Note that failure in finding such Lyapunov functions
does not imply that the system is unstable or that the stability is not
asymptotical or globally asymptotical.

In the previous discussions the stability, asymptotical and global asymp-
totical stability of the equilibrium were examined. We can easily extend
these concepts to any particular solution xo(¢) of a linear or nonlinear
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system. Assume that xo(t) is a solution of Equation (4.1) or (4.2), and
introduce the new variable

x(t) = xo(t) +z(t) ,
then Equation (4.1) can be modified as
2(t) = £(xo(t) + 2(t)) — %o(t) ,
and Equation (4.2) has the equivalent modified form
z(t + 1) = f(xo(t) + 2(t)) —xo(t +1) .

Notice that in both cases z(t) = 0 is an equilibriumm. Therefore, the
stability, asymptotical stability and global asymptotical stability of a
trajectory xo(t) can be defined as the same concept applied to the new
equilibrium of the modified continuous or discrete system. Therefore,
the methods introduced above can be used in the more general case as
well.

The asymptotic stability of nonlinear systems can be examined via
linearization as follows. Consider the time-invariant continuous and dis-
crete systems

(t) = £(x(2))

and
x{(t + 1) = f(x(¢)) .

Let J(x) denote the Jacobian of f(x), and let X be an equilibrium of the
system. It is known from Section 3.2 that the method of linearization
around the equilibrium results in the time-invariant linear systems

xs(t) = J(X)xs(t) ,

and
xs(t + 1) = J(x)xs(t) ,

where x5(t) = x(¢) — %. It is also known from the theory of ordinary
differential equations (see, for example, [18]) that the asymptotic sta-
bility of the zero vector in the linearized system implies the asymptotic
stability of the equilibrium X in the original nonlinear system. Hence,
the analysis of the asymptotical stability of nonlinear systems can be
reduced to that of time-invariant linear systems, which is the topic of
the next section.



4.1 The Elements of the Lyapunov Stability Theory 205

4.1.2  The stability of time-variant linear systems
Consider first the time-variant continuous linear system

x(t) = A(t)x(t) + b(t) , (4.6)
where A(f) is an n X n matrix and b(¢) is an n-dimensional vector. It
is assumed that all components of matrix A(t) and b(t) are continuous
functions for ¢t > t5. Let X be an equilibrium of this system, and let x(t)

be any trajectory of the system.
Then

£(t) = (A(DX(1) + b)) — (AR + b)) = AW)(X(®) - %) ;
therefore, x5(t) = x{t) — X satisfies the homogeneous equation
%5 = A(t)xs .
From Equation (2.18) we then know that
x(t) — % = @(t,t0)(x0 — X) , (4.7
where x¢ = x{tg) and ¢ (¢,%9) is the fundamental matrix. Hence the
difference of the state and the equilibrium is given in a closed form.
Consider next the time-invariant discrete linear system
x(t+1) = A{)x(t) + b(t) , (4.8)
and assume again that X is an equilibrium. Then
x(t+1) - % = (A£)x(t) + b(t)) — (A()% + b(t)) = A()(x(t) — %) |
therefore, xs(t) = x{t) — X satisfies the homogeneous equation
xs(t + 1) = A(t)xs(t) .
Then, similar to the continuous case, from the solution formula (2.45)

we know that
x(t) =% = ¢(t,0)(x0 - %) , (4.9)

where ¢(t,0) is the fundamental matrix. Hence the difference of the
state vector and the equilibrium is given again in a closed form. From
Equations (4.7) and (4.9) we have the following result.
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THEOREM 4.4

1. The equilibrium X is stable if and only if ¢(t, o) in the continuous case
(or ¢(t,0) in the discrete case) is bounded for t > ty (or t > 0).

2. The equilibrium X is asymptotically stable if and only if ¢(t,to) (or
¢(t,0)) is bounded and tends to zero as t — oo

COROLLARY 4.1
For systems (4.6) and (4.8) asymptotical stability and global asymptotical
stability are equivalent, if the state space is defined as the entire R™.

We mention here that Theorem 4.4 can also be used to check the
stability and asymptotical stability of time-invariant linear systems as
well, as it is illustrated in the following example.

Example 4.2

Consider again the system of the previous example. Since each com-
ponent of the fundamental matrix
_ cosw(t — tp) sinw(t — tp)
¢t to) = (— sinw(t — tg) cosw(t — tg)

is bounded, the system is stable. If { — oo, then the elements do not
converge to zero, therefore, the stability is not asymptotical.

In the systems theory literature a zero-input time-variant linear sys-
tem is called uniform stable, if ¢(t,7) is bounded for all ¢t > 7 > ;.
Similarly to Theorem 4.4 one can easily prove that uniform stability is
equivalent to the condition that [|x(¢)|] < Q- ||xol] for all ¢t > 7 > ¢4
with x(7) = x¢ and some finite positive constant Q. (The equivalence of
the norms of n-element real or complex vectors implies that any vector
norm can be used in this condition.) A zero-input time-variant linear
system is called uniform exponentiolly stable if there exist finite positive
constants @ and P such that for all elements of the fundamental matrix,
[y (E,T)] < Pe~Q=7)_ One can also prove that uniform exponential
stability is equivalent to the assumption that with some finite positive
constants @’ and P/, ||x(t)]| < P'e~@ ¢=7)|xq]| for any t > 7 > ¢y and
xo where x(7) = xg.

4.1.3  The Stability of Time-Invariant Linear Systems

This section is divided into two parts. In the first part the stability of
linear time-invariant systems given in state-space form is analyzed. In
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the second part, methods based on transfer functions are discussed.
In Chapter 2 we have derived closed formulas for the fundamental
matrices ¢(t,to) and ¢(t,0) of continuous and discrete systems.
Assuming that Ay, Ag,..., A, are the distinct eigenvalues of A with
multiplicities mi, ma, ..., m;, we conclude from Equations (1.45) and
(1.44) that for continuous systems

T Tn,'—l
¢(t,t0) - eA(t*to) — Ze)\i(t—tn) Z (t _ tO)lBil , (410)
i=1 1=0
and for discrete systems
T mi—l
B(t,0)= A= X D iCy, (4.11)
i=1  1=0

where B;; and C;; are constant matrices.
These formulas and Theorem 4.4 imply the following stability condi-
tions.

THEOREM 4.5

(i) Assume that for all eigenvalues of A, Re A\; < 0 in the continuous case
(or |A;| £ 1in the discrete case), and all eigenvalues with the property
Re X\; = 0 (or |A;| = 1) have single multiplicity; then the equilibriim is

stable.

(i)  The stability is asymptotic ifand only if forall i = 1,2,...,7, Re \; <0
(or [X| < 1)

PROOF

(1) If Re A\; < 0 (or |\ < 1), then the ith term of (4.10) (or (4.11)) is
bounded. If m; = 1, then this term reduces to

exi(t—t“)Bio(Ol‘ AﬁCio) ,

which is bounded even if Re A; = 0 (or |A\;]| = 1).

(ii) Assume first that Re A; < 0 (or ;] < 1) for all i. Then in Equa-
tion (4.10) (or (4.11)) each term of the right-hand side tends to zero
as t — oo. The eigenvalue conditions are also necessary, since the
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derivation of relations (1.45) and (1.44) implies that all eigenvalues
Ai show up in at least one term.

REMARK 4.2  Note that Part (i) gives only sufficient conditions for
the stability of the equilibrium. As the following example shows, these

conditions are not necessary.

Example 4.3

Consider first the continuous system X = Ox, where O is the zero
matrix. Note that all constant functions x(¢) = X are solutions and
also equilibriums. Since

B(t,to) = eOft—0) = 1

is bounded (being independent of ), all equilibriums are stable but O
has only one eigenvalue A1 = 0 with zero real part and multiplicity n,
where 1 is the order of the system.

Consider next the discrete systems x(¢t + 1) = Ix(¢), when all
constant functions x(t) = X are also solutions and equilibriums. Fur-
thermore,

o, 0)=At=T" =1,

which is obviously bounded. Therefore, all equilibriums are stable,
but the condition of Part (i) of the theorem is violated again.

Based on Theorem 4.4 and Examples 1.19 and 1.20, the following
extension of Theorem 4.5 can be proven. The equilibrium is stable if
and only if for all eigenvalues of A, Re A; <0 {or |A;| < 1),and if \; is a
repeated eigenvalue of A such that Re A; = 0 (or [A;] = 1) then the size
of each block containing A; in the Jordan canonical form of A is 1 x 1.

COROLLARY 4.2
If for at least one eigenvalue of A, Re A; > 0 (or |A;| > 1), then the system is
unstable.

REMARK 4.3  The equilibria of inhomogeneous equations are stable
or asymptotically stable if and only if the same holds for the equilibria

of the corresponding homogeneous equations. |

The conditions of Theorem 4.5 are illustrated next.
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Example 4.4

Consider again the continuous system

< (2)-(0)

the stability of which was analyzed earlier in Examples 4.1 and 4.2
by using the Lyapunov function method and the boundedness of the
fundamental matrix.

The characteristic polynomial of the coefficient matrix is

o(A) = det (:3 _“A’) =N 47,

therefore, the eigenvalues are \; = jw and A2 = —jw. Both eigen-
values have single multiplicities, and Re A\; = Re A2 = 0. Hence, the
conditions of Part (i) are satisfied, and therefore, the equilibrium is sta-
ble. The conditions of Part (ii) do not hold. Consequently, the stability
is not asymptotical.

If a time-invariant system is nonlinear, then the Lyapunov method is
the most popular choice for stability analysis. If the system is linear,
then the direct application of Theorem 4.5 is more attractive, since the
eigenvalues of the coefficient matrix A can be obtained by standard
methods (see for example, [42]). In addition, several conditions are
known from the literature that guarantee the asymptotical stability of
time-invariant discrete and continuous systems even without computing
the eigenvalues. In the remaining part of this section some of such
conditions are presented.

For continuous systems the following result has a special importance.

THEOREM 4.6
The equilibrium of a continuous system (4.6) is asymptotically stable if and
only if equation

ATQ+QA=-M (4.12)

has positive definite solution Q with some positive definite matrix M.

PROOF

(a) Assume first that Equation (4.12) has positive definite solution
with arbitrary positive definite matrix M.

Consider the Lyapunov function V(x) = x7 Qx for the homo-

geneous equation X = Ax. Select the state space X = R", then
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obviously V(x) is continuous and has a unique minimum point

at X = 0, which is the equilibrium of the homogeneous equation.
Furthermore,

Vix(t)) = xTQx +xT Qx = (Ax)TQx + xTQ(Ax)

=xT(ATQ+QA)x = -x"Mx <0,

unless x # X = 0. Therefore, the equilibrium of system X = Ax is
asymptotically stable, which follows from Theorem 4.2.

(b) Assume that for all eigenvalues A; of A, Re); < 0. Let M be any
positive definite matrix. We show next that

o
Q= / ATIMAL g1
0

is positive definite and satisfies Equation (4.12).
Suppose that u # 0, then

o0
u'Qu= / uTeA Tt MeAtudt > 0 ,
0

since e is invertible (see Theorem 2.2) and therefore, eAty # 0.
Furthermore,

o0 oo
ATQ+QA = / ATATEIVEAL g 4 / ATIMEAA dt
4] 0

_ /O * % (eATtMeAt) g — [eATtMeAtK

=0-M=-M,

since eAT0 — ¢A0 _ 1 and both matrices eAt and eA”t tend to
zero ast — ox.

REMARK 4.4  In practical applications M is usually selected as the
identity matrix.

Let o(A) = A" + p1 A" 1 4+ .-+ + p X + po be the characteristic
polynomial of matrix A. Let )A; denote any real eigenvalue, then the
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linear factor A — A; has positive coefficients, if A; < 0. Assume next that
ap + 76, is an eigenvalue of A, then «; — 73, is also an eigenvalue with
the same multiplicity. Therefore, ¢(A) is a multiple of the quadratic
polynomial

A= — BN —ar+3B) = A2 — 2\ +of + BE .

If oy < 0, then all coefficients of this polynomial are positive. Since ¢(A)
is the product of such linear and quadratic factors, we have the following
result.

THEOREM 4.7
Assume that all eigenvalues of matrix A have negative real parts. Thenp; > 0
(i=0,1,...,n-1).

COROLLARY 4.3

If any of the coefficients p; is negative or zero, the equilibrium of the system
with coefficient matrix A cannot be asymptotically stable. This result can be
used as an initial stability test. However, the conditions of the theorem do not
imply that the eigenvalues of A have negative real parts, as it will be illustrated
in Example 4.6.

Example 4.5

In the case of matrix

n=(20)

the characteristic polynomial is p(A) = A? + w?. Since the coefficient
of A is zero, the system of Example 4.4 is not asymptotically stable.

The next condition is known as the Hurwitz criterion. It is based on
the construction of the following determinants:

Ay = det(pn_1)

AZ = det (pn.—l pn—3>

1 Prn-2

Pn-1Pn-3 Pn-5
Az = det 1 pn-2pny

0 pn-1pn-3
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Pn—1Pn-3 Pn-5 """ 0 0
1 pnopp-a---0 0
0 Pn—-1Pn-3 - 00
0 1 pp2---00

0 0 0

A, =det 0 DPn—1-""

o O
o O
oo -
B3

- O

o O

THEOREM 4.8
Assume that p;, > 0 (i = 0,1,...,n — 1), then all eigenvalues of A have
negative real parts if and only ifall A; > 0(i =1,2,...,n).

The proof of this theorem is found, for example, in [15].

Example 4.6
Consider polynomial

W(N) = A 2203 1302 4N+ 5,

which satisfies the conditions of Theorem 4.7, since all of its coefficients
are positive. However, in this case,

Ay =det(2) =2>0

and 54
Ag=det<13>=2>0,
but
240
NAz=det| 135} =-12<0.
024

Hence the conditions of Theorem 4.8 are not satisfied. That is, the sys-
tem is not asymptotically stable. In Problem 4.15 the same conclusion
is reached based on computing the roots of .

In many practical cases, a similar result, the so-called Routh-criterion,
is applied. Its details can be found for example in [31], and we mention
that it is based on determining the number of sign changes in a Routh
array constructed from the polynomial coeflicients.
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In many applications, especially in economics, the dynamic continuous
systems are described by differential equation

%x = KAx + Bu,
where matrix K is real positive definite, in most cases diagonal with

positive diagonal elements. The following theorem is usually applied in
establishing the asymptotical stability of such systems.

THEOREM 4.9

Assume that K is positive definite and A + AT is negative definite. Then all
eigenvalues of K A have negative real parts, that is, the system is asymptotically
stable.

PROOF  From the eigenvalue equation of KA we know that
KAv = v,

where A is an eigenvalue of KA with associated eigenvector v. Since K
is nonsingular, v = Ku with some vector u. Therefore,

KAKu = AKu.

Premultiplying this equation by @7, where overbar denotes complex
conjugate, yields the relation

i"KAKu = xa"Ku.
The transpose conjugate of this equation is
aTKATKu = MiTKu,
and by adding these equations,
aTK(AT + A)Ku= (A + NaTKu. (4.13)
Since v # 0, u is nonzero. Therefore,
GTK(AT + A)Ku=vT(AT + A)v <0

and
a’Ku>0,
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which imply that
A+ X =2ReX <0.

Hence, the proof is completed. |

COROLLARY 4.4
Assume that A + AT is negative definite. Then all eigenvalues of A have
negative real parts.

PROOF  Select K = I in the assertion of the theorem. 1

REMARK4.5  Analternative proof of the theorem can be constructed
based on the selection of the special Lyapunov function x”K~'x. |

For discrete systems, the above stability criteria can be modified ac-
cordingly. The details are given, for example, in [14]. An easy stability
checkis implied by Theorem 1.8 and can be formulated as follows. If
for some matrix norm, |[A|l < 1, then the equilibrium is asymptoti-
cally stable. Note that it is possible that all discussed matrix norms
(p = 1,2, 00 and the Frobenius) are greater than one, and the system is
still asymptotically stable. Such an example is presented next.

Example 4.7

In the case of matrix
05 0
A= (" os)
the eigenvalues are \; = Ay = 0.5. However, [|A|loc = [|All1 = 1.5,

[lAll2 = 1.207, and || A = v/1.5. Hence, the eigenvalues are inside
the unit circle, but the norms are greater than one.

In the second part of this section, stability conditions will be given
based on the properties of the transfer function.

The transfer function of the continuous system

x = Ax + Bu

y =Cx (4.14)
and that of the discrete system

x(t+1) = Ax(t) + Bu(t)
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y(t) = Cx(t) (4.15)

have the common form
H(s) = C(sI- A)"'B, (4.16)

as it was shown in Sections 3.3.2 and 3.4. Note that the poles of the
system are defined as all values of s such that sI — A is singular. In
special cases some poles may be cancelled in the rational function form
of H(s), and they might not be explicitly shown. The equilibrium of
system (4.14) (or (4.15)) with constant input is stable if all poles of
H(s) have nonpositive real parts {or absolute values less than or equal
to one) and all poles with zero real part (or unit absolute value) are
single. Similarly, the equilibrium is asymptotically stable if and only if
all poles of H(s) have negative real parts (or absolute value less than
one). Even in the case when some poles are canceled by zeros, we still
have to consider all poles in the above criteria.

Example 4.8

Consider again the system

(2 ()

which was discussed in earlier sections. Assume that the output equa-
tion has the form

y=(11)x.
Then
s+ w
H(s) = -——,
(s) 52 + w?

as it was derived in Example 3.8. The poles are jw and —jw, which
have zero real parts. Consequently, the equilibrium is stable but not
asymptotically stable.

A special stability criterion concerning single-input, single-output time-
invariant continuous systems will be introduced next.
Consider the continuous system

x = Ax+bu

y=clx, (4.17)
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where A is an n X n constant matrix, b and ¢ are constant n-dimensional
vectors. The transfer function of this system is

Hi(s) =c'(sI- A)"'b,

which is obviously a rational function of s. Combine next this system
with the feedback-type input u = ky, where k is a constant. Then the
feedback system can be described by the differential equation

% = Ax + kbcTx = (A + kbcT)x . (4.18)

The transfer function of the feedback is the 1 x 1 matrix (k), since in
Figure 3.8, Y3 = kUj;. Then, from Equation (3.37) we conclude that the
transfer function of the feedback system is

H(s) — H(s)

Ak (4.19)

which is also a rational function of s.

Before presenting the stability criterion due to Nyquist, which shows
the connection between the asymptotical stability of systems (4.17)
and (4.18), we introduce the following definition.

DEFINITION 4.3 Let r(s) be a rational function of s. Then the locus of
points

L(r) = {a + jbla = Re(r(jv)),b = Im(r(jv)),v € R}
is called the response diagram of r.
Note that L(r) is the image of the imaginary line Re(s) = 0 under the
mapping 7. We shall assume that L(r) is bounded, which is the case if
and only if the degree of the denominator of r is not less than that of

the numerator, and r has no poles on the line Re(s) = 0.

Example 4.9

Consider again the system

- (25 (1)

y=(1,1)x.
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From the previous example we know that the transfer function is

S -+ w
H(s) = wror

Now the locus L{H) will be determined. If s = jv (v € R), then

JUtw w . v
H(s) = = - — .
(s) ey e SR e

Therefore, L(H ) consists of the points

—_— — w — — k]
z=Rez=—prmz . y=Imz= —3"5 .

This parameterized curve can be directed with increasing values of v
as it is shown by Figure 4.2 for the special case of w = 1. A direct

relation between = and y can be obtained as follows.
From the first equation we have

and the second equation implies that

w2 —w
SN T
Y= —orme T s T o
—z  Tw w

v=—"1-0  Ay=Im(L(H)) v=1-0
V=— v=0
v=oo x = Re(L(H))
v=1+0 v=—1+0

Figure 42 Graph of L(H).
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Note that this locus is not bounded, since H(s) has the poles s = +jw
on the line Re(s) = 0.

THEOREM 4.10

Assume that Hy has a bounded response diagram L(H,). If Hy has v poles in
the half-plane Re(s) > O then H has p + v poles in the half-plane Re(s) > 0
if the point (1/k) + j - 0 is not on L(H, ), and L{H,) encircles (1/k) +35-0p
times in the clockwise sense.

PROOF  Note first that if C is a simple closed curve, then singulari-
ties of function H{(s)/H1(s) (where “prime" denotes derivative) are the
poles and zeros of H; inside C. Rewrite H; as

Hy = (s+s:)™ hi(s),

and note that the residue of H{/H, at every pole of H; of multiplicity
m; is —m,, and that the residue at every zero of multiplicity m; is m;;

furthermore,
Hi(s) ™m; hi(s)

H](S) - S+ 8; + Hl(S) !

where h;/H is analytic near s = —s;. By applying the residue theorem
to all such expansions with —s; being inside C, we conclude that

1 H{(s)
21cj Jo Hai(s)

ds=z—-p, (4.20)

where z and p are the numbers of zeros and poles of H; inside C, re-
spectively.
By direct integration we know that

1 Hi(s) , 1
'2—71_7 Hl(S) ds = 27Tj lnHl(s) y

and therefore, by integrating around a closed curve C no change is
obtained in the magnitude of In H; but the argument of H; is changed
by 2w E, where E is the number of times the image of C encircles the
origin in the H; plane. Hence, z — p = E.

Consider next the transfer function H (s) of the feedback system (4.18).
The zeros of H(s) are the same as the zeros of H;, and the poles of H(s)
are the zeros of 1 —kH;. Select C as a contour consisting of the imaginary
axis. Note that L(H) encircles the origin if and only if L(H;) encircles

the point 1/k. Then the result follows from relation (4.20). I
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COROLLARY 4.5

Assume that system (4.17) is asymptotically stable with constant input and
that L(H4) is bounded and traversed in the direction of increasing v and has
the point (1/k) + j - 0 on its left. Then the feedback system (4.18) is also
asymptotically stable.

This result has a lot of applications, since — as we will see in Chap-
ter 9 — feedback systems have a crucial role in constructing stabiliz-
ers, observers, and filters for given systems. Figure 4.3 illustrates the
conditions of the corollary. The application of this result is especially
convenient if system (4.17) is given and only appropriate values k of the
feedback are to be determined. In such cases the locus L(H;) has to be
computed first, and then the region of all appropriate k values can be
determined easily from the graph of L(H1).

ImA ImA
1 Re 1 Re
k k
Stability conditions hold Stability conditions are violated

Figure 4.3 Illustration of Nyquist stability criteria.

4.2 BIBO Stability

In the previous section, internal stability of dynamic time-invariant sys-
tems was examined, when some properties of the state were investigated.
In this section the external stability of dynamic systems is discussed,
which is usually called the BIBO (Bounded Input-Bounded Output)
stability. Here we drop the simplifying assumption of the previous sub-
section that the system is time-invariant. We will hence examine time-
variant systems.
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DEFINITION 44  Adynamic system is called BIBO stable if for zero initial
conditions, a bounded input always evokes a bounded output.

This kind of stability can be examined by using the direct input-
output relations:

y(t) = C(t)é(t, to)xo + t C(t)o(t, 7)B(7)u(r)dr (4.21)
and
t—1
y(t) = C(t)o(t,0)x0 + > _ C(t)g(t, 7 + 1)B(7)u(r) (4.22)
=0

for continuous and discrete time-variant linear systems, respectively.
In BIBO stability we always assume that the initial state is zero;
therefore, (4.21) and (4.22) reduce to relations

t

y{t) = t T(t, T)u(r) dr (4.23)
with
T(t,7) = C{t)(t,7)B(r) ,
and .
y() = > T(t,7)u(r) (4.24)
T=0
with
T(t,7) = C(t)p(t, 7 + 1)B(7) ,
respectively.

For continuous systems, a necessary and sufficient condition for BIBO
stability can be formulated as follows.

THEOREM 4.11
Let T(t,7) = (ti;(t, 7)), then the continuous time-variant linear system is
BIBO stable if and only if the integral

i

|ti;(t, )| dr (4.25)

to

is bounded for all t > to, i and j.
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PROOF

(a) Assume first that forall ¢ > g, 7 and j,

t
[tij(t,’)')l dr S I{ij ;

to

furthermore,
lui(t)] < Uj (t > tp and all 5) .
Then
t
O] =| [ 3ttt rus()dr
v

t
S/ Z‘tij(th)"[uj(T)ldTSZKijUj7
J

tuy j

hence the output is bounded.

(b) Assume next that the integrals (4.25) are not all bounded. Then
there exists a pair (49, jo) such that for all ¥ > 0,

in
/ Itiojn(tN7 T)l dr > N

to

with some ty > tp. Select now the input function as

. 1if ti(,j“(tN7 )20
uj, (1) = { —1 otherwise,

and u;(7) = 0 for j # jo. Then

iNn
o (t) = / S b (b 75 () dr
to j

N tn
= / tiujn (tN’T)uJ'n (T) dr = / ltiojo (tNxT)l dr > N .

to to
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Hence, the output is not bounded, which completes the proof.

COROLLARY 4.6
Integrals (4.25) are all bounded if and only if

I(t) = /t Zij(t,r)mT (4.26)

is bounded for t > to. Therefore, it is sufficient to show the boundedness of
only one integral in order to establish BIBO stability.

The discrete counterpart of this theorem can be given in the following
way.

THEOREM 4.12
Let T'(t, ) = (¢:;{t, 7)), then the discrete time-variant linear system is BIBO
stable if and only if the sum

1) = lto(t,7) (4.27)

is bounded for all t > 1, i and j.

Since the proof of this result is analogous to the continuous case, the
details are left to the reader as an exercise.

COROLLARY 4.7
The sums (4.27) are all bounded if and only if

t—1
YD It (4.28)

7=0 1 J

is bounded. Therefore, it is sufficient to verify the boundness of only one sum
in order to establish BIBO stability.

Consider next the time-invariant case, when A(t) = A, B(t) = B,
and C(t) = C. From the above theorems and the definition of T'(¢, 7),
we have immediately the following sufficient condition.
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THEOREM 4.13
Assume that for all eigenvalues A; of A, ReX; < 0 (or [A;] < 1). Then the
time-invariant linear continuous (or discrete) system is BIBO stable.

Example 4.10

Consider again the continuous system

X:(_gg>x+(§)u

y=(1,1)x.

In this case the results of Example 2.6 imply that

St 1) = < cosw(t — ) sinw(t—T)) ]

—sinw(t —7) cosw(t —7) '

therefore,

T(t, ) = (1,1)< cosw(t —T) sinw(t—7)> (0)

—sinw(t —7) cosw(t — 1) 1

=sinw(t — 7) + cosw(t — 1),

and

I(t):/o |sinw(t — 7) + cosw(t — 7)| dr .

We will now show that this integral is not bounded. Note first that by
introducing the new integration variable z = w(t — 7),

1 wt
I(t)=~/ |sinz + cosz|dx .
0

w

Observe next that

2 ix Ix
/ |sinz + cosz|dx = / (sinz + cosx) da:+/ (—sinz — cosz)dz
0 -1 :

:i’:T %ﬂ'

T =4/2.

3,
= [~cosz +sinz]*]_+ [cosz — sinz]
—37 ks

XN

Hence by selecting t = 27N /w,

I(t) = 24van
w
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which tends to infinity as N — oo. That is, this system is not BIBO
stable.

Finally we note that BIBO stability is not implied by an observation
that a certain bounded input generates bounded output. All bounded
inputs must generates bounded outputs in order to guarantee BIBO
stability.

4.3 Applications

In this section the applications of the stability analysis of dynamic sys-
tems will be illustrated via particular systems arising in engineering and
social sciences.

4.3.1 Applications in Engineering

1. Consider the simple harmonic oscillator introduced in Chapter 2, and
given in Application 3.5.1-1, which is summarized below:

. Ow 0
X = (—w 0>x+ (1)“'
Is it stable?

To answer this question we must find the eigenvalues of A. Note that
the characteristic equation has the form

w(A) = det(A — AI) = det (::; _‘;) =212

The eigenvalues are the roots of p:
)\1,2 = :tjw .

These values are also called the poles of the system. The poles are
single and on the imaginary axis. Therefore, the system is stable, but
not asymptotically stable, which means that if we leave it alone in its
equilibrium state, it will remain stationary. But if we jerk on the mass it
will oscillate forever. There is no damping term to remove the energy, so
the energy will be transferred back and forth between potential energy
in the spring and kinetic energy in the mass. A good approximation of
such a harmonic oscillator is a pendulum clock. The more expensive it
is (i.e., the smaller the damping), the less often we have to wind it (i.e.,
add energy).
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2. What about the damped linear second-order system of Applica-
tion 3.5.1-2; is it stable? From Equation (3.66) we know that the eigen-

values are
Ar2 = —Cuwp T jwnyv1— (:2 .

The locations of the poles depend on the value of {. Refer to Equa-
tion (3.66) and Figures 3.20 and 3.22, and note that if ¢ > 0 the poles
are in the left half of the A-plane and therefore, the system is asymptot-
ically stable. If { = 0, as in the previous problem, the poles are on the
imaginary axis; therefore, the system is stable, but not asymptotically
stable. If ¢ < 0, the poles are in the right half-plane and the system is
unstable.

3. For the electrical system of Application 3.5.1-3 the characteristic
polynomial of matrix A of (3.78) has the form

Ry 1 1
(-2) (em) =0

which simplifies as

Ry 1 R,y 1
N =+ — ——+— ] =0.
+ ( 2 032) + (LC’RQ + LC’) 0
Since R, Rg, L, and C are positive numbers, the coeflicients of this

equation are all positive. The constant term equals A1 A2, and the coef-
ficient of A is —(A1 + A2). Therefore,

A+ A <0 and AA > 0.

If the eigenvalues are real, then these relations hold if and only if both
eigenvalues are negative. If they were positive, then A; + A2 > 0. If
they had different signs, then AjA; < 0. Furthermore, if at least one
eigenvalue is zero, then A; Ao = 0. Assume next that the eigenvalues are

complex:
/\1,2 = ReX + jI’ITL/\ .

Then
A1+ Ay =2ReA

and
MAz = (ReX)? + (ImA)? .

Hence A; + A2 < 0 implies that ReA < 0.

In summary, the system is asymptotically stable, since in both the real
and complex cases the eigenvalues have negative values and negative real
parts, respectively.
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4. For the transistor circuit model (3.80) of Application 3.5.1-4, the
characteristic equation is

hie
det( Iif_c)\ 0):0,

& —-A
which can be simplified as
he
24X 4+0=0.
A°+ 7 +
The roots are L
)\1 =0 and )\22——7;-.

Therefore, the system is stable, but not asymptotically stable.
5. To access the stability of the hydraulic system of Application 3.5.1-5,
we must solve its characteristic equation

-0 = A a
d“( b —(b+c)—/\> =0,

where @ = 1/R1A;, b = 1/R1As, and ¢ = 1/RyAy. This equation is
simplified as
Mida+bte)tac=0.

Note that a, b, and ¢ are all positive numbers, therefore,
AL+ A <0 and A1Ag > 0.

Hence both roots are negative or they are complex conjugate numbers
with negative real parts. In either case the roots are in the left half of
the A-plane, and the system is asymptotically stable.

6. In the case of our multiple input electrical system the stability can
be easily examined by determining the characteristical polynomial of the
coefficient matrix. By expanding the determinant with respect to the
first row we have the following result:

Eon 0-f
p(A) = det e
L1y
c T
R 1 1 A
= (—— = AN+ =) -—(0+ =
(5 =N+ 5 = 0+ )
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1,1 ) R
CL, ' CLy’ CLL;°

= —)\3—)\2]%—)\(

Therefore, the eigenvalues are the roots of the cubic equation

R (1 L Ly, R
L CL, " CLy’ " CLiL;

0.

Notice that all coefficients are positive, that is, the necessary conditions
of Theorem 4.7 are satisfied for the asymptotical stability of the system.
In order to verify that the system is asymptotically stable, we will apply
Theorem 4.8. We compute first the following determinants:

R R

Ay =det(—)=—>0
1 (L1) I
Lﬂ CLRL R
Agzdet( 1 1 121 )‘—‘—'—"—>0
1 CL + CL, CL%
R R
T1 1CL1L21 0 1
Ay=det| 1 -+ 0 =—0—a—2>0.
3 0 CL) —&CLZ R CZL:%LQ
Ly CLiLsy

Because all the three determinants are positive, Theorem 4.8 implies
that the system is asymptotically stable.

7. To find the eigenvalues for the stick-balancing problem of Applica-
tion 3.5.1-7, find the roots of the characteristic polynomial

‘70()\) = det(A—/\I) = det (Mz —/]\‘> — )\2 -g,

which are
A2 = 9 .

One is in the right half-plane and the other is in the left half-plane, so
the system is unstable. The instability is understandable, since without
an input to control the system, if you are not upright with zero velocity
the stick will fall over.

8. For the cart with two sticks model of Application 3.5.1-8 we must
solve the characteristic equation

-2 0 1 0

0-x 0 1
a1 ag —A 0
a3 Qg 0—A

det =0
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of matrix A in Equation (3.103). By expanding the determinant with
respect to its last column, we have

-A0 1 -A 0 1
aiag —A | — A 0-X 0| =0.
az ag O a1 az —A

Simple calculation shows that it simplifies to equation
)\4 - )\2(0,4 + al) -+ (a4a1 — azag) =0.
It is easy to see that A? is real, since the discriminant is
(ag + a1)? — 4(aqa; — asaz) = (aq — a1)? + 4asaz >0 .
Furthermore,
ag +a3 >0 and agaq — asaz > 0,

which imply that there are two distinct positive solutions for A2. Hence,
there are two positive and two negative eigenvalues, which implies the
instability of the system.

The fact that the system is not asymptotically stable follows also from
Theorem 4.7, since there are a negative and two zero missing coefficients.

9. The stability of the electrical heating system can be also examined
by computing the characteristic polynomial of the coefficient matrix:

~Ah Ay
det Ghe ArhyiAghs Y
ron ron
Aih Aihy + Ash A Ashih
1\ 2 1741 1741 212 14127011462
= A+ A( Cl + G ) GG

Because all coefficients are positive, similar to the case of the electrical
system discussed in Application 3, we see that the system is asymptoti-
cally stable.

10. For the nuclear reactor model the characteristic polynomial of the
coefficient matrix has the following form:

e I VR PP Y ETED SR W
B
n=det| 1 TR0 0 00

i)
...

b 0 00 - 0 —Xn—2X
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We can expand this determinant with respect to its last column to obtain
the recursion

Pm(Y) = (A-Am)on 1 D" P2 QAN Ak Aa) - (VA

If m = 0, then

and if m = 1, then #; = 3 implies that

!
l

:,\2-,\<p—;—ﬁ—,\1>+>\1<_”jﬁ—%)

o) = (272 =2) a-

- A
_z_ (PP _ _ e
( 1 ’\1) ]

If p is positive, then the system is unstable and the reactor is called
supereritical. If p is zero, then the two eigenvalues are

-8B -1\
A1=0 and /\gzi[—l-<0.

Hence the system is stable, but not asymptotically stable. In this case
the reactor is called critical. If p < 0, then the constant and the coeffi-
cient of A are both positive. Hence the system is asymptotically stable,
and the reactor is called subcritical.

In the more general case, if m > 1 a similar but more complicated
derivation is needed.

4.3.2  Applications in the Social Sciences

1. Consider first the nonlinear predator-prey model (3.111) and (3.112),
which is now repeated for convenience:

G(t) = aG(t) — bG(H)W (1)

W(t) = —cW(t) + dG()W (1) .
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Before examining the stability of the system we introduce the new nor-
malized variables

o()=26()  and wn:%wwy
then the system reduces to
§(t) = ag(t)(1 — w(t))

w(t) = ~cw(t)(1 - g(t)) (4.29)
with the nonzero equilibrium § =w = 1.
A Lyapunov function will be now constructed that will guarantee the
stability of this equilibrium.
Divide Equation (4.29) to get

W —cw(l —g)
9 ag(l-w)

which implies that
cg—cg-kau')—aE =0.
g w
By integrating each term we obtain

cg—clng+aw—-ahw=C, (4.30)

where C is a constant.
Define next the Lyapunov function

Vig,w)=cg—clng+aw—alnw (4.31)

for g,w > 0. It is continuous, and for every trajectory it is constant,
so it is (not strictly) decreasing. The unique minimum of V is at the
equilibrium (1,1), which can be proven as follows.

Note first that equations

v .10
dg g
aV-——a~a~l-—:0

ow w
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have the unique solution (1,1); furthermore, the Hessian of function V'
is diag(c/g?, a/w?), which is always positive definite. Hence function
V is strictly convex and therefore, (1,1) is the only global minimizer of
V. Consequently, V satisfies the conditions of Theorem 4.1; therefore,
the positive equilibrium is stable. We will next show that the stability
is not asymptotic. For fixed values of C, the points (g, w) satisfying
Equation (4.30) form a closed curve shown in Figure 4.4. Hence g(t)
and w(t) do not converge to the equilibrium (1,1). A computer study
of the predator-prey model is reported in [44], where the closed curve
solutions are determined by using numerical methods.

Figure 4.4 Closed curve solutions of the predator—prey model.

The linearized predator—prey model (3.114) has the coefficient matrix

be
(579
e 0

with characteristic polynomial

be ad
(p(/\):)\2+§-%=)\2+ac.

Therefore, the eigenvalues are j/ac and —j+/ac, which satisfy the con-
ditions of Part (i) of Theorem 4.5. Hence the equilibrium is stable and
the stability is not asymptotic. Note that the same result is obtained as
in the case of the original nonlinear system.

2. In the case of the cohort population model, the coefficient matrix
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of the governing difference equation (3.115) is

bl b2 bB T bn—l bn
431
a2

A= : , (4.32)

Qp—-1 0

where b; >0 (i =1,...,n)and a; >0 (i =1,...,n —1). The system is
asymptotically stable if and only if all eigenvalues of A are inside the unit
circle. An easy sufficient condition using only the matrix elements can
be formulated in the following way. The system is asymptotically stable
if for some matrix norm, ||A]| < 1, because it implies that all eigenvalues
of A are inside the unit circle (see Theorem 1.8). By selecting || - [loo,
[l - I, and {| - ||z, the following sufficient conditions are obtained for the
asymptotical stability of the system:

(1) by+ba+-+b,<1l,a;<1(1<i<n~1);
(ii) bi+a;<1l(i=1,...,n=1),b,<1;
(i) 0 bF+ 0 e <1

Hence, each of these conditions implies the asymptotical stability of
the system.

3. In the case of the arms-races model (Equations (3.116) and (3.117)),
the coefficient matrix has the form

A= (_2 _3) (a,b,c,d > 0) (4.33)

with characteristic polynomial
©(A) = (=b—A)(=d = \) —ac = A% + A(b+d) + (—ac + bd) .
If A1 and Ay are the eigenvalues, then

M+ Az =—(b+d)

Il

AiAg = —ac+ bd

which imply that both eigenvalues have negative real parts if and only if
b+d and —ac+ bd are both positive. Hence the system is asymptotically
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stable if and only if ac < bd. The condition has sense, since a and ¢ show
how armament levels increase, and b and d show how they decrease.
4. The warfare model (3.121) is based on matrix

( 0-—hy
A= (—hl 0) , (4.34)

where hy and hy are positive constants. The characteristic polynomial

of this matrix is
(,0()\) = )\2 — h1h2 N

and the eigenvalues are v/ hihs and —+/hiho. Because we have a positive
eigenvalue, the system is unstable.

5. In Section 3.5.2 we saw that the nonlinear epidemics model (3.124)
is a special case of the predator—prey model {3.111) and (3.112) by se-
lecting the special parameter values ¢ = 0 and b = d. Therefore, the
stability of nonlinear epidemics can be discussed in an analogous man-
ner. It is easy to see that system (3.124) has infinitely many equilibrium
points (Z,0), where T > 0 is arbitrary. Simple calculation shows that
the linearized model has the following form:

e = 0 —aZ
55\ 0az-8)%

where we used the notation of Equation {3.13). The eigenvalues of the
coefficient matrix are Ay = 0 and A = af — . Therefore, the sys-
tem is unstable for £ > (/a and stable for Z < B/c«. The stability
is not asymptotical. The case T > (/a represents an expanding, very
dangerous epidemic.

6. The Harrod-type national economy model (3.10) has the form

Y(t+1) =1 +r—rm)Y(t) —rG) ,

where Y'(t) is the national income and G(t) is the government expendi-
ture. Assume that G(t) has the form

G(t) = oY (t) + 8,

that is, it is a linear function of the national income. In this case the
model simplifies to the time-invariant difference equation:

Yit+)=(0+7r—rm—ra)Y{t)—rf8.
The only equilibrium of this modified system is the solution ¥ of equa-

tion _ _
Y=0+r—-rm-ra)Y —rf,
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which is
go__™m B8
rT—TMm—TQ l-m-«

Note that ¥ does not depend on the growth factor r, and it is asymp-
totically stable if and only if

~l<l+r—rm—-ra<l.
These conditions are equivalent to relations
a>1l-m

and

0<r < ——— |
a+m-—1

which can be interpreted as a relatively large share of the government
in the economy, which has a small growth factor.

7. In Application 3.5.2 we saw that the nonlinear cobweb model (3.125)
has the form

p(t+1) = F(p(t)) ,

where

Fp) =d " (s(p)) -
It was also verified that this system has an asymptotically stable
unique equilibrium if
(a) f(p) exists for all p > 0;
(b) f(p)=0forallp>0; and

(c) f' exists and |f'(p)| < K for all p > 0, where K € [0,1) is a fixed
constant.

8. The linear continuous model of interrelated market dynamics is
governed by differential equation (3.130) with the coefficient matrix

K- (A-B), (4.35)
where K = diag(ky,... k) (ki >0,i=1,2,...,n) and A = (a;;) and
B = (b;;) are n x n constant matrices. From assumptions (3.129) we

know that

ai; — b <0 and Q5 — bij >0 (] # ’L) .
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Theorem 4.9 implies that all eigenvalues of matrix (4.35) have negative
real parts if (A —B) + (A — B)7 is negative definite, since K is positive
definite. Observe that the diagonal and off-diagonal elements of this
matrix are

2(ai; — b))  and  (a +aj) — (b +by)

respectively. Then Theorem 1.9 implies that all eigenvalues of this ma-
trix lie in the domain

D=B,UB,U---UB,

where

B;=<{A 1 I)\ — 2((1,',‘ — b”)f < Z |(aij + aji) — (bz] + bji)l
Jj#i

Therefore, if for all 4,

= 2as; = bi) > Y (@i +az) = (big + bsa)] (4.36)
i

then all eigenvalues are in the left half-plane. Hence, we proved that
condition (4.36) is sufficient for the asymptotical stability of the system.
In the economic theory, condition (4.36) is summarized by saying that
matrix (A — B) + (A — B)7T is strictly negatively diagonally dominant.

9. Consider next the simple discrete oligopoly problem (3.134). Note
that the matrix A. of coefficients of the governing difference equation
has the special form .

Ac= -3

1
1+ 51 , (4.37)
where 1 = (1) and I is the identity matrix.
We first show that the eigenvalues of 1 are 0 and N. The eigenvalue
equation of matrix 1 can be written as

v+ v+ -+ Uy = Ao (k=1,...,N).
If A =0, then any vector v = (vy) satisfying the relation vy +---+uy =0
is an associated eigenvector. If A £ 0, then v; = vy = -+ = vy = v*,
and therefore,

Nv* = v .

Hence, the nonzero eigenvalue is N.
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Consequently, the eigenvalues of A, are —1/2-0+1/2-1 = 1/2 and
-1/2-N+1/2-1 = (1- N)/2, which are inside the unit circle if and
only if N = 2. Hence, this model is asymptotically stable if and only if
it is a duopoly.

The modified discrete model (3.138) with adaptive expectations is
based on the coeflicient matrix

_mqy g my _lomy
— 2 2 2
Ao = ( ml —ml (1—m)I> ’ (4.38)

where for the sake of simplicity we assume that m; =mgp = -+ =my =
m. The eigenvalue equation of A, can be rewritten as

(214 21)u s (_l;zﬂx)v )

(ml1—mu+ (1 —m)Iv=>Xv. (4.39)

Add the 1/2-multiple of the second equation to the first equation to see
that .
A -v]=0.
)

That is, either A = 0 or u = —(1/2)v. The eigenvalue A = 0 is inside
the unit circle. If A # 0, then substitute u = —(1/2)v into the second
equation of (4.39):

—%(1 —Dv+(1-m)Iv=2>Av,
which is equivalent to the eigenvalue equation of matrix

—%1+ (1_22?)1. (4.40)

The eigenvalues of this matrix are

—-”1-0+(1——)-1=1—ﬁ and —%‘N+(1—%)-1=1

_m(N +1)
2 3

which are inside the unit circle if and only if

D<m<

N+1°

Therefore, this system is asymptotically stable for all N > 0 if m is
sufficiently small.
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The optimal value mepy of m can be determined by minimizing the
largest eigenvalue of matrix (4.40), which ensures the fastest order of
magnitude in the speed of the convergence of the solution to the equi-
librium as ¢ — co. This optimization problem is formulated as follows:

o m
minimize,, max{’l - —1;

SRS

2

3] A

,_E — the objective function

Z l ) m(N + 1) I

i Optimal 2

=l solution ll_ﬂ|

@ 2

(4]

1]

L]

3
4 } =T + »-
2 mg, 2 3 m

N+1

Figure 4.5 Finding the optimal value mp:.

The objective function is shown in Figure 4.5, where the value of mqp
is found by solving equation

ORI

| 3

2

which implies that
4
Mopt = m .
The continuous oligopoly model (3.139) is based on the coefficient
matrix M - A, where M = diag(mq,...,my) is positive definite, since
m; > 0 for all 4; furthermore,

2a a a
A= a2a---.a.
a a - 2a

From Theorem 4.9 we know that this system is asymptotically stable, if
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A + AT is negative definite. Note that

4a 2a --- 2a
AvAT—| 2052 o1t om
2a 2a -+ 4da

with eigenvalues
(2-0+2-1)a=2a and (2-N+2-1)a= (2N +2)a,

which are always negative since we have assumed that a < 0. Hence,
this system is always asymptotically stable.

Problems

1. Discuss the stability of the system

. 1o 1
— t
= (58)=+ (1)

where t is the time.

2. Issystem
. (11 n 1
X=1459/% o)

stable? Is it asymptotically stable?
3. Is the following system stable? Is it asymptotically stable?

e (20 5. (!
X = 02 X 1 W .
4. Discuss the stability of the mechanical system
ae (O Wiy (0
“\o-6/*"\2)"
y=(1,0)x

introduced in Problem 3.7.



4.3 Applications 239

5. Examine the stability of the discrete system

x(t+1) = (; ;) x(t) + ((1)) u(t) .

6. Discuss the stability of this discrete system

x(t+1) = (3 ;) x(t) + G) u(t)

7. Is the electric circuit system

Ldil—(tt) + (R + Ro)i(t) = u(t)

introduced in Problem 3.13 asymptotically stable?
8. Examine the stability of the system
z®) 425+ 35 +5x=u.

9. Examine the stability of this system

z® 4+ 3c® 4+ 23 425 L 35 45z =u.

10. Find the values of « so that system

SHRIOE

is stable, or asymptotically stable.

11. Examine the stabilit}; of the system

= (25 9=+ (1)

which is the generalization of Example (4.1) (with o # 0).

12.  Whatis the condition that function V(x) = ||x—%||3 is a Lyapunov
function for system

X = f(X) 1

where f : Q — Q is a continuously differentiable function and % is the
only equilibrium?
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13. Assume that f : R® — R" is continuously differentiable, £(0) =
0, and ||[f'(x)|l2 < 1 for all x € R™. Prove that with arbitrary x(0) =
xp € R, the sequence x(t + 1) = f(x(t)) converges to zero.

14. Let
-2-1
a-(21).
(i) Show that the eigenvalues of A have negative real parts.

(if) Select M = Iin Theorem 4.6. Find matrix Q, which satisfies Equa-
tion (4.12).

15. Find the roots of the polynomial
e(A) = AT+ 2203 1302 4N+ 5

and show that a system with this characteristic polynomial is unstable.

16. Illustrate Theorem 4.9 with matrices
41 -4 1
Kw—(14> and A-( 2—6)'

17. Given
s+1

s+ 253 +3524+45+5"

H{s) =

is the system stable?

18. Issystem

e (74 ) e (1)
y = (1,0)x

BIBO stable?
19. Is the following system BIBO stable?

. -4 1 22
x-( 2_6>x+(11>u.

y=(1,1)x
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20.

(i) Prove Theorem 4.1 for the continuous case.
(ii) Prove Theorem 4.2 for the continuous case.
(ili) Prove Theorem 4.3 for the continuous case.
(iv) Prove Theorem 4.12.

21. Assume that all eigenvalues of an n x n real matrix A have neg-
ative real parts. Show that A ! exists and

0
Al =/ eAtdt |

22. Prove the following generalization of Theorem 4.6. All eigenval-
ues of matrix A have real parts less than —a < 0 if and only if for every
symmetric, positive definite matrix M there exists a positive definite
solution Q of equation

ATQ+ QA +2aQ=-M.

23. Show thatif A is a real n x n matrix, then the continuous system
x(t) = Ax(t) is asymptotically stable if and only if the discrete system

x(t+1) = eAx(t) is asymptotically stable.

24. Interpret the conditions of Definition 4.2 and Theorem 4.2 for the
continuous system

x(t) = £(x(t))

with the Lyapunov function V(x) = (x — X)TG(x — %), where f is con-
tinuously differentiable, and G 1is a real, constant, symmetric, positive
definite matrix.

25. Repeat the previous problem with Lyapunov function
V(x) = (x - )TG(x)(x — %)

where G(x) is a real, continuously differentiable, symmetric, positive
definite matrix for all x.
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chapter five

Controllability

In previous chapters we have been concerned with the analysis of linear
and nonlinear dynamics. We have developed closed formulas for pre-
dicting future states and outputs, and in addition, stability problems
have been discussed. On the other hand, in control theory the control
problem is to find an input that causes the state or the output to behave
in a desired way. As an example, consider again the satellite problem
discussed earlier in Example 3.6. Let x; be a desired future state of
the satellite, that is, its desired positions, radial and angular velocities.
Find an input function that will drive the state to x; in a finite time. A
more restrictive problem is when an entire trajectory x(t) is given, and
we wish to find an input function such that the entire state trajectory
coincides with x(t).

In this chapter conditions will be introduced for the existence of state
and output control and in addition, an input will be found that performs
the desired control.

DEFINITION 51 A dynamic system with initial condition x(to) = xg is
said to be controllable to state x; at t; (> to) if there exists an input u(t) such
that x(t1) = x1. This concept is illustrated in Figure 5.1.

5.1 Continuous Systems

In this section the controllability of the continuous dynamic system
% = A(t)x + B(t)u, x(to) = %o (5.1)

y = C(t)x (5.2)

243
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x(H4 Input u(s) End
point
X t+-———t-t-F-d-qd-1-= «
I
1
Initial l
point !
X i
Yo ¢ State trajectories |
- +—
t
Iy t

Figure 5.1 Concept of controllability.

will be analyzed. We assume that A(t), B(t), and C(t) are n x n, n x m,
and pxn, respectively, and they are continuous in [tg, 00). Qur discussion
will start with the general case, then special results on time-invariant
systems will be demonstrated.

5.1.1 General Conditions

The general solution (3.19) of continuous linear systems implies that the
system is controllable to x; at t; if and only if there exists an input u(¢)
such that

t1
x3 = ¢(t1,t0)xo + ¢(t1, T)B(r)u(r) dr .

to

Since ¢(tg,t1) is nonsingular, this relation is equivalent to equation

t1

P(to, t1)xy — xp = @(to, 7)B(r)u(r) dr , (5.3)

to

where we used Properties (i), (ii), and (iii) of Theorem 2.3.
Introduce the mapping

Aw) = [ $lto,)B(r)u(r) dr

to

on the set of the m-dimensional continuous functions. This mapping
must not be confused with the system matrix A(¢). Note that the range
of this mapping is in R™. It is obvious that there exists an input u(¢)
for all x; € R™ which leads the state to x; at ¢; if and only if the range
R(A) is the entire R™.
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LEMMA 5.1
Vector v is in R(A) if and only if it belongs to the range space of matrix

W(to,t1) = /t 1 o (to, 7)B(r)BT (1) (1o, 7) dr . (5.4)

(

PROOF

(@)

(b)

Assume first that v € R(W (tg,t1)), then there exists a vector a
such that
V = W(t(), tl)a . (55)

Select input
u(t) =BT (1)¢" (to, 1)a, (5.6)

then
Alu) = N d(to, T)B(T)BT(T)d)T(tO, T)adr = Wiy, t1)a=v,
to

therefore, v € R(A).

Assume next that v ¢ R (W({g,t1)), then there exists a vector
w from the null-space of W (¢o,1) which is not orthogonal to v.
This fact is the consequence of the well-known property of n x n
symmetric matrices that their range and null spaces are orthogonal
complementary subspaces in R" (see Theorem 1.10). That is,

W(tg,tl)W =0 and WTV # 0.

We shall now verify that v ¢ R(A). Contrary to this assertion
assume that v € R(A). Then with some function ii(t),

v = /tl d(tg, T)B(T)a(r)dr .

Therefore,

0#wlv = /tl wl(to, T)B(T)A(7) dT . (5.7)

]

The definition of W implies that

0 = wTW(to. 1w = / ; W (to, IYB(rBT (1)o7 (to, 7w dr
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- / BT (1) (to, TYwl3 d

iy

where || - ||2 is the p = 2 norm of real vectors introduced in Defini-
tion 1.8. Since the integrand is continuous and nonnegative, it has
to be identically zero. Consequently, for all 7 € [to, 1],

B(r)T¢" (to,1)w =0,
and by taking the transpose of both sides,
wl @(to, 7)B(r) =07 (all T € [to, t1])
which contradicts relation (5.7). Thus, the proof is completed.

REMARK 5.1  There exists an input u(t) that drives the state of the
continuous linear system from x¢ to x; at time ¢; > t; if and only if
d(to,t1)x1 — x0 € R(W(tg,t1)). This condition is equivalent to the
existence of a vector a such that

W(to,tl)a = ¢(t0,t1)x1 —Xg . (58)

From part (a) of the proof of the theorem, we conclude that one particular
input that drives the system to x; at time £, is given as

u(t) = BT (t)¢" (to, t)a. (5.9)

In using this equation we have to compute first matrix W(to,¢1). In
most cases, numerical integration is needed. Then we solve linear equa-
tions (5.8) for a, for example, by Gauss elimination (seée [42]). The
method shows whether a solution exists or not. If no solution exists,
then the system is not controllable to x; at t;. If there is at least one
solution a, then an appropriate input can be obtained by the above for-
mula. We note that computer programs are available to perform Gauss
elimination.

In summary, an algorithm that verifies whether the system can be
controlled to x; at time ¢; or not, and in the case of controllability gives
an appropriate input, consists of the following steps:

Step 1 Compute the fundamental matrix ¢(%, to).
Step 2 Determine matrix W (%y, 1) by using Equation (5.4).
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Step 3 Find vector d = ¢ (tg,t1)x1 — Xo.

Step 4 Use Gauss elimination to determine whether linear equation
W(to, tl)a =d

has a solution. If it does, then the system can be controlled to x;
at t;, otherwise not.

Step 5 If ais a solution of the previous step, then determine function
u(t) by formula (5.9).

This algorithm is illustrated by the following example.

Example 5.1

Assume that the state of the system

= (53)x+ (D)w x0=(7)

has to be controlled to the final state

x(1) = (1) .

Step 1. Simple calculation shows that

e2(t—v‘) t—7T e2(t—-7‘)
st = (RN

(see Problem 1.17).
Step 2. Using Equation (5.4) we have

w(0,1)
_ 1 e—ZT — Te—2—r 0 (D 1) e-2'r 0 d
- o 0 e—2r 1 ’ _ pe2T g—27 T
(T e

0 —Te €
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The matrix elements are calculated by elementary integration:

by e
—arg
/oe T [_4]0

1—e¢
4 b)

1 4 6_4T L 1 e—4'r
—re Ydr = [~ - -1
/0 Te Tdr = |—1 ") lo /0 (-1) 2 dr

and

So,

W(0,1) ~ ( 0.02381 —0.05678)

- 0.05678 0.24542

Step 3. Simple matrix-vector algebra shows that

= (TE) () ()= (2= (o)

Step4. We have next to solve the linear equations

0.02381 — 0.05678 ar\ 0
— 0.05678 0.24542 az /] ~ \0.13534 '
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which can be rewritten as

0.02381a; —0.05678ay =0

—0.05678a; +0.24542a02 = 0.13534 .
From the first equation we have

0.02381
an = 0.05678a1 ~ 0.419340,1 )

and by substituting this expression into the second equation we get a
single equation for a:

(—0.05678 + 0.24542 x 0.41934)a; = 0.13534,
which implies that
a; ~ 2.9336 and so as ~ 1.2302 .

Step 5. And finally, the input is the following:

-2t o

u(t) =~ (0,1) ( _tz_u e_2t> a = e 2(~2.9336t + 1.2302) .
Lemma 5.1 implies the following important theorem.

THEOREM 5.1
The continucus systent is controllable from any initial state x(tg) = xo to an
arbitrary state x, at time t, > to ifand only if matrix W (to, t,) is nonsingular.

REMARK 5.2  If a continuous linear system is controllable from an
arbitrary initial state x¢ at any ¢, to any state x; at arbitrary ¢t; > to then
the system is called completely controllable. |

Example 5.2

Consider again the system modeled by the differential equation

= (25 () =)

In Example 2.6 we have seen that

bt 7) = ( cosw(t —7) sinw(t—7’)> ‘

—sinw(t — 7) cosw(t — 1)
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Therefore,

W(0,%1)
cosw(—7) sinw(—7) 0 cosw(—7) —sinw(—71)
( — sinw(~-7) cosw(— 'r)) (1) (O’l) <sinw(—-7) cosw(-—r)) dr
/ <‘&an> (- sinwT, coswT) dr
0 COSWT
131
- (-

t _ sin 2wfl cos 2wty —~1
dw
Ccos 2wt1—— tl 4 sin 2wty :

4w

2

sin? wr — sin w7 coswT d
r
— sin wT coswT cOS® WT

We shall next prove that this matrix is nonsingular for all t; > 0,
that is, the system is controllable to all desired x; atall£; > 0. The
determinant of W(0, t;) can be written as

t% sin® 2wt cos? 2wty — 2cos 2wty + 1
4 16w? 16w? !

which equals zero if and only if
4w?t? +2cos 2wty —2=0.

Introduce the new variable o = 2wty > 0, then this equation is equiv-
alent to relation

a?

=1-=
COS & D)

Consider next function
2

cp(a):cosoz—l-l-—o;—,

then easy calculation shows that ¢(0) = O and forall o > 0,
@(a) = —sina+a>0.

Hence ¢(a) > O for all @ > 0, and therefore, the determinant of
W (0,t,) is nonzero for all t; > 0.



5.1

Continuous Systems 251

Matrix W{tg,t1) is usually called the controllability Gramien. Its
properties are summarized next.

THEOREM 5.2
Matrix W {to, t1) satisfies the following properties:

(i) It is symmetric.
(ii) It is positive semidefinite.
(iii) (8/0)W(t,t1) = A()W(t, t1) + W(t, t1)AT(¢) — B(t)BT (),
W(ti,t1) =0.
(i) Wito,t1) = W{(to,t)+ ¢ (to, )W (¢, t1) 7T (to, ).
PROOF
(i) Because the integrand in (5.4) is symmetric, W (%, t,) is also sym-
metric. }
(if) Let v be any real vector, then
ty
viw(tg, t1)v = / vIg(to, T)B(T)BT(T)¢T<tO, Tyvdr
to
ty
= / BT ()¢ (to, T)V|3dT > 0.
to
(iii) We shall use the well-known fact that for smooth functions,

d m L of

p /t f(t, 7)dr = —f(t,t) + /t E(t’T) dr
which can easily be proven by using the definition of derivatives.
In our case,

SW(t, 1) = ~ (e, OBOBT (" (1,1

t1

)
+ w t,")B(r)BT (1)o7 (t,7) dr

+ _/Ltl é(t, 7)B(r)BT (1) (%q&(t,r))T dr
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ty
= -BOBT() + [ AW 7BOBT(1)¢7(7)dr
t

131

+) #(t, )B(r)BT (1)(A(t)o(t, 7)) dr

= -Bt)BT(t) + AQ)W(t,t1) + W(t,t)AT(t) ;

furthermore, the continuity of the integrand of W(t,¢;) implies
that W(tl,tl) = 0.

(iv)
t

Wilte,t1) = | é(to, 7)B(r)BT (1)o7 (to, 7) dr

to

+ [ @lto BEBT ()7 (0, 7) dr

t

= Wito,t) + | lto,)6(t, ) BE)BT(1)¢7 (t, 7)o (to, £) dr

t

= Wi(to, t) + d(to, YW (¢, t1)dT (o, 1) .

In the control theory literature some authors say that a dynamic sys-
tem is completely controllable if it is controllable from an arbitrary initial
state xp to x; = 0 at every future time t; > ¢g. Similarly, a dynamic
system is called completely reachable if for all ¢; > ¢y and x, the system
is controllable from xg = O to x; at time ¢;. In our analysis we will use
our Definition 5.1 of controllability, since it contains the usual concepts
of controllability and reachability as special cases by selecting x; = 0
and xg = 0, respectively. We mention in addition that some authors use
the following modified version of the controllability Gramian:

Wt t) = | o(t1,7)B()BT (M7 (1, ) dr |

to

obtained by replacing to by ¢ in the integrand of (5.4). Since @(tg,t1) is
nonsingular, W, (tp, 1) is nonsingular if and only if W(ty, ;) is nonsin-
gular. Therefore, it makes no difference in proving controllability which
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version of the controllability Gramian is used. The form of W, (¢¢,%1)
has the obvious advantage that it is formally analogous to that of the
controllability Gramian (5.25) of discrete systems, where the possible
nonsingularity of matrix A(t) makes it impossible to define and use
both versions. However, we decided to use the original form W (zy,1;)
for the continuous case, since in examining duality and in deriving ob-
servability conditions later in Chapter 6, this form will have important
advantages.

We conclude this section with an easy-to-check sufficient condition for
complete controllability. The great advantage of this condition is the fact
that it does not require the knowledge of the controllability Gramian.
The major disadvantage of this approach is that it gives only sufficient
condition, therefore, in many cases we cannot decide if the system is
completely controllable based on only this condition.

Define first the sequence of n x m matrix functions as following:
Ko(t) = B(t)
Ki(t) = —AGK_1(t) + Kim1(8), i=1,2,...
First we show by finite induction that for all i > 0,

ai
art

[o(t, 7)B(7)] = &(t, T)Ki(7) .

This identity is obviously true for ¢ = 0. Assume that it is true for an
i > 0, then by using the inductive hypothesis and part (v) of Theorem 2.3
we have

ai+1

6, T)B()]

0
= (Bt VK (7)]

9 a
= -6t TK(7) + $(t, 7) 5 Ki(7)

= —¢(t, 7)A(T)Ki(r) + ¢(t, T)K,(7)

= ¢(t’ T)KH—I(T) .
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THEOREM 5.3

Assume that with some positive integer q, B(t) is q-times continuously differ-
entiable, and A(t) is (g — 1)-times continuously differentiable on the interval
[to, t1], furthermore for some t* € [to,t1],

rank(Ko(t*),Kl(t*), ey Kq(t*)) =n.

Then system (5.1) is completely controllable.

PROOF  Assume that with some ¢* the rank condition holds, but the
system is not completely controllable. Then W(ty, ;) is singular, and
part (b) of the proof of Lemma 5.1 implies that there is a vector w such
that

wlp(to, t)B(t) = 07
for all t € [to, t1]. Define vector z7 = wT ¢(to,t*), then
2L p(t*, 1) B(t) = 07 .
By substituting t = t* we see that
zTKo(t*) = 07T .

Simple differentiation shows thatfori=1,2,...,¢,

0 = o[ (1" B()] = 27D, DK(1),

and the substitution ¢t = t* gives the equation
2TK (t*) =0T  (i=1,2,...,q).

Hence,
zT(KO(t*),Kl(t*), L Kg(t)) = o” ,

which contradicts the rank condition of the theorem. Thus the proof is
complete. |

The assertion of the theorem is illustrated by the following example.

Example 5.3

Consider again the system of the previous example. In this case,

Ko(t) = B(f) = <(1))
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Ki(f) = ~A(DKo(t) + Ko(t) = — (_Ow“(;) ((1)) - (“5") .

By selecting g = 1, the rank of matrix

o130 = (§75)

isn = 2; therefore, the system is completely controllable.

Notice that the type of matrix (Ko(t*), K1 (t*), ..., K,(t*)) is n x (gm),
where 7 is the dimension of the state and m is the dimension of the
input. If gm < n, then the rank condition of Theorem 5.3 cannot be
satisfied even if the system is completely controllable. Therefore, the
rank condition of the Theorem is only suffient but not necessary. In the
special case of time invariant systems (that is, when A(t) and B(¢) are
constant matrices) we have

Ko(t) =B
Ki(t) = —AB
K,(t) = A’B

K, (t) = (-1)7A%B
therefore,
(Ko(t*), K1 (t*),..., K, (t*) = (B, ~AB,A’B,...,(-1)7AB) ,
which has the same rank as matrix
(B,AB,A’B,...,AB) .

We will see in the next subsection that a time invariant system is com-
pletely controllable if and only if this matrix with ¢ = n — 1 has full
rank, showing that in this special case, the condition of Theorem 5.3
with ¢ = n — 1 is sufficient and necessary.
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5.1.2 Time-Invariant Systems

In this section the special case will be discussed when A(t) and B(t) are
time-independent.
Introduce first the controllability matriz

K = (B,AB,A’B,...,A™'B) . (5.10)

Note that in K, matrices B, AB, A’B, ..., A" !B are the blocks, and
they are placed next to each other horizontally.
Our first result is as follows.

LEMMA 5.2
The null space and range space of W (to,t1) for all ty > to coincide with the
null space and range space of matrix

Wr =KKT. (5.11)

PROOF  Since both W (tg,t;) and Wy are symmetric, and from The-
orem 1.10 we know that the null and range spaces of n x n symmetric
matrices are orthogonal complementary subspaces in R”, it is sufficient
to show that the null spaces coincide, that is, N(W (¢, t1)) = N(Wr).

(a) Assume first that v € N(W(tg,t1)). Then W(to,¢t1)v = 0, there-
fore,

o
I

ty
VTW(tQ,tl)V = / VTeA(tn—T)BBTEAT(tO._T)vdT

to

i1
- / IBT A =Dy dr .

to

Since the integrand is continuous and nonnegative,
BTeA -y — 0 (forall 7 € [to, 11]) -

Use the exponential Taylor’s series to see that

o0
k=0

therefore, for all k > 0,

| —

BTY(AT) (to — 7)fv =0

o

BT(ATYsv = 0.
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That is,
BTv=BTATv =... = BT(AT)""lv = 0. (5.12)

These relations are equivalent to the property that
K'v=0,

which implies that
Wrv=KK'v=0.

Hence v e N(Wr).

(b) Assumenextthatv € N(Wr). ThenKKTv = 0, thatis, vIKKv =
0. This equation is equivalent to relation ||K7v||2 = 0 which implies that
K7v = 0, and therefore, relations (5.12) are valid. Note first that the
Cayley-Hamilton theorem implies that for [ > n, A is the linear com-
bination of I, A, ..., A”»" ! and therefore, for all £ > 0,

n—-1
(A1 =" () A
(=0
with some functions oy, (t). Therefore,
A n—1
e =" pt)Al,
1==0
where §;(t) is a function of ¢t for [ =0,1,...,n — 1. Therefore,

t1
vIW(to, t1) :/

to

n—1

(Z Bulto — T)vTA’B) BTeA (o= gr = 0T,
=0

since for! =0,1,...,n—1,

]T

vIA'B = [BT(AT)v]” =0T

The symmetry of matrix W (¢, ;) implies that
Wto, t1)v = [vTW(to,t1)]" =0;
hence v € N(W(tg, 1)), which completes the proof. |
Before formulating the main theorem of this section we remind the

reader that the rank of a matrix is the maximal number of the linearly
independent rows (or columns) of the matrix.
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THEOREM 54

The time-invariant continuous linear system is completely controllable if and
only if the rank of the controllability matrix K equals n.

PROOF

(a) First we prove that N(KT) = N(Wr). Assume that v € N(KT),
then

K'v=0,
and multiply by matrix K to get
KK'v=0.

That is, Wpv = 0. Hence v € N(Wr).

Assume next that v € N(Wr), then by using the same reason-
ing as shown at the beginning of part (b) of the proof of Lemma 5.2
we conclude that K7v = 0, that is, v € N(KT).

(b) From Theorem 1.10 we know that R(K) and N(KT) are orthogonal
complementary subspaces in R", and the same is also true for
R(Wz) and N(Wr). Because we proved that N(KT) = N(W7),
we conclude that R(K) = R{(Wr).

(¢) We know from Lemma 5.2 that
R(W(to, t1)) = R(Wr) = R(K),

and therefore, W(ty, t1 ) is nonsingular if and only if rank(K) = n.
The assertion then follows from Theorem 5.1.

REMARKS5.3  Notethat the conditions of the theorem hold if and only
if the rows of matrix K are linearly independent. Because row ranks and
column ranks of matrices are always equal, in many applications it is
easier to find n independent columns from matrix K rather than prove
the independence of the n (usually very long) rows. In the case of high-
dimensional matrices, the rank of K can be obtained by using standard

computer packages. ]
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Example 5.4

Consider again the system

=(L3)er (D) w0 (0).

which was the subject of our earlier Example 5.2. In that example, we
examined the controllability of the system by proving that the control-
lability Gramian W (0, ¢1) is nonsingular. The same result now will
be obtained based on the controllability matrix K. In this case, n = 2,
and

K = (B,AB) = (?‘6’) .

Obviously rank(K) = 2 forall w # 0.

Note that the direct application of the controllability matrix is much
more attractive than the computation of the controllability Gramian
even in cases when the integral can be given in closed forms.

Example 5.5

Consider now the satellite problem, presented in Example 3.6. The
controllability of this system is now examined. In this case, n = 4,

0 1 00 00
3w2 0 02w 10

A= c 0 01 |’ B = 60’
0 -2w0 0 01

therefore, the controllability matrix becomes
K = (B,AB,A’B,A®B)

001 0 0 2w —w? 0
10 0 2w—w? 0 0 28
00 0 1 —2w 0 0 —4w?
012w 0 0 —4w?2® 0

Observe that the first four columns are linearly independent; therefore,
rank(K) = 4. That is, the system is completely controllable.

Next assume that one of the inputs is inoperative. Is the system still
controllable?
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Set ug = 0, then B reduces to B; = (0,1,0,0)7, and so

01 0 —w?
1 0 —-w?2 0
Ki=(B,ABL,A'BLA’B) = | o o o o
02w 0 2wd

Observe that the last column is the (—w?)-multiple of the second col-
umn. Therefore, rank(X;) < 4, and the system with the only input
41 is not completely controllable.

Now if u; = 0, then B reduces to By = (0,0, 0, 1)7’; therefore,

00 2w 0
02 0 =28
01 0 —4w?
10 —4w? 0

K = (Bs, AB2, A’B,, A®B,) =

1t is easy to establish that for w 3 0, rank(Ks;) = 4. That is, the
system with the only input u is still completely controllable. Because
w1 is the radial thrust and s is the tangential thrust, we conclude that
loss of radial thrust does not destroy complete controllability, but the
loss of the tangential thrust does. These two models are illustrated in
Figure 5.2.

l A

Figure 5.2 Controllable and noncontrollable satellite models.
Assume next that the system

x = Ax+ Bu

uy
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y =Cx
is not completely controllable, then the rank r of the controllability

matrix K is less than n. In this case, the controllable and uncontrolliable
state variables can be clearly identified by using the following result.

THEOREM 5.5
Assume that r < n, then there exists a nonsingular matrix T such that

O Ay
. (B
B_TB—(O>,
C=CT!=(C,Cs), (5.13)

where the sizes of the matrices Ay, Aqg, and Aoy are T X 1,7 X (n—r),and
(n —r) x (n — r), respectively, and By has r rows and Cy has r columns.
Furthermore,

(i) System (A11,B1, Cy) is completely controllable.
(ii)  The transfer function of systems (A, B, C) and (A1, By, C1) coincide.

PROOF Because the rank of K is v, we find r linearly indepen-
dent columns, which are now denoted by ¢y, c3,...,c,. Select vectors
Vi1, Vrt2, ... Vo suchthat {ci,¢o,...,Cr, Vi1, Viga, ..., Vo is abasis
in R?, and define matrix
T=(C1,...,CryVral,..., Vn) L.
Then direct calculation shows that this matrix satisfies the assertion.
The details are left as an exercise. B L
Notice that the controllability matrix of system (A1, B1, C;) has the
form - B _ B B
By A;By - A'B, - AY'B;
O O -.. 0 e fo) J
and has the same rank r. Therefore, the first r rows are linearly inde-
pendent, and there are r linearly independent columns. Because matrix

A, is 7 X , the Cayley-Hamilton theorem implies that these columns
are from matrices B, A;1Bq, ... ,A’l"l”lBl, which proves that matrix
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(By,AuBy,..., A7y 'By) has full rank. Since it is the controllability
matrix of system (A1, B1, Cy), Assertion (i) is verified.

In proving (ii), notice first that the transfer functions of systems (A, B, C)
and (A, B, C) coincide, because they differ from each other only in a
state variable transformation. Observe furthermore that the transfer
function of system (A, B, C) can be written as

— re —1 ».
) e m a[sSI—An -A B
C(sI - A) 1B=(01,C2)< 'e) " sI—}X222> (Ol)

=(C,Co) ((SI —(./;&11)‘1 (sI -j_\zz)_1> (%1) ’

where * denotes a block, the particular form of which is not important
now. Therefore,

C(SI — A)—lP) = Cl(SI — All)_lﬁl ,
which completes the proof of the theorem. |

REMARK 5.4  Notice that system (A, B, C) can be rewritten as

Since %2 does not depend on the input, it is not controllable; further-
more, (i) implies that variable %; is completely controllable. |

The controllability of a time-invariant linear system (A, B, C) can be
examined not only by determining the rank of the controllability matrix,
but also by using the following result.

THEOREM 5.6
System (A, B, C) is completely controllable if and only if matrix AT has no
eigenvector a that is orthogonal to the columns of B.

PROOF  Assume first that there exists such a vector q. Then qT A =
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AqT and q7B = 0. Therefore,

TK = (q"B,q"AB,...,.qTA" 'B) = (¢"B,\q"B,..., A" 1q"B)
=07,

so the rows of K are linearly dependent. Hence, the system is not com-
pletely controllable.

Assume next that the system is not completely controllable. Then it
can be transformed to the form (5.13). Let q2 denote any eigenvector of
AT, with associated eigenvalue ), then

(2)- () () (ste) (3
q2 A, Ay ¢ ) Asrq2 q2

(0 an) B=(0 :QQ)(Bl ) o’ .

and

Thus the proof is completed. |

COROLLARY 5.1
System (A, B, C) is completely controllable if and only if the rank of matrix
(sI— A,B)isnforalls.

PROOF  Notice that the rank of (sI — A, B) is less than n if and only
if there exists a nonzero vector g such that

qf(sI- A,B) =07

This equation is equivalent to relations ATq = sq and q”B = 07.
Hence, q is an eigenvector of A7 that is orthogonal to all columns of B.

Example 5.6

Consider again the system of Example 5.4, whenn = 2,

() = ()

(sI— A,B) = (Z ‘“;(1)> .

In this case,
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Notice that the first and third columns are always independent, there-
fore, the rank of the matrix is n for all s. Hence, the system is com-
pletely controllable.

5.1.3 Output and Trajectory Controllability

In many applications the entire state vector x is not of interest, and only
a subset of its components or some linear combinations of its components
are all that matters. Assume that instead of the state x an output vector

y = C(t)x (5.14)

is to be controlled. This type of control, which is called the output
control, is examined next. The main existence theorem is as follows.

THEOREM 5.7
There exists an input u(t) that drives the output of the system

x = A(H)x + B(t)u, x(tp) = xp
y = C(t)x (5.15)

toy; at ty > tg if and only if yy, — C(t1)¢(t1,t0)X0 lies in the range space of
C(t1)p(t1, te) W (o, t1).

PROOF Equation (5.8) implies that the system can be controlled to a
state x; att; > to if and only if it can be represented as

X1 = @(t1,t0)x0 + @d(t1,t0)W(to,t1)a

with some vectora. Therefore, the output vectors y; to which the system
can be controlled at ¢; have the form

y1 = C(t1)x1 = C(t1)(t1,t0) %0 + C(t1)P(t1,t0) W(to, t1)a .
A vector y; can be written in this form if and only if
y1 — C(t1)o(t1, to)x0 € R(C(t1)b(t1,t0)W(to, 1)) ,

which completes the proof. i
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COROLLARY 5.2
The output can be controlled to any arbitrary y, at t1 > to if and only if

Tank(C(t1)¢(t1, to)W(to,tl)) =7p, (516)
where p is the dimension of the output.
This rank condition is illustrated by the following example.

Example 5.7

Consider again the system of the previous example:

a- (L () 0= (3)

with the output equation
y=(1,0)x.

Notice that C = (1, 0), both ¢(¢1, tg) and W (¢, 1) are nonsingular
matrices as it was shown in Part (iii) of Theorem 2.3 and in Example5.2.
Because the output is single, p = 1. Therefore, the nonsingularity of
the product ¢(t1, to) W (to, t1) implies that with the nonzero row vec-
tor C, C(t1)p(t1, to) W (to, t1) is nonzero, therefore, its rank equals 1.
Hence, the rank condition (5.16) is satisfied. Consequently, the output
of this system is controllable to any final output y at any future time
t1 > to.

The state and output controllability problems were concerned with
driving the system to a given state and output at a future time ¢;. In
many applications, the control of the entire state function x(t) or cutput
function y(f) is needed. That is, an input is to be determined such that
the entire trajectory of the state or output coincides with a desired func-
tion. This problem is illustrated in Figure 5.3. This trajectory control
problem is now discussed only for time-invariant continuous systems:

x = Ax + Bu, x(0) = xg (5.17)

y =Cx. (5.18)

If the state trajectory is given, then check the initial condition first. If
it is not satisfied, then no control exists. Otherwise, by substituting the
given state trajectory into Equation (5.17), a linear system of equations
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x(#) or y() 4 Input u(t)

Target trajectory

B ty f, !
Figure 5.3 Trajectory control.

is obtained for the unknown components of the input vector. If these
linear equations have no solution, then the state trajectory cannot be
controlled as required. Otherwise, any solution is a suitable input.

Example 5.8

Assume that the state of the system

SESRIGN

has to be controlled to be
wt? +1
x(t) = ot {t>0).

Notice first that the initial condition is satisfied. Substituting this tra-
jectory into the differential equation we have

()= (88) ()= (3) wo

which can rewritten as

2wt = 2wt

2 = ~w(wt + 1) + u(t).

The first equation is always satisfied, and from the second equation we
get the required input:

u(t) =2 +wwt? +1) =t +w+ 2.
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If the output trajectory is given, then the application of Laplace trans-
forms is the appropriate method to find the suitable input function.
From Theorem 3.2 we know that the Laplace transforms of x(t) and
y(t) are given as

X(s) = R(s)xo + R(s)BU(s) (5.19)
and
Y (s) = CR(s)xp + H(5)U(s) , (5.20)

where R(s) is the resolvent matrix and H(s) is the transfer function.
If the output trajectory is given, then function Y (s) is determined by
applying the Laplace transform. Then solve the linear Equation (5.20)
with parameter s to recover function U(s). And finally, use the inverse
Laplace transform to determine the unknown input u(t).

Example 5.9

Consider again the system

= () (D) 0= (3)

y=(1,1)x.

Assume that the output of this system is to be controlled to have y(t) =
1 forallt > 0. In Example 3.8 we have shown that

()= =573 and )= o2
R 1 (s w) H(s) +w

s2+w?\~ws 2+ w2’

therefore, Equation (5.20) has now the special form

1 1 S w 1 s+w
s = Var (_w ) (o) REETERiQl

where we used item No. 2 of Table 2.1. Simplifying this equationshows

that
1 s —w S+ w

-= + U(s),
s s24w? s?24w? (s)

from which we have

U(s) =

w
S

7

that is, u(t) = w for t > 0.



268 chapter five: Controllability

This result can be also verified by simple substitution of the state
components

.’El(t) =1 and Iz(t) =0 y
the input u(t) = w and output
y(t) = (L )x =1

into the systems equations.

Finally, we mention that this approach can be used if the state trajec-
tory is given; however, the procedure illustrated in Example 5.8 is less
complicated.

5.2 Discrete Systems

In this section the controllability of the discrete linear system

x{t + 1) = A@)x(t) + B(t)u(z), x{0) = xg (5.21)

y{t) = C(t)x(t) (5.22)

will be examined. We assume that the types of matrices A(t), B(t), and
C(t) are n X n, n x m, and p X n, respectively.

The general solution (3.48) of discrete linear systems implies that this
system is controllable to x; at ¢; if and only if there exists an input u(¢)
such that

-1
x; = ¢(t1,0)x0 + Y B(t1, 7+ 1)B(r)u(7) . (5.23)
=0
Introduce the mapping
-1
Alu) = Z ¢(t1, 7 + 1)B(m)u(r) (5.24)
=0

on the set of m-dimensional functions defined on N = {0,1,...}. Note
that the range of this mapping is in R".

LEMMA 5.3
Vector v is in R(A) if and only if it belongs to the range space of matrix
t1—-1
W(0,t1) = > ¢(ts, 7+ )B(r)BT(1)¢" (1,7 +1) . (5.25)

=0



5.2 Discrete Systems 269

PROOF  The proof is analogous to that of Lemma 5.1.

(a)

Assume first that v € R (W(0,t;)), then there exists a vector a
such that
v =W(0,t1)a. (5.26)

Select input
u(t) = BT(t)¢7 (t1,t + 1)a, (5.27)

then

ti—1
A(u) = ) @(t1, 7 + VB(H)BT (1) (t1,7 + 1)a

=0
= W{0,t1)a=v;

therefore, v € R(A).

Assume next that v ¢ R(W(0,¢;)). Then — similarly to the proof
of Lemma 5.1 — there exists a vector w from the null space of
W(0, ¢1) that is not orthogonal to v. That is,

W(0,t;)w =0 and wliv#£0.

We shall now verify that v & R(A4). In contrary to this assertion,
assume that v € B(A4). Then with some function a(t),

ti—1

v = Z é(t1, 7+ 1)B(r)ua(r) .

Therefore,

t;—1

0#wiv=">" wle(t,7+1)B(r)i(r) . (5.28)

T=0
The definition of w implies that

t1—1
0=wW(O,t1)w= > wig(ts,7+1)B(r)BT ()¢  (t1,7 + 1)w

7=0

t1—1

=Y BT (1) (b7 + w3
r=0
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Since all terms are nonnegative, forall7 = 0,1,...,¢; — 1,
BT ()T (t1,7+1)w=0.
Take transpose on both sides to get
WT¢(t1,T+1)B(T)=OT (@llr=0,1,...,t; - 1),

which contradicts to relation (5.28). Thus, the proof is completed.

COROLLARY 5.3
There exists an input u(t) which drives the state of the discrete linear system
to x at time ¢1 > O if and only if x1 — ¢ (t1,0)x belongs to R(W (0, t1)),
that is, if

X1 = ¢(t1, O)Xo -+ W(O,tl)a

with some vector a. The algorithm verifying controllability is similar to that
shown for continuous systems.

From the lemma we conclude the following result, which is the discrete
case counterpart of Theorem 5.1.

THEOREM 5.8
The discrete system is controllable from initial state xq to arbitrary state x, at
time t; > 0 if and only if W (0,t) is nonsingular.

REMARKS5.5  If adiscrete linear system is controllable from arbitrary
initial state xo at O to arbitrary state x; at any t; > n, then the system is

called completely controllable. |

COROLLARY 54
From part (a) of the proof of the lemma we conclude that a particular input
that leads the system to x; at t; > 0 is given as

u(t) =BT (t)¢" (t1,t + 1a,
where vector a is a solution of equation

W(O, tl)a =X — ¢(t1, O)XO . (529)
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Example 5.10

Consider the discrete system modeled by difference equation

x(t+1) = (é 1>x(t)+ <(1)>u(t), x(0) = ((1)) .

From Example 3.14 we know that

ser)= (' 77)

Therefore,

w5 (1) (Den(, 1 0)

t1—1
=0

]

_t1_1<(t1—7~1)2t1—r—1)

frd t1~T—1 1

t1(t1-1)(2¢1~1) ti(ty~1)
= 3 (tﬁ—l) 2 ’
1 é tl

where we used the relations

1ty —1
1+2+---+(t1—1)=L(_12__)

and

1t — 128 — 1)
G .
Finally we show that for all £; > 2, this matrix is nonsingular, that is,
the system is completely controllable.
The determinant of W(0, t1) can be written as

t
P+224. 4t —-1)2%=

Bt -1)@s -1 -1 4
6 4 12

(48 — 6t + 2 — 3t3 + 6t — 3)

= ﬁ(ﬁ -1)
1241 ’
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which is nonzero fort; > 2. Hence, at{; > 2, arbitrary state X canbe
obtained from arbitrary initial state X, but for t; = 1 this is not true.
We can demonstrate this statement by using relations (5.23) directly
fort; = 1:

x1 = ¢(1,0)%0 + (1, BO)u(0)
= (1) (o) +(7) (7)o
- (0)+(1)0= (o)

Therefore, a state is feasible at £} = 1 if and only if its first component
equals 1. Then its second component gives the desired input value

u(0).

An alternative method to find the input sequence {u(0),u(1),...,u(t;—
1)} that drives a discrete system to a given final state x; = x(¢1) is based
on solving directly Equation (5.23) for the unknowns u(0), u(1),...,u(t;—
1). This procedure is illustrated next.

Example 5.11

Assume that in the case of the system of the previous example the final
state is given as
1
x(2) = ( 1 ) .

In this case, Equation (5.23) can be rewritten as follows:

x(2) = A%xp + (Abu(0) + bu(1))

That is,

()-(2) () () (e

which has the simplified form

<(1)> B (u(O;szL(l)) ‘
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The only solution is ©(0) = 0 and u(1) = 1.

It is easy to modify Theorem 5.2 for discrete systems. Properties (i)
and (ii) hold in the same way, and (iii) has to be modified accordingly.
The details are left as an exercise to the reader.

Consider next the time-invariant case, when A(t), B(t), and C(t) are
constant. Introduce again the controllability matrix

K = (B,AB,...,A™ 'B) .

By modifying the proof of Lemma 5.2 similarly to Lemma 5.3 the
reader can easily verify that Lemma 5.2 holds also for discrete systems
with ¢t; > n, and Theorem 5.4 has to be modified as follows.

THEOREM 5.9

The time-invariant discrete linear system is completely controllable if and only
ifrank(K) = n.

Example 5.12

In the case of the system examined in the previous example, n = 2
and

K = (B, AB) = (‘1)}) :

which is nonsingular; therefore, rank(K) = 2. Hence, arbitrary x;
can be obtained at arbitrary £; > 2. Note that the same result was
obtained in Example 5.10; however, the direct use of the controllability
matrix is much more attractive than the direct computation of W (0, %4)
and its examination.

Finally, we mention that Theorems 5.5 and 5.6 remain valid, and the
output and trajectory controllability of discrete systems can be discussed
analogously to the continuous case. The details are left as an exercise to
the reader. We conclude this section with an example of output control.

Example 5.13

Consider again the system given in Example 5.11 with the output equa-
tiony = (1, 1)x. Assume that the input sequence has to be determined
that results in the final output y(2) = 5.

From Example 5.11 we see that

v = 1,0x) =y | (5) + (1) w0 + (§) wo]
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that is,
5=1+2u(0) +u(1).

Notice that this equation has inifinitely many solutions, we may select,

for example, u(0) = Oand u(1) = 4.

5.3 Applications

In this section some systems arising in engineering and the social sciences
are examined, and the controllability conditions introduced earlier in this
chapter are illustrated.

5.3.1 Dynamic Systems in Engineering

1. Consider the simple harmonic oscillator (3.53) introduced in Chap-
ter 2 and given in Application 3.5.1-1, which is summarized below:

. Ow <+ 0
x={__0 NEE
Is it controllable?

To answer this question let us compute the controllability matrix K =
(b, Ab). Since

0w 0
a=(05) wa we(Y),

K = (b, Ab) = (?‘6’) .

Note that rank(K) = 2. Therefore, the system is completely control-
lable.

2. What about the damped linear second-order system of Applica-
tion 3.5.1-2; is it controllable? In this case,

0 1 0
M M M
0 L

M
K= (L_i) :
M M?2

This matrix has a full rank; therefore, the system is completely control-
lable.

and, therefore,
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3. For the electrical system of Application 3.5.1-3,

Y -1 1
L
; CR,

Q= o

Therefore,

The rank of K is 2, therefore, the system is completely controllable.

R, L lila R, L, liL:

e e

Figure 5.4 An expanded LRC circuit.

Investigating the controllability of this electrical circuit was not very
interesting. So, let us change it as shown in Figure 5.4. Is this circuit
controllable? Let us first find A, B, and C. Our first question is what
is the order of the system? Because there are four independent energy
storage devices (two inductors and two capacitors), it should be fourth
order. Next, what state variables should be used? Unless your physical
intuition suggests more convenient variables, choose the energy related
variables, i.e., the currents in the inductors and the voltages across the
capacitors. Now we can apply Kirchhoff’s law to both circuits. The
equations are as follows:

dir,

L— +uve=u
e ¢
dve U — Ve
C—= =i+ ,
da Ok R
which can be rewritten as
di 1 1
ZE ve + —=u

dt L L

d’Uc 1. 1
dt ~ C
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Since the equations for the left and right circuits are the same, except
for the subscripts, we can write four differential equations as

1L, 0 I 0 0 iy I,
. 1 -1 1
Voo | | €7 TiR: 0 0 e T C.1R: u
L. - -1 , 1 -
2L2 0 0 0 L—g ’LL?_ ’E‘z‘
. 1 -1 1
ve, 0 0 C; CaRa VCy C2R,
Let the output be the voltage across the right capacitor:
1L,
ve
y=(0,0,0,1) | ™
1L,
Ve,
Now let us form the controllability matrix, K:
1 —1 —1 41 2
Ly LiC1Ry LiC: ' LiCiRj} L2CIR: ~ I:CI RS
1 | 2 _ 41 -1, 3 " 1
K = CllRl I:.C1 1CfR§ Llcl'le cing LICT ; L,C3R? } CiR?F
Lz L2C2Ra IIG;, T LoRs LZCIR: ~ L.C3RS
1 1 1 ~2 4 1 -1 ;3 1
C:R; I:C; ~ CLRI I,CIR., " CJRy LIC] " L,CIRI ~ CIRZ

It is easy to see that if

L1=L2, Cl-:CQ, and R1:R27

then rows 1 and 3 as well as rows 2 and 4 are identical. Therefore, the
system is not controllable. Intuitively, this makes sense. If we have two
identical circuits in parallel, there is no single input that will drive one
circuit to one state and the other to a different state.

4. For the transistor circuit model (3.80) of Application 3.5.1-4 we

know that
hA
-k g 1
A=( hL ) and :(L).
hie g 0
C
Therefore,
(l ___hizr‘,
K=|[Z L )
hye
0 f

Because rank(K) = 2, the system is completely controllable,
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5. To assess the controllability of the hydraulic system of Applica-
tion 3.5.1-5, we can compute K as follows. Note first that

A=<7_ﬁmﬂf b:(g’

where
R 1
Ry Ay
1
b= ——
Ry A,
1
" RoAs
1
d= A_1 .
Therefore,
d —ad
K‘(o w>'

Because rank(K) = 2, we know that the system is controliable. That
is, if someone picks arbitrary h; and hg, you can find a u(t) that will
drive the system to this state.

Figure 5.5 A three-tank hydraulic system.

Let us expand this problem a little as shown in Figure 5.5. Make the
system symmetric with B = Ry = 1/2 and A1 = A3z = (2/3)A4, and
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we get
d 1 -3 3 0 I bp 00 U1
d— I = 2-4 2 T2 + 0 bQ 0 Unp y
t I3 0 3-3 I3 00 b3 U3

where by, by, and b3 are positive constants. Now the question is, if
someone requests arbitrary tank heights hy, hg, and A3 can you find an
input trajectory that will produce it?

‘We will consider three cases:

(i) Only input u, is applied.
(ii) Only input us is used.
(ili) Only input ug is applied.

‘We have
-3 3 0 b 00
A = 2 -4 2 and B=10b0
0 3-3 0 O b3

The A matrix is 3 X 3 so we will have to compute three blocks of the
controllability matrix, which is (B, AB, A?B):

b1 0 0:—3b; 3by 0: 15b; —21by  6b3
K=100,0" 92b —4by 2b3:—14b; 28by —14b;
0 0by: O 3by—3b3: 6b —21by 15b3

Now let us try to control this system with the first input only, that is,
let by = 1 and by = b3 = 0. In this case,

100:-300: 1500
K=1000: 200:-14001 -
000: 000: 600
we do have three linearly independent columns, which are the first,

fourth, and seventh. Therefore, rank(K) = 3, and the system is con-
trollable with the first faucet only. However, let us now set by = 1 and
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bl = b3 = 0. Then

000:0 30:0-210

K=1010'0-40'0 280 >

000:0 30:0-210

and we no longer have three linearly independent rows, since the first
and third rows are identical. So the system is not controllable by the
second faucet alone.

If one sets by = by = 0 and b3 = 1, then

000:00 0:00 6
K=1000'00 2:00-14
001:00-3:00 15

Note that the rows are linearly independent again, rank(XK) = 3.

Consequently, the system is completely controllable with the third faucet
only.

6. In the case of the multiple input electrical system we know that

~£ g _1L Lo
L1 L1 Lll
A= 00— and B=| 0
t& O 0 0

The controllability matrix K has now the form

19 = 9 R? -1
Ly T pZ CL CLiL;
- 1 -1
K=10z 0 0 CL1L2 CLE
1 1 R
0 0 &1, o5 CL? 0

Notice that the first three columns are linearly independent, therefore,
rank(K) = 3, and the system is completely controllable.

7. To check the controllability of the stick-balancing problem of Appli-
cation 3.5.1-7, compute again the controllability matrix

(21

of the system. Because the rank of K is 2, the system is completely
controllable.
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8. For the cart with two sticks of Application 3.5.1-8, we have matrices

0 010 0
0 001 0
A= 41 a3 00 and b= e
(L3CL400 —-d

Simple calculation shows that the controllability matrix is as follows:

0 —c 0 —aic — asd
K — 0—-d 0 —asc — aqd
—c¢ 0 —aic—axd 0

—d 0 —azc—aad 0

This will have rank less than 4 if

clage + agd) = d(ajc+ axd) .

Substitute the definitions of a1, az, a3, a4, ¢, and d to obtain equality

1 Mag 1 +(M+1V12)g 1
MLy \MLy; ML, ML, MLy

_ 1 (M + Mg 1 Meg 1
=ML, \ ML, ML, ML, ML)’

which is equivalent to relation
Li=Ly.

Therefore, if Ly # L2, the realization is completely controllable. As a
consequence, an input can be found that keeps both sticks upright.

9. Our electrical heating system was illustrated in Figure 3.29 and is
a second order system with matrices

_Aéhl Aé’hl 0
A=l Atk _Ainihagh and  B= (_1_) :
C2 C. Cy

2

The controllability matrix K is now the following:

0 A]h
oics
K= 1 _ahitam

Ca C:

2
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which has full rank. Therefore, the system is completely controllable.
10. In the case of m = 1 in the nuclear reactor model of Applica-
tion 3.5.1-10 we have

e=6 N
A= ! ! and b:(1> .
3 -n 0

Therefore, the controliability matrix K has the form

( 1 B;_B )
K= .
81
07
The rank of K is 2, so the system is completely controllable.

5.3.2 Applications in the Social Sciences

1. Consider first the predator-prey model (3.112) and (3.113) with the
input “controlled by nature”:

G(t) = (a +u(t))G(t) — bG(t)W(t)

W(t) = —cW(t) + dGt)W (¢) . (5.30)

From Section 3.5.2 we know that with zero input @ = 0, the only positive
equilibrium is

G==< w=2
d’ b’
The system is first linearized. If f; and fs denote the right-hand sides

of Equations (5.30), then

0fi 0fi _ ofh _
ag —etum W G =t 5 =0
O0f2 O0fy Of2
ac ~ W aw ~ etde =0

Therefore, Equation (3.13) implies that the linearized equations have
the form

. be c
- W4 =
Gs ] Hg—!—du

Ws = %U’Gé , (5.31)
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where

[0

Gs=G-G=G~ and Ws=W-W=W —

Ul o
o

It is obvious that variables G and W are controllable if and only if
Gs and W are controllable; therefore, it is sufficient to examine the
controllability of system (5.31).

By using the notations of Section 5.1.2,

_be
A:(d_a Od> and Bz(
b

and the controllability matrix K is as follows:

oalde

).

K = (B, AB) = (g 0) .
b

From Theorem 5.3 we conclude that the system is completely control-
lable, since rank{K) = 2.

This interesting result shows that both (the predator and prey) pop-
ulations are completely controlled by controlling only the growth rate of
the prey population.

2. Consider next the cohort population model (3.115). For the sake of
simplicity select n = 3. Then

by by b3 100
A=|a00]|, B=[o010
0 ap O 001

The controllability matrix is the following:

100 I b1 by b3 | b% + a1bo biby + byag b1bs
K= 010 | a 00 | a1b1 G,lbg a1b3
001 | 0 ag 0 | a109 0 0

Because the first three columns are linearly independent, rank(K) =
3. That is, the system is completely controllable. This result is not
surprising, since the populations of the three age groups are directly
controlled by the corresponding input components.

Assume next that immigration into the population is permitted only
in the youngest age group, group 1. Then matrix B is replaced by vector
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b = (1,0,0)7, and the controllability matrix is

1 bl b% +a1b2
K= 0 ag a1b1
00 ai1aGo

with rank(K) = 3. Therefore, the entire population is completely con-
trolled by controlling the population of the youngest age group. After
one time period, this control has its effect on the second age group; the
third age group is then affected after one additional time period and so
on. Hence, this control will indirectly control all other age groups as
well after a certain time delay.

Assume next that immigration is permitted only into the second age
group. Then b = (0, 1,0)7, and

0 b2 blbz -+ agbg
K= 10 albg
0 as 0

Observe that rank(K) = 3, that is, the system is completely controllable
again. Similarly, if only the third age group is controlled, the b =
(0,0,1)T, and
0 by bibs
K= 00 a163
10 0

with rank(K) = 3.

In explaining the last two results note that the control of any age
group 7 > 2 will have its eflect on the first age group via the newborn
population after one time period. And then, all other age groups are
affected by aging.

3. Consider the modified arms races model (3.119), where

a=(Ted) e om=(5)

The controllability matrix is

_ (o —ba+afB
K_(/B ca—dﬁ)'

This matrix has full rank if and only if

afca —dff) — B(—ba + af) #0 ,
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that is,
e+ af(b—d)—apf>#0.

This relation holds if and only if

o  d bty dP e
J5} 2c '

Hence, the system is completely controllable except for two special values
of a/0 depending on the coefficients q, b, ¢, and d.

4. Let us now modify the warfare model in the following way. Assume
that a guerrilla organization helps the second nation in its war. Then
model (3.121) is modified as

X1 = —heXo — hau(t)

Xo = -h X, (5.32)

where u is the force of the guerrilla organization and hg is its hitting
power. This time-invariant system is characterized by matrices

B 0 —ho _{—hs
A_—(__hl 0) and B_<O>.

The controllability matrix of this system has the form

(~hs O
K‘( 0 hlhg)

which has full rank. Hence, the system is completely controllable, which
means that the guerrilla organization is able to drive the war to any
state (X1(¢1), (X2(t1))T by the appropriate selection of its activity u(t).

5. Consider again the epidemics model (3.124), and assume that the
number of infected and circulating individuals can be influenced by an
input u (e.g., better and more frequent screening). The corresponding
mathematical model then can be written as

T = —azy

y=ozxy—Py-—u. (5.33)

It is easy to see that with zero input (@ = 0), (Z,0) is an equilibrium
state, where Z > 0 is arbitrary. The linearized model has the following
form:
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. _ {0 —azx 0
X5 = 0aZ — Xs + 1 U .

The controllability of this linear system can be investigated on the basis
of its controllability matrix

0 le% %
K= (1 *aa_c+/3) '

If Z # 0, then this matrix is nonsingular; that is, the system is completely
controllable. If Z = 0, then K is singular; that is, the system is not
controllable.

6. In the case of the Harrod-type national economy model (3.10) we
can consider G(¢) as input. Then

A=(14r-—rm) and B=(-r),

and since n = 1 (that is, this is a single-dimensional case), the control-
lability matrix K equals B, which is a nonzero constant. Therefore, it
has full rank. Hence, the system is completely controllable.

7. Consider now the linear cobweb model (3.127), and assume that
the demand function can be influenced by an appropriate input u as
d(p) = ap + ag + u. In this case the model is modified as

+b0—a0—u

1

Pt +1) = 2p(0)

and by introducing a new input

~ b() —ag —u
= =
a
the model reduces to
b
pt+1)= Ep(t) + 1. (5.34)

This system is obviously completely controllable, since the controllability
matrix is K = (1), which is nonzero and hence nonsingular.

8. We will now modify the model (3.128) of interrelated markets sim-
ilar to the previous case by introducing the inputs u;, which add to the
constants a;p of the demand functions. Their meaning is the same as
was presented for the input of the previous model. In this case, sys-
tem (3.130) is modified as

p=K({(A-B)p+as—bg+u). (5.35)
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Introduce the transformed input
u{t) = K- (ag — bg +u(?t)),

and note that any value of i(t) can be obtained by the suitable selection
of u(t):
u(t) = K~ Hi(t) + by — ag .

Therefore, the controllability of systems (5.35) and
p=K(A-B)p+1 (5.36)
are equivalent. The controllability matrix
(ILK(A -B),...,[K(A -B)*™)

of system (5.36) has full rank, since the first n columns are linearly
independent. Hence, system (5.35) is completely controllable.

9. Consider finally the oligopoly problem. Assume that the government
can control the market (with certain tax breaks, export subvention, etc.)
by a single input u(t), which shows the cost reduction of the firms per
unit output. Therefore, the modified cost functions are

Cr(z) = (b — vz + ¢k (k=1,2,...,N),

and as the consequence of the additional term uzxy, the discrete model
(3.134) is modified as

x(t+1)=Ax(®) +£ — %1u(t) , (5.37)

where 1 is now the N-dimensional vector with all components being
unity. Consider the solution z(t) (t = 0,1,...) of the initial value prob-
lem

z(t +1) = Acz(t) + 1., z{0) =0 .

Then y(t) = x(t) — z(t) (t =0,1,...) satisfies the difference equation
1
y(t+1) = Acy(t) - 5-1u(t) ; (5.38)

furthermore, y(0) = x(0). It is obvious that system (5.37) is completely
controllable if and only if the same holds for system (5.38) Note first

that 1_N
Ao-l=-—"—1,
2
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which implies that the controllability matrix is the following:

1 1 1-N 1 /1-N\"1T
Keo|o—o1,— 2221 — 1] .
(2a "2a 2 = ’Za( 2 ) )

The columns of this matrix are dependent; therefore, systems (5.38)
and (5.37) are not completely controllable.

Assume next that the cost of each firm is controlled by different input
components as

Crlzk) = (b —ur)zr + ¢ (k=1,2,...,N).
Then model (3.134) is modified as

X(t+1) = Ax(t) + o — %u(t) . (5.39)

Introduce again function y(t) = x(t) — z(t), where z(t) is the same as
before, to get system

y(t+1)=Ay(t) — %Iu(t) . (5.40)

In this case the controllability matrix is as follows:

1 1 1
K=|-—I——A,...,——AN-!
( 267 2277 2a7€ ) ’

which has full rank, since the first V columns are linearly independent.
Hence, systems (5.39) and (5.40) are completely controllable.

Finally, we note the the controllability of the alternative oligopoly
models (3.138) and (3.139) can be examined in an analogous manner.

Problems

1. Examine the controllability of system

= (19)=- ()~
() ()

completely controllable in [0, 1]? Use Theorem 5.1.

2. Issystem
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3. Compute matrix W(tg, t1) for the system described below, and
illustrate Properties (i) and (ii) of Theorem 5.2. Select the [0, 1] interval.

= (1) ()

4. Determine if the system

(1))

is completely controllable by using the controllability matrix (5.10).

5. Use Theorem 5.1 to determine if this system

() ()

is completely controllable in [0, 1].

6. Compute matrix W {tg,t;) for system

. 21 1

X = (02>x+ (1)u,
and illustrate Properties (i) and (ii) of Theorem 5.2. Select the [0, 1]
interval.

7. Determine if system

(1) (1):

is completely controllable by using the controllability matrix (5.10).

8. Is there any input for system

< () o-().

which controls the trajectory to

x(t) = (tJlrl)

in the interval [0, 1]?
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9. Is there any input for system

(e () w0 (0).

which controls the trajectory to
t
x(t) = (t + 1)

10. Is the electric circuit system

in the interval [0, 1]?

Ldz—f) 4+ (Ry + Ra)i(t) = u(t)

introduced in Problem 3.13 completely controllable?

11. Discuss the controllability of the mechanical system

x= (5 )=+ (5)w

introduced in Problem 3.7.

12. Is the system

x(t+1) = (; ;) x(t) + (é) u(t)

completely controllable? Use Theorem 5.8, and select ¢; = 2.

289

13. Use the controllability matrix K to determine if the following

system is completely controllable:

X(t+1) = (; 512) x(t) + ((1)) () .

14. Use Theorem 5.8 and ¢; = 2 to determine if the following discrete

system is completely controllable:

x(t+1) = ((2) ;) x(t) + G) u(t) .
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15. Use the controllability matrix K to determine if the following
system is completely controllable:

x(t +1) = (g ;) x(t) + (}) u(t) .

16. Is the output of the system

(1) ()
y=(L1)x,

controllable in [0,1}?

17. Is the output of the system

= (2)e()
y = (0, 1)x,

controllable in [0,1]?

18. Discuss the output controllability of system

x = Ax+ Bu

y = Cx + Du.

19. Prove that for any n x n continuous matrix A (¢) there is a contin-
uous n-vector b(t) such that system

x(t) = A(t)x(t) + b(t)u(t)
is completely controllable. That is, if time-dependent b is allowed, ap-
propriate single-dimensional input always can control the system.

20. (i) Prove Lemma 5.2 for discrete systems. (ii) Prove Theorem 5.9.

21. Assume thatthetime invariantsystem x = Ax+Buiscompletely
controllable, and matrix A is suffici_ently c_lose to A and B is sufficiently
close to B. Prove that system X = Ax + Bu is also completely control-
lable.
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22. Let a be a real constant. Prove that the time invariant linear
system X = Ax + Bu is completely controllable if and only if X =
(A + al)x + Bu is completely controllable.

23. Prove that system x = Ax + Bu is completely controllable if and
only if system x = Ax + BB”v is completely controllable.

24. Let m be the degree of the minimal-polynomial of A. Show that
rank(K) = rank(B, AB, ..., A™"1B).

25. Show that matrices K and e*K have identical range spaces,
where K is the controllability matrix of system x = Ax + Bu.
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chapter six

Observability

In the case of many practical systems, the state cannot be measured di-
rectly; only the input and output are known. However, complete knowl-
edge of the state is needed for predictions and to describe the dynamic
law driving the system. In certain cases we are able to determine the
state on the basis of the applied input and observed output values; in
other cases we cannot. In this chapter we will discuss the observability
of the state of dynamic systems.

DEFINITION 6.1  The initial state xq of a continuous (or discrete) system
is said to be observable in interval [to, t1] if the trajectories of u(t) and y (t) for
t € [to,t1) (or fort = 0,1,...,t1 — 1) uniquely determine xo. This concept is
illustrated in Figure 6.1.

x(4 Unknown
state

trajectory

~Y

Figure 6.1 Concept of observability.

In this chapter, practical conditions will be derived for the observabil-
ity of the initial state and methods will be introduced for determining

298
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it. In the first part of this chapter continuous linear systems will be dis-
cussed, and in the second part discrete linear systems will be examined.
We will introduce and use an analogy between the derived observabil-
ity criteria and the conditions for the complete controllability of linear
systems.

6.1 Continuous Systems

In this section the observability of the initial state Xy of the continuous
linear system

x=A(t)x+B()u, x(tg) =xo (6.1)

y = C(t)x (6.2)

will be examined, where A(t), B(t), and C(t) are continuous matrices
for t > tg and their sizes are n x n, n x m, and p X n, respectively. By
using the methodology of this chapter, the observability of the state of
the system at any time period t*(t* > to) can be examined, since we can
always consider ¢t* as the initial time period, and the input, state and
output of the system can be considered only for ¢ > ¢*.

6.1.1 General Conditions

The general solution formula (3.20) for the output of a continuous linear
system can be written as

CO)B(E, to)xo = y(¢) - / CHt,B(u(r)dr . (63)

Assume that for an interval [to, 1] the values of u(t) and y{t) are known;
then, for all t € [to, 1], the right-hand side of Equation (6.3) is known.
Our first condition for the observability of the initial state xq is based

on the mapping
B(x)(t) = C{t)(t, to)x

with domain R™ and range in the set of the p-dimensional continuous
functions. Once again we note that there must not be confusion be-
tween this mapping and the system matrix B(¢). The null space of this
mapping is defined as

N(B) = {x| B(x)(t) =0 forall te [to,t:]}.

It is obvious from the linearity of mapping B that Equation (6.3) uniquely
determines xg if and only if N(B) = {0}.
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Before particular observability conditions are derived, the relation be-
tween the observability of system (6.1) and (6.2) and the controllability
of its adjoint system

7= —AT(t)z + CT(t)v

w =BT (t)z (6.4)

will be analyzed.

‘We know from the previous chapter that the state of the adjoint sys-
tem can be controlled to z; in the interval [to,%;] if and only if vector
7T (t1,t0)z1 — 7o belongs to the range space of mapping

Ag(v) = t lqu(T, to)CT (r)v(r)dr .

Here we use the fact that the fundamental matrix of Equation (6.4)
is given as ¢7T (tg,t) (see Section 3.3.5). Our analysis is based on the
following results.

LEMMA 6.1
R(A,) and N(B) are orthogonal complementary subspaces in R™.

PROOF  Assume first thatr € R(A,) and s € N(B). Then
t1
r= [ ¢"(rt)CT(r)v(r)dr
to

with some input function v(¢), and
C(t)o(t,to)s = 0

forall t € [tg,t1]. Therefore,

ris = / 1 vI(T)(C(T)p(T,t0)s) dT =0,

to

because the integrand is zero for all ¢.

Assume next that for a vector s, r’'s = O withallr € R(A,). We shall
prove that s € N(B). Note first that by selecting the input function as
v(t) = C(t) ¢(¢,t0)s, we conclude that vector

r= [ ¢T(rto)CT(1)C(r)b(r to)s dr

to
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belongs to R(A4,). Consequently,

0=1r"s= /t1 s (1,t0)CT(1)C(r) (T, to)s dr

{0

- / 1O, to)sl3dr

to

which implies that C(7) (7, to)s = 0 forallt € [to,t1], thatis, s € N(B).
Thus, the proof is complete.

COROLLARY 6.1

System (6.1) and (6.2) is observable in interval [to,t1] if and only if the state
of the adjoint system (6.4) can be controlled to arbitrary state z, at time t;
from any initial state zqg at tg. Because the adjoint of the adjoint system is
the original system, the state of system (6.1) and (6.2) can be controlled to
any arbitrary state X, at t, from any initial state xo at to if and only if its
adjoint is observable in the interval [to, t1]. Therefore, the observability of any
continuous linear system can be examined by using the methodology of the
previous chapter. This idea will be used in the discussions to follow.

Use Lemma 5.1 to see that R(A,) coincides with the range space of
the controllability Gramian of the adjoint system, which is now denoted
by

iy
M(tg,t1) = / OT (1, t0)CT (1YC(T)p(7, to) dr . (6.5)

The following result is therefore, the obvious consequence of Lemma, 6.1
and Theorem 1.10.

LEMMA 6.2
Vector v is in N(B) if and only if it belongs to the null space of matrix
M(to, t1).

Our first observability criteria are given in the following theorem.

THEOREM 6.1

It is possible to determine xo with in an additive constant vector, which is in
N(M(to,t1)). If M(to, 1) isnonsingular, then xo can be determined uniquely.
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PROOF Let xg and X be two solutions of Equation (6.3). Then
C(t)p(t, ta)xo = C(£)d(t, t0)%o0 (forallz € [to,t1]) ,
which can be written as
C(t)d(t,to)(xo — %0) =0  (forallt € [to,t1]) -
This relation holds if and only if
xp —Xp € N(B}, (6.6)

that is, if xg and X, differ by a vector belonging to N(B).
If Mi(tp, 1} is nonsingular, then N(M(to, t;)) = {0}. From Lemma 6.2
we conclude that N(B) = {0}; therefore, (6.6) holds if and only if xq —

X = 0. Hence, Equation (6.3) has a unique solution.

REMARK 6.1  If the initial state x, of a continuous linear system can
be uniquely determined on the basis of input and output values on any
interval [to, t1] (£1 > to), then the system is called completely observable.

The algorithm that decides whether a given system is completely ob-
servable or not consists of the following steps:

Step 1 Compute the fundamental matrix ¢(z, 7).
Step 2 Determine matrix M(%g, ;).
Step 3 Find rank(M(to,t1)). If it equals n, then the system is com-

pletely observable; otherwise it is not.

We note here that standard computer packages are available for deter-
mining ¢(¢, 7), for computing M(Ze,t1) by numerical integration, and
for finding the rank of M(tp,t1).

If the system is observable, then xy can be determined in the following
way. Equation (6.3) implies that at t = tq,

C(to)xo = y(to) ,

and select sequentially different values of t(1), ¢(2} . ¢(®) and substitute
them into Equation (6.3). Then a system of linear equations is obtained
for the unknown xg:

C(to)xo = y(to)
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e
CED)p(D, to)xo =y (™) — | CD)™, m)B(r)u(r)dr

to

for i = 1,2,..., k. If there is a unique solution, it has to be selected as
xp. Otherwise select a new value t(*+1), and check the uniqueness of the
solution of the new system of equations, which has the same equations
as the previous system and in addition the new equation with this newly
selected t(5+1) Repeat this process until a unique solution is obtained.

Example 6.1

Consider again the system

= (L,1)x,
which was the subject of earlier examples. In Example 2.6 we have
seen that
O R Gt At o A B
Therefore,
M(0,t1)

¢ .
' { coswT —sinwrt 1 (1,1) coSWT Sinwr \
. T
o \sinwr coswTt 1 ’ —sinwr coswT

¢
' coswT —sinwr . .
(coswr — sinwT, SinwWT + cos wT)dT
sinT + coswT

i
o\_

2

1- 2 sinwr coswT cos?wr — sin® wr
cos? wr —sin® wr 1+ 2sinwr coswT

il
c\ﬁ
S

I

1 —sin2wr cos2wr
cos 2wt 1+ sin2wt

/tl
0

) .
£+ cos 2wty —1 sin 2wty t; — sin” wt1  sinwty coswty
— 2w 20 — w w
- ( sin 2wt t — cos 2wty —~1 - . . .

) 20 smwﬁ(ﬂcoswﬁ tl + smwwtl
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The nonsingularity of this matrix can be examined by computing its
determinant, which is

sin? wty sin® wty cos? wty

2
1 w? w?

sin? wt -+ sin? wir (1 - sin? wty) ;2 sin® wt,

— 2
=t LS

w? w?

Introduce the new variable o = wt?1, then the determinant equals

o?  sinfa 1. ., . 9
— ——— = —(a® —sin

w? w? w? @)

which is positive for all @ > 0. Hence, M(0, t;) is nonsingular for
all £, > 0; therefore, the initial state Xq is observable for all ¢; > Q.
Hence the system is completely observable.

Matrix M(tg,¢1) is usually called the observability Gramian. Since it
is the controllability Gramian of the adjoint system (6.4), Theorem 5.2
implies the following result.

THEOREM 6.2

Matrix M(to, t1) satisfies the following properties:
(i) It is symmetric.

(ii) It is positive semidefinite.

(i) (8/9t)M(t, t1) = —AT(&)M(t, t1)—M(¢t, t1)A(t)—-CT (£)C(t), M(t;, t1) -
0.

(iv) M(to,t1) = M(to, t)+ T(t, t0)M(t, t1)p(t, to).

6.1.2 Time-Invariant Systems

In this section the special case of time-invariant systems will be dis-
cussed. That is, assume that matrices A(¢),B(t), and C(t) are time-
independent.

Introduce first the observability matriz

C
CA
L=| CA? |. (6.7)

CAT;-l
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From the corollary of Lemma 6.1 we get the following results.

LEMMA 6.3

The null space and range space of M(to, t,) for all t; > to coincide with the
null space and range space of matrix

My =LTL . (6.8)

THEOREM 6.3
The time-invariant continuous linear system is observable for arbitrary t1 > tg
if and only if the rank of the observability matrix L equals n.

Note that the condition of the theorem holds if and only if the columns
of matrix L are linearly independent.
Example 6.2

Consider again the system

k:(_sg)x+<?)u, x(0) =xg,

y=(1,1)x

which was the subject of our earlier Example 6.1. In that example
we examined the observability of the system by verifying that the ob-
servability Gramian M (0, ¢;) is nonsingular. The same result will be
obtained now based on the observability matrix L. Note that in this

casen = 2, and
C 11
L= (CA) - (—ww) :

Obviously rank(L) = 2forallw # 0. Hence the system is completely
observable. This example illustrates that the direct application of the
observability matrix is much more attractive (similar to controllability)
than the computation of the observability Gramian even in cases when
the integrals can be given in closed form.

Example 6.3

Consider next the satellite problem, which was the subject of our earlier
Example 5.5. The observability of this system is now examined. In this
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case n = 4 and

0 1 00
3w2 0 02w
A= 0 0 01
0 —2w0 0

Assume first that the radius 7 and angle & can be measured. Then x4
and z3 are the components of the output; therefore,

1000
C’(oom)

and the observability matrix has the form

1 00 0

0 01 0

C 0 1 0 0

L CA | 0 0 0 1
T CA%T| T | 3?2 0 0 2w

CAS3 0 —-2w0 0

0 —-w?0 0

—6w? 0 0 —4w?

It is easy to see that the first four rows are linearly independent, so
rank(L) = 4. Thatis, X¢ is completely observable.
Assume next that only the radius is measurable. In this case

Cl - (1903(),0) )
and
C, 0 0 10
Lo — CiA| | 0 100
1= ciA% ] 7 [3w? 0 02w
C;A3 0 —w?00

Observe that the last row is the (—w?) multiple of the second row.
Therefore, rank(L;) < 4, that is, the system is not observable with
the only output y1 = 3.

Assume now that only the angle # is measurable. In this case

C, =(0,0,1,0),
and
C, 0 01 0
L—|CAl_| 0 001
2T cA? | T 0 —2w0 O
CoA3 —6w® 0 0 —4dw?
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1t is easy to see that rank(L:) = 4, that is, the system is completely
observable with the only output y» = 3.

In summary, the loss of the measurements on the radius does not
destroy observability, but the loss of measurements of the angle § does.
This property is illustrated in Figure 6.2.

Only output 8 Only output r

Figure 6.2 Observable and non-observable satellite models.

Note that observability does not depend on the properties of B; hence
all results of this section remain true if B is time-dependent.

Note that for large systems, the rank of matrix L can be determined
by using standard program packages.

Similar to the case of controllability, one can easily verify the following
results.

THEOREM 6.4
Assurme that the rank r of matrix L is less than n. Then there exists a nonsin-
gular matrix T such that

- - A;; O
A=TAT!'= | T ¢ )
(A21A22
- B B,
Bo1n- (B),
C=cr'!'=(¢,0), (6.9)

where the sizes of matrices A1, Ag1, Aggarer xr, (n—r) x7, (n—7)x (n—7),
respectively, and By has r rows and Cy has r columns. Furthermore,

(i) system (Ay1, By, C1) is completely observable, and
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(ii) the transfer function of systems (A, B, C) and (A1, By, C1) coincide.

REMARK 6.2  Notice that system (6.9) can be rewritten as
Xy = A% +Bqu
%z = AgiX; + Ap%s + Bou
y =Cix; .

Because the output does not depend on X3, this variable is not observ-
able, and part (i) implies that %; is completely observable. |

THEOREM 6.5

System (A,B, C) is completely observable if and only if matrix A has no
eigenvector q that is orthogonal to the rows of C.

COROLLARY 6.2

System (A, B, C) is completely observable if and only if the rank of matrix
(sI - AT,CT) isn forall s.

Example 6.4

Consider again the system of Example 6.2, where nn = 2,

—w 0

A:( 0“’> and  C=(1,1).

In this case,

(sI—AT,CT):( “"1) .

—w s 1

Notice that for s = w, the first and third columns are independent;
otherwise the second and third columns are independent. Hence, the
rank of the matrix is always n, that is, the system is completely ob-
servable.

6.2 Discrete Systems

In this section the observability of the discrete linear system

x(t +1) = A@)x(t) + B{t)u(t), x(0) = %o (6.10)
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y(t) = C(t)x(t) (6.11)

will be examined. We assume that the sizes of matrices A(t), B(¢), and
C(t) are n x n, n x m, and p X n, respectively.
The general solution (2.44) of linear difference equations implies that

t—1

y(t) = C)p(t,0)x0 + > C(t)p(t, 7 + 1)B()u(7) .

7=0

Assume that the values of u(t) and y(t) are known for ¢t = 0,1,2,...,¢1—
1. Then the right-hand side of equation

t—1

C(t)o(t,0)xg = y(t) — Z C(t)o(t, 7 + 1)B(r)u(r) (6.12)

=0

is known. Similar to the continuous case, the observability of the initial
state xg is based on the mapping

Bx)(t) = C(t)(t,0)x (6.13)
with domain R™ and the range in the set of the p-dimensional functions
defined on the set {0,1,2,...,t; —1}. The null space of this mapping is
given as

N(B) = {x|B(x)(t)=0 forall te{0,1,2,... t; —1}}.

The linearity of mapping B implies that Equation (6.12)} uniquely de-
termines xg if and only if N(B) = {0}.

LEMMA 6.4
Vector v is in N(B) if and only if it belongs to the null space of matrix
-1
M(0,t) = Y ¢" (,0)CT(7)C(r)ep(r, 0) - (6.14)
7=0

THEOREM 6.6
It is possible to determine x, within an additive constant vector, which is in
N(M(0,t1)). If M(0,t,) is nonsingular, then xo can be determined uniquely.

REMARK 6.3  If the initial state x¢ of a discrete linear system can be
uniquely determined on the basis of input and output values for ¢t =
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0,1,...,t; with £; > n, then the system is called completely observable.
The algorithm to determine whether a given discrete linear system is
completely observable is the same as was given for continuous systems.

Example 6.5

Consider again the discrete system of Example 3.14:

x(t+1) = ((1) i)x(t) + ((1’) wt),  x(0) =xo

y() = (1, 1)x(t)

from which we know that

st =(3'77) -

Therefore,
10\ /1 17
M(0,t1) = ) (ﬂ) (1) (1,1) (0 1)
=0
t1—1 ty—1
_ 1 _ 1 7+1
= X_;) (T+1) (Lr+1)= Z_; (r+1 (r+1)2) '

By using the relations

tl(tl + 1)(2t1 + 1)
6

ti{t; + 1)

5 and  1242%4..4td =

142+ oty =

we obtain that

¢ ti(t:1+1)
M(0,t;) = ' 2 :
e G+ G+ @6+ |
2 6

The determinant of M(0, t1) can be written as

2t + D)2+ 1) 2 +1)2 0 2
1t 25( 1+1) 1(14 ) =T%(4t%+6t1+2—3t§~6t1~3)

it
12

(t2-1)>0.
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Hence, for t; > 2, M(0,t;) is nonsingular and the initial state is
observable, but for £; = 1 itis not. If {; = 1, then we have only one
observation y(0) of the one-dimensional output, which is not sufficient
to determine the two-dimensional initial state xg.

It is easy to modify Theorem 6.2 for discrete systems. Properties (i)
and (ii) hold in the same way, and (iii) has to be modified accordingly.
The details are left as an exercise to the reader.

Consider next the special case, when A and C are constant matrices.
Introduce again the observability matriz

C
CA
L=| ca?

CAn—l

One may easily verify that Lemma 6.3 remains true for discrete systems
with ¢; > n, and Theorem 6.3 has to be modified as follows.

THEOREM 6.7
The time-invariant discrete linear system is observable at arbitrary ¢, > n if
and only if the rank of the observability matrix L equals n.

Example 6.6

In the case of the discrete system being examined in the previous ex-

ample, n = 2 and
C 11
L= ()= (1s)-

which is nonsingular. Thatis, rank(L) = 2. Hence, forailt; > 2, the
initial state xg is observable. Note that the same resuit was obtained
in the previous example, but the direct use of the observability matrix
is much easier than the computation of M(0, ¢1) and its examination.
Assume next that the following measurements are known:

u(0) =1, y(0)=2, y(1)=0.
We will now find the initial state Xg. Att =0,

2=y(0) =(1,1)x(0) = (1,1)xo,
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andatt =1,

0 =y(1) = (1,1)x(1) = (1, 1)[(3 }) xq + ((1)) w(0)]

= (1, 2)xg + u(0) .
These equations simplify as

(1,1)x0 =2

(1,2)x0 = -1,
(12)==(2)-
o (3)

Finally, note that Theorems 6.4 and 6.5 remain valid in the case of
discrete systems.

that is,

The unique solution is

6.3 Duality

In Section 6.1.1 the relation between the observability of a linear system
and the controllability of its adjoint system was analyzed. In the case
of time-invariant systems, similar properties hold for the dual. These
results are the subjects of this section.

We first remind the reader (see Section 3.3.5) that dual systems are
defined as follows:

(i) The dual of the time-invariant continuous system
P.:%=Ax+Bu
y =Cx
is given as
D.:2=ATz4+CTv

w = BTz,
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where z, v, and w denote the state, input, and output, respectively.

(ii) The dual of the time-invariant discrete system
Py:x(t+1) = Ax(t) + Bu(?)
¥(t) = Cx(t)
is given as
Dg:z(t+1) = ATz(t) + CTv(t)
w(t) = BTz(t),

where z, v, and w denote the state, input, and cutput, respectively.

The original systems are called primal, and they are denoted by F,
and Fy, where the subscripts refer to the types (continuous or discrete)
of the systems. Similarly, D, and D4 denote the duals. Primal and dual
systems are illustrated in Figure 6.3.

Primal Dual

A B A ol

Figure 6.3 Primal~dual systems.

Note first that the construction of a dual system is very similar to
that of a linear programming problem. Obviously, the dual of a dual
system is the primal, which is implied by the simple property that the
transpose of the transpose of a matrix equals the matrix itself. The
most important relation between the primal and dual systems can be
presented as follows.

THEOREM 6.8

The primal of a time-invariant continuous (or discrete) system is completely
controllable if and only if its dual is completely observable.
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PROOF  This assertion follows from Theorems 5.4, 5.9, 6.3, and 6.7,
and from the observations that with K p being the controllability matrix
of the primal and L, being the observability matrix of the dual,

BT
BT(AT)

K;.=(B,AB,... ,A"'B)T = =Lp.

BT(A:T)n—l

REMARK 6.4  Because the dual of the dual is the primal, we have the
following modification of the theorem:
The primal of a time-invariant continuous (or discrete) system is com-

pletely observable if and only if its dual is completely controllable. |

Example 6.7

For the continuous linear system

<= (L08)x (1)

y = (1,1)x,

its dual is
. (0 ~w + 1
z2=1, 0)? )Y
w=(0,1)z.

Similarly, for the discrete linear system

x(t+1) = (é }) (1) + ((1)) u(t),

y(&) = (1, 1)x(1),

the dual is as follows:

a(t +1) = (} ?) 2(t) + (i) o(t)
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w(t) = (0,1)a(t) .

Hence, the duals are determined in both cases.

The concept of duality has many applications in linear systems the-
ory. The observability of a time-invariant system can be examined by
the controllability of its dual, and the controllability of a time-invariant
system can be investigated by examining the observability of its dual.
Further applications will be introduced in the next chapter, when dual-
ity will be used in deriving observability canonical forms; duality will be
applied also in Chapter 8 in obtaining standard observable realizations
of given transfer functions. Since the concept of duality is a consequence
of the developments of this and the previous chapters, it is introduced
here; however, its main applications will be discussed in later chapters
of this book.

6.4 Applications

In this section we present some applications of the observability theory
and duality of linear systems in engineering and in the social sciences.

6.4.1 Dynamic Systems in Engineering

1. Consider the simple harmonic oscillator (3.57) introduced in Chap-
ter 2 and given in Application 3.5.1-1, which is summarized below:

x=(_o4)x+(])u

Also let the output be y = z1; therefore,
¢’ =(1,0) .

Is it observable?
To answer this question let us compute the observability matrix

c? 10
2= ()= (00)
Since rank(L) = 2, the system is completely observable.

2. What about the damped linear second-order system of Applica-
tion 3.5.1-2; is it observable? In this case,

0 1 0
M ™M M
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Let the output be position; therefore,
¢’ =(1,0) .

Let’s compute the observability matrix L:

- (20)-

The rank(L) = 2; therefore, the system is completely observable.
3. For the electrical system of Application 3.5.1-3,

(F4) -0

Let the output be the voltage across the capacitor, then

et h‘
]

Bl

' =(0,1).

Let’s compute the observability matrix L:

0 1
L=<l L ) .
C CRj

Since rank(L) = 2, the system is completely observable.

Investigating the observability of this electrical circuit was not very
interesting. So, let us investigate the modified circuit of Figure 5.4 that
has the following equations:

.- -1 . 1
ZLI 0 L_l 0 0 ZLI r;
: 1 -1 1
vey | | o TR 0 0 e, C1R;
.- = 0 o o0 =L . + 1 U .
32 Lo tLy s
. 1 -1 1
UCZ 0 0 C2 CaRs UC2 CaRo

Let the output be the voltage across the right capacitor. That is,

i,

— ve,
y=0.001 ||,

UC2

and so
¢’ =(0,0,0,1) .
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Now let us form the observability matrix, L:

00 O 1

1 -1

L= 00 s C2R2
00 a4 ot + o
CIR; L.C; ' CIRZ

00 a b

We do not have to calculate the constants a and b, because we can al-
ready see that the system is not observable because the first two columns
are zero. What will happen if we change the outputs, so that
T _
' =(0,1,0,1) .

The new observability matrix L* is

0 1 0 1
1 =1 1 )
L* = C1 Ci1Ry Ca C2R»
- -1 —1 + 1 -1 =1 + 1
C%Rl LiCy CIQR% C%Rg LoCo C%Rg

-1 4 _1 2 1 =1 ., 1 2 _1
LiC} " CIR? LiR:C?  CJR} L;CZ ' C3RZ L2R:C? CIR3

If Ly = Ly, Cy = Cy, and Ry = Ry, then columns 1 and 3 and columns 2
and 4 are identical and the system is not observable. Otherwise, the
system is observable.

4. For the transistor circuit model (3.80) of Application 3.5.1-4,

e 1
r=(3fo) »=(8)
e 0

If we let the output be the voltage across the capacitor,

el =(0,1).

Let’s compute the observability matrix Ly:

01
- (1),
ke g

Since rank(L1) = 2, the system is completely observable.
However, if we let the output be the base current

Cr2F = (1’0) y
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the new observability matrix Lo is

10
L2 = (h.,-,, ) .
&+ 0

The rank of Lo is only 1; therefore, the system is not completely ob-
servable from the base current. This makes sense, because ¢, depends
on e, and h;.. It is independent of the voltage across the capacitor. So
we cannot devise an experiment that will allow us to determine v.(0) by
observing only .

5. To access the observability of the hydraulic system of Applica-
tion 3.5.1-5, we can compute L as follows. Because

A= (ﬁ(g —(ba+c)> and by = (g> ’

by selecting
C{ =(0,1)

Li= (2 —(b1+c)) :

The rank of L is 2, so the system is completely observable.
Once again let us expand the system to the three-tank system of Fig-
ure 5.5. In this case,

we get

el =(1,0,0),

CgAQ = (—'3) 37 0);

-3 30
cFAZ =(-3,3,00| 2-4 2| =(15-21,6).
0 3-3
So
1 00
Ly=|-3 30
15216

The rank is 3, so the system is observable by looking at the level of
water in tank one. However, let us now change the output vector to

¢l =(0,1,0),
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then
C§A2 = (21 —412) 3
-3 3 0
cTAZ =(2,-4,2)| 2-4 2| =(-14,28,—14).
0 3-3
So
01 0
Lz = 2-4 2
14 28 —14

Since the first and third columns are identical, rank(L3) < 3; therefore,
the system is not observable with tank two only. The physical reason
for this is that you could have the initial level in tank-1 high and that in
tank-3 low, or vice versa, and you cannot tell the difference by looking
at level of tank-2.

6. In the case of the multiple input electrical system

-2 pg_L
Ly L
A=| 0 0-% 1, C = (0,0,1),
11 ¢
Cc C

0 0 1
L=| & ¢ 0
= 0 —&(E+5)

q
&
al=

Because this is a square matrix, it has full rank if and only if its deter-
minant is nonzero. By expanding the determinant with respect to its
first row we have

l?jQIH

1
L 1
— . cC D e
det(L) = 1- det (_ 3 O) G 2O

Q)

Therefore, the system is observable.
7. To compute observability of the stick-balancing problem, let the
output be the position of the end of the stick. That is,

CT = (170) ’
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then we can compute the observability matrix:

- 10
- (1),

The rank of L, is 2, so the system is completely observable.
Next let the output be velocity of the end of the stick. That is,

c; =(0,1),

and the observability matrix is as follows:
01

(01

Again, the rank of Lo is 2, so the system is completely observable.
However, if we let the output vector be

and compute

we find the rank of L3 is less than 2, if
a® =bg,

which means this system could be unobservable with certain outputs.
8. For the cart with two sticks model of Application 3.5.1-8,

0010 0
0001 0
A= a4y 200 and b= e
a3a400 —d
If we let
¢’ =(1,0,0,0),

then we can compute observability matrix L as

1000

0010
L= a3 a9 0 0 ’

00 aj a2
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and if we switch column 2 and column 3, we have

1 000

. _| 0100
L_a10a20
0 a; 0 ay

Since ap # 0, the rank of L* is 4; therefore, the system is completely
observable. Here we used the fact that a triangle (or a diagonal matrix
in the further special case) with nonzero diagonal elements is always
nonsingular.

9. In the case of our electrical heating system we have

___A1h] A1h1
— Cy C1 —
A= Ar1hy  _ Aihi+Arh, and C= (1)0) )
Cg CZ

therefore, the observability matrix has the form
1 0
L=1 A Ay | -
Ci G

Since this matrix is lower triangular with nonzero diagonal elements,
rank(L) = 2, consequently the system is observable.

10. In the case of m = 1 in the nuclear reactor model of Applica-
tion 3.5.1-10 we have

p=B
A= ﬁ’ M and b:<1> .
B - 0

T =(1,0),

1 0
L= - .
( zﬁ )‘1)

The rank of L is 2, so the system is completely observable.

If we let

then

6.4.2 Applications in the Social Sciences

1. Cousider first the linearized predator—prey model (3.114) and assume
that the output y is the predator population. Then the resulting system
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is given as
be ac
G = _EW i
: da ac
=20 - =
w b b
y=W. (6.15)

By using the notation of Section 6.1.2 we have

g —te
A:(ad d) and C=(0,1)
= 0

and, therefore, the observability matrix is

01
L: d )
(‘%0

Since rank{L) = 2, the system is completely observable.
Consider next the linearized model (5.31) and assume again that the
predator population is the output. Then we have the systems model

be c
Gs = —-EW,S + du
. da
Ws = TG‘S
y=W;s. (6.16)

This system is also completely observable, since A and C are the same
as before. Without showing any application of duality, we note that the
dual of this system is given as

. ad
21 = 22
b
. c L
29 = ——2Z v
d
c
w= =2
d
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2. Consider now the three-dimensional cohort population model (3.115),
and assume that the total population is the output and immigration is
permitted to all age groups. Then the system has the form

Pl (t + 1) b1 bg b3 Pl(t) ul(t)
Pz(t + 1) =la; 00 Pg(t) + ’LLQ(t)
P3(t + 1} 0 as 0 Pg(t) U,3(t)
y(t) = Pl(t) -+ Pz(t) + P3(7f) . (617)
Since
b1 b2 b3
A=]a 00 and CcC=(4,1,1),
0 as 0

the observability matrix can be written as

1 1 1
L= by +a; by +as bs
b% +biay + ai1by + ayag bibs + baay + agbs bzby + bzay

This matrix has full rank if L is nonsingular. Note that this property
depends on the particular values of the model parameters ¢; and b;. For
example, if

1
a1=a2=b1=b2:§ and b3=1,

then the first two rows are the same, which implies that rank(L) < 3.
That is, the system is not observable in this case, and the state vector
cannot be determined uniquely.

Assume next that the output is the population of the oldest group.
Then matrix A does not change, but in this case

C=(0,0,1),

and, therefore,
0 01

L= 0 a20 s
ayaz 0 0

which has full rank. Hence, based on the measurements on only the old-
est population, the system becomes completely observable. This result
can be explained by noting that after certain time delay all other age
groups will enter the oldest population group.
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3. In the case of the arms races model (3.119), assume that the output
is X (%), that is, nation 1 can observe its own armament level but cannot
monitor the armament level of the other nation. In this case the model

has the form
xa):("ﬁ_g>xay+(g>u@y

y(t) = (1,00x(t) - (6.18)

10
t- ()
has full rank; therefore, the system is completely observable. That is,
observations on u(t) and y(t) uniquely determine the state.
4. Assume that in a warfare (model (5.32)), each nation can monitor

her own force X7 only, that is, the output from the viewpoint of the first
nation is Xy. The resulting model is

The observability matrix

Xl = -—hQXQ et hg’u(t)
Xo=-h1Xy,

y=X1. (6.19)

Since

(0 —hs _
A_<—-h1 9 ) and C=(1,0),

the observability matrix is

10
L—<O_M>.
Note that rank(L) = 2, which implies that the system is completely
observable.
Modify the above model by assuming that the output is X; + Xo,

which is the total combined force of the two nations. In this case A
does not change, but C = (1,1) and, therefore,

1 1
L= (—-hl -—hg) )
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This matrix has full rank if and only if Ay # hp. Hence, the system is
completely observable if and only if Ay # hs.

5. The linear epidemics model was discussed in Application 5.3.2-5,
where an input u was introduced to influence the number of infected
and circulating individuals. Assuming that their number is the output,
then the model can be written as follows:

o= (057 ) (e
y=(0,1)x,

where & > 0 is arbitrary. The observability matrix of this system is the

following:
0 1
L= (O af — ,6> '

Since the first column is zero, rank(L) = 1. Hence, the system is not
observable. This result is expected, since neither the governing differ-
ential equation nor the output equation depends on z;. Therefore,
cannot be observable.

6. Consider next a Harrod-type national economy and assume that
consumption C(t) is observed as output. Then model (3.10) is modified
as

Y(t+1)=[1+r—rm]Y(t) —rG(t)
Cty=m-Y(t), {(6.20)

where G is the input. Any observation of C(t) immediately gives the
corresponding value of Y(t) = (1/m)C(t); therefore, the system is com-
pletely observable.

7. We find a similar situation in the case of the linear cobweb model (5.34),
when we assume that, for example, the supply is the observed output.
This situation is modeled as

p(t+1) = p(t) + u(t)

y(t) = bp(t) + bo . (6.21)

Note that any observation on y{t) implicitly implies the corresponding
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value of the state variable, since from the output equation,

o] =

p(t) = = (y(t) — bo) .
Hence, the system is completely observable.

8. Consider next the model (5.36) of interrelated markets with the
additional assumption that the output is the average price (1/n)(py(¢) +
--+ 4 pn(t)). The corresponding model is now

p=KA-B)p+u
y =197 (6.22)
y“"n P7 .

where 17 = (1,1,...,1). The observability matrix

1T

1| 1TKR(A - B)
L=- ,
n

17K (A _ B)»!

is n x n, and, therefore, the system is completely observable if and only
if L is nonsingular. A trivial case of a singular L occurs when the sum
of the rows of matrix K(A — B) has identical elements, that is, when
the sum is the constant multiple of 17

9. In the case of an oligopoly, assume that we are interested in only
the totai output of the industry. Then model (5.38) is completed by the
corresponding output equation as

yit+1) = Ay(t) - 5-1u(0)

y(t) = 17y(t) , (6.23)

where y(t) is the sum of the elements of vector y(t),

1 1 1
0 —5-5-—3
1l g _1..._1

AC: .2 - .2 .2 ’
1 _1_1
T2 7272 0
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and we used the fact that measuring 17x(t) is equivalent to measure
1Ty (t), since
17x(t) = 1Ty (t) + 1T2(t)

where z(t) is known. (For the details, see the derivation of system (5.38).)
Before determining the observability matrix, observe that

—N
lTAc = 1—2——1T .

Therefore,
1-N4T
L= 2 1
( 1EN )N——llT
with rank(L) = 1. Hence the system is not observable. That is, from

measuremments of the total output of the industry it is impossible to
determine the individual outputs of the firms.

Problems

1. Discuss the observability of system

L) 1
v — t
= (51)+(3)

y=(1,D1x.

2. Examine the observability of system

() (0)

y=(1,1)x.

Use Theorem 6.1, and select tg = 0.

3. Compute matrix M(tp, t1) for system

() ()

y=(1,1)x,
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and illustrate the Properties (i) and (ii) of Theorem 6.2. Select the [0, 1]
interval.

4. Examine the observability of the following system by using the

observability matrix
X = ! X+ !
22 0)"

y=(1,1)x.

5. Use Theorem 6.1 to examine the observability of this system:

(3 (1)

y=(0,1)x.

Select ¢5 = 0.

6. Compute matrix M(tg, t,) for system

()= ()

y=(0,1)x,

and illustrate Properties (i) and (ii) of Theorem 6.2. Select to = 0.

7. Examine the observability of system

x=(55)x+ (1)

y= (0,1)}(,

by using the observability matrix (6.7).

8. Is the electric circuit

LED 4 (R + Ry)i(t) = ult)

y(t) = Rau(?)

introduced in Problem 3.13 completely observable?
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9. Discuss the observability of the mechanical system

<= (0-5) =+ (2)r
y=(1,0)x

introduced in Problem 3.7.

10. Is the discrete system

x(t+1) = (; ;) x(t) + (é) u()

y(t) = (1, 1)x(¢)

completely observable? Use Theorem 6.6, and select £; = 2.

11.  Use the observability matrix L to determine if the following sys-
tem is completely observable:

x(t+1) = (; ;) x(t) + ((1)) u(t)

y(t) = (1L, 1)x(t) -

12.  Use Theorem 6.6 to determine if the following discrete system is
completely observable:

x(t+1) = ((2) ;) X(t) + G) u(t)

y(t) = (0, 1)x(2) .

13. Discuss the observability of system

x(t+1) = ((2) ;) x(t) + G) u(t)

y(t) = (0,1)x(t)

by using the observability matrix L.
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14.

15.

16.

17.

18.

19.

20.

Discuss the observability of system

x = Ax -+ Bu

y =Cx+Du.

Find the dual of the system

() ()

y=(1,1)x.

Find the dual of the system

()= ()

y={0,1x.

Find the dual of the system

(e 2)

y=(1,0)x.

Find the dual of the system

x(t+1) = (;é>x(t)+<

y(t) = (1, )x() .

Find the dual of the system

x(t+1) = (g;)x(t)n‘-(

y(t) = (0, 1)x(t) -

(i) Prove Lemma 6.3.

325
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(ii) Prove Theorem 6.3.
(iiif) Prove Theorem 6.6.
{iv) Prove Lemma 6.3 for discrete systems with t; > n.
(v) Prove Theorem 6.7.

21. Prove that for any n x n continuous matrices A (t) and B(t) there
is a continuous row vector ¢ (¢) such that system

x(t) = A(t)x(t) + B(t)u(t)

y(t) = T (t)x(1)

is observable.

22.  Assume that the time invariant system X = Ax + Bu, y = Cx
is observable, ar_ld A, A and G, Care sufficiently close to each other.
Prove that x = Ax + Bu, y = Cx s also observable.

23. Let a be a real constant. Prove that the time invariant linear
system x = Ax + Bu, y = Cx is observable if and only if x = (A +
al)x + Bu, y = Cx is observable.

24. Prove that system x = Ax + Bu, y = Cx is observable if and
only if system x = Ax + Bu, y = CTCx is observable.

25. Let m be the degree of the minimal-polynomial of A. Prove that

C

CA
rank(L) = rank

CAm——l



chapter seven

Canonical Forms

In this chapter some special transformations of time-invariant linear sys-
tems will be introduced, and their properties will be discussed. These
special forms make the computer solutions and the investigation of the
systems properties much easier.
Let A, B, and C be constant matrices of the size n X n, n x m, and
p X n, respectively. For the sake of simplicity, the continuous system
x = Ax+ Bu
y=Cx (7.1)
or the analogous discrete system
x(t +1) = Ax(t) + Bu(t)
y(t) = Cx(t) (7.2)

will be called the (A, B, C)-system.
Introduce the new state variable

%=Tx, (7.3)

where T is a nonsingular matrix. Use the first equations of the systems
models (7.1} and (7.2) to derive

% = T%x = TAx + TBu = (TAT ")Tx + (TB)u

= (TAT 1% + (TB)u

327
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or
%(t +1) = Tx(t + 1) = TAx(t) + TBu(t) = (TAT " H)Tx(t) + (TB)u(t)
= (TAT)'x(t) + (TB)u(t) .
Similarly, the output equations can be transformed as
y=Cx=(CT Hx.

The above derivations imply that by introducing the new variable (7.3),
the (A, B, C)-system is transformed into an (A, B, C)-system, where

A=TAT"!, B=TB, and C=CT'. (7.4)

The original (A, B, C)-system and the transformed (A, B, C)—system
have some common properties:

(i) First we remind the reader that in Theorem 3.4 we proved that
the two systems have the same transfer function for continuous
systems, and in Section 3.4 we mentioned that this property also
holds for discrete systems.

(ii) If one of the two systems is completely controllable {or completely
observable) then the same holds for the other system as well. This
assertion can be proven as follows. Let K and K denote the control-
lability matrices, and let L and L denote the observability matrices
of systems (A, B, C) and (A,B, C), respectively. Note first that

K = (B,AB,...,A"!B) = (TB, TAT"'TB,..., TA"!T-!TB),
where we used the fact that for £ > 1,
(TAT Y = TA(T'T)A(T ... T)AT! = TA*T! |
Therefore,
K=T-(B,AB,...,A"'B)=T K,

and since T is nonsingular, rank(K) = n if and only if rank(K) =
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n. Similarly,

C cT! C
B CA cT 'TAT! CA
L= = = N
CAr-1 CcT lTAr IT-1 CA™ !
=L.T7',

and, therefore, rank(L) = n if and only if rank(L) = n.
Transformation (7.4) allows us to transform a system into special
forms without losing the essential properties of the system, which
can then be solved much easier than the original system, and cer-
tain properties (such as controllability, observability, etc.) can be
verified immediately without further calculation. These special
forms are the subject of this chapter. This transformation princi-
ple is illustrated in Figure 7.1. Finally, we note that all results of
this chapter hold for both discrete and continuous systems.

Original system Transform system

'/ Transformation
]

This is !}
difficult |
\

\

Inverse transformatiop

Solution or
properties

Solution or
properties

Figure 7.1 Principle of the transformation method.

7.1 Diagonal and Jordan Forms

Assume first that matrix A can be diagonalized by similarity transfor-
mation. That is,
TAT ™! = diag(M1, ..., An)
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with some nonsingular matrix T. Introduce the new variable X = Tx,
then the transformed system has the property that A is diagonal. There-
fore, the (A, B, C)-system has the very special form

.’i’l = )\1.’14','1 -+ ’&1

To = AaTo + U

ZTn = AnZn + Gy, (7.5)
where for k =1,2,...,n,
g = brauy + brotia + - + bt - (7.6)
Here we use the notation
B = (by) and u = (y) .

If the input function is known, then all functions 4 are also known.
Therefore, the solution of the original system is reduced to solving n
independent single-dimensional linear differential equations, which is a
much easier task than the solution of the original n-dimensional linear
differential equation. After the Z;s are determined, the original state
variable is obtained as x = T !'%. If the new coefficient matrix A is
diagonal, then the transfer function of the system can be written as

H(s) = C(sI— A)™'B

= C{diag(s—/\l,--ws* A} ‘B

- 1 1 ~
=C di -B;
C zag(s_/\l, ’s—)xn) B;

therefore, the (,7) element of H(s) is as follows:
= 1
E Citbyj - ——— .
I Citoy S — )\l

This observation implies that H(s) is the sum of functions of the form
1/(s = A)Dy, where Dy is a matrix with (¢,7) element é&;b;;. Hence,
H(s) is the parallel combination of these special transfer functions.
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In the general case, matrix A can be transformed into Jordan canon-
ical form:

Jq 0]
J2
TAT ! = , ,
(8] J,
where for j =1,2,...,s,
A 1 O
A 1
J; = S
A 1
8] A

is a vth-order square matrix, A; being an eigenvalue.

Note that the details of diagonal and Jordan form transformations
were discussed in Section 1.3.2.

By introducing the new variable X = Tk, the transformed system has
the property that A is block-diagonal. Therefore, the (A,E, C)-sys’cem
has the special form

X=X+

Xp = JoXo + 11p

%o = J %, 41, (7.7)

where for j = 1,2,...,s, vectors X; and 01; are v;-dimensional, and if

the input u is known, then all functions @i; are also known. Therefore,

the solution of the original system is reduced to the solution of s v;-

dimensional problems. Similar to the diagonal case, this reduction saves

a lot of computations. In addition, in solving each block, the special

structure of matrix J; makes the solution very simple, as is shown next.
Consider the jth block of Equation (7.7):

Tj1 = MZj1 + Tjo + 4

Tjo = Ailljo + Tja + Uj2
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Tjw;-1 = Mi&jp-1 + Tjw; + Ujuy—1

-%juj = /\ii’ju]- + ﬂju_,i . (78)

From the last equation Z;,, can be obtained easily, because it is only
a single-dimensional equation. After Zj,, is determined, Z;,,_; can be
obtained from the (v; — 1)st equation, which is again single-dimensional.
Continuing this process until the first equation, all components of X;
are determined recursively in the backward order Z;,., Zj,,—1,..., T2,
Z;1. Note that at each step only a single-dimensional linear equation is
solved, which makes this process very attractive.

Example 7.1

We first solve the diagonal system

F1=2-% +et,5(0)=0
Tp =T9+ 2et s 532(0) =0
533 :fg+3€t, :fg(O) =0,
Note that this system consists of three independent single-dimensional

equations. By applying standard techniques from the theory of linear
differential equations, we have the solutions

Z1(t) = e — ¢t

To(t) = 2te

Z3(t) = 3tet.
Hence, the solution is obtained very easily.

Example 7.2
Next the system
Ii‘l = Li'l +-i‘2 + et ; 51(0)

0
Ty =Ty + T3+ 2e', T5(0) =0
!fg = .’fg +3€t, 53(0) =0

with a Jordan block coefficient matrix, is solved.
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The last equation is a single-dimensional problem with solution
Fa(t) = 3te’ .

By substituting this function into the second equation, a single-dimensional
problem is obtained for Zy:

Ty =T + (3t +2)e!,  #(0)=0.
The solution of this problem is

3t?

To(t) = (—2— + 2t> et.

And finally, substitute this function into the first equation to get the
single-variable equation for Z;:

P ~ 3t2 t ~
Iy =1+ 7+2t+1 e, Z:1(0) =0,

which has the solution
t3
F1(t) = (5 + 12 +t> et .
Hence, the solution is obtained again very easily.

Note that standard computer packages are available to transform ma-
trices into diagonal or Jordan canonical form.

7.2 Controllability Canonical Forms

In this and also in the next section, single-input and single-output sys-
tems of the forms

%X = Ax+bu
y=clx (7.9)
and
x(t+ 1) = Ax(t) + bu(t)

y(t) = cTx(t) (7.10)
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are discussed, where A is an n X 1 constant matrix and vectors b and ¢
are n-dimensional.
First we verify the first type of controllability canonical forms.

THEOREM 7.1
Assume that system (A, b, cT) is completely controllable, then it can be trans-
formed into an (A, b, &T)-system, where

000---0 ag 1
100---0 a 0

A=|[010--0 @ and  b=|0 (7.11)
000 1an_, 0

PROOF  Because system (A,b,c”) is completely controllable, the
rank of the controllability matrix is n. In our case,

K = (b,Ab, A%, ..., A" 'b),

which is n x n; therefore, it is nonsingular.
Select the transformation matrix T = K~1. Note first that its rows

tT, ..., tT satisfy relation
t7
tf R
(b,Ab,A%b,..., A" b) =1,
T

n

which holds if and only if
tfAFlb=1 and tTA"'b=0 (#Fk). (7.12)

Therefore, relations (7.12) imply that
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and
t]
; td
A=TAT'=| | | A(b,Ab,...,A™'b)
ty
t]
td )
= (Ab,A’Db,...,A"b)
t),
000---0 ag
100---0 a4
_ 0100 a
000 -1apn_
where

ap =tTA™D,...,an ) = t2 A"b.

Thus, the proof is completed. |

REMARK 7.1  There is nothing special about vector ¢. |

An algorithm to find canonical form (7.11) consists of the following
steps:

Step 1 Find matrix K.
Step 2 Compute T =K1,
Step 3 Determine A, b, and &7 by using relations (7.12).

Example 7.3

This algorithm is now illustrated in the case of system

(L) 1)

Y= (1,1)}{,
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which was examined in earlier chapters.
Step 1: The definition of the controllability matrix implies that

Step 2: By inverting K,

1 /0w
_ el _ =
T=K _w<10)'

Step 3: Use relations (7.12) to get

Ao (79) (00) (1) - (7))
s-m=5 (1) (1) - (0)

and

el =cT T 1=(1,1) (2‘5) =(1,w).

COROLLARY 7.1

Expanding the characteristic polynomial of A with respect to the last column,
it is easy to verify that it equals

A = A" =@ 1AV = — g —ag . (7.13)

Since A and A are similar matrices, this is the characteristic polyno-
mial of A as well. Therefore, the method presented in the proof of the
theorem can also be considered as a numerical method for constructing
the characteristic polynomial of real matrices. Note that this method
can be used if there exists a real vector b such that b, Ab,..., A" b
are linearly independent.

Example 7.4
Consider matrix A of the system of the previous example. Its charac-

teristic polynomial is

p(A) = det<:u); _i() =A% 402,
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From the previous example we know that

= 0 —w?
A=(177):
therefore, ap = —w?, a; = 0, and from Equation (7.13),
(A =A% -0 A+ w?,

which coincides with the result obtained by the direct computation of
@(A). For small n, the method has no practical importance, but for
large values of n it certainly does.

A second type of controllability canonical form is presented next.

THEOREM 7.2
Assume that system (A, b, cT) is completely controllable, then it can be trans-
formed into an (A, b, &7 )-system, where

010..- 0 0
001.-.- 0 0
A= and b= (7.14)
000--- 1 0
Qg d1 a4 * - Ap—1 1

PROOF  First we prove that vectors
tT tTA, .. tTA"!

n°n

are linearly independent, where tZ denotes the lastrow of K1, as in the
proof of the previous theorem. Assume not, then there exist constants
Qp, 01, .. ., n_1 such that at least one oy, is nonzero and

cot? + artTA+ -+ aptTAM =07 . (7.15)
Multiply this equation by b to get
aotz:b + alt;{Ab + -4 an_ltZA"‘lb =0.

Observe that relation (7.12) implies that the first n — 1 terms of the left-
hand side are equal to zero, and the last term equals a1 - 1 = @ -1.
Therefore, a,—; = 0, and (7.15) reduces to equation

aotl +ontl A+ -+ oottt A2 =0T (7.16)



338 chapter seven: Canonical Forms
Multiply this equation now by Ab to get
atTAb+ aitTA%b + - + o, 2tTA b =0.

Similar to the previous case, from relations (7.12) we conclude that
an-2 = 0. Therefore, the last term of the left-hand side of Equation (7.16)
equals zero. Continuing the same process by multiplying the resulting
equation by A?b, and so on, one can easily verify that all coefficients
g, 1, . . ., 01 are equal to zero.

Select now the transformation matrix

tTZ
T t, A
(T AR
and denote the columns of T~1 by c¢1,...,cn. Then

ty

tTA
: (cla'“acn):]:v
tTAn—-l

n

which holds if and only if
tTAk-le, =1  and tTAFlc;=0 (L#£k).

Therefore, relations (7.12) imply that

tL 0
tTA 0
b=Tb= b=1{:],
tT A2 0
tIAn—!L 1
and
tT
tTTiA
- n
A=TAT ! = Afcy,...,cp)

tZA"—l
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tITA
tT A2

= . (cl,...,cn)
tT.A"
010 - 0
001- 0
000 --- 1

Gp 41 A2 - Qn-1

where
Tan Tan
ap =t, A"cy,...,an_1 =t A"c, .

Thus, the proof is completed. |
REMARK 7.2  No special property holds for vector &. Note that this

canonical form is the same as the model (3.29) and (3.30) for systems
given in input-output form. |

COROLLARY 7.2
Similar to the case of the canonical form (7.11), the common characteristic
polynomial of A and A is the one given by Equation (7.13).

The algorithm for determining the canonical form (7.14) consists of
the following steps:

Step 1 Compute matrix K.
Step 2 Find matrix T.
Step 3 Compute A, b, and &7 by using Equation (7.4).

Example 7.5

Consider again the system

y=(1,1)x.

The canonical form (7.6) will now be determined.
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Step 1: In Example 7.3 we derived that
Ow
<=(15)-

(va)’ tg‘ =

and, therefore,

] = (1,0).

1 1
w w

Step 2: Simple substitution shows that

1710
T_;<Ow>'
-1 _ w0
o= (51)

and use relations (7.4) to get

Ao =5 (50) (200) (51) - ().
s=m=2(32) ()-()

and

Step 3: Invert T:

el =cT™ =(1,1) (g 2) = (1)

From the last row of A we see that the common characteristic polyno-
mial of A and A is

PN =22 —0- A+ w? =A% +u?,
which coincides with the result obtained in the previous example.

The above canonical forms remain valid for multiple-output systems,
when the input is still one-dimensional, since only A and b are trans-
formed into special forms. In the general case of multiple inputs, the
transformation to a canonical form becomes more complicated. As Ex-
ample 7.6 will show, the proofs of Theorems 7.1 and 7.2 cannot be
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applied in the general case. However, a multi-input canonical form is

given as
xz‘xu x§12 1§1s 1:31
- Ao Aoy - Ags - B>
A= . , and B=| . , - (7.17)
Asl ASZ e Ass Bs
where the types of matrices
0 1 0 0
0 0 1 0
A = : f : S
0 0 o --- 1
kk) (kE)  (kk K.k
o o o e
and
0 0 .- 0
0 0 0
_ 0 0 --- 0
Ag = . . . (L #£E)
0 0 --- 0
kd)y (k! kL
o) ol ol

are v, X v and v, X vy, respectively. Furthermore, the type of matrix

0---000---0
0---000---0
e A
0---000---0
0---010---0

is v X m, where unity shows up only at the kth element of the last row.
Note that vy +v9 + - -- + v = n. Other canonical form variants are also

known from the literature.

Example 7.6

Consider the system

(10 10
x—<01>x+<01>u
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y= (1’ 1)X s
which is completely controllable, since the rank of the controllability

matrix
1010
K=(B,AB) = (OlOl)

is obviously 2. We can show, however, that there is no vector b, such
that matrix (b, Ab) is nonsingular. In our case Ab = b; therefore, the
two columns of this matrix always equal. Hence, this matrix is always
singular.

7.3 Observability Canonical Forms

Assume now that system (7.9) or (7.10) is completely observable. Then
its dual is completely controllable; therefore, the dual can be transformed
into controllability canonical forms. Take the duals of these canonical
forms to get the observability canonical forms of the original system.
This principle is illustrated in Figure 7.2 and is summarized by the
following theorems.

Original system Dual system

Get dual

Get dual

Observability
canonical form

Controllability
canonical form

Figure 7.2 Computation of observability canonical form.

THEOREM 7.3
Assume that system (A, b, cT) is completely observable; it can then be trans-
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formed into an (A, b, &T)-system, where

010-- 0
001~ 0
A= and  &¥ =(1,0,...,0,0). (7.18)
000 1
ap ay az <+ An-1
THEOREM 7.4

Assume that system (A, b, cT') is completely observable; it can then be trans-
formed into an (A, b, ET)-system, where

00---0 ag
10---0 a
A=|01--0 a

o
i

and T =(0,0,...,0,1). (7.19)

00~--1an_1

A general algorithm to find any of the observability canonical forms
consists of the following steps:

Step 1 Determine the dual system.

Step 2 Find the corresponding controllability canonical form of the
dual.

Step 3 Compute the dual of the resulting canonical form.

Example 7.7

Consider again the system

xz(_gﬂg)ﬁ(;’)u,

v= (171)X7

which was the subject of the examples of the previous section. The
observability canonical forms given in the above two theorems will be
determined.

Step 1: The dual system can be written as follows:

o (2)ee (D)o,
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w=(0,1)z.

(a) Step 2: The canonical form (7.11) of the dual is based on the
transformation matrix

1w\ 1 W w
—_ -1 - -
T_KD_<1 w) —2w(—11)'

Therefore,

~ 1 ww 0 —w 1 —w
. -1 _ =
Ao =marm = ((99) (570) (170)

and
T . 1 —w
&L =cfT-1 =(0,1) <1 w) =(1l,w).

Step 3: Therefore, the corresponding observability canonical form
(A, b,&T) is the following:

< - 01 - 1 T
A:ATD=<_w2‘0>, bch:<w),and ¢’ =bl =(1,0).

(b) Step 2: The canonical form (7.14) of the dual is based on the

transformation matrix
1 /-11
o (e)
since from Part (i) we have that
1
tf = —(-1,1),
T (1Y)

and simple calculation shows that

1 0 -
thAp = o—(-1,1) (w ‘5)

(53)
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1t is easy to verify that =

therefore,

< 1 /-11 0 ~w —wl
— -1 _ =

Ao=maort = (T0) (070) (21)
(01
- _w20 )

~ 1 -11 1 0

e ()0

and .
- - —Ww
L =ciT 1=(0,1)< wl) = (w,1).

Step 3: Thecorresponding observability canonical form (A, b, én)
is the following:

- - Y ~ -
A:A,@:(? ‘5’) b:éD=<‘*1’>,ana &7 =55 =(0,1).

In the case of multiple outputs, the observability canonical forms are
more complicated. As an example, we mention a variant of general
observability canonical forms, which is associated to the general control-
lability canonical form (7.17):

1}11 1:&12 {Ms
- Agy Agg - Ay,
A=1{ . . .
Asl As2 e Ass
where the types of matrices

00---0alM
10.-.0a{®®

00---1a%»

Uk—l



346 chapter seven: Canonical Forms

and

ki

00--~0af)kl>

000 al®b

e (k,l)
Ay=100---0ay (1 £k)

PN F k:,l

00---0a

are vy, X v and v X vy, respectively. Furthermore, the type of matrix

00---00
j 00---00
Ce=|00--01
00---00
00---00

is p X v, where only the kth element of the last column equals unity.
Note, that similarly to the general controllability canonical form (7.17),
vi+vat-oo+rvg =0

7.4 Applications

In this section we further develop the application examples introduced
and discussed earlier.

7.4.1 Dynamic Systems in Engineering

1. The simple harmonic oscillator was described with

_ 0w _ 0 T
A—<_w0) , b—(l) , and ¢’ =(1,0).

We showed in Example 1.13 that

(L9)-(G G

Noting that
A=T71!AT,
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we find that the diagonalized representation is

Finally, we note that the controllability and observability canonical
forms were derived in Sections 7.2 and 7.3.

2. Our damped linear second-order system was described with
0 1 0
() ()
M M M

cT =(1,0) .

and

This is an observability canonical form (7.18); therefore, we know that
the system is completely observable without computing the matrix L as
we did in Chapter 6.

3. The electrical system of Application 3.5.1-3 was described with ma-
trices

_Ry 1 1
Az( Ll ll' ) , b:(L> , and T =(0,1).
T TR 0

Let us generalize this problem as follows:

1
A=(a11a12) , b:(L) , and ' =(0,1).
az1 Q22 0

The canonical form (7.11) of this generalized system will now be deter-
mined. From Chapter 5 we have
1 ) ’

“

© e
~f of
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and we know that K = T~!, so we can compute

rog-te L (- _ L (an ~an
as \ 0 1 agr \ 0 1 ’

Use Equation (7.4) to get
A= 1 (ag —an ai] a2 layp
ag; \ 0 1 a21 022 0 an
_ 1 (0 an(af; +aza21) ~ ani(azian + aseaz)
as; \ Q21 a91a11 + Q2621 '
Hence,
A= 0 ajsaz1 — airaz2
1 ann+ax |

From (7.4) we also conclude that
b= L (ay —an i _ (1
~T Tep—1 % a% az
& =TT .—.(0,1)(0Eﬂ>=(0,7).

We can check this result by computing the characteristic polynomial of
the original A matrix and noting that its coefficients are the same as
the negatives of the coefficients in the last column of A. Since

_ (a1 an
as a2 /)’

p(A) = det (011 A e )

a2y agy — A
= (a11 — A)(a22 — A) — aj2an

2
=A% — Aa11 + @22) + ar1a22 — a12a01 .

4. For the transistor circuit model of Application 6.4.2-4, we have

—hie g 1 T
a=(3f) ve(5) = d-0n,
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Let us find an observability canonical form by the technique of Sec-
tion 7.3. In our case, with suitable choices for o and 3,

A:(—gg), b:(—é), and c{:(O,l).

The algorithm is as follows:
Step 1: Get the dual from Section 6.3 to find

_(—ap _ {0 r _ (1
AD_(OO), bD_<1), and ch_(L,o).

Step 2: Get the controllability form for the dual:

therefore,

From (7.4) we know that

fo=momums = (1) (758) (%)
b= =D3bSD 50 00/\10
AN
TA\l~a)’
- 01\ /0 1
bp = Tpbp = = ,
= mevo=(30) (1) )

and T T a1 1 04 Jé)
Cip=cipTlp = 270 10)= 0’f )

Step 3: Get dual of result:
A:(O 1) : B:(g) ., d=0n0.

0 —«

This is the observability canonical form (7.18). We can check this result
by computing the characteristic polynomial of the original A matrix:

o()) = det (‘aﬁ" A _g)
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= A+ o).

The negatives of the coefficients of this polynomial, ap = 0 and a; = -,
are indeed the terms in the bottom row of A, so our work is correct.

With ¢ = (1,0), which we introduced in Chapter 6, no observability
canonical form is possible, because the system is not completely observ-
able. The method cannot be used, since L3 ! has to be computed. But
L, is singular (second column is zero); therefore, Ly ! does not exist.

5. There are an infinite number of ways of selecting the state vari-
ables for a given system. Some of them have physical significance and
some have mathematical convenience. For the hydraulic system of Ap-
plication 3.5.1-5 we will show five different representations. We will also
illustrate these five representations with block diagrams. But first let us
look at the two-tank hydraulic system:

. - 1 1
Ri A RiA; A1
A = b — A
1 _ 1 + 1 ’ 0 ?
R1A2 R1A2 RQAQ

ook
R R

Let us note that the A matrix is full and, therefore, this system is the

same as that of Application 7.4.1-3. Therefore, we will not repeat that

analysis.

However, let us now look at one particular instance of the three-tank
system presented in Application 5.3.1-5. We will present five different
forms to represent this system.

A. The first is called physical variables because the state variables
have physical significance. They are the heights of the water levels in
the tanks. This representation is

and

-3 30 1
A=| 2-4 2|, b=]0}, ¢ =(1,0,0) .
0 3-3 0

This representation is illustrated in Figure 7.3.
B. Let us find first a controllebility canonical form. Since

1-3 15
K=[(0 2-14}=T7",
0 0 6
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5

Figure 7.3 Physical variable representation for the three-tank hydraulic exam-
ple.

[an I T S N
D= D

1
T=1]0
0

Therefore, from Equation (7.4) we have

121\ /-3 3 0 -3 15
A=]0%1 2-4 2|({0 2-14
004+ 0 3-3 0 6
00 0
=|10-21],
01-10
3
131 1 1
- 17
1
00t/ \o 0
and
1-3 15
e =cTT1=(1,0,0) {0 2-14 ] =(1,-3,15) .
00 6

This representation is illustrated in Figure 7.4.
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Y

+ 3 Y(s)

Y

-3

Ul(s) o+ [ ]X2 +
s > s N
=21 ~10

! i

G —

Figure 7.4 Controllability canonical form for hydraulic example.

C. Next we would like to find an observability canonical form. Let us
do this with the method of Section 7.3. First using the techniques of
Section 6.3, find the dual:

-3 2 0
Ap=AT=] 3-4 3|, bp=|0}|, E=0,00.
0 2-3 0
Next find the controllability canonical form for this dual. Since

1-3 15
Kp=|0 3-21)=1T3,
0 0 6

we know that

=

o}

Il
O W= =
= o

Then from (7.4),

111\ /-3 2 0\ /1-3 15
Ap=TpApTp'=|03% 3-4 3]0 3-21
001} 0 2-3/\0 0 &6
00 0
=|10-21],

01-10
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111
bp=Tpbp=|031 =lo|,
001}
and
1-3 15
&5 =cET, = (1,0,00 | 0 3-21 | =(1,-3,15).
00 6
Finally take the dual of result:
) 0 1 0 ) 1
A=|0 o 1], b=1|-3]|, &’ =(1,0,0) .
0 —21 —10 15

This representation is illustrated in Figure 7.5. Note that z1 is on the
right in this drawing.

The controllability canonical form is sometimes called the method
of phase variables. In this method, the state variables consist of one
variable and its n — 1 derivatives, as in Theorem 3.5.

Ul(s)

+]

—21 (+

Figure 7.5 Observability canonical form for the hydrology system.

D. Next let us find a representation for this system with a diagonalized
matriz.
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Step 1: From the original A matrix, find the characteristic equation

3= 3 0
det 2 —4-X 2 =0,
0 3 —=3-2A
that is,
X H10A2+21A =0
or

AL = 0, Ay = -3, and /\3 =-T7.

Because there are no repeated roots, we know that our A matrix is

0 0 0
A=|0-3 0
0 0-7

However, we still need to compute b and &7. To get these we need to
compute the eigenvectors in order to find the transformation matrix.
Step 2: The eigenvectors are determined as follows.
If A =0, then the homogeneous equation is

-3 3 O T1 0
2-4 2 o | =101 ;
0 3 -3 I3 0
therefore,
1
x=1]1
1
is a solution.
If A = -3, then we have equations
0 30 I 0
2-12 o = 0
0 30 T3 0
with solution
1
X = 0
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If A= ~7, then
232 zo | =101,
034 T3 0
which has a solution 2
x=| -4
3

Step 3: Assemble the eigenvectors to get T~1:
11 3

T™!=11 0-41 ,
1-1 3

and by inversion,

1 4 6 4
1-2 1

Step 4: Find the resulting matrices by (7.4),

L (4 6 4 -3 3 0 11 3
A=TAT '= 7 7T 0-7 2-4 9 1 0-4
1-2 1 0 3-3 1-1 3
L, (0 0 0O 0 0 0
=11 0-42 0| =/0-3 0
0 0-98 0 0-7
2
_ 1 4 6 4 7
b=Tb=-— |7 0-7 i,
Ui 9 4 N
14

and

11 3
=TT '=(1,0,00|1 0-4|=(1,1,3).
1-1 3

This method of representation is popular because you can immedi-
ately see what the eigenvalues of the system are. This representation is

illustrated in Figure 7.6.
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14
&

~Na

S’ Y(s)
+

Figure 7.6 Diagonalized matrix form for the hydrology system.

E. We can also represent this system with a transfer function. Simple
calculation shows that

H(s) =cT(sI - A)" b

-1

s+3 -3 0 1
=(1,0,0) | -2 s+4 -2 0
0 -3 s+3 0

First, find the inverse matrix (sI — A)~!. There are many techniques
for finding the inverse of a matrix. Here we will use the cofactor matrix
technique. The cofactor of ass, for example, is formed by eliminating
the second row and the third column from the original matrix and mul-
tiplying the determinant of the resulting 2 x 2 matrix by (~1)?*3. Thus,
cofactor of ag3 is formed as

s+3 -3 0
cof(ay)=(~1)""det| =2 " sH4
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The other cofactors can be found by a similar process to produce

§2+7s+6 25+6 6
cof(A) = 35+9 s2+6s+9 3s+9
6 2s+6 s2+Ts+6

Now the adjoint matrix can be formed by transposing the cofactor ma-
trix:

s2+7s+6 3s+9 6
adj(sX — A) = [cof(A))T = 25+6 s24+6s+9 2s+6
6 3s+9 £2+75+6

The inverse can be now computed as

~1_ adj(sI - A)
(sT-A)"" = det(sI — A) ’

where det(sI — A) = s3 + 10s? + 21s.
Finally the transfer function becomes

s24+754+6  (s+1)(s+6)
3 +10s2+21s  s(s+3)(s+7) "

H(s) =

This representation is illustrated in Figure 7.7.

U(s) (s+1)(5+6) Y(s)
. R
s{(s+3)(s+7)

Figure 7.7 Transfer function for the hydrology system.

We could make the calculation easier by observing that (sI — A)~'b
can be obtained by solving linear equations with coefficient matrix sI— A
and right-hand side vector b. And then, the solution vector has to be
multiplied by cT.

Note that a partial fraction expansion of this transfer function pro-

duces
(s+1)(s+6) _2/7 _1£+§/1_4

s(s+3)(s+7) s s+3 s+7’°

which is the same result that can be observed from the diagonalized
matrix of Figure 7.6.

Many more representations for systems are possible, and indeed are
used in the Systems and Control literature. But with these five examples
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we hope to convince the reader that you can easily change from any one
form to any other. Therefore, the particular representation technique
does not limit the generality of the methods presented in this book.

6. Since the multiple-input electronic system has two input variables,
the usual canonical forms cannot be obtained. However the more general
forms (7.17) and (7.20) can be used. The details will not be given here.

7. The stick-balancing problem is modeled by matrices

A:((g)(1)> , b:(m2> , and ¢l =(1,0) .

Note that this is already in an observability canonical form (7.18), which
has an immediate consequence, we know that the system is completely
observable without computing the observability matrix L.

8. In Application 3.5.1-8 we introduced the problem of trying to con-
trol two sticks mounted on a cart. The description of the problem was
based on matrices

0010 0
| 0001 ’ b= 0 7
a1 az 00 —c
CL3(Z400 —d
and
¢’ =(1,0,0,0) .

We will now find the diagonal form of this system.
From Application 4.4.1-8 we know that the characteristic equation of
A s
e(A) = X* — X2(a1 + a4) + (a1a4 — aza3) =0,

therefore,

_ar+aq+ /(a1 — a4)? + dasag
= 5 i

)\2

Since aja4 — acaz > 0 and ay + a4 > 0, there are two distinct positive
roots for A\2. Consequently, the eigenvalues are

Al=oq, A=-—01, A3=0a, M=-a

with

[

oy =

{al + aq + \/(a1 —a4)2 +4a2a3}
2
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and

1
ay + ag — \/(al - (14)2 + 4agaz :
g = 9

The eigenvector equations are

—X; 0 1 0 x 0
0 ‘—/\i 0 1 ) _ 0 -
a1 as '—Ai 0 z3 - 0 3 (2“172$374) 3
az as 0 —=X; T4 0
that is,
— ATy +I3 =0
— Ao +xy =10
a1r; +aoxs —/\1;.’123 =0
asxry +a4To —Aiza=0.

Select zz; = 1, then

—a1 + /\3
Tp = ——,
az
I3 = )“i 3
and
—a1A; + )\i3
r4=—————.
az

Therefore, the transformation matrix is as follows:

1 1 1 1
~a1+a?  —aita?  —ated  —artel
T = az az az ag
(05] —(1 (6] —Qg

3 3 3 3
—ajxita] a1 —o] —aiteta; a1a2-ag
az az az az

Hence, simple calculation shows that

[e3] O
z ]
A= ! ,
(23]
0] —o
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—cAgs4d
2a1(Az2—-Ay)
CAz—d
2a1(A2~A1)
—cAi1+d
2a(A1—A2)
CA1 —d
2a2{ A1~ Ag)

o't
i

where A; = —a; + a?/ap and Ay = —ay + a2/ay; furthermore
el =(1,1,1,1) .

9. The electrical heating system of Application 3.5.1-9 has a general
2 x 2 coefficient matrix and B is the first basis vector. Therefore, it is
the special case of the one being discussed earlier in this section (Appli-
cation 3 of the electrical system) with the selection of L = 1. Therefore,
the calculations are not repeated here.

10. The nuclear reactor was described with

=8y 1
A= ( ﬁl; ) ) , b= (0) , and c? =(1,0) .
1 1

This is almost the same as Application 7.4.1-3, so we will not repeat the
calculation.

7.4.2  Applications in the Social Sciences and Economics

1. Consider first the linearized predator-prey model (6.16), where the
coeflicient matrix has the form

0 -
b
C

b= (E,O)T and cT:(O,l) .

furthermore

We illustrate first how this system can be diagonalized.
The characteristic polynomial of A is
be d
go()\)-——)\2+—(;—:-—b(£=/\2+ac;

therefore, the eigenvalues are A\; = ji/ac and Ay = —j+/ac. In order to
use Theorem 1.11 for finding the diagonalizing transformation matrix
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T, we first have to find the eigenvectors of matrix A. The eigenvector
associated to A; is the solution of the homogeneous linear equation

”J\/CE -b_dc iy _ 0
@ —jJac) \% 0/
By selecting z12 = dv/ac, the first component implies that
—jvaczy —bey/ac =0,

that is,

be .
Ty = —— = jbc .
=7

Therefore,

x1 = (jbe, dv/ac)” .

Similarly, the eigenvector associated to A is the solution of equation

(6 ) (72) - (6)-

Select again z22 = dv/ac to obtain z2; = —jbe. That is, X2 = (—jbc, dv/ac)¥.
The transformation matrix is then determined by using Equation (1.29)
and (7.4):

. . -1
_ -1 _ { jbc —jbc
T=Cax)™ = (d\/& dﬁ)

_ 1 dv/ac jbe
" 2jbedy/ac \ —dv/ac jbe )

Since

-1 _{ jbc —jbc
T —(Xl’xz)_(d\/&d\/ﬁ) )

relations (7.4) imply that

A

(6" %)

1l

b % (_11> (7.21)
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and

&T = dv/ac(1,1) .

Hence the system is diagonalized.
2. The general cohort population model (6.17) is based on matrices

bl b2 bn—l bn
a1 0 -+ 0
A= 0Oay--- O 0 B=1

0 0 - ap1 0

and
C=(11,...,1).

As an example, we will transform matrix A into the form A given by
the canonical form (7.14).

Note first that matrix A has a structure similar to the coefficient
matrix of the canonical form (7.14). Based on this similarity it will be
easier to construct the transformation matrix directly rather than to use
the general method given in Section 7.2.

Permute first the components Py, Ps,..., P, of the state vector as
(Pn, Pa-i,-.., P2, Py), and also, introduce the new input vector (uy, tn_1,

ugz,u1). This permutation of the state and input components result in
the corresponding permutations of the rows and columns, and, therefore,
the resulting matrix has the form

Oan_l 0o ---0
0 0 ap—---0
Ay . . .

0 0 0 --ay
bn bn—l bn—2 bl

This form is now closer to (7.14), since the nonzero elements have the

same locations. Next, all coefficients a,,-1, ..., a2, a; will be transformed
to be equal to one. Select a diagonal transformation matrix T = diag{x1,
..., Ty), where the z’s are unknown. Since T~} = diag(1/x1,...,1/zy,),

from (7.4} we have

A = TAT! = diag(zy, ... , Tn)Ardiag ( L . —1—)

Ty b)
1 Tn
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T
0 an_li 0 0
0 0 o= 0
0 0 0 - est
Zn Zn, Zo .. T
. bnx—l bn~1 2 bn—? 3 bl Zar

We now select the zis to satisfy relations

Ty T2 Tn-1
Op-17T = Qp_g — = =01 =1.
T2 T3 Tn
If z; =1, then we have
T2 =0n-1,T3 = Ap-20n-1," ", Tn = Q1403 - - Ap-20n—1 - (722)
Hence, the transformed matrix is as follows:
0 1 0 -0
0 0 1 - 0
A=) v 0o (7.23)
0 0 o0 1
bn bn—-l bn——2 bl
where
by = by, by = aibs,...,bao1 = a103...Gn-2bn-1 ,
and

bn =aiag ... Cln_.zan_lbn .

Thus, the required canonical form is determined.

3. In the case of the arms races model (6.18), the computation of the
observability canonical form (7.18) will be illustrated.

Note first that the dual of the problem has the form

7= (_2 _§)z+ (é)v,
w = (o, B)z . (7.24)

The controllability canonical form (7.11) of the dual will be first deter-
mined, and the desired observability canonical form is its dual. From
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the proof of Theorem 7.1 we know that the transformation matrix is as

follows:
ro (10 _1(ab
“\0 a T a\01 ’

Therefore, the controllability canonical form of the dual is given by ma-
trix

< -1 _1fab -b ¢ 1-b\ [(Oac—bd
A =TAT T al\01 a-d/\0 a/) \1-b-d )’
and vectors
~ 1 /ab 1 1
B-te-2(51) (6)= (o)

¢ =CT' = (a, 8) ((1) ‘2) — (o, —ab + fa) .

and

Therefore, the dual system is

_ 0 1 <+ o -
“Nac—bd -b—-d)* "\ —ab+8a )™

(L,0)x . (7.25)

e

g
By using the general formulation (7.18) we have
n=2, ap = ac — bd, and a1 =-b—d.
Hence, the required canonical form is obtained.
4. The observability canonical form of the warfare model (6.19) is a
special case of the above results, since by selecting

a=—hy, b=0, c=—-h;, d=0, a=—hs, and B=0

the arms-races model reduces to the warfare model. Hence, the above
result implies that the observability canonical form of this model is as

follows:
B 0 1\. ~h3\ .
~ (o) %+ (70°)

§=(1,0)% . (7.26)

18
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5. In Application 6.4.2-5 we saw that the linear epidemics model is
based on matrices

_ 0 —ar . 0 T _
A—<0a§:—ﬂ> , b_<—1) , and ¢’ =(0,1),

where Z > 0 is arbitrary. By selecting Z = 8/a, matrix A reduces to

- ()

If z; and x5 denote the state components, then the system reduces to
the following:

Ty = —fx
Ty = —u
Yy =ZI2 .
Introduce the new variable Z5 = -z, then these equations are trans-
formed as
Ty = .’Z‘z
Ty = fu
— 1 jood
y= —Bﬂvz

This form is a Jordan canonical form, since the modified coeflicient ma-

trix
= 01
A= (a0)
is a special 2 x 2 Jordan block with eigenvalue A = 0.

6. The Harrod-type national economy model (6.20) is based on the
1 x 1 matrices

A=(1+r-—-rm), B=(-r), and C=(m).

Here A can be considered diagonal; therefore, this system can be con-
sidered also as given in diagonal form.
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7. Similar to the previous application, the linear cobweb model (6.21)
is based on the 1 x 1 matrices

A:(ﬁ), B=(1), and C=(}).

a

Therefore, this system also can be considered as given in diagonal form.

8. The model (6.22) of interrelated markets is completely controllable,
as was verified in Application 5.3.2-8; however, it is not always observ-
able. In order to illustrate a special canonical form of the system, con-
sider the following numerical example:

-2 1 1-1 10
A:( O—3>’ B—(O 1), and K—(02).

Then the system has the particular form

o (LON[(-2 1\ _(1-1\] .
P=1o02 0-3 0 1/)]|P
10 -3 2
= (oz) ( o-—4>p‘*“
-3 2 10
—( 0_8>p+(01)u (7.27)
with output equation
(11
y= 2'9 p.

The diagonal form of this system can be obtained as follows. First the
eigenvalues of the coefficient matrix are determined. Since this matrix
is triangular, the eigenvalues are the diagonal elements A\; = —3 and
A2 = —8. Simple calculation shows that the associated eigenvectors are

(o) = ()

therefore, the transformation matrix is

oo (l 2\ _1(5 2
“\o-5) Ts5\0-1/"
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Use finally relations (7.4) to get the transformed system:
B -3 0. 1/5 2
b= ( 0-8)"*'5'(0-1)“
1 3
=|{z.—2|D- 7.28
y (2, 2) p (7.28)
We can check our results by verifying that the transfer functions of the

original and this diagonal representation coincide. Simple calculation
shows that the transfer function of system (7.27) is the following:

o= (35) (55 A) (89
-(33) eraeew (0 ts)

_( 1 5+5 )
C\2(s+3)"2(s+3)(s+8)/

The transfer function of the transformed system (7.28) is given as

= (5-2) (050,00 (5
-(573) sraery (0 eva) (61)
-(53) e (0 )

- (2(31+ 3)"2(s +s31;(§ n 8)) '

Hence, H(s) = H(s).

9. In our last example we shall diagonalize the coefficient matrix Ac
of the oligopoly model (6.23). Note first that the coefficient matrix can
be written as

1 1
Ac=—-=-1+-1
c 5 +2,
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and in order to find the nonsingular matrix T which transforms this
matrix into the diagonal form, we need to determine first the eigenvalues
of Ac and the associated eigenvectors. In Section 3.5.2 we have seen
that the eigenvalues of matrix 1 are Ay = 0 and Ay = N; furthermore
any vector u = (u;) with the property u; +uz+- - -+uy = 0is associated
eigenvector to A\; = 0, and any vector having identical components is
an eigenvector associated to Ay = N. Therefore, a complete system of
eigenvectors is given as

—-N+1 1 1 1
1 -N+1 1 1
1 1 : and :
: : —-N+1 1
1 1 1 1

where the first N —1 vectors are associated to A1 = 0 and the last vector
is associated to Ay = N. From Equations (1.29) and (7.4), we conclude
that the transformation matrix is as follows:

-N+1 1 1 1
1 -N+1-- 1 1
1 1 1 1
T =
1 1 e =N+11
1 1 1 1

Look for this inverse matrix in the special form

ab---be
ba---be
bb---be
T=1] .. .. ,
bb---ac
ce---cd

then equation T~!T = I implies that

(-N+1)ae+(N-2)b+c=1
a+(-N+1Db+(N-3)b+c=0

a+(N-2b+c=0
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(N-1)c+d=1.

Simple caleulation shows that the solution of these equations is the fol-
lowing:

1 1
a=—=, b=0, and c:d:—ﬁ.
Hence
-1 01
. -1 1
T=—

N Ly
0] -11
1 1--- 11

Ac=TA T !=

o=

0] 1-N

Note that the diagonal elements are the eigenvalues of A ¢ as they should
be.

Problems

1. Diagonalize system

o (P, (1
“\22)%*" o))"
y=(1,1)x.
2. Diagonalize system
012 1
X=(011|x+|1]u
002 1

y=1(1,0,0)x.
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3. Repeat Example 7.1 for system

000 1 1
x=[010]x+1{1l]u, x(0)=]|0

002 1 0

with the constant input u(t) = 1.

4. Repeat Example 7.2 for system

() (1) o= (3)

with the input function u(t) = t.

5. Solve the system

012 1
x=1011]x+]|1|wu
002 1

y = (1,0,0)x

with the constant input u(t) = 1 by the transformation method. Solve
first the diagonal form obtained in Problem 7.2, and then compute the
solution from Equation (7.3).

6. Find the controllability canonical form (7.11) for system

101 0
x=|011|x+|1]u
111 0

y=(0,1,0)x .

7. Find the controllability canonical form (7.11) for system

111 1
x=f]121]|x+]10|un
110 0

y=(1,0,0)x.
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8. Find the controllability canonical form (7.11) for system

101 1
x=|030|x+]1]u
101 0

y=(1,1,0)x.

9. Find the controllability canonical form (7.14) for system

101 0
x=|011|x+]|1}u
111 0

y=(0,1,0)x .

10. Find the controllability canonical form (7.14) for system

111 1
x=1121)x+|{0}|u
110 0

y = (1,0,0)x.

11. Find the controllability canonical form (7.14) for the system

101 1
x=|[030|x+]1]u
101 0

y=(1,1,0)x.

12.  Find the observability canonical form (7.18) for system

101 0
x=1011|x+|1{u
111 0

y =(0,1,0)x.
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13. Find the observability canonical form (7.18) for system

111 1
x=|121|x+{0]u
110 0

y=(1,0,0)x.

14. Find the observability canonical form (7.18) for the system

101 1
x=1030|x+[11]u
101 0

y=1(1,1,0}x.

15. Find the observability canonical form (7.19) for system

101 0
x=1011]x+{1]u
111 0

y=(0,1,0)x .

16. Find the observability canonical form (7.19) for system

111 1
x=|121|x+|0}u
110 0

y=(1,0,0)x.

17. Find the observability canonical form (7.19) for the system

101 1
x= 1030 x+i{1]u
101 0

y=(1,1,0)x.

18. Verify directly that the canonical forms (7.11) and (7.14) are com-
pletely controllable.



7.4 Applications 373

19.  Verify directly that the canonical forms (7.18) and (7.19) are com-
pletely observable.

20. Verify the corollary of Theorem 7.1 by showing that the charac-
teristic polynomial of matrix

000---0 ap
100---0 a3
A = 010---0 as
000---1ap—
is
WA = A" —ap_ N - —ah—ag.
21. Systems X = Ax + bu and z = Az + bu are related by the state

transformation z = Tx. Prove that matrix T is unique if and only if the
systems are completely controllable.

22. Is the statement of the previous problem true for multiple input
system?

23. Reformulate and verify the statement of Problem 7/21 for observ-
able systems.

24. Explain how the method introduced in the proof of Theorem 7.1
can be used to compute the eigenvalues of a real nn x 7 matrix A.

25. Assume that A is a real n x n matrix with distinct eigenvalues.
Using the diagonal form of A find an n-element real vector b such that
system

X = Ax+bu

is completely controllable.
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chapter eight

Realization

In Chapter 6 we were concerned with the problem of estimating the
initial state of a system on the basis of input and output measurements
in an interval [tg,t1]. In this chapter, an even more difficult problem
is addressed, namely, how to recover the system’s model itself based on
the known relation between the input and output of a system.

We know from Chapter 3 that the input and output of a continuous
linear system are interrelated by equation

y(t) = C(O)B(t, to)xo + / Ct)p(t, NB(u(r)dr ,  (8.1)

and for discrete linear systems this equation is modified as

t—1
y(t) = C(t)o(t,0)x0 + ¥  Ct)o(t, 7 + 1)B(r)u(r) . (8.2)
Matrix
T(t,7) = C(t)(t, 7)B(7) (8.3)

for continuous systems and matrix
T(t,7) = Ct)e(t,r + 1)B(r) (8.4)

for discrete systems are called the weighting patterns.

DEFINITION 8.1 A weighting pattern T(t, T) is said to be realizable in
[to, t1] if there exist matrices A(t), B(t), and C(t) such that (8.3) (or (8.4))
is satisfied for all t € [to,t1] with ¢ being the fundamental matrix of the
{A(t), B(t), C(t)) continuous (or discrete) systemn.

375
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In the first section of this chapter, the realizability of weighting pat-
terns is discussed. Necessary and sufficient conditions will be given and
the uniqueness of the realization will be analyzed.

In the case of time-invariant systems, the problem of realizability can
also be addressed in a different way. If U and Y denote the Laplace {or
Z) transforms of the input and output, then from Chapter 3 we know
that for continuous systems,

Y (s) = CR(s)xe + H(s)U(s) , (8.5)
and for discrete systems,
Y (z) = CR(z)zxo + H(2)U(z) , (8.6)

where R(s) (or R(z)) is the resolvent matrix, and H(s) (or H(z)) is
the transfer function. The form of the transfer function is the same for
continuous and discrete systems:

H(s) = C(sI- A)"'B; (8.7)

only the variable s is renamed as 2z in the discrete case.

DEFINITION 8.2 A transfer function H(s) is said to be realizable if there
exist constant matrices A, B, and C such that (8.7) holds for all s.

Similar to the realizability problem of weighting patterns, necessary
and sufficient conditions will be developed for the realizability of given
transfer functions.

After a realization of a weighting pattern or transfer function is found,
a new question arises. Is it possible to reduce the dimension of the state
variable in order to simplify the system and to reduce construction and
computation costs? In this chapter we also give methods to find a real-
ization with minimal dimensional state variable, and, in addition, nec-
essary and sufficient conditions will be presented to determine whether
a given realization is minimal or not.

8.1 Realizability of Weighting Patterns

In this section, necessary and sufficient conditions are given for the re-
alizability of a given weighting pattern. Only continuous systems are
discussed, since the realizability of weighting patterns of discrete sys-
tems is analogous. The details are left as an exercise.
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8.1.1 Realizability Conditions

Let T'(¢,7) be a bivariable function of ¢, > g, where ty > 0 is given.

THEOREM 8.1
T(t, 7) is realizable if and only if it is separable as

T(t,7) = D()G(7) (8.8)

with continuous functions D and G.

PROOF  (a) If T(¢, 7) is realizable, then there exist continuous func-
tions B, C and a fundamental matrix ¢ such that

T(t,7) = C(t)p(t, 7)B(7) .
By using Property (ii) of Theorem 2.3 we conclude that with some ¢*,
T(t,7) = C{t)p(t,t")p(t*, 7)B(7) .
Then select
D(t) = C(t)o(t,t") and G(r) = ¢(z",7)B(7)
to get the form (8.3).

(b) Assume next thatrelation (8.8) holds. Then we verify that (O, G(t),
D(t)) is arealization of T(¢, 7). Observe first thatin the case of A(t) = O,

p(t, 1) =0 =1,
and, therefore, with selecting B = G and C = D,
C(t)¢(t, 7)B(r) = D()IG(r) = D(t)G(r) = T(t,7),

which completes the proof. I

COROLLARY 8.1

If (¢, 1) is realizable with a system having n-dimensional state, then part (a)
of the proof implies that there are matrices D(t) with n columns and G(+) with
n rows such that (8.8) holds.

A realization procedure can be formulated as follows:
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Step 1 Factor the weighting pattern as T{t,7) = D(¢)G(7).
Step 2 Select A=0,B =G, and C=D.

Example 8.1

Consider the real-valued function
T(t,7)=t+T.
Since
r

T(t,T):(t,l)-<1),

T(t, 7) is realizable in [0, 00) with a system having two-dimensional
state, where

A=O, B(t):(i),and Clt) = (t,1).

Next we show that no realization exists with single-dimensional
state variables. Contrary to this assertion, assume that there exist con-
tinuous real functions D and G such that

t+7=D() G(r) forall t,72>0. (8.9)
Select 7 = 0; thenforallt > 0,
t=D(t)- G(0),

that is,
Dit)=«-t

with some constant . Similarly, select £ = 0 to show that
Gry=p-71
with some constant (3. Then (8.9) can be rewritten as
t+71=aftr forall t,72>0,
which must not hold as the selection 7 = 0, ¢ # 0 shows.

In the case of realizable weighting patterns, the realization is not nec-
essarily unique:
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THEOREM 8.2

Assume that (A(t), B(t), C(t)) is a realization of T(t, 7) in [to, t1], and P(t)
is invertible and differentiable for all t € [tg,t;]. Then (A(t),B(t), C(t)) is
also a realization of T(t, T) with

A@) =PRAQPI®) +POHPL(t), B(@) =P{)B()

and

PROOF Introduce the new variable z(t) = P(¢)x(t) in system (A(t),
B(t), C(t)). Then

#(t) = P(t)x(t) + P(t)x(t) = P(t)[A(t)x(t) + B(t)u(t)] + P(t)x(t)
= P(t)[A®)P L (t)z(t) + B(t)u(t)] + P(t)P~(t)z(t)
= A(t)a(t) + B(t)u(t),

and _
y(t) = C(Hx(t) = COP~ (V)z(t) = E()a(t) .

Since introducing the new state variable z does not change the input-
output relation, the weighting pattern T(t,7) is also realized by the

system (A(t), B(t),C@t)). |

REMARK 8.1  Realizations (A(t), B(t), C(t)) and (A(t), B(t), C(t))
have the same dimensions in the state variables. The next example
shows that even the dimension of the state variable in a realization of a
given weighting pattern is not necessarily unique.

Example 8.2

Consider system

() ()

y=(1,0)x.

Since the input has no effect on the second component 3 of x and the
output does not depend on x2, the input-output relation is determined
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only by the first equation
L1 =21+ u

and output relation
Y=,

which is a single-dimensional realization of the same input-output re-
lation.

In many applications we look for periodic realizations of a given weight-
ing pattern, when A(t), B(¢), C(t) are periodic with the same period. Tt
can be proved that T{¢, 7) is realizable by a periodic system (A(t), B(¢),
C(2)) if and only if it is realizable and there is a 7' > 0 such that

T(t,7) = T(t + T, 7 +T)

for all ¢ and 7.

8.1.2 Minimal Realizations

In most cases, especially in system design, it is important to reduce the
dimension of the system. In this section we introduce methods that can
be used to determine whether a realization of a given weighting pattern
has minimal state dimension or not, and in addition, if a realization is
not minimal how to find a minimal realization.

DEFINITION 8.3 A realization (A(t), B(t), C(t)) of a given weighting
pattern is called minimal in an interval [tg, t1] if there is no other realization
with lower dimensional state variable.

First a necessary and sufficient condition is presented for the mini-
mality of a given realization.

THEOREM 8.3

A realization (A(t), B(t), C(t)) is minimal in an interval [to, t1] if and only if
the controllability Gramian W (tq, t1) and the observability Gramian M(tg, 1)
are both nonsingular.

PROOF  (a) Assume first that realization (A(¢), B(t), C(t)) is not min-
imal. Then there exists a realization

7 = A(t)z + B(t)u
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y = C(t)z (8.10)

with dim z < dim x. Let v and n denote the dimensions of z and x,
respectively. Since (A(t), B(t), C(t)) is a realization,

T(t,7) = C(t)o(t, 7)B(7) = C(t)p(¢,t0)¢(t0, 7)B(T)
= D(t)G(r)
with
D(t) = C(t)p(t,ts) and  G(r) = d(to, 7)B(7) .
The corollary of Theorem 8.1 implies that |
T(t,r) = D)G(r)
where D has v columns and G has v rows, since (A(t), B(t), C(t)) is a

realization of T(t, 7) with v-dimensional state.
The definitions of W(tg,t1) and M(tg, {;) imply that

M(to, t1)W (to, t1) = : DT()D(2) dt-/t1 G(r)GT (1) dr

to

_ / ; /  DTU)D®) GG (r) dr dt

to

_ / ” / DT (D) E ()G (r) dr dt

= tlDT(t)ﬁ(t)dt- § G(n)GT(r)dr.

to to

Note that DT (¢)D(t) has v columns and G(7)GT(r) has v rows; there-
fore, the ranks of both integrals are not larger than v. This implies that

rank{M(te, t1)W(to, 1)) <v <n.
Hence at least one of matrices M(to,t1) and W (g, t1) must be singular.

(b) Assume next that at least one of matrices M(ty, ¢1) and W (to, 1)
is singular. From Property (ii) of Theorems 5.2 and 6.2 we know that
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both matrices are positive semidefinite. The corollary of Theorem 1.14
implies that there exist nonsingular matrices P and Q such that

Wite,t1) = PS;PT  and Mty t1) = Q7S:Q, (8.11)
where S; and S, are diagonal matrices of the form diag(1,...,1,0,...,0)
with the additional properties that rank(S;) = rank(Wi(tg, 1)) and

rank(Ss) = rank(M(te,t1)).
Next we prove that for all ¢,

PSP IGt)=G({) and D#HQ7!S,Q=D(t). (8.12)
Simple calculation shows that matrix
Z(t) = PS;PIG(t) - G(t)

satisfies equation

/tIZ(t)ZT(t) dt = /tl [PS,P~1G(t) — G(1)]

to J iy
[GT @) (PTY1sTPT — GT (1)) dt
= PSP 1W(to,t1)(PT)"18;PT — PSP 1W (¢, ;)
— W(to, t1)(PT) 1S PT + Wito, 1))
= Ps,P~'Ps,PT(PT)"1s,PT — PS, P1PS,PT
- P, PT(PT)"18,PT + PS, PT

=psipT - ps?pT - pS2PT L PS,PT =0,

since
S; =82 =83, and sT=8,.

Note that for all vectors z,

0=2" /tl Z(t)ZT (t) dtz = /tl 2T Z()Z7 (t)z dt

to tg

t1
- / 12T ()22 de |

to
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and, therefore, Z"(t)z = 0. Consequently ZT'(t) = O, which implies
that Z(¢) = O for all ¢.

The other identity of (8.12) can be proven in the same way; therefore,
the details are omitted.

From (8.12) we have

D(t)G(7) = D(t)(Q'S:QPS; P 1)G(r) . (8.13)

Since at least one of W{(ty, 1) and M(tp, t1) is singular, either S; or S,
has lower rank thann. Letr denote the rank of matrix Q 1S, QPSP 1,
then it is less than n, and Theorem 1.15 implies that

Q!8,QPS, P! =D,G,, (8.14)

where D; has r columns and G4 has r rows.
Observe next that (8.13) implies that

T(t,7) = D(t)G(7) = (D()D1)(G1G(r)) = D(t)G()

with

D) =D@)D; and  G(7) = G1G(7). (8.15)

Note that D(t) has r columns and G(7) has 7 rows.
Apply finally part (b) of the proof of Theorem 8.1 to see that

A=0, B@t)=G(t), and C(@t)=D() (8.16)

is a realization of T(¢,7) with r-dimensional state variable. Hence re-
alization (A(t), B(t), C()) is not minimal, which completes the proof.

COROLLARY 8.2
Theorems 5.1 and 6.1 imply that a realization is minimal if and only if it is
completely controllable and completely observable.

Example 8.3

Consider the system
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In Examples 5.4 and 6.2 we verified that the system is completely con-
trollable and completely observable. Therefore, it is a minimal realiza-
tion of its weighting pattern. In other words, the same input-output
relation cannot be represented by a single-dimensional linear system.

Example 8.4

Consider again the satellite problem, which was discussed earlier in
Examples 5.5 and 6.3 with the inputs being the radial and tangential
thrusts and the outputs being the radius 7 and angle 8. Then the system
is completely controllable and completely observable; therefore, it is a
minimal realization.

COROLLARY 8.3

Part (b) of the proof of Theorem 8.3 provides an algorithm to reduce the dimen-
sion of the state variable in a given nonminimal realization. The steps of the
algorithm are as follows:

Step 1 Compute W (to,t1), M{to,t1), D(t), and G(r).
Step 2 Find decompositions (8.11).
Step 3 Compute matrix

E=Q!'S,QPSs;P .

Step 4 Find factorization (8.14).

Step 5 Compute matrices D(t) and G(r) by using relations (8.15) and find
the lower dimensional realization as given in Equations (8.16).

We mention that each matrix manipulation of this algorithm can be
performed with standard computer packages.

This algorithm is illustrated next.

Example 8.5

Consider now the system

(1))

y = (1,0)x,
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which was the subject of our earlier Example 8.2. Sincen = 2 and

11
K =
00
with rank(K) = 1 < n, the system is not controllable, therefore, this
is not a minimal realization. We will now reduce the dimension of
this realization by using the above algorithm. Assume for the sake of
simplicity that g = 0 and £; = 1. Since the system is time-invariant,

we do not lose generality by this assumption.
Step 1: Since the fundamental matrix is

et=to g
¢’(t’t0) = ( 0 t—m) s

e

W(0,1) = /01 (e; (;Et) ((1)) (1,0) (e; e[-)t> dt

and
1 t
et 0 1 e
M(Ovl)—A (0€t> (0) (170)<O t> dt
1 2_
_ 621. 0 gt = e > 1 0
0 00 0 O
Furthermore, .
0
D) =10 (5 &) = .0
and

(7 2) ()-(7)

Step 2: It is easy to see that decompositions (8.11) hold with

o (V). -0
Q:QTZ(\/@())’ S2___<10).

and

0 1 00
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Step 3: In this case,

()60 (4F) () )
G

0 1

~(00)(00)=(a0)"

Step 4: Obviously rank(E) = 1 and

E= (3)(1,0),

and, therefore, we may select

Dlz(é) and Gy =(1,0).

Step 5: And finally, a lower dimensional realization is given by
the 1 x 1 matrices

A=(0), B@t)=GG({t)= (e, and C(t) =D()D; = (et).

Hence, the reduced dimensional realization is given as

Since the state is single-dimensional, we obtained a minimal realiza-
tion.

REMARK 8.2  We know from Example 8.2 that system
I =21 +u

y=I
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is also a realization of the same input-output relation. Therefore, mini-
mal realizations need not to be unique. Note furthermore that the origi-
nal system was time-invariant; however, the application of the algorithm
resulted in a time-variant system. That is, the dimension reduction pro-
cedure resulted in a more complicated system structure. We will see,
however, in the next section that by using a slight modification of the
above algorithm time-invariant nonminimal systems can be reduced to
lower dimensional time-invariant realizations. That is, time invariance
can be preserved by dimension reductions.

8.1.3 Time-Invariant Realizations

Among the realizations of a given weighting pattern time-invariant real-
izations have a special role, since the solution and the verification of the
properties (e.g., controllability, observability) of such systems are much
easier tasks than those in the general case.

THEOREM 8.4
T(t, ) has a time-invariant realization if and only if

(i) T(t,7) = D(t)G(r) with differentiable D and G.
(i) T(t,7) =T -71,0).

PROOF  (a) Assume first that T(¢,7) has a time-invariant realization
(A, B, C). Then

T(t,7) = CeAt=-7B = CeAt . o~A™B :
therefore, we may select
D(t)=Ce® and G(r) = AB,
which are differentiable. Furthermore,
T(t,7) = CeA-TB = CeAl-7-0B = T(¢ - 7,0) .

(b) Assume next that T(¢,7) satisfies Conditions (i) and (ii). Note
first that all conditions of Theorem 8.1 are satisfied; therefore, T(t, )
is realizable, and there is a minimal realization. Let the corresponding

factorization of T(¢, 7) be given as

T(t,7) = D@t)G(7), (8.17)
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and let M(t, ;) and W (ty, t;) denote the corresponding controllability
and observability Gramians, respectively. From Theorem 8.3 we know
that M(tg,t;) and VV(tO, t1) are both nonsingular.

Note first that Condition (i) implies that T(¢, 7) is differentiable with
respect to both variables. Therefore, D and G are differentiable func-
tions.

Use Condition (ii) to get

o= %T(t,T) N (%T(t,T) =D)G(r) + DHE(r) .

Post-multiply both sides by GT(7) and integrate the resulting equality
on [tg, t1] with respect to 7 to see that

D(t)W(to, t1) + D(t)Wi(to, 1) = O,
where W(to, t1) is the controllability Gramian, and
t1 B

Wi (to, t1) = G()GT(r)dr . (8.18)

to

Solve this equation for ﬁ(t)

D(t) = D(t)A (8.19)

with B _ _
A= -Wi(to,t1 )W (to,t1) . (8.20)

By transposing (8.19),

DT(t) =ATDT(1),

which implies that )
DT(t) = ATDT(0),

that is } ~ N
D(t) = D(0)et .

And finally, use Condition (ii) to show that

T(t,7) = T(t - 7,0) = D(t — 7)G(0)

- D(0)eA-1E(0) .
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Hence, (A, G(0), D(0)) is a time-invariant realization of T(t, 7). 1

REMARK 8.3  Assume that the minimal realization (which was intro-
duced in part (b) of the proof) has v-dimensional state variable. Then D

has v columns and G has v rows; therefore, both matrices W and W1 are
v x v, and the same holds for matrix A. Consequently, (A, G(0), D(0))
is a time-invariant minimal realization. Hence, part (b) of the proof
provides a method for constructing a time-invariant minimal realiza-
tion, assuming that a time-variant minimal realization is known. This
algorithm can be summarized as follows:

Step 1 Compute D(¢) and G(7) from the given minimal realization.
Step 2 Determine matrices Wl(to, t1) and W(tg, t1).

Step 3 Find matrix A by using Equation (8.20), and compute G(0)
and D(0). Then the time-invariant minimal realization is given by
(A.G(0).D(). 1

Example 8.6

In Example 8.5 we saw that

y=e'z (8.21)

is a minimal realization of a two-dimensional time-invariant system.
We now illustrate the above algorithm to obtain a time-invariant min-
imal realization.

Step 1: For the sake of simplicity, select tp = O and ¢; = 1, then

D(t) = C(6)g(t, to) = (") - (1) = (¢")
G(r) = (to, T)B(r) = (1) - (e™7) = (e77).

Step 2: Simple calculation shows that

Wilto, t1) :/01(_6_7)(6_7)(17: (e—z2_1>

Wito,t)) = /Ol(e—f)(e-f)dr - (1 “2‘3'2) .

and
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Step 3: Therefore, from (8.20),

Since

the time-invariant minimal realization is as follows:
T=z+u
Yy==x.

Note that this result is also known from Example 8.2.

On the basis of Theorems 8.3 and 8.4 the following two-stage process
can be proposed to find a time-invariant minimal realization of a given
weighting pattern:

Step 1 Find a minimal realization by the repeated application of the
algorithm suggested by the proof of Theorem 8.3.

Step 2 Starting from this minimal realization, apply the algorithm of
Theorem 8.4 to obtain a time-invariant minimal realization.

Assume next that a nonminimal time-invariant realization is known.
The above algorithm can obviously be used for finding a minimal time-
invariant realization; however, more simple procedures are available in
this special case. In this section two such algorithms are discussed. The
first. method is a slight modification of the algorithm of Theorem 8.3,
and the second one is based on separating the controllable and non-
controllable, the observable and nonobservable states as was shown in
Chapters 5 and 6.

The first method modifies the algorithm of Theorem 8.3 as follows:

Replace matrices W(tg,t1) and M(to,t1) by Wr = KKT and My =
LTL, respectively, where K is the controllability matrix and L is the
observability matrix of the given realization. Apply the algorithm of
Theorem 8.3 with W1 and My, then it results in a minimal realization
of the same form (O,G; - G(t),D(¢) - Dy} as the original algorithm,
where in this case

G(t) = e Atp and D) = Ce Bt
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In addition, similar to the proof of Theorem 8.4, one can easily show
that after the above minimal realization is determined, the time-invariant

realization
(G AWrGT(G;WrGT) ! G, B,CD)) (8.22)

is also minimal.

Example 8.7

Consider again the system

(19 1):

y=(1,0)x.

We first apply the modified algorithm to determine a minimal time-
variant realization.
Step 1: Since

K = (b, Ab) = (éé)
- (8)-03)
e (2) (22)- )

Step 2: Since

e = (40 (22) (52).

in decomposition (8.11) we may select

P:Q:(‘??) and slst((l)g).

Step 3: Therefore,

w- (D) (60) () (49) (56) (1)
-(59).

and

we have
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Step 4: Obviously rank(E) = 1 and

E=(é)<1,0>,

and, therefore, we may select

D; = (é) and Gy =(1,0).
Step 5: And finally,

G1G(t) = Gre=AB = (1,0)e I (é) = (et

D(t)D, = CeMD, = (1,0)elt <(1)> = (e!) .

Note that the resulting realization ((0), (e %), (€)) is the same one
that was obtained earlier in Example 8.5.
Next, realization (8.22) is determined. Simple calculation shows that

G AWGT(G,W,rGT) ™!

~ao (3 (28) (3) [eo (3) ()]

-@ @7 =1

6B =10 (4] =,

and
CD; = (1,0) ((1)) — Q).
Therefore, realization (8.22) has the form

z=z+4+u

y=2z,

which is the same result that was obtained in Example 8.2.
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Note that the above modified algorithm is much more attractive than
the original algorithm where the computation of matrices W(tg, t1),
Wi(to,t1), and M(ig,t1) usually requires the application of numerical
integration. That is a difficult task when the elements of the integrands
are complicated functions. However, the computation of matrices W
and Mt in the modified algorithm involves only elementary matrix op-
erations.

An alternative approach is based on separating the controllable and
noncontrollable, and observable and nonobservable, states. First apply
Theorem 5.5 to transform the system to the special form

where
T A11f:\12 5 B R R
Ao (AAe), 5o(B), emuen

and system (A1, By, C;) is completely controllable and has the same
input—output relation as the original system. Apply next Theorem 6.4
to the three nonzero blocks of A, then the following decomposition is
obtained:

1}11 0o f:\la O B
| Ay Ags Aoz Ay - | B,
A=l o oAmo | BT|o |-
O O ApAy O

é = (6170763: O) 3
where

(i) System (A11,]§1,él) is completely controllable and observable,
hence minimal realization.

(ii) The input-output relation of systems (A, B, C) and (A1;1,B1,C1)

coincide.
re A ) ot ) C y O
( (AZI Ay B, (€1,0)

is completely controllable.

(iii) System
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((g42) () ©nen)

is completely observable.

(iv) System

(v) System (A44, O, O) is neither completely controllable nor observ-
able.

We note that the actual values of the possible nonzero blocks are not
all unique, but the dimensions of the various blocks are unique. The
resulting system (Au, Bi, C,) is a time-invariant minimal realization.

From Examples 8.2 and 8.5 we know that the minimal realization of a
given weighting pattern in not unique. However, time-invariant minimal
realizations are equivalent in the sense that they are related by state
transformations.

THEOREM 8.5

If systems (A, B, C) and (A, B, C) are both time-invariant minimal realiza-
tions of the same weighting pattern, then there exists nonsingular matrix T
such that

A = TAT !, B=TB, and C=CT!.
PROOF  Since both systems are realizations of T'(¢, 7),

T(,7)= CeAU-TB = EAt-TR
Replace t by s + t, then equation
CeAGtt-1g = GAG+-Tf (8.23)
is obtained.
(a) Premultiply the above equation by eATsCT and postmultiply it

by BTe AT, and integrate the resulting equation on [0, ¢;] with respect
to s and 7:

t1 t1
/ eATSCTCeAS ds - eAt . / e_ATBBTe_ATT dr
0 0

ty % - t1 .
= eATSCTCeAS ds - et / e—ATBBTe‘ATT dr .
0 0
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That is, i
At — A
M(O, tl)e W(O,tl) = Moe Wo y (824)
where My and W) are the two integrals on the right-hand side.

Since (A, B, C) is a minimal realization, both M(0, %) and W(0,%1)
are nonsingular, and, therefore, Equation (8.24) implies that

At — p Auy (8.25)
with
T; = M(0,t;)"' My and T =Wy - W(0,t;)7 .
Substitute t = 0 into Equation (8.25) to get
I=T,-1I-T,
that is, T; = T~!. Note that from (8.25),
oAt _ poAtp-1 _ J(TAT )y
Differentiate both sides and substitute ¢ = 0:
AeA'O _ (TAT—l)e(TAT“)-o ’

that is, .
A =TAT'.

(b) Premultiply Equation (8.23) by eATsCT and integrate the resulting
equation on [0, t;] with respect to s; furthermore select t = 7 = 0:

t ty _ X -
AT CePs 4sB = / AT EeAs 4B |
0 0

that is, ;
M(0,¢;)B =MpB .

Since M(0, 1) is invertible,
B =M(0,t)"'MyB=T,B=T"'B,

that is, B = TB.
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(c) Postmultiply Equation (8.23) by BTe~A""and integrate the result-
ing equation on [0, ¢;] with respect to 7; furthermore select ¢ = s = 0:

i1 ~ 131 S
C / e A BBTe AT 4r = C / e ATBBT-AT 4
0 0

that is,
CW(0,t;) = CW,.

Since W(0,1;) is invertible,
C=CWyW(0,t;)"! =CT,

thatis, C = CT™ .
Thus, the proof is completed. 1

Example 8.8

In the previous example we saw that
i=z+u
y==z

is a minimal realization. Therefore, all minimal realizations have the

form
z=z+Tu
1
- —Z
Y T

where T' is a nonzero constant. Here we use the fact thata 1 x 1
transformation matrix T' is nonsingular if and only if it is nonzero, and
in this case its inverse is the reciprocal.

8.2 Realizability of Transfer Functions

In this section, necessary and sufficient conditions will be given for the
realizability of a given transfer function. Then, minimal realizations will
be discussed. Since transfer functions have identical forms for continuous
and discrete systems, all the results of this section apply to both cases.
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8.2.1 Realizability Conditions

First we note that the transfer function
H(s) = C(sI-A)"'B

is a matrix with all elements being strictly proper rational functions of
s. This observation follows immediately from the facts that det(sI — A)
is the (—1)"-multiple of the nth degree characteristic polynomial of A,
all of its subdeterminants are polynomials of degree less than n, and
the elements of (sI — A)™! are the ratios of these subdeterminants and
det(sI — A). We will first verify that this property is also sufficient for a
rational matrix function to be the transfer function of a continuous (or
discrete) linear system.

THEOREM 8.6

Let H(s) be a matrix with each element being a rational function. Then there
exists a linear system with transfer function H(s) if and only if all elements of
H(s) are strictly proper.

PROOF  (a) The necessary part has been shown above before formu-
lating this theorem.

(b) The sufficiency part will be proven by constructing a particular
realization of the transfer function. In the systems theory literature, two
particular constructions have special importance. They are presented
below.

Method 1. Assume that
p(s)=s"+pe_15 1+ 4+ p1s+po

is the least common multiple of the denominators of the elements of
H(s). Then all elements of p(s)H(s) are polynomials:

p(s)H(s) =Ho + Hys + -+ H,_ys™ 1, (8.26)
where Hy, Hy, ..., H,_; are constant matrices.
Define
O 1 o -+ 0 O
O O I -+ O O
Ac = : : Do ) Be=|: [,
O O o --- 1 o)

L]

—pol —p11 —pol - —pr_il
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and
Ce = (Ho,Hy,...,H,1),

where each block of A and B¢ is m x m (m being the dimension of the
input). We will prove that (A¢, B¢, Cc) is a realization of H(s). That
is, we will verify that
Cc(Is — Ag) 'Be = H(s) .
Note first that (Is — A¢) "B is the solution of the equation

(Is— A¢)X =Be,

which can be written as

sXy o I o .- O X o
£). o o I .- O X, 6]
sX,o1 O O O --- 1 Xro1 6]
sXy —pol =p1¥ —pol -+ —pr_11 X, I
From this equality we conclude that
.S'Xi-Xi_,_l:O (i:1,2,...,7'-1) (827)
and
sXr +peXi+piXe + -+ pra X, =1. (8.28)
From (8.27),

Xy = sX1, X3 = sXo = $°Xy,.. ., X, = sX,o1 = 571X .

Now substitute these relations into (8.28) to see that

p(s)X1 =1
Therefore,
1 s s™1
X; = Xo=—1I,....X, = I
YTp() T p(s) p(s)
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Hence,
I
1 sl
Cc(SI — Ac)_lBC = CeX = (Hy,Hy,... ,Hr_l)m
s
1 r—1
I—-(H0+H13+'-'+Hr_18 )
p(s)
= —p(s)H(s) = H(s)
p(s) ’
which completes the proof.
Method 2. Expand H(s) about |s| = oo to get
H(s) =Los '+ Lis ™2 +Los™ 3 4 ... .
Define p(s) as before; furthermore, let
O I O --- O Lo
O O I ... O I
Ao=1| :+ ¢ ot 4, Bo={ 1t |,
O () o - I L,._»
=pol —=p11 —pol -+ —pr 41 L.,

and
Co =(1,0,...,0,0),
where each block of Ag and Cp is p x p (p being the dimension of the
output). We will now prove that (Ao, Bp, Co) is also a realization of
H(s), that is,
H(s) = Co(sI — Ao)_lBo .

Note that Example 1.25 implies that

-1
CQ(SI — Ao)“lBo = %Co (I — %Ao) Bo

1 1 1
=-Co (I-{-—Ao-l——zAé—l'"')Bo
S S S
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= CoBos '+ CoApBos ™2 + CoALBps ™ + -+ ;

therefore, for proving the identity of the infinite series, it is sufficient to
verify thatfor k = 0,1,2,.. .,

L, = CoALB, . (8.29)
As a first step, observe that
Co =(1,0,...,0,0),

CoAo = (0,1,...,0,0),

CoAL ! =(0,0,...,0,1),
which imply the relations
CoBo = Ly,CoAoBo =Li,...,CoA; 'Bo =L,_; .

That is, {(8.29) holds for £ = 0,1,2,...,r — 1. Hence we have to prove
that (8.29) also holds for larger values of k. It is sufficient to show
that matrices L; and COA’éBO satisfy the same recursive relations,
since they are equal for k£ < r — 1. Introduce next the notation My =
CoALBo. Consider first the polynomial

p(s)H(s) = (sr+pr_1sr'1 +- - -+p13+po)(Los“1 + L1524 Los 3 4 ).
The coefficient of s~ *+1) is zero for all £ > 0. That is,
poLg + p1lgt1 + - + pro1lggr—1 + Lgyr = O,
which gives the recursion
Liyr = —polix —p1Lpyr — - = Dro1Lggro1 - (8.30)

Note next that from Section 7.2 we know that p(s) is the characteristic



8.2 Realizability of Transfer Functions 401

polynomial of matrix

6 1 0 0

0 0 1 0

0 0o 0 - 1
—Po —P1 —P2 ' —Pr-1

It is also known from matrix calculus that the elementary operations of
block matrices with commutative blocks are performed with the blocks
in exactly the same way as they are performed with matrices having
scalar elements. Therefore, p(Ap) = O, that is,

Ap = —pol —p1Ao - —pr1AG .

Premultiply this equality by Co A% and postmultiply the resulting
equation by B to get

CoALT™Bo = —pyCoAEBo—piCoAL ' Bo— - —p,_1Co A5 1B,
that is,
Mgir = ~poMg — p1Mit1 — - = Pro1Mpgroy -
Since this recursion coincides with (8.30), the proof is completed. |
The algorithm suggested by Method 1 can be summarized as follows:

Step 1 Find the least common multiple p(s) of the denominators of
the elements of H(s).

Step 2 Compute matrix polynomial p(s)H(s) to get matrices Hy, Hj,
coHpg.

Step 3 Determine A¢, B, and Cg.
The algorithm suggested by Method 2 is summarized next:

Step 1 Find the least common multiple p(s) of the denominators of
the elements of H(s).
Step 2 Expand H(s) about |s| = oo to get matrices Lo, Ly, ..., L,—1.

Step 3 Determine Ap, Bg, and Co.
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COROLLARY 8.4

By using duality, two more representations of H(s) can be obtained. Use
Methods 1 and 2 for the dual-transfer function

Hp(s) = BT(sI1 - AT)"'CT,

and determine the duals of the resulting representations. This idea leads to
representations (AO, Bo,Co) and (A(", Be, CC) where

00 -0 —pol HT
100 —pl HT
Ap=|01-0 —pt | g _| H]
00 - I —p,_I HT |

and
Co =(0,0,...,0,1)

with p x p blocks in Ao and Co; furthermore,

00 ---0 -—pol I
I10..-0 —p1 O
Apg=|0T--0 —pI | Bo=]01,
00 ---1 —p,._11 O
and
CC = (Lng’{’7 r— 2! 1)

with m x m blocks in Ac and Be.

Note that representations (A¢g, B¢, C¢) and (_Ac,fSc, C¢) are com-
pletely controllable and (Ao, Bo,Cp) and (Ap, Bo, Co) are completely
observable. Therefore, they are called the standard controllable and
standard observable realizations, respectively. Cbserve furthermore that
these realizations are analogous to the controllability and observability
canonical forms discussed earlier in Sections 7.2 and 7.3.

The above methods are illustrated next.
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Example 8.9

Consider the transfer function

1 _1
)= (77
s-1 s

where the input and output are two-dimensional. Thatis, m = p = 2.
Step 1: Observe that

Thatis, 7 = 2,p; = —land pg = 0.
Step 2, Method 1: Simple calculation shows that

p(s)H(s) = (Sglsfl) =5(H> +(_é_?> !

that is,

Step 3: Hence,

0 1 0
0 00
0 0 : 0 1 0 0
e O Bo= |- ,
1 0
0 0 1 0 0 1
00 0 1
and
Co = -1 0:11
0-1:11

Step 2, Method 2: Note first that

1 =1 (o) + 751 (Vo)
(o2)+ (30)

[

|

[
[y
|
@ f-
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10 01 1 1 1
(01)+(1o) (z’“t@*?*'“)

Therefore,

11 01
L0—<11>, L1=L2="'=(10)-

Step 3: Hence,

0 0 1
0 1 1
0 0 01 11
Ap = , Bo=| -
0 1
0 0 10 10
0 0 0 1
and
Co = 10:00
01:00

Hence, the standard controllable and observable realizations are de-
termined.

8.2.2 Minimal Realizations

Assume that the (A, B, C)-system is a realization of a given transfer
function H(s). Then from the previous section we know that

1

s) = sl — 1B =
H(s) = C(sI- A)"'B =0

P(s) , (8.31)

where @(s) is the characteristic polynomial of A, and each element of
P(s) is a polynomial of degree less than n, where matrix A is assumed
to be n x n.

First a sufficient condition is presented for the minimality of a given
realization (A, B, C).
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THEOREM 8.7
Assume that there is no polynomial of degree at least one which is a common
factor of (s) and all elements of P(s). Then realization (A, B, C) is minimal.

PROOF  Assume thatrealization (A, B, C) isnot minimal. Then there
is a realization (A, B, C) with smaller dimension in the state variable.
Then

1 -
——P(s) = EQP(S) :

where ¢(s) is the characteristic polynomial of A, and, therefore, the
degree of ¢ is less than that of ¢. Hence, there must be a cancellation in

the numerator and denominator of the left-hand side. |

REMARK 8.4  The conditions of the theorem are not necessary in
general for the minimality of a given realization as is illustrated in the

following example.

Example 8.10
Consider realization (A, B, C) with

10
A—B—C—<01>.

Since the controllability and observability matrices are

10:10
01:01

— C _wT
- (ga) =X

with rank(K) = rank(L) = 2, the realization is completely control-
lable and completely observable. Therefore, it is minimal. However,

K = (B,AB) =

and

(p(S) = (5 - 1)2 ’

d
an 1

I,
s—1

CsI-A)'B=Is—- DI 1=

which implies that there must be cancellation in the numerator and
denominator of fraction (8.31).
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We will next prove that if there is either a single input or a single
output, then the conditions of Theorem 8.7 are necessary.

THEOREM 8.8

Assume that realization (A, B, C) is minimal and has either a single input or
a single output or both. Then there is no common factor with degree at least
one of ¢(s) and all elements of P(s).

PROOF  Assume that there is a cancellation, then by using standard
controllable (if dim(u) = 1) or standard observable (if dim(y) = 1) real-
ization we can obtain a smaller dimensional realization than (A, B, C).

Assume that either the input, the output, or both are single, and
(A, B, C) is a realization of a given transfer function. An algorithm to
find a minimal realization consists of the following steps:

Step 1 Cancel (if necessary) all common factors of ¢(s) and all ele-
ments of P(s).
Step 2 Find the standard controllable realization (if dim(u) = 1) or

the standard observable realization (if dim(y) = 1).

Example 8.11

Consider again the system

(1) ()

Y= (].,O)X,

which was earlier examined in Examples 8.5 and 8.7. The transfer
function has the form

wo-eo(131,2)" (1) ()

Since there is no common factor in the denominator and numerator,
Step 1 of the algorithm is omitted.

Step 2: Since p(s) = s — 1,7 = 1 and pp = —1. Therefore,
p(8)H(s) = (1), and Hy = (1). The fact that7 = m = 1implies that
each of matrices Ag, B¢, and C¢ has only one 1 x 1 block:

Ac = (1), Be =(1), and Ce=().
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Hence, the resulting minimal realization
z=z+u

Y=z

coincides with our earlier results.

8.3 Applications

This section presents some real-life applications of the realization theory.
As in the previous chapters, engineering examples are first introduced.
Case studies from the social sciences and economics are presented in the
second subsection.

8.3.1 Dynamic Systems in Engineering

1. In Chapters 5 and 6 we found that the harmonic motion system is
completely controllable and observable; therefore, it is minimal.

2. The second-order mechanical system is also completely controllable
and completely observable, so it is also minimal.

3(a). The simple second-order electrical system is completely control-
lable and observable, so it is minimal.

3(b). In Chapter 5 we found that if Ly = L, C; = C>, and Ry = Ra,
then the fourth-order system was not observable; therefore, it is not
minimal. The input-output behavior of this special system is described
by the last two equations:

. 1 . 1

iy _ (0 -1; e\ [ Iz

. i A 1
UC?. Cy CoRo U02 CaRq

=0 (iz)

We can see that this input—output behavior is not affected by Lq, Cq,
and R;. Therefore, these elements can be removed from the circuit
without affecting the input—output behavior.

Now let us ask if our reduced second-order system given above is
minimal. We can compute the controllability matrix:

and
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This matrix is of full rank:

1

2

#0.

Therefore, it is completely controllable. Now let us compute the observ-
ability matrix
0 1
(0 L)
T, T TyR;

This matrix is also of full rank, therefore, this reduced second-order
system is minimal.

4(a). With T the transistor circuit is controllable and observable,
therefore, it is minimal.

4(b). With c¥, we have

1
A=(;g), b:(f)), oI = (1,0),

with @ = —h;e/L and 8 = hse/C.
The input—output behavior is completely described by the first equa-
tion and output relation:

Therefore, the right half of the circuit is irrelevant, and the system is
not minimal.

5(a). The simple two-tank hydraulic system is observable and control-
lable, so it is minimal.

5(b). The three-tank system with only input u» and output z, was
described by equations

-3 3 0 0
X = 2-4 2|x+\|1]u
0 3-3 0
y=(0,1,0)x .

This system is neither controllable or observable. Therefore, it is not
minimal and we must be able to find a reduced order system that has
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the same input—-output behavior. Let us write

T1 = —3z1 +3x9
Tog =2x7 —4dzo +2z3 +u
:i:3 = 3z ‘—3373
and
Yy =1=xIy .
Now define

T4 =21+ 23

and then adding the first and third equations above we will get

T4 = —3x4 +6x2
Io = 2x4 —4x9 +Uu

Il

and
Y= .

This is a second-order system with

A-(39) e (D). -0

This system is minimal, which is proven as follows. Note first that

0 6
<= (1)

409

which has full rank. Therefore, the system is completely controilable.

Furthermore,

0 1
ve(5a)

which has also full rank. Therefore, the system is completely observable.
Because it is completely controllable and completely observable, it is

minimal.

Now what is the physical significance of this? It means that if the only
input is into the middle tank and the only output is from the middle
tank, then the two side tanks can be combined into one tank without

affecting the input-output behavior of the system.

6. The multiple input electronic system is controllable and observable
{see Applications 5.3.1-6 and 6.4.1-6), therefore, the system is minimal.
7. The single stick-balancing problem is controllable and observable,

so it is minimal.



410 chapter eight: Realization
8. The cart with two inverted pendulums is controllable if L; # L,
and is always observable. Therefore, our realization is minimal. So let

us now find out what happens if the lengths of the two pendulums are
equal. Assume Ly = L, and let

a] = Q4 =

az=a3 =0, witha#3,

and let v = =1/M L. Then

0010 0
0001 0
A= afB00 b= v |’
Bal0 vy
and
cT =(1,0,0,0) .

Find a minimal realization:
Step 1: Using H(s) = ¢T(sI — A)~!b, find the transfer function:

-1

s 0-1 0 0
0 s 0-1 0
H(s)—(1000) —a—f s 0 o
-3 ~a 0 s ~
The product of the second and third factor is the solution of equations
S 0-1 0 V1 0
0 s 0-1 va i 10
—a-f s 0 vz | |y |’
—-f—a 0 s U4 ¥
that is,
SV —Us3 =0
SsUg —ug = 0
—av; —fvs +8v3 = v
—fBu, —awvy +sv4 = .

Since a # (3, the symmetry in v; and v and also in vy and vg implies
that v1 = v =V and vz = v4 = V™. Hence

sV—-V*=0

—(a+ BV + sV =~.
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From the first equation, V* = sV; hence, the second equation implies
that

V(s® = (a+8))=7.

That is,

_ 2 * _ Y
Yt ™ VT E s

In summary,

U:,U:___'Y__ and u:v:————ﬁ———
TR T e+ h) T TS (a+p)
and, therefore,
Vi
H(s)=(1000) | | == 0— 11— .
U3 s2—(a+p8)
&z

Step 2: Find the standard controllable realization: With the notation
of Method 1 of the proof of Theorem 8.6,

p(s) =5 —(a+0);

therefore,

r=2 p=0and po=-(a+pf),
and since

p(s)H(s)=~, Hy=7, and H;=0.
Therefore,

0 1 0
AC:(Q+,BO>’ BC=(1>1 CCZ(’)’vO)a

that is,

Z = 2z
Za=(a+PB)zn +u
y = vz1

is the minimal realization.
We can easily check the results as follows:
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1. Minimality:
Kg = ((1) é) , rank(Kg) =2,

and

2. 'Transfer function:

Ho(s) = (7,0) (_(ai 8) _i)_l ((1))

ea——— R0

B 1 1y Y
B (7’0)32—(a+ﬂ) (S) 2 (a+f)

This means that if the lengths of the pendulums are the same then
the above second-order system is the best model for the cart with two
inverted pendulums in the sense that the state dimension cannot be
reduced further. However, as with the original system this minimal
realization is unstable.

9. Our electrical heating system had been shown earlier to be control-
lable and observable, therefore, it is minimal.

10. The nuclear reactor system was completely controllable and ob-
servable; therefore, it is minimal.

8.3.2 Applications in the Social Sciences and Economics

1. In Sections 5.3.2 and 6.4.2 we derived that the linearized predator-prey
model

. be c
Gs = ——JW5 + a—u

Ws = %‘LGL;

y=Ws (8.32)
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is completely controllable and completely observable. Therefore, The-
orem 8.3 implies that there is no lower dimensional linear system with
the same input—output relation.

Next we show that the same conclusion can be reached by using the
transfer function approach suggested in Section 8.2. Since in this case

_be c
A= 41, B=|¢], d ©C=(01),
(d—; o) (o) . o)

the transfer function has the form

s \T
H(s)z(O,l)(_@d) (
b S

Daln
N

!
7
¥
4=
o
o
—~~
“O
—
p—
—
S )
o |
T
v
N
O aloe

ac
b
52 +ac

Since the numerator is a constant, this fraction cannot be simplified by
a polynomial of degree at least one. Hence, Theorem 8.7 implies that
system (8.32) is a minimal realization of its transfer function.

2. The cohort population model (6.17) is always completely control-
lable, as established in Section 5.3.2. However, in Section 6.4.2 we de-
rived that it is not always completely observable. Therefore, it is not a
minimal realization. As an illustration, consider the numerical example

oo e
pt+1)={ a0 0 | p(t)+u)
Oa O
y=(1,1L1p, (8.33)

where the population is assumed to be divided into three groups, the
input is three-dimensional, and there is a single output, the total popu-
lation. Here & > 0 is a given parameter.
The transfer function is
s—a—a-2a\""
H(s)=(1,1,1})] —~aa s O ,

0 —-a s

since B = I. Note that H(s) is a row vector, which can be determined
directly without matrix inversion. If hy, ho, and hs denote the compo-
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nents of H(s), then they satisfy equation

s—a—a —2a
(171a1) = (hl’h‘27h3) —Q s 0

0 —a s
That is,
hi(s — a) —hqa =1
—hia  +hys —hga= 1
—2h1ox +hgs =1.

Simple calculation shows that the solution is

1
Ill:hz:h3=3—2a .
That is,
(1,1,1)
H(s) = -
(s) s — 2«

Realization

(8.34)

Since system (8.33) has a three-dimensional state variable, and the de-
gree of the denominator of H(s) is only one, the system is not a minimal
realization of this transfer function. From the proof of Theorem 8.8 we
know that the standard observable realization of this transfer function
gives a lower dimensional realization. In this case, Method 2 of the proof

of Theorem 8.6 is illustrated.
Step 1: Obviously p(s) = s — 2a, r =1, and pg = —2a.
Step 2: Next we expand H(s) about |{s| = oo

H(S) = (1, 1,1)@ = (1,1,1);

8

1 1 200 4a?
32

which implies that Lo = (1,1,1).
Step 3: Therefore,
Ap = (2&) ’ Bo = (]wla 1) » and Co =
that is, the following minimal realization is obtained:

z({t +1) = 2az(t) + (1,1, D)u()

1+ =+ —F+-
S

(1) ¥

(8.35)
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We can easily check that the transfer function of this system is (8.34),
since

1,1,1
Co(sI—Ao) 'Bo=1-(s—20)7'(},1,1) = (s’_ Ea)

=H(s) .

The same minimal realization can be obtained by using a simple el-
ementary approach, which can be used only in certain special cases.
Premultiply the difference Equation (8.33) by the row vector (1,1,1) to
get

(1,1,D)plt + 1) = (2a, 20, 2a)p(t) + (1,1, Du(t) ,

and by introducing the new state variable
z=(1,1,1)p
we get relations (8.35).
3. The arms races model (6.18) was investigated earlier in Sections 5.3.2.
and 6.4.2, and we verified that except for very special cases the system is

completely controllable and is always completely observable. Therefore,
it is almost always a minimal realization of its input—output relation.

Since
A= b a B= nd C = (1,0
c—d)’ g8/ a YU

the transfer function has the form

o =00 ("5 75 (5)
=10 (s+b)(sl+d) —ac (StdSiJ (g>

_ sa+ (ad + aff)
T 82+ s(b+d) + (bd—ac)

Since the input and output are both single-dimensional, the system is
a minimal realization if and only if this transfer function cannot be
simplified by a linear polynomial, that is, when the numerator and de-
nominator have no common root. The only root of the numerator is

ad+ af J5]
s=———=—-d—a—,
o e!
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and the roots of the denominator are

—(b+d) £/(b—d)? + 4ac
5 )

81,2 =

Hence, the system is minimal if and only if

B

_d“aa‘?é —(b+d)+ (b-—d)2+4ac.

2

Simple calculation shows that this relation is equivalent to the following:

g#d—bi\/(b—d)z-%-élac
8 2¢c ’

Note that the same condition was found in Section 5.3.2 to be necessary
and sufficient for the complete controllability of the system.

4. For the warfare model {6.19) we saw in Sections 5.3.2 and 6.4.2
that the system is completely controllable and completely observable,
and, therefore, it is a minimal realization. The same conclusion can be
obtained by examining the transfer function of the system. In this case,

() = (1.0) hj)_l ()

B 1 s —ho —hs3\ —shs
_(1’0)82*]11}12 <_h1 S )( 0 )_32—h1h2 '

Since the only root of the numerator is zero and the roots of the denom-
inator are +tv/hihs 5 0 for positive values of h; and h,, this fraction
cannot be simplified by a polynomial of degree at least one. Therefore,
Theorem 8.7 implies the minimality of this system.

5. The linear epidemic model of Application 6.4.2-5 was shown to be
completely controllable for Z # 0, but not observable. Therefore, it is
not minimal. A minimal realization can be determined as follows. Note
first that the systems equations can be rewritten as

= (—aZ)y
y=(oZ-Py-u

with y being the output. Since z does not depend on the input v and
the output is independent of z, the same input—output relation can be
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obtained by only the second equation, which has a single-dimensional
state variable.

6. The Harrod-type national economy model (6.20) is single-dimensional;
therefore, the dimension of the state variable cannot be further de-
creased.

7. The same holds for the linear cobweb model (6.21), which also has
a single-dimensional state.

8. The dynamic model (6.22) of interrelated markets is completely
controllable, as shown in Section 5.3.2. However, it is not always com-
pletely observable; therefore, the system is not minimal. For the sake of
convenience we repeat the system here:

Pp=K(A-B)p-+u

1
y==-1Tp. (8.36)

In this case,

H(s) = -17[sT- K(A - B) ",

since the coefficient of u is the identity matrix.
Consider the special case, when the markets are independent, that is,

when
A = diag{aq,. .., ann), B = diag(b11,---,bnn)

with ay; < 0 and b;; > 0 for i = 1,2,...,n. It is also assumed that
K = dlag(kl, ey kn) 3

where k; > 0 for i = 1,2,...,n. Therefore,

1 . -
H(s) = ;L—lemg(s —ki(a1r = b11), .-+, 8 — kn(@nn — bpn)) t

| =

-2 (7w )
s-kl(all"bll)’.“’s_kn<ann_bnn)

3

S

(80, 8).

where

p(s) = [[(s - kilai — bss))
i=1
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and for all &,

123

Qris)= IT (s—kiau - b)) -

i=1,ik

The necessary and sufficient condition that p(s) and all Qi(s) (k =
1,2,...,n) have no common divisor of degree at least one is that the
numbers k;(a;; — by;) are all different. Hence, Theorem 8.7 implies that
this is the necessary and sufficient condition for the minimality of the
system.

9. Consider finally the oligopoly model (6.23), which is not controllable
and is not observable. Therefore, the dimension of the state variable can
be reduced. In this case,

11 1
0 —3-3 " ~3
1 1o, _1
—20’2 2
11 . | 1
A= 33 0 2 , B=-——1,
2a
11 1
33 3 0
and
c=17;
therefore,
11,1\t
$332 2
1.1 1
2823
11 1
Hs)=-—-1"] 235 "2 1.
111
2239

We can avoid the matrix inversion by observing that
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where the hls satisfy the linear equations

shy + $hy + gha + -+ + Thy =1
thi+ shy + tha+ -+ hy =1
$h1+ 3ha + shy + -+ + fhy =1

ghi+ She + $ha + -+ + shy, =1.

Observe that these equations are symmetric in the unknowns; therefore,

hi = hy =--- = h,, = h. The first equation implies that
n—1
; h=1
(o557 r
that is,
.
T
Hence n
H(s) = o — = s

n—1 n—-1 7
2(1 S+'~§— S+~2—

and by using the notation of the proof of Theorem 8.6, p(s) = s +

((n — 1)/2) and Hy = (—n/2a). Therefore, the standard controllable
realization is minimal and has the form

. n—1 n
Z=— zZ4+u
2

-n
= —2.
y 2a

Problems
1. Is the weighting pattern
T, 7)=t+7+ir+1
realizable? Find a realization of T'(¢, 7).

2. Find a realization of the weighting pattern

T(t,7) = (t: i) .
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3. Find a realization of the weighting pattern

ft+Tir+1
Tt 7) = <1+7‘ 1~|—7')

4. Find the weighting pattern for system
. (11 n 1
X = 99 X 0 U
y= (1> 1)X :

5. Find the weighting pattern for system

(9= (0)
y=(0,1)x.

6. Is the following system minimal? If not, give a minimal realiza-
tion. Use the state—space approach.

()= ()

y=(1,1)x.
7. Issystem
(2= (2)
i0 0
y=(0,1)x

minimal? Use the state-space approach.

8. Issystem

minimal in [1, 2]?
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(10N, (11),
*=1lo01/*"\11

y=(1,1)x

9. Issystem

minimal? Use the state-space approach. Use relation (8.22) to obtain a
time-invariant minimal realization.

10. Illustrate Theorem 8.2 for system

= () (2):

y=(1,Dx

P(t) = (éé) .

11. Find a time-invariant realization of the weighting pattern

with

TE,7)=t—1.
Use the algorithm suggested by Theorem 8.4 and select [tg, ¢1] = [0, 1].

- (1))

y=(1,1)x

12, The system

has a time-variant minimal realization
2=0-z+e 3y

y=¢e z.

Repeat Example 8.6 to find a time-invariant minimal realization. Select
the unit interval [0, 1].

13. Find the standard controllable realization of the transfer function

(2,2)
s—1"

Hs) =
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14. Find the standard observable realization of the transfer function

H(s) = .(92;—21)_

15. Find a time-invariant minimal realization for the system

() (0
y=(L,1)x,

using the transfer function approach.

16. By using the transfer function approach, show that the system

- (8)+ ()
y=(0,1)x

is minimal.

17. By using the transfer function approach show that the system

o (10),, (11
*=lo1/)* " \11)"

y = (1, 1)X

is not minimal. Find a minimal realization.

18. Discuss the minimality of the mechanical system

()= ()

y=(1,0)x

that was introduced in Problem 3.7.

19. Let A(?) be an n x n continuous matrix. Prove that there exist
continuous n-dimensional vectors b(t) and c(¢) such that system

x(t) = A(t)x(t) + b(t)u(t)



8.3 Applications 423
y(t) = T (6)x(2)
is minimal.

20. (i) Provethatthestandard controllablerealization is completely
controllable.

(ii) Prove that the standard observable realization is completely ob-
servable.

21. Can you find values of parameter « such that system

(1) ()-

y=(1,0)x

is not minimal.

22. Ass‘urr_le 'Ehat realization x = Ax + Bu, y = Cx is minimal, and
matrices A, B, Care sufficiently good approximations of A, B, C.Prove
that system z = Az + Bv, w = Cz is also minimal.

23. Prove Theorem 8.6 by using uncoupled representation of each
element of H(s) and the fact that

6 1 0 0 0

0o 0 1 0 0
A= 0 b=

o ¢ o0 --- 1 0

—agp —~@1 —A2 -+ —Gn-1 1

CT = (do,dl, e ,(ln_]_)
is a realization of the 1 x 1 transfer function

dp-18" L+ -+ dys +do
s ap_18" 4 tagstag

H(s) =

24. Can the Fibonacci sequence (see Example 2.15) be generated by a
first order linear difference equation?

25. Assume that in an interval [tg, ¢*],

IT¢,7) = > Dp(t)Ge(n)ll <e.
k=1
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Show that

Gy (t)
A=0. B = :
Gp(1)

is a realization of the approximating weighting pattern

T(t.7) = Z D (t)Gr(T).

k=1

C(t) = (Ds(t),....D,(t))

Assume that the initial states are zero, bound the discrepancy between

the outputs of the true and approximating systems.



chapter nine

Estimation and Design

In Chapter 5 we investigated the controllability of linear systems by ma-
nipulating the inputs to cause the system to behave in a desirable way.
In that approach, we assumed that the input function was generated
by some process external to the system itself, and that this input was
applied to the system. This kind of control is called open-loop control.
However, it is usually more effective to determine the input on a con-
tinuing basis as a function of the behavior of the system. This kind
of control is called closed-loop control, and usually the system is called
a feedback system, since the states or outputs are fed back (in perhaps
modified form} to the input.

For the sake of simplicity, only continuous time invariant systems will
be considered in this chapter; discrete systems can be analyzed in an
analogous manner. Consider, therefore, the system

%X = Ax+ Bu (9.1)

y =Cx. (9.2)
In the case of state feedback we assume that

u(t) = aft) + Kx(t) , (9.3)
where G(?) is the external input, and X is a given constant matrix. That
is, the K-multiple of the state is fed back to the input. In the case of

output feedback, Equation (9.3) is modified as
u(t) = aft) + Ky(t) = a(t) + KCx(t) . (9.4)
That is, in the case of output feedback, matrix K is replaced by KC.

We can substitute Equations (9.3} and (9.4) into Equation (9.1) to get

425
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the modified systems equations:
%X = (A +BK)x + Bu (9.5)

and

% = (A + BKC)x + Bii . (9.6)

That is, the new coefficient matrices are A +BK and A + BKC, respec-
tively. Note that output feedback has many applications if only some
state variables (or their linear combinations) but not all of them are
available for feedback.

Closed-loop control systems have several advantages over open-loop
control systems. First, in many cases the implementation of the open-
loop control requires a very sophisticated (and, therefore, expensive)
computing device to determine the inputs required to lead the system to
a desired behavior. Second, a well-designed feedback system is inherently
less sensitive to the accuracy of the mathematical model of the system.
Third, a feedback system can automatically adjust to unforeseen system
changes or to unanticipated disturbance inputs. Fourth, feedback can be
used to alter the dynamics of the system, e.g., to decrease the response
time or broaden the bandwidth.

This chapter is devoted to analyzing feedback systems and introducing
some applications of feedback systems to construct observers.

9.1 The Eigenvalue Placement Theorem

As stated before, one important feature of feedback is that even unstable
systems can be made stable, and stable systems can be made faster. We
know from Chapter 4 that the speed of a time-invariant linear system
depends on the locations of the eigenvalues of the coeflicient matrix;
therefore, it is natural to ask how much influence feedback can have on
the eigenvalues of a system. An answer for this question is presented in
the next result, which is known as the eigenvalue placement theorem.

THEOREM 9.1

Let A be an n x n constant real matrix and b a real n-vector such that b,
Ab, A%Db, ..., A" b are linearly independent. Then, given any nth degree
polynomial p(A) = X" +p,_1 A"+ - +p1 A+ po, there is an n-dimensional
real row vector kT such that the characteristic polynomial of matrix A + bk”
is the given polynomial p(A).



9.1 The Eigenvalue Placement Theorem 427
PROOF  Consider the system described by differential equation

%X =Ax+bu. (9.7)
The assumption of the theorem implies that this system is completely

controllable, and, therefore, Theorem 7.2 implies that there exists a non-
singular matrix T such that

010 0 0
001 0 0
A=TAT'=|: : :- : |,andb=Tb=|:
000-- 1 0
Qg 1 A9 - Qp_1 1

If kT = (ky,. .., kn) is any vector, then

000---0
000 0
BT = C :
0 0 0. 0
ki kyks - ky
therefore,
0 1 0 0
0 0 1 0
A +bkT = :
0 0 0 1

a0+k1a1+k2a2+k3--~an_1+kn

From the corollary of Theorem 7.2 we know that the characteristic poly-
nomial of A + bk” is the polynomial

A" (a1 + ka)A™ T = — (ay + ko)A — (ag + k1),
so, by selecting
ki1 = —ao —po. k2 =—a1 —p1,..., kn = —Gpn_1 — Pn-1 (9.8)

the characteristic polynomial of A + bk’ becomes p()).
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Finally, we show that vector kT = k7T satisfies the assertion. Simple
calculation shows that

A +bkT =T 'AT + T 'bk’T = T"}(A + bk™)T.

Therefore, matrix A + bk” is similar to A + bk”, which implies that
they have the same characteristic polynomial. I

The construction of vector kT consists of the following steps:

Step 1 Transform system (9.7) to controllability canonical form (7.14)
by applying the algorithm of Theorem 7.2.
Step 2 Compute vector k7 by using Equation (9.8).

Step 3 Determine vector k7 = k7T,

COROLLARY 9.1
Assume that for an n x n real matrix A and an n-vector c, vectors cT,cTA,
cTA? ..., cTA"! gre linearly independent. Then, given any nth degree

polynomial p(A) = A™ + pp_1 A" + -+« + 1A\ + po, there is a real n-vector
k such that the characteristic polynomial of matrix A + kc” is the given
polynomial p(X).

This assertion is a simple consequence of the theorem and the duality
principle discussed earlier in Section 6.3.

Example 9.1

Consider matrix

Ow 0
A-—(_wo) and vector b_(l) ,

and define polynomial p(A) = A% + 2X + 1. We now illustrate the
above algorithm.

Step 1: From Example 7.5 we know that canonical form (7.14) of
this system is given by

- 0 1 ~ 0 1/10
A_<-w20>’ b—(1>, and T_5<Ow>'

2

Step 2: Sinceag = —w*, a1 = 0, pp = 1, and p; = 2, from

relations (9.8) we have

k1:~a0—p0=w2—1 and kz’—“——al—-p1=0—2=—-2.
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That is, - o
k¥ = (w?-1,-2).

Step 3: Finally,

szﬁTT:(w‘z—l,—ml (10) = (w——l—,—2> .

w\Ow w

We can check this result by simply computing the characteristic poly-
nomial of matrix A + bk”. In this case,

wewr=(82)+() 62
(200 - (1)

with characteristic polynomial

- -\ w B 1y o
go(/\)—det(_% _2_)\)——/\( 2—)\)—0.)( ;)—)\ +22+1.

Note that the same result is obtained by the following direct method,

which is very useful in the case of low-dimensional systems. Assume
that kT = (ky, ko), then

T 0w 0 N 0 w
aen = 00) o (M= (L0, 1)

The characteristic polynomial of this matrix is as follows:

_ -A w 2 _ 2
Lp()\)—det<_w+klk2_/\)—)\ Akg 4+ (w° — wky) .

Equating the like coefficients of this polynomial and those of polyno-
mial p(A) = A? + 2) + 1, we obtain the equations

—ky =2
w2 - wk1 =1 ,
which imply that k3 = (w? — 1)/w = w — 1/w and ks = —2.
Finally, we remark that Theorem 9.1 remains true in the more general

case of multiple inputs and/or multiple outputs. We present the follow-
ing theorem without proof.
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THEOREM 9.2

Assume that system (A, B, C) with n-dimensional state variables is com-
pletely controllable (or observable), and let p be a given nth degree polynomial.
Then there exists matrix K such that the characteristic polynomial of matrix
A + BK (or A + KC) is the given polynomial p.

This theorem is illustrated in the following example.

Example 9.2

Consider the same coefficient matrix

A=(20)

which was investigated in the previous example. Assume furthermore
that p(A) = A2 42X + 1, but assume now that

01
2 (21).
That is, the system now has a two-dimensional input. If k;; (4,5 =
1, 2) denote the elements of matrix K, then

_ 0w 01 ki1 k12
avme=(05)+ (1) (ki)

_ kgl w + k22
~w+ ki + ko kg + koo )
The characteristic polynomial of this matrix is given as

o(X) = det (

ko1 — A w + kg
—w + k11 + ko1 k1o 4+ kog —~ A

= A%~ A(k21 + k12 + koz) + ko1 (k12 + k22)

- (w + kzg)(—w + ki + kgl) .

By equating the like coefficients of this matrix and those of polynomial
p(A) = A% + 2X + 1 we get the following equations:

ko1 + kig + kog = —2

—ka1 (k12 + koz) + (W + koo)(—w + k11 + kot) = —1.
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We have two equations for four unknowns; therefore, we can choose
arbitrary values of two of the unknowns. For example, select ky; =
k12 = 0 in order to obtain a diagonal matrix K. Then the above
equations reduce to

ko = -2

((d — 2)(—w + kll) = -1 y

that is,
—~1 2 _2w—1
ku:———-l-w::w———ti— and kog = —2.
w—2 w—2
Hence,

w®—2w—
o (50}
0 -2

We can check this result by simply calculating matrix A + BK and
determining its characteristic polynomial. In our case,

0w 01) [«i=2=1 o
= —2
avme= (L05) (1) (57 2)
_ 0 w=2Y\ 0 w—-2
B —w+———-“’2;3‘;‘1 -2 ) T\= -2

with characteristic polynomial

w(A):det(ii\ “’"2>=A2+2A+1,
ooz T2 A

which coincides with p(A).

9.2 Observers

In many practical systems, the entire state vector may not be available.
In physical systems, some components of the state are inaccessible in-
ternal variables, which either cannot be measured or the measurements
require the use of very costly measurement devices. Therefore, it is not
feasible, or it is very expensive, to measure all state components. We
may face similar situations in large social or economic systems, when
the measurements of all state variables are very expensive due to the
extensive surveys and the complex record keeping procedures.
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A common way to estimate the state of a system is to build a model
of the original system, and then measure the state of this model. This
trivial solution is shown in Figure 9.1 for continuous systems, and it is
known as the open-loop observer.

Original
Input °
npu system Output
u(z) | X=Ax +Bu y()
y=Cx
State
r _____ Tt TTTmTmT T _: estimate
] tz(2)
Observer | . Model 5
| z=Az + Bu :
|
| 3

Figure 9.1 Open-loop observer.

The estimate z(t) provided by the measurements from the model does
not utilize the available information on the output y(t) of the original
system. If the initial state z(0) equals x(0), and the model is accurate,
then it will follow the original system exactly. However, if x(0) is not
available, and the model is started with an initial state, that differs from
x(0), then z(t) may differ from x(¢) for all future times. If we denocte
the error x(t) — z(t) in the state variables by x.(t), then x, satisfies the
differential equation

%, = Ax, , (9.9)
since
X =%—-2=(Ax+Bu) - (Az+Bu) = A(x—~2z) = Ax, .

There is no guarantee, in general, that with increasing ¢, this error x,
will die out. We know from Chapter 4 that x.(t) — 0 as t — oo if and
only if all eigenvalues of A have negative real parts.

In the case of discrete systems, the error x. satisfies the homogeneous
difference equation

xe(t + 1) = Ax.(t) (9.10)

and the error tends to zero as t — oo if and only if all eigenvalues of
A are inside the unit circle. In both cases, this kind of stabilization
depends on the locations of the eigenvalues of A.
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In many cases the model is useless, since if the system is not asymp-
totically stable, the error does not tend to zero, even |[x.(t)|| may tend
to infinity as ¢ — co. For these reasons, closed-loop observers have been
developed, where the output y of the original system is compared to the
computed output Cz of the model, and the error y. = y — Cz is fed
back to this system, as shown in Figure 9.2.

Original
Input system Output
u(s) | X=Ax + Bu MO
1 y=Cx
e
{
]
| K <
|
1
[
|
Observer : u(t) -Ky (1) State
: estimate
! Model 2(0)
! o Z=Az +Bu-Ky, -
|
L o e e o -
Figure 9.2 Closed-loop observer.
This observer has the mathematical representation
z=Az+Bu-K(y — Cz)
=(A+KCiz+Bu-Ky. (9.11)

Simple calculation shows that the error x, satisfies the relation
X, =% —-2=(Ax+Bu) - (A +KC)z+Bu - Ky)
= Ax - Az -KCz + KCx = (A + KC)(x — 2)

b

that is,
% = (A +KO)x, . (9.12)
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Assume now that the original system is completely observable. Then
Theorem 9.2 implies that there exists a matrix K such that A + KC
has any desired characteristic polynomial. Select p(A) to be a poly-
nomial having roots with negative real parts; then the homogeneous
Equation (9.12) becomes asymptotically stable. Hence, x.(t) — 0 as
t — oo. A simplified scheme for this observer is presented in Figure 9.3.

State
System Observer estimate
W) - o . -
| X=Ax+Bu y > z:(A+KC)z+Bu—Ky#—>

y=Cx

=

Figure 9.3 Simplified closed-loop observer.

Observer (9.11) is illustrated in the following example.

Example 9.3

Consider the system

SERIGE

y=(1,x,
which was the subject of our earlier Examples 9.1 and 9.2. Since C is

a two-dimensional row vector, K must be a two-dimensional column
vector. If k1 and k2 denote the components of K, then -

_ 0w ky _ ki kitw
A+KC= (_w0>+ <k2>(1,1)_ (kz_w oo )

with characteristic polynomial

o) = st ([0 ) 0 A )+ - ).

The roots of this polynomial have negative real parts if and only if

ki +ky <0

ki —ks+w>0.
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Select, for example, k1 = ky = —w, then (X) = A2+ 2w + w? with
the single eigenvalue A = —w. Hence system (9.11) has the form

i= (50 %) e (9)ur (8)v

9.3 Reduced-Order Observers

The observer discussed in the previous section gives the estimates of
all state variables. This results in some redundancy, since certain linear
combinations of these state variables (specified by the rows of matrix C)
are already known. In this section a new method will be introduced to
eliminate this redundancy. It uses a lower dimensional observer, which
gives only the information required to recover the entire state. For the
original development of reduced-order observers, see [29]. Our discussion
will focus on continuous systems, but discrete systems can be treated in
an analogous manner. The details are left to the reader as an exercise.
Consider the time-invariant linear continuous system

X =Ax+ Bu
y =Cx, (9.13)

where we assume that matrix C has linearly independent rows. That is,
if y is p-dimensional and p < n, then it is assumed that rank(C) = p.
Let matrix D be selected such that matrix

T = (g) (9.14)

is nonsingular. Since the rows of C are linearly independent, such D
exists. Introduce the new variable X = T'x, which can be partitioned as

().

where z is (n—p)-dimensional, and y is the output of the original system.
Hence, we may assume without loss of generality that p components of
the state of the original system can be measured directly. When matrices
A and B are partitioned accordingly, the system can be rewritten as

(=GR () ) o
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Multiplying the lower part by a matrix K and adding the resulting
equation to the upper part yields the relation

z+ Ky = (An + KAgl)Z + (Alz + KAgz)y + (Bl + KB2)U
= (A1 + KA )(z + Ky)

+ (~ANnK -KA; K+ Az + KAp)y + (Bi + KBj)u .
Introduce now the new variable
x=z-+ Ky,
then the above equation shows that it satisfies relation

X = (A1 + KA )X+ (—AnK - KA K+ Ay + KAg)y

+(B; + KB2)u . (9.16)

Note that u and y are measurable; only % is unknown. This unknown
state can be observed by merely modeling this system as

2 = (A11 -+ KAgl)Z + (-AllK — KAQ]}K + A12 + KAZZ)y

+ (B1 + KBs)u (9.17)

and measuring the state Z of this system. Let X, denote the error X — Z,
then subtract Equations (9.16) and (9.17) to get

Re = (A1 + KA )X, - (9.18)

The reader can verify that if the original system (9.13) (or equiva-
lently (9.15)) is completely observable, then the reduced system (9.17)
is also completely observable. Therefore, Theorem 9.2 implies that there
exists a matrix K such that system (9.18) is asymptotically stable, from
which we conclude that %X.(t) — 0 as t — oco. Hence, state X is ob-
servable, and then, the unmeasurable part z of the state of the original
system is obtained as
z=%X-Ky,

which follows from the definition of vector X. An example for reduced
observers will be presented in the next section.
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9.4 The Eigenvalue Separation Theorem

Consider the time-invariant linear continuous system

x = Ax+ Bu

y = Cx, (9.19)
and assume that it is completely controllable. Assume furthermore that
the entire state is available for feedback. This feedback structure is
shown in Figure 9.4. The input of the feedback system is

a=u+ Kex;
therefore,

Xx=Ax+B(u+Kgx) =(A+BKg)x+Bu. (9.20)

From Theorem 9.2 we know that the eigenvalues of this new coefficient
matrix A + BK¢ can be placed in any desired positions.

u(r) . . x(1)
X = Ax + Bn >

Figure 9.4 Feedback controller.

When the state is not available, we propose making use of the observer
introduced in Section 9.2:

z=(A+KpC)z+Bu-Kopy . (9.21)

Then, the observed state z is fed back to the system, as shown in Fig-
ure 9.5. Therefore, in this case,

*=Ax+B(u+K¢z) = Ax+BKgz + Bu
and

z=(A+ KoC)z+ B(u+ Kcz) — KO(CX) =

- KpCx + (A +KpC + BKc)Z + Bu.
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System Observer
u(r) % = t) . z(t
=) o e L YO 1A+ KOzt By —Kyy |2
+ y=ux >

K, |

Figure 9.5 Feedback controller with observer.
Thus, we obtain the following system:

b's . A BKC X + B u

z) \-KoCA-+KpC+BK¢ Z B ’
Next we replace z by the new variable x, = x — z using the transforma-
tion

10
T= (I —1) :

Then easy calculation shows that

x = Ax+ BK¢g(x — x.) + Bu= (A + BK¢)x —~ BKexe + Bu

and
%e = %X — 2 = [Ax + BK¢(x — x,) + Bu]
—[~KoCx + (A +KoC + BK¢)(x - x.) + Bu]

= (A +KoC)x, .

These equations can be summarized as
x\ _ [(A+BK¢ -BKc x B
<x>_( 0 A+KOC> <xe)+<o)“ (9-22)

y =(C,0) (;Z) : (9.23)

This derivation and Equations (9.22) and (9.23) have the following
consequences:
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1. The observation error x. is uncontrollable from the input u. This
is as expected, since the error tends to zero as t — oo regardless of
what input is selected.

2. The characteristic polynomial of the composite system is the prod-

uct of the characteristic polynomials of matrices A + BK¢ and
A+ KpC.

The second property is known as the eigenvalue separation theorem,
and it follows from the simple fact that the characteristic polynomial of
the coefficient matrix of system (9.22) can be factored as

dop (A+BKo—AI  —BKo B
€ 0 A+KoC-2) ™

det (A + BKg — A1) - det(A + KpC — M) .«
This means that the insertion of an observer into a feedback system does
not affect the eigenvalues of the original system. That is, an observer
does not change stability or dynamic response. It does, however, add

additional modes.

Example 9.4

Consider the system

- ()= ()

y=(1,1)x,

which is known from our Examples 5.4 and 6.2 to be completely con-
trollable and completely observable.

Since y = x; + T is the measurable output, introduce the new state
variables z; and y. Since

T =wiy =w(ly—I)) = —wr +wy
and
y=Z1+Tr=wiy—wi+tu=w(ly—z) ~wr +u

= 2wz +wy +u,
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we have the transformed system

(5)= (5 G+ ()
y = (0,1) (”;1) . (9.24)

This system is not asymptotically stable, since the roots of its char-
acteristic polynomial

(—w—=A)(w - A) —w(—2w) = A% +w?

are T jw.
First we apply the feedback (9.20) for system (9.24) with K¢ =
(k‘l, kz) Then

A+ BKc = ( Y “’) + ((1)) (ky, k2)

—2w w

o —W w
- —2w+ ki w+ ko

with characteristic polynomial
(—w = M(w + kg = A) —w(—2w + k1) = 3 — Mea + w? — w(ky + ka) .
Note that by selecting k2 = —w and k1 = 3w/2, the eigenvalues
become % (—w=jw). Hence the system becomes asymptotically stable.
The reduced observer for the unmeasurable state component x; will
be constructed next. Use relations (9.15) to see that in this case,
A =-w, Ap=w, A1 =-2w, Ay =w,Bi;=0,and Bo = 1.
K = (kc), then
Ay +KeAg = —w + ke(—2w) .

Since thisis a 1 x 1 matrix, its only eigenvalue is —w — 2wk¢, which
is negative, for example, by selecting k¢ = 0. Use equation (9.17) to

find that the reduced observer has the form

Z=-—wZ+wy, (9.25)
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u{t) 4 system | observer
/ 9.24) S
3w _a,) .
2

Figure 9.6 Feedback controller with observer for Example 9.4.

which is the first equation of the systems model (9.24). The combi-
nation of the resulting feedback and reduced observer is shown in
Figure 9.6.

In many applications, the original system may change due to such
effects as warming up, wearing out, fatigue, and so on. In such cases the
observer will no longer be an exact copy, which can be source of many
problems: instability, low speed, poor performance, and so on. The
usual way to overcome this difficulty is to design an adaptive observer,
which follows the changes of the original system. The mathematical
details are not presented here; they can be found in adaptive control
literature. However, some basic ideas of adaptive control systems will
be discussed in Chapter 10.

9.5 Applications

This section is devoted to the discussion of some applications of feedback
systems in engineering and the social sciences.

9.5.1 Dynamic Systems in Engineering

1. The reduced-order observer for our harmonic motion model was
derived in Example 9.4. We will not do anything else with it.

2. For the second-order mechanical system, assume that the original
model parameters are X = M = 1, B = 2. This would make
¢ =1 = wy, with s;2 = —1, and would produce, according to
Equation (3.74), a step response of

() =1-(1+t)e .
Now suppose your boss says this is not fast enough: he wants poles

at ~2 + 52, ie., ( = «,/5/2 and w, = 2v/2. How can you move
the poles without changing the physical elements M, B, and K?
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Measure the output position and measure or compute the output
velocity, and use these with feedback to place the poles where they
are desired. The original system is described with equation

. (0 1) (0)
X = K B X + 1 U .
M T M M

If we feed back the states through vector k¥ and add this to the
input u, we will find that the new input to the system is

t=u+kTx,
so the feedback system has the form

z 0 1 0 - 0
M T M M M
The coefficient matrix is

~ 0 1
(L )
b _2 4k
with characteristic polynomial

. _ B ko K kl
9"(A)_A<M+M Q (M+M>

B & K k
e (B_RY,(K_hk
= AT (M M> * (M M)

Or, in the notation of Section 9.1,

BA) =22+ pA+po .

Therefore, we obtain equations

Bk _

M M n
and

K &k

M~ M P

o
ko=B—-p M
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and
]i?l =K —ng .

Now, at the beginning of this problem we said that K = M =1,
B =2, and that we wanted

Az =—-2%72.
Therefore, the desired characteristic polynomial is
P(A) = (A +2-2)(A+2+32)
=X 4+4r+8,
SO

po =8, pr=4.

Therefore, our desired feedback gains are
ko = =2 and k1 =-7.

Therefore, we have shown that feedback can alter the dynamics
of a system. In this example we have moved the poles from one
place in the s-plane to another in order to establish certain desired
system properties.

3. For our second-order L-R-C circuit, assume that we would like to
use feedback to move the poles or adjust the sensitivity of the
system, but we cannot gain access to measure the state variables.
(Perhaps the circuit is modeling something sealed inside a con-
tainer, such as the human skull.) What can we do? Well, we
can build an observer and use its state variables for control. The
original system is

-(22) ()
azy 22 0
cT =(0,1) .

After applying feedback, we have the new coefficient matrix

+ k1
A+ kel = [ o9 .
<a21 aze + ko
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Next we want to make sure the observer is stable. The character-
istic polynomial is

@(A) = (a11 — AN)(azz + kg — A) —agi(agz + k1)

= A% — Magz + k2 + an1) + (a11a22 + a11ks — agia12 — aziks) .
Therefore, the feedback system will be stable if
k’z < "—(all + (1.22)

and, because a;; < 0 (we are not allowing negative resistance or
inductance values),

a1 a21Q12 — 011022
ky < ——ky + —————
an aiy

The feasible region is shown is Figure 9.7.

Figure 9.7 Region of stability for Application 9.5.1-3.

4, If we construct an observer for the transistor circuit, we have

—a0 k
A+kc§"=( z0)+ (k;)(l,o)
_ kl—OtO
- ko +80 ’

Since the matrix is lower triangular, the eigenvalues are A\; = 0 and
Ao = k3 — a. If k) < o, then the system is stable but the stability
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is not asymptotic. If ky > «, then the system is unstable. The zero
eigenvalue shows in general that no asymptotical stability occurs.
Physically, it means that there is no feedback that makes the error
of the initial state converge to zero as t — 0.

5. The behavior of the two-tank hydraulic system of Application 3.5.1-
5 is very sensitive to the resistance R;. Suppose that this resistance
is increasing due to rust, or deposits of cholesterol or algae. How
can you make the output less sensitive to changes in ;7 By using
feedback. Our original system was described with

1 1
hl(t)> T RiA; R1A, (L
X(t) = ( A= yb={ 4 ’
hao(t) RllAg - (RllAg + RQIAQ) 0

and assume now that ¢’ = (0,1/R;).
Let us now measure the height of the fluid in each tank as shown
in Figure 9.8, and use this in a feedback loop:

ﬁ:u+ka,

where @ is the input with feedback and u is input without feedback.
The feedback model is the following:

% = (A +bk)% +bu .

Figure 9.8 The two-tank system of Application 3.5.1-5 with the addition of
water-level sensors to be used for feedback.

From

H(s) =cT(sT— A—bk")"'b
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we have

3 1 st -1 k1 k N7l
H(S) - (0, —_—~> ( RlAi Al RllAl All ) ( Al ) '
Ry “Fids St s T oo 0

From these equations we can find that the transfer function is

H(s) =

Ry
SQ(R%RQAlAQ) + S(RleAl + R%Al + Ry RoAq — k]_R%RQAQ) + Ch !

where C) is equal to Ry — k1 R1 Ry — k1 R? — kaR) Ry. Now, if we
want to talk about the sensitivity of a system, we must specify the
sensitivity of what, to what, evaluated at what frequency or time.
A good choice for this system is to look at the sensitivity of the
steady-state value of the step-response with respect to R;. To find
this, let us first take the derivative of the step-response, H (s)/s
(which we will call SR(s)), with respect to R;:

BSR(s) _
9R,

7R2[282(R1R2A1A2) + S(R2A1 + 2R1A1 + R2A2 - 2]‘71R1]%2AZ) + CZ]
S[Sz(R%RzAlAz) -+ S(R1R2A1 + R%Al + R1R2A2 — k‘lR%RgAz) + Cl]z ’

where Cy is equal to 1 —ky Ry —2k1 R — ks Ry. To make this problem
tractable, let us now make some simple numerical substitutions: let
Ri=Ry=A;=A;=1.

OSR(s)  —[25® + s(4—2k1) + 1 —3ky — ko]
oR, o 8[32 + 8(3 — kl) +1 -2k — k2]2

We are only interested in the steady-state, or low-frequency, char-
acteristics of the step-response, so we can use the final value theo-
rem derived in Application 3.5.1-9 as

tlim ft)y = 1irr(1) sF(s)

to find
limS&S’R(s) _ 3ky + ko — 1 SR

50 6R1 [1 - 2](!1 - k2]2 TR

We can get the transfer function, step-response, and sensitivities
for the original system without feedback by merely setting &) =
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ko = 0 in the above equations. We will find that the sensitivity S
of the steady-state value of the step-response, SR, with respect to
R, for the system without feedback is

SpR=-1.

However, if we let k1 and ko assume reasonable values, such as 10,
then the sensitivity of the feedback system becomes

Splt=0.046

which is much smaller. This shows that feedback reduces the sen-
sitivity of the steady-state value of the step-response with respect
to Rl-

In general, adding feedback transfers sensitivity from the hard-
to-change elements in the forward path to the easily changeable
elements in the feedback path.

6. We will now discuss our multiple input electrical system. We know
that its coeflicient matrix has the form

R 1
7 0 -1;
A= 00 -7
11 2

cc O

Instead of applying feedback, we wish now to select the values of
parameters Ly, Ly and R such that the eigenvalues of the system
be/\l—‘:)\zz/\gz—l.

In Application 4.4.1-6 we have computed the characteristic poly-
nomial of A:

R 1 1 R
— A3t .
¢(A) FAT A (CL1 + CL2> t GThL,

If A\ = Ay = A3 = —1, then
oA =A+1)P° =23 4+3224+30+1,

therefore, the parameters satisfy equations

R 1
CL Ly,

R _, 1/1 1
L~ C

Z—l+—L—2>=3, and

For any fixed value of C, the solutions of these equations are

3 3 9
LQZE, and R—ga,
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and with these numerical values all eigenvalues become —1.

7. Again, for the stick-balancing problem, assume we would like to
use feedback to move the poles or adjust the sensitivity, but we
have no way of measuring the position or angle of the stick on the
person’s hand, so we build an observer.

The original system is described with

01 0 T
A = , b= , and c’ =(1,0) .
(90) (—9> 0

The following observer can be obtained:

A+kel = (gé) + (lz;) (1,0)

k1
n g+k20 '

What are the requirements to make the observer stable? Since
(AN) = (k1 = A)(=X) = (9 + k2) = X — Ay — (g + ko) ,
the asymptotical stability conditions are, therefore,
ki1 <0 and g+ko <0,

which implies
ke < —g .

8. For two sticks on a cart problem, assume we have the same prob-
lem, namely that we want to use feedback to alter the dynamics or
sensitivity but we cannot measure the state variables. So we build
an observer.

The new coefficient matrix is

0010 k1
r | 0001 ks
A+kc = 01300 | F | & (1,0,0,0)
a3a400 k4
ky 010
B kz 001
- a1+k3a200

az+kyas 00
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Now let us prove that the observer can be made stable by finding
the roots of the characteristic polynomial:

ki—Xx 0O 1 0
_ ko  —Xx 0 1
QD()\) = det a1 +ks ax =X 0
az+ ks ag 0 =X
khk—-X2 0 1 kk—X 0 1
=det | a1 +kzas —A | — X det ke —-X 0
az+ksag O a; + ks ap —A

=4 + )\3(—]61) -+ /\2(—a4 —a; — kg)

+ )\(kla4 — k’zag) + (a1a4 + k3aq — agaz — a2k4) .

We want all roots to be negative, for example, Ay = Ay = A3 =
Ay = —1, then

A=A+ D =M+ 3 1602 a4+ 1.
Comparing the like coefficients
k1 =4
—a4— a1 —kz =6
kiag — koay = 4

a1a4 + k3aq — azaz —azky =1 s

which can be easily solved for the unknowns ki, ko, k3, and &y,

ky = —4
kgz—a4—-a1—6
—4ay -4
k2=__a_4__
as
1 2
ks = —(~aj — 604 ~ azaz — 1) .

az
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Hence, selecting the above values for the feedback, the feedback
system becomes asymptotically stable.

9. The electronic heating system mathematically is the special case of
our earlier Application 3 with L = 1, therefore, the results of that
case automatically can be applied.

10. Mathematically, the nuclear reactor problem is the same as the
electric L-R-C circuit of Application 9.5.1-3, so we will do nothing
else with it.

9.5.2  Applications in the Social Sciences and Economics

1. Consider first the linearized predator-prey model (6.16), which is
repeated here for the sake of convenience:

. be c
G5 = —EW5 + EU
. d
Ws = —aGa
b
y=Ws. (9.26)

Assume that the goat population cannot be measured; only the
input u and the number of wolves y can be observed.

As an example, an observer for this system will be constructed.
The general form is given by Equation (9.11). Note first that in
this case

_(o-¥% ~(a T _
A—(%a 0), b—<0), and c’ =(0,1).

In order to find the suitable feedback, we have to construct matrix
k. In our case, k is a two-dimensional column vector. If ky and &k,
denote the coefficients of k, then

_be k —be 4k
Atk = d ') (0,1) = d M)
= (5 75) () on= (& 75"

Note that the characteristic polynomial of this matrix is

P () = ~Alkp— )~ 2 (~% ) - AQ—k2A+(ac— b d—;‘) .
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From Application 4.4.1-3 we know that the roots of ¢(A) have
negative real parts if and only if

d
ko <O and ac~k17a>0.

For example, select ky = 0 and k2 = —1. Then
0 —&
A + kCT - ( da d > 5
T -1

and, hence, an observer (9.11) is given as

z:(%__%)z+(§)u—(~$)y. (9.27)

2. Assume that the population of at least one age group in the cohort
population model (3.115) cannot be measured. Then an observer is
supposed to be constructed analogously to the previous case. The
details are left to the reader as an exercise.

3. In the case of the arms races model (6.18), assume again that na-
tion 1 is unable to observe the armament level of the other nation,
and, therefore, it is willing to use an appropriate observer of the
form (9.11). In this case,

A:(‘iv;), b:(g), and T = (1,0).

Matrix K is a column vector again with unknown coefficients k;
and kg, and, therefore,

A+KC = (‘g _Z) + (f;) (1,0) = (‘zif; _Z) .
The characteristic polynomial of this matrix is as follows:
oA) =(=b+ k1 — N (—d — ) —alc+ k)
=X+ Nd+b—k) + (bd — k1d — ac — aks) .
The resulting observer is asymptotically stable if and only if

d+b—k >0 and bd — kid —ac — ake >0 .
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Lol 4

Case (i): bd—ac<0 Case (ii): bd—ac>0
Figure 9.9 Feasible set for (k1, k2).

The feasible set (ki, ko) is shown in Figure 9.9.
The k1 and k; intercepts are

Il=b—% and IZ:%-—C.
d a

Note that in the case when bd — ac > 0, k1 = kg = 0 belongs to
the feasible set. If K = O, no feedback is needed; the model itself
is asymptotically stable. If bd — ac < 0, then, for example,

kl =b and kg = —2¢

is an appropriate selection, and the resulting observer has the form

Z= (—g-3)2+<g>u_<—l;c>y' (9.28)

4. Consider next the warfare model (6.19), where we assume that
each nation can monitor only its own casualties. An observer is,
therefore, needed to observe the casualties of the other nation. We
can proceed similar to the previous model. The details are omitted.

5. The linear epidemics model of Application 6.4.2-5 can be written

as
. 0 —aZ 0
x= (Oa:ﬁ——ﬁ)x+ (—1)“
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y=(0,)x.
Since this system is not observable, an observer cannot be con-

structed. We illustrate this fact here by examining the possible
eigenvalue locations of the matrix A + KC. In our case,

0 —of k
A+KC= (om-ﬁ)*(k;)(o’l)

_ 0 kl—af
T \Okstar -8

The eigenvalues of this matrix are A; = 0 and Mo = ko + o — 8.
Since 0 is an eigenvalue for all values of k) and ks, the system
cannot be made asymptotically stable.

6. In the case of the Harrod-type national economy model presented
in Application 6.4.2-8, we have the matrices

A=(1+r—-rm), B=(-r), and C=(m).

Since they are 1 x 1, matrix K of the observer feedback must be
also 1 x 1. In this case,

A+KC=14+r—rm+km,

and since the system is discrete, the feedback system is asymptot-
ically stable if and only if

—l<l+r—rm+km<1,

that is,

-2+7mm—r ™M —T
— < k< .

m

7. We face a similar situation in the case of the linear cobweb model
of Application 6.4.2-7. Since now

A:(9>, B=(1), and C=(b),

a

a feedback K = (k) makes the system asymptotically stable if and
only if

—1<—b—+bk<1.
a
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These relations are equivalent to the inequalities

a+b<k< a—2b
ab ab

The Application 6.4.2-8 of interrelated markets is not always ob-
servable, as was shown. Therefore, in such cases, no observer can
be constructed.

Consider again the numerical example of Application 7.4.2-8, which

had the form
o (=3 2),, (10
P={ 0-8)PTio1/)"

(L1
y=[573)P-

If a feedback is constructed with matrix

(k)

then the modified coeflicient matrix is as follows:

The characteristic polynomial of this matrix has the form

= (or4) (5 9)-50e8)

k- k
22 _ _ r2 2
=X /\< 8+2 3+2>

[ (o) o8]

ks + k
:)\2—)\< 1; 2~11>+<24—4k1—gk2) :
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The eigenvalues have negative real parts if and only if

: 5
kl;kz~11<0 and 24—4k1—§k2>0.

Note that k; = ko = O is feasible, which means that the original
system is asymptotically stable. That is, it can serve as an observer
without any feedback. However, faster speed can be obtained by
the appropriate selection of k; and k5.

9. In the case of an oligopoly, assume that the time scale is discrete
and the firms behave according to the Cournot assumptions. The
resulting dynamic model was derived in Section 3.5.2 as

x(t +1) = Agx(t) + bou(t) , (9.29)
where
0 -1 _1.._1L
1 gt by —b
? 2 1 by — b
Ac=|"3-3 0 =1 |  bo=—|""
. . - . 2a :
’ ’ by —0b
R
and
u(t)=1

‘We have shown in Section 4.4.2 that this system is asymptotically
stable if and only if N = 2, and it can be stabilized for arbitrary
number N of firms by adaptive expectations. We conclude this sec-
tion by investigating the possibility of a feedback-type stabilizator.

System
(9.30)

1 x(¢)

KT

Figure 9.10 Feedback for the oligopoly model.

Figure 9.10 shows the feedback structure. Note that the feedback
matrix is a row vector in order to have a scalar feedback that can
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be added to the original input of the system. The resulting system
has the form

x(t +1) = Agx(t) + be(u(t) + KTx(t))

= (A¢ + bekD)x(t) + bou(t) , (9.30)

which is asymptotically stable if and only if all eigenvalues of ma-
trix Ao +bck? are inside the unit circle. Simple calculation shows
that

Ac+bok™ =

by — bk, (b1~ bYko - & 5;7(131 ~ bYkz — % #(bl —bkn - %
e A I A C L R R R LS -

(
2

v

by~ blk1 — 5 g(b3 —b)ka =& go(b3—blky oo 5o(by — kv ~ 3

3

s (by — bk — & - (by —b)kp — & S (by ~bDkg~ & -+ (b — bk

Note that the eigenvalues of Ac + bek” depend on the particular
selection of the coefficients k1, k2,..., kN

For the sake of simplicity, consider the special case when by = by =
--- = by. Let b* denote the common value and assume that b* # b.
Select the k; values as

a
kl 2 N b* — b
Then
100---0
0£0---0
Ag+bokT= {0050 21
000.--%

with eigenvalues being equal to 1/2. Hence the feedback system is
asymptotically stable.

In the general case when the b; values are different, we can proceed
in the following way. Rewrite system (9.29) as

x(t+1) = Acx(t) + (be — 1) + 1u(t) ,

where 1 = (1,1,...,1)T. Then the above feedback rule results in
the system
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x(t+1) = Aox(t) + (be — 1) + L(u(t) + kT x(t))
= (Ac +1kD)x(t) + (bo — 1) + 1u(t) . (9.31)

By selecting ky = k2 = --- = ky = 1/2, Ac + 1k7 becomes (1/2)1
again. Hence, system (9.31) is asymptotically stable.

Problems

1. Apply the algorithm of Theorem 9.1 for system

() ()

and polynomial p(A) = A% + 2A + 1.
2. Apply the algorithm of Theorem 9.1 for system

012 1
x=1011|x+|2[u
002 1

and polynomial p(A) = A% + 1.
3. Apply the algorithm of Theorem 9.1 for system

000 1
x=]|010]|x+|1|u
002 1

and polynomial p()\) = 3.
4. Apply the algorithm of Theorem 9.1 for system

(@) )

and polynomial p(A) = A% + A+ 1.
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5. Apply the algorithm of Theorem 9.1 for system

101 0
X=|011ljx+|[1]|u
111 0

and polynomial p(\) = A% + 2X — L.
6. Apply the corollary of Theorem 9.1 for system

SEROL

and polynomial p(A) = A% + 2A + 1. Select ¢T = (1,0).
7. Apply the corollary of Theorem 9.1 for system

012 1
X=(011]x+{2]u
002 1

and polynomial p(A) = A3 + 1. Select ¢¥' = (1,1,1).
8. Apply the corollary of Theorem 9.1 for system

600 1
x=]|010 x+|1]u
002 1

and polynomial p(A) = A3. Select ¢’ = (1,1, 1).
9. Apply the corollary of Theorem 9.1 for system

- (@) )-

and polynomial p(A\) = A% + A + 1. Select c¥ = (1, 1).
10. Apply the corollary of Theorem 9.1 for system

101 0
x=1{1011]x+1]1]u
111 0

and polynomial p(A\) = A3 + 2X — 1. Select ¢©' = (0,1, 0).
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11. Show that the algorithm of Theorem 9.1 cannot be applied for

matrix
000

A=1{000
001

12. Construct an observer (9.12) for system

()= ()

y=(1,0x.

13. Construct an observer (9.12) for system

012 1
x=|011]x+ |2 |u
002 1

y={1,1,1)x.

Place the roots of the observer at —1, —2, and —3.

14. Construct an observer (9.12) for system

000 1
XxX=]010]|x+}1]u
002 1

y={1,1,1)x.

15. Construct an observer (9.12) for system

()

y=(1,D1x.

16. Construct an observer (9.17) for system

() ()

y=(1,0)x.
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17. Construct an observer (9.17) for system

SONOL
y=(1,1)x.

18. Repeat Example 9.4 for system

<= (22)%+ (o)
y = (1,0)x.

19. Repeat Example 9.4 for system

(39 (1)
y = (1,1)x.

20. Construct observers and reduced-order observers for discrete sys-
tems.

21. Let ¢,(t,7) and ¢, (¢, 7) be the fundamental matrices of a sys-
tem x(t} = A(t)x(¢) + B(t)u(t) and the corresponding feedback system
z(t) = (A(t) + B(t)K(t))z(t) + B(t)u(t), respectively. Show that

b(t,7) = s (t,7) + / b1 (2, 5)B(s)K(5)y(s, 7)ds

22. Let A, B, K be constant matrices. Let R;{s) and Rz (s) denote the
resolvent matrices of the system x = Ax + Bu and the corresponding
feedback system z = (A + BK)z + Bu. Show that

Ra(s) = [I - Ri(s)BK]'Ry(s) .

23. Prove that the time invariant system x = Ax + Bu is completely
controllable if and only if the corresponding feedback system z = (A -+
BK)z + Bu is completely controllable. That is, state feedback does not
destroy controllability.
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24. LetXx = Ax + Bube a time invariant linear system, and assume
that with some matrices A;, R and invertible Q,

AQ-QA, =BR.

Find the state feedback such that the characteristic polynomials of ma-
trices A; and A + BK coincide.

25. Find the feedback matrix K which minimizes || A + BK]|| -
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chapter ten

Advanced Topics

In this chapter, the fundamentals of four modern areas of systems the-
ory are briefly outlined. In the first section we discuss conditions that
guarantee that the state of a system is always nonnegative. This prop-
erty is important because in many applications the state must not be
negative. For example, production cutput, population, armament level,
water flow, and so on must always be nonnegative. The second sec-
tion contains the description of a special filter that minimizes the mean
square error of the final state. The third section is devoted to adaptive
control systems, where the control is based on continuous measurements
of the state and/or output. In the last section, the basics of neural
networks and neural computing are outlined.

10.1 Nonnegative Systems
Consider first the time-invariant discrete system
x(t + 1) = Ax(2), x(0) = x¢ (10.1)

with zero input, where A is an n x n constant matrix.

First we state a necessary and sufficient condition for the nonnegativ-
ity of this system.

DEFINITION 10.1 A matrix A is nonnegative if all elements of A are
nonnegative. This property is denoted as A > O.

THEOREM 10.1

The state x(t) of system (10.1) is nonnegative for all t > 0 with arbitrary
nonnegative initial state xg if and only if A > O.

463
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PROOF
(a) Assume first that A > O. We will use finite induction to verify
that x(t) > 0 forallt > 1,if xq > 0. Fort =1,

x(1) = Ax(0) = Axo >0,

since both A and x¢ are nonnegative. Assume next that for some ¢,
x(t) > 0. Then
x(t+1)=Ax(t) >0,

which proves that x(t) > 0 for all ¢.

(b) Assume now that a;; < 0 with some k and [, where A = (a;;).
Selectxg = (0,...,0,1,0,..., 0)T, where the [th component equals unity
and all other components are equal to zero. Then

X(l) = AX(O) = ((Lll, RN R ,anl)T y
which is not nonnegative, since the /th element is negative. |

Assume that in system (10.1) the zero input is replaced by a constant,
that is, the system is described with the difference equation

x(t +1) = Ax{t) + b, x(0) = %o , (10.2)

where b is a constant vector. In this more general case, Theorem 10.1
can be extended as follows.

THEOREM 10.2
The state x(t) of system (10.2) is nonnegative for all t > 0 with arbitrary
nonnegative initial state xo if and only if A > O and b > 0.

REMARK 10.1  The nonlinear version of Equation (10.2) can be writ-
ten as
x(t+1) = £(x()),  x(0) =xo.

Starting from any nonnegative initial state x, the state remains nonneg-
ative for all future times if and only if f(x) > 0 for all x > 0. |

Consider next the continuous system
% = Ax, x(0) = xg (10.3)

with zero input. Before deriving necessary and sufficient conditions for
the nonnegativity of this system, a special class of matrices is introduced.
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DEFINITION10.2  Matrix A = (a4 ) is called a Metzler matrixifa;; > 0
foralli # j.

THEOREM 10.3

The state x(t) of system (10.3) is nonnegative for all t > 0 with arbitrary
nonnegative initial state xq if and only if A is a Metzler matrix.

PROOF

(a) Assume first that for all j # 1, a;; > 0. We will prove that starting
from a nonnegative initial state, no component of the state becomes
negative. The continuity of functions x; (t) implies that if any component
of x becomes negative, it has to be zero before. Assume that for some
to > 0, x(to) > 0, but with some 4, x;(tg) = 0.

If z;(ty) = O for all j # i, then for all t > to, x(t) = 0. Otherwise,
Equation (10.3) implies that

Zilto) = ) aizi(to) > 0,

J#

since each term is nonnegative and at least one term is positive. Hence
z; must not become negative.

Since the solution of Equation (10.3) depends continuously on the
elements of A, the weaker condition a;; > 0 (j # 4) is also sufficient.
(b) Assume now thatwithsomek # {, ay; < 0. Selectxy = (0,...,0,,0,
..,0)T, where the /th component equals « > 0 and all other compo-
nents equal zero. Then

i’k(O) = Zaijj(()) = ay - xl(O) =aa <0,
=1

which implies that zy(t) < O for small positive values of t. |

Consider next the slightly more general case, when the input is con-
stant. Then Equation (10.3) is modified as

%X = Ax + b, x(0) = x¢ , (10.4)

where b is a constant vector. In this case, the previous theorem can be
extended as follows.
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THEOREM 10.4
The state x(t) of system (10.4) is nonnegative for all t > 0 with arbitrary
nonnegative initial state xg if and only if b > 0 and A is a Metzler matrix.

REMARK 10.2  The nonlinear version of Equation (10.4) can be writ-
ten as
x = f(x), x(0) = xp .

Similar to Theorem 10.3, one may easily prove that starting from arbi-
trary nonnegative initial state xg, the state remains nonnegative for all
future times if and only if

fi(zlv'"awi—lvo)xi-}-l,"-axn) >0 (7' = 1727"'771’)

forallz; > 0(

j =1,2,...,n), where f; denotes the ith component of

function f. |

The practical consequence of the above theorems is that if you are
modeling a system where you know the state variables must always be
nonnegative, then you should check the above conditions to make sure
the state really remains always nonnegative.

In the next part of this section, conditions will be presented for the
existence of nonnegative equilibria of systems (10.2) and (10.4).

It is known from Section 3.1 that a vector X is an equilibrium state of
the discrete system (10.2) if and only if it satisfies equation

X=AX+b. (10.5)
Assume that B =1 — A is invertible, then

x=B"'b.
Obviously, X > 0 for all nonnegative vectors b if and only if B~ > Q.

A vector X is the equilibrium state of the continuous system (10.4) if

and only if

AX+b=0. (10.6)
Assume that A is nounsingular, then

x=-A"b.

This vector is nonnegative for all nonnegative b if and only if

B'>0 with B=-A.
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Note that in the above two cases the nonnegativity of the inverse of
a matrix, rather than the nonnegativity of the matrix itself, guarantees
the nonnegativity of the equilibrium. In the following theorem, necessary
and sufficient conditions will be presented for the nonnegativity of the
inverse of a real square matrix.

THEOREM 10.5

Let B be an n x n real matrix. The inverse B~ exists and is nonnegative if
and only if there exists an n x n real matrix D such that

(i) D>Q,
(ii) I-DB>O0,and

(iii)  all eigenvalues of I — DB are inside the unit circle.

PROOF

(a) If B~! exists and is nonnegative, then select D = B~!. Then
I - DB = O, and, therefore, Conditions (i), (ii), and (iil) are obviously
satisfied.

(b) Assume now the existence of matrix D satisfying Conditions (i), (ii),
and (iii). Note first that Condition (iii) and Example 1.24 imply that
I - (I - DB) = DB is invertible. Therefore, D and B are both nonsin-
gular. Example 1.24 also implies that

DB) !'=I+(I-DB)+(I-DB)*+--->0

since each term in the right-hand side is nonnegative as the consequence
of Condition (ii). Hence, from (i) we conclude that

B™'=(D'DB)!=(DB)"'D>0,
which completes the proof. 1

DEFINITION 10.3  An n x n real matrix B = (b;;) is called an M-
matrix if D = diag(b1y,baz, - - -, bun) "1 satisfies conditions (i), (ii), and (iii)
of Theorem 10.5.
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Note that for an M-matrix,

_ b2 bin
0 b1y b11
b 2be
b. b
I-DB = = S (10.7)
_buy _ buo
bun b 0

therefore, b;; > 0 for all i and b;; <0 for all j # . Consequently, if B is
an M-matrix, then —B is a Metzler matrix.

Metzler matrices are also closely related to nonnegative matrices, since
if A is a Metzler matrix, then A + ol > O, where « is sufficiently large.
Select, for example,

@ = max{—a;; | a; <0} .
1

As the conclusion of this section, a sufficient condition is presented
for an n x n real matrix to be an M-matrix.

THEOREM 10.6
Let B be an n x n real matrix such that

(i) by >0 foralli,and b;; <O forall j #i;
(i) b > 3, 1bis! for all s
Then B is an M-matrix.
PROOF  Matrix D = diag(b11,b22,...,bnn) ! is nonnegative, and

relation (10.7) implies that I — DB > O. That is, matrix D satisfies
Conditions (i) and (ii) of Theorem 10.5. From (10.7) we have

|bi;] 1
oD -l <1

Therefore, Theorem 1.8 implies that for all eigenvalues A of I — DB,
Al < I -DBllo < 1.

Therefore, matrix D satisfies Condition (iii), which completes the proof.
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Finally, we note that some of the systems discussed in Section 3.5
satisfy the conditions of Theorems 10.2 and 10.4. In particular, Ap-
plications 3.5.2-2 and 3.5.2-6 have nonnegative coefficient matrices and
Applications 3.5.1-4, 3.5.1-5, 3.5.1-7, 3.5.1-8, 8.5.1-10, 3.5.2-3, and 3.5.2-
8 are based on Metzler matrices. In these applications, the states always
remain nonnegative.

10.2  The Kalman—Bucy Filter

In the previous chapters, only deterministic systems were discussed.
That is, we assumed that all inputs could be specified exactly and all
outputs could be measured without measurement errors. In practice,
these assumptions are rarely satisfied, since input and output compo-
nents are usually corrupted by all manner of unpredictable fluctuations
and disturbances.

The most common approach for analyzing the effect of such noise is
based on probabilistic or statistical models, where random elements are
added to the input and output components. The resulting stochastic
system has the form

x(t) = Ax(t) + Bu(t) + Byw(t)

y{t) = Cx(t) +v(t) , (10.8)

where w(t) is the input noise and v(t) is the output noise. The com-
ponents of w(t) may represent fluctuation in the input signal, unknown
disturbances to the system, or their combinations. Vector v(t) repre-
sents uncertainties or deviations in the output measurements. For the
sake of simplicity, only time-invariant systems are considered.

Assume that the following conditions hold:

1. System (A,B,C) is completely controllable and completely ob-
servable.

2. The processes w and v are assumed to have zero means and to be
white, that is, for all ¢,

Ew(t)] =0
Evit)] =0, (10.9)
and for all ¢+ and 7,

Efw(tw’ (r)] = Qé(t —7)
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Evt)vi(r)] = Rt —7) (10.10)

where Q and R are given (positive semidefinite) covariance matri-

ces, and
lift=r
bt —7)= {0 otherwise .

3. Processes w and v are uncorrelated with one another, that is, for
all t and T,
Ewt)yvI(n)]=0. (10.11)

4. The initial state xg of the system at time ¢y is assumed to be a
random variable with
E[Xo] =Xy

and
E[(xp — %o)(x0 — %0)T1 =8, (10.12)

where Xq is a given vector and S is a given (positive semidefinite)
covariance matrix.

Assume that for all ¢ € [to,T) the noisy output measurements y(t)
are available where T > {y is given. The problem is now to estimate the
final state x(T") as accurately as possible. By selecting the mean square
principle for measuring the goodness of the estimator, we wish to find
the estimator %X(7") of x(T) that minimizes the mean square error

E(Ix(T) - %(T)| = > E[(z:(T) — &:(T))*] , (10.13)
i=1
where || - || is the lo-norm, n is the size of A, x = (x;) and X = (£;).

In Section 9.2, a solution for the deterministic version of the same
problem was introduced by constructing an observer, which consisted of
the model of the original system and a correction term being propor-
tional to the output error. It can be proven (see, for example, [12]) that
the best state estimator in the above stochastic case has a similar form,
as given in the following theorem.

THEOREM 10.7
Under the above conditions, the best least square estimator of the state of
system (10.8) is given by the state z(t) of the Kalman—Bucy filter:

a(t) = (A + K®)C)z(t) + Bu(t) ~ K(t)y(t),  z(te) = %o, (10.14)
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where
K(t) = -P{#)CTR™! (10.15)

with P(t) being the solution of the matrix Riccati equation
P(t) = AP(t) + P(t)AT - P(t)CTR™ICP(t) + B;QB7,
P(ty) = S (10.16)

The scheme of the Kalman-Bucy filter is shown in Figure 10.1.

Output
Input System noise
noise w(t) V+V(f)
—————— X=Ax+Bu+Bw | ¥.(D) +
Input u() y = Cx —’QD
Noisy
output
y(r
e |
! t
\ Riccati |
: equation i
! ;
! 1
! I
'I Y Y+ 1
| -K(1) :
Kalman-Bucy ! ¥
R | X
filter 1 \
! I
l -_—
! C : State
: 4 ! estimate
|l 1 Z(t)
| 7= (A + K()C)z + Bu-K()y s
! >
' l
Lo mm el i

Figure 10.1 Scheme of the Kalman-Bucy filter.

The application of the Kalman-Bucy filter is limited because of the
time dependence of matrix K(¢), which makes the computation and,
therefore, the whole construct very complicated in many cases. However,
this difficulty can be eliminated in the following way. Note first that as
t — 00, the solution P(t) of the Riccati equation converges to a steady
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state, which is the solution for P = 0. That is, this steady state P solves
equation

0= AP +PAT - PCTR™!CP + B;QB7 . (10.17)
Then K(t) also converges as t — oo, and the limit matrix K is as follows:
K=-PCTR™!. (10.18)

If we substitute K for matrix K (¢) in (10.14), then the resulting steady-
state filter has the form

z=(A+KC)z+Bu-Ky.

This concept is especially useful when the original system (10.8) is
asymptotically stable (or can be stabilized), since for large values of
t the effect of the initial state of the system dies out, and, therefore,
x(t) and y(t) are stationary processes. In addition, the algebraic Ric-
cati equation (10.17) is much easier to solve than the Riccati differential
equation (10.16).

10.3  Adaptive Control Systems

In recent years, increasing attention has been given to systems that
are capable of accommodating unpredictable changes, whether these
changes arise within the system or externally. This property is called
adaptation and is a fundamental characteristic of living organisms, since
they attempt to maintain physiological equilibrium in order to survive
under changing environmental conditions. In the system theory litera-
ture, there is no unified definition for adaptive control systems. There-
fore, we will consider a system adaptive if it satisfies the following cri-
teria:

1. continuously and automatically measures the dynamic character-
istics of the system;

2. compares the measurements to the desired dynamic characteristics;

3. modifies its own parameters in order to maintain desired perfor-
mance regardless of the environmental changes.

An adaptive control system, therefore, consists of three blocks: perfor-
mance index measurement, comparison—decision, and adaptation mech-
anism. It is always assumed that there is a closed-loop control on the
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performance index. A common configuration of an adaptive system is il-
lustrated in Figure 10.2. An important class of adaptive systems, model
reference adaptive systems is easy to implement. One particular scheme
for these systems is given in Figure 10.3. Note that the set of given per-
formance indices is replaced by a reference model. The output of this
model and that of the adjustable system are continuously compared by
a typical feedback comparator, and the difference is used by the adapta-
tion mechanism either to modify the parameters of the adjustable system
or to send an auxiliary input signal to minimize the difference between
the performance indices of the two systems.

Unknown Known
peturbation peturbation

r

Input | Adjustable Output
system e

A

[

Adaptive Performance index
mechanism measurement
A

Set of given
performance indices

y

Compensation |

Figure 10.2 Common configuration of an adaptive system.

Another often-used class of adaptive systems is given by the adaptive
model-following control systems. These control systems also use a model
that specifies the design objectives, as illustrated in Figure 10.4. The
mathematical model is formulated as follows. Assume that the reference
model is given as

%X = Aprx+ Bpgupg (10.19)

and the plant to be controlled is

¥y =Apy+Bpup . (10.20)
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! .| Reference Output
model

Input ‘ *Comparator

Adjustable | Output
system

1

Parameter
adaptation

Signal
synthesis
adaptation

Adaptation
mechanism

Figure 10.3 A model reference adaptive system.

_| Reference
model

Y
~
a

Plant

Ky

Figure 10.4 An adaptive model-following control system.
The plant control input is given by the relation
up = —Kpy + Kyx+ Kyuys - (10.21)

In this formulation, Aar, Bas, Ap, Bp are given constant matrices;
x and y are the states of the reference model and the plant; and up,
and up are their inputs. The coefficient matrices Kp, K;s, and Ky are
unknowns; they are defined so that if the error vector e = x—y is initial-
ized as e(0) = 0, then it remains zero for all future time periods. We can
subtract Equation (10.20) from (10.19) and substitute relation (10.21)
to obtain the following inhomogeneous differential equation:

é= (AM - BPKM)e + (AM ~Ap + BP(KP — KM))y

+(By — BPKU)UM . (10.22)
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Perfect model following requires, therefore, that

Ay —Ap+Bp(Kp-Ky)})=0

By -BpKy =0, (10.23)

since these equations imply that for all real vectors y and u,s of appro-
priate dimensions, Equation (10.22) becomes homogeneous, and so the
solution of the resulting homogeneous equation with zero initial condi-
tion is the zero vector for all ¢ > 0. We can rewrite Equation (10.23)
as

BP(KP - KM) = AP - AM

BpKy = By (10.24)

The necessary and sufficient condition for the existence of matrices
Kp, Ky, and Ky that satisfies Equation (10.24) is the following:

rank(Bp) = rank(Bp, Ap — Apy) =rank(Bp,By) . (10.25)

These conditions mean that all columns of both matrices Ap — Ay and
B, are in the subspace spanned by the columns of matrix Bp. Note
that Equation (10.24) can be solved by using Gauss elimination (see, for
example, [42]).

Usually the initial condition of the error vector e differs from zero. In
such cases we require that e(t) — 0 as ¢ — oo, that is, Equation (10.22)
is asymptotically stable. We know from Chapter 4 that this additional
condition holds if and only if all eigenvalues of matrix Ay — BpKyy
have negative real parts.

Assume that the rank conditions (10.25) hold. Then from Equa-
tion (10.24) we can obtain at least one solution for Kp — Ks and K.
Denote these solutions by R* and Kj;. Assume that the rank of matrix
Bp,AuBp,..., A’,{;pr) is n, where A js is assumed to be nxn. Then
Theorem 9.2 implies that there exists a matrix K3}, such that all eigen-
values of A — BpKj, have negative real parts, that is, system (10.22)
is asymptotically stable. Then the selection

KP = K}(\/I -+ R*
KM = Ki’[

Ky = K5
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gives an asymptotically stable, perfect model-following control system.
Equation (10.24) are illustrated in the following example.

Example 10.1

Assume that

Here Equation (10.24) has the form
12 11 T12 m 11
12 T91 T2 - 11 ’
12 kll k12 o 21
12 kot koo )~ \ 21/

where matrix Kp — Kz is denoted by (r;;) and Ky is denoted as
(ki;). Expanding the above operations, we get the following system
of linear equations:

11+ 27’21 =1
719+ 2ro0 =1
ki1 + 2k = 2

kig 4 2kop =1,

where the repeated equations are omitted. It is easy to see that ry; =
ri2 = 1, k11 = 2, k1o = 1,701 = 190 = ko1 = koo = 0 solve these
equations. Hence, we may select

11 21
Kp—-—Kpy = (00) and Ky = (00) .

There are still infinitely many possibilities for selecting matrix Ky,
since only Kp — K is specified. We wish to make this selection so
that matrix A s — BpKs has eigenvalues with only negative real
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parts. Note that in this case n = 2 and the rank of matrix

1212
(Bp,AyBp) = (1 91 2)

is unity; therefore, Theorem 9.2 cannot be applied to find an appropri-
ate matrix Kpr. However in this special case an easy method can be
used. Try to select K s so that

Ay -BpKy =-1,

that is,
BpKy =Ay +1.

IfKuy = (I_cij), then this equation has the form

12 k11 /:fm (11

12 kot kag )~ \11 /)~
It is easy to see that ki1 =1, k1o = 1, koy = koy = 0 are solutions.
Therefore, the selection of

21 11 22
o= (30) 0 = (a0) %= (50)

is satisfactory in order to construct an asymptotically stable adaptive
system.

We can check our results by computing first matrix Ay — BpKas.
In this case,

(0)-( ) -3

Furthermore, check identities

12 11 11
Bp(Kp —Kun) = <12> (00> = <11> =Ap—-Ay

12 /21 21
BPKU“(M) (00>=<21>=BM'

As the above example illustrates, Theorem 9.2 gives sufficient but
not necessary conditions for the existence of the desired feedback. We
note here that a new sufficient and necessary condition was introduced
by [42].



478 chapter ten: Advanced Topics

In the conclusion of this section, a practical example based on [30]
and [19] is presented which illustrates how adaptive systems really work.
Figure 10.5 shows a typical state variable feedback control system with
a time delay.

| Delay | ¥ , Plant X .
K "l 8 x = Ax + bu h >
Target
selective
adaptive kT =
controller

Figure 10.5 A typical state variable feedback control system with a time delay
and a target-selective adaptive controller.

For this control scheme, the target-selective adaptive controller con-
structs an adaptive signal that depends on the frequency, amplitude,
and waveform of the target movement, as well as on the time delay
and dynamics of the plant. When this adaptive signal is applied to the
time-delay system, it allows zero-latency tracking and improves dynamic
performance. The system input u;(t) is composed of two parts: the ref-
erence source, us{t), and the adaptive signal, u,(¢). When u,(t) is not a
known target waveform, u,(t) is turned off; u;(t) then equals u,(t) and
the closed-loop transfer function becomes

Y(s) = hT(sI— A)"'bKe
Ui(s) 1+4+kT(sI—A)-lbKe 0"

(10.26)

The €% term in the numerator is a pure time delay that remains in
spite of the feedback. The similar term in the denominator produces
phase lag that reduces the allowable gain. Of the other symbols, Y(s)
represents the scalar output, U;(s) the scalar system input, I the n x n
identity matrix, A the n x n system matrix, K the scalar gain, k7 the
1 x n feedback vector, h” the 1 x n output coefficient vector, and b
the n x 1 input coeflicient vector. Superscript T indicates the transpose
operation. The dimensions of the vectors and matrices are such that the
numerator and the denominator of Equation (10.26) are scalars. The
feedback vector kT and the gain K must be selected to achieve stability.

Next we introduce four examples of compensation for plant time de-
lays in systems with predictable inputs. The first compensates for the
time delay and plant dynamics, the second compensates for the time
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delay and provides arbitrary pole placement, the third compensates for
the time delay without requiring control gain changes, and the fourth
compensates for the time delay while leaving the transient response un-
changed.

In the first example, compensation for time delay and system dynam-
ics, the system output is made identically equal to the reference input:
y(t) = us(t). The system input, u;(t), is the sum of u,(t), the reference
source, and u,(t), the generated adaptive signal. When u,(t) is not a
known predictable target waveform, u, () is turned off. When u,(t) is
a known predictable target waveform, u,(t) augments u;(¢) to achieve
zero-latency tracking.

Applying the requirement Y {s) = Us(s) to Equation (10.26) produces

hT(sI — A)"1bKe ¢
Usls) = [1 + k(T(sI - L)_lee‘sa] (Usls) + Uale))

For notational simplicity, we omit the function’s argument when it is
complex frequency, s. Solving for U, yields

es? kT(sI- A)~b

U, = [hT(sI— A) bR + WT(sT = A)-Tb - 1] Us . (10.27)
The time delay 6, the matrix A, and the vectors b, kT, and h7 must
be known. If us(t) can be estimated, then wu,(¢) can be computed in
advance. For this example, the output was made equal to the input; we
compensated for both the time delay and the plant dynamics. However,
it may be unnecessary, or computationally efficient in real-time computer
control, to compensate completely for the system dynamics.

This second example, compensation for time delay with pole adjust-
ment, demonstrates that it is possible to cancel the effects of the time
delay and also place the poles at any desired location. Let the desired
new forward gain coeflicient be K, and the desired new feedback vector
be k. Substituting these requirements in Equation (10.26) yields

TreT _ AV=1
y o [ BIGT=a)bE, ]
1+kI(sI— A) b,

B [ hT(sI — A)~bKe5°

1+ kT (sI— A)'lbl{e‘se} (Us + Ua) -

Solving for U, yields

g [Ka o, K(I-A)'DEK,
* T |'K 1+kI(sI - A)- bk,

1] U, . (10.28)
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The first term of the right-hand side is the relationship of U, to fu-
ture values of the reference input. The remaining two terms represent
the differential relationship between U, and current value of U,. For a
known input reference U,, one can readily compute U,. Thus, the sys-
tem response can be modified to have a desired characteristic response
and no time delay.

It may be necessary to cancel the effects of the time delay without in-
serting new gains, that is, kI = k7 and K, = K. For this requirement,
we obtain a simplified case of Equation (10.28)

1
. s0 _
e e o sy ey 3 L8 (10.29)

This form has simple implementation requirements and lends itself easily
to real-time computer control. It is used when the closed-loop system
time delay is unacceptable but the system pole locations are not critical.

In the case of compensation without changes in pole locations, the
auxiliary input from Equation {10.28) acts not only to cancel the effects
of e=*? on the closed-loop system numerator, but also eliminates the
effect of e~*¢ on the pole locations. To leave the closed-loop poles in
the same location as in Equation (10.26), the system response to known
targets may be specified as

[ hT(sI— A)"'bK
T 1+ KT(sI - A)-lbKe=s0| "° "

Substituting this requirement into Equation {10.26) yields

v hT(sI — A)"1bK
" |1+ KT(sI - A)"'bKe0| °

W7 (s - A)~'bKe=*
B [1 + kT (s - A)‘lee‘so} (Us +Ua) -

Solving for U, produces
U, = [e* - U, . (10.30)

Note that this is not the same result obtained by placing a predictor of
us(t + 8) before the summing junction in Figure 10.5. Such a predictor
would leave the effect of the time delay in the denominator.

Input signal waveforms may be predictable for human tracking of cer-
tain visual target waveforms and robotic tracking of objects on a moving
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platform. Both applications have large signal-processing time delays.
Observations of human tracking indicate that input adaptation does oc-
cur and zero-latency tracking results. Although present robotic visual
systems do not use such adaptive techniques, it may be advantageous.

The human eye movement control system performs in a manner sug-
gesting target-selective adaptive control. When a target starts moving,
there is a 150 msec delay before the eye starts moving, as shown in Fig-
ure 10.6 (upper). When the target stops, the eye continues to follow the
predicted target for 150 msec; see Figure 10.6 (lower). However, when a
human tracks a predictable target, the brain identifies the target within
one half-cycle and generates an adaptive signal, u,(¢), that makes the
phase error approach zero as shown in Figure 10.7.

Figure 10.6 Performance of the human eye movement control system.

This change to zero-latency tracking is a result of control signal changes
and not to changes in plant characteristics. The extraocular plant —
consisting of the eyeball, the extraocular muscles, the nerve fibers, and
the suspensory tissues — cannot change quickly. Neurophysiological
studies suggest that changes in the plant or controller take hours or
days to occur. Thus, the rapid performance change is being caused by
the brain, presumably by changing the system input, u;(t).

The full model for the eye movement control system is shown in Fig-
ure 10.8. The smooth pursuit branch of this model acts as a velocity
tracking system. The dynamics of the extraocular plant are very fast
compared to the dynamics of the smooth pursuit branch, and the lim-
iter does not affect the operation of the adaptive controller. For the
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Figure 10.7 Human tracking of a moving target.

human eye movement system, the order of the system and the control
and output vectors are 1 so that the following values are appropriate.

a=1
-
S
u
h=1
k=1.

The system’s input, u;(t), is the sum of the target reference signal,
us(t), and the adaptive signal, u,(t), that must be computed. To obtain
zero-latency tracking, y(t) must equal u,s(t). Putting all this information
into Equation (10.26) gives

(s+ %)T(%)Ke_se

= Us + U,
P14 (s+ %)T(g)Ke—se( +Ua)
Solving for U, gives
s8
U, = ?(7—3 + DU . (10.31)

The e% term shows that predictions must be made. However, the
smooth pursuit system is a velocity tracking system, not a position
tracking system, so the controller must be able to predict future values
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Figure 10.8 The target selective adaptive control model for human eye move-
ment.

of target velocity. For example, if @(t) is the present target velocity,
it must be able to produce (¢t + 6), where 8 is the time delay of the
smooth pursuit system. Also, the controller must modify this predic-
tion to compensate for the dynamics of the system in accordance with
Equation (10.32). Therefore, the compensation signal, U, of Figure 10.8
becomes

ue(t) = % [%ms(t +0) +ug(t + a)] . (10.32)

This compensation signal allows the smooth pursuit system to overcome
the time delay. To synthesize this signal, the adaptive controiler must
be able to both predict future values of the target velocity and com-
pute first derivatives. These are reasonable computations for the human
brain. Therefore, Equation (10.32) is the algorithm that is in the box of
Figure 10.8 labeled Target Selective Adaptive Controller.

We used six predictable waveforms and seven techniques for predict-
ing, including a Kalman filter similar to that of Section 10.2. All yielded
behavior comparable to human tracking. So we concluded that humans
can predict certain waveforms and they do use mental models of their
eye tracking systems. These mental models adapt for variations due to
fatigue, age, and temperature. The behavior of warming up is just fine-
tuning the mental model. When the mental model is for the combination
of the human and the machine being controlled, the whole model must
be adaptive. For example, when switching from a Lear jet to a Piper
Cub, the pilot must change his or her mental model of the airplane.
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10.4 Neural Networks

The field of artificial ‘neural networks is arguably the fastest growing
field in artificial intelligence. An artificial neural network is a massively
parallel, adaptive computer system usually having multiple inputs and
multiple outputs. During the past few years, neural networks have been
used in a wide variety of applications, such as signature recognition in
banks, loan underwriting in mortgage companies, planning and control
of robot arm trajectories, process control, analyzing infrared images of
asteroids, and nonlinear optimization [10].

Neural network technology has several advantages over conventional
methods. Neural networks can deal with noisy and imprecise data, learn
automatically from training data, adapt to a changing environment, de-
grade gracefully in the face of component failure, generalize to new situa-
tions, and {once trained) execute quickly. However, neural networks also
suffer several weaknesses. The first is a lack of semantic interpretability.
The information is stored as values of the interconnecting weights, and
it is impossible to understand the behavior of a network by looking at
the weight values. Second, input training sets can be faulty because of
undesired or unwanted information, inappropriate training parameters,
or bad initialization of connection weights. Unfortunately, it is difficult
to detect such problems. Third, testing and validation are difficult with
neural networks. The cost of testing a large hardware network may
exceed the cost of manufacture.

Neural networks can be used in control systems. Traditional con-
trol systems have controllers, a controlled system, and a feedback loop.
Typical controllers include proportional plus integral (PI) controllers,
proportional plus integral plus derivative (PID) controllers, Smith Pre-
dictor controllers, and Model Reference Adaptive Controllers as shown
in Section 10.3. As systems grew bigger, multiple controllers and mul-
tiple feedback loops have been used. However, the size and complexity
of newer systems is pushing the limits of traditional techniques. Many
advanced control systems are being built with knowledge-based systems
such as expert systems and neural networks. There are many examples
of neural networks in control systems [1]. One reason for their popularity
is their adaptive nature. Examples of desired behavior are presented to
a neural network and it learns to control the process. In a head-to-head
test of a neural network, a self-tuning regulator, and a Lyapunov model
reference controller [24], the neural network was the most robust in the
face of model mismatches. It was second for control effort, tracking
error, and noise rejection. It finished last only for convergence speed.
Therefore, neural networks can now be used as adaptive controllers in
many control processes.
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There are dozens of different types of neural networks [16]. The main
differences are in their method of training and weight adaptation. We
will now explain the type called backpropagation. We choose it because
it is the most common type used in control systems [1] and it can be
used to illustrate most of the techniques used in other types of networks.

The extremely simple neural network of Figure 10.9 has two nodes in
the input layer, two nodes in its solitary hidden layer, and two nodes in
the output layer. The theoretical basis of this kind of neural networks
is given by the famous Kolmogorov’s theorem (see, for example, [20])
that states that any continuous function f : [0,1]* — R™ can be im-
plemented exactly by a three-layer neural network having n elements in
the input layer, (2n + 1) elements in the hidden layer, and m elements
in the output layer. We mention that the elements in the hidden and
output layers have special (usually irrational) nonlinear transfer func-
tions. If one approximates these nonlinear functions by linear relations,
the number of linear terms might be large. Therefore, neural networks
may have thousands of nodes in each layer and perhaps many hidden
layers. The weights between the layers are adjustable. This network is
fully connected, that is, every node is connected to every node in the
adjacent layers. Many networks are not fully connected. To explain how
this network learns, assume that all the weights are initially 0.5. Apply
a 0 to input-1 and a 1 to input-2 and specify that the desired outputs
are 1 and 0, respectively, for output-1 and output-2. This network will
have the values shown in Table 10.1.

Input Hidden Output
layer  w layer W, layer

Figure 10.9 A simple neural network.

To explain our notation, w;; represents the weight between the ith
input node and the jth hidden node, and w;, represents the weight
between the jth hidden node and the kth output node.

As a first step in training this network, we will change the weights
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Table 10.1 Initial Values for a Simple Neural Network

Weights i Weights
between ; between
Input | inputand | Hidden [ hiddenand [ Output | Desired
node hidden node output node outputs, | Errors,
values | layers, w;; | values, h; | layers, w;. | values, dy By
0 0.5 0.5 0.5 0.5 1.0 05
0.5 0.5
0.5 0.5
1 0.5 0.5 0.5 0.5 0.0 ~0.5

between the output layer and the hidden layer with the following equa-
tion:
Wikt + 1) = @ (t) + BEL(t)zx(t) , (10.33)

where £ is the learning rate, x(t) is the actual output, and Ei(t) is the
error, which is defined as the difference between the desired and actual
outputs, i.e., Fi(t) = di(t) — zx(¢). This equation is an approximation
to the Wiener—-Hopf equation. For computation simplicity, it uses an
estimate of the gradient of the error with respect to the weights instead
of the actual gradient [19]. In the neural network literature, this equation
is often called the Delta Rule. Using this equation and a learning rate
B of 0.5, we can change the weights between the output layer and the
hidden layer (the @;1’s), and the state of the network will change to the
one shown in the second section of Table 10.2. One application of this
equation is shown with the circles and arrows on Table 10.2.

That worked for the @;1’s but we cannot use Equation (10.33) for the
weights between the input layer and the hidden layer (the w;;s) because
we do not know what the error is. The technique named backpropagation
by Rumelhart et al. [39] assigns a weighted share of the blame to each
of the wy;’s. The backpropagation weight-changing formula is

wii(t + 1) = wiz(t) + Bh;(t Zw]k Y ER(t) (10.34)

Using this equation we find that the w;;’s do not change in this cycle,
because the symmetry of our network causes the term

Z Wik (¢) Er(t)
k

in Equation (10.34) to be zero.
But let’s not give up yet. Let us present the input again and let the
network learn some more. After the second presentation of the input we
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Table 10.2 Changing the Weights between the Hidden and Output Layers

Input Hidden Output Desired | .
node | Weights, node Weights, | node outputs | Errors,
Time | values Wi values, h; | W;; values, zp, | dg E
Initial | 0 05 05 ED\( 05 1.0 05
values 0.5 0.5
0.5 0.5
1 0.5 0.5 0.5 0.5 0.0 —-0.5
After 0 0.5 0.5 \‘0.625
using 0.5 0.375
Eq. 05 0.625
10.33 1 0.5 0.5 0.375
After 0 0.5 0.5 0.625
using 0.5 0.375
Eq. 0.5 0.625
10.34 1 0.5 0.5 0.375
have

1 =0.625 and Fy=0.375,

zo = 0.375 and FEy = -0.375

as shown in the first section of Table 10.3. So once again we use Equa-
tion (10.33) to change weights between the hidden and output layers
and we get the results shown in the second section of Table 10.3. Next
we apply Equation (10.34), backpropagation, and this time the w;; do
change as shown in the third section of Table 10.3. One application of
this equation is shown with the circles and arrows on Table 10.3. This
concludes our section on the simple weight-adjusting equations.

Next we show the network learning the desired pattern. Table 10.4
shows repeated application of the desired input-output pattern. We
repeated it over and over again until the network finally learned. Af-
ter 40 presentations of that input—output pattern (40 training cycles or
40 epochs), output-1 is close to 1 and output-2 is close to 0, as desired.

The example of Table 10.4 used a learning rate 8 of 0.5. With a
learning rate of 0.25, the network converged slower. However, with a
learning rate of 1.0, output-1 oscillated as shown in Table 10.5. In other
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Table 10.3 The Second and Third Training Cycles

Hidden Output

Input node node Desired

node Weights, | values, | Weights, | values, | outputs | Errors,
Time values Wi hj Wi T dy B
2nd cycle. | 0 (3:3\( 05 0625 | 0625 |10
Calculate O.g Q 43 t___/
new hj, zx . .
and B, | 1 05 0. 0375 0375 | 00 ——F={037)

\—

After 0 I 0.5 0.5 0.742
using 0.5 0.304
Eq.10.33 0.5 0.742

1 0.5 0.5 0.304
After 0 523 0.5 0.742
using 0.523 0.304
Eq. 10.34 0.523 0.742

1 0.523 0.5 0.304
3rdcycle. | O 0.523 0.523 0.742 0.777 1.0 0.223
Calculate 0.523 0.304
new hj, zx 0.523 0.742
and Ej 1 0.523 0.523 0.304 0.319 0.0 —0.319
After 0 0.523 0.523 0.829
using 0.523 0.254
Eq. 10.33 0.523 0.829

1 0.523 0.523 0.254
After 0 0.541 0.523 0.829
using 0.541 0.254
Eq. 10.34 0.541 0.829

1 0.541 0.523 0.254
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words, the network did not learn. Problems like this are very common
with simple neural networks.

Table 10.4 Forty Cycles of Training with g = 0.5

Hidden Output
Input node node Desired
node | Weights, | values, | Weights, | values, | outputs | Errors,
Time | values | w;; h; Wi 2 dy, E;
0 0 0.5 0.5 0.5 0.5 1.0 0.5
0.5 0.5
05 0.5
1 0.5 0.5 0.5 0.5 0.0 -05
1 0 0.5 0.5 0.625 0.625 1.0 0.375
0.5 0.375
0.5 0.625
1 0.5 0.5 0.375 0.375 0.0 -0.375
5 0 0.545 0.545 0.875 0.955 1.0 0.045
0.545 0.216
0.545 0.875
1 0.545 0.545 0.216 0.236 0.0 -0.236
20 0 0.518 0.518 0.963 0.997 1.0 0.003
0.518 0.073
0.518 0.963
1 0.518 0.518 0.073 0.075 0.0 -0.075
40 0 0.510 0.510 0.979 0.999 1.0 0.001
0.510 0.041
0.510 0.979
1 0.510 0.510 0.041 0.042 0.0 -0.042

The input—output pattern that we have been using is simple, but
hardly worthwhile. Useful problems would surely have more complicated
input—output patterns. For example, suppose we want to implement the
Boolean functions AND and Exclusive OR as described in Table 10.6. If
both inputs are 0, then we want both outputs to be 0, whereas if both
inputs are 1 then we want only output-1 to be 1. If only one input is 1,
then we want only output-2 to be 1. Now this example is starting to
show the powerful pattern-recognition capabilities of a neural network.
It can detect many different patterns in the input data. An analogy
would be a neural network that accepted as inputs a person’s height,
weight, age, temperature, blood pressure, pulse, and cholesterol levels,
and produced as outputs recommendations of normal, influenza, hyper-
tension, etc. But back to our simple six-node network, first we apply
pattern number 1, i.e., two Os as the input and two 0's as the desired
output, and allow the weights to adapt. Then we apply pattern num-
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Table 10.5 Outpjut Oscillations Caused by Increasing s to 1.0

Hidden Output
Input node node Desired
node | Weights, | values, | Weights, | values, | outputs | Errors,
Time | values | w,; hy Wi zp, dy. E5
1 0 0.5 0.5 0.5 05 1.0 0.5
0.5 0.5
0.5 0.5
1 0.5 0.5 0.5 0.5 0.0 -0.5
2 0 0.5 0.5 0.75 0.75 1.0 0.25
0.5 0.25
0.5 0.75
1 0.5 0.5 0.25 0.25 0.0 -0.25
5 0 0.686 0.686 0.972 1.334 1.0 -0.334
0.686 0.120
0.686 0.972
1 0.686 0.686 0.120 0.165 0.0 -0.165
20 0 0.629 0.629 0.501 0.629 1.0 0.370
0.629 0.027
0.629 0.501
1 0.629 0.629 0.027 0.034 0.0 -0.034
40 0 0.966 0.966 0.619 1.197 1.0 -0.197
0.966 0.010
0.966 0.619
1 0.966 0.966 0.010 0.020 0.0 -0.020

ber 2 and let the weights adapt. We continue with patterns 3 and 4. It
might seem that with each new pattern the weights will change, destroy-
ing previous learning. But the hope is that with repeated application
of these patterns, the network will learn to differentiate between the in-
puts. Unfortunately, this simple network does not learn and, as shown in
Table 10.7, during the fifth cycle the outputs become ridiculously large.

To overcome these and other problems, neural network researchers
have proposed dozens of additions to our basic Equations (10.33) and
(10.34). The first addition that we present is the activation function,
for which we will use a saturation, or limiting, element (many other
functions are being used). This is one of the few properties of artificial
neural networks that is analogous to a property of biological neural net-
works. Real neurons have a maximum firing rate. As the input becomes
more intense they gradually approach their upper limit. Rumelhart et
al. [39] proposed using a sigmoidal activation function for every node in
the network. The following equation explains this property using a node
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Table 10.6 Training File for AND and EXOR Functions

Pattern Desired output-1, | Desired output-2,
number | Input-1 | Input-2 logic AND logic EXOR

1 0 0 0 0

2 1 0 0 1

3 0 1 0 1

4 1 1 1 0

Table 10.7 Attempted Training with Multiple

Examples
Cycleand | Input | Output
pattern node | node Desired
numbers | values | values outputs | Errors
1-1 0 0.0 0.0 0.0
0 0.0 0.0 0.0
1-2 1 0.5 0.0 —0.5
0 0.5 1.0 0.5
1-3 0 0.375 0.0 —0.375
1 0.625 1.0 0.375
1-4 1 0.666 1.0 0.334
1 1.623 0.0 —1.623
4-1 0 0.0 0.0 0.0
0 0.0 0.0 0.0
4-2 1 0.004 0.0 —0.004
0 0.102 1.0 0.898
4-3 0 0.105 0.0 —0.105
1 3.092 1.0 —2.092
4-4 1 —0.276 1.0 1.276
1 —20.79 0.0 —20.79
5-1 0 2492 0.0 —24.92
0 22730.5 0.0 —22730.5

491
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in the output layer as an example. The limited output is

1
S e v

Thus, the output nodes constrained by sigmoidal activation functions
will be restricted to the range of plus or minus 1. When sigmoidal
activation functions (Equation (10.35)) were added to all of the nodes
in our network, the problem of runaway outputs was solved, as shown
in Table 10.8.

However, also as shown in Table 10.8, this network failed to learn. In
particular, for pattern 1, output-2 is stuck at a high value (0.693) when
it should be 0. The network is stuck in a local minima. One way to
ameliorate this problem is to randomize the weights; either initially or
after the network gets stuck. For this simple network, randomizing the
initial weights works. For example, when we let the initial w;;’s equal
0.5, —0.3, —0.5, and 0.3, and the initial @;;’s equal 0.3, —0.5, —0.5,
and 0.3 (which was an arbitrary choice), we get the results shown in
Table 10.9. The network learns the desired responses.

There is another less ad hoc technique for helping a neural network
to escape from local minimum: adding momentum terms. Remember,
our task was to vary the weights and search for values that reduced the
error between the actual and desired outputs to the smallest possible
value. However, we should not expect the error function to look like a
bowl. It is just as likely that it has many hills and valleys, as shown in
Figure 10.10.

Ty = (10.35)

Y

Parameter value
Figure 10,10 Error function of a neural network.
The network of Table 10.8 was stuck in a valley. Adding momentum

might help it escape. To see how, imagine a boy on a shiny sled sliding
down a snowy slope. When they get to a small valley, they get stuck.
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Table 10.8 Network Training with g = 0.5, but with the Addition of
Sigmoidal Activation Functions

Cycle Pattern Desired Desired
number | w;; w;, | number | Output-1 | output-1 | Output-2 | output-2
1 0490 { 0.305 1 0.622 0.0 0.622 0.0
0.493 | 0.305 2 0.622 0.0 0.622 1.0
0.490 | 0464 3 0.573 0.0 0.623 1.0
0.493 | 0464 4 0.530 1.0 0.666 0.0
0470 | 0.132 1 0.266 0.0 0.492 0.0
0481 | 0.132 2 0.274 0.0 0.480 1.0
0470 | 0.312 3 0.266 0.0 0.489 1.0
0.481 | 0.312 4 0.258 1.0 0.539 0.0
100 1445 | 2501 1 0.782 0.0 0.477 0.0
1.492 | 2.501 2 0.257 0.0 0.475 1.0
1445 | 0.151 3 0.262 0.0 0.484 1.0
1492 | 0.151 4 0.624 1.0 0.540 0.0
1000 4.625 | 5.968 1 0.018 0.0 0.693 0.0
4.627 | 5.968 2 0.022 0.0 0.661 1.0
4.625 | -2.739 3 0.022 0.0 0.661 1.0
4.627 | —2.739 4 0.968 1.0 0.070 0.0

Now imagine that the boy attacks the slope again, this time starting
higher up the hill. This time they will be going faster when they reach
the bottom; they will have more momentum. It is quite likely that they
will continue across the small valley, up the hill, over the crest, and into
the deeper valley on the other side. The principle is that if you are go-
ing in a good direction, then keep going in that direction. To accelerate
training and help the network escape from local minimum, we will add
momentum terms to our weight-adjustment equations. The momentum
terms are proportional to the amount of the previous weight adjust-
ment. With the addition of the momentum terms, Equations (10.33)
and (10.34) become

Wik (t + 1) = W;5(8) + BEL(t)zi(t) + c%(ﬂEk(t —Dzx{t - 1)) (10.36)
and

wii(t + 1) = wi;(t) + Bh;(¢ Zw]k YEL(¢

+ a(Bhi(t — 1) > Wikt — 1)Ex(t — 1)) . (10.37)
k

Typically, the momentum coeflicient « is set between 0.5 and 0.9. Ta-
ble 10.10 shows the neural network with the momentum terms (o = 0.5)
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Table 10.9 Network Training with g = 0.5 and Sigmoidal Activation
Functions, but with Arbitrarily Assigned Initial Weights

Cycle Pattern Desired Desired
number Wi @, | number | Output-1 | output-1 | Output-2 | output-2
1 0.482 1 0.349 1 0.525 0.0 0.475 00
-0.308 | -0.438 2 0.525 0.0 0.429 1.0
-0.494 [ -0.468 3 0.446 0.0 0.481 1.0
0.303 | 0.319 4 0.424 1.0 0.491 0.0
10 0480 | 0.123 1 0.247 0.0 0.517 0.0
-0.280 | -0.756 2 0.275 0.0 0.463 1.0
-0.677 | -0.415 3 0.237 0.0 0.506 1.0
0.100 | 0316 4 0.252 1.0 0.511 0.0
100 1.077 | 1.721 1 0.048 0.0 0.502 0.0
0.757 | -3.961 2 0.238 0.0 0.480 1.0
-1.852 | -0.126 3 0.214 0.0 0.492 1.0
-1.898 | -0.206 4 0.629 1.0 0.536 0.0
1000 5756 | 3.452 1 0.001 0.0 0.062 0.0
5.752 | -8.013 2 0.022 0.0 0.946 1.0
-5.501 6.746 3 0.022 0.0 0.946 1.0
-5.503 6.625 4 0.966 1.0 0.063 0.0

learning the input—output pattern. It learned faster and better than the
network of Table 10.9.

We will now show one more technique to help the network stay out
of local minimum, the addition of bias terms to the weight-adjustment
equations. We add a bias term to each node in the hidden and output
layers. We choose bias values randomly within the range 0.0 to 1.0.
Table 10.11 shows the training behavior of our network with the addition
of bias terms. It has learned in spite of setting the all the initial weights
to 0.5.

To generalize all that we have learned about neural networks, let us
now examine a sensitivity analysis of our network. We started with our
best network, namely that with § = 0.5, « = 0.5, two units in the
hidden layer, bias values randomly selected between plus and minus 1.0,
and initial values of 0.5 for all nodes. Then we varied each parameter
throughout its feasible range and examined the residual error after 100
training cycles. Figure 10.11 shows the results.

Figure 10.11 shows the normalized error in the network,

0.5 Zk(dk e :L'k(t))Z
number of output units ’

after 100 training cycles. Figures showing these errors after 500 and
1000 training cycles had similar shapes but less variation. Which means
that if you are willing to wait 1000 cycles for your network to learn, then
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Figure 10.11 Sensitivity analysis of a neural network.

you can get away with nonoptimal parameters. Analogously, if you have
all year to teach your dog to shake hands, then reward her with lettuce.
But if you want her to learn in a day, reward her with beef jerky.

In this sensitivity analysis we varied the learning rate @ from 0 to
1.2 and found that as 3 increased from 0 to 0.1, the error fell rapidly.
Thereafter, increases in 8 produced small decreases in error.

Changing the momentum term « from —0.3 to +0.6 had little effect.
But changes from 0.6 to 0.9 decreased the error. Finally, as a increased
to 1.0 and beyond, the error jumped and produced overflow errors. The
network is very sensitive to « in this region.

We changed the number of units in the hidden layer, n, from 1 to
12. The error was smallest for n = 1. It is a common finding in the
neural network literature that the error as a function of number of units
in the hidden layer is bowl-shaped [4]. With too few units, the hidden
layer lacks sufficient richness; with too many units, the noise increases
because the net is underconstrained.

In this neural network, the bias values were randomly selected between
+b. For the sensitivity analysis we varied b from O to 1.2. This had
almost no effect on the error. Changes in the initial values of the nodes
also had small effect.

In this sensitivity analysis, we only varied one parameter at a time.
However, there are interactions between the parameters. For example,
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Table 10.10 Network Tréining with g = 0.5, Sigmoidal Activation Functions,
and Arbitrarily Assigned Initial Weights, but with the Addition of
Momentum Terms

Cycle Pattern Desired Desired
number wij @, | number | Output-1 | output-1 | Qutput-2 | output-2
1 0.495 0.262 1 0.759 0.0 0.701 0.0
-0.306 | —-0.530 2 0.746 0.0 0.652 1.0
-0.494 | -0.565 3 0.677 0.0 0.680 1.0
0.301 | 0.232 4 0.634 1.0 0.681 0.0
10 0.475 | -0.278 1 0.249 0.0 0.514 0.0
-0.368 | -1.120 2 0.276 0.0 0.458 1.0
-0.662 | -0.780 3 0.240 0.0 0.503 1.0
0.073 | -0.002 4 0.250 1.0 0.523 0.0
100 0.219 | -0.241 1 0.042 0.0 0.378 0.0
-0.957 | -4.055 2 0.201 0.0 0.673 1.0
-2.154 | -0.714 3 0.197 0.0 0.656 1.0
-2.031 | —0.068 4 0.692 1.0 0.458 0.0
1000 -4.978 | -0.336 1 0.001 0.0 0.046 0.0
-4.994 | -7.937 2 0.018 0.0 0.954 1.0
-5291 | -7.970 3 0.018 0.0 0.954 1.0
-5302 | 7.181 4 0.972 1.0 0.053 0.0

as we have shown before, if we change both the bias terms and the initial
weights to zero, then the network does not learn.

The results shown in Figure 10.11 are specific for the network and
problem that we were studying. With a different desired input—output
behavior, the sensitivity analysis would yield different results.

Many other variations of the basic weight-adjustment equations have
been tried. Some had no effects and others had significant effects. For
example, eliminating h; from Equation (10.34) had almost no effect on
performance. Also, dividing the second term of Equation (10.34) by the
number of elements in the output layer, as is commonly done, had little
effect, whereas multiplying the second term of Equation (10.34) by the
derivative of the activation function, Equation (10.35), did enhance per-
formance. Also, a technique called simulated annealing greatly improves
the performance of neural networks. However, we will not consider any
more enhancements of our basic equations.

In this section we used a neural network as a tool to perform a task:
we trained a neural network to implement the Boolean functions AND
and Exclusive OR. A lot of confusion exists about neural networks be-
cause two extremely diverse groups are using neural networks: (1) tool
users, who use neural networks to accomplish tasks like pattern recog-
nition and controlling systems, and (2) modelers, who use them to help
understand biological systems. Most importantly, the two groups have
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Table 10.11 Network Training with g = 0.5, Sigmoidal Activation Functions,
Momentum Terms, and all Initial Weights Equal to 0.5, but with the Addition
of Random Bias Terms

Cycle Pattern Desired Desired
number wiy @;x | number | Qutput-1 | output-1 | Output-2 | output-2
1 0.492 0.243 1 0.770 0.0 0.896 0.0
0.495 0.249 2 0.805 0.0 0.822 1.0
0.492 0.446 3 0.734 0.0 0.836 1.0
0.491 0.442 4 0.838 1.0 0.901 0.0
10 0.448 | ~0.467 1 0.194 0.0 0.636 0.0
0457 | -0.492 2 0.264 0.0 0.379 1.0
0.438 { -0.078 3 0.296 0.0 0.399 1.0
0.450 | -0.129 4 0.146 1.0 0.561 0.0
100 -0.160 | -0.233 1 0.317 0.0 0.504 0.0
-0.069 | -0.302 2 0.194 0.0 0.523 1.0
-0.209 | -0.168 3 0.283 0.0 0.586 1.0
-0.128 0.010 4 0.158 1.0 0.524 0.0
1000 -5.392 | -3.322 1 0.001 0.0 0.058 0.0
-5.393 | -7.627 2 0.029 0.0 0.946 1.0
-5.165 | -7.884 3 0.016 0.0 0.978 1.0
-5.161 | 7.250 4 0.926 1.0 0.051 0.0

little in common. For example, the most popular algorithm among tool
users is the backpropagation algorithm. But few modelers of biological
systems would use this algorithm, because (1) it is not likely that any
one neuron is going to be able to tell any other neuron that it is wrong
(therefore, how can the error be determined?) and (2) in backpropa-
gation, neural networks information flows in two directions: first input
information flows forward through the network and then error informa-
tion flows backward through the network. Biological neural networks do
not have such bidirectional information flows.

This has been a very simple primer on neural networks. There are
many techniques besides backpropagation for weight adjustment. Fur-
thermore, many more enhancements could be added to our basic weight-
adjustment equations. This example only used six nodes, and neural
networks sometimes use millions of nodes. Our reason for including this
simple example was merely to illustrate the idea in a manageable size
problem. Modern controllers often use a combination of neural networks
and rule-based expert systems. The neural networks learn, adapt, and
control the process during normal operation. If a pipe or a value breaks,
the neural network should fail, because that type of example should not
have been included in the neural network training file. However, the
engineers should be good at figuring out what to do in case of failures.
For example, they could prescribe turning off an upstream valve if a pipe
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breaks. This type of Rnowledge would be best suited for a rule-based
system that would take over from the neural network in case of abnormal
events. 3
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