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Preface

A Second Edition

In the decade since the first edition of this book was published, the
technologies of digital design have continued to evolve. The evolution
has run along two closely related tracks: the underlying physical tech-
nology and the software tools that facilitate the application of the new
devices. The trends identified in the first edition have continued stron-
ger than ever and promise to continue for some time to come. Specifi-
cally, programmable logic has become virtually the norm for digital
designers and the art of digital design now absolutely requires the soft-
ware skills to deal with hardware description languages.

No longer do we see the familiar yellow cover of the TTL Data
Book on every designer’s bookshelf. In fact, for many application areas,
even small programmable logic devices (PLDs), the mainstays of the
1970s and early 1980s, are rapidly disappearing. The burgeoning mar-
ket for smaller, lower power, and more portable devices has driven
high levels of integration into almost every product. This also has
changed the nature of optimization; the focus is now on what goes into
each chip rather than on the collection of individual gates needed to
realize the design. The optimizations of today are more and more often
made at the architecture level rather than in the switches.

Hardware designers now spend the majority of their time dealing
with software. Specifically, the tools needed to efficiently map digital
designs onto the emerging programmable devices that are growing ever
more sophisticated. They capture their design specifications in soft-
ware with description languages appropriate for describing the paral-
lelism of hardware; they use software tools to simulate their designs
and then to synthesize it into the implementation technology of
choice. Design time is reduced radically as market pressures require
products to be introduced quickly, at the right price and performance.

Although the evergrowing complexity of designs necessitates
more powerful abstractions, the fundamentals haven’t changed. In
fact, the contemporary digital designer must have a broader under-
standing of the discipline of computation than ever before, including
both hardware and software. In this second edition, we provide this
broader perspective.

Changes from the First Edition

There are many changes from the first edition that can be grouped into
four rough categories. First, we updated the hardware technologies
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discussed in the book. Second, we added a more complete, if neverthe-
less introductory, treatment of the software tools that are now so com-
monplace in the designer’s tool kit. Third, we responded to the
comments and suggestions received over the years by the many faculty
and practitioners who have used the book. Finally, we rationalized the
organization of the text so that concepts, technologies, tools, and prac-
tical matters were more clearly defined.

New Introduction

The introduction has been changed from one that focused on the pro-
cess of design to one that introduces the concepts of computation,
encoding, and sequencing. This sets out a better road map to the rest of
the book and provides a rationale for its organization. Rather than
discussing the design process in the abstract, we now include many
more case studies to help the student gain that understanding by
seeing the process in action.

Repartitioning of Material

Each of the two major sections on combinational and sequential logic
was divided into a set of chapters. These first cover the fundamental
concepts, then describe the principles of manipulating the logic into
different forms, followed by a discussion of the optimizations and
tools that are available, and concludes with an overview of the tech-
nologies available to build logic circuits. Each is capped by a set
of comprehensive design case studies that make each of the issues
concrete.

More Emphasis on Programmable Logic

We have added new material on the latest programmable logic technol-
ogies that have quickly become the dominant style for realizing digital
designs. We do not attempt to provide all the information needed to
work with any one technology. Those used will vary dramatically from
institution to institution. Therefore, the book needs to be supple-
mented with a laboratory guide that covers the specifics of a particular
installation. In this text, we focused on the underlying concepts. We
expect laboratory guides to be available in the form of web-based mate-
rials that can be easily customized to the variety already out there and
updated as new technologies emerge.

Inclusion of Hardware Description Languages

HDLs are now given a more central role to reflect their total acceptance
by the design community over the past 10 years. We describe only the
basics of one of the dominant languages, namely Verilog, focusing on
describing behavior, as well as covering the basics of HDL simulation
models. We highlight the power of the languages in making designs
more parameterizable and customizable and designers more efficient.



New Design Case Studies

Nothing helps students learn design as much as designing for them-
selves. The next best thing is to provide a large collection of examples
where the intuitions and rules of thumb are discussed explicitly. The
hope is that this will help bootstrap new digital designers into the
world of practical applications rather than the drill problems that were
the norm in simpler times. There are many new and extensive design
examples sprinkled throughout the text and in two large case study
chapters focusing on combinational and sequential logic.

Elimination of Chapters on Datapath, Control,
and Register-Transfer

We decided to remove the last two chapters of the first edition, that
focused on datapath and register-transfer design, and a simple processor
as an in-depth design case study of the interaction of control and data-
path. While these topics are without a doubt important, on reflection we
felt they are better left for a more extended study of digital design than
could be included within the page limit of this edition. Instead, we chose
more intensive coverage of programmable logic and HDLs, with extensive
but smaller design examples spread throughout the text. We plan to make
supplementary materials on the eliminated topics available on the web.

Navigating the Book

The book is organized into 10 chapters and three appendices. Chapter 1
is an overall introduction to the field. Chapters 2 through 5 cover
combinational logic. Chapters 6 through 10 cover sequential logic. The
three appendices provide some potentially useful background material
that may have been part of other courses in a computer or electrical
engineering curriculum.

Chapter 1 is an ambitious attempt to introduce many of the con-
cepts of digital design through a short history of the evolution of digital
hardware and two simple examples. Many may find that it introduces
too many concepts too quickly for students to grasp their importance.
However, this was not the intent. We fully expect students to be some-
what overwhelmed by the number of new concepts that come up in the
discussion of the example. The purpose of the chapter is to provide an
aerial view of the field so that students find it easier to see how the
pieces they will see, in much greater detail and depth in later chapters,
fit together coherently. It is certainly possible to replace this chapter
with a more traditional introduction.

The next four chapters lay out the concepts of combinational logic
design, closing with a set of comprehensive examples.

Chapter 2 covers the basics of combinational logic from simple
gates to their time behavior. It lays out the concepts of two-level and
multilevel logic and motivates why we would want to simplify logic.
Some of the basic machinery for manipulating logic is presented with
an emphasis on pencil-and-paper methods.

Preface
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Chapter 3 delves into methods for working with combinational
logic. It begins by describing the algorithms inside of today’s CAD
tools and ends with an overview of hardware description languages
and uses Verilog to demonstrate key elements. Included is a discussion
of the discrete simulation concepts that help to clarify the language
constructs. There is probably not enough detail to make this book the
sole resource for laboratory work with CAD tools. We wanted to keep
the book focused on key concepts rather than on details of particular
tools. It will need to be supplemented with appropriate manuals for
the particular tools students will find in their own laboratories. This
chapter also covers timing issues in more detail, including hazards and
hazard-elimination strategies.

Chapter 4 presents the full range of implementation technologies
available to the logic designer for combinational logic. It is paired with
Chapter 9 that does the same for sequential logic. Chapter 4 starts with
basic logic gates (as in the traditional TTL-based courses), but quickly
progresses to programmable logic (PLDs and two-level forms) and then
to field-programmable gate arrays. We also discuss other types of logic
constructs such as tri-state and open-collector logic. Basic electronics
to support this discussion are in Appendix B.

Chapter 5 culminates the combinational logic section of the book
with seven examples of increasing complexity. We emphasize problem
solving from the initial specification and have provided considerable
discussion of how to transform an initial informal description of the
problem into precise logical statements while keeping track of the
assumptions that are being made. Our goal in this chapter is to show
the range of logic design and how to judge design tradeoffs and take
advantage of optimization opportunities.

The remaining five chapters do the same for sequential logic what
the Chapters 2 through 5 did for combinational logic.

Chapter 6 begins this section by introducing the idea of circuits
with feedback and how they can be analyzed. We develop the basic
elements of sequential logic, latches, and flip-flops by recapitulating
their evolution. This is coupled with a discussion of the timing meth-
odologies that make it practical to build large sequential logic systems.
These methodologies are illustrated with simple sequential systems of
shift registers. The chapter concludes with a continuation of the expo-
sition of hardware description languages started in Chapter 3 and
extends it to basic sequential logic elements.

Chapter 7 covers the central concept of finite state machines. It
begins by using counters as a simple form of FSM and then moves on
to the basic Moore and Mealy models for organizing sequential behav-
ior. Like Chapter 2, it concludes by motivating the various optimiza-
tion opportunities.

Chapter 8 extends the basic ideas of Chapter 7 and expands on the
details of FSM optimization by treating state minimization, state encod-
ing, and FSM partitioning, in turn. Each of these is illustrated with
examples that highlight the tradeoffs at each stage of optimization. An



additional section at the end of the chapter provides some guidelines for
structuring FSM descriptions in HDLs.

Chapter 9 concludes the discussion of implementation technolo-
gies. It recapitulates all the technologies used for combinational logic
introduced in Chapter 4 but focusing on their sequential logic
elements.

Chapter 10 is a large chapter with six comprehensive design exam-
ples that bring to practice all the concepts in the text. It begins with the
sequential logic example from Chapter 1, now discussed in full detail,
to tie back to the start of the text and ends with the serial transmission
of characters from a keypad to display. The latter examples focus on
the partitioning of design problems into communicating pieces along
two dimensions: parallel state machines and partitioning into data-
path and control.

The three appendices cover number systems, basic electronics,
and flip-flop types. The first two cover concepts that students are
likely to have already seen in mathematics, physics, electrical engi-
neering, or computer science introductory courses. They are not
intended to be extensive treatment of these topics but only provide
the background most directly connected to the main topics of
this text. The appendix on flip-flop types is provided for historical
completeness.

The Complete Teaching Package

The material in this book easily fills a quarter-long course and can be
comfortably covered in a semester-long course. In fact, it is likely that
supplemental topics, governed by the place in the curriculum the
semester-long course occupies, can and should be included. These
could be: more in-depth discussion of CAD algorithms including their
data structures, efficiency, and implementation; further discussion of
design tradeoffs in a particular implementation technology such as
FPGAs; a larger design problem that can serve as a term project to
highlight issues of scale and debugging; and topics from computer
organization emphasizing partitioning into data-path and control and
optimizations of both. Of course, individual instructors may also find
that re-ordering some of the material makes more sense in their envi-
ronments. For example, it is certainly possible to proceed by following
the two sections in parallel rather than serially. Chapter 2 plus 6 and 7
can be paired, followed by 3 and 8, then 4 and 9, with the larger design
examples of 5 and 10 together at the end. Many topics can also be
skipped altogether. For example, CAD tools and their algorithms may
be relegated to another course. Similarly, HDLs do not need to be
included if the design environment focuses on schematic-level design.
In the technology dimension, FPGAs can be skipped as they may
be included in a later course on more advanced design methods. Our
goal in organizing the book was to make it easier to make these
customizations.

Preface

xvii
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Finally, we are making a wealth of supplementary material avail-
able to course instructors and students. Our publisher’s web site
includes:

¢ A set of CAD tools that supports all the concepts presented in
this text;
A comprehensive set of lecture slides;

Samples of possible laboratory assignments and projects;

Solutions to all the problems in the text; and
Supplementary material on computer organization for those that
include that material in their introductory logic design classes.

We hope you will agree with us that this second edition is a worthy
successor to the first.

RANDY H. KATZ
GAETANO BORRIELLO



Introduction

Introduction

Computer hardware, in its short 50-year history, has experienced the
most dramatic improvement in capabilities and costs ever experienced
by humankind. Computing devices are now ubiquitous in our daily
lives. They’ve come a long way since they were machines used exclu-
sively by a few scientists. They are used now by an ever-growing por-
tion of the world’s population. From their birth as automatic machines
for arithmetic calculations, computers now are part of everyday appli-
ances such as microwave ovens, anti-lock brakes, media players, and
pocket calendars. We no longer think about computers explicitly when
we use the devices that they make possible. CD and DVD players let us
listen to music and watch movies—but they are, in fact, computing
devices in that they include several microprocessors as well as other
digital hardware (see Figure 1.1). Just think how the telephone has
become a highly integrated communication system with many compo-
nents. A cellular phone allows you to make and answer calls from just
about anywhere in the world. As electronics shrink in size, we also
benefit from lower power requirements and smaller batteries that last
longer. A music player has become portable, holds thousands of songs,
and can play them for hours without recharging. Your home phone or
cable line now also lets your computers access an unprecedented
wealth of information and services over global networks.

Logic design is one of the disciplines that has enabled the digital rev-
olution which has dramatically altered our economies, communication
systems, and, consequently, our lives. Not only have the hardware com-
ponents evolved dramatically, but the tools of the logic designers’ trade
are also quite different that what they were even a short 10 years ago.

Any introduction to this subject must necessarily begin by defining
what we mean by design and logic design, in particular. We will then
provide some historical perspective by quickly reviewing the evolu-
tion of the underlying technology that makes our digital world possi-
ble. We’ll conclude the chapter with some examples of logic design
that will serve as a preview to the remainder of the text.
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Chapter 1

Introduction

Figure 1.1  The internal electronics of a digital video disk (DVD) player
consist of several computing devices that process the light levels from a
reflected laser beam and transform them into an audio stream for speakers
or headphones and video stream for a display.

1.1 Dissecting the Title
1.1.1  Design

Design is the process of coming up with a solution to a problem. To do
this, we not only have to understand precisely what the problem is, but
also the constraints our solution must meet. We can’'t come up with
solutions that require an unlimited amount of money or carelessly waste
resources and pollute our environment. Constraints can arise from phys-
ical limitations or even from aesthetic and subjective criteria. For exam-
ple, if we are designing a building, the problem may be to create 50,000
square feet of space that will make office workers very productive. Phys-
ical constraints on the building design could include limits on its
height, how far it can go underground, the number of offices with win-
dows, the number and type of common spaces such as conference
rooms, kitchens, and atria, and all the service utilities the building will
need. The building’s external design also will have to fit in to the sur-
rounding neighborhood and be welcomed by its neighbors. These are, of
course, only a small part of the constraints that architects must manage
when designing a solution. The architect must also ensure that the
building is completed within its cost budget, that it can be heated and
cooled efficiently, and that noise levels generated by ventilation systems
are within tolerable limits for the people that will occupy the building.
We recognize building design as a very complex process. To han-
dle this complexity, we’ve developed an important strategy based on
the tried and true divide-and-conquer approach. We do this so that we
can divide our problem into smaller sub-problems. Human beings are
only able to keep so many details and their interrelationships in their



heads at one time. By dividing the building into its constituent parts,
and using a team of designers (or in this case, contractors and their sub-
contractors) each working on their own parts of the whole, we are better
able to manage a large design task. Each component is now a design
problem for its respective designer who may in turn choose to divide it
down further. In our building example, these will include office layouts,
window frames, ventilation systems, etc. Note that the decomposition of
the design tasks is often functional and not spatial. For example, the ele-
vator design may be further decomposed into the design of the shafts,
mechanical and electronic controls, as well as their relationship to fire
safety rules. The building’s chief architect is responsible for bringing
these pieces together to form the complete building. Although, the archi-
tect may have some influence over the design of these pieces, it is likely
that, due to cost considerations, the choice may be limited to pre-
designed solutions available only in specific pre-fabricated configura-
tions. Good communication between all the contractors involved in the
construction of the building is essential in guaranteeing that inconsis-
tencies and errors are caught as early as possible when there is more
time to make adjustments. It is difficult to widen an elevator shaft, for
example, after the building’s skeleton is already completed.

Most of the objects we design are themselves going to consist of
components. In fact, the design process turns out to be very similar in
a wide range of disciplines. This may not be obvious at first. Clearly, a
civil engineer designing a new highway interchange has a different set
of problems than a computer engineer building a new holographic dis-
play. But it turns out they are much more similar than they first appear.
Each has to breakdown the problem into smaller pieces, each has to
deal with constraints beyond their control, each has to put all the
pieces together to solve the bigger problem, each has to be part of a
larger team and/or manage a part of the effort, etc.

For example, designing a new software application is not really all
that different from our building example. When we pick a particular
computing platform (a processor and its memory system) it imposes
limitations on our software. Some programs may need more memory
resources or not run fast enough on the platform we chose. User inter-
face concerns also have an influence on our software’s design. Our
software designer will be trying to be efficient and will want to reuse
utilities available from the computer’s operating system or parts of
software packages that were previously written and with which she is
already familiar. Thus, the software will have to be structured in such
a way to take advantage of the pieces that may already be available.
Finally, the software required may be too large for one individual,
group, or even company, and pieces will have to be sub-contracted to
others to complete. Our designers will have to make sure they commu-
nicate regularly and clearly so that they don’t make any mistakes that
will cost them time later when they try to pull all the pieces together.

Complex systems, such as our building or personal computer soft-
ware, require us to adopt a design methodology if we are going to
be able to manage the process efficiently and effectively. A design
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methodology is a domain-specific formalization of the design process
into a set of well understood steps. Architects have developed a design
methodology that involves contractors and builders, materials suppli-
ers, community and municipal agencies, and the eventual occupants
of the building. An automobile designer also has a methodology but it
is likely to be quite different from that of the building architect and
include much more concern with safety, reusing parts from existing
car models, and streamlining the assembly line.

Design has three important facets. It is a creative process of coming
up with a vision of the solution. It is an engineering process of evaluat-
ing tradeoffs and making decisions among many alternatives. It is an
optimization process of choosing the best combination of components
to realize the vision. In this text we’ll be working on all three facets.

1.1.2  Logic Design

The components that the digital designer has at the ready are made
from digital electronics. Combinations of switches, built from semi-
conductor transistors, form the basis of all of today’s digital hardware.
We generally refer to an interconnected collection of switches as a cir-
cuit. Individual switches are not the only building blocks available.
There are also higher-level circuit modules such as logic gates and
memories that use switches already pre-arranged in an efficient and
flexible way. The logic designer’s job is to choose the right components
to solve a logic design problem. Constraints in logic design are often
related to some combination of size, cost, performance, and power
consumption. Cost and size are very closely related. A component’s
complexity is determined not only from all the switches it contains but
more importantly from all the wires used to connect the switches
together. A component’s size usually has a direct relationship to the
cost of manufacturing the component. Performance and power con-
sumption are determined by the particular arrangement of switches
and wires, the underlying materials from which they are constructed,
their size, and how fast they are switched on and off. Interestingly, as
integrated circuit technology further shrinks the size of transistors and
the width of wires, it is the wires that are coming to dominate designers’
concerns as they already add more to the size of the circuit and to its
performance concerns than do the transistors.

All digital components have a set of input wires and a set of output
wires both of which carry digital logic values. In other words, wires
that are set to some voltages we have agreed to will represent two dif-
ferent values, that is, 0 and 1. Of course, in the real world, we have
continuous phenomena and the wire can in fact be set to any voltage.
In the case of digital electronic circuits, any voltage below some level,
say 1 volt, is interpreted as a logical 0 any voltage above some other
level, say 2 volts, is viewed as a logical 1.

Arbitrary information can be represented using this digital abstrac-
tion. Binary notation is used to represent integers as well as floating-
point or even complex numbers through the use of a collection of wires



each of which is a binary digit and together form the number. More
interestingly, the color values for each pixel of a digital image or the
volume of the sound created by a speaker can also be represented digi-
tally. The digital abstraction is extremely powerful because it is more
tolerant to variations in voltages which are difficult to make precisely
identical in every single copy of a circuit. Furthermore, Os and 1s can
be used to represent analog values to arbitrary precision and have led
to a powerful convergence of information that lets us store, transfer,
and display information ranging from telephone calls to digitized maps
to movies to e-mail messages using the same basic concept, namely,
binary voltage levels on wires.

The transistors inside a digital component react to the voltage lev-
els on the input wires. Changes in voltages cause transistors to change
their conductivity, that is, switch their state, and thereby cause a
change in some of the voltage levels on the output wires of the compo-
nent. We often refer to the inputs causing a value to be applied to the
outputs. For example, we may have a circuit with two inputs and one
output where the output is set to one if both inputs are also one. This is
referred to as an AND logic gate because both the first input and the sec-
ond input must be at voltage levels corresponding to a 1. We’ll later see a
wide range of logic gates. These types of circuits, where inputs directly
influence the value on outputs, are referred to as combinational logic
circuits. They form the basis of all our computational elements includ-
ing components that can add, subtract, or even multiply.

Other types of digital circuits are referred to as sequential logic cir-
cuits. Their outputs not only react to the current values on the input
wires but also to the past history of values on those same input wires.
Thus, sequential circuits have memory in that they will remember the
past inputs and react to the current inputs while taking their history
into account. A simple example of a sequential logic circuit is a mem-
ory component that has two inputs and one output; the output is set to
the same value as one of the input wires when the second input wire
signals it to do so. The input value sampled in this manner is then
held indefinitely until the circuit is signaled again to store a new
value. These types of circuits form the basis of memory devices that
allow our computers to store and recall data as well as keep track of
the step in a sequence of instructions, embodied in a computer pro-
gram, they are to execute next.

Logic design is a set of abstractions and methodologies that let us
devise, understand, and manipulate large collections of digital cir-
cuits. We’ve seen one abstraction already, namely, using 0 and 1 to rep-
resent all sorts of data. We’ll see several others in this chapter and
many others in the remainder of the text. Design methodologies are
important procedures for ensuring a principled and effective design
process. We’'ll be developing several of these for different types of digi-
tal logic. Finally, we’ll also develop ways of transforming and optimiz-
ing our circuits so that they can have a better chance of meeting design
constraints and be efficiently implemented using the particular com-
ponents we may have at our disposal.
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Figure 1.2 Photographs of a late 19th century phonograph and a late 20th
century portable digital video disc (DVD) player (not to scale).

1.1.3 Contemporary Logic Design

Logic design has been around for at least 150 years. In that time, there
has been continuous evolution of the abstractions, the basic building
blocks, and design methodologies, the rules for putting the building
blocks together. We can extend our analogy to building design as it also
has evolved, using different materials, and different methods, for
example, new materials as well as new earthquake and fire safety
codes. In digital design, the changes have been quite dramatic and
there are several important trends that are still at work.

First, our systems are becoming ever more complex as we inte-
grate more functions into a device and perform computations on ever
larger quantities of data. Just compare the complexity of a turn-of-the-
19th-century phonograph and today’s DVD players (see Figure 1.2).
The older device is mostly mechanical and dealt with continuous val-
ues in both time and amplitude (loudness of the sound), namely, the
vibration of a needle on a vinyl record and the amplification of that
vibration into a vibration of the speakers. The DVD player reads digital
data representing the sounds using a laser that doesn’t even touch the
spinning plastic disk. The information read from the disk can be
in any form including audio, video, and text. These binary numbers
are translated into either vibrations of a speaker through a digital-to-
analog converter that translates a number into a proportional voltage
level, or into images by turning pixels on and off on a screen. Further-
more, enough of these numbers have to be read and translated every
second to make the sound seem continuous to the human ear rather
than choppy. The phonograph consisted of a handful of moving parts.
A DVD player includes several microprocessors operating on a digital
representation of images and sound giving us access to any part of a
film instantaneously with no degradation over time.

Second, the design of today’s digital systems is happening in a
much faster time frame as the demands of the consumer market place
inexorable pressure on products to have a wide range of features appro-
priate for different uses and situations. New models of phonographs



were introduced every few years. In contrast, there are dozens or, per-
haps, even hundreds of new models of DVD players produced each
year. Each model solves the problem of getting images and audio from
the DVD disc to the screen a bit differently and thus provides for choices
in cost, form-factor, user interfaces, and advanced features.

Third, and finally, the cost of digital hardware has become so low
and its performance so high that we no longer need to be concerned
with engineering the absolutely lowest cost solution. It is becoming
more important to design rapidly and getting it right the first time. Get-
ting new products out to market quickly is what generates the largest
profits.

These three trends have led to a radical change in the methodolo-
gies of logic design over the past 10 to 15 years. First among these is
automatic generation of logic circuits using software tools. We can now
specify the functions we want our circuits to perform using a high-
level specification language and have a logic compiler refine and trans-
form that specification into a set of components. Second, we have cre-
ated digital components that do not have fixed functionality but can be
used to perform a wide range of functions based on a configuration
performed after they are manufactured. This provides immense econo-
mies of scale, as we no longer need to carry large inventories of differ-
ent digital components. Third, the emphasis has now shifted from the
crafting of the implementation (i.e., the arrangement of switches into
circuits) to the crafting of the specification. Designers focus more on
getting the high-level specification right, to meet all the functional
requirements of their product, rather than on arrangements of transis-
tors. They rely on the compilation tools to determine the best set of
components to use and how they will be configured.

Contemporary logic design now faces many of the same problems as
software design. Designers want to work using specification languages at
ever higher-levels of abstraction. They can be much more productive at
higher levels, as there are fewer components to consider. However, they
also want to ensure that the resulting design will meet the design con-
straints. Hardware designers are interested in ensuring that an appropri-
ate collection of components is used that costs no more than necessary
and will perform their computations quickly enough. Similarly, soft-
ware designers are also concerned with performance and the memory
requirements of their applications. Both types of designers also need to
be able to visualize their specifications and debug them when their arte-
facts do not behave as intended. In logic design, simulation tools, that
mimic the behavior of the real physical components but allow the
designer to easily peek inside, are an essential part of the designer’s arse-
nal serving similar functions as the debugger does for software design-
ers. Another important similarity between hardware and software exists
in their respective methodologies for design. Both hardware and soft-
ware designers understand the need to re-use as many portions of
designs as possible. It is still an engineering art to devise components
that can be used in many different contexts. This is crucial to making
the design process more economically efficient.

1.1

Dissecting the Title

7



8

Chapter 1

Introduction

1.2 A Brief History of Logic Design

We will begin the history of logic design in 1854 when George Boole
invented an algebraic system for manipulating logical propositions.
Boolean algebra is now the mathematical foundation of logic design. It
forms the basis for the optimization of digital logic much in the same
way we use arithmetic algebra to transform expressions on variables
into equivalent ones that have fewer operations. For example, by using
the distributive law to perform one less multiplication in an algebraic
expression (a * x+ b * x=[a+ b] * x).

Claude Shannon’s seminal paper in 1938 established a link
between Boolean algebra and the switches used in the relay circuits of
the day. This was an important step in moving Boolean algebra from
the realm of abstract mathematical logic to physical devices that actu-
ally computed a logical expression with voltages.

The first general-purpose digital electronic computer, the elec-
tronic numerical integrator and computer (ENIAC), was designed and
build by J. Presper Eckert and John W. Mauchly at the University of
Pennsylvania between 1943 and 1946. It was the first machine to have
all the classical elements we now consider part of a modern computer.
This was a big advance from relays because vacuum tubes were much
smaller and could switch much more quickly than relays. These
machines could perform several hundred multiplications per minute
with 18,000 vacuum tubes—a huge advance from the hand-operated
calculating machines, which were then the mainstay of scientific com-
putation at the time. However, it did weigh 30 tons, consumed 200 KW
of power, and occupied 1500 square feet. Even with these staggering
dimensions, its principal disadvantage was that vacuum tubes were
highly unreliable and over the course of a day an average of 50 tubes
had to be replaced.

The invention of the transistor in 1947 heralded the dawn of the
integrated circuit age. Highly reliable semiconductor switches re-
placed vacuum tubes very quickly. The first commercially available
transistor computer was the Ferranti Mark I in 1951. Soon thereafter,
scientists were able to manufacture multiple transistors simulta-
neously using the technique of photolithography, invented in 1957, to
create patterns of semiconductor materials using light-sensitive mate-
rials and chemical etchants. This was a revolutionary change as
circuit elements no longer needed to be wired together individually
but could be manufactured as an already wired-up circuit. Thus began
the era of integrated circuits, which led to the first microprocessor: the
4-bit Intel 4004, in 1971, was first used in the Busicom electronic
calculator.

By the end of the 1960s, logic designers had available a large cat-
alog of logic components (such as those described in the then ubiqui-
tous Texas Instruments TTL data book, the preeminent catalog of
available parts). Arbitrary logic circuits could be built from these
basic primitives which were mass produced in great quantities and



so beginning the inexorable advance toward cheaper electronic cir-
cuits with higher reliability that continues to this day.

Programmable logic arrays, collections of switches in regular
arrangements that could be configured by the logic designer to imple-
ment any one of a huge quantity of possible functions, soon arose to
increase levels of integration and to make it easier for designers to
change the wiring pattern between logic functions. These devices
started to see wide use with the introduction of Monolithic Memories’
Programmable Array Logic (PAL) line of components in 1975.

With the increased levels of integration in digital circuits and the
need for designers to program their reconfigurable logic components
came the development of logic synthesis tools. Starting from Boolean
algebra expressions, these software packages could determine the pre-
cise configuration of logic arrays to implement the specified function
and therefore free designers from the drudgery of dealing with every
single switch and allowing them to focus on higher level design. One
can think of these early tools as the assemblers of their day, translating
from assembly language to machine code. Their successors today are
much closer to compilers for high-level languages (e.g., C, Java) and
the software development environments that go with them (e.g., Visual
Studio).

Today, we see the continued development of programmable logic,
in the form of field-programmable gate arrays (introduced by Xilinx in
1984), which can now be reconfigured over and over again. This makes
possible logic circuits that can be altered over time, field upgraded
after a product has been purchased, or even re-programmed quickly
enough from one use of the product to the next. Synthesis tools have
followed closely with the appropriate compilation technology to con-
figure these new types of components. Finally, the level of integration
has continued to increase. We can now consider using many transis-
tors just to give our circuits more flexibility rather than stingily allocat-
ing each individual transistor as in the early days of integrated
circuits.

1.3  Computation

Up to now, for most of you, computation has been an abstract pro-
cess. You may have specified the steps of a calculation for a computer
to execute but the details of how that computation is actually accom-
plished have probably been somewhat of a mystery. You may know
that digital computers operate on binary digits (also called bits), 0s
and 1s, and you may know how they represent integers and charac-
ters using strings of bits, usually 32- and 8-bits long, respectively. But
what role do these strings of bits play in the execution of complex
programs?

This text is about de-mystifying computation. It will guide you
through the first steps in understanding how computers work. In
the coming chapters, we’ll see how to implement all the common
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Figure 1.3 A simple switching
circuit found in every home
shown with its switch in open
and closed positions,
respectively.

A%z

Figure 1.4 Schematic symbol
for the simple circuit of
Figure 1.3.

Figure 1.5 Two switches in
series will close a circuit if both
A and B are closed.

programming constructs, including variable assignment, arithmetic
operations, conditional and iterative statements, and subprocedures.
We will learn how to construct circuits that perform all these functions
using a few simple primitive elements. In addition, we’ll also see that
circuits can perform functions in parallel, not just sequentially, and
operate on arbitrary data types, not just bits and integers. After all, we
can have many circuits working in parallel on different inputs. At a
small scale, arithmetic circuits provide an excellent motivation for
parallelism since we can work on the different parts of the strings of
bits in parallel. At a larger scale we’ll see how simple computers,
working independently, can go about communicating and coordinating
their activities.

1.3.1 Switches, Relays, and Circuits

Switches are the basic building blocks of digital computers. The
proper arrangement is the physical embodiment of abstract computa-
tions in digital circuits.

Let’s review how switches work. In Figure 1.3, we show a simple
switching network that is found in every home, probably in every
room. A switch is used to disconnect a light bulb from its power
source. If the switch is open, current does not flow through the circuit
and the light bulb is off. If the switch is closed, then the light bulb is
turned on as the battery’s current can now travel through the light bulb
and return to the battery—a completed circuit.

If we represent the state of the switch by using a Boolean variable,
say A, that we set to 0 if the switch is open and 1 if it is closed, and rep-
resent the state of the light bulb using another Boolean variable, say Z,
that we set to 0 if the bulb is off and 1 if it is on, then we can write:

Z=A

as a Boolean expression that represents the functionality of this circuit.
If Ais 0, then Z is 0 (switch open, light off) and if A is 1, then Z is 1
(switch closed, light on). We can also use the symbol in Figure 1.4 to
indicate this circuit in a schematic drawing. Note the arrow shape
indicating that the output Z is affected by the input A.

We can make our simple circuit a bit more interesting if we now
add a second switch in series with our original switch represented
by A (see Figure 1.5). We will represent this new switch with the
Boolean variable B. Now the functionality of our circuit is such that
both switches have to be closed for the bulb to turn on. We can write
this expression as:

Z=AandB

to indicate that both A and B have to be 1. A circuit like this is com-
monly found in automobiles where the key activates one switch and
the windshield wiper wand activates another. Both have to be on, that



is, both switches have to be closed for the windshield wipers to work.
The schematic symbol for AND is shown in Figure 1.6. Note that it also
“points” in the direction of the output.

At this point, it is clear that we are thinking of 1 as having a mean-
ing of true and 0 as false. This is, in fact, the common convention, and
it makes sense in everyday English. However, the choice is really arbi-
trary. We’ll see later on that it really doesn’t matter what value repre-
sents true or false, just as long as we are consistent.

But let’s continue on to another parallel arrangement for the two
switches (see Figure 1.7). In this case, either A or B being closed will
turn on the bulb. The current can flow through either path or both
around the circuit. Our expression for this circuit is

Z=AorB

to indicate that either A or B or both have to be 1 for the bulb to be
turned on. An example of this is also found in cars where the dome
light will turn on whether the driver’s or the passenger’s door is
opened. The schematic symbol for OR is shown in Figure 1.8.

Switch settings determine whether a complete circuit, a conducting
path, exists to light the bulb. We’ve assumed so far that someone sets the
switches to be open or closed. To build larger and more interesting cir-
cuits, we have to be able to combine the basic ones we've just discussed.
We need a way to get the state of a light bulb to control a switch on
another circuit. In the early days of digital circuits, this was accom-
plished using a special device called a relay (see Figure 1.9). Its name is
derived from the fact that it serves as a connection point between two
otherwise independent circuits by passing a value from one circuit
to the other in a way loosely analogous to the passing of a baton in a
relay race.

A relay operates much in the same way as a light bulb. The differ-
ence is that instead of creating a glowing light, the current that passes
through the device creates an electromagnet. A special switch is con-
structed from a ferric material so that if the magnet is on, it opens the
switch by attracting the flexible half of it away from the stationary half
as shown by the arrow in Figure 1.9. If the magnet is off, the switch’s
flexible half snaps back into position and closes the switch. This is an
example of a switch that normally is closed and opened when current
flows through the nearby electromagnet. The magnet and switch,
together, form the relay.

Relay circuits were large and slow and could never have been used
to construct large-scale computing machines. Magnets take time to
charge and mechanical switches are slow to move as they have inertia
directly proportional to their mass. It took the invention of electronic
devices such as vacuum tubes to make it possible to build larger sys-
tems. However, vacuum tubes were still quite large and often
unreliable. The invention of the metal-oxide-semiconductor, or MOS
transistor, was needed to open the doors to both immensely useful and
easily affordable computing devices.
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Figure 1.6 The schematic
symbol for the AND function.

Figure 1.7 Two switches in
parallel will close a circuit if
either A or B is closed.

Figure 1.8 The schematic
symbol for the OR function.

Figure 1.9 A simple magnetic
relay. The switch at the top is
opened when a current passes
through the electromagnetic
material directly below it
creating an electromagnet.
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Figure 1.10  The symbols for
n-type and p-type CMOS
transistors. The terminals are
labeled G (gate), S (source), and
D (drain).
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Figure 111 A simple CMOS
network utilizing two transistors
to connect the output Y to either
3V or 0V based on the value of X.

Figure 1.12 The schematic
symbol for the NOT circuit of
Figure 1.11.

1.3.2 Transistors

In today’s integrated circuit technologies we have two types of swit-
ches. They are referred to as n-type and p-type transistors and are
named after the type of semiconductor material from which they are
constructed. The switch can be opened or closed by applying a control
voltage. The n-type devices are switches just like the ones we dis-
cussed above; they are open when a low voltage is applied to their
gate, or controlling terminal, and they act as an open switch; when a
high voltage is applied they act as a closed switch completing the
connection across their other two terminals (labeled S and D in Fig-
ure 1.10). The p-type devices are exactly the opposite in that they
normally are closed and become open when a high voltage is applied
to their gate. A small circle at the gate of the transistor is used to indi-
cate a p-type device. Hence, the name CMOS technology, which stands
for complementary MOS technology referring to its two complemen-
tary types of switches (see Figure 1.10).

A simple CMOS network is shown in Figure 1.11. It consists of
one switch of each type. The p-type device is used to connect the out-
put, Y, to a high voltage while the n-type device is used to connect the
output to a low voltage. Both transistors are controlled by the same
voltage, as their gates are connected to the same wire. If the input, X,
is 0, then the p-type switch will be closed and the n-type switch will
be open, causing the output to be connected to a high voltage (a digital 1
and logical true). The reverse is true if the input voltage is high, then
the output is connected to a low voltage (a digital 0 and logical false).
This is a very simple logic device called an inverter because its output
is the digital opposite of its input. It is often referred to as a NOT
device or gate (gate is an historical term that, by an unfortunate coinci-
dence, is the same word used for the controlling terminal of a transis-
tor). The symbol for the NOT gate is shown in Figure 1.12. The bubble
at the end of the arrow shape is used to indicate the inversion property
of the circuit. This is the same notation as in the p-type transistor,
whose gate input worked in the opposite sense as the n-type transistor.

You should now be asking yourself: why this particular arrangement
of switches? The motivation comes from the fact that our transistors are
not idealized switches. The p-type devices do a good job of connecting
to high voltages but are not very good at connecting to low voltages.
What happens is that the output voltage may not get quite low enough
and could not be used appropriately to control a transistor in another
circuit. Similarly, the n-type device is good at connecting to low voltages
but not to high ones. Fortunately, we have both types and can arrange
the two on the same integrated circuit as needed. Because the transistors
are imperfect switches, and we use a 0 input to connectto 1 and a 1 to
connect to 0, all of our gates have an inversion at their output.

More generally, CMOS transistor networks are constructed by cre-
ating a p-type switch network for the cases when we want the output
to be high and an n-type switch network for the remainder of the cases
where the output is to be low. The next most basic CMOS networks



demonstrate this concept and are shown in Figure 1.13. They repre-
sent serial and parallel arrangements of the transistors. You'll note that
when the p-type devices are serially connected, the n-type devices are
in parallel and vice versa.

Let’s step through the operation of the device on the top of Figure 1.13.
When either input is low, the output will be connected to a high volt-
age. Only when both inputs are high, is the output connected,
through the two serially connected n-type devices, to a low voltage.
This is starting to sound like an AND arrangement except that the
output is low when both inputs are high. Thus, we refer to this circuit
as a NAND gate (for a NOT-AND gate: an AND gate with its output the
opposite of what is should be). Its dual is the switching network on the
bottom which is referred to as a NOR gate for NOT-OR. The schematic
symbols for NAND and NOR are shown in Figure 1.14. Note, again, the
use of the bubbles at the output to indicate inversion. All of the switch-
ing networks that we build with CMOS technology will have this inver-
sion property because of the fundamental properties of the transistors
we use.

networks are much faster than relays. The switching time
is determined by the flow of electronics in the semiconductor materials
that make up the transistors. A water faucet provides a useful analogy
(thisidea is not really that far-fetched, since electrical effects ultimately
are due to the flow of electrons, which act in a somewhat analogous
way to water). Theoretically, a water faucet is either on, with water
flowing, or off, with no flow. However, if you observed the action of a
faucet being shut off, you would see the stream of water change from a
strong flow, to a dribbling weak flow, to a few drips, and finally to no
flow at all. The same thing happens in electrical devices. They start out
by moving electrons rather quickly, but eventually the flow slows down
to a trickle and finally stops. To complicate matters further, transistors
are leaky faucets and never quite stop the flow of electrons completely.

As transistors have shrunk, and continue to shrink, in size, their
switching speeds are increasing. There is less water in the pipes and it
can be moved more quickly. This is what has fueled the rapid
advances in computing technology of the past 50 years. Of course, we
may soon see the day when we do reach fundamental limits and our
circuits will depend on the movement of so few electrons that other
physical effects will come into play.

1.3.3 Digital Representations

Real-world electronics are quite complex. The digital abstraction, inter-
preting all voltages as falling either into the high or low category, is a
crucial step in being able to build digital circuits from imperfect
switches such as transistors. Just imagine for a moment how difficult it
might be to realize a circuit that depended upon precise and continu-
ous voltages. We would have to be concerned that every slight variation
in a transistor, due to the process involved in making it and printing it
on to an integrated circuit chip, could alter the operating voltages and
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Figure 1.13 Two CMOS
transistors networks that
demonstrate the arrangement of
switches for a NAND operation
(a) and a NOR operation (b).

Figure 1.14 Schematic symbols
for the NAND and NOR circuits
of Figure 1.13, respectively.
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render the circuit useless. We would have to be sure our circuit could
deal with a wide range of manufacturing variations, making the job of
the designer impossibly difficult. Transistors, as all electronic compo-
nents, exhibit continuous, or analog, behavior. They do so because out-
put transitions are not instantaneous, they require electrons to flow
and the charging or discharging of wires analogous to a water faucet or
drain filling or emptying a tank.

Digital logic eliminates these problems by not taking on the difficult
task of recognizing a single voltage value as logic 1 or 0. Digital logic
must be able to deal with degraded or imperfect signals. Since digital
circuits recognize any analog value above a specified voltage as logic 1,
they can use degraded inputs to still generate correct output voltage
levels. This is why we refer to digital logic as “restoring.” Degraded
values are restored as they affect the arrangement of switches. As an
example, assume that on or logic 1 is represented by +3 volts. Off or
logic 0 is represented by 0 volts. But we will interpret any voltage
above 2 volts as a 1 and any voltage below 1 volt as a 0. Figure 1.15
shows a plot, or waveform, of an output switching from on/1 to off/0.
You might observe a waveform like this on an oscilloscope. The transi-
tion in the figure certainly is not instantaneous. Other values, between 3
and 0 volts, are visible even if only for a relatively brief instant in time.
These are interpreted by digital circuits as either 0 or 1.

Digital circuits also do not output perfect voltages (0 and 3 volts).
Their transistors, again due to imperfections in the manufacturing pro-
cess, will most likely output voltages somewhat greater and less than
the nominal 0 and 3 volts. Furthermore, ambient conditions such as
humidity, temperature, and radio waves may also affect the behavior of
devices. We cannot count on the outputs of our circuits to be perfect.
This variation is often called noise. The noise margin of our circuits is
the tolerance in voltage values, that is, the range of input voltages that
will be interpreted properly.

Let’s look at the transfer characteristic of the inverter. Figure 1.16
is a plot of the inverter’s output voltage given all possible values of its
input voltage. You'll note as the input goes higher, the output goes
lower. However, it doesn’t do so linearly. For input voltages between 0
and 1 volts, the output is very close to 3 volts. Similarly, for input volt-
ages from 2 to 3 volts, the output is very close to 0 volts. Intermediate
values of input voltage, between 1 and 2 volts, cause the output to be
further away from either of the two nominal values of 0 and 3 volts. This
one-volt range for logic 0 and logic 1 inputs is called the noise margin.
Inputs and outputs can differ by as much as 1 volt from the nominal
value when there is a 1 volt noise margin. Clearly, we need to avoid volt-
ages in that intermediate range between 1 and 2 volts. We can do so by
using transistors properly and not making wires too long.

1.3.4 Encoding

The manipulation of digital data is at the heart of computing devices.
Digital representations exist for everything from numbers and characters



to music and images. A digital representation is simply a string of Os
and 1s with an agreed upon interpretation. Of course, the more people,
organizations, and software applications agree on the interpretation,
the better.

A simple example of encoding is the audio stored on a CD or DVD.
Small pits in the plastic of the disc cause a fine laser beam to reflect
differently than if the surface patch did not have a pit. Collections of
these bits make up a sound sample, or the volume to be reproduced
on a speaker at the particular rate of playback. If the sample is inter-
preted correctly, that is, the bits are in the right order to represent the
volume level, and they are sent to the speaker’s digital-to-analog con-
verter at the right rate, then the recorded sound will be faithfully
reproduced.

Another example of encoding led us through the Y2K issues at the
close of the millennium. Early programmers in the mid-20th century
used only two digits to represent the year. This enabled them to
encode the year of a database record in only two 8-bit bytes or some-
times just 8-bits altogether (two 4-bit numbers for the last two digits of
the year). Of course, when the year 2000 finally arrived, 1900 was
indistinguishable from 2000 and records were in danger of wrongly
being sorted and correlated.

We also use encoding when we write software programs. The vari-
ables we use are often encoded as 32 or 64-bit binary numbers. The
characters we use to represent text are represented as 8- or 16-bit val-
ues. We'll encounter encoding issues over and over again in this book.
In each case, we’ll have some freedom to decide how many bits will
be used and what the order of the bits will mean. For example, a traf-
fic light could have its interface consist of three signals, one for each
bulb, or only two, as there are only three possible settings for the light
and these can be encoded in a 2-bit binary number, say 10 for green,
11 for yellow, and 01 for red. We must take care in deciding on our
encoding that we’ve taken into account all of the possible values that
we may need to represent so that we do not repeat the problems
of Y2K.

1.4 Examples

It is now time to turn to two examples to illustrate many of the con-
cepts discussed so far. We’ll use the examples to bring up some more
of the terminology of logic design and introduce the primitive logic
elements we’ll be using in the rest of the text. Try not to be over-
whelmed by the detail in these examples. The objective is to simply
preview some of the topics we’ll go into much more detail in later
chapters in the book. The discussion of these two examples is used
simply to provide some context for the topics that are to follow. Just try
to get a general sense of the issues and approaches rather than feeling
the need to understand every detail—that and more will come soon
enough by the end of this book.

1.4 Examples
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CALENDAR

Our first example is a small part of a larger design we’ll build as we
progress through the next few chapters. Its function is to decide, based
on the month of a year and whether that year is a leap year, how many
days are in that month. This will be used as part of a calendar display
that could be part of a wristwatch.

Let’s begin by thinking about the specification we’ve just been
given. Our simple system has two inputs: a month (January to December)
and leap-year indicator. It also has to have some outputs that tell us
whether the month has 28, 29, 30, or 31 days. We could write a simple
procedure that performs the function of our circuit. We’ll use the C
language, as it is quite common and relatively easy to read.

integer number_of_days (month, leap_year_flag)
switch (month) {

case 'january': return (31);

case 'february': if (leap_year_flag 1) then
return (29) else return (28);

case 'march': return (31);

case 'april': return (30);

case 'may': return (31);

case 'june': return (30);

case 'july': return (31);

case ‘'august': return (31);

case 'september': return (30);

case 'october': return (31);

case 'november': return (30);

case 'december': return (31);

default: return (0);

The procedure is quite simple. It has the two inputs as parameters
and the output as the return value. The body of the procedure is a large
switch statement that branches based on the value of the parameter for
the month and returns the appropriate value. The only complication is
February, which has a conditional statement that checks the leap year flag.

In implementing this program in digital logic, we are already faced
with some encoding problems. How do we represent the month? In soft-
ware, it is an enumerated type that will likely be implemented as an inte-
ger; but there are only 12 months and we are unlikely to add any more.
We do not need all of the values possible with a 32-bit integer. To repre-
sent twelve possibilities, we need a minimum of 4 bits if we use a binary
encoding. But 4 bits have 16 possible values, and we’ll only need 12.
Four of them will be unused. We term these don’t care combinations
because they should never occur and we will not be concerned with how
our circuit reacts. Of course, should they occur, we might be in trouble.
Later on in the text, we’ll see how we can use don’t cares to help us
make smaller and faster circuits. Using 4 bits is not our only option.
We could use 12 wires, one for each month. This is called a one-hot
encoding. In this type of encoding, we have one and only one wire ever



carry logic 1: the wire corresponding to that month. This is a very simple
encoding but usually requires many more wires: in this case, 12 instead of 4.

The leap-year flag is straightforward, as it is a simple Boolean
value. We’ll need only a single wire that will be a 1 if the year is leap
and 0 if it is not. We have to make sure to decide on that encoding and
not its opposite. This decision better make its way into our documen-
tation so that whoever builds the rest of our calendar system will be
well informed of the choice we made.

Finally, we have to encode our output. The value will be as high as 31.
This would require 5 bits in a binary encoding. On the other hand, there are
only four possible results. We could use four wires and a one-hot encoding,
namely, no more than one of the outputs will be true at any one time.

Let’s use the minimum number of wires and get on to designing
our logic. We’ll choose a 4-bit binary encoding for the month, a single
wire for the leap-year flag, and a 4-bit one-hot encoding for the result.
Figure 1.17 shows the inputs and outputs of our circuits, schematically.

Our next step is to figure out what the output should be for each com-
bination of inputs. For example, if the month is February or 0010, and
the leap-year flag is 1, then the result is 29. This would be encoded as
0100 if the 4 bits are 28, 29, 30, and 31 days, from left to right. We've
already done something very similar to this in our program code. The
completed table is shown in Figure 1.18. It has columns for all the inputs
on the left side of the vertical line and a column for each output to the
right. There is one row for each possible input combination. This type of
table is referred to as a truth table because it specities when a particular
output should be true (1, high voltage). It could have just as easily been
called a falsity table, but truth table sounds a whole lot better.

You should notice that the table is not complete in that every single
input combination is not shown explicitly. We took some shortcuts. For
example, for March (0011) we do not care about the value of the leap-year
flag, March always has 31 days. Rather than having two rows as for
February, we only have one with a dash in the column for the leap-year
flag indicating an input don’t care. Don’t cares also appear in the output
columns. This occurs because of those four unused values of our 4-bit
month number (0, 13, 14, 15). Note also the use of the don’t care to merge
the rows for 14 and 15. Truth tables should be complete. This means that
we should make sure to specify what we want the output to be for every
single input combination. If we had left any out, then we would have
their outputs open to interpretation and a likely error when we start com-
bining our piece with other components. Output don’t cares let us say
explicitly that a designer can choose either a 0 or 1 without worry. In our
program, we chose 0 for all the output don’t cares in the table (the default
return value). Here, we are saying its “ok” to choose 0 or 1 for any of
those outputs. Of course, we had better be sure we really don’t care, if we
do, we should be explicit about the output value we want. Note that
“don’t care” is different than “don’t know.” Not knowing a value does not
mean we don’t care what it is.

The truth table can now be used to derive Boolean logic expres-
sions for each of our outputs. For example, in the case of the output for
28 days, we have a very simple expression that says the month must be
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d28 d29 d30 d31

Figure 1.17 Inputs and outputs
of the calendar subsystem.

Month Leap d28 d29 d30 d31
0000

0001 0 0 0 1
0010 0 1 0 0 O
0010 1 0 1 0 O
0011 0 0 0 1
0100 0o 0 1 0
0101 0 0 0 1
0110 0 0 1 0
0111 0 0 0 1
1000 0 0 0 1
1001 0o 0 1 0
1010 0 0 0 1
1011 0o 0 1 0
1100 0 0 0 1
1101

111-

Figure 1.18 Table of output
values for the number of days in
a month.
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d28

Figure 1.19  Logic gate diagrams for the circuit of the d28 output of the calendar.

February and the leap-year flag must be 0. Let’s give names to the four
bits for the month and the four bits for the number of days. We’'ll use
m8, m4, m2, m1 for the month, chosen so that the names correspond to
the weight of the bit in the binary representation, and we’ll use d28,
d29, d30, and d31 for the number of days. Our Boolean expression for
d28 can then be refined as follows:

d28 = "February" AND (leap == 0)

d28 = (m8 == 0) AND (m4 == 0) AND (m2 == 1) AND (m1 == 0)
AND (leap == 0)

d28 = m8' AND m4' AND m2 AND m1' AND leap'

The last line uses a symbol for negation. m2 stands for m2 being a 1
(m2 == 1) while m1' stands for m1 being a 0 (m1 == 0). We can imple-
ment the quote or negation symbol (') using an inverter or NOT gate.

We can use AND and NOT circuits to implement our logic for com-
puting the value of d28. On the left side of Figure 1.19 we used four
inverters (for m8, m4, m1, and leap) and one 5-input AND gate. These
gates are only logical constructs that help us draw a diagram for the
Boolean expression above. Our next step is to find physical gates that
implement these same functions. Now, we know how to implement a
NOT gate, but how does one build an AND gate? In CMOS technology,
we’ve seen that it’s easy to get a NAND function. Thus, we’ll use a
5-input NAND gate and then invert its output with a fifth inverter as
shown on the right side of Figure 1.19. You may be wondering how we
can construct a 5-input gate. Quite simply, we can increase the number
of inputs for an AND gate by putting more switches in parallel (and in
series on the complementary side of the gate).

Let’s move on to another output. d31 is true in seven cases (January
or 0001, March or 0011, . . ., December or 1100). Our expression refine-
ment is as follows:

d31 = "January" or "March" or "May" or "July" or
"August" or "October” or "December"

d31 = (m8 AND m4' AND m2' AND m1) OR (m8' AND m4' AND
m2 AND m1) OR ... OR (m8 AND m4 AND m2' AND m1')



This output will require the use of a seven input OR gate as shown
on the top in Figure 1.20. Does such a gate exist? Can we increase the
number of inputs arbitrarily? We know we can do the same as before
and invert the output of a NOR gate to get an OR function by using a
NOR gate followed by a NOT gate. But what will we do about the num-
ber of inputs or fan-in to the gate? Recall that the transistors we use for
building our switching circuits are not perfect. Those imperfections
also make putting too many transistors in series impractical because
the circuit gets too slow and may cease to work entirely. We’ll limit our
design to 4-input gates and replace the 7-input OR gate we need for the
d31 output with the circuit shown on the bottom in Figure 1.20. Simi-
larly, we could have split the 5-input AND gate in the circuit for d28
with smaller gates. We’ll see later how to convert these circuits to NOR
and NAND gates.

Note that for this example, when we completed our truth table, we
simply looked at each possible combination of input values in isola-
tion from the others. This is why we refer to this type of circuit as com-
binational logic. Our next example introduces sequential logic, where
the order in which different input values appear (their sequence) is
important as well.

COMBINATION LOCK

A simple door combination lock might consist of punching in a
sequence of three specific keys on a small keyboard. The lock opens if
the sequence is correct and stays locked if it is incorrect. Let’s see how
we would go about implementing such a lock.

Again, let’s begin by writing a software program that has the func-
tionality of our lock. The procedure has no explicit inputs and
assumes there is another procedure that can tell when a new key has
been pressed (new_value) and another procedure that can read the
value of the key that was pressed (read_value). You should note that
the program has the combination for opening the door explicitly
encoded in some static variables arranged into an array of three ele-
ments. It then uses conditional expressions to check the key pressed
against the stored combination. A while statement is used so that the
procedure can keep checking if a new key press has been made. After
it detects a key press and there is a match it continues on to wait for
the next key press. If there is a mismatch, it also continues on, but first
sets an error flag. Finally, after three keys are pressed, it either opens
the lock or not depending on the error flag.

integer combination_lock ( ) {
integer vl, v2, v3;
integer error = 0;
static integer c[3]1 = 3, 4, 2;

while (!new_value( ));
vl = read_value( );
if (vl != c[1]) then error = 1;

1.4 Examples

Figure 1.20  Alternate
realizations for a 7-input OR
function.
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while (Inew_value( ));
v2 = read_value( );
if (v2 != c[2]) then error = 1;

while (!new_value( ));
v3 = read_value( );
if (v3 != c[3]) then error = 1;

if (error == 1) then return(0); else return (1);
I

Another assumption we can make is that there is a reset button on
our lock that, no matter at which step we are in our program, will
cause our little procedure to restart from its first statement. Think of
this as a reboot button on our lock.

Our logic design can now begin by determining the precise nature
of the inputs and outputs of our system. First, we have the reset button
(that is not visible in the code above). It’s a simple Boolean valued
input. Second, we need to decide how many keys to have and how
they should be encoded. We’ll choose 4-bit values in a binary encoding
giving us 16 keys on the keypad and a total of 16*16*16 or 4096 differ-
ent combinations for the lock. The output is a simple Boolean value
that either opens the lock or keeps it closed (as does the return value
above). But where in the program are the inputs to our system? They
are encapsulated in the calls to new_value and read_value. These pro-
cedures are the ones that actually connect to the keypad of the lock.
Before we can tackle how to design logic for new_value and
read_value there are a few other issues we need to resolve.

You may have noticed that we need to be able to tell how far along
we are in entering a combination into the lock. Are we looking for the
first key press, the second, or the third? To do this, we need to intro-
duce the notion of sequence and with it a time component to the
behavior of our circuit. In the program, this was done using the
sequential nature of our computers (in that they execute one step at a
time) and the fact that our computers have what is called a program
counter that points to the statement of the program to be executed
next. Conditional statements, such as the while statements in our code,
alter the program counter so it can execute instructions that do not fol-
low each other in linear order in the program.

To accomplish the same thing in our digital circuit, we’ll use a
special signal that exists in every computer; a signal called a clock. Its
name is quite descriptive indicating that it regularly “ticks,” that is, it
alternates between logic 1 and logic 0 at a regular rate. The period of
this oscillation (the time it takes to complete an entire cycle of being
set to 0 and 1) is the inverse of the clock’s frequency. This is the
parameter commonly used to discuss the performance of computers.
The clock’s tick lets us advance from one step to the next and also
tells our circuit when to sample inputs and change outputs. We’ll also
need some memory to keep track of where we at any given time in
completing a combination sequence. This is called the state of our



C, != Value C, != Value C, !'= Value
& New & New & New
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Not New Not New Not New

Figure 1.21  State diagram for the combination lock.

system. For example, a program counter is an important part of com-
puter’s state.

We can now begin describing how the state of our system changes
over time. This is accomplished through a state diagram (see Figure 1.21).
Each possible state is represented as a bubble. Arcs drawn from one state
to another indicate under what conditions the system’s state will change
as indicated. The change will not occur until there is another clock tick.
That way there is time for our logic circuitry to make a decision, based
on sampled inputs and its current state, as to which state to go to next. If
the clock is too fast, the decision may not be complete and our system
will go to the wrong state. If its too slow, then we’ll waste time waiting
for the clock tick with the decision already made. Designers of high-
performance computers spend a lot of time balancing this tradeoff so
that their computers can run with the fastest possible clocks.

Clearly, there should be a different state for each step of the
sequence so that we can tell the steps apart. We’ll also have two states to
represent whether we open the lock or if there has been an error. These
five states are shown in the state diagram above. The conditions on the
arcs coming out of a state represent the decisions that need to be made
when the system is in that state. For example, when waiting for the first
key press in state S;, our circuit is checking to see that this is a newly
pressed key (the signal new indicates this) and that it matches the first
element of the combination (C, = Value) or not. If there is no new key
pressed, then the system’s state does not change (the arc coming back to
the same state S,). If there is a new key pressed, then depending on
whether it matches, the state either changes to the error state, ERR, or to
state S, so that the circuit can wait for the second key press.

How do we know when a key is pressed? Key presses may last a
while. We only want to get a signal that there was a new key pressed
once per key entered. We wouldn’t want to view a single, long key
press as two or three separate key presses. We’ll defer the details
of this to a later chapter. For now, let’s assume that every time a new
key is pressed the new signal is set to 1 for exactly 1 clock period and

1.4 Examples
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New

Clock

Open/Closed

Figure 1.22 Inputs, outputs,
and internal state of the
combinational lock.

no more so that a 1 is sampled only once. This is another example of a
constraint now imposed on whoever will design the keypad circuitry
and it certainly belongs in our documentation.

Next on our list is the reset button. What does it do exactly? The state
diagram provides a clear explanation. If the reset signal is ever 1, then no
matter the present system state, it will change to state S, at the next clock
tick. This is shown in the diagram of Figure 1.21 in shorthand by using
an arrow that just points into state S,. This implies an arc from every
other state to S, that is traversed whenever reset is true. Of course, this
also implies that the condition on every other arc also includes reset
being false (this typically is not shown in the state transition diagram for
the sake of brevity and a less cluttered diagram).

Finally, we have our system’s inputs and outputs. There is a signal
wire for when a new key is pressed (new), there are four wires for the
value of the key (which only have significance if new is true), and there
is a reset wire. In addition, there is the clock signal that can also be
viewed as another input but is distinguished with a small triangle sym-
bol. The output is a single wire that controls whether the lock is open
or not. Figure 1.22 shows the inputs and outputs of our system and the
fact that is has internal state.

We can now turn to the internal structure of our lock system. We’ll
begin by separating the portions of the circuit that operate on the key
values from those that concern themselves with the proper sequence of
comparisons and their result. These are referred to as the data path
and the controller of the circuit. Elements of the data path operate on
their inputs the same way no matter what the values of those inputs.
For example, it always compares the new key pressed with an element
of the combination no matter what their values are. The controller is
responsible for the sequence of steps (or states) our circuit will take.
The result of the comparison is used by the controller to decide the
next step to take: go and wait for the next input, open the lock, or keep
the door locked in the error state.

The internal structure of our circuit is shown in Figure 1.23. The data
path consists of three memory components that store the combination

New Equal Reset

L

_MUX | Controller
Control <

[+—— Clock

Equal Lock

Figure 1.23  Internal structure of the combination lock showing data path
and controller.



(we’ll see in a later chapter how these values are set in memory), a multi-
plexer, and a comparator. All of these circuits operate on 4-bit quantities.
A multiplexer is simply a way to choose between inputs. Its output is set
to the same value as one of its multiple inputs. Control inputs determine
which input’s values will be used for the output. We’ll see later how to
build a multiplexer from combinational logic gates. The comparator is
also combinational logic that outputs a single bit to indicate if the values
it compared were equal. Data-path elements are either combinational
logic such as multiplexers and comparators or they are memory elements,
usually called registers.

The controller is a finite state machine, a concept that we will
refine quite a bit further in later chapters. It will have five possible
internal states (corresponding to S,, S,, S;, ERR, and OPEN in the state
diagram) and inputs for reset and new as well as equal, the result of the
comparator. The finite state machine, of course, also requires a clock
input to be used to advance from one state to the next. Its outputs are
the controlling wire for the lock as well as the control for the multi-
plexer in the data path so that the correct element of the combination
is used by the comparator.

To implement our finite state machine we need to revisit the state
diagram and turn it into a state table. The latter is very much like a
truth table (see Figure 1.24). A row corresponds to a different combina-
tion of inputs and internal state values. The outputs for each row are
not only the output signals but also what the next state of the machine
should be. There is no difference in the information content of a state
diagram and a state table. Let’s take a look at one of the rows. The sec-
ond row of the table states that in state S,, if there is not a new key
press and reset is also 0, then it doesn’t matter what the value of equal
is, the next state will be S,, the multiplexer will be set to channel the
first number of the combination to the comparator, and the lock will be
closed. The third row of the table says that if a new key is pressed and
result of the comparison is false, then the next state is the error state
and the lock is kept closed.

Reset New Equal State Next State  MUX Lock
1 S, C, Closed
0 0 51 51 C, Closed
0 0 ST ERR - Closed
0 1 1 S, S, C, Closed
0 0 S, S, (&) Closed
0 1 S, ERR = Closed
0 1 1 S, S5 Cs Closed
0 0 S3 S5 (6N Closed
0 0 S3 ERR - Closed
0 1 1 S3 OPEN - Open

OPEN OPEN - Open
0 ERR ERR - Closed

Figure 1.24  State table for combination lock.
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What is different about the state table versus a truth table is that
it has symbolic names for the states rather than 0s and 1s. Our next
step is to derive an encoded state table where we assign a unique
binary code to each and every state so that the circuit can tell them
apart. We also have to assign codes to the multiplexer control wires
and the lock output. We have many choices in coming up with these
encodings.

For the five states, we can use anywhere from three to five bits
(some examples are: binary 000, 001, 010, 011, 100; to one-hot encod-
ing, 00001, 00010, 00100, 01000, 10000). Conceptually, it doesn’t mat-
ter which we use as long as each state has a unique identifying code.
Practically, one code may lead to a much smaller circuit than another
one would. We’ll revisit this topic in later chapters as well.

The encoding of the multiplexer control signals depends on how
we designed the multiplexer or the particular multiplexer we chose
from a catalog. This is an example of interrelated component design.
One can’t be designed completely without the other being completed—
a chicken-and-egg problem. The solution is not to charge ahead on one
component’s design but rather to iterate and refine both in parallel. In
our case, we could use two or three wires to indicate which element of
the combination to compare. Finally, the lock output is simple enough
that we can use a single wire that is 0 when the door is locked and 1
when it is open.

An encoded state table is shown below in Figure 1.25. Note that
the multiplexer uses a 3-bit one-hot encoding for its control signals
while the state code was chosen to be 4 bits with 11 of the 16 possible
encoding going unused. You’ll note however, that the first three bits of
the next state are identical to the multiplexer control outputs and the
fourth bit of the next state is identical to the lock output. Because we
had lots of flexibility to choose five codes out of the 16 available, we
were able to choose wisely so that we only need to implement four
output circuits rather than eight. In other words, we can use the same
wires we’ll be using to represent our current state to also control the
multiplexer and the lock.

Reset  New Equal State Next State  MUX Lock
1 0001 001 0
0 0 0001 0001 001 0
0 1 0 0001 0000 - 0
0 1 1 0001 0010 010 0
0 0 0010 0010 010 0
0 1 0 0010 0000 = 0
0 1 0010 0100 100 0
0 0 0100 0100 100 0
0 1 0 0100 0000 - 0
0 0100 1000 = 1
0 1000 1000 - 1
0 0000 0000 - 0

Figure 1.25 Encoded state table for the combination lock.
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Figure 1.26  Internal structure of combination lock controller.

The controller’s internal structure is shown in Figure 1.26. It con-
sists of two parts: a state register that keeps track of the current state
and is updated every time the clock ticks and a combinational logic
module that given the current state (the output of the state register) and
the inputs to the controller determine the output and next state. The
next state will become the current state at the next clock tick.

This example was a whirlwind tour of sequential-circuit design
and many of the issues designers face. Don’t be concerned if you didn’t
understand every detail of these examples. In the following chapters,
we’ll be revisiting all the issues we breezed through with these two
examples and go into a much more extensive discussion. We simply
used these examples to set some context for the things to come in the
rest of the book and to highlight the difference between combinational
and sequential logic, namely, the use of memory to keep track of the
internal state of a sequential circuit.

CHAPTER REVIEW

This first chapter has introduced what very well may be an over-
whelming number of definitions and concepts. The following chapters
hopefully will make these crystal clear by covering them more slowly,
in much more depth, and with practice through examples and problem
sets. The hope is that this introduction will have served a purpose by
giving you, the reader, a sense of where you’ll be heading as you make
your way through the rest of the book.

The chapter introduced many of the abstractions crucial to making
possible the logic design of today’s complex digital systems. We intro-
duced transistors and relays as underlying technologies but quickly
abstracted their details into switches. Switching networks were
abstracted into truth tables. Boolean algebra was introduced as the
mathematical foundation for manipulating the logic expressions
implemented by the switching networks. Logic gates abstracted away
the implementation of the switching networks themselves by leverag-
ing Boolean operators. We then talked about time and sequencing cul-
minating in the design of a sequential circuit that included a finite

Chapter Review
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state machine and a data path. These are the same conceptual compo-
nents of all digital computing devices. We will revisit all of these
abstractions in the chapters ahead.

We also briefly discussed the similarity between hardware and
software and hiinted at the parallelism that we can achieve in logic cir-
cuits that we can’t achieve on our general-purpose computing plat-
forms. Finally, through two examples, we demonstrated how starting
from simple primitives such as logic gates and memory registers we
can construct such circuits as our days-in-a-month calculator and com-
bination lock. Hierarchy will be an important concept in design that
enables us to tackle larger and larger problems (we’ll see several large
examples in later chapters in the text). As shown in Figure 1.27, every-
thing we’ll build will be constructed from simple switching elements.
Switches are used to construct our logic gates and registers. These, in
turn, are used to construct combinational and sequential logic. Our last
example used sequential and combinational logic in both its data path
and controller. Combinational logic appeared as a multiplexer, com-
parator, and the next-state computation of the finite state machine.
Sequential logic appeared in the memory elements that stored the
numbers for our combination and in the state registers of the finite

Data Path

Code : State Combinational
{ Registers ] [ Multsplexct } [Comparator J [ Registers ] { Logic ]

Switching
Networks

Figure 1.27 Hierarchy in digital design as illustrated in the combination lock example.



state machine. The next layer in the hierarchy divided the logic
according to function, whether it was a component of the data path or
the controller. We could, of course, continue further and user our com-
bination lock as a component of a larger system.

Our goal it to take you on an interesting and intellectually stimu-
lating journey through the landscape of digital design. Before embark-
ing on any journey, however, we usually collect guidebooks and maps
that help us plan our route and read about the places we will visit.
This chapter should serve as that guidebook to the rest of the text. We
have used it to preview all the topics you will encounter in the follow-
ing chapters. Necessarily, it only gave you a broad and superficial
view. The journey itself, the visits to the later chapters and the direct
experience of their material through exercises and laboratory assign-
ments, will provide the depth and details. Combinational logic will be
covered in Chapters 2 through 5. Sequential logic will be the subject of
Chapters 6 through 10.

FURTHER READING

A very good description of the design process can be found in
Chapter 3 of S. Dasgupta’s book Computer Architecture: A Modern
Synthesis, John Wiley, New York, 1989. Other descriptions can be
found in most texts on digital design. Especially interesting are J. F.
Wakerly’s Digital Design: Principles and Practices, Third Edition,
Prentice Hall, New Jersey, 2000 and D. Gajski’s Principles of Digital
Design, Prentice Hall, New Jersey, 1997. For those not familiar with the
basic background concepts of electronics, a gentle introduction can be
found in T. M. Frederiksen’s work, Intuitive Digital Computer Basics,
published by McGraw-Hill, New York, in 1988 (the entire “Intuitive”
series is quite good). The classic text on digital design for very large-
scale integrated circuits is by Carver Mead and Lynn Conway, Intro-
duction to VLSI Systems, Addison-Wesley, Reading, MA, 1980. A more
recent text by Neil Weste and David Harris, CMOS VLSI Design: A
Circuits and Systems Perspective, Third edition, Pearson/Addison-
Wesley, Reading, MA, 2004.

For the history buffs, the original monograph by George Boole
describing what would become Boolean algebra was published as An
Investigation of the Laws of Thought, on Which Are Founded the
Mathematical Theories of Logic and Probabilities, in 1854. It can be
found reprinted by Dover Publications, 1973. The work in Clause
Shannon’s MIT Masters thesis was published as A Symbolic Analysis
of Relay and Switching Circuits, in the Transactions of the American
Institute of Electrical Engineers, 1938. William Schockley, John Bardeen,
and Walter Brattain’s “transfer resistor,” their original name for what
would become the transistor, is best described in their Nobel Lectures
found in Elsevier’s Nobel Lectures—Physics, 1942-62. They shared
the Nobel Prize in 1956. John von Neumann was first to publish
the ideas embodied in the ENIAC in a report on its successor machine

Further Reading
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the EDVAC in 1945. It was titled First Draft of a Report on the EDVAC
and can now be found in the IEEE Annals of the History of Computing,
1993.

EXERCISES

1.1  (Computation) Construct a switching circuit using simple
switches (like that of Figure 1.3) controlled by three control sig-
nals. Show the arrangement of the switches if we want the light
bulb to light when:

(a) All the control signals are true
(b) Any two of the control signals are true
(c) Any one of the control signals is true

1.2 (Computation) Show the arrangement of transistors needed to
construct:

(a) A 3-input NAND gate

(b) A 3-input NOR gate

(c) A gatewhose output is the inverted value of A OR (B AND ()
(d) A gate whose output is the inverted value of (A OR B) AND C

1.3 (Encoding) To digitally manipulate information we must
encode it using binary numbers. Consider an encoding for play-
ing cards. There are 52 cards in a deck and they are divided
into four suits with values from 1 to 13 (an ace is 1, jack is 11,
queen is 12, king is 13). Show two possible encodings for the
cards.

1.4  (Encoding) Given your encodings for Exercise 1.3, show the
logic expression that describes (give names to each of signals
you use to represent the card):

(a) A jack of diamonds
(b) A seven of any suit
(c) Any card of the heart suit

1.5  (CalendarExample) Derive the equations for d29, d30, and d31.

1.6  (Calendar Example) Show how you can derive an equation for
d31 in terms of d28, d29, and d30 rather than the inputs m8, m4,
m2, and m1.

1.7  (Calendar Example) Derive an expression for the months that
contain the letter R using the same encoding as for the calendar
example.

1.8  (Calendar Example) Consider a different encoding for the
months of the year that numbers the months from 0 (January) to
11 (December) rather than 1 to 12? Show the effect of this new
encoding by rederiving the equations of Exercise 1.5.

1.9 (Calendar Example) Consider a different encoding for the num-
ber of days in a month if we have a display that uses d28 to turn
on the first 28 numbers, d29 to turn on just the 29th, d30 to turn



1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

on just the 30th, and d31 to turn on just the 31st. In this case, the
output for April would be d28 =1,d29=1,d30=1,d31 =0 and
the output for February of a non-leap year would be d28 = 1 with
all the others equal to 0. Show the effect of this new encoding by
rederiving the equations for the four outputs.

(Combination Lock Example) Change the C program for the
combination lock to include two combinations for opening the
lock instead of only one. Derive a new state diagram correspond-
ing to this new functionality.

(Combination Lock Example) Instead of using a comparator to
check for the combination, we could simply embed the combi-
nation into the state diagram. This can be accomplished by hav-
ing an arc to the next state if the bits of the value entered match
a predetermined number and an arc to an error state if they
don’t. Show how this would be reflected in the state diagram
notation.

(Combination Lock Example) Derive expressions for the next-
state functions of the combination lock from the encoded state
table in Figure 1.25. There are four columns for the next-state
and you can label your functions NS, through NS,.

(Combination Lock Example) Try out your own state encoding
for the state table of Figure 1.24. Explain the rationale for your
choices. Derive equations for the next state functions (NS,
through NS,) given your encoding.

(Combination Lock Example) Encode the multiplexer control
signals using only two bits. Derive expressions for your two
multiplexer control functions (MUX, and MUX,).

(Logical Statements) Write logic statements for the light con-
trol variants of Exercise 1.1, using AND, OR, and NOT operators,
as described in Section 1.3.

(Analog versus Digital) Consider the inverter transfer charac-
teristic described in Figure 1.16. Suppose two inverter circuits
are placed in series so that the output of the first inverter is the
input to the second inverter. Assume initially that the input to
the first stage is a logic 1 represented by 3 volts. Of course, the
output of the second stage will be identical, at least initially.
Describe what happens to the outputs of the first and second
stages as the first stage input slowly changes from 3 volts to 0
volts. Do this by drawing a graph whose X axis is time and
whose Y axis is voltage, showing two curves, one each for (a) the
first inverter’s output and (b) the second inverter’s output.

(Truth Tables) Consider a function that takes as input two 2-bit
numbers and produces as output a 3-bit sum. Write the truth
table for this function. It should have four input columns,
16 rows, and three output columns.

(Truth Tables) Write truth tables for the three functions of
Exercise 1.1.

Exercises
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1.19

1.20

1.21

1.22

1.23

1.24

(Boolean Algebra) Write logic expressions for each of the three
functions in the truth tables of Exercise 1.18.

(Gates) Given the Boolean expressions of Exercise 1.19, draw
logic schematics using AND, OR, and NOT gates that implement
those functions.

(Gates] Show how you could construct the equivalent of a 9-input
AND gate from a set of 3-input AND gates. Do this again for a
10-input AND gate.

(Hierarchy) Describe the hierarchical composition of a build-
ing, house, or train. Draw a diagram similar to Figure 1.27 for
your example.

(Combinational versus Sequential Circuits) Which of the fol-
lowing contain circuits that are likely to be combinational and
which contain sequential circuits? Explain your rationale.

(a) A washing machine that sequences through the soak, wash,
and spin cycles for preset periods of time.

(b) A circuit that divides two 2-bit numbers to yield a quotient
and a remainder.

(c) A machine that takes a dollar bill and gives three quarters,
two dimes, and a nickel in change, one at a time through a
single coin change slot.

(d) A digital alarm clock that generates an alarm when a preset
time has been reached.

(e) A circuit that takes as input two decimal numbers in the
range from 0 to 9, outputs a 0 if they are different, and a 1 if
they are identical.

() A circuit that turns on or off a hall light based on the config-
uration of two input switches. If both switches are in the
same position, the light is off. If they are in different posi-
tions the light is on.

(g) A circuit that takes a sequence of bits, one bit at a time, and
outputs a 0 or 1 after each bit that indicates if the number of
1s in the sequence seen so far is even or odd, respectively.

(h) A circuit with two binary inputs and four binary outputs that
works as follows. The binary input indicates which of the four
outputs should be driven to a 1 with the other outputs set to 0.

(Design Problem) Consider a digital system that works as fol-
lows. It takes as input a number in the range of 0,, to 15,, in
binary and outputs a function, F,, that is 1 if the number is a
multiple of 4.

(a) Develop the truth table for this function, with four binary
inputs (00002 to 11112) and the output as indicated above.

(b) Write down the Boolean equations for the function F,.

(c) Characterize the complexity of this implementation by
counting the number of AND, OR, and NOT gates of various
input sizes needed to realize the output (e.g., so many 2-
input ANDs, 3-input ANDs, etc.).



1.25

1.26

1.27

1.28

1.29

(Design Problem) Extend the system of Exercise 1.24 with two
or more outputs: F, (that is 1 when the input is a multiple of 2)
and F, (that is 1 when the input is a multiple of 8).

(a) Repeat parts (a) through (c) of Exercise 1.24 for F, and Fj.
(b) Can you implement the function F, in terms of F,? How?
(c) Can you implement the function Fy in terms of F,? How?

(Design Problem) Consider the Calendar subsystem presented in
this chapter. We will change the output specifications slightly
while the inputs will remain the same. Directly generate the 5-bit
binary number for the number of days in the month: 28 = 11100,,
29 =11101,, 30 = 11110,, and 31 = 11111,.

(a) Develop the truth table for the revised function, with four
inputs to represent the month, one input to indicate a leap
year, and the five outputs as indicated above.

(b) Write down the Boolean equations for each of the five outputs.

(c) Characterize the complexity of this implementation by
counting the number of AND, OR, and NOT gates of various
input sizes needed to realize each of the five outputs (e.g.,
so many 2-input ANDs, 3-input ANDs, etc.).

(Design Problem) Now consider a different way to achieve the
same result. Keep the Calendar system exactly as discussed in
class. But, add a new component that takes as inputs the four
outputs—d28, d29, d30, and d31—and maps these into the five
outputs as described in Exercise 1.26.

(a) Develop the truth table for the new portion of the function.

(b) Write down the Boolean equations for each of the five outputs.

(c) Once again, characterize the complexity of the implementa-
tion by tabulating the number of gates of various inputs
needed to realize the five outputs.

(d) Given the complexity of the original calendar subsystem, and
this new subsystem, how does this solution compare with
the one you developed for Exercise 1.267 Which is better?

(Design Problem) Can you think how to dramatically reduce
the complexity of implementing the function of Exercise 1.277
(Hint: Rather than starting with the truth table, think through a
simple implementation of direct Boolean functions to imple-
ment the mappings between the four inputs—d28, d29, d30, and
d31—and the five binary outputs).

(a) Write down your equations for a simplified implementation
of Exercise 1.27.

(b) Characterize its complexity in the same way as in part (c) of
Exercise 1.26 and Exercise 1.27.

(Design Problem) Now consider the door combination lock
example discussed in Section 1.4.2. This implementation enters
an error state as soon as an incorrect bit is entered. This could

Exercises
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1.30

1.31

1.32

make it an exceedingly easy lock to pick if this were observable
at the lock. Change the design so all three combination bits must
be entered before an error state is entered.

(a) Draw a revised state diagram for your revised design.

(b) How many states does your design now have? Write down
your state table.

(c) Choose a state encoding and describe the rationale behind
your choice. Write down your encoded state table.

(d) Consider the output function for Open. What was the Bool-
ean equation for the original implementation as described
in class? What is the Boolean equation for your implemen-
tation? How does its complexity compare with the original?

(Design Problem) We can make one more improvement to the
combinational lock of Section 1.4.2. The lock needs to be reset
in order to get back to its starting state. Let’s eliminate this
requirement and make a state diagram that always returns to the
starting state after three keys are pressed. Ensure that the lock is
in the state where the output is to open the lock for at least one
clock cycle so that the lock can be released.

(Design Problem) The Standard Master Combination Lock (the
kind you find on gym lockers) has a dial with the numbers 0
through 39 on it. It works as follows. You reset it by spinning it
clockwise past 0 a few times. Then you turn it counterclockwise
to the first number in the combination, positioning the dial so
that the number is directly under an indicator arrow. Then you
spin the dial clockwise again, past 0 once, to the second number
of the combination. Finally you spin the dial counterclockwise a
second time directly to the last number of the combination. At
this point the lock should open.

(a) Define the system’s inputs and outputs. Consider signals
that indicate clockwise or counterclockwise motion, the
number where the dial is currently positioned, etc.

(b) Draw a finite state diagram for this subsystem, showing
states, transition arcs, and logical conditions under which
the machine moves from one state to the next.

(Design Problem) For the system described in Exercise 1.31,
suggest a method for making it possible for the user to program a
new combination.

(a) What additional inputs do you need to make the lock com-
bination “programmable?”

(b) Draw a revised state diagram that shows the state sequenc-
ing for programming the lock with a new combination.
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Introduction

This chapter begins our detailed examination of the implementation of
digital systems. We start with combinational logic design, the design
and implementation of logic functions whose outputs depend solely
on their inputs. The calendar sub-system described in Section 1.4.1 is
just such a circuit.

After starting with the representation of a function as a truth table
or a Boolean equation, we will introduce a canonical, or standard,
representation, called the sum-of-products two-level form. We can
think of this as a unique way to represent a Boolean function, like a
fingerprint. The form expresses the function as ANDed terms (first
level of gates) that are then ORed together (second level of gates). An
alternative canonical form, the product-of-sums form, has ORs at the
first level and ANDs at the second level.

You can implement a Boolean function with logic gates in more than
one way. It is highly desirable to find the simplest implementation—that
is, the one with the smallest number of gates or wires. The process of
reducing a Boolean function to its simplest two-level form is called
Boolean minimization. We will introduce Karnaugh maps as another
way of representing Boolean functions that make it easy to see the rela-
tionships between terms and can assist in coming up with a minimal
implementation. The formal process for Boolean minimization will be
described in more detail in Chapter 3.

Just as a complex algebraic expression can be simplified by factoring
out common subexpressions, you can implement a Boolean function in
fewer gates if you factor it judiciously. This leads to a fundamental
trade-off between time (more levels of logic—analogous to fewer levels
of parentheses in algebra) and space (fewer gates needed to implement
the function—analogous to the number of arithmetic steps). We will
introduce the basic ideas of multilevel logic in this chapter.

Logic circuits are more than simply abstract implementations of
mathematical equations. They are constructed from physical devices
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X Y Equal
0 0 1
0 1 0
1 0 0
1 1 1

Figure 2.1 Truth table for the
equivalence circuit.

that take some time to compute their functions. An actual implementa-
tion of a logic circuit does not determine its output instantly; it takes
time for the signals to propagate starting from a change in the inputs of
a logic gate to a final change on its outputs. In this chapter, we will
introduce the concept of time response in digital networks.

Hardware description languages (HDLs) are an alternative way to
describe logic circuits in a textual rather than graphical form. We will
introduce the basic concepts here and will use a simplified form of a
particular HDL called Verilog throughout this book.

2.1 Outputs as a Function of Inputs

2.1.1  Combinational Logic Defined

Combinational logic is the kind of digital system whose output behavior
depends only on the current inputs. Such a system is memoryless: its
outputs are independent of the historical sequence of values presented
to it as inputs.

For example, a digital system that adds two input bits together to
form sum and carry output bits is combinational. Changing the inputs
causes the outputs to change, after a small delay they will reach a final
value. But input values from the past have no effect on the final value.
Only the current input values matter.

Sequential logic, on the other hand, adds the notion of memory
or state to produce systems whose output behavior does depend on
the sequence of inputs and not just the last inputs (and hence the name
sequential logic). We will examine this kind of digital systems in detail
starting with Chapter 6.

A traffic light controller is an example of sequential logic. A traffic
light cycles through the sequence green—yellow-red. So when the light
changes in response to input changes (perhaps a pedestrian has
pushed the crossing button, a car is detected as waiting to cross the
intersection, or a timer has gone off), the next light to illuminate
depends also on the currently illuminated light.

For now, our interest is combinational logic. There are many ways to
describe combinational logic: Boolean algebra expressions, wired up
logic gates, truth tables tabulating input and output combinations,
graphical maps, and even program statements in a hardware description
language. Each of these will be introduced in the following sections.

2.1.2 Examples of Combinational Logic

Let’s look at several digital systems that can be implemented as com-
binational logic. We will begin with a system that detects equivalence
among its inputs. Given two binary inputs, X and Y, the Equal output
is set to 1 if both inputs have the same value. Either X and Y are
both 0 or both 1. Such a system depends only on its current inputs,
and not the sequence of previous inputs. Thus, the system is combi-
national. It is easily described in terms of a truth table, as shown in
Figure 2.1.
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Now, consider a “tally” circuit of two binary inputs, X and Y, and
three binary outputs, Zero, One, and Two. This digital system counts
the number of ones among its inputs and has the appropriate output
set to 1 to indicate the result. The tally circuit makes the output signal
Zero true if both inputs are 0. The output One is true if either input is 1
but not both. The output Two is true only if both inputs are 1. Again,
the outputs depend only on the current inputs, and so the system is
combinational. Its truth table is shown in Figure 2.2.

Notice that X and Y are a binary encoding while Zero, One, and
Two form a one hot encoding.

Suppose that you wanted to design a system that, given a binary
number in the range of 000 to 111 (0 to 7), could determine if the num-
ber was divisible by 2, 3, or 5 evenly (without a remainder). Such a
circuit turns out to be a useful component of a variety of clock and
timer systems. A generalization of this circuit could be used, for exam-
ple, to cause a digital watch to chime differently at 15 minutes before
and after the hour (the time is divisible by 3 and 5 but not 2) then at
the half hour and hour (divisible by 2, 3, and 5, simultaneously). We
can write down the desired behavior as another truth table, as shown
in Figure 2.3. Since the outputs only depend on the current inputs,
this is yet another combinational system.

Imagine we have been asked to design a circuit that accepts a binary
digit, 0 or 1, and decodes it into a set of signals to drive a 7-segment
display. The display element and its control signals are shown in Figure
2.4. A segment within the display is illuminated if its associated control
signal is asserted (we use asserted to indicate that an output is set to 1
and deasserted to indicate a 0). To display a 0, all segments except the
center segment are turned on: the control signals C, through C are
asserted while G is deasserted. A 1 is represented by only illuminating
the segments controlled by C, and C,. Since the illuminated segments
only depend on the current inputs, the system must be combinational.

BINARY ADDER

Another example of a combinational network is a two-data-input
binary adder. This circuit adds together two binary digits. Its result is a
one bit sum and a carry. For example, 0+0=0,0+1=1,1+0=1 (all
with a carry of 0), and 1+ 1 =0 (with a carry of 1). This system with
two inputs (A and B) and two outputs (Carry and Sum) is referred to as

x| ¢ ¢ ¢ ¢ ¢ ¢
0
1

1 1 1 L L 1 0
0

G G 1 1 0 0 0 0

G

Figure 2.4 Binary digit-display combinational system.
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X Y Zero One Two
0 O 1 0
0 1 0 |
1 0 0 1
1 1 0 0

0
0
1

Figure 2.2 Truth table for the

tally circuit.

Figure 2.3 Truth table for
divide-by-2, -3, -5.

X Y Z By2 By3 ByS
0 0 O 1 1 1
0 0 1 0 0 0
0 1 o0 1 0 0
0o 1 1 0 1 0
1 0 O 1 0 0
1 0 1 0 0 1
1 1 0 1 1 0
1 1 1 0 0 0
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A B Carry  Sum
0 o0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Figure 2.5 Half-adder truth

table.

Figure 2.6 Binary addition of
multi-bit numbers.

Figure 2.7 Full-adder truth

table.

A B Cin Coul S
0 0 0 0 0
0 O 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 0 1 0
1 1 1 1 1

a half adder because it can’t be chained with other adders to add larger
binary numbers (it has no way of considering a carry from another col-
umn for the addition of numbers that are more than one binary digit).
Its truth table is shown in Figure 2.5. Since the network has two
inputs, A and B, and two outputs, Carry and Suimn, the truth table has
four columns, one for each input and output, and four rows, for each of
the four possible combinations (2?) of input values.

The full adder adds a third input that represents the carry-in of a
previous addition column. Like the half adder, it also generates a carry-
out to the next addition column. Figure 2.6 highlights a column of a
binary addition of two multi-digit numbers. The bits to be added in
every column are A (a bit from the first number), B (a bit from the second
number), and the carry-in (from the previous column), C,, the sum is S,
and the carry-out is C,,, (which becomes the carry-in of the next col-

out
umn). For example, if A=1, B=1, and C,=1, then S=1 and C,,=1
(that is, one plus one plus one is three which in binary is 11,). Figure 2.7
shows the truth table for the full adder. The three inputs have 2% unique

binary combinations, leading to a truth table with eight rows.

Truth tables are fine for describing functions with a modest num-
ber of inputs. But for large numbers of inputs, the truth table grows too
large, as the exponential of the number of inputs (2" rows where n is
the number of inputs). An alternative approach, often more compact, is
an expression in Boolean algebra rather than a truth table. The opera-
tors of the algebra are the logic functions such as AND and OR. We will
look at this algebra in the next section.

But before we do, we don’t want to leave you with the impression
that just about every digital system is combinational. Here are some
examples of systems that are not combinational. A digital system takes
as input a stream of binary digits on a single input signal and asserts is
single output whenever it has seen the sequence 1, 0, 0 on its input wire.
When such a system sees a 0, it has to remember if it saw another 0 just
before it and a 1 just before that, before it can assert its output (set it to 1).
Since its behavior depends on its memory of the earlier input sequence,
it is a sequential system. Another complication is that the system needs
to be able to tell how long a single input lasts so that it can distinguish
two Os in a row from a single 0. A clock is usually used to accomplish
this by keeping a steady beat that separates time intervals.

Counters are another example of digital systems that are inherently
sequential. A 3-bit counter that advances in a binary sequence, such as
000, 001, 010,011,100, 101,110, 111, and repeats, needs to keep track of
the current position in this count sequence before it advances to the next
one in the proper order. This implies that the counter must use memory
for this purpose. Memory lets the system remember where it is in a
sequence, just as it can help remember what it saw on previous inputs.

A combinational lock, such as the one of Section 1.4.2, offers a
third example of a sequential system. It must keep the combination to
be used in memory and must keep track of what point a user is at in
entering a new combination that will be compared against the preset
one. Thus, the same input (the user pressing a number twice) in a
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different context (or memory state) may cause a different output. For
example, pressing 5 as the first number of a combination preset to 515
will not cause the door to unlock, but on the third button press, it will.
This functionality requires a sequential system.

2.2 Laws and Theorems of Boolean Logic

In Chapter 1, you saw that (at least some) Boolean expressions can be
represented by logic gates and vice versa. Actually, all Boolean func-
tions can be implemented in terms of collections of AND, OR, and NOT
gates. Because of this close relationship between the laws of Boolean
algebra and the behavior of logic gates, the theorems of Boolean algebra
can also be used to transform digital logic—usually for the purposes of
deriving simpler and/or standardized forms.

Boolean algebra is the mathematical foundation of digital systems.
We will see that an algebraic expression provides a convenient short-
hand notation for the truth table of a function.

Basic Concept The operations of a Boolean algebra must adhere to cer-
tain properties, called laws or axioms. One of these axioms is that the
Boolean operations are commutative: you can reverse the order in
which the variables are written without changing the meaning of the
Boolean expression. For example, OR is commutative: X OR Y is iden-
tical to Y OR X, where X and Y are Boolean variables.

The axioms can be used to prove more general laws about Boolean
expressions. You can use them to simplify expressions in the algebra.
For example, it can be shown that X AND (Y OR NOT Y) is the same as
X, since Y OR NOT Y is always true. The procedures you will learn for
optimizing combinational and sequential networks are based on the
principles of Boolean algebra, and thus Boolean expressions are often
used as input to computer-aided design tools.

Boolean Operations Most designers find it a little cumbersome to keep
writing Boolean expressions with AND, OR, and NOT operations, so
they have developed a shorthand for the operators. If we use X and Y
as the Boolean variables, then we write the complement (inversion,
negation) of X as one of X', X 'X, /X, or \X (we’ll use most of these in
this book as do most designers). The OR operation is written as X + Y,
XvY or X1Y (we'll favor the +). The AND operation is written as
XY, XAY, X&Y, ormore simply XY (we’ll tend to favor the last two
ways of describing AND). Although there are certain analogies
between OR and PLUS and between AND and MULTIPLY, the logic
operations are not the same as the arithmetic operations.

Complement is always applied first, followed by AND, followed by
OR. We say that complement has the highest priority or precedence,
followed by AND and then OR (this is similar to negation, multiplica-
tion, and addition in algebraic expressions). Parentheses can be used
to change the default order of evaluation. The default grouping of oper-
ations is illustrated by the following examples:

A-B+C = (A)+B)+C
A+ B.C=(A)+(B-C)
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Equivalence of Boolean Expressions and Truth Tables A Boolean expression can
be readily derived from a truth table and vice versa. In fact, Boolean
expressions and truth tables convey exactly the same information.

Let’s consider the structure of a truth table, with one column for
each input variable and a column for the expression’s output. Each
row in which the output column is a 1 contributes a single ANDed
term of the input variables to the Boolean expression. This is called a
product term, because of the analogy between AND and MULTIPLY.
Looking at the row, we see that if the column associated with variable X
has a 0in it, the expression X is part of the ANDed term. Otherwise the
expression X is part of the term. Each variable in either its non-
complemented (X) or complemented (X) form is called a literal.

There is one product term for each row with a 1 in the output column.
All these product terms are ORed together to complete the expression. A
Boolean expression written in this form is called a sum of products.

DERIVING EXPRESSIONS FROM TRUTH TABLES

Let’s go back to Figure 2.5 and Figure 2.7, the truth tables for the half
adder and the full adder, respectively. Each output column leads to a
new Boolean expression, but each of these output expression is defined
over the same variables (the input columns). The Boolean expressions
for the half adder’s Sum and Carry outputs can be written as:

Sum = (AB) + (AB)
Carry = AB

The half adder Sumis 1in tworows: A=1,B=0and A=0, B=1. The
half adder Carry is 1 in only one row: A=1, B=1.

The truth table for the full adder is considerably more complex.
Both S and C,, have four rows with 1s in the output columns. The two
functions are written as:

S = (ABC,,) + (ABC,,

) + (ABC,,) + (ABC,,)

m

Cou = (ABC,) + (ABC,,) + (ABC,,) + (ABC,,)

As we shall see, we can exploit Boolean algebra to simplify Boolean
expressions. By applying some of the simplification theorems of Boolean
algebra, we can reduce the expression for the full adder’s C,,, output to
the following:

C,, = (AC,) + (BC,) + (AB)

out

Such simplified forms reduce the amount of gates, transistors, wires,
and so on, needed to implement the expression. Simplification is an
extremely valuable tool.

You can use a truth table to verify that the simplified expression
just obtained is equivalent to the original. Start with a truth table with
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A Cin A Cin BCin AB Cnut
0 O 0 0 0 0 0
0 0 1 0 0 0 0
0 1 0 0 0 0 0
0 1 1 0 1 0 1

1 0 0 0 0 0 0

1 0 1 1 0 0 1

1 1 0 0 0 1 1

1 1 1 ! 1 1

Figure 2.8  Truth table of reduced carry-out expression.

filled-in input columns but empty output columns. Then, find all rows
of the truth table for which the product terms are true, and enter a 1 in
the associated output column. For example, the term AC,, is true wher-
ever A=1 and C,, = 1, independent of the value of B. We say that AC,,
covers two truth-table rows: A=1, B=0, C,=1 and A=1, B=1,
C,=1.

Figure 2.8 shows the filled-in truth table and indicates the rows
covered by each of the terms and the original output function (the rows
with a 1 in that term’s or output’s column). Since the resulting truth-
table column for C,, is the same as that of the original truth table (see
Figure 2.7), the two expressions for C_, are logically equivalent.

Now, lets turn to the details of Boolean algebra and we will then
revisit this example and perform the simplification step by step.

2.2.1 Axioms of Boolean Algebra

A Boolean algebra consists of a set of elements B, together with two
binary operations {+} and {.} and a unary operation {'}, so that the fol-
lowing hold:

1. The set B contains at least two elements a, b such that a is not
equal to b.
2. Closure: For every a, bin B,
a.a+bisinB
b.a-bisinB
3. Commutative laws: For every a, b in B,
a.a+b=b+a
b.a.b=b.a
4. Associative laws: For every a, b, ¢ in B,
a.(a+b)+c=a+b+c)=a+b+c
b. (@.b).c=a.(b.c)=a.b.c
5. Identities:
a. There exists an identity element with respect to {+}, designated
by 0, such that a + 0 = a for every a in B.
b. There exists an identity element with respect to {.}, designated
by 1, such that a. 1 = a for every a in B.
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NOTE: Remember that we'll use A’
and A interchangeably to represent the
complement of a variable.

6. Distributive laws: For every a, b, ¢ in B,
a.a+(b.c)=(a+b).(a+c)
b.a.(b+c)=(a-b)+(a-c)

7. Complement: For each a in B, there exists an element a’ in B (the
complement of a) such that
a.a+a' =1
b.a.a’'=0

It is easy to verify that the set B = {0, 1} and the logical operations
OR, AND, and NOT satisfy all the axioms of a Boolean algebra. Simply
substitute 0 and 1 for a and b, OR for +, AND for ., and NOT for ', and
show that the expressions are true. For example, to verify the commu-
tative law for +:

0+1=1+0 0«1=1-0
1=1+ o=0v

A Boolean function uniquely maps some number of inputs over the
set {0, 1} into an output set {0. 1} represented by an output variable.
Arbitrary functions can be represented by a truth table. A Boolean
expression is an algebraic statement containing Boolean variables and
operators without an assignment to an output variable. A theorem in
Boolean algebra states that any Boolean function can be expressed in
terms of AND, OR, and NOT operations. In other words, there is a
Boolean expression for every Boolean function. For example, as we
just saw for the full adder outputs, one way to map a truth table into a
Boolean expression in the sum (OR) of products (AND) form. We
looked at each row for which an output was true and ORed together
terms formed by ANDing the complemented or uncomplemented
forms of the inputs for that row.

In fact, there are many other ways to represent Boolean functions.
Some use new logical operations (to be introduced next) that are inter-
esting because they are easier to implement with real transistor
switches.

Boolean Operations Revisited Let’s review the elementary Boolean opera-
tions and how these are represented as gates and truth tables. Figures 2.9,
2.10, and 2.11 summarize the representations for the NOT, AND, and OR
operations, respectively.

Take the Boolean expression Z = A«B-«(C + D). A version of the
expression with parentheses would be (A« (B+(C + D)). Each pair of
parentheses represents the expression generated by a single gate. Thus,

X*|>0*Y 1
0

Figure 2.9  Alternative representations of NOT (also known as COMPLEMENT).

>
!
o

NOT X'
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X
0
AND Xy Xy XAY 0
1
1
Figure 2,10 Alternative representations of AND.
X Y 74
0 0 0
OR X+Y XVvY 0 1 1
10 1
1 1 1

Figure 2.11 Alternative representations of OR.

A

74 A

B
B
C &
D D

(a) (b)

Figure 2.12 Two equivalent gate-level implementations.

the circuit is built up through a set of intermediate results, from the
inside out:

T, = (C + D)
T‘l =(E'T2]
Z=(A-T1)

The gate-level implementation is shown in Figure 2.12(a), using
two-input gates. The primitive gates need not be limited to two inputs,
however. Figure 2.12(b) shows the same circuit implemented using a
three-input AND gate. These implementations are equivalent because of
the associative law of Boolean algebra. We could also use the associative
law to reorder the expression. For example, switching A and B would
create a new, but functionally equivalent, circuit that would have the
value of A passing through the gate T, in Figure 2.12(a) rather than B.

Recall that each appearance of a variable or its complement in an
expression is called a literal. In the preceding expression, we can
see that there are four variables and four literals. The following expres-
sion has 10 literals but only three variables (A, B, and C):
Z = ABC + AB + ABC + BC. Each literal represents the connection of
a variable or its complement to a unique gate input. Later, we will use
literals as a rough measure of the complexity of a Boolean functions.

—_0om O =

—ococo N
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2.2.2 Theorems of Boolean Algebra

Boolean algebra provides the foundation for all of the simplification
techniques we shall discuss. Based on the Boolean laws of the previ-
ous section we can prove additional theorems that can be used as
tools to simplify Boolean expressions. For example, if E, and E,
are two expressions for the same Boolean function, we say that E, is
simpler than E, if it contains fewer literals. This usually (but not
always) means that the simpler expression will contain fewer Boolean
operations.

Duality Before we provide a tabulation of useful laws and theorems, it
is important to describe the concept of duality. Every Boolean expres-
sion has a dual. A dual of an expression is derived from the original
expression by replacing AND operations by OR operations and vice
versa, and replacing constant logic Os by logic 1s and vice versa, while
leaving the literals unchanged. It is a fundamental theorem of Boolean
algebra, which we do not prove here, that any statement that is true
about a Boolean expression is also true for its dual. Remember, an
expression and its dual are not equivalent. It is just that, once we dis-
cover a useful theorem for simplifying a Boolean expression, we
obtain a second, dual theorem as a bonus. For example, the dual of
the Boolean theorem X+ 0 =X, written (X + 0 = X)?, is the theorem
Xe1=X.

Useful Theorems The following is a list of frequently used laws and the-
orems of Boolean algebra. Some are generalized from Section 2.2.1.
The second column shows the duals of the expression in the first
column.

Operations with 0 and 1:

1. X+0=X 1D. X-1=X
2. X+1=1 2D. X-0=0

Idempotent theorem:

3.X+X=X 3D. X- X=X
Involution theorem:

4. (X)'=X
Theorem of complementarity:

5. X+X'=1 5D. X-X'=0

Commutative law:
6. X+Y=Y+X 6D. X Y=Y.X
Associative law:

7. (X+Y)+Z=X+(Y+2) 7D. (X+Y):Z=X-(Y-2Z)
=X+Y+2Z =X.Y-Z
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Distributive law:
8. X (Y+2)=X:Y+X-Z 8D. X+(Y-2)=(X+Y)-(X+2)

Simplification theorems:

9. X Y+X.-Y'=X 9D. (X+YV)-(X+Y)=X

10 X+X-Y=X 10D. X (X+YV)=X

11. (X+Y).Y=X-Y 11D. (X Y)+Y=X+Y

DeMorgan’s law:

12, X+Y+Z+..) 12D. (X Y+ Z....)
=X'eY'eZ... =X+Y'+Z +...

General form:
13. {f(X,,X,, . ... X,,0,1,+)} = {f(X, . X,,....X, 1,004}
Duality:

14. (X+Y+Z+...)P 14D. (XY Z....)P
=XeYeZ.... =X+Y+Z+...

General form:
15. {f(X,.X,, ..., X.,0,1,+ = f(X,.X,, . . ., X,,1,0,0,4)

Theorem for multiplying and factoring:

16. (X+ V) (X'+ 2) 16D. XY+ X' - Z
=XZ+X' Y =(X+2Z)-(X'+ 1)

Consensus theorem:

17. X+ Y+ Y Z+ X' Z 17D. (X+ V) (Y+2)-(X'+2
=X.Y+X'+Z =X+ (X'+ 2

The notation f(X,,X,, ... ,X,,0,1,+,) used in Theorems 13 and 15
represents an expression in terms of the variables X, X,, ..., X, the
constants 0, 1, and the Boolean operations + and . Theorem 13 states
succinctly that, in forming the complement of an expression, the vari-
ables are replaced by their complements, 0 is replaced by 1 and 1 by 0,
and + is replaced by « and « by +.

Since any of the listed theorems can be derived from the original
laws shown in Section 2.1, there is no reason to memorize all of them,
they can always be re-proven. They are listed here for convenience.

Verifying the Boolean Theorems We can prove the first Simplification theo-
rem (9), sometimes called the Uniting theorem, as follows:

X Y+X-Y' = X?
X(Y+Y)=X Distributive law (8)
X(1) =X Complementarity theorem (5)
X = XV Identity (1D)
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As another example, let’s look at the second Simplification theo-
rem (10):

X+X.-Y = X?
X1+X-YVY = X Identity (1D)
X1+V)=X Distributive law (8)
X)) =X Identity (2)
X = XV Identity (1)

BINARY FULL-ADDER CARRY-OUT

We can use the laws and theorems just introduced to verify the simpli-
fied expression for the full adder’s carry-out function. The original
expression, derived from the truth table, is:

The first step uses Theorem 3, the Idempotent theorem, to introduce
a copy of the term ABC,,. Then we use the commutative law to rearrange
the terms:

ABC,, + ABC,, + ABC,, + ABC,, + ABC,,
= ABC,, + ABC,, + ABC,, + ABC,, + ABC,,

We next use the Distributive law to factor out the common literals
from the first two terms:

We apply the Complementarity law:
= (1)BC,, + ABC,, + ABC,, + ABC,,
and the Identity law:
= BC, + ABC,, + ABC,, + ABC,

We can repeat the process for the second and third terms. The
steps are: (1) Idempotent theorem to introduce a redundant term,
(2) Commutative law to rearrange terms, (3) Distributive law to factor
out common literals, (4) Complementarity theorem to replace (X + X)
with 1, and (5) Identity law to replace 1 - X by X:

= BC, + ABC,, + ABC,, + ABC,, + ABC,,

= BC,, + ABC,, + ABC,, + ABC,, + ABC,,
= BC,, + AB + B)C,, + ABC,, + ABC,,
BC,, + A)C,, + ABC,, + ABC,,

BC,, + AC, + ABC,, + ABC,,

n
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The final simplification, using the Distributive theorem, Comple-
mentarity theorem, and Identity law, proceeds similarly:
= BC,, + AC, + AB(C, + C,)
BC,, + AC,, + AB(1)
BC,, + AC,, + AB

This is exactly the reduced form of the expression we derived
above. Although it leads to a simpler expression, applying the rules of
Boolean algebra in this ad hoc fashion does not guarantee you will
always get the simplest expression as a result. We will introduce a
more systematic approach in Chapter 3.

2.2.3 Duality and DeMorgan’s Law

Duality Duality is a very useful property of Boolean algebra. Recall that
the dual of a Boolean expression is derived by replacing « by +, + by -,
0by 1 and 1 by 0, while leaving the Boolean variables unchanged
(laws 14 and 15 in the last section). Any theorem of Boolean algebra
that is shown to be true implies that its dual is also true. In essence,
duality is a meta-theorem, a theorem about theorems. While it is not a
way to simplify expressions directly, it does allow you to derive new
theorems from those you already know to help in the simplification
process.

For example, the dual of the Uniting theorem (9), X+ Y+ X+ Y =X,
is (X+Y)+(X+Y') = X. The proof of the dual follows step-by-step
from the original, simply using the duals of the laws used in the origi-
nal proof. Compare the following to our original proof of its dual:

X+ X+Y)=X?
X+(Y-Y)=X Distributive law (8D)
X+0=X Complementarity theorem (5D)
X=XV  Identity (1)

DeMorgan’s Law DeMorgan’s law (12 and 13) gives a procedure for
complementing a complex function. The complemented expression
is formed from the original by replacing all literals by their comple-
ments; all 1s become 0s and vice versa, and ANDs become ORs
and vice versa. This theorem indicates an interesting relationship
between AND, OR, and their complements NOT-OR (NOR) and
NOT-AND (NAND):

Note that X +Y # X + Y and XY # X .Y because on the left-
hand side of each expression we are complementing the entire expres-
sion while on the right-hand side we are complementing individual
variables. In other words, NOR is the same as AND with complemented
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Figure 2.13 DeMorgan’s law.

inputs while NAND is equivalent to OR with complemented inputs!
This is easily seen to be true from the truth tables of Figure 2.13.

Let’s use DeMorgan’s law to find the complement of the following
expression:

Z = ABC + ABC + ABC + ABC

Step-by-step, the complement is formed as follows:

Z = (ABC + ABC + ABC + ABC)
Z = ABC - ABC+ ABC « ABC
Z=(A+B+CA+B+C)A+B+C)A+B+0(C)

Note that duality and DeMorgan’s law are not the same thing. The
procedure for producing the dual is similar, but the literals are not
complemented during the process. Thus, the dual of NOR is NAND
(and vice versa); the dual of OR is AND (and vice versa). Remember,
any theorem that is true for an expression is also true for its dual.
When the duality theorem is applied to a function the result is a func-
tion that is totally different from the original, when DeMorgan’s law is
applied to a function, the result is a function that is the complement of
the original. For example if we have the expression:

Z = AB + CD
then the dual of Z is:

ZP = (A + B)C + D)
while applying DeMorgan'’s law yields:
Z = (A + B)C + D)

2.3 Realizing Boolean Formulas

2.3.1 Logic Gates

There are other functions of two Boolean variables besides AND, OR,
and NOT. In fact, there are 16 possible functions, the number of different
ways you can write down the different choices of 0 and 1 for the four
possible truth table rows. A truth table representation of the 16 func-
tions is shown in Figure 2.14. The constant functions 0 and 1 and the
functions X,X,Y,Y,X.Y, and X + Y represent only half of the pos-
sible functions. We now introduce the remaining Boolean operators.
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Figure 2.14 The 16 functions of two Boolean variables.

X
0
NAND 0
1
1

—o—0 ~

z
1
1
1
0
Figure 2.15 Gate and truth table representations of NAND.
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Figure 2.16 Gate and truth table representations of NOR.

In addition to their different truth tables, each function has a dif-
ferent number of switches associated with its implementation. For
example, F, and F,,, constants 0 and 1 respectively, require no switches
for their implementation at all. These logical values can be obtained by
directly connecting to the reference low and high voltage signals. The
implementation complexity of the other functions is as follows: X (F,)
and Y (F,) also require no switches, as they are simply direct-through
connections to the appropriate input. X (F,,) and Y (F,,) are the com-
plement functions of X and Y, and require two switches to implement
an inverter. X NOR Y (F,) and X NAND Y (F,,) are implemented using
four switches. X OR Y (F,) and X AND Y (F,), on the other hand,
require six switches, while X =Y (F;) and X XNOR Y (F,) demand 16
switches for their implementations. So while one way of expressing a
Boolean function might minimize the number of Boolean operations, it
may not minimize the number of switches for its realization.

NAND and NOR Two of the most frequently encountered Boolean opera-
tors are NAND (NOT-AND) and NOR (NOT-OR). Their gate and truth
table representations are shown in Figure 2.15 and Figure 2.16, respec-
tively. The NAND operation behaves as if an AND is composed with a
NOT: it yields a logic 0 in the truth table rows where AND is a 1, and it

0
0
0

1

0
0
1

16 Possible Functions (Fy—Fs)
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OO =

—

—
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yields a 1 in the rows where AND is 0. The gate representation is an AND
gate with a small circle or “bubble” at its output, denoting negation.

If you take a close look at the truth table representation in Figure 2.15
and compare it to Figure 2.10, you will see that it looks like an AND
function with the true and false outputs reversed. NAND is true when
either X'is 0 or Yis 0. Alternatively, it is false when X and Y are both true.

NOR behaves in a similar fashion, but now with respect to OR.
Once again the truth table outputs are complemented, and we draw the
NOR gate as an OR gate with a bubble at the output. Both X and Y must
be 0 to force the output to be true.

NAND and NOR gates far outnumber AND and OR gates in a typical
digital design, even though these functions are less intuitive, for the
simple reason that they can be implemented in fewer switches than
AND and OR gates.

Since any Boolean expression can be represented in terms of AND,
OR, and NOT gates, it is hardly surprising that the same statement can
be made about NAND, NOR, and NOT gates. In fact, NOT gates are
superfluous: if you carefully examine the truth tables of Figure 2.15 and
Figure 2.16, you'll see that NAND and NOR act like NOT when both
inputs are both 0 or both 1. We shall see an efficient method for map-
ping Boolean expressions into NAND and NOR logic in Section 2.4.

XOR/XNOR (Equality) This leaves six functions still unnamed in Fig-
ure 2.14. Two of these, frequently of use, are exclusive OR (XOR, also
known as the inequality gate or difference function) and exclusive NOR
(XNOR, also known as the equality gate or coincidence function). Their
truth tables and gate representations are given in Figure 2.17. XOR is true
when its inputs differ in value. XNOR is true when its inputs coincide in
value. The Boolean operator for XOR is ®@; XNOR is usually represented
by = or as the complement of XOR. As with any Boolean function, these
can be implemented in terms of AND, OR, and NOT operations:

XOR: X®Y = XY + XY
XNOR: X=Y=X0Y =XV +XY

X Z
X 0 0 0
XOR Xov z 0 1 1
Y 0 1
11 0
X Z
b% 0 0 1
XNOR X=Y 4 0 1 0
Y 0 0
1 1

Figure 2.17 Representations of the XOR and XNOR operations.
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If you examine the truth table of Figure 2.17(a), you can see that
XOR is precisely the function needed to implement the half-adder sum of
Figure 2.5 and XNOR directly implements the equivalence function
of Figure 2.1.

Implication The remaining four functions are based on a Boolean operator
called implication. X implies Y (written X = Y) is false only when X
it true and Y is false, otherwise, it is true. The group of four functions
are X= Y, Y= X, NOT (X = Y), and NOT (Y = X). These commonly
are not found as primitives due to their asymmetry. Thus, they are not
available readily for realizing digital systems and we won’t be making
much use of them in this text.

2.3.2 Logic Blocks and Hierarchy

Just as a program can be constructed from simpler subroutines, even
the most complex logic function can be constructed from more primi-
tive functions by wiring up logic gates.

In most integrated circuit technologies, libraries of prepackaged
functions are made available to the designer. The library components
include all of the major logic gates, in the form of 2, 3, and possibly
higher numbers of inputs, as well as more complex functions con-
structed from a collection of basic logic gates. Examples of these are
the half adder, full adder, and multi-bit adder functions.

TWO-BIT ADDER

We have already seen the half-adder function with its two binary
inputs (A, B), and its two outputs, sum (S) and carry (C). Figure 2.18
represents the half adder (HA) as a block diagram, a black box with
inputs and outputs. Next to its block diagram is the truth table that
describes the function’s input/output behavior. The gate-level imple-
mentation of the half adder is on the right in the figure. The half-
adder’s sum output is implemented by the XOR gate, and the carry by
the AND gate.

A multiple-bit adder can be built by up by wiring together single
bit adders. The stage that computes the sum of the bits in the first, low-
est order position passes its carry-out to the carry-in of the next higher
order adder. Unfortunately, the half adder function, since it doesn’t
have a carry-in input, cannot be used in this way. This requires the full
adder.

A S A B c S A
0 0 0 0
HA 0 1 0 1
B C 1 0 0 1
1 1 1 0
B

Figure 2.18 Half-adder function implemented via interconnected gates.
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Figure 2.19 Full-adder function implemented as cascaded half adders.

The full-adder (FA) block diagram is shown in Figure 2.19, it has:
three inputs: A, B, and carry-in (C,,); and two outputs: sum (S) and
carry-out (C,,). The full adder functionality is described by the truth
table in the figure, and can be implemented by the cascaded half
adders, as shown.

It is a fair question as to how this particular combination of half-
adder building blocks and an OR gate realizes the full-adder function.
It comes from a careful examination of the full-adder truth table. Con-
sider the case when C;,, = 0, basically the top half of the truth table. The
function for SUM is exactly as for the HA. When C,, = 1, the bottom
half of the truth table, the SUM output is exactly the complement of
the HA’s S output. The XOR gate’s behavior is such that when one
input is 0, the output is the same as the other input. And when one
input is 1, the output is the complement of the other input. Connecting
one XOR input to the FA’s carry-in input, and the other to the sum of A
and B computed by a first stage HA, gives us exactly the Sum output
behavior we need. But this is exactly what the HA does to its two
inputs! We are simply adding three bits, two at a time and taking the
sum of the first addition of two bits and adding it to the third bit.

Implementing the FA carry-out is also straightforward. We simply
OR together both carry’s of the two HAs. If either has a carry, then the
FA has a carry-out. You can check that this composition implements
the full adder by working through the truth table for each of the possible
input combinations.

Now the 2-bit adder can be constructed by interconnecting two full
adders. The wiring is shown in Figure 2.20. A and B are now 2-bit
numbers (A,, Ay and B, By). The carry-in for the low order stage (C,) is
connected to logic 0. Its carry-out is connected to the carry-in of the
high-order stage. The carry-out of the second stage (C,) becomes the
carry-out of the 2-bit adder.

2.3.3 Time Behavior and Waveforms

Logic gates do not operate infinitely fast. When the inputs change, it
takes some time for the these changes to be reflected in the gate’s out-
put, as the electrical signals propagate through the interconnected
switches.
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Figure 2.20 Two-bit binary adder composed from two full adders.
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Figure 2.21 Timing waveforms for the 2-bit adder of Figure 2.20 for several
different combinations of inputs.

A waveform representation is a good way to represent signal prop-
agation over time. The x-axis represents the time steps. The y-axis
shows the logical value of various points in the circuit. These probe
points can be an output of the function, or the value on any internal
wire of the circuit.

For ease of discussion, we consider the delay through any gate as
taking exactly one time unit. This is called the unit delay model, and it
really is a simplifying assumption. Real gates rarely exhibit such uni-
formly simple performance. For example, an AND gate is usually
implemented as a NAND gate composed with a NOT gate. So it makes
sense that an AND gate should be slower to change its output in
response to changes in its inputs than a simpler, more primitive NAND
gate.

Timing waveforms for the full-adder of Figure 2.20 are shown in
Figure 2.21. Again, the x-axis represents time (there are now units
shown as they are unimportant for our purposes) and we use different
horizontal traces to show how the value of individual wires changes
over time. The inputs are changed every 10 time units (the tick mark
on the horizontal axis) to allow sufficient time for propagation through
all the gates of the circuit to the output wires. The full adders are con-
structed using two half adders (recall that these contain an XOR and

S
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AND gate). To simplify matters we have set each gate to have a delay of
one unit regardless of how complex they are.

The inputs start out all equal to 0 and so are the outputs for this
condition, 0 + 0 = 0. The inputs then change to 3 + 0 and this requires
two time units for the S outputs to reach their final value at time 12.
When the inputs change to 2 + 1 at time 20 (A,, A,=1, 0 and B,, B,=0, 1)
there is no change on the outputs, as expected. At time 30, the inputs
change to back to 0 + 0 and then go to 3 + 1 at time 40. Note that there
is a longer delay to reach the final value for 3 + 1 =4 than for 2 + 1 = 3.
The final value is not reached until time 44, four time units after the
change in inputs, with 0s on the S outputs and a carry-out of 1 on C,.
C, is set to 0 for the entire duration of the waveform.

Also, note the glitches on the S, output. Any other system using the
output of this full-adder for its own input would have to make sure to
wait long enough for all the signals to reach their final value and ignore
any of the temporary glitches we see in the waveform of Figure 2.21.

2.3.4 Minimizing the Number of Gates and Wires

Logic minimization uses a variety of techniques to obtain the simplest
gate-level implementation of a Boolean function. But simplicity depends
on the metric we use. We examine these metrics in this subsection.

Time and Space Trade-Offs One way to measure the complexity of a Boolean
function is to count the number of literals it contains. Literals are an
approximate measure of the number of transistors and the amount of
wiring that will be needed to implement a function. For electrical and
packaging reasons, gates in a given technology typically have a limited
number of inputs. While two-, three-, and four-input gates are com-
mon, gates with more than eight or nine inputs are rather rare. Thus,
one of the primary reasons for performing logic minimization is to
reduce the number of literals in the expression of a function, thus
reducing the number of gate inputs.

An alternative metric is the number of gates, this focuses on the
area a circuit will occupy. There is a strong correlation between the
number of gates in a design and the number of components, whether
library modules or integrated circuit packages, needed for its imple-
mentation. The simplest design to manufacture is often the one with
the fewest gates, not the fewest literals. Of course, wires take up space
also, so this measure is lessening in importance as gates are more inte-
grated on a single chip and transistor sizes keep shrinking.

A third metric is the number of cascaded levels of gates. Reducing
the number of logic levels reduces overall delay, as there are fewer gate
delays on the path from inputs to outputs. However, putting a circuit
in a form suitable for minimum delay rarely yields an implementation
with the fewest gates or the simplest gates. It is not possible to mini-
mize all three metrics at the same time.

The traditional minimization techniques you will study in this
chapter emphasize reducing delay at the expense of adding more gates.
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Newer methods, covered in the next chapter, allow a trade-off between
increased circuit delay and reduced gate count.

DIFFERENT IMPLEMENTATIONS
OF ONE FUNCTION

To illustrate the trade-offs just discussed, consider the following
3-variable Boolean function:

Z = ABC + ABC + ABC + ABC

The truth table for this function is shown in Figure 2.22. You
would probably implement the function directly from the preceding
equation, using three NOT gates, four 3-input AND gates, and a single
4-input OR gate. This is called a two-level implementation, with vari-
ables and their complements at the zeroth level, AND gates at the first
level, and an OR gate at the second level.

You could implement the same truth table with fewer gates. An
alternative two-level implementation is given in Figure 2.22 as func-
tion Z;:

Z, = ABC + AC + BC

It uses the same number of inverters and OR gates but only three
AND gates and an OR gate with only three inputs instead of four. The

B Cc| z B C
0 0 0 0
0 0 1 |1
0 0| o
0 1 1
1 0 0
0 1 |1
1 0|1 )
1 0 Z

Figure 2.22 Alternative realizations of Z.
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Figure 2.23 Waveform behavior of three implementations of the truth table
of Figure 2.22.

original function has 12 literals. This alternative has only seven, thus
reducing the wiring complexity.
The implementation labeled Z, is called multilevel:

Z, = TC + TC
T = AB

The longest path from an input to an output passes through four
gates. This contrasts with three gate delays in the two-level functions.
In terms of gate counts, the circuit uses two rather than three inverters
and only 2-input AND and OR gates. Here you can see a trade-off
between gate count and performance: Z, uses simpler and faster gates,
but it has more level than Z,. We would have to look at the precise
delay of each type of gate to decide which is fastest.

Z, shows a third realization that uses an XOR gate:

Z, = (AB)® C

XOR is sometimes called a complex gate, because you normally
implement it by combining several NAND or NOR gates. Although this
implementation has the lowest gate count, it is also likely to have the
worst delay. An XOR gate tends to be slow compared with the imple-
mentations for Z based on simple AND and OR gates.

Figure 2.23 shows the timing waveforms for the three circuit alter-
natives, assuming a single time unit delay per gate (somewhat unreal-
istically especially in the case of the XOR gate). All have equivalent
behavior, although they exhibit slightly different propagation delays.
All three circuits show a glitch on the transition ABC=101 to
ABC = 110. Glitches can often be a problem as they temporarily cause
the output to have a wrong value. We’ll see later how we can prevent
these from happening.

2.3.5 Case Study: 7-Segment Decoder

We have already introduced the 7-segment display for displaying a
binary digit earlier in this chapter and its truth table that tells us which
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segments to turn on and off (see Figure 2.4). In this subsection, we will
generalize the display to handle the decimal digits 0 through 9. The
input to the system now consists of four bits in a binary-coded-decimal
(BCD) form, where decimal 0 is represented by the four binary func-
tions ABCD = 0000, 1 is represented by ABCD = 0001, 2 by 0010, 3 by
0011, through 9 = 1001. We assume that the input bit patterns 1010,
1011, 1100, 1101, 1110, 1111 are never encountered in practice (we
call such inputs don’t cares, and we will see how to make use of them
for simplification in Chapter 3.

Figure 2.24 shows a block diagram of the decoder, the display ele-
ment, and the way the segments should be driven to represent the
appropriate digit. Figure 2.25 shows the truth table for this circuit with
the don’t-care conditions in a gray box.

) ) 8 '
BCD to 7-segment : q
Control Signal

Decoder

B

A B C D

Figure 2.24 Binary-coded decimal digital-display system.

A B C D C C C C C C G
00 0 0 1 1L I 1 1 1 o0
00 0 1 0 1 1 0 0 0 0
0o 1 0 1 1 0 1 1 o0 1
oo 1t 1 1L 1 1 1 0 o0 1
o1 0 0 o0 1 1 0 0 1 1
o1t o 1 1 0 1 1 0 1 1
o1 1 0 1 0 1 1 1 1 1
o 1 1 1 1 1 1 0 0 0 0
1 0 0 0 1 1 1 1 1 1 1
1 0o o0 1 1 1 1 0 0 1 1
1 0 1 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 0 0 0 0
t 1.0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

Figure 2.25 Digital-display system truth table.
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Let’s specify the Boolean logic for just one of the decoder’s outputs:
C,. This particular segment is illuminated for every valid input combi-
nation except for digit 2 (0010). The Boolean expression for C, is all
of the input combinations that cause that segment to be illuminated
ORed together:
C, = ABCD + ABCD + ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD + ABCD

This Boolean function is quite complicated: 36 literals, nine 4-input
AND gates, and one 9-input OR gate. Fortunately, its complexity, mea-
sured in terms of the total number of literals, can be significantly
reduced (from 36 to 20) by the right use of simplification theorems. By
rearranging terms, introducing redundant terms, and factoring, we can
rewrite C, as follows:

C, = AB(CD + CD + CD + CD) + BC(AD + AD + AD + AD)
+ AD(BC + BC + BC + BC)

Successive use of the unifying theorem and the complementarity
theorem for the expressions in the parentheses reduces each of them to
the constant 1. The resulting simplification is:

C, = AB + BC + AD

This expression has only six literals, three 2-input AND gates, and
one 3-input OR gate. That is a considerable savings in terms of all of the
relevant metrics: less wires, fewer gates, and much simpler gates at that! If
we take advantage of the don’t care elements of the truth table, we could
simplify the expression even further, as we will see in Section 2.5.3.

2.4  Two-Level Logic

You already know that there are many gate-level implementations with
the same truth table behavior. In this section, you will learn the meth-
ods for deriving a reduced gate-level implementation of a Boolean
function in two-level form. This minimizes the levels of logic but usu-
ally yields circuits that do not have minimum delay or the smallest
gate counts. Two-level forms are still interesting because they are easy
to understand and realize as logic.

2.4.1 Canonical Forms

To compare Boolean functions expressed in algebraic terms, it is useful
to have a standard form with which to represent the function. This
standard term is called a canonical form, and it is a unique algebraic
signature of the function. You will frequently encounter two alterna-
tive forms: sum-of-products and product-of-sums. We will now intro-
duce these formally.
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Sum-of-Products You have already met the sum-of-products form in
Section 1.4.1. It is also sometimes known as a disjunctive normal form
or minterm expansion. A sum-of-products expression is formed as fol-
lows. Each row of the truth table in which the function takes on the
value 1 contributes an ANDed term, using the asserted variable if there
is a1 in its column for that row or its complement if there is a 0. These

are called minterms. Technically, a minterm is defined as an ANDed 3 l; g g Fl

product of literals in which each variable appears exactly once in 0 0 1 0

either true or complemented form, but not both. The minterms are 0 1 0 0 1

then ORed to form the expression for the function. The minterm (1) (1) é (1) (1)

expansion is unique because it is derived deterministically from the 1 0 1 1 0

truth table. There are is only one way to do it. 10 1 0
Figure 2.26 shows a truth table for a function and its complement. Lo

The minterm expansions for Fand F are Figure 2.26 Sample truth table.

F = ABC + ABC + ABC + ABC + ABC

F = ABC + ABC + ABC

We can write such expressions in a shorthand notation using the
binary number system to encode the minterms. Figure 2.27 shows
the relationship between the truth table row and the numbering of

A B C Minterms A B C Minterms
0 0 o A'B'C' my 0 0 O A'B'C" m,
0 0 A'B'C  m 0 0 1 A'B'C  m
0 0 A'BC" m, 0 1 0 A'BC" m,
0 1 1 A'BC ni, 0 1 1 A'BC  my
1 0 0 AB'C'" oy 0 0 AB'C" my
1 0 1 AB'C ms 0 AB'C ms
1 0 ABC’ g 0 ABC' g
1 ABC m, ABC n,

(a) (b)

A B C Minterms A B C Minterms
0 0 o0 A'B'C' i, 0 0 O A'B'C" m,
0 0 A'B'C 0 0 A'B'C  m
0 0 A'BC" i, 0 0 A'BC" m,
0 1 1 A'BC niy 0 1 A'BC iy
0 0 AB'C'" my Il 0 0 AB'C' my
0 AB'C ns 1 0 1 AB'C  ms
1 1 0 ABC’ m 0 ABC’ g,
1 ABC ny ABC n,

(©) (d)

Figure 2.27 Shorthand notation for minterms of three variables. Note that
each minterm covers exactly one row. Minterms are ORed together to form the
complete function (note that the figure does not show separate tables for my
and m,). Therefore, a row is shaded in the final table (d) if it is shaded in any of
the minterm tables (parts a,b,c, and two others not shown above).



58 Chapter 2 Combinational Logic

Figure 2.28 Two-level AND-OR
gate-level implementation.

the minterm. Note that the ordering of the Boolean variables is critical in
deriving the minterm index. In this case, A determines the most signif-
icant bit and C is the least significant bit. You can write the shorthand
expression for Fand F as

F(A,B,C) = 2 m(1,3,5,6,7) = m, + m; + my + mg + m,
F(A,B,C) = 3 m(0,2,4) = my, + m, + m,

where m; represents the ith minterm. In Figure 2.27, there are four
truth-tables. The first shows the minterm for ABC, the second for
ABC, the third for ABC, and finally, the fourth table shows all five
minterms needed to cover the function together (the fourth and fifth
minterm are not shown separately in the figure). The function has a
true output if the combination of input values for inputs A, B, and C
correspond to any of the minterms, hence, a disjunctive normal form
(OR) because the function is true if the inputs fall within the row
labeled m,, or the row labeled m,, or. . ..

The indices of the minterms are used as a shorthand notation and
generalize nicely for functions of more variables. For example, if F is
defined over the variables A, B, C, then m, (011,) is the minterm ABC.
But if F is defined over A, B, C, D, then m, (0011,) is ABCD.

The minterm expansion is not guaranteed to be the simplest form of
the function, in terms of the fewest literals or terms, nor is it likely to be.
You can further reduce the expression for Fby applying Boolean algebra:

ABC + ABC + ABC + ABC + ABC
(AB + AB + AB + AB)C + ABC
(A + A)YB + B))C + ABC

C + ABC

ABC + C

AB+C

F(A, B, C)

The one step you may find tricky is the last one, which applies rule
11D, (X+Y) +Y = X + Y, substituting AB for X and C for Y.

AB and C are called product terms: ANDed strings of literals contain-
ing a subset of the possible Boolean variables or their complements.
For F defined over the variables A, B, and C, ABC is a minterm (because
it contains one version of every literal—complemented or uncomple-
mented) as well as a product term, but AB is only a product term.

The minimized gate-level implementation of F is shown in Fig-
ure 2.28. Each product term is realized by its own AND gate. The product
term A is the degenerate case of a single literal. No AND gate is needed
to form this term. The product terms’ implementations are then input
to a second-level OR gate. The sum-of-products form leads directly to a
two-level realization.



We can repeat the simplification process for F but DeMorgan’s law
gives us a good starting point for applying Boolean simplification:
F=(AB+C)=(A+ B)C = AC + BC
Although this procedure is not guaranteed to obtain the simplest
form of the complement, it does so in this case.

Product-of-Sums The involution theorem states that the complement of a
Boolean expression’s complement is the expression itself. By using
DeMorgan’s law twice, we can derive a second canonical form for
Boolean equations. This form is called the product-of-sums and some-
times the conjunctive normal form or maxterm expansion.

The procedure for deriving a product-of-sums expression from a
truth table is the logical dual of the sum-of-products case. First, find
the rows of the truth table where the function is 0. A maxterm is
defined as an ORed sum of literals in which each variable appears
exactly once in either true or complemented form, but not both. We
form a maxterm by ORing the uncomplemented variable if there is a 0
in its column for that row, or the complemented variable if there is a 1
there. This is exactly opposite to the way we formed minterms. There is
one maxterm for each 0 row of the truth table; these are ANDed
together at the second level.

The product-of-sums for the functions F and F of Figure 2.26 are

F=(A+B+CJA+B+C)JA+B+0()
F=(A+B+CJ)A+B+CA+B+CJA+B+C)JA+B+0)

Once again, we often use a shorthand notation. Figure 2.29 shows
the relationship between maxterms and their shorthand form. We can
write F'and F as

F(A, B, C) = TIM(0,2,4) = M, + M, + M,
F(A, B,C) = IM(1,3,5,6,7) = M, « M, « M « M, + M,

where M, is the ith maxterm. In Figure 2.29, the maxterms that repre-
sent the cover of the function of Figure 2.26 are shown in the first three
parts of the figure. Each maxterm covers all the rows except for the row
corresponding to the maxterm. Therefore, to form the complete func-
tion, we AND the maxterms together. All rows will be true except for
the ones with a corresponding maxterm (those with a value of 0 for the
function). There are three different maxterms in this case, because the
output is 0 in exactly three cases. The first corresponds to M,, the sec-
ond corresponds to M,, and the third corresponds to M,. The function
is true if the combination of input values for inputs A, B, and C lies
within all of the maxterm regions, hence, a conjunctive normal form
because the function is true if the inputs fall within the region for M,
and the region for M, and the region for M,.

2.4 Two-Level Logic
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A B C Maxterms A B C Maxterms

0 0 O A+B+C M, 0 0 0 A+B+C M,
0 0 1 A+B+C' M, 0o 0 1 A+B+C' M,
0 0 A+B'+C M, 0 1 0 A+B'+C M,
0 1 1 | A+B'+C' M, 0 1 1 | A+B'+C' M,
1 0 O A'+B+C M, 1 0 0 A'+B+C M,
1 0 1 | A+B+C" M, 1 0 1 | A+B+C M
1 0 A'+B'+C M, 1 1 0 A'+B'+C Mg
1 1 1 | A+B'+C M, 1 1 1 | A+B'+C M,

(a) (b)

A B C Maxterms A B C Maxterms

0 0 O A+B+C M, 0 0 O A+B+C M,
0 0 A+B+C' M, 0 0 A+B+C’ M,
0 1 0 A+B'+C M, 0 1 0 A+B'+C M,
0o 1 1 A+B'+C'" M, 0 1 1 A+B'+C'" M,
1 0 0 A'+B+C M, 1 0 0 A'+B+C M,
1 0 1 A'+B+C" M, 1 0 1 A'+B+C’ M
1 1 0 A'+B'+C Mg 1 0 A'+B'+C M,
1 1 | A+B'+C M, 11 A'+B'+C M,

(c) (d)

Figure 2.29 Maxterm shorthand for a function of three variables. Note that
each maxterm covers all but one row. Maxterms are ANDed together to form the
complete function. Therefore, a row is shaded in final table (d) if it is shaded in
all of the maxterm tables (a,b,c).

Interestingly, the maxterm expansion of F could have been
formed directly by applying DeMorgan’s law to the minterm expansion
of F:

F ABC + ABC + ABC
F = ABC + ABC + ABC
(A+B+CJA+B+CJA+B+C)

S
Il

F

Of course, the same is true for deriving the minterm form of F from
the maxterm form of F
F=(A+B+CA+B+CA+B+CA+B+C)A+B+0QC)
F=(A+B+CA+B+CA+B+C) A+ B+ C)A+ B+C(C)
ABC + ABC + ABC + ABC + ABC

o T
Il Il

It is easy to translate a product-of-sums expression into a gate-level
realization. The zeroth level forms the complements of the variables if
they are needed to realize the function. The first level creates the indi-
vidual maxterms as outputs of OR gates. The second level is an AND
gate that combines the maxterms.



Figure 2.30 Four implementations of F.

We can find a minimized product-of-sums form by starting with
the minimized sum-of-products expression of F. To complement this
expression, we use DeMorgan’s law:

F = AC + BC
F = AC + BC
F=(A+C)B+C)

Figure 2.30 shows the four different gate-level implementations
for F discussed so far: canonical sum-of-products (F,), minimized sum-
of-products (F,), canonical product-of-sums (F;), and minimized product-
of-sums (F,). In terms of gate counts, the product-of-sums canonical
form is more economical than the sum-of-products canonical form. But
the minimized sum-of-products form uses fewer gates than the mini-
mized product-of-sums form. Depending on the function, one or the
other of these forms will be better for implementing the function.

To demonstrate that the implementations are equivalent, Figure 2.31
shows the timing waveforms for the circuits’ responses to the same
inputs. Except for short-duration glitches in the waveforms, their
shapes are identical.

Conversion between Canonical Forms We can place any Boolean function in
one of the two canonical forms, sum-of-products or product-of-sums.

2.4 Two-Level Logic
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100 200
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B | ' [
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F | |
F, : 'I

Figure 2.31 Timing waveforms for the four implementations of F.

It is easy to map an expression in one canonical form into the other.
The procedure, using the shorthand notation we already introduced, is
summarized here:

1.

To convert from the minterm expansion to the maxterm expansion,
you rewrite the minterm shorthand notation to maxterm shorthand,
replacing the term numbers with those not used in the minterm list.
This is equivalent to applying DeMorgan’s law to the complement of
the function in minterm form.

Example: F(A,B,C) = 2m(1,3,5,6,7) = I1M(0,2,4)

. To convert from the maxterm expansion to the minterm expansion,

you rewrite the maxterm shorthand notation to minterm shorthand,
replacing term numbers with those not used in the maxterm list.
This is equivalent to applying DeMorgan’s law to the complement of
the function in maxterm form.

Example: F(A,B,C) =11M(0,2,4) = 2m(1,3,5,6,7)

. To obtain the minterm expansion of the complement, given the min-

term expansion of the function, you simply list the minterms not
in F. The same procedure works for obtaining the maxterm comple-
ment of a function expressed in maxterm form.

Example:
F(A,B,C) = ¥m(1,3,5,6,7) F(A,B,C) = TIM(0,2,4)
F(A,B,C) = 2m(0,2,4) F(A,B,C) = T1M(1,3,5,6,7)

. To obtain the maxterm expansion of the complement, given the min-

term expansion of the function, you simply use the same maxterm
numbers as used in F’s minterm expansion. The same procedure
applies if a minterm expansion of the complement is to be derived
from the maxterm expansion of the function.

Example:
F(A,B,C) = Zm(1)3:5y617) F[A!B!C) = HM(Oy2:4)
F(A,B,C) = 1 M(1,3,5,6,7) F(A,B,C) = 2m(0,2,4)



2.4.2 Incompletely Specified Functions

We have assumed that we must define an n-input function on all of its
2" possible input combinations. This is not always the case. Often we
have some flexibility in the specification of a function. Making this
flexibility explicit permits optimization procedures to take that it into
account when trying to find the smallest or fastest circuit to implement
a function. We study the case of incompletely specified functions in
this subsection.

INCOMPLETELY SPECIFIED FUNCTIONS

Let’s consider a logic function that takes as input a binary-coded deci-
mal (BCD) digit. BCD digits are decimal digits, in the range 0 through 9,
that are represented by four-bit binary numbers, using the combina-
tions 0000, (0) through 1001, (9). The other combinations, 1010, (10)
through 1111, (15), should never be encountered. It is possible to sim-
plify the Boolean expressions for the function if we assume that we do
not care about its behavior in these “out of range” cases.

Figure 2.32 shows the truth table for a BCD increment-by-1 circuit.
Each BCD number is represented by four Boolean variables, A B C D.
The output of the incrementer is represented by four Boolean functions,
WXYZ

The output functions have the value “X” for each of the input com-
binations we should never encounter. When used in a truth table, the
value X is often called a don’t care. Do not confuse this with the value X
reported by many logic simulators, where it represents an undefined
value or a don’t know. Any actual implementation of the circuit will
generate some output for the don’t-care cases. When used in a truth
table, an X simply means that we have a choice of assigning a 0 or 1 to
the truth table entry. We should choose the value that will lead to the
simplest implementation.

w X Y Z

0 0 0 o0 0 0 0 1
0 0 0 t 0 0 1 0
0 0 1 O 0 0 1 1
0 0 1 1 0 1 0 0
0 1 0 o0 0 1 0 1
0 1 0 1 0 1 L 0
0 1 1t O 0 1 1 1
0 1 1 1 0O 0 O
0 0 O 1 0 0 1

1 0 0 1 0 0 0 0
1 0 1 0 X X X X
1 0 1 1 X X X X
1 1 0 O X X X X
1 1 0 1 X X X X
1 1 1 0 X X X X
1 1 1 1 X X X X

Figure 2.32 'Truth table for BCD increment by 1.

2.4 Two-Level Logic
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To see that don’t cares eventually are replaced by some logic value,
let’s consider the BCD incrementer truth table. The function Z looks as
if it could be realized quite simply as the function D. If we choose to
implement Z in this way, the Xs will be replaced by real logic values.
Since the inputs 1010, through 1111, will never be encountered by the
operational circuit, it shouldn’t matter which values we assign to those
truth table rows. We choose an assignment that makes this implemen-
tation as simple as possible.

DECIMAL DIGIT TO SEVEN SEGMENT DISPLAY
DECODER

Figure 2.33 shows a revised truth table for Seven Segment Display
Decoder that takes full advantage of the fact that the input bit patterns
1010 through 1111 should never be presented to the system. Note that
the last six rows of Figure 2.25 have been condensed into only two.
There are now don't cares in the input columns as well. The first of
these two rows tells us we have output don'’t cares for all the outputs
when the inputs are A =1, B=0, and C = 1 regardless of the value of
the input D (an input don’t care). This handles two cases: when D = 0
and when D = 1. The last row of this table captures the same meaning
as the last 4 rows of the truth table of Figure 2.25.

Don’t Cares and the Terminology of Canonical Forms In terms of the standard £
and I notations, minterms or maxterms assigned a don’t care are written
as d; or D, respectively. Thus, the canonical form for Z (from Figure 2.32)
is written as:

Z=my+m,+m, +m;+my+d,+d, +d, +dy+d, +d;s
Z = M;+M;+Mg+M,*MyeDyy+Dyy D+ DyyeDyy+ Dy

Notice that the same don’t-care terms appear in both expressions
because we can assign 0 or 1 for the don’t cares.

A B C D|CG ¢ G ¢ C C G
o 0 0 0|1 1 1 1 1 1 0
o 0 0 1 |0 1 1 0 0 0 0
o0 1 o1 1 0o 1 1 0 1
o 0 1 1|1 1 1 1 0 0 1
o1 0 O] o0 1 1 0 0 1 1
o 1 o 1|1 o0 1 1 0 1 1
o 1 1 o |1 o 1 1 1 1 1
o 1 1 1|1 1 1 0 0 0 0
10 0 0|1 1 1 1 1 1 1
10 0 1 11 0 0 1 1
10 X | X X X X X X X
I 1 X X | X X X X X X X

Figure 2.33 Seven-segment display controller truth table with don’t cares.
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Similarly, C, (from Figure 2.33) can be written as:

C, =my + my +m; + my + my+ my + I, +m, + Iy
+dy+d, +d, +d, +d, +d;
Cy, = My+DygeDyyeDyy e DyyeDyy e D

It is important to understand the terminology of Boolean functions.
Let’s introduce the principle definitions by way of the truth table of
Figure 2.32. This function is multi-output because it is represented by
four output bits defined over the same inputs. It is incompletely speci-
fied because it contains don’t cares in its outputs. For each of the func-
tion’s output columns, we can define three sets: the on-set, off-set, and
don’t-care set. The on-set contains all input combinations for which
the function is 1. The off-set and don’t-care set are defined analogously
for 0 and X, respectively. Thus, the on-set for the incrementer’s W out-
put is {[0,1,1,1], [1,0,0,0]}; its off-set is {[0,0,0,0], [0,0,0,1], [0,0,1,0],
[o,0,1,1], (0,1,0,0], [0,1,0,1], [0,1,1,0], [1,0,0,1]; and its don’t-care set is
{{1,0,1,0},11,0,1,1], [1,1,0,0], [1,1,0,1],[1,1,1,0],[1,1,1,1]}. In Figure 2.33
we see not only output don’t cares but also input don’t cares that are
used to condense the size of the truth tables.

Proper specification of don’t cares is critical for the successful oper-
ation of many computer-aided design tools that perform minimization of
Boolean expressions. It is impossible to extract all don’t care informa-
tion automatically. Designers must consciously include this information
in their design descriptions and documentation. Unfortunately, don’t
cares are not expressible in a schematic diagram. In the next chapter,
we’ll see how we can use hardware description languages to capture
incompletely specified functions.

2.5  Motivation for Two-Level Simplification

We can always use the rules of Boolean algebra from Section 2.1 to sim-
plify an expression, but this method has a few problems. For one thing,
there is no algorithm you can use to ensure that you’ve obtained a mini-
mum solution. When do you stop looking for a Simplification theorem
to apply? It might be easy when we have only a few variables, but many
large designs involve dozens or hundreds of variables. Another problem
is that you often have to make the expression more complex before you
can simplify it, for example, replacing (X + X) for 1 to add more terms
and actually make the expression temporarily bigger! We follow this
expansion with rearranging of terms to obtain advantageous groupings
that help to simplify the expression in a later step. It is against human
nature to climb out of such a local minimum in the hope of finding a bet-
ter global solution, the global minimum. But this is exactly what we
often have to do. And finally, it is just too cumbersome (and error prone)
to manipulate Boolean expressions by hand.

Given that computer-based tools have been developed for Boolean
simplification, why bother to learn any by-hand method, especially
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A B G
0 0 1
0 0
0 1
1 0

(b)

Figure 2.34 Two simple truth
tables.

Figure 2.35 Graph of the
arithmetic expression X = Y.

0.1 )

o X

Figure 2.36 Graph of the
Boolean expression X = Y.

when these break down for problems with many variables? Certainly no
by-hand method will be effective for equations involving more than six
variables. But you still need knowledge of the basic approach. Observ-
ing the symmetries in a circuit’s function helps to understand its behav-
ior and to visualize what is going on inside the circuit. As CAD tools
become ever more sophisticated, you need a deeper knowledge of the
algorithms they apply to use the tools effectively. And don’t forget that
CAD tools are written by mere mortals and do not always do things
right! You must still be able to check the output of the tool.

The Essence of Boolean Simplification Let’s look at what is really going on in
simplification with the simple truth table of Figure 2.34(a). The func-
tionis F = AB + AB. We can simplify this equation by applying one
of the Boolean simplification theorems, called the Uniting theorem:
AB + B) = A.

Notice that the two truth table rows that make up the on-set of F
have A asserted, while one row has B =0 and the other has B=1. For
the on-set, A’s value stays the same while B’s value changes. This
allows us to factor out B using the Uniting theorem.

Now examine Figure 2.34(b). The function is G = AB + AB.
Applying the Uniting theorem again, we obtain (A + A)B = B. Once
again, the on-set contains two rows in which B’s value does not change
(it is equal to 0) and A’s does change. Thus, we can factor out A,
leaving B.

The essence of simplification is to repeatedly find two-element
subsets of the on-set in which only one variable changes its value
while the other variables do not. You can eliminate the single varying
variable from the term by applying the Uniting theorem. Wouldn't it
be nice if there was a way to arrange the truth table rows so that the
entries to which this technique could be applied are obvious? We will
introduce two representations that will help us with this task: the
Boolean cube and the Karnaugh map. In this section, we will focus
on-hand methods, Chapter 3 will present computer algorithms for
performing two-level logic minimization that are based on the same
concepts.

2.5.1 Graphing Boolean Expressions

We can graphically represent algebraic expressions on multiple axes,
one for each variable. For example, the arithmetic expression X = Y can
be graphed on X and Y axes as a line as shown in Figure 2.35. The
Boolean expression X=Y can be graphed similarly, but with some
important differences, namely, X and Y do not take on continuous
values along the axes but can only take on the values 0 and 1. There-
fore, rather than a line we have two points: one at 0,0 and one at 1,1 as
shown in Figure 2.36.

This analogy can continue on to 3-dimensional spaces. In that case,
the three axes will define the points of a cube on which our Boolean
expressions will take on a true or false value.
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0L 11
Y
0 O——=01
X
X
l-cube 2-cube
0111
Y
0000 1000
X
3-cube 4-cube

Figure 2.37 Some n-dimensional cubes.

2.5.2 Boolean Cubes

A cube is usually defined as a solid object bounded by six equal
squares. This concept can be generalized to other than three dimen-
sions. A 2-dimensional cube is a square, a 1-dimensional cube is a line,
and a 0-dimensional cube is a point.

We can represent the truth table of an n-input Boolean function as
a “cube” in an n-dimensional Boolean space. There is one axis for each
variable, over which it can take on exactly two values: 0 or 1. For
example, the cube of Figure 2.36 is a 2-dimensional cube where the
value at the points 0,0 and 1,1 are 1 and the values at 0,1 and 1,0 are 0.

Figure 2.37 shows the form of Boolean 1-, 2-, 3-, and 4-cubes. Each
node in the figure is labeled with its coordinates in the n-dimensional
space. The structure generalizes beyond four dimensions, but it is
rather hard to visualize these complex cubes.

MAPPING TRUTH TABLES ONTO CUBES

Now let’s examine how to map a truth table onto a cube, using the sim-
ple examples of Figure 2.34. The elements of the on-set are represented
by black nodes and those of the off-set by white nodes (don’t cares are
represented by X nodes, although we do not have any in this example).

Figure 2.38 shows the mapping. Observe that the elements of the
functions’ on-sets are next to each other in the truth table’s Boolean cube.
This tells you that the Uniting theorem can be used to eliminate a vari-
able. In the figure, we have circled elements of the on-set that are directly
adjacent. We call such a circled group of nodes an adjacency plane. Each

1111

11

10
A

(a) Truth table of Figure 2.33(a)
as a 2-cube

01 11

00
A

(b) Truth table of Figure 2.33(b)
as a 2-cube

Figure 2.38 Examples of
mapping truth tables onto
cubes.
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adjacency plane corresponds to a product term. In Figure 2.38(a), the
circled nodes yield the term A; in Figure 2.38(b), the term is B.

You can think about these adjacencies as distances between nodes
in the Boolean cube. Two nodes are distance 1 apart if they are con-
nected by an edge in the cube. They are distance 2 apart if they are sep-
arated by a path of two connected edges. If this is the case, the two
nodes are on the same plane. Two nodes are distance 3 apart if they are
separated by a path of three connected edges and no shorter path exists
between the two nodes. Then the nodes are in the same 3-dimensional
cube.

In the on-set/adjacency plane of Figure 2.38(a), A’s value stays 1
while B’s varies between 0 and 1. This is the clue that the uniting
theorem can reduce the function to the single literal A. Similarly, in
Figure 2.38(b) the adjacency plane is circled, and the nodes involved
have B retaining its value while A varies. The Uniting theorem reduces
the expression to the term B.

As an example of a 3-variable function and its mapping onto a
3-cube, let’s return to the full adder’s carry-out function examined in
Section 2.2.2. The truth table and its mapping onto a 3-cube are shown
in Figure 2.39. The on-set is arranged on three 1-dimensional adja-
cency planes: the edges containing the nodes 011-111, 101-111,
and 110-111. In the first segment, along the top of the back side of the
cube, A varies between 0 and 1 while B and C;, remain asserted and
unvarying. This reduces to the term BC,,. For the second segment, the
vertical one at the back right, B varies, yielding the term AC,,. In the
final segment, C,, varies, and the resulting term is A B. The final

expression becomes

This method lets us obtain the final expression much more quickly
than using Boolean algebra. Note that each adjacency plane contrib-
utes one product term to the final expression. Since each plane is an
edge in a 3-dimensional cube, the two 3-variable minterms in the
plane are reduced to a single 2-variable product term.

—_—— e —m O OO0 O
—Oo— 0o —=0 =0
—_——o—00o

—_——_—0 O = =00

Figure 2.39 Full-adder carry-out truth table in a 3-cube.
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ADJACENCIES OF HIGHER DIMENSIONS

What about adjacency planes of higher dimensionality than single
edges such as a 2-dimensional plane within a 3-cube? Consider the
function depicted in the 3-cube of Figure 2.40. One entire face of the
cube is included in the on-set. Intuitively, we should expect this sur-
face to reduce to the single literal A because all other variables vary
between 0 and 1 within the surface except A which is true at all four
vertices.

Let’s verify that this is the case. The four line segments on the sur-
face are denoted by the nodes 110-111, 101-111, 100-101, and 100-
110. Applying the uniting theorem to each segment independently
yields the terms: AB, AC, AC and AB, respectively. We can continue
to apply the Uniting theorem:

AB+ AC+ AB+ AC= AB+B)+AC+C)=A+A=A

In the 3-cube, if the on-set completely covers a 2-dimensional plane,
that plane contributes a single 1-variable product term to the expres-
sion for the function.

For the 3-cube, the relationship between the dimensionality of the
adjacency plane and the term it represents is the following:

* A 0-dimensional adjacency plane, a single node, yields a three-
literal product term. For example, 101 = ABC. This is the same as a
minterm.

* A 1-dimensional plane, an edge, yields a two-literal product term.
For example, 100-101 = AB.

* A 2-dimensional plane yields a one-literal product term. For exam-
ple, 100-101-111-110 = A.

* A 3-dimensional plane, the whole cube, yields a term with no liter-
als in it; that is, it reduces to the constant logic 1.

This generalizes to cubes of higher dimensions. An m-dimensional
adjacency plane within an n-dimensional cube will reduce to a term
with n — m literals.

The fewer planes needed to include all of the 1s in the truth table,
the fewer the terms in the function’s final expression. Planes of higher
dimensionality generate terms with fewer literals in them. Thus,
computer-aided design algorithms for minimization attempt to find the
smallest number of the highest dimensionality adjacency planes that
contain all the nodes of the function’s on-set (perhaps including ele-
ments of the don’t-care set as well). This process is called finding a
minimum cover of the function.

2.5.3 Karnaugh Maps

The cube notation makes obvious the adjacencies among truth table
rows. Adjacencies provide visual clues as to where to apply the uniting

Figure 2.40 Higher
dimensions of adjacency.
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N

(O3]

Figure 2.42

theorem to elements of the on-set that are clustered in groups
of 2 (aline), 4 (a square), 8 (a cube), etc. within the n-dimensional cube
that represents the function. The problem for humans is the difficulty
of visualizing adjacencies in more than three dimensions. To circum-
vent this problem, at least for expressions up to six variables, we intro-
duce an alternative reformulation of the truth table called the
Karnaugh map or K-map. The problem of projecting multi-dimensional
spaces onto a 2-dimensional surface is not new. Cartographers have
been dealing with the problem ever since people started using maps.
Figure 2.41 shows a globe representing the 3-dimensional Earth. The
flat map next to it is a Mercator projection of the surface of the globe
onto two dimensions. Notice how features are distorted. However,
things that were close on the globe are still close on the map. We do
need to consider that the left and right edges of the map wrap around
and connect. The top and bottom edges come together at points corre-
sponding to the two poles.

General Concept A K-map for a Boolean function specifies values of the
function for every combination of the function’s variables. Figure 2.42

Figure 2.41 Mercator projection of the Earth. Similarly to the K-map, we need
to consider its left and right edges connected. Its top and bottom edge come
together at two points: the poles.

AB A AB A
c 00 o 1l 10 c 00 01 11 10
o| o 2 6 4 00| 0 4 |12 | 8
cli] 1 3 7 5 o1 1 s | 13| 9
B 1| 3 7 | 15| 1

C
10| 2 6 | 14 | 10
B

Two-, three-, and four-variable K-map templates.
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shows K-map templates for two-, three-, and four-variable Boolean
functions. The 2-dimensional K-map is very similar to the 2-dimen-
sional Boolean cube in appearance. Roughly, one can think of the
3-dimensional K-map as an unfolded cube much in the same way as
the Mercator projection is an unfolding of the surface of Earth’s sphere.
We must remember to keep in mind that the cells at one edge are adja-
cent to cells on the opposite edge. Unlike the Mercator map the top
and bottom edges are also adjacent. The entries are labeled with the
decimal equivalent of the binary number formed by joining the column
with the row indices. For example, entry 3 in the 3-variable K-map is
labeled by the column AB=01 and the row C=1 (ABC=011,=3). The
labels are included only for your convenience in filling in the K-map
from the truth table: they correspond to the row (or minterm) number
of the associated truth-table entry.

The only surprising thing is the ordering of the indices: 00, 01, 11, 10.
This is called a Gray code. It has the property that, when advancing
from one index to the next adjacent index, only a single bit changes
value. This property is not true for the standard numerically sequential
binary sequence: 00, 01, 10, 11.

The structure of the K-map is chosen so that any two adjacent
(horizontal or vertical, but not diagonal) elements are distance 1 apart
in the equivalent cube representation (they share a common edge).
This is shown in Figure 2.43 for a 3-variable K-map and 3-dimensional
Boolean cube. Note that K-map square 0 is adjacent to squares 1, 2,
and 4. The K-map actually folds back on itself in each dimension. The
elements in the rightmost column are adjacent to the elements in
the leftmost column; the elements in the top row are adjacent to the ele-
ments in the bottom row. Note that in this case there are only three
adjacent cells for cell 0 but four directions. Cell 1 is counted twice
because it is adjacent to 0 from above and below. Note that for this
K-map we did not show the variable values at the top of each column
and side of each row. Instead, we used a short-hand notation using the
bold bars, one for each variable, that indicate the region of the map
where the variable is true. Thus, A is 1 in the right half of the map
and O in the left. B is 1 in the middle two columns and C is 1 in the
bottom half.

010 | 110 | 100
001 | o011 111 101
B A

Figure 2.43 K-map adjacencies.
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B’

Figure 2.44 Two-variable maps
for the example functions of
Figure 2.34.

Figure 2.45 K-map for truth
table of Figure 2.39.

Figure 2.46 K-map for truth
table of Figure 2.40.

B

Figure 2.47 K-map for
f=2m(0,4,5,7).

TWO-VARIABLE MAPS

Figure 2.44 shows the two-variable maps for the example functions F
and G of Figure 2.34. The K-map is filled in directly from the truth
table. Each truth table row corresponds to a K-map entry. The values of
the variables index into a cell in the map, and the truth table’s output
value is placed into the K-map’s cell with that corresponding index.

On the left in Figure 2.44, the terms of the function are AB + AB
are denoted by the 1s in the A=1, B=0and A =1, B=1 map entries.
We can apply the Uniting theorem to reduce this to the single literal A.
The K-map shows immediately that the two entries are adjacent. The A
variable value remains unchanged while the B value varies from 0 to 1.
Looking at this group should tell you that the B term can be elimi-
nated, leaving us with A.

The same analysis holds for the right side of Figure 2.44. The func-
tionis AB + AB, and its on-set is row adjacent in the K-map. This dem-
onstrates the advantage of the K-map over the truth table for recognizing
adjacencies. A varies from 0 to 1 while B holds at 0 for this K-map row.
We can reduce the function to the single literal B.

MAPS

Figure 2.45 shows the three-variable K-map for the full adder carry-out
function of Figure 2.39. You can see that three different two-element
adjacencies cover the on-set (recall that adjacency is not defined for
diagonal entries). The first is the column indexed by A =1, B=1. Since
C,, varies from 0 to 1, that variable can be eliminated, yielding the term
AB. The second is the adjacency indexed by A=0,B=1, C,,=1 and
A=1,B=1, C, =1. Avaries while B and C;, remain unchanged, yield-
ing the term BGC,,,.

The final adjacency is indexed by A=1, B=1, C,,=1 and A=1,
B=0, C,=1. B varies and A and C,, remain unchanged, resulting in
the term AC,,. Once again, the labeled bar at the top of the K-map
reminds us that A remains unchanged within the last two columns and
A in the first two columns. The final expression is AB + BC,, + AC,,.
There is one term in the reduced expression for each circled adjacency
group in the K-map.

Let’s revisit the function of Figure 2.40. Its K-map is given in Fig-
ure 2.46. The four elements of the on-set are adjacent, and we can cir-
cle them all. Within this grouping, both B and C vary while A remains
asserted, reducing to the single literal A.

Another case of adjacency is illustrated by Figure 2.47, which
shows the K-map for the function F(A, B, C)=m,+ m, + mg + m,.
Recall that the leftmost and rightmost columns of the K-map are adja-
cent. Thus, we can combine mo(;\BC_f) and m4[A§C_f) to form the term

BC. We also can combine mg and m, to form F = AC + BC.

You might be tempted to circle the terms m, and m, as they are
also adjacent. But you obtain the most reduced solution only by find-
ing the smallest number of the largest possible adjacency groups that
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completely cover the on-set. Recall that the number of groups equals
the number of product terms, and larger groupings have a smaller
number of literals. The term formed from m, and m; is redundant,
because both entries already are covered by other terms. We will
become more formal about the process of obtaining the minimum solu-
tion a bit later on in this section.

K-maps provide a good mechanism for finding the reduced form of
the complement very quickly. Figure 2.48 contains the K-map for the
complement of Figure 2.47. All we have done is to replace the 0s with
1s and vice versa. The complement can be read out immediately as
F = BC + AC. Contrast this method with the method using Boolean
algebra:

F = AC + BC
F = AC+ BC
= m[ﬁ_ﬁ'l DeMorgan’s law
= (AC)(BC) DeMorgan’s law
=(A+C)B+C) DeMorgan’s law
= AB + AC + BC + CC Distribution law
= AB + AC + BC Complement and identity

= AB(C + C)+ AC + BC  Complement and identity

= ABC + AC + ABC + BC Distribution and commutivity

= AC + ABC + BC X+ XY = X,withX = AC,Y =B
= AC + BC v X+ XY =X, withX=BC,Y =A

The K-map yields the result much more quickly!

FOUR-VARIABLE MAPS

Now let’s consider a 4-variable function F(A,B,C.D)=Xm
(0,2,3,5,6,7,8,10,11,14,15). The K-map is shown in Figure 2.49.
Remember that the strategy is to cover the on-set with as few groups as
possible, so we must try to find large groups of adjacency. Also, don't
forget that the number of elements in an adjacency group is always a
power of 2 and the grouping does form a cube in some number of
dimensions.

The elements m,, m,, m,;, m,, m,,, m,;, m,,, m;; form an adjacency
group of eight in the bottom half of the map. This collapses to the sin-
gle literal C. (Recall that a 3-dimensional plane within a 4-dimensional
cube yields a term with 4 —3 =1 literal.) The elements mg and m,
result in the term ABD (a 1-dimensional plane in a 4-dimensional
space results in a term with 4 —1 =3 literals). The final grouping
involves the corner terms: m,, m,, m,, m,,. To see this adjacency, you
must remember that the map folds around in both dimensions.

A

B

Figure 2.48 Complement of
Figure 2.47.

B

Figure 2.49 K-map of a
4-variable function.
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Examining Figure 2.49 should make this clearer. In the figure, look
for the minterm indices 0000, 0010, 1000, and 1010. These corner
elements in the K-map reduce to the term BD (a 2-dimensional plane
within a 4-dimensional space results in a term with 4 — 2 = 2 literals).
Figure 2.50 shows this 2-dimensional sub-cube shaded inside the larger
4-cube. The entire top half of the 4-dimensional cube is the 3-dimen-
sional cube described as C. The 1-dimensional cube consisting of indi-
ces 0101 and 0111 completes the cover. The minimized form of the
function is

F=C+ ABD + BD

Finding the Minimum Product-of-Sums Form The K-map can also be used
to find a function’s minimum product of sums expression. In this
case we search for elements of the off-set, simply circling the maxi-
mal adjacent groups of 0s. We interpret the indices in a fashion
complementary to the procedure for finding the minimum sum of
products expression. If the variable that is left unchanged in a
grouping of 0s has an index of 0, then that variable contributes an
asserted literal to the term. If the index is 1, it contributes a comple-
mented literal.

This method works because we begin by solving for the func-
tion’s complement in sum of products form, by circling the Os.
Then we apply DeMorgan’s law to get a product of sums expression
by interpreting the indices as complements. Let’s look at an
example.

Let’s reconsider the K-map in Figure 2.49. F in minimum sum of
products form is found by circling the K-map’s 0s rather than its 1s:
F = BCD + ACD + BCD. By applying DeMorgan’s law, we get F in the
product-of-sums form:

F = BCD + ACD + BCD
F=(B+C+DJ(A+C+ D(B+C+D)
0111 111
C
0000 1000
B

Figure 2.50 The adjacency of the four corner squares of
the K-map when viewed in the 4-cube.
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Figure 2.51 shows the same K-map as Figure 2.49, but this time
with the 0s circled. You can see that there are three groups of two
Os each that are needed to cover the function’s complement. Since
these are 1-dimensional adjacency groups in a 4-dimensional space,
there are three literals in each term. The term formed from M, and
M,is (B+ C + D): B, C, and D remain unchanged and B’s index
is 1 while C’s and D’s are 0. This is just shorthand for applying
DeMorgan’s law to the BCD term of the complement. The terms
formed from M,, M, and M,, M,, are (B + C + D)and (A + C + D),
respectively. Each term is ANDed to form the final expression (same
as the above).

Don’t Cares in K-Maps The last wrinkle we consider is the use of don’t
cares within the K-map. Figure 2.52 shows a K-map for the function
F(A,B,C,D)=% m(1,3,5,7,9) + £ d(6,12,13). The group of four elements
reduces to AD. If we assume that the Xs are all 0, we can cover the
remaining member of the on-set with the term BCD. However, if we
assume that the element d,, is 1 (while d; and d,, are 0), we can form a
larger adjacency group that yields the term CD. This has fewer liter-
als. Thus, by appropriately choosing the values of the don’t cares, we
can maximize the size of the adjacency groups. The expression for F
becomes AD + CD.

In product-of-sums form, the shorthand expression is written as
F(A,B,C,D) =11 M(0,2,4,8,10,11,14,15) - [1 D(6,12,13). Figure 2.53 shows
the groupings we use to find the minimum product-of-sums form. We
form a group of eight 0s (remember that the top and bottom rows are
adjacent) and one of four 0s by judicious use of don't cares (D, D,, = 0,
D,,=1). The expression for F becomes D(A + C).

Let’s now revisit the function C, for the BCD display of Section
2.3.5. Recall that the expression for C, derived from the truth table of
Figure 2.25 was:

C,=my+m +my+m, + Mg + mg +m, + my + my
+dy+d, +d, +d; +d, +d;

Through a lot of manipulation of Boolean expressions, we were

able to simplify it to the following:
C, = AB + BC + AD

However, we did not take advantage of the many don’t cares that
are available. Let’s see if Karnaugh maps can help us achieve the
same result and improve upon it. Two K-maps for C, are shown in
Figure 2.54. The one on the left shows a cover that does not use don’t
cares. This corresponds exactly to the expression we derived labori-
ously using Boolean algebra. The K-map on the right shows that we
can simplify the expression even further and much more easily (to
only three literals instead of six and utilizing only one 3-input OR

A

B

Figure 2.51 K-map of a
4-variable function.

B

Figure 2.52 Use of don’t-care
entries in the K-map.

A

B

Figure 2.53 Groupings for
product of sums form.
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A A
Yl 1 X |1 1 | X 1
| 1 X | 1 1| 1 X 1
|
‘1 1| X | X 1T | X X
‘0 1 X | X 0 1 X X
B B

Figure 2.54 K-maps showing covers with and without the use of don’t cares
for the output C, of Figure 2.25.

gate) by exploiting the don’t cares available to us. The more minimized
expression is:

C,=B+C+D

Note that although it would have been possible to derive this much
more minimized form by using the don’t cares in our Boolean manipu-
lations, it would have been considerably more difficult, especially
when the potential end result is not known. K-maps can save a lot of
time when we deal with functions of only a few variables. For larger
numbers of inputs we will require automated methods.

2.6  Multilevel Logic

At this point, given a Boolean function expressed in minterm or max-
term canonical form, we now have a pretty good idea as to how we can
reduce it into a minimal two-level form with the fewest terms and
literals. In this section, we’'ll see that we can often do better than a two-
level form. By better, we mean a smaller number of gates with a
smaller number of inputs to each gate. We can achieve this improve-
ment if we abandon the restriction of just two levels of logic (AND-OR
or OR-AND) and instead consider an arbitrary number of levels. We’ll
see later that this greatly complicates the process of minimizing func-
tions but it usually leads to smaller and faster implementations.

Let’s begin by considering the function Z (A, B,C, D, E, F, G):

Z = ADF + AEF + BDF + BEF + CDF + CEF + G

It is already in its minimal sum of products form. Its implementa-
tion as a two-level network of AND and OR gates requires six 3-input
AND gates and one 7-input OR gate, a total of seven gates and 19 liter-
als (see Figure 2.55(a)).

We can do better if we replace the two-level form with a so-called
factored form. We express the function with common literals factored
out from the product terms wherever possible.
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Figure 2.55 Multilevel circuit implementation.

By recursively factoring out common literals, we can express the
function Z as:

(AD + AE + BD + BE + CD + CE)F + G
(A+B+C)D+(A+ B+ CEIF+G
(A+ B+C)D+ E)F +G

VA
VA
VA

Expressed as a series of expressions, each in the two-level form, Z
becomes

Z = XYF +G
X=A+B+C
Y=D+E

When written this way, the function requires one 3-input OR gate,
two 2-input OR gates, and a 3-input AND gate for a total of four gates
and nine literals. The intermediate functions X and Y count as literals
in the final expression for Z.

The implementation of the factored form is shown in Figure 2.55(b).
The number of wires and gates needed to implement the function is sig-
nificantly reduced, but this implementation may have worse delay
because of the increased levels of logic. On the other hand, the 7-input
OR gate of the two-level implementation is likely to be quite slow. In
general, it is difficult to tell a priori whether a two-level or multilevel
implementation will be faster or smaller. However, multilevel imple-
mentations tend to use gates with fewer inputs (because expressions are
factored), which tend to be faster; however, their multiple levels of logic
can add up to a larger combined delay than a two-level implementation
with two levels of larger and slower gates.

2.6 Multilevel Logic
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FULL ADDER

We have seen multilevel logic already in this chapter in our discussion
of the full-adder implementation in Section 2.2. The full adder of Fig-
ure 2.19 is implemented using two halfadders and an OR gate. If we show
the gate logic for this circuit by looking into the half-adder boxes, the
circuit would be as shown in Figure 2.56(a). If we remove the XOR gates
and use only AND and OR gates, we obtain the circuit of Figure 2.56(b),
which we will use as the reference multilevel design for the remainder
of the discussion. Note that there are five levels of logic (in the worst case
and not counting inverters at the inputs) from the inputs to the outputs.
This is the case for the Sum output, C,, has four levels. Figure 2.57
shows the two-level implementation for the full adder taken directly
from the equations of Section 2.2:

Sum = (ABC,) + (ABC,,) + (ABC,,) + (ABC,,)
C,. = (AC,) + (BC,)) + (AB)

out

Sum

(a)

Sum

(b)

Figure 2.56 Multilevel circuit implementation of the full adder: (a) using
XOR gates, and (b) not using XOR gates.



Sum

Figure 2.57 Two-level circuit implementation of the full adder.

There is quite a bit difference between the two implementations.
A count of gates shows that the multilevel implementation uses three
2-input OR gates, six 2-input AND gates, and four inverters for a total
of 13. The two-level implementation uses one 4-input OR gates, one
3-input OR gates, four 3-input AND gates, three 2-input gates, and
three inverters, for a total of 12. If we do not count inverters used at the
inputs, then the multilevel implementation uses 10 gates (one of
which is an inverter), while the two-level implementation uses nine
gates. In terms of wires, the multilevel implementation has 22 wires
while the two-level implementation has 28. The number of wires is
computed by simply counting the inputs to every gate in each circuit
(inverters included).

But gate and wire counts don’t tell the entire story. Note that all the
gates in the multilevel implementation have (at most) 2 inputs, while in
the multilevel implementation we have many 3-input gates as well as
one 4-input OR gate. The larger fan-in gates will be slower and their
propagation delay increases more than linearly with the number of
inputs. Therefore, it is a good rule-of-thumb to not use gates with more
than four inputs. Remember that this is only a rule-of-thumb, and in the
real circuit, there are many other factors that affect the speed of a gate.

Let’s revisit our circuits and see which may be faster than the other.
The multilevel implementation has a worst-case delay for its Sum output
through four 2-input gates and an inverter (again, we don’t count input
inverters as it could easily be the case that the complement of input sig-
nals are readily available and we may not, in fact, need the input invert-
ers). We can say that the delay will be proportional to four basic gate
delays plus one inverter delay. For the two-level implementation, the

2.6 Multilevel Logic
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worst-case delay (also for the Sum output) involves a 3-input gate and
one 4-input gate. Typically, a 3-input gate is at least twice as slow as a
2-input gate, and a 4-input gate is at least another factor of two slower
than that (approximately two and four basic gate delays).

In summary, for this example, the multilevel implementation seems
to win in terms of delay and number of wires while the two-level
implementation uses less gates. When designers have to make a choice,
these are some of the comparisons they consider, however, there are
others such as the parts that are actually available for constructing the
circuits. We’ll discuss the technologies and parts available in Chapter 4.

2.7 Motivation for Multilevel Minimization

We can obtain minimized two-level logic networks from the canonical
sum of products or product of sums form, by applying Boolean algebra,
as well as other reduction methods we will introduce in the next chap-
ter. Signal propagations can be fast, because no signal has to travel
through more than two gate levels (not counting zeroeth-level inver-
sions). As we have seen from the full-adder example of the previous
section, the drawback is the potential for large gate fan-ins, which can
reduce gate performance and increase circuit area in some technologies.
In many technologies, gate-level building blocks with more than four
inputs are rare. Most only have two or three. Large fan-in gates are
found in programmable two-level logic but in a limited way, namely, to
form product terms of many inputs. Field-programmable gate arrays,
larger and more general programmable logic components, also limit the
number of inputs to a logic function for two common reasons: to make
the programmable logic blocks smaller and to use less wiring resources
to interconnect signals between logic blocks. Thus, in virtually all prac-
tical gate-level realizations of a logic network, large fan-in gates must be
replaced by a multiple-level network of smaller fan-in gates. This moti-
vates much of the interest in automatic multilevel logic optimization.

An optimal two-level network uses the smallest number of product
terms and literals to realize a given truth table. It is not so easy to
define optimality for multilevel networks. Is the network optimal if it
has the smallest number of gates? Or is it more critical to have the few-
est literals in the resulting expression (corresponding to number of
wires)? Or is the number of inputs per gate a major consideration in
the technology being used?

To get a taste for how to simplify multilevel expressions, we will
discuss a useful way to represent such expressions, and the kinds of
operations that can be applied to them to achieve their simplification.
The actual methods used by modern computer-aided design tools will
be described in the next chapter.

2.7.1 Factored Forms

The standard way to represent a multilevel equation is in a factored form.
Simply stated, this is an expression that alternates between AND and OR
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Figure 2.58 Graphical representation of a factored form with simple nodes.

operations, a kind of “sum-of-products of sums-of-products....” The
following function is in factored form:

X = (AB + BC)IC + D(E + AC)] + (D + E)FG)

Examining the expression, we see that no further subexpressions can
be factored out. For the purpose of counting literals, the factored form
for X can be rewritten as a sequence of two-level expressions:

X = FF, + FF, F,=D+E
F, = (AB + BC) F, = FG
F, = C + DF, F, = E+ AC

The structure of the expression is a little clearer if it is represented
in the form of a graph or tree, where the “leaves” represent literals and
the internal nodes represent either an AND or OR operation. This
graphical representation is shown in Figure 2.58. For the most part, the
ANDs and ORs alternate between adjacent nodes of the tree.

2.7.2 Criteria for Multilevel Simplification

In modern logic families, designers have observed that gates (internal
nodes of the graph of Figure 2.58) require relatively little circuit area
but connections (edges of the graph) use significant area. Stated in a
different way, the implementation complexity is strongly related to the
number of wires used to construct a circuit. Because the number of
internal connections scale with the number of literals, it is a reason-
able strategy to attempt to minimize the number of literals. This can be
accomplished, in part, by having more complex expressions at each of
the nodes in the graph and choosing them judiciously so that they are
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F;=E + AC'

Figure 2.59 Graphical representation of a factored form with complex nodes.

likely to be reused. Figure 2.59 shows the corresponding complex
graph for the particular intermediate functions chosen previously.

To count the number of literals in a multilevel expression, simply
add up the number of literals found in its equivalent implementation
in terms of two-level expressions. For the function X, as depicted in
Figure 2.59, the literal count is 18. Note that when they are referenced
in expressions, the intermediate functions F,, F,, F,, F,, and F; count as
literals. One of the important choices to be made in multilevel optimi-
zation is how to group the nodes into intermediate expressions that
can be reused multiple times.

Why is this factored form useful? It has 18 literals instead of our
original 13. Won't the realization of the factored form have more
wires? In answering these questions we have to keep one important
thing in mind: the technology we are using to realize our circuit. Our
original expression may have had fewer literals but there may not be
building blocks available that can build it directly. We may be forced
to use expressions with a larger total number of literals just to make it
possible to build the circuit. This is referred to as the technology-
dependent optimization step and it can have a major impact on the
number of gates, wiring complexity, and delay of our circuit.

In the next chapter, we will provide an overview of an approach
to multilevel logic minimization. There are five basic technology-
independent operations for manipulating multilevel networks: (1) decom-
position, (2) extraction, (3) factoring, (4) substitution, and (5) collapsing.
We will describe each of these operations and illustrate how each alters
the structure of a multilevel implementation. By using the right sequence
of transformations, we strive to transform the design into something that
better meets our constraints of speed, size, or parts used. Unfortunately,
unlike for two-level logic minimization, there is no procedure that will
guarantee we will find the minimal expression. Heuristics (rules-of-
thumb) are used that are known to do well most of the time—but with no
guarantees!

FULL ADDER

You might be wondering if the transformations on multilevel logic can
help us transform the two-level implementation of the full adder in



Figure 2.57 to the multilevel implementation in Figure 2.56. Our two-
level expressions for Sum and C,,, are:

Sum = (ABC, ) + (ABC, ) + (ABC,,) + (ABC,,)

mn n

G = (AC,) + (BC,,) + (AB)

Looking at Sum we can see that it can be easily factored into two
expressions based on A and A.

The next step is to realize that we have two subexpressions that
are related in that they are complements of each other. Multilevel
logic optimizations systems looks for opportunities involving terms
that are complements of each other. If we give this subexpression a
new name, X, then we can rewrite Sum as:

Sum = AX + AX
X = BC, + BC,

Note that Sum is now clearly the XOR of A and X and X is in turn the
XOR of B and C,,. Turning to C,,, we see that it, too, can be factored
although less completely. Since we chose to factor based on A for Sum,
we’ll choose to use A again as this will increase the likelihood of find-
ing common subexpressions:
Cout = A(Cin + B) + [BCin)
At this point, we can step back and change the expression for C,, + B
into canonical two-level form and re-factor the expression yielding:
Con = ABC,, + BC,, + BC,) + (BC,,)

mn

Coul - A[Bcin + B in) + BCin (1 + A)

Note that now we have another use of X:

We have completed the transformation we set out to accomplish and
can verify that our final equation for Sum and C,,, correspond exactly
to the multilevel circuitry of Figure 2.56.

CHAPTER REVIEW

In this chapter, we have introduced a variety of primitive logic build-
ing blocks: the NOT, AND, OR, NAND, NOR, XOR, and XNOR gates,
with which we can implement any Boolean function. We have also
presented the two primary canonical forms for describing a Boolean

Chapter Review
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function: sum-of-products and product-of-sums. A function may have
many equivalent Boolean expressions but only one representation in a
canonical form. Logic minimization, to be discussed in more detail in
the next chapter, seeks to find the equivalent expression with the min-
imum number of terms and the fewest literals per term. Don’t-care
conditions on the inputs can be used to simplify the expression sub-
stantially. Reduced expressions lead to realizations of circuits with the
fewest gates and the fewest inputs, at least if the target is a two-level
circuit realization.

The final section dealt with the concept of multilevel logic and
introduced its advantages in terms of reduced literal counts and sim-
plified wiring complexity. Multilevel logic introduces the possibility
of increased circuit delay by placing additional levels of gates between
inputs and outputs. In general, two-level logic tends to yield the fastest
implementations and multilevel logic results in circuits with fewer
wires requiring less area for implementation. However, the precise
details of the technology we use, the area and speed of the different
logic building blocks we have available, can make a big difference in
any decision.

[ FURTHER READING

George Boole’s original work defining Boolean algebra was already ref-
erenced at the end of Chapter 1. Obviously, he did not have computer
hardware in mind at the time. Instead, he attempted to develop a math-
ematical basis for logic. The set of basic axioms presented in
Section 2.1 are called Huntington’s axioms. These were published by
E. V. Huntington in a paper entitled “Sets of Independent Postulates
for the Algebra of Logic,” in Transactions of the American Mathemati-
cal Society (Volume 5) in 1904. C. E. Shannon was the first to show
how Boolean algebra could be applied to digital design. The K-map
method was described in an article by M. Karnaugh in 1953 (“A Map
Method for Synthesis of Combinational Logic Circuits,” Transactions
of the AIEE, Communications and Electronics, 72, 1, pp. 593-599,
November 1953). Interestingly, despite the fact that Karnaugh is given
the credit, the original idea is from E. W. Veitch (“A Chart Method for
Simplifying Boolean Functions,” Proceedings of the ACM, May 1952,
pp. 127-133). The major difference is in how the boxes of the map are
labeled: Karnaugh used the familiar Gray-code scheme and Veitch
used an alternative “distance 1” code, which is somewhat harder to
remember and did not gain as much popularity.

All digital-design textbooks describe Boolean simplification in
one form or another. For alternative explanations, see J. F. Wakerly,
Digital Design Principles and Practices, Third edition, Prentice Hall,
New Jersey, 2000; M. M. Mano and C. R. Kime, Logic and Computer
Design Fundamentals, Third edition, Prentice Hall, New Jersey, 2000;
and D. D. Gajski, Principles of Digital Design, Prentice Hall, New
Jersey, 1997.
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EXERCISES

(Truth Tables and Gate Logic) Derive a gate-logic implementa-
tion for the three functions in the truth table of Figure 2.3. Try to
come up with as small an implementation as you can in terms of
gate count.

(Gate Logic) Draw schematics for the following functions in
terms of AND, OR, and NOT gates.

(@ X + 2)
(b) XY + XZ
() X+ 2)
d X+YZ

(e} W(X +YZ)

(Gate Logic) Draw the schematics for the following functions
using NOR gates and inverters only:

(@ X+ +2)

b) (X+Y)+(X+ 2Z)

(Gate Logic) Draw the schematics for the following functions
using NAND gates and inverters only:

(@) [X(Y2)
(b) XY + XZ

(Gate Logic) Design a hall light circuit to the following
specification. There is a switch at either end of a hall that
controls a single light. If the light is off, changing the position
of either switch causes the light to turn on. Similarly, if the
light is on, changing the position of either switch causes the
light to turn off. Write your assumptions, derive a truth table,
and describe how to implement this function in terms of logic
gates.

(Laws and Theorems of Boolean Algebra) Prove the following
simplification theorems using the first eight laws of Boolean
algebra:

(@A X+YV)(X+Y)=X

b XX+Y)=X

() (X +7Y)Y = XY

d X+Y)X+2Z)=XZ + XY

(Laws and Theorems of Boolean Algebra) Verify that

(a) OR and AND are duals of each other

(b) NOR and NAND are duals of each other
(c) XNOR and XOR are duals of each other
(d) XNOR is the complement of XOR:

(XY + XY) = XV + XY

Exercises
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2.8

2.9

2.10

2.12

2.13

2.15

(Laws and Theorems of Boolean Algebra) Prove, using truth
tables, that:

(@) XY +YZ+XZ=YZ+ XZ

(b) (A+ BB = AB

(c) (A+BJ(A+C)= AC + AB

(d) ABC + ABC + ABC + ABC + ABC = BC + AB + AC
(Laws and Theorems of Boolean Algebra) Prove, using the the-
orems of Boolean algebra, that BC + AB + AC = ABC + A.
(Laws and Theorems of Boolean Algebra) Use DeMorgan’s
law to compute the complement of the following Boolean
expressions:

(a) A(B+ CD)

(b) ABC + B(C + D)

(c) X+ Y
d X+YZ
() (X +Y)Z
O X+ 2

(g) X(Y +ZW + VS)

(Laws and Theorems of Boolean Algebra) Form the comple-
ment of the following functions:

(a) f(A,B.C,D) = [A + BCDIAD + B(C + A)]
(b) f(A,B,C,D) = ABC + (A + B + DYABD + B)

(Laws and Theorems of Boolean Algebra) Using Boolean alge-
bra, verify that the schematic of Figure Ex. 2.12 implements an
XOR function.

X XORY

Figure Ex. 212 XOR implemented by NAND gates.

(Laws and Theorems of Boolean Algebra) Demonstrate that a
2-input NOR gate is a universal logic element. You can do this by
showing how they can be used to make: NOT, AND, OR, and XOR
gates. Remember that each input of the NOR gates must be used, it
can not be left unconnected. Is an XOR gate a universal logic ele-
ment? Why or why not? What about a 2-input NAND gate?

(Block Diagrams) Given the truth table for the half adder, show
that the composition of two half adders and an OR gate, as in
Figure 2.19, yield the same truth table as the full adder.
(Waveform Verification) This chapter has described two differ-
ent gate-level implementations for a full-adder circuit: direct



2.16

2.17

2.19

2.21

implementation from the Boolean equations derived in Section 2.2
and hierarchical implementation via cascaded half adders, as in
Figure 2.19. Would you expect the waveform behaviors of these
implementations to be identical? Justify your answer.

(Block Diagrams) Using the formulas for the two full-adder
outputs, derive expressions for the three outputs of the 2-bit
adder of Figure 2.20 in terms of the 2-bit inputs A and B.
(Boolean Simplification) Simplify the following functions
using the theorems of Boolean algebra. Write the particular law
or theorem you are using in each step. For each function, by how
many literals did you reduce its representation?

(@ f(X,Y)= XY + XY

(b) fX)Y)=(X+Y)X +7)

(c) f(X Y, Z)=YZ + XYZ + XYZ

d fIXY,Z)=(X+Y)X+Y+2)X+Y + 2)

(e fW,X,Y,Z) =X+ XYZ + XYZ + XY + WX + WX

(Boolean Simplification) Consider the function:
f(A,B,C,D) = (AD + AC)B(C + BD)].

(a) Draw its schematic using AND, OR, and NOT gates.
(b) Using Boolean algebra, put the function into its minimized
form and draw the resulting schematic.

(Canonical Forms) Consider the function:
f(A,B,C,D) = = m(0,1,2,7,8,9,10,15).

(a) Write this as a Boolean expression in canonical minterm
form.

(b) Rewrite the expression in canonical maxterm form.

(c) Write the complement of f in “little m” notation and as a
canonical minterm expression.

(d) Write the complement of f in “big M” notation and as a
canonical maxterm expression.

(Canonical Forms) Consider the function:
f(A:BsC’D) =% m[l, 2, 3, 5, 8, 13)

(a) Write this as a Boolean expression in canonical minterm
form.

(b) Rewrite the expression in canonical maxterm form.

(c) Write the complement of f in “little m” notation and as a
canonical minterm expression.

(d) Write the complement of f in “big M” notation and as a
canonical maxterm expression.

(Canonical Forms) Consider the function:

f(A,B,C) = AB + BC + AC

Exercises
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2.22

2.23

2.24

2.25

(a) Express the function in canonical sum-of-products form.
Use “little m” notation.

(b) Expressthe complement of the function in canonical product-
of-sums form. Use “big M” notation.

(Canonical Forms) Given the following function in sum-of-
products form (not necessarily minimized):

F(A,B,C,D) = ABC + AD + AC

Re-express the function in:

(a) Canonical product-of-sums form. Use IT M notation.

(b) Minimized product-of-sums form.

(c) F in minimized product-of-sums form.

(d) F inminimized sum-of-products form.

() Implement F and F using NAND gates only. You may
assume that literals and their complements are available.

() Implement Fand F using NOR gates only. You may assume
that literals and their complements are available.

(Canonical Forms and Boolean Simplification) Given the follow-
ing function in product-of-sums form, not necessarily minimized:

FW.X,Y,Z)=(W+ X + Y)W + Z)W +Y)

(a) Express the function in the canonical sum-of-products
form. Use “little m” notation.

(b) Re-express the function in minimized sum-of-products
form.

(c) Express F in minimized sum-of-products form.

(d) Re-express F in minimized product-of-sums form.

(Boolean Simplification) Using K-maps, find the following:

(a) Minimum sum-of-products form for the function and its
complement given in Exercise 2.19.

(b) Minimum product-of-sums form for the function and its
complement given in Exercise 2.19.

(Boolean Simplification) Use Karnaugh maps (K-maps) to sim-
plify the following functions in sum-of-products form. How
many literals appear in your minimized solutions?

(@) f(X,Y,Z)=11M(0,1,6,7)
(b) f(W,X,Y,Z)=11 M(1,3,7,9,11,15)
(c) f(AB,C,D) =3 m(0,2,4,6)

(Boolean Simplification) Determine the minimized realization
of the following functions in the sum-of-products form:

(a) f(W,X,Y,Z) =3 m(0,2,8,9) + 2 d(1,3)
(b) fW,X,Y,Z) = 2 m(1,7,11,13) + 3 d(0,5,10,15)
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2.28

2.29

2.30

2.31

2.32

() f(AB,C,D) = 3 m(1,2,11,13,14,15) + = d(0,3,6,10).
(d) f(A,B,C,D) = Il M(2,5,6,8,9,10) * T1 D(4,11,12).

(Boolean Simplification) Use the K-map method to find the
minimized product-of-sums expressions for the following Bool-
ean functions:

(a) f(ABC)=A®B&C

(b) f(A,B,C) = AB + BC + AC

(e f(AB,C,D) = 2 m(1,3,5,7,9) + = d(6,12,13)
(d) f(AB,C,D) = I1 M(0,1,6,7)

(e) f(AB,C,D) = 3 m(0,2,4,6)

(Boolean Simplification) Simplify the following expressions
using the laws and theorems of Boolean algebra:

(a) S(A,B,C) = ABC + ABC + ABC + ABC
(b) F(A,B,C) = ABC + ABC + ABC + ABC + ABC + ABC
(c) G(A,B,C,D) = ABGD + ABCD + ABCD + ABCD

+ ABCD + ABCD

(Boolean Simplification) Use K-maps on the expressions of
Problem 2.28. Show your work in K-map form. From 2.28 (a)
through (c):

(a) Find the minimized sum-of-products form.

(b) Find the minimized product-of-sums form.

(c) Find the minimized sum-of-products form of the function’s
complement.

(d) Find the minimized product-of-sums form of the function’s
complement.

(Laws and Theorems of Boolean Algebra) Simplify the fol-
lowing expressions using the laws and theorems of Boolean
algebra:

(a) W(A,B,C) = ABC + ABC + ABC + ABC
(b) X(A,B,C) = ABC + ABC + ABC + ABC
(c) Y(AB,C.D) = ABCD + ABCD + ABCD + ABCD
+ ABCD + ABCD
(Karnaugh Map Method) Use K-maps on the expressions of
Exercise 2.30. Show your work in K-map form.

(a) Find the minimized sum-of-products form.

(b) Find the minimized product-of-sums form.

(c) Find the minimized sum-of-products form of the function’s
complement.

(d) Find the minimized product-of-sums form of the function’s
complement.

(Karnaugh Map Method) There may be more than one true min-
imum equivalent form for a given Boolean expression. Demon-
strate this by drawing a 4-variable K-map that has two different

Exercises
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2.33

2.34

2.35

minimized forms for the same Boolean expression, each with
the same number of terms and literals.

(Karnaugh Map Method) Using a 4-variable K-map, fill it with
1s and Os to find a function that illustrates the following points.
Write the expressions for each of the requested forms and count
the number of terms and literals for each one:

(a) The minimized sum-of-products and product-of-sums forms
have the same number of terms and literals.

(b) The minimized sum-of-products form has fewer terms and
literals than the minimized product-of-sums form.

() The minimized product-of-sums form has fewer terms and
literals than the minimized sum-of-products form.

(Incompletely Specified Functions) Use K-maps to derive mini-
mal expressions for the functions for G, C,, C,, C,, C;, and Cj in
Figure 2.33.

(Incompletely Specified Functions) Use K-maps to derive mini-
mal sum-of-product expressions for d30 and d31 from the calen-
dar example of Section 1.4.1. Make sure to take advantage of
don’t care information.

| (Encoding) Use K-maps to derive minimal sum-of-product

2.38

expressions for d30 and d31 from the calendar example of
Section 1.4.1 but with a different encoding for the months. In
this case, have the months start with January = 0000 and
December = 1011. Make sure to take advantage of don’t care
information. Is this encoding better or worse than the original

(Multilevel Logic) Factor the following sum-of-products
expressions:

(a) ABCD + ABDE

(b) ACD + BC + ABE + BD

(c) AC + ADE + BC + BDE

(d) AD+ AE + BD + BE + CD + CE + AF

(e) ACE + ACF + ADE + ADF + BCE + BCF + BDE + BDF

(Multilevel Logic) Write down the function represented by the
circuit network in Figure Ex. 2.38 in a multilevel factored form
using AND, OR, and NOT operations only—thatis, no NAND or
NOR operations.

Figure Ex. 2.38
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2.40

2.41

2.42

2.43

2.44

Derive the simplest Boolean expression you can (minimum
number of literals and fewest gates) for the function represented
by this schematic. You may use any kind of logic operators
described in this chapter.

(Multilevel Logic) Derive the multilevel logic realization of the
2-bit adder of Figure 2.20. Compare it to a two-level logic real-
ization of the same function. List the different types of gates
(function and fanin) for each of the two implementations. Which
has fewer gates? Which has fewer wires? Which is likely to be
faster (do this by showing the relative delays along the worst-
case paths from an input to an output)? This is similar to the
comparison for the full adder at the end of Section 2.7.

(Combinational Logic Design) Write truth tables for the three
functions described by the following specifications:

(a) A 2-bit-wide shifter takes two input signals, i, and i,, and
shifts them to two outputs, o, and o,, under the control of a
shift signal. If this signal SHIFT is false, then the outputs
are equal to their corresponding inputs. If SHIFT is true,
then o, is equal to i,, and o, is set a 0.

(b) A 1-bit demultiplexer takes an input signal IN and “routes”
it to one of two outputs, o, and o,, under the control of a
single SELECT signal. If SELECT is 0, then o, has the value
of IN and o, is a 0. If SELECT is 1, then o, has the value of
IN and o, is a 0.

(c) A 2-bit multiplexer takes two input signals, i, and i,, and
“routes” one of them to the single output OUT under the con-
trol of a 1-bit select signal. If the SELECT signal is false, then
OUT is equal to iy. If SELECT is true, then OUT is equal to i,.

(Boolean Simplification) Write sum-of-products expressions
for the truth tables of Exercise 2.40. Minimize them using
K-maps.

(Gates) Given the Boolean expressions of Exercise 2.41, draw
logic schematics using AND, OR, and INVERT gates that imple-
ment those functions.

(Combinational Logic Design) Consider a 4-input Boolean
function that is asserted whenever exactly two of its inputs are
asserted.

(a) Construct its truth table.

(b) What is the function in sum-of-products form, using “little m”
notation?

(c) What is the function in product-of-sums form, using “big M”
notation?

(d) Use the Karnaugh map method to simplify the function in
sum of products form.

(Combinational Logic Design) In this chapter, we’ve examined
the BCD increment-by-1 function (see Figure 2.32). Now consider
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2.46

a binary increment-by-1 function defined over the 4-bit binary
numbers 0000 through 1111.

(a) Fill in the truth table for the function.

(b) Fill in the four 4-variable K-maps, and find the minimized
sum-of-products for each output function.

(c) Repeat the process for the minimized product-of-sums form.
Which leads to the simpler implementation in terms of the
number of literals?

(Combinational Logic Design) Consider a four-input function
that outputs a 1 whenever an odd number of its inputs are 1.

(a) Fill in the truth table for the function.

(b) Fill in the K-map to find the minimum sum-of-products
expression for the function. What is it? Can the function be
minimized using the K-map method?

(c) Can you think of a more economical way to implement this
function if XOR gates are allowed? (Warning: It will be very
tedious to try to simplify this function using Boolean algebra,
so think about the question first!)

(Combinational Logic Design) In this chapter, we’ve examined
a 2-bit binary adder circuit. Now consider a 2-bit binary subtrac-
tor, defined as follows. The inputs A, B and C, D form the two
2-bit numbers N, and N,. The circuit will form the difference
N, — N, on the output bits F (most significant) and G (least signif-
icant). Assume that the circuit never sees an input combination
in which N, is less than N,. The output bits are don’t cares in
these cases.

(a) Fill in the 4-variable truth table for F and G.
(b) Fill in the K-map for the minimum sum-of-products expres-
sion for the functions F and G.

(c) Repeatto find the minimum product-of-sums expression for
Fand G.
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Introduction

Now that we’'ve learned about two-level logic and had a short intro-
duction to multilevel logic, it should be becoming obvious that we
have many choices in how we go about realizing a Boolean function.
We will need tools to aid us in transforming our logic expressions and
gate-level circuits so that we can explore all these possibilities. When
we can, we will also want to automate these tools so that they can help
us obtain optimized designs (with the criteria of number of logic gates,
number of literals or wires, and delay) for large and complex designs
that would be too cumbersome to do by hand.

In this chapter, we will look at the underlying approaches to tools
for two-level and multilevel logic minimization. We will also see how
the resulting logic formulas can be mapped to NAND and NOR gates,
the most common gates available in our implementation technologies.

The chapter will conclude with a more detailed discussion of time
behavior in logic networks and how we can use hardware description
languages (HDLs) to specify the implementation and, alternatively, the
behavior of our combinational circuits. HDLs have become the method
of choice not only for describing and documenting, but also for simu-
lating and automatically synthesizing logic circuits. They are the pri-
mary interface to the automatic tools designers use today.

3.1 Two-Level Simplification

You now have the foundation to learn the practical methods for reduc-
ing a Boolean expression to its simplest form when we use only two
levels of logic gates to realize it. The result is an expression with the
fewest terms and thus less gates, and the fewest literals and thus less
wires in the final gate-level implementation.
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Our description of two-level simplification actually began in Chap-
ter 2 with Section 2.5. We defined the essential concept of Boolean
cubes that provide us with a way to visualize truth tables so that we
can see easily see when two terms closely are related and can be com-
bined into a single term. We also introduced Karnaugh maps as a way
of drawing Boolean cubes on 2-dimensional paper. K-maps are an
effective paper-and-pencil approach for identifying Boolean cubes for
functions with a modest number of variables. The method rearranges
the truth table rows into a special tabular structure that places entries
that might be grouped right next to each other, so that the uniting pos-
sibilities are easier to spot by humans.

Let’s review K-maps and Boolean simplification with some exam-
ples that are a bit more substantial.

TWO-BIT COMPARATOR

The goal is to design a circuit that takes as input two 2-bit numbers for
comparison, N; and N,, and generates three outputs: N; = N,, N; < N,,
and N; > N,. We denote the numbers N; and N, by the single-bit inputs
A, Band C, D, respectively. A and C are most significant bits.

The first step in tackling any problem like this is to understand
fully the behavior of the circuit being designed. You can do this best by
drawing a block diagram showing inputs and outputs and creating a
truth table for each output as a function of the inputs.

These are shown in Figure 3.1. It is fairly straightforward to fill in
the table. For example, the first row compares the N, input 00 to the N,
input 00. The F,q function (=) is true, while Fy, (<) and Fy, (>) are false.
In the second row, 00 <01, so F, and F,, are false while Fj, is true.
The rest of the table is filled in a similar way.

The next step is to prepare K-maps for each of the outputs. This is
shown in Figure 3.2. Let’s start with the K-map for F,,. There are no

AB—> N F AB = CD B C D |F, F F
° AB < CD 0 0 0 O 1 0 0

c Fy 0 1,0 1 0
‘ F AB > CD 1 0|0 1 0

D M ¢ 1 0 1 0
0 1. 0 0,0 0 1

0 1 1 0 0

1 0|0 1 0

1 1]/0 1 0

1 0 0 0|0 0 1

0 0 0 |

1 0|1 0 0

1 1|0 0

1 1.0 0 0 0 1

01 0 0 1

1 0 0 0 1

1 1 1 0 0

Figure 3.1 Block diagram and truth table of 2-bit comparator.
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AB A AB A AB A
cp 00 01 10 cp 00 0l 10 cp 00 ol 10

00 0 0 0 00| 0 0 0 0 00 0 i 1

01| 0 0 0 01 1 0 0 0 ot 0 0 1 1

]

1) 0 0 0 | 1 1 0 11y 0 0 0 0
C C C

10 0O 0 0 10 1 1 0 0 10 0O 0 0

B B B
K-map for K-map for F, K-map for F,,

Figure 3.2 K-maps for the 2-bit comparator.

adjacencies in this K-map! Each of the four elements of the on-set con-
tributes a 4-variable term to the expression for Fy,:

F,, = ABCD + ABCD + ABCD + ABCD

Note the first term corresponds to both input values being 0, the next
term to them both being 1, the third term for both 2, and the last one
for both 3. This is the minimized sum-of-products form for the func-
tion. However, by using Boolean algebra, we can simplify this expres-
sion some more:

F,, = AC(BD + BD) + AC(BD + BD)
F,, = (AC + AC)(BD + BD)

F, =(A®C)IB®D)

Fq =(A=C)B = D)

Our final expression is (A XNOR C) (B XNOR D). However, this is
not a sum of products form as it uses XNORs and not just ANDs
and ORs. 1s on K-map diagonals provide a good hint that the func-
tion can be expressed more economically in terms of XOR or XNOR
operations.

The K-map for F}; has three adjacency groups, two with two ele-
ments and one with four elements. The former yield-product terms
with three literals, ABD and BCD; the latter is a term with two liter-
als, AC. The minimum sum-of-products expression for F, is:

F, = ABD + BCD + AC

The K-map for F,, is very similar as we would expect from the sym-
metry of the less-than and greater-than operators. It also consists of two
groups of two elements each (three literals) and one group of four
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elements (two literals). The minimum sum-of-products expression for
F, is:
gt

F, = AC + ABD + BCD

9
o

TWO-BIT BINARY ADDER

The next function we examine is a 2-bit binary adder. It takes as input
the same two 2-bit binary numbers, N; and N,, and produces a 3-bit
binary number, Nj, as the result. The block diagram and truth table for
these functions are shown in Figure 3.3. As in the previous example,
N, is represented by the inputs A and B, N, by C and D, while Nj is
composed of the Boolean functions X, Y, and Z. X represents the most
significant bit.

The K-maps for the outputs are shown in Figure 3.4. The maps for
the X and Z outputs are more straightforward than for Y, and we will
start with these. The function for X reduces to two 2-element groups
(three literals each) and one 4-element group (two literals):

X = AC + BCD + ABD

Z exhibits two 4-element groups (two literals each) and reduces to the
expression:

Z =BD+BD=B®D

By careful examination of the K-map, we can often spot opportunities
for reduction using XOR and XNOR operators. We will show this by
reducing the literal count for the function Y by making good use of
XOR/XNOR.

X v z

X O 0 0 0|0 0 0O
+ y 0 1]0 o0 1
7 1 0|0 1 o0
1110 1 1

o 1.0 0lo o 1

o 1/0 1 0

1 o lo 1 1

1 111 0 0

1 0 0 0|0 1 0

0o 1|0 1 1

i 01 0 o0
11 0

T 1 0 00 1 1

o 1,1 0 0

1 o1 o0 1
L1110

Figure 3.3 Block diagram and truth table of 2-bit binary adder.
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AB A AB A

00 0 0 0 0 00 0 0 |

oty 0 0 | 0 orf o 0 1

1) 0 | 1 1 0 0

100 0 0 | | o} 1 0 0

B B
K-map for X K-map for YV

Figure 3.4 K-maps for the 2-bit binary adder.

Two straightforward 2-element terms of Y are ABC and ABC. The
remaining four single-element groups yield the terms: ABCD, ABCD,
ABCD, and ABCD. We can further reduce ABCD and ABCD (to ACD
and ACD) but for the moment we will not do this. Factoring yields the
three expressions (which represent three parts of Y):

ABC + ABC = B(AC + AC) = B(A ® Q)
ABCD + ABCD = AB(CD + CD) = AB(C @ D)
ABCD + ABCD = AB(CD + CD) = AB(C ® D)

We can factor the latter two expressions after combining them:

B(C @ D) + AB(C @ D) = B(A(C ® D) + A(C ® D))
AB(C® D)+ AB(C® D) = BLA® C @ D)

oN

Then, by combining them with the first part of ¥, we get:
Y=BA®C)+B(A®C® D)

This expression has just seven literals. Compare it to the reduced form,
assuming only AND, OR, and NOT gates are allowed:

Y = ABC + ABC + ACD + ACD + ABCD + ABCD

This expression requires two 4-input AND gates, four 3-input AND
gates, and a 6-input OR gate, for a total of seven gates and 20 literals.
The first multilevel expression we derived requires a 2-input OR gate,
two 2-input XOR gates, and two 2-input AND gates, a total of only five
gates and seven literals to implement the function. However, the XOR
gates are more complex gates, but in balance, all the gates of the multi-
level implementation have only two inputs. The two alternative imple-
mentations are shown in Figure 3.5.

Two-Level Simplification

AB
cD

00

A
01 11

10

0

K-map for Z

97

D



98

Chapter 3 Working with Combinational Logic

M

Figure 3.5 Two alternative implementations of Y.

BCD INCREMENT-BY-1 FUNCTION

We introduced the BCD increment-by-1 function in Section 2.4.2 as an
example of a function with don’t cares. The truth table of Figure 2.32
yields the four 4-variable K-maps of Figure 3.6.

We attempt to form the largest adjacency groups we can, taking
advantage of don’t cares to expand the group wherever possible. The
function W can be implemented by two terms: W = BCD + AD.
These are formed from adjacency groups of two elements and four ele-
ments, respectively. Notice how we have taken advantage of adjacen-
cies that wrap from the top of the K-map to the bottom-most row. The
don’t cares help us make a larger grouping by setting them to be 1.
Remember that don’t cares are set to 0 when we do not cover them.
For W, we set four of the don’t cares to 1 and two to 0.

The function X is implemented by three terms: X = BD + BC + BCD.
Once again, we have attempted to take advantage of adjacencies that
wrap from top to bottom or left to right in the K-map. Four don’t cares
were also set to 1 while two were set to 0.

The function Y is implemented by two terms: Y = ACD + CD.
This is derived from groups of two and four entries, respectively. We
settwo don’t cares to 1 to get this simplified expression for Y. The final
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AB AB A
cD 00 0l 11 10 cD 00 01 11 10
00| © 0 1 00| 0O 1 X 0
0l| o0 0 X 0 01| 0 1 X 0
w X
11 0 1 X 11 0 X
C C
10/ 0 0 10/ 0 1 X X
B
AB AB A
cD 00 01 11 10 cD 00 0l 11
00| 0 0 X 0 00 1 X |
01| 1 1 X 0 0ol| o 0 X 0
Y V4
11 0 0 X X 11 0 0 X X
C C
10| 1 1 X 10| 1 1 X
B B

Figure 3.6 BCD increment-by-1 K-maps.

function Z is implemented by a group of eight nodes, which reduces to
the single literal D by using three don’t cares.

Once again, notice that adjacency groups are always formed by
groups of 1 (4 literals), 2 (3 literals), 4 (2 literals), 8 (1 literal), or 16 (0
literals, a constant 0 or 1) elements, always a power of 2. Also notice
how the adjacencies are formed: above, below, to the left, to the right of
an element of the on-set, including those that wrap around the edges of
the K-map and taking advantage of available don’t cares. Keep in mind
that a K-map is just a flattened multi-dimensional Boolean cube and
the adjacencies we are searching for are sub-cubes.

3.1.1

We are now ready to be more precise about the process for obtaining a
minimized expression. An implicant of a function F is a single element
of the on-set or any group of elements that can be combined together in
a K-map. We have been calling these adjacency groups or sub-cubes up
to this point. A prime implicant is an implicant that cannot be com-
bined with another one to eliminate a literal. In other words, you grow
implicants to cover as much of the on-set as possible and a prime
implicant is an implicant with as few literals as possible. Each prime

Formalizing the Process of Boolean Minimization

Two-Level Simplification
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AB A
ch 00 01 10
00| 0 1 1 0
01 1 1 1 0
11 1 0 1
C
10/ 0 0 1 ]

Figure 3.7 Prime implicants.

AB A
ch 00 01 11 10
00| O 0 1 0
01 1 1 0
\
1l o AR I
C
10| O 0 1 1
Figure 3.8 [Essential primes
AB A
cp 00 0l 11 10
00 0 0 0 0
0l 0 | 1 0
11 | | |
c I
10 | 0 1 1

Figure 3.9 More prime

implicants.

implicant corresponds to a product term in the minimum sum-of-
products expression for the function. The objective is to find the small-
est set of prime implicants that together cover all the elements of the
on-set (and, optionally, some don’t cares). If a particular element of the
on-set is covered by only one prime implicant, then that implicant is
called an essential prime implicant. All essential primes must be part
of the minimized expression as they are needed for any and all covers.

lllustrating the Definitions Let’s look at some examples to make these con-
cepts more concrete. The 4-variable K-map of Figure 3.7 contains six
prime implicants: ABD, BC, AC, ACD, AB,and BCD. Of these, only
ACand BC are essential. Adding the additional implicant ABD cov-
ers the remainder of the on-set. The other three prime implicants are
redundant and are not needed in the expression, so we leave them out.
Thus, the minimized expression for the function becomes

F = ABD + BC + AC

As another example, consider the function whose K-map is given in
Figure 3.8. It contains five prime implicants: BD, ABC, ACD, ABC,
and ACD. All but the first implicant are essential. Interestingly, it is
the largest prime implicant that is redundant. The minimized form is

F = ABC + ACD + ABC + ACD

As a final example, consider the K-map of Figure 3.9. It contains
four prime implicants: BD, CD, AC, and BC. The implicant CD is not
needed, since the 1s it covers are covered already by the remaining
implicants, all of which are essential. The minimized function is

F = BD + AC + BC

Deriving a Minimized Expression from a K-Map A procedure for finding a min-
imum sum-of-products expression from the K-map is the following:

STEP 1 Choose an element from the on-set. Find all of the “maximal”
groups of 1s and Xs adjacent to that element. Check for adja-
cency in the horizontal and vertical directions. Remember that
the K-map wraps from top row to bottom and left-most column
to right-most. The prime implicants (adjacency groups) thus
formed always contain a number of elements that is a power
of 2 (a sub-cube of the cube of the K-map). Repeat Step 1 for
each element of the on-set to find all prime implicants.

STEP 2 Visit an element of the on-set. If it is covered by a single prime
implicant, it is essential and will contribute a term to the final
sum-of-products expression. The other 1s covered by the
essential implicant do not need to be visited again as they defi-
nitely will be covered. Repeat Step 2 until all essential prime
implicants have been found.
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STEP 3 If there remain 1s uncovered by essential prime implicants,
select a minimum number of prime implicants that cover
them. Try several alternative covers to find the one with the
fewest possible implicants.

APPLICATION OF THE STEP-BY-STEP ALGORITHM

Figure 3.10 shows the algorithm applied to a complete example. The
function represented in the K-map is F(A,B,C,D) = X m(4,5,6,8,9,10,13) +
d(0,7,15).

Figure 3.10(a) gives the starting configuration. We scan down the
K-map’s columns, top to bottom and left to right, skipping 0s and Xs,
searching for a 1. The first 1 we encounter is term m4(.7\BCD]. We
expand it in all directions, combining adjacent 1s and Xs into the
largest implicant groups we can find. Two such groupings are pos-
sible, represented by the terms AB and ACD. These are circled in
Figure 3.10(b).

Continuing down the column, we next come to m;(ABCD). At this
point, we should add only new implicants that are not contained

AB A AB A
CcD 00 01 10 cD 00 01 11 10
00| X 1 0 1 00 1 0 1
01| © 1 1 1 oLl o 1 1 1
111 0 X X 0 11| 0 X X 0
C C
10| 0 1 0 1 10| 0 1 0 1
B B
(@) (b)
AB A AB
cD 00 01 11 10 cD 00 01 11 10
00 1 0 1 00 1 0 1
01| 0 1 ‘ 1 01| o 1 1
11| 0 X X ‘ 0 1| o X X 0
C C
10 0 1 0 1 10/ 0 1 0
B B

Figure 3.10

(d)

Finding prime implicants, step by step.

(e)
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AB
cp 00 0l 11 10
00 X 1 0 1
01 o0 1 1 1
D
1m0 X X 0
C
10 0 1 0 1
B
(c)
AB
cD 00 01 11 10
00| X 1 0
orf o 1 1
Iy o X X 0
C
10 O 1 0
B

(f)
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already within an implicant found so far. BD is the only new implicant
we can add under this rule, as shown in Figure 3.10(c).

The next element of the on-set is mﬁ(/_iBCf)), but no new impli-
cant can be added because the set of implicants already contains
AB. So we continue searching for the next element of the on-set,
which is m;(ABCD). We now add the implicant ACD. Note that the
implicant ABD is not prime as it is already covered by the prime
implicant BD. The state of the process to this point is shown in Fig-
ure 3.10(d).

The next 1 is mg, which contributes three additional prime impli-
cants, ABC, ABD, and BCD. This is shown in Figure 3.10(e). The pro-
cess continues with mg and my, but these add no new prime implicants.

All the elements of the on-set are now covered, and we have
obtained all the prime implicants. The next step is to identify the
essential prime implicants. The highlighted prime implicants of Fig-
ure 3.10(f), AB and ABD, are the essential primes because they
exclusively cover mg and m,,, respectively.

The last step is to cover the remaining 1s not already covered by
the essential primes. This is accomplished by the single prime impli-
cant, ACD. The process of enumerating prime implicants found six of
them, yet three were sufficient to cover the entire on-set (two of which
were essential). The final minimized function is:

F(A,B,C,D) = AB + ABD + ACD

3.1.2 K-Maps Revisited: Five- and Six-Variable Functions

The K-map method is not limited to four variables or less, although
using it to visualize functions with more than four variables becomes
more challenging as does trying to map a 5- or 6-dimensional cube to a
2-dimensional paper. It is important to remember that within an
n-variable map we must check for adjacencies in n directions. Fortu-
nately, we can handle the adjacencies for up to six variables, simply by
stacking 4-variable K-maps.

FIVE-VARIABLE K-MAPS

A 5-variable map is shown in Figure 3.11(a). Let’s consider the follow-
ing Boolean function:

F(A,B,C,D,E) = 2m(2,5,7,8,10,13,15,17,19,21,23,24,29,31)

The filled in K-map is shown in Figure 3.11(b). We have omitted the 0
entries to reduce the clutter in the figure. When searching for adjacen-
cies, besides looking in the four horizontal and vertical squares as we
did in the 4-variable K-map, we must also look either up or down. The
example’s on-set is covered by the four prime implicants CE (group of 8),
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BC
DE 00 01 11

(a) Five-variable K-map (b) Example

Figure 3.11  Five-variable K-map and example.

ABE (group of 4), BCDE (group of 2), and ACDE (group of 2). This is
hard to visualize and not something we want to do by hand very often.

SIX-VARIABLE K-MAP

The six-variable K-map is to the 5-variable map as the 5-variable is to
the 4-variable: the number of 4-variable planes is increased from two
to four. This is shown in Figure 3.12(a).

An example 6-variable K-map is shown in Figure 3.12(b). The
function is

F(A,B,C,D,E,F) = 2m(2,8,10,18,24,26,34,37,42,45,50,53,58,61)

In addition to horizontal and vertical adjacencies, the planes immedi-
ately above and below the element being examined must be checked.
The top plane also wraps around onto the bottom plane. In the figure,
the on-set is covered by three prime implicants: DEF (a group of
eight), ADEF (a group of four), and ACDF (a group of four).

3.2 Automating Two-Level Simplification

The algorithm we presented in the previous section for extracting essen-
tial prime implicants from a K-map could form the basis for computer-
based tools. In this section, we examine computer-based algorithms for
two-level simplification in more detail. We begin with the Quine-
McCluskey method, the first complete algorithm for simplification. We
complete this section by covering the methods used in espresso, a pop-
ular tool for two-level minimization. While not guaranteed to find the
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AB =00

AB =01

11
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AB =11
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AB =10

Figure 3.12

11

(a) Six-variable K-map (b) Example
Six-variable K-map and example.

best two-level expression, espresso uses several tricks to find a good
solution as fast as possible.

3.2.1 Quine-McCluskey Method

Except in special cases or for particularly sparse truth tables, the K-
map method simply breaks down beyond six variables. We need a
more systematic algorithm. The Quine-McCluskey method, developed
in the mid-1950s, finds the minimized representation of any Boolean
expression. It provides a systematic procedure for generating all prime



3.2 Automating Two-Level Simplification

Quine-McCluskey Implication Table

Column | Column 11 Column 1l
0000 V 0-00 * 01-- *
-000 *

0100 ¥ -1-1 *
1000 v 010- v
01-0 v
0101V 100- *
o110V 10-0 *
1001 V
1010 V 01-1V
-101 ¥
0111V 011- v
1101 V 1-01 *
1111V 111V
11-1V
Y implicant

* prime implicant

implicants and then extracting a minimum set of primes covering the
on-set.

The method finds the prime implicants by repeatedly applying the
Uniting theorem, just as we did earlier in this section. The contribu-
tion of Quine-McCluskey is to provide a tabular method that ensures
that all prime implicants are found. To understand how it works, let’s
use the same example as in Figure 3.10: F= £ m(4,5,6.8,9,10,13) +
d(0,7,15).

Finding Prime Implicants The first step is to list all elements of the on-set
and don’t-care set in terms of their minterm indices, represented as a
binary number. The elements are grouped according to the number of
1s in the binary representation. This will make it easier to compare
pairs systematically.

Table 3.1 shows the structure of a Quine-McCluskey implicant
table. The first column contains the minterms of the on-set and don’t-
care-set, that is, single points in the Boolean space. In the example,
each of these represents a 4-variable product term (a minterm). As a
result of applying the method, the second column will contain
implicants that form edges in the Boolean space: 3-variable product
terms. After another iteration of the method, the third column will
contain larger implicants that represent planes in the Boolean space:
2-variable terms. A third iteration will find implicant 3-dimensional
cubes in the space: 1-variable terms.

We begin the method by filling in the first column of the table as
follows. Each group of the minterm indices of the on-set and don’t-
care-set is separated by a blank line. The first group has no 1s in the
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indices, the second has one 1 in each index, the third has two 1s in
each index. and so on.

To apply the Uniting theorem systematically, compare the ele-
ments in the first group against each element in the second. If they
differ by a single bit, it means that the minterms the numbers repre-
sent are adjacent in n-dimensional Boolean space. For example,
0000 = ABCD and 0100 = ABCD can be combined into the implicant
ACD according to the Uniting theorem. The latter term is represented
symbolically by 0-00. Every time a new implicant is formed, it is
placed in the next column. Since each group differs in its 1s count by
one, it is sufficient to restrict comparisons to adjacent groups to detect
when the uniting theorem can be applied.

Let’s apply the Quine-McCluskey algorithm to the whole first col-
umn. We begin with the first group (no 1s) against the second group
(one 1). 0000 is compared against 0100 and 1000, yielding terms for the
second column of 0-00 and -000, respectively. Every time a term con-
tributes to a new implicant, it receives a check mark (V). This is how
we remind ourselves that the implicant is not prime: it was combined
with some other element to form a larger implicant.

We repeat for the second group against the third group. 0100 com-
bines with 0101 and 0110, giving 010- and 01-0 in the second column.
1000 combines with 1001 and 1010, resulting in 100- and 10-0.

Now we try the third group against the fourth group. 0101 com-
bines with 0111 and 1101 to give 01-1 and -101. 0110 combines with
0111 to yield 011-. 1001 combines with 1101 to give 1-01. 1010 does
not combine with any element of the fourth group.

When we compare the fourth to the fifth group, two additional
terms are added: -111 and 11-1.

The procedure is repeated for the groups in column II. For the ele-
ments to be combined, they must differ by a single bit and must have
their “-”, the variables eliminated by the uniting theorem, in the same
bit position. This corresponds to taking 1-dimensional cubes and try-
ing to combine them into 2-dimensional cubes. The elements of the
first group do not combine with any elements of the second group. We
mark these two elements of the first group in column II with asterisks
(*) because they are prime implicants: we have expanded them as
much as possible.

In the second and third groups, 010- can be combined with 011-,
yielding 01-- for the third column. 01-0 and 01-1 are combined to
derive the same condensed term, so we only list it once. 100- and 10-0
cannot be combined further and are prime implicants.

Between the third and fourth groups, only the additional term -1-1
is added to the third column, derived from the combinations of -101
and -111, and 01-1 and 11-1.

The elements of the third column cannot be reduced further. Both
are marked as prime implicants. Since no new implicants are added,
we have found all prime implicants, and the first phase of the algo-
rithm can now terminate.
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The algorithm has found the following prime implicants:

000 = ACD -000 = BCD
100- = ABC 10-0 = ABD
101 = ACD 01-- = AB
-1-1 = BD

These are shown circled in the K-map of Figure 3.13. They are exactly
the same as the prime implicants we found in the previous section
(see the identical Figure 3.10(e)). Note that, as before, we treated the
don’t cares as though they were 1s to get the largest prime implicants
possible.

Finding the Minimum Cover The second step of the method is to find the

AB
C 00
00
01| 0
11 0 |
&
101 0

A
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Figure 3.13 Prime implicants
found by the Quine-McCluskey

smallest collection of prime implicants that cover the complete on-set method.
of the function. This is accomplished through the prime implicant
chart (as opposed to the implication chart used in the first phase), as
shown in Figure 3.14.
The prime implicant chart is organized as follows. The columns
are labeled with the minterm indices of the on-set. The rows are
labeled with the minterms covered by a given prime implicant. This is
4 5 6 8 9 10 13 4 6 8 9 10 13
04(0-00) | X | 1 | i | | 0.4 (0-00)
08(=000) | | VI ox 1 1] 0.8 (—000)
8,9 (100-) f i ‘; * >:( i i 8,9 (100—)
810(10-0) | | | | X | X | __810(10-0)
oi3a-on | 1 1 1 x| X 9,13 (1-01)
456701-=) [ X % x4 4,5,6,7 (01--) |
S71315(-1-1) | ! X% 1 b1 X 5,7,13,15 (-1-1) X
| | | | | | | !
(a) Initial prime implicant chart (b) Essential prime implicants
4 5 6 8 9 10 13 4 6 8 9 10 13
0,4 (0—00) >"g 0.4 (0-00)
0,8 (~000) : 0,8 (—000)
89 (100-) | | 8,9 (100—)
8.10 (10-0) 8,10 (10-0)
9,13 (1-01) 9.13 (1-01)
456.7(01—-) | 456,7(01——) :
5,7,13,15 (—1-1) )|‘( 57,13,15(—1-1) }Irt

(c) Covered minterms

Figure 3.14 The prime implicant chart.

(d) Final configuration



108

Chapter 3 Working with Combinational Logic

done by taking the indices of the prime implicant representation and
replacing each “-” by all possible combinations of 1s and 0s. For exam-
ple, -1-1 becomes 0101, 0111, 1101, 1111, which are the indices of the
minterms msg, M-, M3, and my;. An X is placed in the (row, column)
location if the minterm represented by the column is covered by the
prime implicant associated with the row. The initial configuration is
given in Figure 3.14(a). Note that don’t cares are not included in the
columns as we do not need to cover them.

Next, we look for essential prime implicants. These are immedi-
ately apparent whenever there is a single X in any column. This means
that there is a minterm that is covered by one and only one prime
implicant. These essential prime implicants must participate in the final
cover. We place a line through the column and row in which the essen-
tial prime implicant has been found and place a box around the prime.
This is shown in Figure 3.14(b).

The essential prime implicants usually cover additional minterms.
We cross out any columns that have an X in a row associated with an
essential prime. These minterms are already covered by the essential
primes and we do need to be concerned with them any longer in find-
ing a complete cover. This is shown in Figure 3.14(c).

In the example, two minterms are still uncovered, represented by
the columns 9 and 13. The final step is to find as few primes as possi-
ble that cover the remaining minterms. In our example, the single
prime implicant 1-01 covers both of these. In contrast, we could have
used 100- and -1-1, but this would have added two terms to our solu-
tion instead of one. Adding 1-01 to the two essential prime implicants
completes the cover. This is shown in Figure 3.14(d). The solution
found here is identical to the one we found earlier in Figure 3.10(f).

3.2.2 Espresso Method

Unfortunately, the number of prime implicants grows very quickly as
the number of inputs increases. It can be shown that the upper bound
on the number of prime implicants is 3"%/n. Finding a minimum set
cover is also known to be a very difficult problem, a so-called “NP-
complete” problem. This means that there are not likely to be any effi-
cient algorithms for solving it and we can only guarantee that we’ve
found the best solution if we look at all possible solutions.

Thus, much of the work in logic minimization has concentrated on
heuristic methods to perform these two steps more quickly, finding a
good solution rapidly rather than guaranteeing a minimum solution
will be found. The primary technique avoids generating all prime
implicants by judiciously computing a subset of primes that still cover
the on-set. In this subsection, we will examine the algorithms and
techniques used in espresso.

Algorithms used in Espresso Espresso is a program for two-level Boolean
function minimization, developed at the University of California at
Berkeley, and now a common subroutine for many logic minimization
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tools. It combines many of the best heuristic techniques developed in
earlier programs, such as mini and presto. Although a detailed expla-
nation of the operation of espresso is beyond the scope of this book
(see Brayton, et al., in the suggestions for further reading at the end of
this chapter), the basic ideas employed by the program are not difficult
to understand. They are as follows:

STEP 1

STEP 2

STEP 3

STEP 4

STEP S

Rather than start by generating all implicants and then finding
those that are prime, espresso expands implicants into their
maximum size. Implicants that are covered by an expanded
implicant are removed from further consideration. This pro-
cess is called EXPAND. How well this works depends critically
on the order and direction in which implicants are expanded.
Much of the power of espresso lies in its methods for directing
and ordering the expansion.

An irredundant cover (that is, one for which no proper subset
is also a cover) is extracted from the expanded implicants. The
method is essentially the same as the Quine-McCluskey prime-
implicant chart method. This step is called IRREDUNDANT
COVER.

At this point, the solution is usually quite good, but under certain
conditions it can still be improved. There might be another
cover with fewer terms or the same number of terms but fewer
literals. To try to find a better cover, espresso first shrinks the
prime implicants to the smallest size that still covers the logic
function. This process is called REDUCE.

Since reduction yields a cover that no longer consists of only
primes, the EXPAND, and IRREDUNDANT COVER steps are
repeated in such a fashion that alternative prime implicants
are derived. Espresso will continue repeating these steps as
long as it generates a cover that improves on the last solution
found.

A number of other strategies are used to improve the result or
to compute it more quickly. These include: (a) early identifica-
tion and extraction of essential prime implicants, so they need
not be revisited during Step 4; (b) using the function’s comple-
ment to check efficiently whether an EXPAND step actually
increases the coverage of the function (the minterms covered
by an expanded implicant may already be covered by another
expanded implicant, so the newly expanded implicant should
not be placed in the cover); and (c) a special last step that guar-
antees no single prime implicant can be added to the cover in
such a way that two primes can then be eliminated.

Input to tools that use Espresso is usually provided in the form of
an encoded truth table using a similar notation to that of the Quine-
McCluskey implication table. For the example of Figure 3.10, the input
is shown in Figure 3.15. There are 10 terms specified: seven on-set
terms and three don’t-care terms. Each term is listed by its minterm

0100
0101
0110
1000
1001
1010
1101
0000
0111
1111

| b — s e e —
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Figure 3.15 Espresso input

table.



110 Chapter 3 Working with Combinational Logic

1-01 1
10-0 1
0r-- 1

Figure 3.16  Espresso output
table.

[1282]

index, encoded in binary, followed by a 1 or a “-”, indicating a don’t
care. Off-set elements can also be specified and are represented with
a 0 after the minterm index. The output minimized truth table is shown
in Figure 3.16. The encoding for the minimum cover is identical to that
used in the Quine-McCluskey method. The three terms 1-01, 10-0, and
01-- correspond to ACD, ABD, and AB, respectively.

[ USE OF ESPRESSO

To see how the iteration of REDUCE, EXPAND, IRREDUNDANT COVER
can improve the cover, consider the four-variable K-map of Figure 3.17.
Figure 3.17(a) shows the primes as found by espresso after executing
Steps 1 and 2 for the first time. It has four prime implicants and is an
irredundant cover, but this is not the minimum cover possible.

The results of the REDUCE step are shown in Figure 3.17(b).
The prime implicant CD has been reduced to the implicant (no longer
prime) ACD, and CD has been reduced to ACD (also no longer prime).
The particular choice of reductions depends on heuristics and espresso’s
order of execution. The result of the second iteration of EXPAND is
shown in Figure 3.17(c). Espresso retains the last irredundant cover,

AB A AB A
cD 00 01 11 10 CcD 00 01 11 10
00| 1 1 0 0 00| 1 1 0 0
orf 1 | 1 [ 1] 1 of 1 | 1 11
11 0 0 1 1 11 0 0 1 1 ‘
C C — T
10 1 1 1 10 1 1 1 ‘
B B
(a) Initial prime implicants (b) Result of REDUCE step
AB A AB A
CcD 00 01 11 10 CcD 00 01 11 10
00| I 1 0 0 00| 1 1 0 0
01 1 1 1 1 01| 1 1 1 1
11y 0 0 1 1 11 0 0 1 1
C C
10 1 1 1 10 1 1
B B
(c) Result of EXPAND step (d) Result of IRREDUNDANT COVER step

Figure 3.17 Four-variable K-maps.
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and its expansion algorithms guarantee that it never generates the
same cover twice. The IRREDUNDANT COVER extracted by espresso
is given in Figure 3.17(d). This three-product-term cover is indeed an
improvement on the original result in Figure 3.17(a).

3.2.3 Realizing S-0-P and P-0-S Logic Networks

In this section, we will be concerned with how to express logic net-
works solely in terms of NAND and NOR gates. The canonical forms
you have studied so far are expressed in terms of AND and OR gates,
but you rarely will encounter these in digital systems. The underlying
technologies are more efficient at implementing NAND and NOR gates.
In fact, AND and OR gates are most commonly realized by following a
NAND or NOR gate with an inverter. In addition, NAND and NOR
functions are complete, that is, a function expressed in terms of AND,
OR, and NOT operations can be implemented solely in terms of NAND
or NOR operations. Frequently, you will be confronted with the task of
mapping a network with an arbitrary number of levels of AND and OR
gates into one that consists only of NAND or NOR gates. We will begin
the discussion with two-level networks and extend it to multilevel net-
works later in the chapter.

Visualization: DeMorgan’s Law and Pushing Bubbles The  conversion  process
depends critically on DeMorgan’s law. Recall that

AB = (

pN
(so]}

+ B) A+ B = (AB)

and that

AB = (A + B) A+ B = (AB)

In essence, the first expression above states that a NAND function
can be implemented just as well by an OR gate with its inputs comple-
mented. Similarly, a NOR function can be implemented by an AND gate
with its inputs complemented. The conversion from one form to the
other is often called “pushing the bubble.” This is simply a way to
remember DeMorgan’s law As the bubble on the output of an AND gate
“pushes through” the AND shape from the output toward the inputs, it
changes the gate to an OR shape with bubbles on the inputs and no bub-
ble on the output. Similarly, pushing the bubble through an OR shape
transforms it to an AND shape with bubbles on the inputs.

Figure 3.18 summarizes the relationship between OR and NAND
gates. An OR gate is logically equivalent to a NAND gate with inputs
complemented and a NAND gate is equivalent to an OR gate with inputs
complemented. There is the same kind of relationship between AND
and NOR, an AND gate is equivalent to a NOR gate with inputs com-
plemented and a NOR gate is equivalent to an AND gate with inputs
complemented. These last two relationships shown in Figure 3.19. The
corresponding schematic symbols can be freely exchanged without
altering the logic function.
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A A B B A+B A-B |A+B A-B <o D
0 1 o0 1 0 0 1 1 T
0 1 1 0 1 1 1 1
1 0 0 1 1 1 1 1 —
1 0 1 0 1 0 0 ——
Figure 3.18 OR/NAND equivalences.
A A B B A-B A+B A-B A+B } - D,-
0 1 0 1 0 0 1 1 ‘
0 1 1 0 0 0 0 0
1 0 0 1 0 0 0 0 —
1 0 1 0 1 1 0 0 - 4

Figure 3.19 AND/NOR equivalence.

(a)

(b) (c)

Figure 3.20 AND/OR to NAND/NAND.

AND/OR CONVERSION TO NAND/NAND NETWORKS

Consider the AND-OR network in Figure 3.20(a). The bubbles on the
first-stage gate inputs indicate that these should be complemented.
Let’s replace the first-level AND gates by their NAND equivalents and
complement the inputs to the OR gate so that we do not change the cir-
cuit’s logic function. The equivalent circuit is shown in Figure 3.20(b).
We can replace the second level OR gate with complemented inputs by
its more conventional, alternative form: the NAND gate. The result is
shown in Figure 3.20(c).

AND/OR CONVERSION TO NOR/NOR NETWORKS

Suppose you are now asked to map an AND/OR network into a
NOR-only network. We can start by complementing the inputs to the
first-level AND gates to create NOR-gate equivalents. Of course,
every time a new inversion is introduced, it must be balanced by a
complementary inversion. We call this “conserving bubbles.” To
accomplish this, we introduce additional inverters at the inputs. We



3.2 Automating Two-Level Simplification

A \A
\B
B
Z Z
C
C \C
D \D
Conserve
“Bubbles™
Step |

Figure 3.21 AND/OR conversion to NOR/NOR.

(a) (b)
Figure 3.22 OR/AND conversion to NOR/NOR.

can then complement the output of the second-level OR gate to
make a NOR after introducing a matching inverter on the output to
keep the logic constant. This two-step process is illustrated in Fig-
ure 3.21. Note that the two AND gates with complemented inputs
created in Step 1 are replaced by NOR gates (their equivalent form)
in Step 2.

To keep track of the need for inverted inputs to the first-level
gates, we use the notation: \A, \B, \C, and \D. Since it is common to
have both a Boolean variable and its complement available as circuit
inputs, the conversion may not necessarily lead to additional invert-
ers. To eliminate the inverter at the output, we may be able to use the
complement of the function, \Z, wherever in the rest of the circuit Z
was needed or we may need to add an extra inverter (we do so in this
case).

OR/AND CONVERSION TO NOR/NOR NETWORK

Now let’s consider a gate implementation for a simple expression in
product of sums form. We can map this expression into a NOR/NOR
network simply by replacing the OR gates with NOR gates and the
AND gate with a NOR gate (an AND gate with inverted inputs). You
can see in Figure 3.22 that the inversions are appropriately conserved.

Step 2

(c)

Conserve
“Bubbles”
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A \A
\B
B
74 Zz
C
\C
D \D
Conserve
“Bubbles”
Step 1 Step 2

Figure 3.23 OR/AND conversion to NAND/NAND.

OR/AND CONVERSION TO NAND/NAND
'NETWORKS

Implementing the expression using NAND-only logic introduces
exactly the same problems we have already seen in Figure 3.21. The
correct transformation replaces the OR gates with NAND gates (OR
gates with inverted inputs) and the AND gate with a NAND gate. To
maintain equivalence with the original function, we place inversions
at the inputs (in the form of an annotation) and at the output (in the
form of an inverter). This is shown in Figure 3.23.

This section illustrated some of the practical issues in how to
transform logic functions so that they are more easily mapped to avail-
able gates. This general problem is referred to as technology mapping.
We will discuss this problem further as we discuss simplification of
multilevel logic and in more detail in Chapter 4 where we will intro-
duce a wide array of implementation technologies.

3.3  Multilevel Simplification

We can obtain minimized two-level logic networks from the canoni-
cal sum of products or product of sums form, by applying the appro-
priate reduction methods (K-maps, Quine-McCluskey, a two-level
logic minimizer like espresso, etc.). Signal propagations can be fast,
because no signal has to travel through more than two gate levels.
The drawback is the potential for large gate fan-ins, which can reduce
gate performance and increase circuit area in some technologies. In
many technologies, gates with more than four inputs are rare, if they
exist at all. In a practical gate-level realization of a network, the large
fan-in gates must be replaced by a multiple-level network of smaller
fan-in gates. This has motivated much recent interest in multilevel
logic synthesis.

An optimal two-level network is one that uses the smallest number
of product terms and literals to realize a given truth table. It is not so
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Figure 3.24 Effects of technology mapping.

easy to define optimality for multilevel networks. Is the network opti-
mal if it has the smallest number of gates? Or is it more critical to have
the fewest literals in the resulting expression? Hence, the process with
multilevel systems is called synthesis rather than optimization. The
goal is to create or “synthesize” a reasonable multilevel implementa-
tion, without any pretense that the result is the best that is possible.

The synthesis process involves two steps. The first, technology-
independent stage factors out common sub-logic to reduce gate fan-ins,
increasing the number of gate levels as a side effect. This step is inde-
pendent of the kinds of gates that eventually will be used to implement
the network. It works by exploiting basic mathematical properties of
Boolean expressions.

The second, technology-dependent stage maps the resulting fac-
tored Boolean equations into a particular implementation using a
library of available gates. For example, if only 2-input OR gates are
found in a particular library, then a 4-input OR gate would have to be
mapped into three 2-input OR gates (see Figure 3.24). Such reorganiza-
tions of the logic network can introduce additional levels of logic in
the function’s implementation, possibly affecting the delay through the
circuit. We’ll save further discussions of this issue after we introduce
implementation technologies in the next chapter.

Unfortunately, multilevel simplification is a much more difficult
problem than two-level simplification. The approach taken by
researchers in multilevel simplification, which seems to work rea-
sonably well in most situations, is to provide basic transformations
that designers can apply to multilevel formulas so that they can
guide the process to the kind of realization they are most interested
in. We’ll see that automated methods take the most successful of
these strategies and provide them to all designers so that each per-
son does not have to re-derive them (a process that can be very time
consuming and only gets better with experience). There are strate-
gies, or scripts, for the fewest literals, smallest delay, lowest fan-in
gates, etc.

There are five basic operations for manipulating multilevel net-
works: factoring, decomposition, extraction, substitution, and collaps-
ing. In the following subsections, we will describe each of these
operations and illustrate how each alters the multilevel expression
with the simple example we ended with in Section 2.7 and is re-drawn
in Figure 3.25.
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c Fy=C+ DF;

D X=FF,+

F,=FG

Figure 3.25 Graphical representation of a factored form with complex nodes.

A A
B B
C F=AC+AD+ BC+BD +E C F=(A+B)(B+CO)+E
D D
E E
(a) Graph before factoring (b) Graph after factoring
A
C
A
A
D
B
B
F C F
C
B D
D
(c) Circuit before factoring (d) Circuit after factoring

Figure 3.26 Effects of factoring operation.

Factoring Factoring takes an expression in two-level form and re-expresses
it as a multilevel function without introducing any intermediate
subfunctions. Thus, factoring simply rewrites the expression within a
node rather than changing the structure of the graph (see Figure 3.26(a,b)).
It is used just before decomposition and/or extraction to identify
potential common subexpressions.

As an example, let’s consider the following function in sum-of-
products form. It has nine literals and can be implemented with five
gates (Figure 3.26(c)):

F=AC+ AD+ BC + BD + E
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After factoring, the number of literals is reduced to five:
F=(A+B)IC+D)+E

This can be implemented with four gates (Figure 3.26(d)). Note
that the graph representation for F does not change. It is still a single
node with five inputs. Factoring only changes the representation of a
function within a node.

Decomposition Decomposition takes a single Boolean expression and
replaces it by a collection of new expressions. It is applied to functions
that have already been factored. Consider the function

F = ABC + ABD + ACD + BCD

This expression is in reduced sum of products form and has 12 lit-
erals. It requires nine gates, counting inverters, for implementation
(see Figure 3.27(c)). It would be represented by a single node in our
complex graph representation. However, the expression can first be
factored into:

F = (AB)(C + D) + (A + B)(CD) = (AB)(C + D) + (AB)(C + D)

and then decomposed individually into three much simpler
functions:

F=XY + XY X = AB Y=C+D
A A
B B
F=ABC+ ABD + A'C'D' + B’C’D?
C C
D D
(a) Graph before decomposition (b) Graph after decomposition
A—]
B R
C— A— \
A —] B—____/
B B —
D — F
A—(Q C
C—g
D—Q
B —(d
C—(g
D—G
(c) Circuit before decomposition (d) Circuit after decomposition

Figure 3.27 Effects of decomposition operation.
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This resulting set of functions has eight literals and requires seven
gates for implementation (see Figure 3.27(d))—nothing is free, though,
and the number of gate levels has increased from two to three. These
functions now require three nodes to be represented in our graph
rather than one (see Figure 3.27(a,b)). As you would expect from the
name, decomposition breaks a node into smaller, simpler pieces.

Extraction Whereas you apply decomposition to a single function, you
apply extraction to a collection of functions. This operation identifies
common subexpressions in the collection of functions to which it is
applied. Performing extraction requires that the functions be expressed in
terms of their factors, and then the common factors must be “pulled out.”

Let’s look at an example of extraction. We start with three func-
tions represented as three nodes

F=(A+ B)CD+ E
G = (A + B)E
H = CDE

Note that the extraction operation does not require the functions to
be in a two-level form.

In this example, the extraction operation discovers that the subex-
pressions, X=(A + B) and Y=(CD), are common to F, G, and F, H,
respectively. These sub-expressions are called “primary divisors” or,
more technically, kernels and cubes. We have seen cubes already, they
are simply sub-cubes of the larger Boolean cube for the function. Ker-
nels are not cubes but disjunctions of cubes (cubes ORed together
to form a factor that combines more than a single product term).
Re-express in these terms, the functions can be rewritten as:

F=XY+E
G =XE
H =YE
X=A+8B
Y =CD

The original collection of functions contains 11 literals and
requires eight gates for implementation. (In Figure 3.28(c), the bubble
at the input of the gate that computes G counts as one inverter gate
because it is internal to the circuit and not at the primary inputs.) The
revised set of functions, after extraction, still contains 11 literals but
now needs only seven gates for its implementation. The graph now has
five nodes, the modified versions of the three original ones plus
the two new nodes to represent the new subexpressions (see Fig-
ure 3.28(a,b)). You can see in Figure 3.28(d) that the single-level imple-
mentation for H has been replaced by a two-level implementation after
extraction. The number of gates is reduced, but the function H may
incur worse delay than in the original version.
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A F=(A+B)CD+E
B B
G=(A+B)F
C
H=CDE
(a) Graph before extraction (b) Graph after extraction

2 A
A
B
B A
C
C
D
D G E
A
C —
B D — H
E —4
(c) Circuit before extraction (d) Circuit after extraction
Figure 3.28 Effects of extraction operation.
A
G=A+BC
C
F=A
(a) Graph before substitution (b) Graph after substitution

Figure 3.29 Effects of substitution operation on circuit graph.

Substitution Substituting a function G into a function Fre-expresses F in
terms of G. For example, if F= A + BCD, and G = A + BC, then F can be
rewritten in terms of G as follows:

F = A+BCD=G(A+ D)

Once common subexpressions have been identified, substitution
can be used to reexpress functions as factored forms over the subex-
pressions. This operation also changes the structure of the graph by
adding an arc from the node for G to the node for F and changing the
definition of F. The number of literals for F is reduced from four to
three. This is advantageous if we need G elsewhere as well, otherwise
the three literal cost for G is not amortized. A new connection from G
to F is created in the graph as shown in Figure 3.29.

H
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Collapsing Collapsing is the reverse of substitution. It might be used to
reduce the number of levels of logic to meet a timing constraint. As an
example, we can collapse G back into F:

F = G(A + D)

F = (A + BC)(A + D)

F = AA+ AD + ABC + BCD
F = A+ BCD

If G is not needed elsewhere in our circuit, then we have reduced
the cost of implementing F from six literals (three for F and three for G)
to only four. The graph is also modified in the opposite way as substi-
tution (going from the graph of Figure 3.29(b) to (a)) in that an arc that
existed between nodes G and F is now removed.

Clean-up operations on a graph may be necessary as the by-products
of multiple transformations accumulate. For example, the node for G
in the collapsing step described above may be removed if it is no
longer used by any other expression. Also, small nodes that have been
greatly simplified may be collapsed into the nodes that use their val-
ues. This is especially the case for nodes that end up being simple
identity functions or simple inversions.

Polynomial Division and Multilevel Factoring All of the multilevel operations
have strong analogies with the multiplication and division of polyno-
mials. The strategy is to rewrite the expression for a function F in
terms of the subexpressions P, Q, and R, which represent the divisor,
quotient, and remainder, respectively. In generic terms, F is written as

F=PQ+R
As a more concrete example, given the two expressions:

X =AC+ AD+BC+ BD + E
Y=A+B

We could write X “divided” by Y as follows:
X=YIC+D)+E

The divisor is Y = (A + B), the quotient is (C + D), and the remain-
der is E. Expanding the expression with the distributive law would
yield the original equation for X.

Finding divisors is a considerably more difficult problem in Bool-
ean algebra are considered. Multiplying Boolean expressions can yield
results that are very different from what we would expect from polyno-
mial arithmetic because of the variety of simplification theorems you
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can apply. For example, consider the functions F and G:

F
G

AD + BCD + E
A+ B

Under the normal rules of algebra, G does not divide into F. The
algebraic divisors of F are D and (A + BC). That is, F can be divided
by D, leaving the quotient A + BC with remainder E. It can also be
divided by A + BC, leaving D as the quotient and E as the remainder.

However, if we apply the rules of Boolean algebra, then G does
divide into F (with E as a remainder). We call G a Boolean divisor of F
and can write the quotient of F divided by G as

FIG = (A+C)D

This is because F can be rewritten as

F =[G(A+C)D]+ E
F=[(A+B)J(A+C)Dl+ E

F =(AA+ AC + AB+ BC)D + E
F=(A+BC)D+E

F = AD + BCD + E

The principal difference is our ability to use the absorption theo-
rem of Boolean algebra which is has no analog in polynomial arith-
metic. The existence of Boolean divisors greatly increases the number
of potential factorings of a set of expressions. It is not uncommon to
restrict the search to the much easier-to-find algebraic factors.

It should be clear from this discussion that the challenge in multi-
level logic simplification is to find good divisors. These lead to factored
expressions with the greatest number of common subexpressions. By
factoring these out, we minimize the number of literals needed to
express a set of functions. The five graph operations discussed above
must be applied in an order that guides the transformations of the cir-
cuit toward a result that meets our optimization criteria: smallest size,
smallest gates, fewest levels, etc.

Another complication to multilevel simplification is the handling
of “don’t care” information. With a circuit graph consisting of many
interconnected nodes, it is not as straightforward to express don't cares
for each of them. Input and output “don’t care” conditions must be
propagated throughout the network. In addition, other forms of don’t
cares arise due to the multilevel structure of the logic itself. These are
called structural don’t cares. An example is shown in Figure 3.30.
Notice that a, b, and x can’t possibly be all equal to 1 at the same time.
The larger node can take advantage of this fact in its simplification.
The details of don’t-care manipulation in multilevel circuits are quite
elaborate and outside the scope of this text.
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Figure 3.30 An example of structural don’t cares.

3.4  Automating Multilevel Simplification

Good scripts to guide multilevel logic transformations are valued highly.
They usually represent the accumulated experience of many designers
and the sequence of transformations that they have found to work well
for a large class of circuits. Often scripts are specialized to particular
types of circuits (e.g., large numbers of inputs with low-complexity func-
tions) or for particular optimization criteria (e.g., faster implementations
that sacrifice size). Highly evolved scripts are invaluable to novice or
less-experienced designers as they can be used to obtain the same results
as the more experienced designers that developed them originally.

One of the first systems to take the script approach to multilevel
simplification was the Multilevel Implementation System (MIS) tool
developed at the University of California at Berkeley. The complete
range of operations it supports is much richer than the basic transfor-
mations we described in the previous section. You can learn much
more about MIS by looking at some of the suggested readings at the
end of this chapter. For now, let’s look at the sequence of transforma-
tions that is typical of most multilevel logic optimization scripts.

3.4.1 Multilevel Logic Optimization Scripts

A typical optimization script begins by reading in a set of Boolean
expressions corresponding to the nodes of a multilevel network. The
first thing it does is to look over the nodes and see if there are any that
are simple, for example, a single literal that is best collapsed into its
fan-out nodes. The reason these nodes can exist is that the logic speci-
fication may have come from a computer-aided design tool that gener-
ates logic specification from a hardware description language (we’ll
see an example of such a language later in this chapter).

Next, each node is simplified using a two-level logic optimization
program such as espresso. This is done so that the nodes are
expressed in a more succinct form than the way they may have been
originally generated. The elimination step may be repeated just in
case some nodes are reduced to a very simple form by the simplifica-
tion step.

At this point, nodes are typically factored. This is a two-step process
that involves first extracting good common divisors (both cubes and
kernels). After factoring, common sub-expressions are identified and
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substituted so as to remove redundant logic. This process is repeated
starting with large divisors and then considers smaller and smaller ones.
The idea is to take advantage of large common sub-expressions first.

The technology-independent part of the script usually ends with a
clean-up step that again looks to collapse nodes that end up being too
small (one or two literals).

Finally, a technology-mapping step is performed using a library of
available logic gates. Nodes are matched to the parts and may need to
be broken up into smaller pieces. This process may introduce new
intermediate nodes and, because of this, usually includes some col-
lapsing and clean-up steps as well.

A SESSION WITH AN OPTIMIZATION SCRIPT

In the following sequence of operations, we will (1) start with Boolean
equations that describe the combinational network to be manipulated
(it is also possible to describe the network as truth tables, using
espresso input format for each node rather than a Boolean expression),
(2) initially perform a two-level simplification (in this case, we’ll use
espresso as a subroutine), (3) decompose the resulting functions into a
multilevel network, and (4) map the decomposed network onto the
gates of a given gate library.

We’ll use the equations of our now very familiar example, the full
adder already expressed in two-level canonical form:

Sum = (ABC,) + (ABC,,) + (ABC,,) + (ABC,,)
C

w = (ABC,) + (ABC,,) + (ABC, ) + (ABC,,)

These can be simplified using espresso to yield

Sum = (ABC,,) + (ABC,,) + (ABC,,) + (ABC,,)

Cou = (AB) + (AC,) + (BC,))
And then factored into

Sum = C, (AB + AB) + C, (AB + AB)
Cout = (AB)+ C, (A + B)

After a decomposition we obtain two sub-expressions as separate nodes:

Sum = C, X + C, X

C,. =(AB)+C,Y
X = AB + AB
Y=A+B

Finally, we map our nodes to available components. In this case, our
library includes an XOR gate, an inverter, and a complex gate that
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implements the function ((F + G)H). The resulting mapping is

Sum = C, ® X

C,. = (F1+ G1)H1) = F1G1 + H1
X=A@®B

F1=A

G1 = B,

H1 = (F2 + G2)H2) = F2G2 + H2
F2=A

G2 = B,

H2 = C,

Note that two complex gates and two inverters are used to implement
Cout (Y3 is the same complex-gate equation after applying DeMorgan’s
law), while two XOR gates are used to implement Sum. The schematic
for the corresponding circuit is shown in Figure 3.31.

At this point, we could also compute the size, cost, and delay of
our circuit using analysis commands found in most optimization
tools. The library includes this information for each type of gate. Typ-
ical values for area may be 40 versus 16 for the relative size of an XOR
and inverter; 3 versus 1 for cost; and 4 versus 1 for delay. Delay esti-
mates not only include the effects of large fan-in (an intrinsic delay of
the gate available from the circuit library) but also fan-out, that is,
when a gate output is used by many other gates as an input, its delay
increases (this is an extrinsic property of CMOS gates that must be
computed during the analysis of the circuit and can not be included
in a library).

If our library contains only simple gates, our mapping result will
be quite different. A library containing only simple AND, OR, and
NOT gates may yield:

Sum = AC

out

+ BC,,, + C,C,,, + ABC,,

out n " ou

C,. = BC, + AC, + AB
Cin 1

| H1
A X' B + & p——d |
B - Sum A & TG

Complex
G, Gate

Complex
Gate

Gl

Figure 3.31 Implementation of full adder using a generic library of parts
(note the two complex gates are duals of the same part).
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Sum

Figure 3.32 Multilevel implementation of full adder.

While the expression for C,, is identical to what we have seen
before as well to the one derived by espresso, the expression for Sum is
a bit surprising. Let’s look at it in more detail.

Recall that the full adder Sum is A ® B ® C;,. However, our library
cannot make use of XOR gates. Expressed in sum of products form,
Sumbecomes Sum = (ABC,,) + (ABC,,) + (ABC,,) + (ABC,,). Our new
expression for Sum, by using C,,, effectively reduces the number of
literals from 12 to 9. However, there is another aspect to this solution.
The two-level expression for Sum in the standard sum-of-products
form has been replaced by a five-level expression (see Figure 3.32). It is
likely this probably will have a large performance penalty—a larger
delay. Clearly, our script is focusing on wiring complexity by empha-
sizing literal count with little or no regard for delay. This is still a use-
ful script, however, as many parts of our designs are not performance
critical and can be minimized for size as much as possible.

TWO-BIT BINARY ADDER

Let’s look at a second example of multilevel minimization, the 2-bit
binary adder. Recall that the inputs are two 2-bit binary numbers to be
summed, represented by the inputs A, B and C, D, respectively. The
output is a 3-bit binary number X, Y, Z. The result is as follows:

Z =BD+BD = B® D\

Y = WAC + WAC + WAC + WAC = W @ (A ® C)
X = AC+ W(A + C)

W = BD

You can see that there are four functions, even though the function
has only three outputs. A new intermediate result, denoted by W, has
been introduced. Outputs X and Y have been expressed as functions of
the new intermediate function W.

This solution represents considerable savings of literals compared
to the solution we found in Section 3.1. In sum-of-products form, X
required eight literals, Y used 20, and Z was expressed in four, a total
of 32. The multilevel implementation described above uses 23 literals
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without using XOR gates, a 28% savings. Of course, there are perfor-
mance implications of the multilevel implementation. The worst-case
delay in the sum-of-products form is, as always, two gate levels
(with potentially large fan-in gates and not counting inverted input
literals). In the multilevel form, it is four gate levels (first level forms W,
then a second-level inverter to create W, then two more levels to form
the sum-of-products for Y).

3.4.2 Realizing Multilevel Logic Networks

As was the case for two-level logic, we also need to be able to imple-
ment our multilevel logic in terms of common gates. In this section, we
will be concerned with how to express multilevel logic networks
solely in terms of NAND and NOR gates.

Generalization to Multilevel Circuits We can extend the transformation tech-
niques we developed for two-level networks to multi-level networks.
Consider the function

F = A(B + CD) + BC

[ts implementation in AND/OR form is shown in Figure 3.33(a).
You can see how we have arranged the logic into alternating levels of
AND and OR gates. This makes it easier to observe the places where
the conversion to NAND/NAND gates can take place. You simply
replace each AND with a NAND and each OR with a NAND in its
“alternative” form (OR with inverted inputs).

Level 1 Level 2 Level 3 Level 4

(a) F

Introduction and
(b) Conservation of
Bubbles

e ™ O 0O
-

Redrawn in Terms
(c) of Conventional
NAND Gates

o St

\C

Figure 3.33 Multilevel conversion to NAND gates.
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The application of this procedure is shown in Figure 3.33(b). We
have grouped levels 1, 2 and 3, 4 into AND/OR circuits. These can be
replaced by equivalent NAND/NAND networks directly.

Note that the literal B input to gate G3 must be inverted to preserve
the original sense of the signal wire. Always remember to introduce
logic inversions in pairs to maintain logic consistency. Any internal
signal wires that undergo an odd number of inversions must have an
additional inverter inserted in the path.

The final NAND-only network is shown in Figure 3.33(c). We have
eliminated an inverter by replacing the B input to G3 with a connec-
tion to its complemented literal.

Suppose your target is a NOR-only network. You can take the same
approach when the initial network is expressed as alternating OR and
AND levels. You should place OR gates at the odd levels and AND
gates at the even levels. You can immediately replace these by NOR
gates. Any unmatched input bubbles should be corrected by inserting
inverters or using the complemented literal where necessary.

It is just a little more complicated when transforming alternat-
ing AND/OR networks (OR/AND networks) into NOR-only circuits
(NAND-only circuits). Nevertheless, you can still apply the same basic
techniques.

For example, suppose you want to map the AND/OR/AND/OR net-
work of Figure 3.34(a) into NOR gates. You should invert the inputs to

Level 1 Level 2 Level 3 Level 4
C
. DT
Original G3
(a) AND-OR B L G4 DF
Network
5 i

|
vy

U

1
L) T
G4
Introduction and B [——C D—DO— F

(b)  Conservationof 4
Bubbles

Y

T
Y
€

\C —

NOR Gates \A
\B

C

\C ———
o>
Redrawn in Terms B ] O
(¢)  of Conventional m G5 F

Figure 3.34 Multilevel conversion to NOR gates.
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the odd levels while inserting an extra inversion at the output of the
even levels. The extra inversions between adjacent even and odd levels
can be saved if they cancel each other. This is shown in Figure 3.34(b)
between levels 2 and 3, for gates G3 and G4. The final NOR-only cir-
cuit is shown in Figure 3.34(c). All but one of the literals have been
inverted and an extra inversion has been inserted at the output. You
can implement this last inversion by a NOR gate with both inputs tied
to the same signal.

NON-ALTERNATING NAND/NOR
MULTILEVEL NETWORKS

Figure 3.35 shows an example in which the circuit cannot be placed
into a form that alternates between AND and OR gates. The multilevel
function is:

F=AX+X+D
X = BC

Figure 3.35(a) shows the initial AND/OR network. We begin by
introducing double inversions at the noncomplemented inputs to the
last-stage OR gate (see Figure 3.35(b)). We propagate these back to the
outputs of the top AND gate and the input D (Figure 3.35(c)). With all
of its inputs complemented, the OR gate is now equivalent to a NAND
gate. Note how the connection to D has been replaced by a connection
to its complement (denoted by \D) to compensate for the bubble on the
OR gate’s input.

A
B
F F
C
D
(a) Original Circuit (b) Add Double Bubbles to
Invert All Inputs of OR Gate
A
B
F /o
\D
(c) Add Double Bubbles to (d) Insert Inverters to Eliminate
Invert Output of AND Gate Double Bubbles on a Wire

Figure 3.35 Another multilevel conversion example.
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We now have two NAND gates, but there is still an AND gate left
with input B and C. The next step is to add two bubbles to its output.
Unfortunately, there is no place to propagate the second bubble. We
don’t want it at the input to two NAND gates. To accommodate this
bubble, we add a new inverter to the circuit. Conversions between
forms can sometimes introduce extra inverters, but only inverters. The
final converted circuit is shown in Figure 3.35(d).

Our purpose in this section was to give you a flavor of the
approaches to multilevel logic synthesis. The key idea is to identify
common Boolean subexpressions across a collection of equations. If
we can factor these out and share them among several functions, we
can reduce the total number of literals needed to realize the functions.
Fewer literals mean fewer wires, an important criterion in determining
the complexity of a circuit.

We introduced the basic operations for manipulating multilevel
networks: decomposition, extraction, factoring, substitution, and col-
lapsing. We showed how an script created by a design expert it could
perform a sequence of operations to optimize circuits such as the full
adder and 2-bit adder. The key is to reduce literal counts, although this
usually has the effect of increasing the number of levels of gates and
can have a negative effect on delay. Other scripts can be designed
to minimize delay at the expense of size or strike a balance between
the two.

3.5 Time Response in Combinational Networks

Our analysis of circuits so far has concentrated on the static behavior
of combinational networks. The analysis adequately describes a circuit
in a steady state, but it is not enough to tell us about a circuit’s
dynamic behavior. Remember that the propagation of signals through a
network is not instantaneous. This characteristic can be useful, for
example, when creating circuits that output signals that assume a
value for a limited duration. But it causes problems if the momentary
changes of signals at the outputs lead to logical errors. Such transient
output changes are called glitches. A logic circuit is said to have a haz-
ard if it has the potential for these glitches.

As a hardware designer, it is extremely important to be able to
visualize the behavior of a circuit as a function of time—that is, to be
able to look at a circuit and see how signals move through it and recog-
nize asymmetric delays along paths that can lead to transitory behavior
at the outputs. This is not an easy skill to acquire, even after extensive
design experience. Fortunately, simulation tools can offer great assis-
tance in visualizing the time-based behavior of circuits.

3.5.1 Gate Delays

Outputs in combinational logic are functions of the inputs and some
delay. As we stated in Chapter 2, gate delay is the amount of time it
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takes for a change at the gate input to cause a change at its output.
Most circuit families define delays in terms of minimum (best case),
typical (average), and maximum (worst case) times. A corollary to
Murphy’s law, well known to experienced digital designers, is that if a
circuit can run at its worst-case delay, it will. Never assume that the
parts you purchase will all run with minimum delay. In fact, interest-
ing effects often arise when one part runs slowly and another of the
same type is much faster. We can make very few assumptions about
component delays and it is always prudent to check that all possible
variations the circuit will still have the performance and function
intended. The various families of logic gates exhibit trade-offs between
delay and power.

In the simplest case, what would happen if you depended on a
portion of your design running with minimum delay? If its delay is
longer than you designed for, you may examine its output too soon,
incorrectly computing the final output of your overall system. How-
ever, choosing a component that is faster generally means that it will
consume more power. Designers often have to balance delay require-
ments against power consumption.

3.5.2 Timing Waveforms

Let’s now consider the circuit shown in Figure 3.36. An input signal A
passes through three inversions, leaving it in its inverted state, which
is then ANDed with the original input. This appears to implement a
rather useless function: A+A = 0. However, the timing diagram of
Figure 3.37 tells us a different story. After the input A goes high, the
output waveform goes high for a short time before going low. Such a
circuit is called a pulse shaper because a change at its input causes a
short-duration pulse at the output.

The circuit operates as follows. Assume that the initial state has
A=0,B=1,C=0,D=1, and F=0, as shown in Figure 3.37 at a time
step of 0. Further, we assume that each gate has a propagation delay of
10 time units. When input A changes from 0 to 1 at time 10, it takes 10
time units, a gate delay, before B changes from 1 to 0 (time step 20).
After a second gate delay, C changes from 0 to 1 (time step 30). D
changes from 1 to 0 after a third gate delay (time step 40). However,
between time 10 and time 40, both A and D are logic 1. If the AND gate
also has a 10-unit gate delay, the output F will be high between time
steps 20 and 50. This is exactly what is shown in the timing diagram.
In effect, the three inverters stretch the time during which A and D are
both logic 1 after A changes from 0 to 1. Eventually, the change in A

Figure 3.36 Circuit that exploits delay to provide a useful function.
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propagates to D as a 0, causing F to fall after one more gate delay. It is
no surprise that the pulse is exactly three inverter-delays wide. If we
increased the number of inverters to five, the width of the pulse would
be five gate delays instead.

3.5.3 Analysis of a Pulse-Shaper Circuit

In this section, we will analyze the operation of another pulse shaper
circuit shown in Figure 3.38. A pulse-shaper circuit exploits the prop-
agation asymmetries in signal paths with the explicit purpose of creat-
ing short-duration changes at the output. In this case, it generates a
periodic waveform that could be used, for example, as a clock in a dig-
ital system. It operates much like a stopwatch. With its switch in one
position, the circuit does nothing. In the other position, the circuit
generates a periodic sequence of pulses.

The circuit has a single input A that can be connected to a logic 1
or to a logic 0, depending on the position of a switch. We will assume
that the propagation delay of all gates is 10 time units. The timing
behavior of a typical use of the circuit is summarized in the timing dia-
gram of Figure 3.39.

Suppose that at time-step 0, the switch has just been connected
to 0 (ground). We begin by determining the initial value for each of the
circuit’s wires. A goes to 0 instantly. Since a NAND gate will output a 1
whenever one of its inputs is 0, B goes to 1, but only after a gate delay
of 10 time units. So we say that B goes to 1 at time-step 10. Since we do

Figure 3.38 Pulse-shaper example.

Close Switch  Initially Open
\ Undefined  Switch

100 200

O 0 ™ >

Figure 3.39 Timing waveform for pulse-shaping circuit.

100

Figure 3.37 Pulse-shaper
waveform.
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not know the value of B, C, and D at the start of our waveform, we
shade the waveform to indicate an unknown value.

C is the complement of B, but once again only after an inverter
propagation delay. Thus C goes to 0 at time-step 20. D becomes the
complement of C after another inverter delay. So it goes to 1 at time-
step 30. Since A is 0 and D is 1, the output of the NAND gate stays at 0.
The circuit is said to be in a steady state.

What happens if the switch is flipped and connected to 1 (power)
at time-step 407 The input A immediately goes to 1. Now both inputs
to the NAND gate are 1, so after a gate propagation of 10 time units, B
will go low. This happens at time-step 50.

The change in B propagates to C after another inverter delay. Thus,
at time-step 60, C goes to 1. In a similar fashion, D goes to 0 at time-
step 70. Now the NAND gate has one of its inputs at 0, so at time-step
80, B will go to 1.

Note that B first goes low at time-step 50 and goes high at time-
step 80—a difference of 30 time units. This is exactly three gate delays:
the delay through the NAND gate and the two inverter gates on the
path from signal B to Cto D and back to B.

Now that Bis at 1, Cwillgo to 0 at time-step 90, D will go to 1 at time-
step 100, and B will return to 0 at time-step 110. The circuit is no longer
in a steady state. It now oscillates with B, C, and D varying between 1
and 0, staying at each value for three gate delays (30 time units).

3.5.4 Hazards and Glitches

While we have been looking at some circuits that take advantage of
the delay of digital circuits, there are times when these effects are
unwanted. A glitch is an unwanted pulse at the output of a combina-
tional logic network—a momentary change in an output value that
should have remained unchanged. A circuit with the potential for a
glitch is said to have a hazard. In other words, a hazard is something
intrinsic about a circuit; a circuit with a hazard may or may not glitch,
depending on the input patterns and the electrical characteristics of
the circuit. In this section, we will develop a procedure that leads to
hazard-free circuits.

Hazards are a problem for digital systems in two cases. In the first
case, we may use the value of a signal without waiting for it to settle to
its final value. The problem with this time-sensitive logic can be
solved by measuring an appropriately long interval between the time
when inputs first begin to change and the time when the outputs are
examined by the decision-making logic. Clock signals are typically
used for this purpose, for example, you can lengthen the waiting inter-
val by increasing your system’s clock period. We will discuss the topic
of clocking methodologies in considerably more detail when we dis-
cuss sequential logic in later chapters.

In the second case, a hazardous output is connected to a component
with asynchronous inputs. Asvachronous inputs take effect as soon as
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they change, rather than when sampled with a standard reference clock.
Of course, we can try to avoid the situation of having an asynchronous
signal sampled by a clock, but this is not always possible. For example,
when a signal forms a communication link to an entirely different sub-
system with its own independent clock. This occurs most typically
with computers connected over a network.

There are very useful components that, unavoidably, have asyn-
chronous inputs. For example, many components that implement
counting functions or storage elements have asynchronous inputs to
reset them or initiate their operation. Therefore, if you ever design cir-
cuits that interface to such components (and you will later in this text),
you should understand how to design hazard-free logic.

Static and Dynamic Hazards Methods for eliminating hazards always
depend on the assumption that the unexpected changes in the outputs
are in response to single-bit changes in the inputs. This assumption
isequivalent to moving along an edge in the Boolean cube that
describes the function’s truth table. The techniques simply do not
apply when more than one input bit changes at the same time. Hazards
caused by simultaneous multiple-input changes are unavoidable (we’ll
see why shortly).

The various kinds of hazards are summarized in Figure 3.40. A
static hazard occurs when it is possible for an output to undergo a
momentary transition when it is expected to remain unchanged. A
static 1-hazard occurs when the output momentarily goes to 0 when it
should remain at 1. Similarly, a static 0-hazard occurs when the out-
put should remain at 0 but momentarily changes to 1. We will develop
techniques that can eliminate static hazards from two-level and multi-
level circuits.

Dynamic hazards occur when the output signal has the potential
to change more than once when it is expected to make a single transi-
tion from 0 to 1 or 1 to 0. Dynamic hazards cause glitches in multilevel
circuits, where there are multiple paths with different delays from the
inputs to the outputs. Unfortunately, it is quite difficult to eliminate
dynamic hazards, in general. The best approach to dealing with this
problem is to transform a multilevel circuit with a dynamic hazard
into a static hazard-free two-level circuit.

3.5.5 Hazard Detection and Elimination in Two-Level Networks

Consider the 4-variable function: F(A,B,C,D) =X m(1,3,5,7,8,9,12,13).
Its K-map is shown in Figure 3.41. The minimum sum-of-products
form for the function is AC + AD.

The gate-level implementation of F is given in Figure 3.42. Let’s
examine what happens when the inputs change from ABCD = 1100 to
1101. When the inputs are 1100, the output of gate G1 is 1 while G2’s
output is 0. Thus, the output from G3 is 1. When the input changes
by a single bit to 1101, the outputs of the gates remain unchanged.

Static
0 1-hazard
1
| | Static
1 1
0 0
Dynamic
1 | Hazards

0 0

Figure 3.40 Kinds of hazards
on an output function.
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Figure 3.41 K-map for example

circuit,
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\A \A

ABCD = 1100 ABCD = 1101

Figure 3.42 Effect of input change from 1100 to 1101.

A A
\C \C
—
\A \A
D D
ABCD = 0101 (A is still 0) ABCD = 0101 (Ais 1)

Figure 3.43 Effect of input change from 1101 to 0101.

G1 implements the prime implicant that covers both of the input con-
figurations we considered; it remains asserted despite the input
changes. A glitch cannot happen in this case.

Now consider an input change from 1101 to 0101, another single-
bit change in the inputs. When A goes low, A goes high, but only after
a gate delay. For a short time, both A and A are low. This allows the
outputs from G1 and G2 to be low at the same time, and thus F goes
low. When A finally does go high, G2 will go high and F will return
to 1. A glitch has happened! The step-by-step process is shown in
Figure 3.43. This can also happen if G2 is slightly slower than G1.

A close examination of the K-map of Figure 3.41 suggests what
caused the problem. When the initial and final inputs are covered by
the same prime implicant, no glitch is possible. But when the input
change spans prime implicants, a glitch can happen. We move from
under the cover of one prime implicant to the cover of another and
are momentarily “exposed.” Of course, if G1 is much slower to
change than G2, you might not ever see a glitch on F. The hazard is
always there, however, as that is a property of the logic itself.
Whether you actually see a glitch depends on the timings of the indi-
vidual gates.

The fundamental strategy for eliminating a hazard is to add redun-
dant prime implicants to guarantee that all single-bit input changes are
covered by one such implicant. This is a key insight. Suppose we add
the implicant CD to the implementation for F. This strategy does not
change the function’s truth table. By adding the term CD, F remains
asserted for the inputs 1101 and 0101, independently of the change to
input A.
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You can now understand why we can only eliminate hazards for
single-output changes. When two inputs change simultaneously we
move “diagonally” in the K-map and there is no way we could always
put a cover across to diagonal elements of the on-set. However, the 0o 0 |0 1
single-input change assumption isn’treally as bad as it sounds. In real-
ity, inputs do change in some order, even when more than one will
change. This reduces to the single-input change problem.

Let’s return to eliminating hazards. Our method eliminates the
static 1-hazard, but what about static 0-hazards? First, reexpress the €
function F in minimum product of sums form:

AB A
C 00 11 10

orf 1 1 1 1

F=(A+C)A+D) B

. . o . ) Figure 3.44 K-map for example
The K-map in Figure 3.44 clearly indicates that a static 0-hazard exists  circuit.

when the input changes from 1110 to 0110.

The solution is to add the redundant prime implicant (C + D) to
the product of sums expression for F. The resulting expression is equiva-
lent to the sum of products form that eliminates the static 1-hazard:

= (A + C)A+ D)C + D)
(C + AD)(A + D)

AC + AAD + CD + AD
AC + AD + CD

oMo
1l

Alternatively, we can use a shortcut to analyze the function for
0-hazards. We start with the expression that is free of static 1-hazards
and work with its complement. We can then superimpose the analysis
on the original K-map, looking at the zeros of the original function. A
static 0-hazard exists if the implicants of the complement do not cover
all adjacent pairs of 0s. ,

The revised expression for Fis AC + AD + CD. Working with its
complement, we get the following:

AC + AD+ CD

(A+ C)A + D)(C + D)

= ACD + AD + AC + ACD + CD
= AD + AC + CD

o e TR ST Y

This collection of terms does indeed cover all adjacent 0s in the
K-map for the revised F. This expression is free of both static 1-hazards
and 0-hazards.

General Strategy for Static Hazard Elimination The preceding example leads
to a general strategy for eliminating static hazards in two-level net-
works. Let’s consider static 1-hazards first. Starting with the K-map, we
examine it to make sure that all adjacent elements of the on-set are
covered by a prime implicant. If they are not, we add redundant prime
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C 00 01 11 10

Figure 3.45 K-map for circuit
with 1-hazards.

implicants until all adjacent elements of the on-set are covered by a
prime implicant.

We follow a similar procedure to eliminate static 0-hazards. Given
the sum of products form for the function that eliminates the static
1-hazards, we write it in product of sums form using Boolean algebra.
Then we verify that adjacent elements of the off-set are covered by a
common prime implicant in the product of sums form. If necessary, we
add more prime implicants to cover any uncovered adjacencies.

3.5.6 Static Hazards in Multilevel Networks

We can generalize the techniques described in the previous section for
multilevel circuits. We begin by mapping the multilevel function into
a two-level form called the transient output function. In forming the
transient output function, we treat a variable and its complement as
independent variables. This mehns that we can no longer make use of
the Boolean laws that state that X+X =0 and X + X = 1. The
former introduces static 0-hazards, while the latter leads to static
1-hazards. Furthermore, we can no longer use any of the simplification
theorems derived from these Boolean laws, such as simplification the-
orems 9, 10, and 11 and the Consensus theorem (#17) of Section 2.2.

MULTILEVEL FUNCTION

Let’s consider the following multilevel Boolean function:

F = ABC + (A + D)(A + C)
A quick application of the Distributive law yields
F, = ABC + AA + AC + AD + CD

This is the transient output function in sum-of-products form. Since A
and its complement are treated as independent variables, the term
A+ A is kept in the transient output function.

Once the function is in two-level form, we follow the procedure
described in the previous subsection. First we check for static 1-hazards
in the function. Note that the term A+<A can never cause a 1-hazard
(it does indicate that a 0-hazard exists), so it can be eliminated from
consideration when analyzing for 1-hazards. The K-map for the
remaining terms is shown in Figure 3.45. The function contains three
static 1-hazards, at the input transitions between ABCD = 1111 and
0111; 1111 and 1101; and 1110 and 1100.

The remedy is to add the necessary redundant prime implicants.
In the K-map of Figure 3.45, this is achieved by addlng the terms AB
and BD to the sum of products form of F:

= AC+ AD + CD + AB + BD
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Because AB completely covers the term ABC, we have eliminated it 100
from F,.

Figure 3.46 compares the timing behavior of the original function, F,
and its revised expression, F,. Notice that F glitches on the input transi-
tions 1111 to 0111 and 1111 to 1101, while F, does not have the glitches.

We use the shortcut method to verify that the new expression is
free of static 0-hazards. For the original function F, F is

o0 W

F = ABC + (A + D)(A+C)
F =(A+ B+ C)AD + AC) Figure 3.46 Waveforms with
= = — — = 1-hazards.
F = AD + ABD + ABC + AC
F = AD + ABC
AB A

This expression corresponds to the circled 0s in the K-map of Fig- 00 T
ure 3.47. The function has a 0-hazard on the transition from 1010 to
0010, as shown in the timing waveform of Figure 3.48. This problem
can be fixed by adding the implicant BCD to F. The following is a
two-level expression for F that is free of static 0-hazards:

| 0 0 | 1

01 1 1 | |

F,=(A+D)A+B+C)B+C+D) 1o I | ()'

Expanding Fj to place it into sum-of-products form yields F,. Both 1010 0 ! 0 ‘
expressions are simultaneously free of static 0- and 1-hazards.

B

3.5.7 Designing Static Hazard-Free Multilevel Circuits Figure 3.47 K-map for circuit

The procedure for designing a static hazard-free multilevel network is ~ With 0-hazards.

a straightforward application of the concepts we have just described.
The key is to place the function in such a form that the transient out-
put function guarantees that every set of adjacent 1s in the K-map are
covered by a term, and that no terms contain both a variable and its
complement. The former condition eliminates 1-hazards, and the latter
eliminates 0-hazards.

Following this procedure will eliminate static hazards, at least for
two-level implementations. We start with the truth table or the expres-
sion of the function in minterm shorthand form. Then we express the
function in terms of prime implicants, which ensure that adjacent 1s
are covered by a single term. To obtain a multilevel form, we factor the
resulting expression using the laws and theorems of Boolean algebra,
but treating a variable and its complement as independent variables. Figure 3.48 Waveform with
For example, the Distributive law can never introduce a hazard, so it 0-hazards.
can be used freely to simplify the function. The complementarity laws,
on the other hand, cannot be used to simplify the function. As long as
no terms in the resulting expression contain a variable and its comple-
ment, the function will be hazard-free.

Returning to the example function of this section, its shorthand
minterm form is

100

m o 0 B

F(A,B,C,D) = Em(1,3,5,7,8,9,12,13,14,15)\
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AB A
c 00 01

00| 0 0 1 1

Figure 3.49 K-map for hazard-
free function.

The K-map with circled terms is shown in Figure 3.49. This yields the
expression

F = AB+ AD + BD + AC + CD

This result is the same as the expression for F, in the previous sub-
section. Factoring via the distributive law yields the following multi-
level static hazard-free expression:

F=(A+B+C)D+ AB +C)

This expression requires five gates, as was the case for the original
expression for F given at the beginning of this section.

3.5.8 Dynamic Hazards

Dynamic hazards are defined as output transitions from 0to 1 or 1 to 0,
undergoing more than one change along the way. Dynamic hazards
happen because of multiple paths in the underlying multilevel net-
work, each with its own asymmetric delay. If there are three or more
paths from an input or its complement to the output, the circuit has
the potential for a dynamic hazard.

Figure 3.50 gives an example of a circuit with a dynamic hazard.
Note that there are three different paths from B or B to the output.
The following sequence of events can lead to a dynamic hazard at F.
Suppose that the initial inputs are ABC =000, F =1 and the final con-
figuration is 010 with F=0. In the starting configuration, G1=0,
G2=1,G3=1,G4 =1, and G5 = 1. The initial gate inputs and outputs
are shown in the figure.

Now suppose that B changes from 0 to 1. We assume that G1 is a
slow gate, G4 is a very slow gate, and G2, G3, and G5 are fast. G2
changes from 1 to 0, followed by G3 going to 0 and G5 following it to 0
a short time later. So far, the output has changed from 1 to 0. This situ-
ation is shown by the bold values in the figure.

\A

\B
\C

Very slow

Figure 3.50 Circuit with a dynamic hazard.
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Now G1 catches up. Its output goes to 1, causing G3 to go high, fol-
lowed by G5 going high. At this point, the output has changed from 1
to 0 to 1. This is shown by italicized values in the figure.

Finally, G4’s output changes from 1 to 0. This causes G5 to go low,
reaching its final output. The output has changed from 1 to 0 to 1 to 0.
This is shown by underlined values in the figure.

Although it is possible to extend the techniques for static hazard
elimination to dynamic hazards, the process is rather complicated and
goes beyond the scope of this text. It is not enough to eliminate the
static hazards—a multilevel network free of static hazards may still
have dynamic hazards. If you need a hazard-free network, it is best to
design it as a two-level network using the techniques shown earlier in
this section.

3.6 Hardware Description Languages

Up to this point, we have used Boolean expressions and schematic dia-
grams to describe our logic circuits. As you might imagine, it can
become quite difficult to comprehend a large diagram or long Boolean
expression, or for that matter, even to draw or write one. Hierarchy
helps with this problem in that it lets us use smaller pieces to describe
larger entities. We have seen this when we decompose a large Boolean
expression into smaller subexpressions and we have seen it in sche-
matic diagrams such as using two half adders to form the full adder of
Figure 2.19.

But hierarchy is not enough. Diagrams take a lot of time to draw
legibly. Computer-aided schematic editors make the job easier but a
small change in a logic expression can cause a large change in its cor-
responding schematic drawing. Boolean expressions can be difficult to
read and do not provide an easy way to comprehend the function
being described. For example, consider the ease of reading the C pro-
gram versus the sum-of-products expression for the leap month calcu-
lation of Section 1.4.1.

Hardware description languages were developed to deal with these
issues. They provide a way for designers to textually describe logic cir-
cuits while exploiting some of the advantages of software languages,
namely, variables, subprocedures, and conditional and iterative
statements.

However, the most valuable use of hardware description languages
is that they allow a design to be exercised without physically building
it. Descriptions in these languages can be executed. That is, they run
like software: a program, called a simulator, emulates the actual
behavior of the circuit as faithfully as possible. Of course, it does not
precisely match reality. Electrical effects require large amounts of com-
putation to model at a high level of accuracy. A simulator strikes a bal-
ance between fidelity and performance. It focuses on how a circuit
evolves over time. This is very different than a programming language
that has no notion of time. Software is executed statement after state-
ment and the computer does not keep track of how long the execution
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takes. A hardware simulator, on the other hand, has to keep track of
how long the “execution” of a logic gate takes so that it can properly
model propagation delay. The output of simulators is commonly
shown as a waveform that explicitly models time.

Hardware description languages have been around for a long time.
The first were designed to help processor designers describe their new
designs and actually execute programs on them. A language called ISP,
for instruction set processor, was developed at Carnegie-Mellon Uni-
versity in the mid-1970s. It radically shortened the amount of time
needed to get a new design to work correctly by allowing designers to
find most of the bugs in simulation rather than after building expen-
sive hardware.

The success of these efforts was followed in the early 1980s by
HDLs to describe arbitrary logic rather than just processor elements.
These were mostly developed by industry (such as ABEL by Data-1/0
and Verilog by Gateway). VHDL, developed under the leadership of
Department of Defense, was developed to help in modeling even more
aspects of complex systems composed of software as well as hardware.
Both Verilog and VHDL are now IEEE standards.

By the early 1990s, with most designers using hardware descrip-
tion languages, attention turned to compilers, known as synthesis
tools, that automatically could turn HDL descriptions into circuit
implementations. More recently, the focus of research is on system-
level description languages used to describe complex distributed sys-
tems and synthesis tools to generate the code and hardware that will
make all the elements work together to perform the desired functions.

In this text, we will use Verilog simply because it makes it much
easier for beginners to get started and it has a syntax similar to the C
programming language. Users of HDLs are almost evenly split between
those that use Verilog and those that use VHDL.

Hardware description languages appear quite similar to program-
ming languages at first glance, but we’ll see, in this and later chapters,
that there are some fundamental differences. One of things they do
share, however, is the notion of hierarchy. With HDLs, we define mod-
ules and then compose these into larger designs. A very basic module
description in Verilog might look something like this:

module xor_gate (a, b, z);
input a, b;
output z;

<{module internals>

endmodule

The module has a name, in this case, xor_gate, and three wires:
a, b, and z. Here a and b are inputs, while z is an output. We can think
of a and b as the input parameters of the module and z as its output
parameter or return value. There are two principal ways of describing
the internals of the module: structure or behavior.
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andl

andt

Figure 3.51 Schematic for an exclusive-or gate implementation.

3.6.1 Describing Structure

A structural description is simply a textual version of a schematic dia-
gram. For an XOR gate constructed using the schematic of Figure 3.51,
the module description would be completed as follows:

module xor_gate (z, a, b);
input a, b
output z;
wire abar, bbar, tl, t2;

inverter invA(abar, a);
inverter invB( bbar, b);
and_gate andl(tl, a, bbar);
and_gate and2(t2, abar, b);
or_gate orl(out, tl, t2);

endmodule

The module description lists all of the five gates of Figure 3.51 and
uses variable names for the connecting wires. Each gate is an instance
of another module. In this case, we use three different types of mod-
ules: inverter, and_gate, and or_gate. Descriptions of these modules
would also be in the complete circuit description. However, just as in
software, there will most likely be libraries of primitive elements so
that descriptions can be made more concise. The five gates are given
unique names (invA, invB, and1, and2, and or1) so that they can be
referred to in later simulation and debugging. Finally, note that abar,
bbar, t1, and t2 had to be declared as internal variables to the module
as they are wires that are neither inputs nor outputs but are used to
connect the internal components of the module.

3.6.2 Describing Behavior

Rather than describing in detail how the function will be realized (by
describing the gates to be used and how they will be interconnected), a
behavioral description simply describes the function of the module with-
out spelling out a specific implementation. A behavioral description of
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our xor_gate module may look as follows:

module xor_gate (a, b, z);

input a, b;
output z;
reg z;

always @(a, b) begin
z=a " b;
end

endmodule

The module description contains an always block. This specifies
when the values of the outputs of a module need to be updated and
how. In this case, whenever the value of a or the value of b changes,
then z should be assigned the value of the exclusive-or of @ and b. The
sensitivity list is specified within the parentheses after the @ symbol.
The statement to be executed to determine how to update the value
of z is within the begin-end block. The A symbol is used to signify the
exclusive-or operation in Verilog. The sensitivity list of the always
block indicates that if either a or b change in value then the statement
within the always block should be executed. This is quite different
than in programming languages where statements are executed
sequentially. In this case, a statement is executed because of a change
in the value of a wire. HDLs do this because this is how real circuits
operate. The additional declaration for z makes this clear to the simu-
lator (by indicating that z will have new values assigned to it continu-
ously and a register should be created to keep track of when the
statements that assign a new value to z need to be reevaluated).

We can also include more complex statements inside of always
blocks that include iteration and conditionals. For example, we can
rewrite the always block for our xor_gate as follows:

always @(a, b) begin
if (a) then z = ~b else z = b;
end

The if statement also realizes the exclusive-or of a and b and
assigns a value to z. The ~ symbol is the unary operator used to com-
plement values in Verilog.

These types of always blocks are so common in Verilog that there
is a special shorthand notation that is exactly equivalent:

module xor_gate (a, b, z);

input a, b;
output z;
reg z;

assign z = a ™ b;

endmodule
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The assign statement specifies that z should continuously be
assigned a value that is the exclusive-or of a and b. This continuous
assignment statement is quite different than an assignment statement
in a programming language. It is not executed once, but many times.
The statement is reevaluated whenever the value of a or b changes so
that we can ensure that z always has the correct value. In effect, the
assign statement takes the burden from the designer of having to spell
out the sensitivity list. The statement is reevaluated whenever any
variable used on the right side of the assignment changes value.

Of course, for a design to be complete, all its modules will require
complete structural descriptions. However, there are several reasons for
wanting behavioral descriptions as well. Early in the design process,
designers may not want to put a lot of effort into a schematic that may
have to be changed later. It is easier to simply state the function that will
be required and move on to simulating and debugging the overall design.
Moreover, automatic synthesis tools can be used to transform a behavioral
description into a structural description. As you can imagine, these tools
have radically improved the productivity of designers. Finally, some mod-
ules may never be realized in circuitry but are simply used to provide a
simulation context for the design. We’ll see an example of this shortly.

3.6.3 Delay

Sensitivity lists emulate how real logic circuitry works. Another aspect
of real hardware that needs to be emulated is its delay characteristics.
Verilog provides for this with a delay statement. For example, if we
want our xor_gate to have a delay of six time units, then we can add a
delay to its behavioral description as follows:

module xor_gate (a, b, 2); module xor_gate (a, b, z)

input a, b; input a, b;

output z; output z;

reg 725 reg 70

assign #6 z a "~ b; always @(a, b) begin

#6 z = a ~ b;
endmodule end
endmodule

The effect of the delay statement is to postpone the assignment of a
new value to z for six time units so that a change in z will occur six
time units later than the change in a or b that caused it to happen. Note
that, delay statements only make sense within a behavioral descrip-
tion. In a structural description it is the responsibility of the most
primitive submodules (those not composed of other submodules) to
have the appropriate delay specified between their inputs and outputs.

3.6.4 Event-Driven Simulation

We have mentioned simulation several times in this discussion of HDLs.
A simulator is a tool that can read hardware descriptions written in
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languages such as Verilog and execute them for us. Most HDL simula-
tors are event-driven, that is, they are based on the concept of an event
occurrence. An event is simply the change in the logic value carried on
a wire. It has an associated value and a time of occurrence.

Simulators are constructed to propagate events through the mod-
ules that constitute a design. In our example, any changes in the values
of wires a and b constitute events, these are propagated through the
xor_gate module and a new event on z may be generated. That, in
turn, may affect other modules and cause them to generated other
events. This continues until either there are no more events or the
designer stops the simulation. Delay statements are used to advance
time in event-driven simulators. Without delay, all events would occur
in the same virtual instant. By modeling delay, we separate events in
time in the same way they would be in a real circuit. Event-driven sim-
ulators take the burden from designers of having to manually check
event propagation. This makes them invaluable and very popular tools
for verifying a logic design.

Event-driven simulators need events to kick-off the process. These
may be generated by a human designer who “drives” the simulation by
changing values on wires through the simulator’s user interface. Alter-
natively, we can include modules in our simulated design whose func-
tion is simply to generate events or react to events generated by the
circuit. This commonly is called a test bench: an accompanying circuit
to our design whose function it is to test that the circuit functions as
intended by providing “stimuli.” We can then check that our circuit
responds appropriately. This is a common practice in engineering and
scientific observation. Of course, these test-bench modules will not be
part of a realization of the circuit.

Suppose we would like to exercise our xor_gate so that it is
“tested” with the four combinations of possible input values. We could
create a module that cycled through these four input combinations and
connect it our xor_gate as follows:

module test-bench (x, y);

output x, y; module both_together(z);
reg X, Y output z;
wire wl, we;

initial begin
x=0;y=0; test-bench tbl(wl, w2);
#10 xor_gate xorl(wl, w2, z);
x=0;y=1;
#10 always @(z) begin
x=1;y = 0; $display("At time: %d with
##10 inputs: %b and %b, the output
x=1; vy =1; is: %b", $time, wl, w2, z);
##10 end
$finish

end endmodule

endmodule
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Figure 3.52 Schematic of an exclusive-or gate connected to a stimulus
generator.

The schematic corresponding to the Verilog above is shown in
Figure 3.52. The module on the left uses delay statements to change
the values of its x and y outputs every 10 time units. The initial
block is only executed once at the start of a simulation. The $finish
statement halts the simulator. Note that the module has no inputs. The
module on the right connects this stimulus generator (or test bench) to
an instance of our xor_gate. It has a single output, coincidentally also
labeled z, that will change at time 6, 16, 26, and 36 (due to the XOR
gate’s six time units delay). The simulator will halt at time 40. The
$display statement is used as part of the user interface of the simula-
tor. It is similar to a printf statement in C. By enclosing it in an
always block, we will cause it to print its string every time z changes
value and report to us the current time in the simulator as well as the
values of the inputs and outputs of the xor_gate instance.

Of course, there are many more features to Verilog (and we’ll see
many more of them when we discuss sequential logic in later chap-
ters). Unfortunately, there is not enough space here to provide all the
details. One last example will serve to highlight some very useful ele-
ments of the language.

module test-bench (x, y):
output x, y;
reg[1:0] count;

initial begin
count = 0;
repeat (3) begin
#10 count = count +1;
end
{10
$finish;
end

Il

countl[117];
count[0];

assign x
assign y

endmodule

This module does precisely the same thing as the previous version
of our test bench. It accomplishes it using a repeat loop and a two-bit
variable called count (think of an n-bit variable as an n-element array
of 1-bit values). The outputs x and y are continuously assigned the
respective bits of count. The high-order bit is connected to x and the
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low-order bit to y using the two continuos assignment statements at the
bottom. The outputs x and y change whenever count is incremented.

CHAPTER REVIEW

In this chapter, we have discussed several ways to manipulate, ana-
lyze, and describe combinational logic. We expanded on two-level
simplification and looked at how K-maps are difficult to scale to func-
tions of large numbers of inputs. To address this problem we looked at
algorithms that serve as the foundation of automated optimization
tools. We also introduced the concepts of minimization in multilevel
logic. Unfortunately, given the richness of criteria for multilevel logic
implementations there are no algorithms that can guarantee optimality.
Instead, we have methods that try to capture the knowledge of experi-
enced designers and provide a means of applying it in the form of
scripts that guide the multilevel simplification process.

In addition to simplification, we also began the process of mapping
logic to available components. In this chapter, we focused on NAND
and NOR gates and how we can map any expression to these most
common of gates. In the next chapter, we’ll learn about many more
implementation technologies and will revisit the mapping problem for
each of them.

The time behavior of our electronic components leads to both
wanted and unwanted functionality. We analyzed pulse shaper cir-
cuits that react to extend the duration of a change in input values. We
also looked at how glitches arise and developed an approach to design-
ing circuits that are hazard-free. In later chapters, we’ll develop meth-
odologies that permit us to ignore hazards except at the periphery of
our circuits where they communicate with each other and the outside
world.

Finally, we introduced hardware description languages and their
use in not only describing the structure and behavior of combinational
logic but also in the simulation of designs before they are constructed.
HDLs have allowed designers to experiment with their designs in a
software environment and be much more effective when they actually
get to the task of physically constructing their designs because they
know that they are logically correct.

FURTHER READING

Boolean simplification is an important topic in all digital design text-
books. Virtually any other text can provide an alternative explanation
to these topics. Of particular note are: C. H. Roth, Jr., Fundamentals of
Logic Design, Fourth Edition, West Publishing Co., St. Paul, MN, 1992
with an indepth treatment of K-maps and the Quine-McCluskey
method; R. F. Tinder, Engineering Digital Design, Second Edition, Aca-
demic Press, San Diego, CA, 2000 has an interesting discussion on



Boolean simplification targeting XOR gates; S. H. Unger, The Essence
of Logic Circuits, Prentice Hall, Englewood Cliffs, NJ, 1989 describes
symmetric and iterative combinational circuits; and E. J. McCluskey,
Logic Design Principles, Prentice Hall, Englewood Cliffs, NJ, 1986
emphasizes hazard-free design.

For a detailed presentation of multilevel logic optimization tech-
niques, the following papers are highly recommended: K. Bartlett,
W. Cohen, A. DeGeus, G. Hachtel, “Synthesis and Optimization of
Multi-Level Logic under Timing Constraints,” IEEE Transactions on
Computer-Aided Design, CAD-5, 4, pp. 582-596 (October 1986), and
R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, A. R. Wang,
“MIS: A Multiple-Level Logic Optimization System,” IEEE Transac-
tions on Computer-Aided Design, CAD-6, 6, pp. 1062—1081 (Novem-
ber 1987). A comprehensive text on the subject of computer-aided
simplification methods is R. Brayton, G. Hachtel, C. McMullen, and
A. Sangiovanni-Vincentelli, Logic Minimization Algorithms for
VLSI Synthesis, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1984.

There are many texts on Hardware Description Languages. For a
more complete treatment of Verilog, see D. Thomas, P. Moorby, The
Verilog Hardware Description Language, Fourth Edition, Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 1998 and M. D. Ciletti,
Advanced Digital Design with the Verilog HDL, Prentice Hall, Engle-
wood Cliffs, NJ, 2002. For VHDL, see P. Ashenden, The Student’s
Guide to VHDL, Morgan-Kaufmann, San Francisco, CA, 1998. Several
also treat the subject or writing HDL descriptions targeting the use of
automated synthesis tools to realize the design: E. Sternheim, R. Singh,
R. Madhavan, Y. Trivedi, Digital Design and Synthesis with Verilog
HDL, Automata Publishing, San Jose, CA, 1993 or D. Smith, P. Franzon,
Verilog Styles for Synthesis of Digital Systems, Prentice Hall, Upper
Saddle River, NJ, 2000. Finally, a text with good side-to-side compari-
sons of Verilog and VHDL is D. Smith, HDL Chip Design, Doone Publi-
cations, Madison, AL, 1996.

EXERCISES

3.1 (Boolean Simplification) Use Karnaugh maps (K-maps) to sim-
plify the following functions in sum-of-products form. How
many literals appear in your minimized solutions?

(a) f(v,W,X,Y,Z) = 11M(0,4,18,19,22,23,25,29)

(b) f(A,B,C,D) = 2in(0,1,4,5,12,13)

() f(A,B,C,D,E) = %n(0,4,18,19,22,23,25,29)

(d) f(AB,C,D,EF) = 2m(3,7,12,14,15,19,23,27,28,29,31, 35,39,
44,45,46,48,49,50,52,53,55,56,57,59).

3.2 (Boolean Simplification) What are the prime implicants for
each of the expressions in Exercise 3.17 Which are essential? Are
any redundant?

Exercises
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3.3

3.4

3.5

3.6

3.7

3.8

(Boolean Simplification) Use Karnaugh maps (K-maps) to sim-
plify the following functions in sum-of-products form taking
advantage of the don’t cares provided.

(@) f(wW,X,Y,Z)=11M(4,7,8,11).11D(1,2,13,14)

(b) f(A,B,C,D) = ¥m(0,1,4,10,11,14) + 2d(5,15)

(c) f(A,B,C,D) = ¥m(1,2,3,5,8,13) + 2d(0)

(d) f(A,B,C,D,E) = £m(3,7,12,14,15,19,23,27,28,29,31)
+2d(4,5,6,13,30).

(Boolean Simplification) What are the prime implicants for
each of the expressions in Exercise 3.37 Which are essential? Are
any redundant? How many don’t cares are set to 1 in each case?

(Boolean Simplification) Use the K-map method to minimize
the following Boolean expressions in S-o-P form:

(a) F(A,B,C) = 2m(1,2,6,7)

(b) F(A,B,C,D) = £m(0,1,3,9,11,12,14,15)

(c) F’(A,B,C,D) = 2m(2,4,5,6,7,8,10,13)

(d) F(A,B,C,D) = (ABC + AB)(C + D)

(e) F(A,B,C.D)=(A+B+C)-(A+B+C + D)
«(A+B+C+ D)-(A+ B)

(Quine-McCluskey Method) Use the Quine-McCluskey method

to find the minimum sum-of-products form for the following

Boolean expressions. Show your process of deriving the prime

implicants. Include the implication chart from which your mini-

mum sum-of-products form is derived.

(a) f(X,Y,Z) = 3m(2,3,4,5)

(b) f(A,B,C,D) = 2m(1,5,7,8,9,13,15) + 2d(4,12,14)

(c) f(A,B,C,D) = £m(1,2,3,4,5,6,7,8,9,10,11,12)

(d) f(A,B,C,D) = 2m(1,2,3,4,9,10,11,12) + 2d(0,13,14,15)

(Espresso Method) Use the Espresso method to simplify the
expressions of Exercise 3.5. Which prime implicants are not
found by Espresso’s initial pass? Do you find that you need to do
a REDUCE, EXPAND, IRREDUNDANT COVER iteration to get a
more simplified expression? Show the K-map at each stage of
the method.

(Mapping to NANDs/NORs) Map the following multilevel
AND/OR Boolean functions into (i) NAND-only and (ii) NOR-
only implementations. Do not simplify these expressions-there
is no need to minimize them in this problem. You may insert
inverters if you need them. Draw a schematic diagram for each
realization.

(a) F(A,B,C,D) = (ABC + AB)(C + D)
(b) G(B,C) = BC
F(A,B,C,G) = |
(c) F(AB,C,D) =
(d) H(A,B)= A+ B
G(B,C,D) = BC + D
F(A,B,G,H) = (A + G)B + H)

B)A + C) + GI(AC + G)

A+
A+B+C)B+C)(A+ B+ D)+ ACD+ BCD

—_




3.9

3.10

3.11

3.12

3.13

3.14

3.15

(Mapping to NANDs/NORs) Draw schematics for the following
expressions, mapped into NAND-only networks. You may
assume that literals and their complements are available:

(a) ABC + AC + AB _

(b) (A+B+C)(A+B)(A+C)
(c) AB+A+C+D

(d) (AB)(AQ)

(e) AB+ AC

(Mapping to NANDs/NORs) Draw schematics for the following

expressions, mapped into NOR-only networks. You may assume
that literals and their complements are available:

(@) (A+ B)JA+C)

(b) (A+ B)«(A+C)

(c) (A+ B)«(A+C) L
(d) (A+B)-(A+C+D) (A+0C)
() (A+ B)«(B:C)+(A+C)

(Mapping to NANDs/NORs) Show how to implement the fol-
lowing Boolean functions using first NAND and Inverter gates
only and then NOR and Inverter gates only:

(a) F(A,B,C,) = AB+BC, + AC,, (e.g., the full-adder carry-out)

mn

(b) F(A,B, Cm) = A xor B xor C,, (e.g., the full-adder sum)

(c) F(A,B,C,D) =1 (if the 2-bit binary quantity AB is strictly
less than the 2-bit binary quantity CD in magnitude)

(Multilevel Network Mappings) Draw schematics for the fol-
lowing expressions, using mixed NAND and NOR gates only:

(a) (AB + CD)E + F

(b) (AB + C)E + DG

() {A+[(B+C)ID+ ENIIF + G)XB + E) + Al
(d) (A+ B)C + D)+ EF

(el AB(B+C)D+ A

(Multilevel Logic) Using Boolean algebra, K-maps, or truth
tables, verify that the multilevel forms for the full adder Sum
and G, (carry-out) obtained in Section 3.4.1 are logically equiv-
alent to the two-level forms found in Section 2.2.

(Multilevel Logic) Using Boolean algebra, K-maps, or truth
tables, verify that the multilevel forms for the 2-bit binary adder
outputs, X, Y, and Z, of Section 3.4.1 are logically equivalent to
the two-level forms found at the beginning of this chapter.

(Multilevel Logic) Reverse engineer the circuit shown in the sche-
matic of Figure Ex. 3.15 in order to derive a two-level realization.

(a) Find the Boolean expression that describes the circuit.

(b) Construct the truth table for the function.

(c) Write the function in canonical sum-of-products form (little
m notation).

(d) Simplify the function using K-maps.

Exercises
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3.16

3.17

3.18

Figure Ex. 3.15

(Multilevel Logic) Consider the following multilevel Boolean
expressions:

F(A,B,C,D) = (A + (BC))(C + D)
G(A,B,C,D) = (A + B)D) + (A + (BC))

Perform the following:

(a) Show how to implement each function as a multilevel
NAND-only gate-level implementation.

(b) Repeat (a), but using NOR gates only.

(c) Find the two-level minimized sum-of-products forms.

(d) Find the two-level minimized product-of-sums forms.

(e) Briefly compare the implementation complexities in terms
of gates and literals. For each function, which achieves the
“simplest” implementation.

(Multilevel Logic) Consider the following multilevel Boolean
expressions:

F(A,B,C,D,E) = ((AB) + C)D + E)) + (AD))

G(A,B,C) = (ABC); H(A,B,C,D) = (D + G)G

Perform the following:

(a) Show how to implement each function as a multilevel
NAND-only gate-level implementation.

(b) Repeat (a), but using NOR gates only.

(c) Find the two-level minimized sum-of-products forms.

(d) Find the two-level minimized product-of-sums forms.

(e) Briefly compare the implementation complexities in terms
of gates and literals. For each function, which achieves the
“simplest” implementation.

(Hazard-Free Design) Given the following specifications of
Boolean functions, implement them as hazard-free circuits:

(a) F(A,B,C) = BC + AC
(b) F(A,B,C,D) = 2m(0,4,5,6,7,9,11,13,14)



3.19

3.20

(c) F(A,B,.C)= (A + B)(B + ()
(d) F(A,B,C,D) = I1M(0,1,3,5,7,8,9,13,15)
(e) F(A,B,C,D,E) = %m(0,1,3,4,7,11,12,15,16,17,20,28)

(Time Response) Consider the circuit in Figure Ex. 3.19(a). Write
down its functions in minimized form. Given that XOR/XNOR
gates have twice the delay of the NAND gates, what is the circuit’s
output response to the input waveforms in Figure Ex. 3.19(b)?

(a) (b)
Figure Ex. 3.19

AN

(Each 5-time unit division represents one NAND gate delay.)

(Time Response) Construct a timing diagram for the behavior
of the circuit schematic in Figure Ex. 3.20.

(a) Start by finding a non-oscillating starting condition for the
circuit with switch S in position 1 (up) as shown. Fill in
the timing waveform with an initial steady-state condition
for the circuit nodes labeled A, B, C, and D. (Warning: It is
very easy to choose an initial configuration that oscillates.
A unique non-oscillating configuration does exist. Start
your reasoning with the tightest loop, or make an educated
guess and verify that the assumed state is indeed non-
oscillating.)

(b) Attime T, the switch is moved from position 1 to position 2
(down). Fill in the rest of the timing diagram with the logic
values of the signals at points A, B, C, and D in the given
circuit.

Figure Ex. 3.20

Exercises
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3.21 (Time Response) Consider the following circuits with feed-
back, that is, the output also serves as an input to the function.

(a)

(b)

Determine the output of NOR gate U3 in Figure Ex. 3.21(a)
when the switch to ground alternates between being closed
and being open. Draw a timing diagram to illustrate your
answer.

Repeat your analysis for the circuit in Figure Ex. 3.21(b)
that looks similar. Draw a timing diagram to explain its time
dependent behavior. Does this circuit generate an oscillat-
ing output? If so, why? If not, why not?

(a)

(b)

Figure Ex. 3.21

3.22 (Design Problem) Design a combinational circuit with three
data inputs: D,, D;, Dy; two control inputs: C;, C,, and two out-
puts: R;, Ry. R, and R, should be the remainder after dividing
the binary number formed from D,, D,, D, by the number formed
by C, Cy. For example, if D,, D,, Dy =111 and C,, C, = 10, then
R,, Ry =01 (that is, the remainder of 7 divided by 2 is 1). Note
that division by zero will never be requested.

(a)
(b)
(c)

(o)

Fill in truth tables for the combinational logic functions R,
and R,,.

Derive minimized sum-of-product realizations of these
functions using the Karnaugh-map method.

Draw a circuit schematic that implements R, and R, using
NAND gates only. You may assume any fan-in gates that
you need.

Derive multilevel functions for the two outputs. Try to share
subexpressions as much as possible. Do you see any advan-
tages to a multilevel realization for this example?



3.23

3.24

3.25

3.26

(Design Problem) Develop a minimized Boolean implementa-
tion of a 2-bit combinational divider. The subsystem has two
2-bit inputs A, B and C, D, and generates two 2-bit outputs, the
quotient W, X, and the remainder Y, Z.

(a) Draw the truth tables for W, X, Y, and Z.

(b) Minimize the functions W, X, Y, Z using 4-variable K-maps.
Write down the Boolean expressions for the minimized
sum-of-products form of each function.

(c) Repeat the minimization process, thistime deriving product-
of-sums form.

(Design Problemm) Consider a combinational logic subsystem
that determines if a 4-bit binary quantity A,B,C,D in the range of
0000 (0) through 1011 (11 in base 10) is divisible by the decimal
numbers two, three, or six. That is, the function is true if the
input can be divided by the indicated amount with no remain-
der (e.g., By2(0110), By3(0110), and By6(0110) are all true).
Assume that the binary patterns 1100 (12) through 1111 (15) are
“don’t cares.”

(a) Draw the truth tables for By2(A,B,C,D), By3(A,B,C.D),
By6(A,B,C,D).

(b) Minimize the functions using 4-variable K-maps to derive
minimized sum-of-products forms.

(c) Can you further simplify the result by using a multilevel-
logic implementation? If so, how?

(Design Problem) Develop a minimized Boolean implementa-
tion of a “ones count” circuit that works as follows. The sub-
system has four binary inputs: A, B, C, D; and generates a 3-bit
output: XYZ. XYZ is 000 if none of the inputs are 1, 001 if one
inputis 1, 010 if two are one, 011 if three inputs are 1, and 100 if
all four inputs are 1.

(a) Draw the truth tables for X, Y, and Z.

(b) Minimize the functions X, Y, Z using 4-variable K-maps.
Write down the Boolean expressions for the minimized
sum-of-products form of each function.

(c) Repeat the minimization process, this time deriving product-
of-sums form.

(Design Problem) Consider a combinational logic subsystem
that performs a 2-bit addition function. It has two 2-bit inputs,
AB and CD, and forms the 3-bit sum, XYZ.

(a) Draw the truth tables for X, Y, and Z.

(b) Minimize the functions using 4-variable K-maps to derive
minimized sum-of-products forms.

(c) In this chapter, we have introduced the full-adder circuit.
What is the relative performance to compute the resulting
sum bits of the 2-bit adder compared to two full adders con-
nected together? (Hint: Which has the worst delay in terms
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3.27

3.28

3.29

3.30

3.31

3.32

of gates to pass through between the inputs and the final
outputs, and how many gates is this?)

(Design Problem) Generalize Exercise 3.26 by adding a fifth
input, G, (carry in), and a fourth output, G, (carry out). Mini-
mize the three-sum bit functions and the C,, function using
5-variable K-maps.

(Hardware Description Languages) Write a Verilog module that
describes the Boolean functions you derived for Exercise 3.22.
Can you write a more abstract description that more closely cor-
responds to the problems statement rather than using specific
Boolean expressions? (Hint: Use if-statements.)

(Hardware Description Languages) Write a Verilog module that
describes the circuit of Exercise 3.23.
(Hardware Description Languages) Write a Verilog module that
describes the circuit of Exercise 3.24.
(Hardware Description Languages) Write a Verilog module that
describes the circuit of Exercise 3.25.
(Hardware Description Languages) Write a Verilog module that
describes the circuit of Exercise 3.26.



Combinational Logic
Technologies

Introduction

In Chapters 2 and 3, you learned that Boolean functions can be repre-
sented as Boolean expressions and gate-level implementations in two-
level and multilevel forms. A multilevel network potentially reduces the
wiring complexity of a Boolean function’s implementation. However, it
was difficult to know transformations of Boolean functions will lead to a
better or worse implementations. There are a wide variety of implemen-
tation technologies and each leads us toward very different choices for
how to transform the functions we want to implement. In some technol-
ogies, two-level realizations are highly efficient. In others, we will be
more concerned with minimizing delay and utilizing smaller gates.

The goal of this chapter is to provide an overview of combinational
logic technologies. In addition we will look at several examples that
will highlight the particular properties of each of these technologies.
You will learn about fixed and customizable building blocks with a
wide range of capabilities. In particular, you will:

e Design with logic building blocks that are different from tradi-
tional logic gates. In this chapter, we introduce several new
components: multiplexers/selectors and decoders/demultiplexers.
These are useful Boolean functions that are often easier to visu-
alize as switching networks than as truth tables or logic gates.
They can lead to designs that are highly flexible and easy to
modify. You will learn the design methods for using them in
digital systems.

e Design with structured circuit implementation styles based on
programmable array logic and memories. We introduce PALs/
PLAs and ROMs, which are particularly useful general-purpose
digital building blocks that can be customized to implement
specific functions. They are used to implement complex functions
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in a regular structure that can be mass produced and easily
reconfigured for different functions.

* Design with field-programmable gate arrays. Finally, we intro-
duce a kind of system building block that allows you to program
not only the on-chip logic itself, but also its internal intercon-
nections and achieve very high levels of integration. These com-
ponents have become ubiquitous in contemporary logic designs,
largely replacing other forms of logic components in all but a
few specialized applications.

4.1 History

4.1.1  From Switches to Integrated Circuits

There are three broad classes of building blocks for digital systems:
combinational components such as logic gates, sequential components
such as storage elements (which we will introduce later after dealing
with the basics of sequential logic), and interconnection components
such as wires. The underlying implementation technologies—be they
mechanical switches, vacuum tubes, discrete transistors, or integrated
circuits—dramatically influence the digital design process.

The very earliest programmable computers, such as Babbage’s
Analytical Engine in the mid-19th century, were entirely mechanical
devices. They used complex gearing mechanisms to perform calcula-
tions and retain state (so complicated, in fact, that Babbage was never
able to complete a prototype in his lifetime). Early 20th century sys-
tems, like the telephone switching network, were constructed from
electrical and mechanical building blocks: switches and relays (briefly
introduced in Chapter 1). Under a mechanical actuation—something
that physically moves the device into one of its possible positions—a
switch makes or breaks an electrical path between two contact points.
Relays are switches that retain their last setting, so they can be used as
primitive memory elements.

In the mid-20th century, vacuum tubes were used to implement
simple gate logic. A vacuum tube is a kind of electrically controlled
switch, which has the desirable ability to amplify weak electrical sig-
nals as they travel between connection points (this latter property was
crucial for making radio and television affordable). A gate might
require a half-dozen vacuum tubes and assorted resistors and capaci-
tors to implement its logic function. Compared with their mechanical
predecessors, vacuum tubes were faster, used less energy, and were
much cheaper to manufacture.

There is little question that one of the greatest inventions of the
20th century is the transistor. Invented in 1947, it is a semiconductor
analog of the vacuum tube. Semiconductors are materials with conduc-
tive properties that lie between electrical conductors and insulators.
Silicon is an example. Silicon crystals with certain types of other
atoms mixed in to their lattice structure, are most interesting in that
their conductive properties can be adjusted by changing operating



voltages and/or currents. Under the right electrical conditions, semi-
conductors can conduct like a closed switch. Or, they can break the
flow of current, like an open switch. Even early, crude transistors were
much smaller than vacuum tubes, and had speed, power, and reliabil-
ity advantages. By the middle 1950s, the first digital computers were
being built using transistors as their principal components.

The semiconductor industry is a remarkable success story of deliver-
ing more, for less year after year. In the same size integrated circuit, the
industry has doubled the number of transistors packed together on a sili-
con substrate every 18—-24 months. The actual size of the transistor struc-
ture has now shrunk down to fractions of a micron (10 meters). We
have progressed from one transistor per package to 100 million (eight
orders of magnitude) in fifty years. As an example, the history of the Intel
microprocessor family is illustrated in Table 4.1.

But with this comes the challenge of what to do with those transis-
tors. To be viable economically, packaged components have to be use-
ful in a large number of designs. This leads designers to create highly
flexible components such as microprocessors that can be used for
many functions. Random access memories (RAMs) are another exam-
ple as they are useful building blocks to store large amount of data for
many different applications. However, these can often be much larger,
much slower and/or more costly than required for any one particular
function. When products are produced in high volume, profits and/or
performance can often be increased by designing dedicated circuitry.

Technology Advancements of the Intel Microprocessor Family, 1971-2003

4.1

History 157

MIPS
Number of (Millions of
Microprocessor Year Application Transistors Instr. Per Sec.)  Clock Speed Range
4004 1971 Calculator 2,300 0.1 108 KHz
8008 1972 Character terminal 3,500 0.1 200 KHz
8080 1974 Altair 8080 Homebrew PC 6,000 0.6 2 MHz
8086 (8088) 1978 Business PC (IBM PC) 29,000 0.8 5-10 MHz
80286 1982 134,000 3 6-12.5 MHz
80386 1985 275,000 10 16-33 MHz
80486 1989 Home PC 1.2 million 40 25-50 MHz
Pentium 1993 3.1 million 100 60-66 MHz
Pentium Pro 1995 5.5 million 200 150-200 MHz
Pentium II 1997 7.5 million 300 200-300 MHz
Pentium III 1999 High-performance workstations 9.5 million 500 333-900 MHz
Pentium IV 2001 Web servers, Graphics apps 42.0 million 1500 1-1.5 GHz
Pentium IV 2003 Multi-media PC, Hyperthreading 55.0 million 3000 2-3.5 GHz
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As a middle ground to take advantage of the higher levels of inte-
gration, or where the requirements for performance or cost rule out
using a large general-purpose microprocessor, the industry has devel-
oped a powerful solution: programmable logic. Basically, it trades
some of those many transistors for increased flexibility and shortened
design times. We introduce this concept later in this chapter as we out-
line the recent evolution of digital logic.

4.1.2 Packaged Logic, Configurability, and Programmable Logic

Standard Parts By the 1960s, the complexity that could be achieved in a
single, integrated circuit (IC) chip was at the level of small numbers of
simple logic gates. These simple building blocks, very similar to the
gates that we have used so far, were very successful: the designer chose
the right parts from a catalog, placed them on a breadboard or printed
circuit board, and implemented the desired design by interconnecting
them with external wires on the printed circuit board. Since the parts
were primitive enough to be used in many designs, they could be pro-
duced in large quantities, stockpiled until needed, and were relatively
inexpensive. Over time, more complicated components joined the
standard catalogs, such as multi-bit adders and decoder functions. The
term small-scale integration (SSI) refers to components with a com-
plexity of 10 gates or less, while medium-scale integration (MSI) cov-
ers components with 10-100 gates. The most common example of
these types of components is the Texas Instruments 7400 series, whose
elements were the mainstay of logic designers for over 20 years.

ROMs and PLAs/PALs With increasing levels of integration, designers
looked for a higher-density method for implementing logic functions.
One solution was read-only memories (ROMs). A ROM is a fixed array
of ones and zeros. Its address, representing a truth table input bit pat-
tern, forms the index of the array. The contents at that index or ROM
location, the ROM’s output for that input combination, corresponds to
a truth table entry. Thus a ROM is a large look-up table we can config-
ure to hold a specific truth table. The inputs ook up the row whose
columns become the output values. Originally, ROMs were pro-
grammed once at the factory, that is, loaded with their contents when
they were manufactured. This is suitable for a design that is produced
in large numbers, but is too expensive for prototyping purposes or dur-
ing development when the design may change often. The ability to set
the contents in each individual ROM once it is ready to be used, in the
field, (programmable ROMs or PROMs), or erase and reprogram the
contents as needed (erasable PROMs or EPROMs) have been developed
for designs that are produced in smaller numbers or require the extra
flexibility that reprogrammability provides. ROMs have been an
important component in many digital designs and still enjoy popular-
ity today.

However, ROMs are not always the best way to implement a func-
tion. They may be too slow to meet the performance constraints of the



design. Less expensive approaches such as programmable logic arrays
(PLAs) and programmable array logic (PALs) make use of the same
mechanisms as ROMs, but realize many designs in a less expensive
and higher performance way. PLAs and PALs make use of an array of
fixed logic gates, arranged in a standard two-level form such as AND/
OR (with a possible final inverter stage). The designer adds or removes
wires inside the chip by “programming” the part. For early genera-
tions, this involved using a high voltage to electrically fuse or destroy
selected wire segments, so this could be performed only once for a
given chip. Later generations, based on EPROM technology, can not
only be programmed in the field, but can be reprogrammed many times
over. Electrically erasable PROM (EEPROM) was developed to allow
even faster reprogramming by no longer requiring the chip to be physi-
cally removed from the circuit.

PLAs allow the designer to program both the AND and OR gates.
PALs are limited to AND gate programming only, and thus provide
faster circuits with some limitation on the functions that can be imple-
mented. Signetics introduced the PLA in 1975 followed in 1978 by
Monolithic Memories introduction of the PAL.

Today, every more complex programmable logic falls into the cate-
gory of programmable logic devices (PLDs). These can range to pack-
ages capable of implementing functions that require 100,000s of
equivalent gates.

Application-Specific Integrated Circuits (ASICs) One widely used kind of ASIC
is the gate array (see Figure 4.1). These components extend the PLA/
PAL concept by allowing a more general form of programmable wires
on chip, thus lifting the restriction that the gates be arranged in a two-
level form. The approach is more expensive and time consuming than
a PAL/PLA, but it achieves much higher densities and speeds. Gate
arrays consisting of millions of logic gates can be built today. Unfortu-
nately, the designer cannot program the wires rapidly, as represented
by the dark areas in Figure 4.1. She can specify the interconnections
between the logic cells for the final stage of the semiconductor manu-
facturing process that fabricates the chip. Since this involves many
engineering expenses, the approach is only suitable for designs that are
produced in very large volumes. Moreover, it is not a good technology
for fast prototyping because of the relatively long turnaround times of
days to weeks in obtaining parts from manufacturers.

Standard cells are an alternative ASIC technology to gate arrays. It
provides even more flexible logic building blocks, corresponding to
levels of complexity similar to the MSI components found in standard
catalogs, with even less constrained wiring. The design approach is
very similar to that used with standard components, but the resulting
implementations fit within a single chip rather than on a circuit board.
However, the approach incurs even higher costs because it customizes
all manufacturing steps in order to gain the maximum flexibility. In
gate arrays, the basic devices were pre-manufactured and only their
interconnection was flexible. With standard cells, designers can
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Figure 4.1 Conceptual drawing
of a gate array showing logic
cells surrounded by wiring
resources and a periphery of
specialized input/output cells.
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specify even the mix of basic components. Thus, although they can
achieve higher densities and better performance than gate arrays, it
takes longer to implement a design using the standard cell approach,
and demands even larger manufacturing batches to justify the front-
end engineering costs. Again, this technology is not practical for proto-
typing, but rather for large-scale manufacturing of proven designs.

Field-Programmable Gate Arrays (FPGAs) FPGAs combine some of the den-
sity advantages of a gate-array structure with the rapid programmability
of PLAs/PALs. FPGAs consist of basic logic blocks that can be config-
ured to different functions. In addition, the wires that interconnect the
logic blocks are also programmable. Therefore, unlike gate arrays or
standard cells, whose wires must be manufactured on to the chip,
FPGA wires as well as logic functions can be programmed in the field
(hence the name) in a matter of seconds. This makes FPGAs the premier
technology for rapid prototyping.

Some FPGA technologies are reprogrammable (e.g., Xilinx), while
others are not (e.g., Actel). The Xilinx Logic Cell Arrays (LCA) have
logic cells arranged in two dimensions with interconnection resources
running both vertically and horizontally (see Figure 4.2). The Actel
FPGAs have cells arranged in rows with the majority of the intercon-
nect in horizontal tracks that alternate with the rows of logic cells (see
Figure 4.3).

Xilinx FPGA configuration is table driven, and the tables’ contents
can be changed from outside the integrated circuit. Think of it as a col-
lection of little memories that hold the bits that configure each of the
logic blocks to realize specific functions and the wires between them
to make specific connections. FPGAs trade gate density and reduced
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Figure 4.2 Array-based FPGA.
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1/0 Butfters. Programming. and Test Logic
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Figure 4.3 Row-based FPGA.

Historical Development of Components (Adapted from Oldfield and Dorf, Field Programmable Gate Arrays,
John Wiley, New York, 1995)

1960s SSI/MS! 1970s LSI 1980s VLSI 1990s Programmable Logic
Components Logic, Resistor/ 8-bit uprocessor, 32-bit yprocessor, 64-bit uprocessor,
Transistor elements Memory, ROM Gate arrays PALs, FPGAs
Complexity Level 100s 10,000s 1 million 100,000s to millions
(# of gates)
Pervasive TTL 7400 series Intel 8008, ROM Intel 8086, Pentium I, II, III,
Components Motorola FPGAs, Complex
68000, Gate PLDs
arrays, PALs
Dominant Trend  Standard catalog Larger, General-purpose Application-spe-  Field-
ol components components, e.g., Micro-  cific integrated programmable
processors and Random-  circuits components

access memories

performance (because of the extra transistors to implement program-
mability) for the ability to easily change the detailed function of the
component. Actel FPGAs are fuse programmable, much in the same
way as PROMs, and can often be quite dense and fast.

Thanks to shrinking feature sizes and increased integration, FPGAs
have reached very high densities. While originally they might imple-
ment designs with thousands of gates, some FPGA families can now
implement designs with 100,000s of gates and even a million or more.

The history of component development is summarized in Table 4.2.
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Metric

Gate delay
Integration
Power
Noise

Cost
Fan-out
Drive

Bipolar

Low
Low
High
Good
Low
Fair
Good

MOS

Low

Very high
Low
Good
Low
Good
Low

Figure4.4 Comparison between
bipolar and MOS technologies.

4.1.3 Technology Metrics

There are many aspects to consider in choosing an implementation
technology. Two major technology families have been very popular:
bipolar and MOS; named after the type of transistor types they use.
How they stack up to each other along the principle technology met-
rics is summarized in Figure 4.4 and includes gate delay, degree of
integration, power dissipation, noise margin, component cost, fan-out,
and driving capability. In general, faster gates consume more power,
generate more heat, cannot be packaged as densely, and are more sensi-
tive to noise problems. Bipolar circuits come in a wide range of TTL
(transistor—transistor logic) families, with different trade-offs in circuit
speed and power. A super-fast (for its time) bipolar technology was
emitter-coupled logic (ECL). The most popular MOS family is CMOS
(complementary MOS), consisting of both n-channel and p-channel
devices (see Appendix B). While bipolar technologies used to yield the
fastest gates, this has no longer been the case for several years. Never-
theless, bipolar circuits do have the ability to drive large loads (i.e.,
many inputs of other chips and/or wires that go on to the circuit board)
at high speed (and use a lot of power to do it). CMOS does not drive
large loads as well but is a much lower power technology and leads to
much longer battery life for portable devices. BiCMOS technology
combines the best of both worlds: low power consumption and high
speed for logical operations, with the ability to drive heavy external
loads, such as long wires off of the integrated-circuit chip.

Today, CMOS is, by far, the dominant implementation technology.
Let’s discuss each of the metrics for this ubiquitous technology.

Gate Delay: If an input change causes an output change, the gate
delay is the time delay between the changes. It usually is measured
from the input reaching 90% of its final voltage value to the output
reaching 90% of its final value. Today, MOS is the fastest technol-
ogy, as evidenced by modern high speed microprocessors such as
the 3.5 GHz Pentium IV (which performs its most basic operation in
less than a third of a nanosecond—this corresponds to light travel-
ling approximately 4 inches!).

Degree of Integration: The chip area and number of chip packages
required to implement a given function in a technology is a measure
of its degree of integration. While in older generation small-scale
integrated (SSI) circuits, a package might contain up to 10 logic
gates, and even medium-scale integrated (MSI) circuits might only
get up to 100 gates, today’s CMOS circuits pack millions of gates on
to a single chip. Many custom designed large-scale gate arrays and
very large scale integrated circuits (VLSI), contain hundreds of thou-
sands of gates. Advanced programmable logic components are all
implemented in CMOS technology because of this high degree of
integration.

Power Dissipation: Gates consume power as they perform their
logic functions, generating heat that must be dissipated. CMOS



circuits can be designed to consume very little power, as evi-
denced by the lifetime of the battery powering a digital watch’s
CMOS circuitry. However, in CMOS circuits, 