

Machine Learning Crash Course
for Engineers

Eklas Hossain

Machine Learning Crash
Course for Engineers

Eklas Hossain
Department of Electrical and Computer
Engineering
Boise State University
Boise, ID, USA

ISBN 978-3-031-46989-3 ISBN 978-3-031-46990-9 (eBook)
https://doi.org/10.1007/978-3-031-46990-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2024
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Paper in this product is recyclable.

https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9

To my beloved wife, Jenny, for her
unconditional love and support

Preface

I am sure there is not a single soul who has not heard of machine learning. Thanks to
its versatility and widespread applicability, machine learning is a highly demanding
topic today. It is basically the ability of machines to learn things and adapt. Since
machines do not have the inherent ability to do that, humans have to devise ways or
algorithms for them. Here, humans enable machines to learn patterns independently
and perform our tasks with little to zero human intervention.

Engineers have to design and build prototypes, forecast future demands and
prices, simulate the performance of the designs, and perform many other tasks.
Machine learning can significantly help in these works by making them much easier,
faster, and free from human errors. There is no field where machine learning has not
penetrated yet; it has pervaded well beyond scientific and engineering applications
in STEM fields. From entertainment to space research, machine learning and
artificial intelligence are ubiquitous today, directly or indirectly, in almost every
sector of our daily life. However, as machine learning is a very recent technological
upgrade, there is a dearth of suitable resources that can help people use it in
practical applications. In fact, when supervising multidisciplinary students as a
faculty member, I also find it challenging to guide them in their work due to the
lack of a resource that delivers exactly what is needed. Realizing the importance of
a basic understanding of machine learning for engineers and the difficulties faced by
many students in terms of finding suitable resources, I felt the necessity to compile
my experience with machine learning into a book.

Why This Book?

There are numerous books on machine learning out there. So why do we need
another one in this field? What does this book offer that other similar books do
not have? A reader has the right to ask such questions. Furthermore, as an author, I
am obliged to make my stand clear about writing a crash course book on machine
learning.

This book is a crash course, delivering only what engineers need to know
about machine learning to apply in their specialized domains. The book focuses
more on applications and slightly less on the theory to cater to the needs of
people in non-programming majors. The first three chapters are concept-building

vii

viii Preface

chapters, where the basics are discussed with relevant programming examples.
In my opinion, the true beauty of this book lies in the following three chapters,
where the applications of machine learning in signal processing, energy systems,
and robotics are elaborately discussed with some interesting examples. The final
chapter talks about state-of-the-art technologies in machine learning and artificial
intelligence and their endless future possibilities.

Overall, this book delivers a complete machine learning package for engineers,
covering common concepts such as convolutional neural networks (CNN), long
short-term memory (LSTM), natural language processing (NLP), load forecasting,
generative adversarial networks (GAN), transfer learning, and many more. Students
are welcome to reuse, reproduce, and utilize the programming examples in this
book for their projects, theses, and any other work related to academic and research
activities. I believe this book can help students develop ideas, formulate projects,
and draw conclusions from their research. If students find this book helpful, only
then can I consider this book a successful endeavor.

If anyone wants to learn machine learning from scratch, this book can only be a
supporting tool for them. However, to learn basic programming and algorithmic
concepts, one should primarily refer to a more fundamental book that covers
detailed theories. Nevertheless, this book is for students, researchers, academicians,
and industry professionals who would like to study the various practical aspects
of machine learning and keep themselves updated on the advances in this field.
Beginners might require a significant amount of time to understand the book. If
the readers have a clear concept of the basics of mathematics, logic, engineering,
and programming, they will enjoy the book more and understand it better. The
intermediate-level readers will require less time, and advanced readers can complete
the book in a week or so. A long time of about three years has been invested into the
making of this book. As such, some old datasets have been used, but the information
on the latest technologies, such as ChatGPT, EfficientNet, YOLO, etc., is included
in the book.

I have added references wherever applicable and guided the readers to more
valuable references for further reading. This book will be useful material for
engineers and researchers starting out their machine learning endeavors. The link
to the GitHub repository with the codes used in this book is: https://github.com/
eklashossain/Machine-Learning-Crash-Course-for-Engineers.

Key features of this book:

• Development of an overall concept of machine learning sufficient to implement
the algorithms in practical applications

• A simplistic approach to the machine learning models and algorithms designed
to pique the beginners

• Application of machine learning in signal processing, energy systems, and
robotics

• Worked out mathematical examples, programming examples, illustrations, and
relevant exercises to build the concepts step-by-step

https://github.com/eklashossain/Machine-Learning-Crash-Course-for-Engineers
https://github.com/eklashossain/Machine-Learning-Crash-Course-for-Engineers
https://github.com/eklashossain/Machine-Learning-Crash-Course-for-Engineers
https://github.com/eklashossain/Machine-Learning-Crash-Course-for-Engineers
https://github.com/eklashossain/Machine-Learning-Crash-Course-for-Engineers
https://github.com/eklashossain/Machine-Learning-Crash-Course-for-Engineers
https://github.com/eklashossain/Machine-Learning-Crash-Course-for-Engineers
https://github.com/eklashossain/Machine-Learning-Crash-Course-for-Engineers
https://github.com/eklashossain/Machine-Learning-Crash-Course-for-Engineers
https://github.com/eklashossain/Machine-Learning-Crash-Course-for-Engineers

Preface ix

• Examples of machine learning applications in image processing, object detec-
tion, solar energy, wind energy forecast, reactive power control and power factor
correction, line follower robot, and lots more

Boise, ID, USA Eklas Hossain
2023

Acknowledgments

I am indebted to the works of all the amazing authors of wonderful books, journals,
and online resources that were studied to ideate this book, for providing invaluable
information to educate me.

I express my deepest appreciation for Michael McCabe and everyone else at
Springer who are involved with the production of this book. Had they not been
there with their kindness and constant support, it would have been quite difficult to
publish this book.

I am thankful to all my colleagues at Boise State University for their fraternity
and friendship and their support for me in all academic and professional affairs,
believing in me, and cheering for me in all my achievements.

This book has been written over a long period of three years and by the
collective effort of many people that I must acknowledge and heartily thank. I
want to especially mention Dr. Adnan Siraj Rakin, Assistant Professor in the
Department of Computer Science at Binghamton University (SUNY), USA, for
extensively planning the contents with me and helping me write this book. I
would also like to mention S M Sakeeb Alam, Ashraf Ul Islam Shihab, Nafiu
Nawar, Shetu Mohanto, and Noushin Gauhar—alumni from my alma mater Khulna
University of Engineering and Technology, Bangladesh—for dedicatedly, patiently,
and perseverantly contributing to the making of this book from its initiation to its
publication. I would also like to heartily thank and appreciate Nurur Raiyana, an
architect from American International University-Bangladesh, for creatively and
beautifully designing the cover illustration of the book. I wish all of them the very
best in their individual careers, and I believe that they will all shine bright in life.

I am also indebted to my loving family for their constant support, understanding,
and tolerance toward my busy life in academia, and for being the inspiration for me
to work harder and keep moving ahead in life.

Lastly, I am supremely grateful to the Almighty Creator for boundlessly blessing
me with everything I have in my life.

xi

Contents

1 Introduction to Machine Learning . 1
1.1 Introduction . 1
1.2 What Is Machine Learning? . 1

1.2.1 Machine Learning Workflow . 2
1.2.2 What Is Not Machine Learning? . 4
1.2.3 Machine Learning Jargon. 5
1.2.4 Difference Between Data Science, Machine

Learning, Artificial Intelligence, Deep Learning 8
1.3 Historical Development of Machine Learning . 9
1.4 Why Machine Learning? . 11

1.4.1 Motivation . 12
1.4.2 Purpose . 12
1.4.3 Importance . 12

1.5 Prerequisite Knowledge to Learn Machine Learning 13
1.5.1 Linear Algebra . 13
1.5.2 Statistics . 17
1.5.3 Probability Theory . 25
1.5.4 Calculus . 28
1.5.5 Numerical Analysis . 31
1.5.6 Gradient Descent . 36
1.5.7 Activation Functions . 36
1.5.8 Programming . 36

1.6 Programming Languages and Associated Tools . 53
1.6.1 Why Python? . 53
1.6.2 Installation. 54
1.6.3 Creating the Environment . 54

1.7 Applications of Machine Learning . 61
1.8 Conclusion . 65
1.9 Key Messages from This Chapter . 66
1.10 Exercise . 66
References . 68

2 Evaluation Criteria and Model Selection . 69
2.1 Introduction . 69

xiii

xiv Contents

2.2 Error Criteria . 69
2.2.1 MSE . 70
2.2.2 RMSE . 70
2.2.3 MAE . 70
2.2.4 MAPE . 71
2.2.5 Huber Loss . 71
2.2.6 Cross-Entropy Loss . 75
2.2.7 Hinge Loss . 76

2.3 Distance Metrics . 77
2.3.1 Euclidean Distance. 77
2.3.2 Cosine Similarity and Cosine Distance . 78
2.3.3 Manhattan Distance . 79
2.3.4 Chebyshev Distance . 80
2.3.5 Minkowski Distance . 80
2.3.6 Hamming Distance . 84
2.3.7 Jaccard Similarity and Jaccard Distance 86

2.4 Confusion Matrix . 89
2.4.1 Accuracy . 90
2.4.2 Precision and Recall . 90
2.4.3 F1 Score . 91

2.5 Model Parameter and Hyperparameter . 93
2.6 Hyperparameter Space . 93
2.7 Hyperparameter Tuning and Model Optimization 94

2.7.1 Manual Search . 95
2.7.2 Exhaustive Grid Search . 95
2.7.3 Halving Grid Search . 96
2.7.4 Random Search . 96
2.7.5 Halving Random Search . 97
2.7.6 Bayesian Optimization. 97
2.7.7 Gradient-Based Optimization . 98
2.7.8 Evolutionary Algorithm . 98
2.7.9 Early Stopping . 99
2.7.10 Python Coding Example for Hyperparameter Tuning

Techniques . 99
2.8 Bias and Variance . 107

2.8.1 Bias–Variance Trade-off . 108
2.9 Overfitting and Underfitting . 108
2.10 Model Selection. 109

2.10.1 Probabilistic Methods . 110
2.10.2 Resampling Methods . 111

2.11 Conclusion . 113
2.12 Key Messages from This Chapter . 113
2.13 Exercise . 113
References . 116

Contents xv

3 Machine Learning Algorithms . 117
3.1 Introduction . 117
3.2 Datasets . 117

3.2.1 Data Wrangling . 118
3.2.2 Feature Scaling . 121
3.2.3 Data Types. 124
3.2.4 Data Splitting. 125

3.3 Categorization of Machine Learning Algorithms 128
3.4 Supervised Learning . 128

3.4.1 Regression . 129
3.4.2 Classification . 140

3.5 Deep Learning . 154
3.5.1 What Is a Neuron? . 155
3.5.2 Backpropagation and Gradient Descent . 156
3.5.3 Artificial Neural Network (ANN) . 161
3.5.4 Convolutional Neural Network . 166
3.5.5 Recurrent Neural Network (RNN) . 181
3.5.6 Generative Adversarial Network (GAN). 182
3.5.7 Transfer Learning . 183

3.6 Time Series Forecasting . 184
3.6.1 ARIMA . 184
3.6.2 Seasonal ARIMA . 190
3.6.3 Long Short-Term Memory (LSTM). 198

3.7 Unsupervised Learning . 205
3.7.1 Clustering . 206
3.7.2 Dimensionality Reduction . 217
3.7.3 Association Learning . 227

3.8 Semi-supervised Learning. 234
3.8.1 Semi-supervised GAN (SGAN) . 235
3.8.2 Semi-supervised Classification . 241

3.9 Reinforcement Learning. 242
3.9.1 Multi-armed Bandit Problem . 245

3.10 Conclusion . 254
3.11 Key Messages from This Chapter . 254
3.12 Exercise . 255
References . 256

4 Applications of Machine Learning: Signal Processing 261
4.1 Introduction . 261
4.2 Signal and Signal Processing . 262
4.3 Image Classification . 262

4.3.1 Image Classification Workflow . 263
4.3.2 Applications of Image Classification. 264
4.3.3 Challenges of Image Classification . 265
4.3.4 Implementation of Image Classification . 266

xvi Contents

4.4 Neural Style Transfer (NST) . 273
4.4.1 NST Applications . 275

4.5 Feature Extraction or Dimensionality Reduction . 276
4.6 Anomaly or Outlier Detection . 280

4.6.1 How Does It Work? . 281
4.6.2 Applications of Anomaly Detection . 283
4.6.3 Challenges of Anomaly Detection . 283
4.6.4 Implementation of Anomaly Detection . 284

4.7 Adversarial Input Attack . 285
4.8 Malicious Input Detection . 293
4.9 Natural Language Processing . 299

4.9.1 How Does NLP Work? . 299
4.9.2 Applications of NLP . 300
4.9.3 Challenges of NLP . 301
4.9.4 Implementation of NLP. 302

4.10 Conclusion . 308
4.11 Key Messages from This Chapter . 309
4.12 Exercise . 309
References . 310

5 Applications of Machine Learning: Energy Systems . 311
5.1 Introduction . 311
5.2 Load Forecasting . 312
5.3 Fault/Anomaly Analysis . 319

5.3.1 Different Types of Electrical Faults . 320
5.3.2 Fault Detection . 322
5.3.3 Fault Classification. 329
5.3.4 Partial Discharge Detection. 336

5.4 Future Trend Prediction in Renewable Energy Systems 344
5.4.1 Solar PV Installed Capacity Prediction . 344
5.4.2 Wind Power Output Prediction . 348

5.5 Reactive Power Control and Power Factor Correction 350
5.6 Conclusion . 357
5.7 Key Messages from this Chapter. 358
5.8 Exercise . 360
References . 360

6 Applications of Machine Learning: Robotics . 363
6.1 Introduction . 363
6.2 Computer Vision and Machine Vision . 364

6.2.1 Object Tracking . 364
6.2.2 Object Recognition/Detection . 368
6.2.3 Image Segmentation . 375

6.3 Robot: A Line Follower Data Predictor Using Generative
Adversarial Network (GAN) . 388

6.4 Conclusion . 393

Contents xvii

6.5 Key Messages . 394
6.6 Exercise . 394
References . 395

7 State of the Art of Machine Learning. 397
7.1 Introduction . 397
7.2 State-of-the-Art Machine Learning . 398

7.2.1 Graph Neural Network. 398
7.2.2 EfficientNet. 401
7.2.3 Inception v3 . 405
7.2.4 YOLO . 408
7.2.5 Facebook Prophet . 415
7.2.6 ChatGPT. 417

7.3 AI/ML Security Challenges and Possible Solutions 419
7.4 AI/ML Hardware Challenges and Future Potential 420

7.4.1 Quantization . 421
7.4.2 Weight Pruning. 423
7.4.3 Implementation of Quantization and Pruning 424

7.5 Multi-domain Learning . 430
7.5.1 Transfer Learning . 430
7.5.2 Domain Adaptation . 436

7.6 Artificial Intelligence . 436
7.6.1 The Turing Test . 437
7.6.2 Limitations of AI and Solutions . 438
7.6.3 Future Possibilities of AI . 438

7.7 Conclusion . 440
7.8 Key Messages . 440
7.9 Exercise . 441
References . 441

Answer Keys to Chapter Exercises . 445

Index . 451

About the Author

Eklas Hossain received his PhD in 2016 from the College of Engineering and
Applied Science at the University of Wisconsin Milwaukee (UWM). He received
his MS in Mechatronics and Robotics Engineering from the International Islamic
University Malaysia, Malaysia, in 2010, and a BS in Electrical and Electronic
Engineering from Khulna University of Engineering and Technology, Bangladesh,
in 2006. He has been an IEEE Member since 2009, and an IEEE Senior Member
since 2017.

He is an Associate Professor in the Department of Electrical and Computer
Engineering at Boise State University, Idaho, USA, and a registered Professional
Engineer (PE) (license number 93558PE) in the state of Oregon, USA. As the
director of the iPower research laboratory, he has been actively working in the
area of electrical power systems and power electronics and has published many
research papers and posters. In addition, he has served as an Associate Editor for
multiple reputed journals over time. He is the recipient of an NSF MRI award
(Award Abstract # 2320619) in 2023 for the “Acquisition of a Digital Real-Time
Simulator to Enhance Research and Student Research Training in Next-Generation
Engineering and Computer Science”, and a CAES Collaboration fund with Idaho
National Laboratory (INL) on “Overcoming Barriers to Marine Hydrokinetic
(MHK) Energy Harvesting in Offshore Environments”.

His research interests include power system studies, encompassing the utility
grid, microgrid, smart grid, renewable energy, energy storage systems, etc., and
power electronics, which spans various converter and inverter topologies and control
systems. He has worked on several research projects related to machine learning,
big data, and deep learning applications in the field of power systems, which
include load forecasting, renewable energy systems, and smart grids. With his
dedicated research team and a group of PhD students, Dr. Hossain looks forward
to exploring methods to make electric power systems more sustainable, cost-
effective, and secure through extensive research and analysis on grid resilience,
renewable energy systems, second-life batteries, marine and hydrokinetic systems,
and machine learning applications in renewable energy systems, power electronics,
and climate change effect mitigation.

xix

xx About the Author

A list of books by Eklas Hossain:

1. The Sun, Energy, and Climate Change, 2023
2. MATLAB and Simulink Crash Course for Engineers, 2022
3. Excel Crash Course for Engineers, 2021
4. Photovoltaic Systems: Fundamentals and Applications (co-author), 2021
5. Renewable Energy Crash Course: A Concise Introduction (co-author), 2021

1Introduction to Machine Learning

1.1 Introduction

Machine learning may seem intimidating to those who are new to this field. This
ice-breaker chapter is intended to acquaint the reader with the fundamentals of
machine learning and make them realize what a wonderful invention this subject
is. The chapter draws out the preliminary concepts of machine learning and lays out
the fundamentals of learning advanced concepts. First, the basic idea of machine
learning and some insights into artificial intelligence and deep learning are covered.
Second, the gradual evolution of machine learning throughout history is explored
in chronological order from 1940 to the present. Then, the motivation, purpose, and
importance of machine learning are described in light of some practical applications
of machine learning in real life. After that, the prerequisite knowledge to master
machine learning is introduced to ensure that the readers know what they need
to know before their course on machine learning. The next section discusses the
programming languages and associated tools required to use machine learning.
This book uses Python as the programming language, Visual Studio Code as the
code editor or compiler, and Anaconda as the platform for machine learning
applications. This chapter presents the reasons for choosing these three among the
other alternatives. Before the conclusion, the chapter finally demonstrates some real-
life examples of machine learning that all engineering readers will be able to relate
to, thus instigating their curiosity to enter the world of machine learning.

1.2 What Is Machine Learning?

Modern technology is getting smarter and faster with extensive and continuous
research, experimentation, and developments. For instance, machines are becoming
intelligent and performing tasks much more efficiently. Artificial intelligence has
been evolving at an unprecedented rate, whose results are apparent as our phones

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
E. Hossain, Machine Learning Crash Course for Engineers,
https://doi.org/10.1007/978-3-031-46990-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46990-9protect T1	extunderscore 1&domain=pdf
https://doi.org/10.1007/978-3-031-46990-9_1
https://doi.org/10.1007/978-3-031-46990-9_1
https://doi.org/10.1007/978-3-031-46990-9_1
https://doi.org/10.1007/978-3-031-46990-9_1
https://doi.org/10.1007/978-3-031-46990-9_1
https://doi.org/10.1007/978-3-031-46990-9_1
https://doi.org/10.1007/978-3-031-46990-9_1
https://doi.org/10.1007/978-3-031-46990-9_1
https://doi.org/10.1007/978-3-031-46990-9_1
https://doi.org/10.1007/978-3-031-46990-9_1
https://doi.org/10.1007/978-3-031-46990-9_1

2 1 Introduction to Machine Learning

and computers are becoming more multi-functional each day, automation systems
are becoming ubiquitous, intelligent robots are being built, and whatnot.

In 1959, the computer scientist and machine learning pioneer Arthur Samuel
defined machine learning as the “field of study that gives computers the ability
to learn without being explicitly programmed” [1]. Tom Mitchell’s 1997 book on
machine learning defined machine learning as “the study of computer algorithms
that allows computer programs to automatically improve through experience”
[2]. He defines learning as follows: “A computer program is said to learn from
experience E with respect to some class of tasks T and performance measure P, if its
performance at tasks in T, as measured by P, improves with experience E.”

Machine learning (ML) is a branch of artificial intelligence (AI) that allows
computers and machines to learn from existing information and apply that learning
to perform other similar tasks. Without explicit programming, the machine learns
from the data it feeds. The machine picks up or learns patterns, trends, or essential
features from previous data and makes a prediction on new data. A real-life machine
learning application is in recommendation systems. For instance, a movie streaming
site will recommend movies to the user based on their previously watched movie
list.

ML algorithms are broadly classified as supervised learning and unsupervised
learning, with some other types as well, such as reinforcement learning and semi-
supervised learning. These will be discussed in detail in Chap. 3.

1.2.1 Machine Learning Workflow

Before going into the details, a beginner must have a holistic view of the entire
workflow of ML. The bigger picture of the process reveals that there are four main
steps in a typical ML workflow: dataset collection, data preprocessing, training
model, and finally, model evaluation. Figure 1.1 portrays the block diagram of
the four steps of the ML workflow. These steps are generally followed in all ML
applications:

1. Dataset Collection: The initial step of ML is collecting the dataset. This step
depends on the type of experiments or projects one wants to conduct. Different
experiments or projects demand different data. One also has to decide the type of
data to be required. Should it be numerical or categorical data? For instance, if

Step-1

Dataset

collection

Step-2

Dataset

preprocessing

Step-3

Training

model

Step-4

Evaluate

model

Fig. 1.1 The block diagram of the machine learning workflow

1.2 What Is Machine Learning? 3

we want to perform a prediction on house prices, we would require the following
information: the price of houses, the address of the houses, room numbers, the
condition of the house, house size, etc. Then the question also arises—what
should the price unit be? Should it be in dollars or pounds or some other currency?

2. Data Preprocessing: The data we gather are often unorganized and cannot be
directly used to train models. Before proceeding to the next step, the data need
to be preprocessed. First, the dataset may contain missing or noisy data. This
problem needs to be resolved before passing data to the model. Different data
can be in different ranges, which might be an issue for the models, so the data
need to be standardized so all data can be in the same range. Again, not all data
would be equally crucial for predicting the target variable. We need to find and
select the data that contribute more to finding target variables. Finally, the dataset
must be split into two sets—the training and test sets. The split is usually done
in an 80:20 ratio, where 80% of the dataset is the train set and the 20% set is
the test set. This ratio may vary based on the dataset size and problem nature.
Here, the train set will be used to train the models, and the test set will be used to
evaluate the models. Oftentimes the dataset is split into the train, validation, and
test sets. This validation set is used for hyperparameter tuning, which is discussed
in Chap. 2 of this book. Figure 1.2 shows the different data preprocessing steps.
These steps will be explained in Chap. 3.

3. Train Model: Based on the problem, the type of model required should be
selected first. While selecting a model, the information available on the dataset
should be considered. For instance, supervised classification can be approached if
the dataset contains information on both the input and output values. Sometimes
more than one model must be used to train and do the job. Performing numerical
analysis, the model fits or learns the data. This step is very crucial because the
performance of the model highly relies on how well the data have been fitted
or learned by the model. While training the model, one should be mindful of
not underfitting or overfitting the model. Underfitting and overfitting have been
explained in Chap. 2.

4. Model Evaluation: Once the model is built and trained, it is essential to
understand how well the model has been trained, how well it will perform, and
if the model will be useful for the experiment. It will be useless if the model
does not work well or serve its purpose. Therefore, the test dataset is used to test
the model, and different evaluation metrics are used to evaluate and understand
the model. The evaluation metrics include accuracy, precision, recall, and a few
others, which are used to get an insight into how well the model will perform.
The evaluation metrics have been discussed in Chap. 2. Based on the evaluation
of the model, it might require going back to previous steps and redoing them
again accordingly.

4 1 Introduction to Machine Learning

Fig. 1.2 The block diagram
of data preprocessing Data preprocessing

Data reduction or

dimension reduction

Data cube aggregation

Attribute subset

selection

Numerosity reduction

Dimensionality

reduction

Data transformation

Normalization

Attribute selection

Discretization

Concept hierarchy

generation

Data cleaning

Missing data

Noisy data

Data integration

Schema integration

Entity identification

problem

Detecting and resolving

data values concepts

•
•

•

•
•

•
•

•
•
•
•

•
•

1.2.2 What Is Not Machine Learning?

Machine learning is a buzzword in today’s world. Almost all fields of science
and technology involve one or more aspects of ML. However, it is necessary to
distinguish between what is ML and what is not. For example, programming in
the general sense is not ML, since a program explicitly tells or instructs a machine
what to do and when to do it without enabling the machine to learn by itself and
implement the learning in a new but similar environment. A recommendation system
that is explicitly designed to give recommendations is not an application of ML.

1.2 What Is Machine Learning? 5

If the system is designed in a way where a specific set of movies are given as
conditions and suggestion is also explicitly given, such as:

If the person has watched Harry Potter or Pirates of the Caribbean or The Lord of the Rings,
then recommend Fantastic Beasts to the user. Also, if the person has watched Divergent or
Maze Runner, recommend Hunger Games.

This recommendation system is not an ML application. Here, the machine does not
explore or learn trends, features, or characteristics from previously watched movies.
Instead, it simply relies on the given conditions and suggests the given movie.

For an ML-based recommendation system, the program does not explicitly tell
the system which movie to recommend based on the previously watched list.
Instead, it is programmed so that the system explores the previously watched
movie list. It looks for significant features or characteristics such as genres, actors,
directors, producers, etc. It also checks which movies were watched by other users
so the system can form a type of group. Based on this learning and observation,
the system concludes and gives a recommendation. For example, a watchlist of a
person goes like this: Sully, Catch Me If You Can, Captain Philips, Inception, and
Interstellar. One can gather the following insights from this list:

• Three of the movies are of the biographical genre; the other two are science
fiction.

• Three of the movies have Tom Hanks in them.
• The science fiction movies on the list are directed by Christopher Nolan.

Based on this pattern, the system may recommend biographical movies that do
not include Tom Hanks. The system will also recommend more Tom Hanks movies
that can be biographical or other genres. It may also recommend science fiction
movies that Tom Hanks has starred in. The system will also recommend more
movies directed by Christopher Nolan. As this recommendation system decides by
learning the patterns from the watchlist, it will be regarded as an ML application.

1.2.3 Machine Learning Jargon

While going through the book, we will get many terminologies related to machine
learning. Therefore, it is essential that we understand this jargon. The terminologies
that we need to understand are discussed in this section.

1.2.3.1 Features
Features, also known as attributes, predictor variables, or independent variables, are
simply the characteristics or labels of the dataset. Suppose we have information on
the height and the mass of sixty students in a class. The height and the mass are
known as the features within the dataset. These features are extracted from the raw
dataset and are fed to models as inputs.

6 1 Introduction to Machine Learning

1.2.3.2 Target Variable
Simply put, target variables are the outputs that the models should give. For
instance, a movie review must be classified as positive or negative. Here, the variable
positive/negative is the target variable in this case. First, this target variable needs
to be determined by the user. Then, after the target variable is determined, the
relationship between the features and the target variable must be understood to
perform further operations.

1.2.3.3 Optimization Problem
Optimization problems are defined as a class of problems that seek the optimal
solution under a set of given conditions. Such problems usually involve a trade-off
between different conditions. For example, a battery has to be purchased for power
backup at a residence, but we are unsure about the right battery size, which comes
in 6.4 and 13.5 kWh. If we buy the larger size, we can store more energy and also
enjoy a myriad of additional features of the battery, but we also need to pay more. If
we buy the smaller size, we can store less energy and get little to no extra features,
but we save more money. We need to optimize our needs in this scenario. If we only
require power backup without any special requirement for the added features, the
smaller size will suffice the need. This would be the optimal solution to the battery
dilemma.

1.2.3.4 Objective Function
Usually, more than one solution exists for a problem. Among all the solutions,
finding the optimal solution is required, which is usually done by measuring a
quantity and requiring it to meet a standard. The objective function is the standard
that the optimal solution needs to meet. The objective function is designed to take
parameters and evaluate the performance of the solution. The goal of the objective
function may vary with the problem under consideration. Maximizing or minimizing
a particular parameter might be needed to qualify the solution as optimal. For
example, many ML algorithms use a distance measure as an objective function.
A problem may require minimizing the Euclidean distance between each data point.
Different metrics are used to calculate distance, such as Euclidean, Manhattan, or
Minkowski distance, discussed later in Chap. 2.

1.2.3.5 Cost Function
The cost function is used to understand how well the model performs on a given
dataset. The cost function also calculates the difference between the predicted and
ground output values. Therefore, the cost and loss functions may seem to be the
same. However, the loss function is calculated for a single data point after a single
training, and the cost function is calculated for a given dataset after the model
training is done. Hence, it can be implied that the cost function is the average loss
function for the entire dataset after the model training. The terms loss function
and cost function are often used interchangeably in ML. Similar to loss functions,
different kinds of cost functions are used in different contexts in different ML
algorithms.

1.2 What Is Machine Learning? 7

Suppose J is a cost function used to evaluate a model’s performance. It is
generally defined with the loss function L. The generalized form of the cost function
J is given below:

.J (θ) =
m∑

i=1

L(hθ (x
i), yi), (1.1)

where . θ is a parameter being optimized, m is the number of training samples, i is
the number of examples and outputs, h is a hypothesis function of the model, x is
the estimated predicted value, and y is the ground truth value.

1.2.3.6 Loss Function
Suppose a function .L : (z, y) ∈ R × Y −→ L(z, y) ∈ R is given. Function L takes
z as inputs, where z is the predicted value given by an ML model. The function then
compares z with respect to its corresponding real value y and outputs a value that
signifies the difference between the predicted value and the real value. This function
is known as a loss function.

The loss function is significant because it clearly explains how the models
perform in modeling the data they are being fed. The loss function calculates the
error, which is the difference between the predicted output and ground output values.
Therefore, it is intuitive that a lower value of the loss function indicates a lower error
value, implying that the model has learned or fitted the data well. While learning the
data, the goal of model training is always to lower the value of the loss function.
After every iteration of training, the model keeps making necessary changes based
on the value of the current loss function to minimize it. Different kinds of loss
functions are used for different ML algorithms, which will be discussed later in
detail in Chap. 2.

1.2.3.7 Comparison Between Loss Function, Cost Function, and
Objective Function

Both the loss function and cost function represent the error value, i.e., the difference
between the output value and the real value, to determine how well an ML model
performs to fit the data. However, the difference between the loss and cost functions
is that the loss function measures the error for a single data point only, while
the cost function measures the error for the whole dataset. The cost function is
usually the sum of the loss function and some penalty. On the other hand, the
objective function is a function that needs to be optimized, i.e., either maximized
or minimized, to obtain the desired objective. The loss function is a part of the
cost function; concurrently, the cost function can be used as a part of the objective
function.

1.2.3.8 Algorithm, Model/Hypothesis, and Technique
As a beginner, it is essential to be able to differentiate between ML models and
ML algorithms. An algorithm in ML is the step-by-step instruction provided in the

8 1 Introduction to Machine Learning

form of code and run on a particular dataset. This algorithm is analogous to a general
programming code. For example, finding the arithmetic average of a set of numbers.
Similarly, in ML, an algorithm can be applied to learn the statistics of a given data
or apply current statistics to predict any future data.

On the other hand, an ML model can be depicted as a set of parameters that is
learned based on given data. For example, assume a function .f (x) = xθ , where . θ
is the parameter of the given function, and x is input. Thus, for a given input x, the
output depends on the function parameter . θ . Similarly, in ML, the input x is labeled
as the input feature, and . θ is defined as an ML model parameter. The goal of any
ML algorithm is to learn the set of parameters of a given model. In some cases, the
model is also referred to as a hypothesis. Suppose the hypothesis or model is denoted
by . hθ . If we input data .x(i) to the model, the predicted output will be .hθ (x(i)).

In contrast, an ML technique can be viewed as a general approach in attempting
to solve a problem at hand. In many cases, one may require combining a wide range
of algorithms to come up with a technique to solve an ML problem.

1.2.4 Difference Between Data Science, Machine Learning,
Artificial Intelligence, Deep Learning

Data science, artificial intelligence, machine learning, and deep learning are closely
related terminologies, and people often tend to confuse them or use these terms
alternatively. However, these are distinctly separate fields of technology. Machine
learning falls within the subset of artificial intelligence, while deep learning is
considered to fall within the subset of machine learning, as is demonstrated by
Fig. 1.3.

The difference between ML and deep learning is in the fact that deep learn-
ing requires more computing resources and very large datasets. Thanks to the
advancement of hardware computing resources, people are shifting toward deep
learning approaches to solve similar problems which ML can solve. Deep learning
is especially helpful in handling large volumes of text or images.

Fig. 1.3 Deep learning falls
within the subset of machine
learning, and machine
learning falls within the
subset of artificial
intelligence. Data science
involves a part of all these
three fields

1.3 Historical Development of Machine Learning 9

Table 1.1 Sample data of
house prices

Year Price

2001 $200

2002 $400

2003 $800

Data science is an interdisciplinary field that involves identifying data patterns
and making inferences, predictions, or insights from the data. Data science is closely
related to deep learning, data mining, and big data. Here, data mining is the field that
deals with identifying patterns and extracting information from big datasets using
techniques that combine ML, statistics, and database systems, and by definition, big
data refers to vast and complex data that are too huge to be processed by traditional
systems using traditional algorithms. ML is one of the primary tools used to aid
the data analysis process in data science, particularly for making extrapolations or
predictions on future data trends.

For example, predicting the market price of houses in the next year is an ML
application. Consider a sample dataset as given in Table 1.1.

The observation of the data in Table 1.1 allows us to form the intuition that the
next price in 2004 will be $1600. This intuition is formed based on the previous
years’ house prices, which shows a clear trend of doubling the price each year.

However, for large and complex datasets, this prediction may not be so straight-
forward. Then we require an ML prediction model to predict the prices of houses.
Given enough computing resources, these problems can be solved using deep
learning models categorized under deep learning. In general, machine learning
and deep learning fall within artificial intelligence, but they all require processing,
preparing, and cleaning available data; thus, data science is an integral part of all
these three branches.

1.3 Historical Development of Machine Learning

Machine learning has been under development since the 1940s. It is not the
brainchild of one ingenious human, nor is it the result of a particular event. The
multifaceted science of ML has been shaped by years of studies and research
and by the dedicated efforts of numerous scientists, engineers, mathematicians,
programmers, researchers, and students. ML is a continuously progressing field
of science, and it is still under development. Table 1.2 enlists the most significant
milestones marked in the history of the development of ML. Do not be frightened
if you do not yet know some of the terms mentioned in the table. We will explore
them in later chapters.

10 1 Introduction to Machine Learning

Table 1.2 Historical development of machine learning

Year Development

1940s The paper “A logical calculus of the ideas immanent in nervous activity,” co-authored
by Walter Pitts and Warren McCulloch in 1943, first discusses the mathematical model
of neural networks [3]

1950s • The term “Machine learning” is first used by Arthur Samuel. He designed a computer
checker program that was on par with top-level games

• In 1951, Marvin Minsky and Dean Edmonds developed the first artificial neural
network consisting of 40 neurons. The neural network had both short-term and long-
term memory capabilities

• The two-month-long Dartmouth workshop in 1956 first introduces AI and ML
research. Many recognize this workshop as the “birthplace of AI”

1960s • In 1960, Alexey (Oleksii) Ivakhnenko and Valentin Lapa present the hierarchical
representation of a neural network. Alexey Ivakhnenko is regarded as the father of
deep learning

• Thomas Cover and Peter E. Hart published an article on the nearest neighbor
algorithms in 1967. These algorithms are now used for regression and classification
tasks in machine learning

• A project related to intelligent robot, Stanford Cart, was began in this decade. The
task was to navigate through 3D space autonomously

1970s • Kunihiko Fukushima, a Japanese computer scientist, published a work on pattern
recognition using hierarchical multilayered neural networks. This is known as
neocognition. This work later paved the way for convolutional neural networks

• The Stanford Cart project finally became able to traverse through a room full of
chairs for five hours without human intervention in 1979

1980s • In 1985, the artificial neural network named NETtalk is invented by Terrence
Sejnowski. NETtalk can simplify models of human cognitive tasks so that machines
can potentially learn how to do them

• The restricted Boltzmann machine (RBM), initially called Harmonium, invented by
Paul Smolensky, was introduced in 1986. It could analyze an input set and learn
probability distribution from it. At present, the RBM modified by Geoffrey Hinton
is used for topic modeling, AI-powered recommendations, classification, regression,
dimensionality reduction, collaborative filtering, etc.

1990s • Boosting for machine learning is introduced in the paper “The Strength of Weak
Learnability,” co-authored by Robert Schapire and Yoav Freund in 1990. Boosting
algorithm increases the prediction capability of AI models. The algorithm generates
and combines many weak models using techniques, such as averaging or voting on
the predictions

• In 1995, Tin Kam Ho introduced random decision forests in his paper. The algorithm
creates multiple decision trees randomly and merges them to create one “forest.” The
use of multiple decision trees significantly improves the accuracy of the models

• In 1997, Christoph Bregler, Michele Covell, and Malcolm Slaney develop world’s
first “deepfake” software

• The year 1997 will be a major milestone in AI. The AI-based chess program, Deep
Blue, beat one of the best chess players of human history, Garry Kasparov. This
incident shed a new light on AI technology

2000 Igor Aizenberg, a neural networks researcher, first introduces the term “deep learning.”
He used this term to describe the larger networks consisting of Boolean threshold
neurons

(continued)

1.4 Why Machine Learning? 11

Table 1.2 (continued)

Year Development

2009 Fei-Fei Li launched the most extensive dataset of labeled images, ImageNet. It was
intended to contribute to providing versatile and real-life training data for AI and ML
models. The Economist has commented on ImageNet as an exceptional event for
popularizing AI throughout the tech community and stepping toward a new era of deep
learning history

2011 Google’s X Lab team develops an AI algorithm Google Brain for image processing,
which is able to identify cats from images

2014 1. Ian Goodfellow and his colleagues developed generative adversarial networks
(GANs). The frameworks are used so that AI models become capable of generating
entirely new data given their training set. 2. The research team at Facebook developed
DeepFace, which can distinguish human faces almost as human beings do with an
accuracy rate of 97.35%. DeepFace is a neural network consisting of nine layers. The
network is trained on more than 4 million images taken from Facebook users. 3.
Google has started using Sibyl to make predictions for its products. Sibyl is a machine
learning system on a broader scale. The system consists of many new algorithms put
together. It has significantly improved performance through parallel boosting and
column-oriented data. In addition, it uses users’ behavior for ranking products and
advertising. 4. Eugene Goostman, an AI chatbot developed by three friends from Saint
Petersburg in 2001, is considered to be the first AI chatbot to resemble human
intelligence. This AI character is portrayed as a 13-year-old boy from Odessa, Ukraine,
who has a pet guinea pig and a gynecologist father. Eugene Goostman passed the
Turing test competition on 7 June 2014 at the Royal Society

2015 The first AI program “AlphaGo” beats a professional Go player. Go was a game that
was initially impossible to teach a computer

2016 A group of scientists presents Face2Face during the Conference on Computer Vision
and Pattern Recognition. Most of the “deepfake” software used in the present time is
based on the logic and algorithms of Face2Face

2017 1. Autonomous or driverless cars are introduced in the U.S.A. by Waymo. 2. The
famous paper “Attention is All You Need” is published, introducing the Transformer
architecture based on the self-attention mechanism, which brings about significant
progress in natural language processing

2021 Google DeepMind’s AlphaFold 2 model places first in the CASP13 protein folding
competition in the free modeling (FM) category, bringing a breakthrough in
deep-learning-based protein structure prediction

2022 OpenAI and Google revolutionize large language models for mass use. Various
applications of machine learning have started becoming part of daily activities

1.4 Why Machine Learning?

Before diving further into the book, one must have a clear view of the purpose and
motives behind machine learning. Therefore, the following sections will discuss
the purpose, motives, and importance of machine learning so one can implement
machine learning in real-life scenarios.

12 1 Introduction to Machine Learning

1.4.1 Motivation

The motivation to create a multidimensional field as machine learning rose from
the monotonous work humans had to do. With the increased usage of digital
communication systems, smart devices, and the Internet, a massive amount of
data are generated every moment. Searching and organizing through all those data
every time humans need to solve any task is exhaustive, time-consuming, and
monotonous. So instead of going through the laborious process of manually going
through billions of data, human beings opted for a more automated process. The
automated process aims to find relevant patterns in data and later use these patterns
to evaluate and solve tasks. This was when the concept of programming took shape.
However, even with programming, humans had to explicitly code or instruct the
machines what to do, when, and how to do it. To overcome the new problem of
coding every command for machines to understand, humans came up with the idea
of making machines learn themselves the way humans do—simply by recognizing
patterns.

1.4.2 Purpose

The purpose of machine learning is to make machines intelligent and automate tasks
that would otherwise be tedious and susceptible to human errors. The use of machine
learning models can make the tasks to be performed both more accessible and more
time-efficient.

For example, consider a dataset .(x, y) = (0, 0); (1, 1); (2, 2); (3, ?). Here, to
define the relationship between x and y, y can be expressed as a function of x, i.e.,
.y = f (x) = θx. Such a representation of the two elements of the dataset is referred
to as the model. The purpose of ML is to learn what . θ is from the existing data and
then apply ML to determine that .θ = 1. This knowledge can then be utilized to find
out the value of the unknown value of y when .x = 3. In the next chapters, we will
learn how to formulate the hypothetical model .y = θx and how to solve for the
values of . θ .

1.4.3 Importance

Just like machines, the science of machine learning was devised with a view to
making human tasks easier. Data analysis used to be a tedious and laborious job,
prone to many errors when done manually. But thanks to machine learning, all
humans have to do is provide the machine with the dataset or the source of the
dataset, and the machine can analyze the data, recognize a pattern, and make
valuable decisions regarding the data.

Another advantage of ML lies in the fact that humans do not need to tell the
machine each step of the work. The machine itself generates the instructions after

1.5 Prerequisite Knowledge to Learn Machine Learning 13

learning from the input dataset. For example, an image recognition model does not
require telling the machine about each object in an image. In the case of supervised
learning, we only need to tell the machine about the labels (such as cow or dog)
along with their attributes (such as facial proportions, size of the body, size of ears,
presence of horns, etc.), and the machine will automatically identify the labeled
objects from any image based on the marked attributes.

ML is also essential in case of forecasting unknown or future data trends. This
application is extremely valuable for creating business plans and marketing schemes
and preparing resources for the future. For example, ML can help predict the future
growth of solar module installations, even to as far as 2050 or 2100, based on
historical price trends. Compared to other forecasting tools and techniques, ML can
predict values with higher accuracy and can consider many additional parameters
that cannot be incorporated into the definite forecasting formulae used in traditional
forecasting tools, such as statistical data extrapolation.

1.5 Prerequisite Knowledge to Learn Machine Learning

Machine learning is an advanced science; a person cannot just dive into the world of
ML without some rudimentary knowledge and skills. To be able to understand the
ML concepts, utilize the algorithms, and apply ML techniques in practical cases, a
person must be equipped with several subjects in advanced math and science, some
of which are discussed in the following subsections.

This section demonstrates only the topics an ML enthusiast must know prior to
learning ML. The topics are not covered in detail here. The elaborate discussions
with relevant examples may be studied from [4].

1.5.1 Linear Algebra

Linear algebra is the branch of mathematics that deals with linear transformations.
These linear transformations are done using linear equations and linear functions.
Vectors and matrices are used to notate the necessary linear equations and linear
functions. A good foundation in linear algebra is required to understand the more
profound intuition behind different ML algorithms. The following section talks
about the basic concepts of linear algebra.

1.5.1.1 Linear Equations
Linear equations are mathematically easier to describe and can be combined with
non-linear model transformations. There are two properties of an equation to be
termed linear—homogeneity and superposition. For modeling linear systems, the
knowledge of linear equations can be convenient. An example of a linear equation
is .p1x1 + p2x2 + · · · + pnxn + q = 0, where .x1, x2 . . . , xn are the variables,
.p1, p2 . . . , pn are the coefficients, and q is a constant.

14 1 Introduction to Machine Learning

Fig. 1.4 Examples of two
straight lines having linear
equations

Using linear algebra, we can solve the equations of Fig. 1.4, i.e., we can find the
intersection of these two lines. The equations for the two lines are as follows:

.y = 3

5
x + 2, (1.2)

.
x

5
+ y

5
= 1. (1.3)

Now by solving Eq. 1.3, we get

. x + y = 5,

⇒ x +
(
3

5
x + 2

)
= 5,

⇒ 8x = 15,

⇒ x = 1.875.

Putting the value of x in Eq. 1.2, we get .y = 3.125. So the intersection point is
.(x, y) = (1.875, 3.125).

1.5.1.2 Tensor and Tensor Rank
A tensor is a general term for vectors and matrices. It is the data structure used
in ML models. A tensor may have any dimension. A scalar is a tensor with
zero dimensions, a vector is a tensor with one dimension, and a matrix has two
dimensions. Any tensor with more than two dimensions is called an n-dimensional
tensor. Vectors and matrices are further discussed below.

1.5 Prerequisite Knowledge to Learn Machine Learning 15

Fig. 1.5 Example of vector
. Ā

0

A(3,5)A(3,5)5

3 X1

X2

1.5.1.2.1 Vector
A vector is a uni-dimensional array of numbers, terms, or elements. The features
of the dataset are represented as vectors. A vector can be represented in geometric
dimensions. For instance, a vector [3, 5] can be geometrically represented in a 2-
dimensional space, as shown in Fig. 1.5. This space can be called a vector space
or feature space. In the vector space, a vector can be visualized as a line having
direction and magnitude.

1.5.1.2.2 Matrix
A matrix is a 2-dimensional array of scalars with one or more columns and one or
more rows. A vector with more than one dimension is called a matrix. The number
of rows and columns is expressed as the dimension of that matrix. For example, a
matrix with a .4 × 3 dimension contains 4 rows and 3 columns.

Matrix operations provide more efficient computation than piece-wise operations
for machine learning models. The two-component matrices must have the same
dimension for addition and subtraction. For matrix multiplication, the first matrix’s
column size and the second matrix’s row size must be identical. If a matrix with
dimension .m × n is multiplied by a matrix with dimension .n × p, then the result of
this multiplication will be a matrix with dimension .m × p.

Equation 1.4 shows matrix A with a dimension of .2 × 3 and matrix B with a
dimension of .3× 1. Therefore, these two matrices can be multiplied as it fulfills the
matrix multiplication condition. The output of the multiplication will be matrix C,
shown in Eq. 1.5. It has the dimension of .2 × 1.

.A =
[
1 2 3
4 5 6

]
;B =

⎡

⎣
11
12
13

⎤

⎦ . (1.4)

.Product, C =
[
74
182

]
. (1.5)

Some fundamental matrices are frequently used, such as row matrix, square
matrix, column matrix, identity matrix, etc. For example, a matrix consisting of
only a row is known as a row matrix, and a matrix consisting of only one column
is known as a column matrix. A matrix that consists of an equal number of rows

16 1 Introduction to Machine Learning

and columns is called a square matrix. A square matrix with all 1’s along its main
diagonal and all 0’s in all the non-diagonal elements is an identity matrix. Examples
of different matrices are given in Fig. 1.6.

1.5.1.2.3 Rank vs. Dimension
Rank and dimension are two related but distinct terms in linear algebra, albeit
they are often used interchangeably in machine learning. In a machine learning
perspective, each column of a matrix or a tensor represents each feature or subspace.
Hence, the dimension of its column (i.e., subspace) will be the rank of that matrix
or tensor.

1.5.1.2.4 Comparison Between Scalar, Vector, Matrix, and Tensor
A scalar is simply a numerical value with no direction assigned to it. A vector is
a one-dimensional array of numbers that denotes a specific direction. A matrix is
a two-dimensional array of numbers. Finally, a tensor is an n-dimensional array of
data.

According to the aforesaid quantities, scalars, vectors, and matrices can also be
regarded as tensors but limited to 0, 1, and 2 dimensions, respectively. Tables 1.3
and 1.4 summarize the differences in the rank or dimension of these four quantities
with examples.

Square matrix

2 x 2

Rectangular matrix

3 x 2

Column matrix

3 x 1

Zero matrix

3 x 5

Row matrix

1 x 4

Identity matrix

3 x 3

1

2

-7

1

2

-7

5 -1 0 35 -1 0 3

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

4 1

2 -1

-7 5

4 1

2 -1

-7 5

5 2

-6 1

5 2

-6 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Fig. 1.6 Examples of different matrices with their dimensions

Table 1.3 Comparison
between scalar, vector,
matrix, and tensor

Rank/dimension Object

0 Scalar

1 Vector

2 or more .m × n matrix

Any Tensor

1.5 Prerequisite Knowledge to Learn Machine Learning 17

Table 1.4 Examples of
scalar, vector, matrix, and
tensor

Scalar Vector Matrix Tensor

1 .

[
1
2

]
.

[
1 2
3 4

]
.

[[
1 2

] [
3 4

]
[
5 6

] [
7 8

]
]

Table 1.5 Definition of
mean, median, and mode

Name Definition

Mean The arithmetic average value

Median The midpoint value

Mode The most common value

Fig. 1.7 Graphical
representation of mean,
median, and mode

Left skew

Normal Distribution

Right skew

Median

Mean

Mode

Median

Mean

Mode

Median
Mean

Mode

1.5.2 Statistics

Statistics is a vast field of mathematics that helps to organize and analyze datasets.
Data analysis is much easier, faster, and more accurate when machines do the job.
Hence, ML is predominantly used to find patterns within data. Statistics is the core
component of ML. Therefore, the knowledge of statistical terms is necessary to fully
utilize the benefits of ML.

1.5.2.1 Measures of Central Tendency
The three most common statistical terms used ubiquitously in diverse applications
are mean, median, and mode. These three functions are the measures of central
tendency of any dataset, which denote the central or middle values of the dataset.
Table 1.5 lays down the distinctions between these three terms. These are the
measures of central tendency of a dataset. Figure 1.7 gives a graphical representation
of mean, median, and mode.

Three examples are demonstrated here and in Table 1.6. Let us consider the first
dataset: {1, 2, 9, 2, 13, 15}. To find the mean of this dataset, we need to calculate
the summation of the numbers. Here, the summation is 42. The dataset has six data
points. So the mean of this dataset will be .42 ÷ 6 = 7. Next, to find the median
of the dataset, the dataset needs to be sorted in ascending order: {1, 2, 2, 9, 13,

18 1 Introduction to Machine Learning

Table 1.6 Several datasets and their measures of central tendency

Dataset {1, 2, 9, 2, 13, 15} {0, 5, 5, 10} {18, 22, 24, 24, 25}

Mean 7 5 22.6

Median 5.5 5 24

Mode 2 5 24

15}. Since the number of data points is even, we will take the two mid-values and
average them to calculate the median. For this dataset, the median value would be
.(2+ 9) ÷ 2 = 5.5. For the mode, the most repeated data point has to be considered.
Here, 2 is the mode for this dataset. This dataset is left-skewed, i.e., the distribution
of the data is longer toward the left or has a long left tail.

Similarly, if we consider the dataset {0, 5, 5, 10}, the mean, median, and mode
all are 5. This dataset is normally distributed. Can you calculate the mean, median,
and mode for the right-skewed dataset {18, 22, 24, 24, and 25}?

1.5.2.2 Standard Deviation
The standard deviation (SD) is used to measure the estimation of variation of data
points in a dataset from the arithmetic mean. A complete dataset is referred to as a
population, while a subset of the dataset is known as the sample. The equations to
calculate the population’s SD and the sample’s SD are expressed as Eqs. 1.6 and 1.7,
respectively.

.SD f or population, σ =
√√√√ 1

N

N∑

i=1

(xi − μ)2. (1.6)

Here, . σ symbolizes the population’s SD, i is a variable that enumerates the
data points, . xi denotes any particular data point, . μ is the arithmetic mean of the
population, and N is the total number of data points in the population.

.SD f or sample, s =
√√√√ 1

N − 1

N∑

i=1

(xi − x)2. (1.7)

Here, s symbolizes the sample’s SD, i is a variable that enumerates the data
points, . xi denotes any particular data point, . x is the arithmetic mean of the sample,
and N is the total number of data points in the sample.

A low value of SD depicts that the data points are scattered reasonably near the
dataset’s mean, as shown in Fig. 1.8a. On the contrary, a high value of SD depicts
that the data points are scattered far away from the mean of the dataset, covering a
wide range as shown in Fig. 1.8b.

1.5 Prerequisite Knowledge to Learn Machine Learning 19

f(X)

X

lower σ value

μ

f(X)

X

higher σ value

μ

(a) (b)

Fig. 1.8 Standard deviation of data

1.5.2.3 Correlation
Correlation shows how strongly two variables are related to each other. It is a
statistical measurement of the relationship between two (and sometimes more)
variables. For example, if a person can swim, he can probably survive after falling
from a boat. However, correlation is not causation. A strong correlation does
not always mean a strong relationship between two variables; it could be pure
coincidence. A famous example in this regard is the correlation between ice cream
sales and shark attacks. There is a strong correlation between ice cream sales and
shark attacks, but shark attacks certainly do not occur due to ice cream sales.
Correlation can be classified in many ways, as described in the following sections.

1.5.2.3.1 Positive, Negative, and Zero Correlation
In a positive correlation, the direction of change is the same for both variables, i.e.,
when the value of one variable increases or decreases, the value of the other variable
also increases or decreases, respectively. In a negative correlation, the direction of
change is opposite for both variables, i.e., when the value of one variable increases,
the value of the other variable decreases, and vice versa. For zero correlation, the two
variables are independent, i.e., no correlation exists between them. These concepts
are elaborately depicted in Fig. 1.9.

1.5.2.3.2 Simple, Partial, and Multiple Correlation
The correlation between two variables is a simple correlation. But if the number
of variables is three or more, it is either a partial or multiple correlation. In partial
correlation, the correlation between two variables of interest is determined while
keeping the other variable constant. For example, the correlation between the
amount of food eaten and blood pressure for a specific age group can be regarded
as a partial correlation. When the correlation between three or more variables is
determined simultaneously, it is called a multiple correlation. For example, the
relationship between the amount of food eaten, height, weight, and blood pressure
can be regarded as a case of a multiple correlation.

20 1 Introduction to Machine Learning

Perfect positive correlation (1)

Variable 1

V
ar

ia
b

le
 2

2
el

baira
V

Variable 1 Variable 1

V
ar

ia
b

le
 2

Variable 1

V
ar

ia
b

le
 2

2
el

baira
V

Variable 1 Variable 1

V
ar

ia
b

le
 2

High positive correlation (0.9) Low positive correlation (0.5)

Low negative correlation (-0.5)High negative correlation (-0.9)Perfect negative correlation (-1)

Variable 1

V
ar

ia
b

le
 2

No correlation (0)

Fig. 1.9 Visualization of zero, positive, and negative correlation at various levels

1.5.2.3.3 Linear and Curvilinear Correlation
When the direction of change is constant at all points for all the variables, the
correlation between them is linear. If the direction of change changes, i.e., not
constant at all points, then it is known as curvilinear correlation, also known as
non-linear correlation. A curvilinear correlation example would be the relationship
between customer satisfaction and staff cheerfulness. Staff cheerfulness could
improve customer experience, but too much cheerfulness might backfire.

1.5.2.3.4 Correlation Coefficient
The correlation coefficient is used to represent correlation numerically. It indicates
the strength of the relationship between variables. There are many types of
correlation coefficients. However, the two most used and most essential correlation
coefficients are briefly discussed here.

Pearson’s Correlation Coefficient
Pearson’s Correlation Coefficient, also known as Pearson’s r, is the most popular and
widely used coefficient to determine the linear correlation between two variables. In

1.5 Prerequisite Knowledge to Learn Machine Learning 21

other words, it describes the relationship strength between two variables based on
the direction of change in the variables.

For the sample correlation coefficient,

.rxy =
Cov(x, y)

sxsy
=

∑
(xi−x̄)(yi−ȳ)

n−1√
(xi−x̄)2

n−1

√
(yi−ȳ)2

n−1

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2(yi − ȳ)2

. (1.8)

Here, .rxy = Pearson’s sample correlation coefficient between two variables x
and y; .Cov(x, y) = sample covariance between two variables x and y; . sx, sy =
sample standard deviation of x and y; .x̄, ȳ = average value of x and average value
of y; .n = the number of data points in x and y.

For the population correlation coefficient,

.ρxy =
Cov(x, y)

σxσy
=

∑
(xi−x̄)(yi−ȳ)

n√
(xi−x̄)2

n

√
(yi−ȳ)2

n

=
∑

(xi − x̄)(yi − ȳ)∑
(xi − x̄)2(yi − ȳ)2

. (1.9)

Here, .ρxy = Pearson’s population correlation coefficient between two variables x
and y; .Cov(x, y) = population covariance between two variables x and y; . σx, σy =
population standard deviation of x and y; .x̄, ȳ = average value of x and average
value of y and .n = the number of data points in x and y.

The value of Pearson’s correlation coefficient ranges from . −1 to 1. Here, . −1
indicates a perfect negative correlation, and the value 1 indicates a perfect positive
correlation. A correlation coefficient of 0 means there is no correlation. Pearson’s
coefficient of correlation is applicable when the data of both variables are from a
normal distribution, there is no outlier in the data, and the relationship between the
two variables is linear.

Spearman’s Rank Correlation Coefficient
Spearman’s Correlation Coefficient determines the non-parametric relationship
between the ranks of two variables, i.e., the calculation is done between the rankings
of the two variables rather than the data themselves. The rankings are usually
determined by assigning rank 1 to the smallest data, rank 2 to the subsequent
smallest data, and so on up to the largest data. For example, the data contained in a
variable are {55, 25, 78, 100, 96, 54}. Therefore, the rank for that particular variable
will be {3, 1, 4, 6, 5, 2}. By calculating the ranks of both variables, Spearman’s rank
correlation can be calculated as follows:

.ρ = 1 −
6

∑
d2
i

n(n2 − 1)
. (1.10)

Here, . ρ = Spearman’s rank correlation coefficient, n = the number of data points
in the variables, and . di = rank difference in i-th data.

22 1 Introduction to Machine Learning

Positive monotonic

relationship

Variable 1

V
ar

ia
b

le
 2

2
el

baira
V

Variable 1 Variable 1

V
ar

ia
b

le
 2

Negative monotonic

relationship

Non-monotonic

relationship

Fig. 1.10 Graphical representation of the monotonicity of the relationship

Pearson’s correlation coefficient determines the linearity of the relationship,
whereas Spearman’s coefficient determines the monotonicity of the relationship.
Graphical representation of the monotonicity of the relationship is depicted in
Fig. 1.10.

Unlike in a linear relationship, the data change rate is not always the same
in a monotonic relationship. If the data change rate is in the same direction for
both variables, the relationship is positive monotonic. On the other hand, if the
direction is opposite for both variables, the relationship is negative monotonic. The
relationship is called non-monotonic when the direction of change is not always the
same or opposite but rather a combination.

The value of Spearman’s rank correlation coefficient lies between . −1 and 1. A
value of . −1 indicates a perfect negative rank (negative monotonic) correlation, 1
indicates a perfect positive (positive monotonic) rank correlation, and 0 shows no
rank correlation. Spearman’s rank coefficient is used when one or more conditions
of Pearson’s coefficient are not fulfilled.

Besides these two correlation coefficients, Cramer’s rank correlation coefficient
(Cramer’s . τ), Kendall’s v (Kendall’s . φ), point biserial coefficient, etc., are also used.
The usage of the different correlation coefficients depends on the application and
data type.

1.5.2.4 Outliers
An outlier is a data point in the dataset that holds different properties than all other
data points and thus significantly varies from the pattern of other observations. This
is the value that has the maximum deviation from the typical pattern followed by all
other values in the dataset.

ML algorithms have a high sensitivity to the distribution and range of attribute
values. Outliers have a tendency to mislead the algorithm training process, eventu-
ally leading to erroneous observations, inaccurate results, longer training times, and
poor results.

Consider a dataset .(x, y) = {(4, 12), (5,10), (6, 9), (8, 7.5). (9, 7), (13, 2), (15, 1),
(16, 3), (21, 27.5)}. Here, .x = water consumption rate per day and .y = electricity
consumption rate per day. In Fig. 1.11, we can see that these data are distributed in

1.5 Prerequisite Knowledge to Learn Machine Learning 23

x

y

Outlier

Water consumption, L

E
le

ct
ri

ci
ty

 C
o
n
su

m
p
ti

o
n
,
k
W

(5,10)
(4, 12)

(6, 9) (8, 7.5)

(9, 7)

(15, 1)

(13, 2)

(16, 3)

(21, 27.5)

Fig. 1.11 Representation of an outlier. The black dots are enclosed within specific boundaries,
but one blue point is beyond those circles of data. The blue point is an outlier

What we observe

Isolated noise and outlier from

main data

Noise

Clean data (noise and

outlier removed)

Main data

Outlier

Fig. 1.12 Difference between outlier and noise

3 different groups, but one entry among these data cannot be grouped with any of
these groups. This data point is acting as an outlier in this case.

It is to be noted that noise and outliers are two different things. While an outlier
is significantly deviated data in the dataset, noise is just some erroneous value.
Figure 1.12 visualizes the difference between outlier and noise using a signal.

Consider a list of 100 house prices, which mainly includes prices ranging from
3000 to 5000 dollars. First, there is a house on the list with a price of 20,000
dollars. Then, there is a house on the list with a price of . −100 dollars. 20,000 is

24 1 Introduction to Machine Learning

Value Value Value

yc
ne

u
qer

F

F
re

q
u

en
cy

F
re

q
u

en
cy

Left skewed distribution Normal distribution Right skewed distribution

Fig. 1.13 Representation of different distribution of data using histogram

an outlier here as it significantly differs from the other house prices. On the other
hand, . −100 is a noise as the price of something cannot be a negative value. Since
the outlier heavily biases the arithmetic mean of the dataset and leads to erroneous
observations, removing outliers from the dataset is the prerequisite to achieving the
correct result.

1.5.2.5 Histogram
A histogram resembles a column chart and represents the frequency distribution of
data in vertical bars in a 2-dimensional axis system. Histograms have the ability to
express data in a structured way, aiding data visualization. The bars in a histogram
are placed next to each other with no gaps in between. Histogram assembles the data
in bars providing a clear understanding of the data distribution. The arrangement
also provides a clear understanding of data distribution according to its features in
the dataset.

Figure 1.13 illustrates three types of histograms, with a left-skewed distribution,
a normal distribution, and a right-skewed distribution.

1.5.2.6 Errors
The knowledge of errors comes handy when evaluating the accuracy of an ML
model. Especially when the trained model is tested against a test dataset, the output
of the model is compared with the known output from the test dataset. The deviation
of the predicted data from the actual data is known as the error. If the error is within
tolerable limits, then the model is ready for use; otherwise, it must be retrained to
enhance its accuracy.

There are several ways to estimate the accuracy of the performance of an ML
model. Some of the most popular ways are to measure the mean absolute percentage
error (MAPE), mean squared error (MSE), mean absolute error (MAE), and root
mean squared error (RMSE). In the equations in Table 1.7, n represents the total
number of times the iteration occurs, t represents a specific iteration or an instance
of the dataset, . et is the difference between the actual value and the predicted value
of the data point, and . yt is the actual value.

The concept of errors is vital for creating an accurate ML model for various
purposes. These are described to a deeper extent in Sect. 2.2 in Chap. 2.

1.5 Prerequisite Knowledge to Learn Machine Learning 25

Table 1.7 Different types of
errors

Name of error Equation

Mean squared error
. MSE =

1

n

n∑

t=1

e2 t

Root mean squared error
. RMSE =

√√√√ 1

n

n∑

t=1

e2 t

Mean absolute error
. MAE =

1

n

n∑

t=1

|et |

Mean absolute percentage error
. MAPE =

100%

n

n∑

t=1

∣∣∣∣
et
yt

∣∣∣∣

1.5.3 Probability Theory

Probability is a measure of how likely it is that a specific event will occur.
Probability ranges from 0 to 1, where 0 means that the event will never occur and
1 means that the event is sure to occur. The probability is defined as the ratio of the
number of desired outcomes to the total number of outcomes.

.P(A) =
n(A)

n
, (1.11)

where .P(A) denotes the probability of an event A, .n(A) denotes the number of
occurrences of the event A, and n denotes the total number of probable outcomes,
also referred to as the sample space.

Let us see a common example. A standard 6-faced die contains one number from
1 to 6 on each of the faces. When a die is rolled, any one of the six numbers will
be on the upper face. So, the probability of getting a 6 on the die is ascertained as
shown in Eq. 1.12.

.P(6) =
1

6
= 0.167 = 16.7%. (1.12)

Probability theory is the field that encompasses mathematics related to probabil-
ity. Any learning algorithm depends on the probabilistic assumption of data. As ML
models deal with data uncertainty, noise, probability distribution, etc., several core
ideas of probability theory are necessary, which are covered in this section.

1.5.3.1 Probability Distribution
In probability theory, all the possible numerical outcomes of any experiment are
represented by random variables. A probability distribution function outputs the
possible numerical values of a random variable within a specific range. Random
variables are of two types: discrete and continuous. Therefore, the probability

26 1 Introduction to Machine Learning

distribution can be categorized into two types based on the type of random variable
involved—probability density function and probability mass function.

1.5.3.1.1 Probability Density Function
The possible numerical values of a continuous random variable can be calculated
using the probability density function (PDF). The plot of this distribution is
continuous. For example, in Fig. 1.14, when a model is looking for the probability
of people’s height in 160–170 cm range, it could use a PDF in order to indicate the
total probability that the continuous random variable range will occur. Here, . f (x)
is the PDF of the random variable x.

1.5.3.1.2 Probability Mass Function
When a function is implemented to find the possible numerical values of a discrete
random variable, the function is then known as a probability mass function (PMF).
Discrete random variables have a finite number of values. Therefore, we do not get
a continuous curve when the PMF is plotted. For example, if we consider rolling a
6-faced die, we will have a finite number of outcomes as visualized in Fig. 1.15.

Fig. 1.14 Example of the probability density function

x11x8x7 x9 x10x6x5x4x3x2x1

Probability mass function

f6(x)

f3(x)

f4(x)

f5(x)

f2(x)

f1(x)

f(x)

x

Fig. 1.15 Example of the probability mass function

1.5 Prerequisite Knowledge to Learn Machine Learning 27

1.5.3.2 Gaussian or Normal Distribution
The cumulative probability of normal random variables is presented in Gaussian or
normal distribution. The graph depends on the mean and the standard distribution
of the data. In a standard distribution, the mean of the data is 0, and the standard
deviation is 1. A normal distribution graph plot is a bell curve, as depicted in
Fig. 1.16. Hence, it is also called a bell curve distribution.

The equation representing the Gaussian or normal distribution is

.P(x) =
1

α
√
2π

e
−(x−μ)2

2α2 . (1.13)

Here .P(x) denotes the probability density of the normal distribution, . α denotes
the standard deviation, . μ denotes the mean of the dataset, and x denotes a data point.

1.5.3.3 Bernoulli Distribution
A probability distribution on the Bernoulli trial is the Bernoulli distribution.
Bernoulli trial is an experiment or event that has only two outcomes. For example,
tossing a coin can be regarded as a Bernoulli trial as it can have only two outcomes—
head or tail. Usually, the outcomes are observed in terms of success or failure.
In this case, we can say getting a head will be a success. On the other hand, not
getting a head or getting a tail would be a failure. The Bernoulli distribution has
been visualized in Fig. 1.17, which plots the probability of two trials.

Fig. 1.16 The normal
distribution

Fig. 1.17 The Bernoulli
distribution

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.5 1.0 1.50.0-0.5
x

ytili
b

a
b

or
P

28 1 Introduction to Machine Learning

Sampling distribution

of the mean

P
ro

b
ab

il
it

y

Population distribution

P
ro

b
ab

il
it

y

Fig. 1.18 Graphical demonstration of the central limit theorem

1.5.3.4 Central Limit Theorem
Consider a large dataset of any distribution. The central limit theorem states that
irrespective of the distribution of the numbers in the dataset, the arithmetic mean
of data samples extracted from the main dataset will have a normal distribution.
The larger the sample size, the closer the mean will be to a normal distribution. The
theorem has been demonstrated in Fig. 1.18. It can be seen that the population does
not follow a normal distribution, but when the mean is sampled from it, the sampling
forms a normal distribution.

1.5.4 Calculus

Newton’s calculus is ubiquitously useful in solving a myriad of problems. One of
the most popular algorithms of ML is the gradient descent algorithm. The gradient
descent algorithm, along with backpropagation, is useful in the training process
of ML models, which heavily depend on calculus. Therefore, differential calculus,
integral calculus, and differential equations are all necessary aspects to be familiar
with prior to studying ML.

1.5.4.1 Derivative and Slope
A derivative can be defined as the rate of change of a function with respect to a
variable. For example, the velocity of a car is the derivative of the displacement of
the car with respect to time. The derivative is equivalent to the slope of a line at a
specific point. The slope helps to visualize how steep a line is. A line with a higher
slope is steeper than a line with a lower slope. The concept of slope is depicted in
Fig. 1.19.

.slope, m =
rise
run

=
Δy
Δx

. (1.14)

There is wide use of derivatives in ML, particularly in optimization problems,
such as gradient descent. For instance, in gradient descent, derivatives are utilized

1.5 Prerequisite Knowledge to Learn Machine Learning 29

Fig. 1.19 Illustration of the
concept of slope

to find the steepest path to maximize or minimize an objective function (e.g., a
model’s accuracy or error functions).

1.5.4.2 Partial Derivatives
If a function depends on two or more variables, then the partial derivative of the
function is its derivative with respect to one of the variables, keeping the other
variables constant. Partial derivatives are required for optimization techniques in
ML, which use partial derivatives in order to adjust the weights to meet the objective
function. Objective functions are different for each problem. So the partial derivative
helps to decide whether to increase or decrease the weights to make an adjustment
to the objective function.

1.5.4.3 Maxima and Minima
For a non-linear function, the highest peak or the maximum value refers to the
maxima, and the lowest peak or the lowest value refers to the minima. In other
words, the point at which the derivative of a function is zero is defined as the maxima
or the minima. These are the points where the value of the function stays constant,
i.e., the rate of change is zero. This concept of maxima and minima is necessary
for minimizing the cost function (difference between the ground value and output
value) of any ML model.

A local minima is the value of a function that is smaller than neighboring points
but not necessarily smaller than all other points in the solution space. A global
minima is the smallest value of the function to exist in that entire solution space.
The case is the same for global and local maxima. A local maxima is the value of
a function larger than neighboring points but not necessarily larger than all other
points in the solution space. A global maxima is the largest value of the function to
exist in that solution space. Figure 1.20 demonstrates global and local maxima and
minima in a solution space.

1.5.4.4 Differential Equation
A differential equation (DE) represents the relationship between one or more
functions and their derivatives with respect to one or more variables. DEs are

30 1 Introduction to Machine Learning

Fig. 1.20 Representation of
maxima and minima

Table 1.8 Differential
equations with their degree
and order

Equation Order Degree

.
d3x
dx3

+ 6x dy
dx = ey 3 1

.
dy
dx +

(
d2y
dx2

)3
= 7x

2 3

.
d2y
dx2

+
(

dy
dx

)3
= 7x

2 1

highly useful in system modeling, and thus, they can be utilized in ML for dynamic
modeling, specifically in neural networks.

The following is an example of a differential equation.

.
d2y
dx2 + 4x = 1. (1.15)

1.5.4.4.1 Order and Degree
In differential equations, the highest order of differentiation used in the equation
is the order of the equation. The degree of a differential equation is the power of
its highest derivative. For example, this is a fourth-order, first-degree differential
equation:

.
d4y
dx4 +

(
d2y
dx2

)2

+ 4
dy
dx

− 6x = 0. (1.16)

Here, the highest derivative is . d
4y

dx4
. The order of the highest derivative is 4, so

this is a fourth-order differential equation. The power of the highest derivative is 1,
and therefore, this is a first-degree differential equation. Some more examples are
shown in Table 1.8.

1.5 Prerequisite Knowledge to Learn Machine Learning 31

1.5.4.4.2 Ordinary and Partial Differential Equation
As discussed earlier, differential equations can have more than one variable.
When an equation consists of differentials with respect to one variable, it is an
ordinary differential equation (ODE). On the other hand, when the equation involves
differentials with respect to more than one variable, they are known as partial
differential equations (PDEs). The d symbol and . ∂ symbol are used for ordinary
differential and partial differential, respectively.

For example: . d
2y

dx2
+ dy

dx + 1 = 0 is an ODE and .
∂2y
∂x2

+ ∂y
∂x + 1 = 0 is a PDE.

1.5.4.4.3 Linear and Non-linear Equation
Equations can have both dependent and independent variables. These variables
can have higher powers depending on the type of equation. When differential
equations contain dependent variables with degree 1, they are considered linear
differential equations. On the other hand, if the differential equations contain
dependent variables with a higher degree, they are regarded as non-linear differential
equations.

For example, in the equation .
d2y
dx2

+ dy
dx

+1 = 0, the degree of the highest derivative

is 1. So it is a linear equation. Again, the equation .

(
dy
dx

)2 +x = 0 has 2 as its degree
of highest derivative. So is an example of a non-linear equation.

1.5.5 Numerical Analysis

Numerical analysis uses numerical approximation for mathematical analysis and
is a widely deployed tool in ML applications. This branch of mathematics uses
specific algorithms and relies on iterations of the algorithm to reach solutions
to mathematical problems. Numerical analysis primarily deals with and applies
specific algorithms to discrete numerical data. Some parts of numerical analysis,
such as function approximation, Fourier transform, numerical linear algebra tech-
niques, compressed sensing, numerical linear algebra, interpolation methods, and
optimization, are useful for ML. Without those sorts of tools, building anything
that will outperform a human is difficult. Support vector machines use convex
optimization, neural networks depend on gradient descent, and most machine
learning algorithms use some sort of numerical linear algebra, which is especially
important when they are applied to large datasets.

Two prominent methods of numerical analysis are described here with worked-
out examples—the Newton–Raphson method and the Gauss–Seidel method.

1.5.5.1 Newton–Raphson Method
Newton–Raphson method, also widely known as Newton’s method, is a commonly
used algorithm to find the root value of an equation. It successively approximates
the root on the foundation that a straight tangent line is used to approximate a

32 1 Introduction to Machine Learning

continuous and differentiable function. Thus, Newton’s method initially guesses a
value and starts the approximation from there.

A continuously differentiable function .f (x) is given, of which the root needs to
be determined. Let us say the initial guess for the root is .x = x0. According to the
Newton–Raphson method, the formula to approximate the first value of the root will
be

.x1 = x0 −
f (x0)
f

′
(x0)

, (1.17)

where . x1 is the first approximation root value, . x0 is the initial guessed root value,
.f (x0) is the function, and .f

′
(x0) is the first derivative.

For n successive iterations, the value for the next approximate root will be

.xn+1 = xn −
f (xn)
f

′
(xn)

, (1.18)

where .xn+1 is the next approximation root value, . xn is the current approximated
root value, .f (xn) is the function, and .f

′
(xn) is the first derivative.

In this way, the approximate roots are calculated iteratively until convergence is
reached, i.e., the same value of the approximate root is found at least twice. Then,
the last value of the approximate root will be the root of the given function. The
following example will demonstrate the use of the Newton–Raphson method for
solving equations.

Example 1.1 Find the root of the equation .x3 − 3x − 10 = 0 using the Newton–
Raphson method.

Solution to Example 1.1
Using Eq. 1.18, we get

. x(n+1) = xn −
f (xn)
f ′(xn))

; x(n+1) = xn −
x3
n − 3xn − 10
3x2

n − 3
,

where

. f (x) = x3 − 3x − 10,

f ′(x) = 3x2 − 3.
. Here, f (0) = −10, f (1) = −12,

f (2) = −8, f (3) = 8.

Here, .f (2) resulted a negative number, while .f (3) was positive. Any marginal
value is a good starting point, so starting with 2 or 3 is a viable option. In this
example, the initial value is .x0 = 3.

1.5 Prerequisite Knowledge to Learn Machine Learning 33

Let us start the iterations now:

. x1 = x0 −
x3
0 − 3x0 − 10
3x2

0 − 3
,

= 3 − 0.333333,

= 2.66667.

x2 = x1 −
x3
1 − 3x1 − 10
3x2

1 − 3
,

= 2.66667 − 0.0525253,

= 2.61414.

x3 = x2 −
x3
2 − 3x2 − 10
3x2

2 − 3
,

= 2.61414 − 0.00125285,

= 2.61289.

x4 = x3 −
x3
3 − 3x3 − 10
3x2

3 − 3
,

= 2.61289 − 7.04037 × 10−7,

= 2.61289.

x5 = x4 −
x3
4 − 3x4 − 10
3x2

4 − 3
,

= 2.61289 − 2.21923 × 10−13,

= 2.61289.

As two consecutive values of x are equal, the last value of x is considered the
equation’s root. So, the root of the given equation .x3−3x −10 = 0 is .x = 2.61289.

1.5.5.2 Gauss–Seidel Method
The Gauss–Seidel method, also known as the Liebmann method, is another popular
method for solving linear equations iteratively. This method is also widely known as
the successive displacement method, which derives from the fact that the subsequent
unknown is determined using the immediate previous unknown in the current
iteration. The set of linear equations should be arranged in a diagonally dominant
form.

34 1 Introduction to Machine Learning

Assume the following system of linear equations is given:

. a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2,

a31x1 + a32x2 + a33x3 = b3. (1.19)

For finding the root of the equations, the initial guess is started from
.(x1, x2, x3) = (0, 0, 0). Then, the given equations are reoriented according to
prominent variables in the equation. The initial guess is applied to each of the
equations for converging. After each iteration, the values of variables are updated
to reach convergence at an early rate. If the desired level of accuracy is met, the
iterations stop, resulting in the root of the equations.

Equation 1.19 can also be represented in matrix form as

.A =

⎡

⎣
a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤

⎦ . (1.20)

.X =

⎡

⎣
x1

x2

x3

⎤

⎦ . (1.21)

.B =

⎡

⎣
b1

b2

b3

⎤

⎦ . (1.22)

So the equation we get in matrix form is

.AX = B. (1.23)

Now, as the matrices A and B are known, the goal is to find the value of the matrix
X to find the solution to the system of linear equations. The following example
clearly demonstrates the process of solving a set of equations using the Gauss–
Seidel method.

Example 1.2 Obtain the solution of the following system using the Gauss–Seidel
iteration method.

.20x1 + x2 − 2x3 = 17,

3x1 + 20x2 − x3 = −18,

2x1 − 3x2 + 20x3 = 25.

1.5 Prerequisite Knowledge to Learn Machine Learning 35

Solution to Example 1.2
From the given equations, we can write

. xk+1
1 =

1

20

(
17 − xk

2 + 2xk
3

)
,

xk+1
2 =

1

20

(
− 18 − 3xk+1

1 + 2xk
3

)
,

xk+1
3 =

1

20

(
25 − 2xk+1

1 + 3xk+1
2

)
,

where k represents the number of iterations.
Initial guess .(x1, x2, x3) = (0, 0, 0).

. 1st Approximation

. x1
1 =

1

20

[
17 − (0) + 2(0)

]
= 0.85,

x1
2 =

1

20

[
− 18 − 3(0.85) + (0)

]
= −1.0275,

x1
3 =

1

20

[
25 − 2(0.85) + 3(−1.0275)

]
= 1.01088.

.2nd Approximation

. x2
1 =

1

20

[
17 − (−1.0275) + 2(1.01088)

]
= 1.00246,

x2
2 =

1

20

[
− 18 − 3(1.00246) + (1.01088)

]
= −0.99983,

x2
3 =

1

20

[
25 − 2(1.00246) + 3(−0.99983)

]
= 0.99978.

. 3rd Approximation

. x3
1 =

1

20

[
17 − (−0.99983) + 2(0.99978)

]
= 0.99997,

x3
2 =

1

20

[
− 18 − 3(0.99997) + (0.99978)

]
= −1.00001,

x3
3 =

1

20

[
25 − 2(0.99997) + 3(−1.00001)

]
= 1.

. 4th Approximation

.x4
1 =

1

20

[
17 − (−1.00001) + 2(1)

]
= 1,

36 1 Introduction to Machine Learning

x4
2 =

1

20

[
− 18 − 3(1) + (1)

]
= −1,

x4
3 =

1

20

[
25 − 2(1) + 3(−1)

]
= 1.

So, the solution to the given system of equations is .(x1, x2, x3) = (1,−1, 1).

1.5.6 Gradient Descent

A gradient is a vector that stores the partial derivatives of multi-variable functions,
and gradient descent is an optimization algorithm that helps to find the minima of
a differentiable function by repetitively moving along the direction of the steepest
descent determined by the negative gradient, as shown in Fig. 1.21.

The parameters of ML models must be constantly updated to decrease the cost
or error function to achieve the best possible result. This parameter update is made
using gradient descent. In addition, gradient descent provides directions (up–down
or positive–negative) for the update to be made. Chapter 2 discusses more on this
topic.

1.5.7 Activation Functions

An activation function is a deciding function that decides the weight of an input in
the output. These functions are frequently used in artificial neural networks and will
be explained in Chapter 3. To get more extensive insight into activation functions,
you can read this excellent paper by Nwankpa et al. [5], where they provide an in-
depth exposition of the different types of activation functions and present their usage
in deep learning and neural network applications.

1.5.8 Programming

Machine learning requires a beginner to be acquainted with basic programming
skills, with first-hand knowledge of data types, arrays, variables, functions, loops,

Fig. 1.21 Gradient descent
and minimum cost

1.5 Prerequisite Knowledge to Learn Machine Learning 37

conditional statements, etc. Furthermore, the algorithms for machine learning are
implemented through programming. Therefore, the algorithms can be made more
efficient with proficient programming skills and easily tweaked to solve different
problems.

1.5.8.1 Variables and Constants
A variable is used to contain information. This information can be of any type, such
as numbers, characters, text, logical values, or even an array. A variable has a name
to identify it. For example, we want to store the sum of two numbers as a variable.
We can name the variable as sum and assign it as the sum of the two numbers.

sum = 5+9

When we write this line in a program, the program will assign a blank memory
space to store the sum of 5 and 9.

Variables may be classified as global and local. Local variables are declared and
known only within a specific scope. For instance, it can be declared and used within
a function only. It cannot be used outside the function. The variable will be unknown
to the program outside its designated scope. On the other hand, a global variable is
known even outside the function.

Programming Example 1.1
The difference between global variables and local variables is shown in Listing 1.1,
followed by its output and explanation in Table 1.9. The code compares a global
variable to a local variable. A variable can be accessed depending on where the
variable is declared in the code. The code ends with an error, which is vital in
understanding which variable can be accessed and which cannot.

1 # Declaring global variable
2 globalvariable = 63
3

4 # Building a function
5 def insidescope():
6 localvariable = 63
7 print("Inside the scope: ")
8 print("This is global variable: ", globalvariable)
9 print("This is local variable: ", localvariable)

10 return localvariable
11

12 # Calling the function
13 insidescope()
14

15 # Printing the variables
16 print("Outside the scope: ")
17 print("This is global variable: ", globalvariable)
18 print("This is local variable: ", localvariable)

Listing 1.1 Example of global and local variables in Python

38 1 Introduction to Machine Learning

Table 1.9 Explanation of Listing 1.1

Line number Description

1–2 Creating global variable

4–10 Building a function to understand the scope of local variable

13 Calling the function

15–18 Printing the variables

18 Gives error “NameError: name ‘localvariable’ is not defined”

Output of Listing 1.1:

Inside the scope:
This is global variable: 63
This is local variable: 63
Outside the scope:
This is global variable: 63
NameError: name 'localvariable' is not defined

The global variable is valid throughout the program, but the local variable only
applies within the function. So, when the program was asked to print the local
variable outside the function, it returned an error.

A constant is a parameter with a pre-defined value that, unlike a variable, does not
change over time. It is initialized when it is declared. The values, such as the value
of pi and the acceleration due to gravity, are constants. To indicate that a variable is
constant, its name is usually written in uppercase letters.

1.5.8.1.1 Good Practices for Naming Variables
Variables are assigned definite names that are used to refer to the variables
throughout the scope of the variable. There are certain rules for naming the variables
in all programming languages. Some general rules for naming the variables in a
program are delineated below:

• A variable name cannot match a keyword. Keywords are a pre-defined set of
words in any programming language with special meanings. For example, the
name print cannot be used as a variable name because the word “print” is
a keyword. It refers to the command that tells a program to print something.
Different programming languages have different keywords that are unique to
them.

• The name cannot start with a numerical value. It should start with a letter or an
underscore. For example, 99names is an invalid name, but names99 and _names
are valid variable names.

• Variables are case-sensitive. This means that if we name a variable as sum, we
cannot use it interchangeably as Sum. The uppercase and lowercase letters must
be used consistently.

1.5 Prerequisite Knowledge to Learn Machine Learning 39

• The name of the variable should be relevant to the purpose of the variable. For
example, for storing the sum of five numbers, the preferred name of the variable
is sum or sum5, instead of a single character name such as s or a random name
or character such as x. The relevance of the variable name with its purpose helps
in understanding the code better.

In addition, there are many other naming conventions for variables.

1.5.8.2 Data Types
Data types refer to the type of data used in the programs. The data can range from
integer numbers, fractional numbers, characters or text, strings, Boolean or logical
arguments, and so on. Some common data types are as follows:

• int: This data type refers to integer values, such as 2, 19, 400, 50,000, etc.
• float: This data type implies fractional values, as well as integers. For example,

float may refer to 5.5, 22/7, 3.00, etc.
• str: This data type includes textual data and is commonly included within ‘ ’ or

“ ” marks. For example, ‘city’, ‘987-654-321’, and “This is a dummy line.” are
string data types.

• bool: This data type has only two values: true or false, also shown as 1 or 0.

Python programming language contains the following built-in data types:

1. Numeric: Numeric data are basically integers, floats, or complex numbers in
Python. All sorts of operations can be done on numeric data:

• Integer: Integers can range from negative to positive numbers without any
fractions, e.g., 25, 3, 985, etc.

• Floating Point Number: Floating point numbers represent fractional numbers,
e.g., 3.5, 22/7, etc.

• Complex Numbers: By definition, complex numbers have a real part and an
imaginary part, e.g., 2. +3j, . −3. −2j, etc.

2. String: Any character or text can be represented with strings. To use any
character or text as a string, they are declared using double quotes. Different
types of operations can be performed on strings, such as slicing, concatenation,
repetition, etc.

3. List: As the name suggests, a list contains more than one item. It can contain
different types of items together. A list is created using square brackets “[],”
where the items are kept using commas. A list can be modified after it is created.

4. Tuple: A tuple is like a list except that it cannot be modified once created.
Parentheses “()” are used to create tuples.

5. Set: A set keeps items in an unordered way; so, indexing for a set is not defined
the way it is defined for a list or tuple. Duplicate elements are not contained in
sets. Like tuples, sets cannot be modified either once created.

40 1 Introduction to Machine Learning

Table 1.10 Examples of
different data types

Example Data type

.a = 50 Integer

.a = 50.25 Float

.a = 5+2j Complex

. a =True Bool

.a = “hello world” String

.a = [4, 1, 6.3, “world”, 6+2j] List

.a = (4, 1, 6.3, “world”, 6+2j) Tuple

.a = {4, 1, 6.3, “world”, 6+2j} Set

.a = {1:4, 2:1, 3:6.3, 4:“world”, 5:6+2j} Dictionary

6. Dictionary: A dictionary also stores items in an unordered way, like sets, but
the user can define the index. To store elements in a dictionary, the user needs to
define both the value of the item and the index of the individual item. A dictionary
can be modified after it has been created.

7. Boolean: Boolean data consist of two values. It can be either “true” or “false.”

Table 1.10 demonstrates some examples of different data types.

1.5.8.3 Conditional Statements
Conditional statements execute an operation if a test condition is satisfied. They can
be primarily divided into three categories:

• If statement: It consists of only one “if condition.” The condition of the if state-
ment is checked. The respective block or operation is executed if the condition is
fulfilled. Otherwise, the respective block or operation is not executed.

if a % 2 == 0:
print("a is even")

Here, it is checked if the value of a is divisible by 2 or not. If a is divisible
by 2, then the statement print("a is even") is executed. Otherwise, the
statement is simply ignored.

• If...else statements: It also consists of only one “if condition." The condition of
the if statement is checked. If the condition is fulfilled, then the respective block
is executed. The difference here with the if statement is that if the condition is
not fulfilled, then the “else block” is executed.

if b % 2 == 0:
print("b is even")

else:
print("b is odd")

1.5 Prerequisite Knowledge to Learn Machine Learning 41

Here, it is checked if the value of b is divisible by 2 or not. If b is divisible
by 2, then the statement print("b is even") is executed. Otherwise, the
statement print("b is odd") is executed.

• If...elif...else statements: It consists of more than one condition. The conditions
are checked. The condition that is fulfilled first, the respective block under that
condition is executed. The “else block" is executed if no condition is fulfilled.

if a > b:
print("a is greater")

elif b > a:
print("b is greater")

else:
print("a and b are equal")

Here, it is checked that if the value of a is greater than the value of b,
then the statement print("a is greater") is executed. If the condition
is not fulfilled, then the next condition is checked: whether the value of b
is greater than the value of a. If this condition is fulfilled, the statement
print("b is greater") is executed. If this condition is also not fulfilled,
then the else statement is executed.

• Nested if statements: It may consist of one or more than one condition. The
difference here is that if one condition is fulfilled, it proceeds to check other
conditions under that particular condition. On the other hand, if that condition is
not fulfilled, the other conditions under that particular condition are not checked.

if a > b:
if a % 2 == 0:

print("a is greater and even")
else:

print("a is greater and odd")
elif b > a:

print("b is greater")
else:

print("a and b are equal")

Here, the first condition is checked, and if the value of a is greater than b, then it
proceeds to check the conditions whether a is divisible by 0 or not. On the other
hand, if the value of a is not greater than b, then the divisibility condition of a is
not checked.

Programming Example 1.2
A Python program demonstrating the use of conditional statements is given in
Listing 1.2 followed by its output and explanation in Table 1.11. The conditional
statements mostly participate in decision-making and performing checks on dif-
ferent requirements. The code shows the implementation of different conditional
statements using two variables, a and b. The code uses normal and nested
conditional statements to determine whether a and b are even or odd and greater
or smaller in value.

42 1 Introduction to Machine Learning

1 a = 40
2 b = 13
3

4 if a % 2 == 0:
5 print("a is even")
6

7 if b % 2 == 0:
8 print("b is even")
9 else:

10 print("b is odd")
11

12 if a > b:
13 print("a is greater")
14 elif b > a:
15 print("b is greater")
16 else:
17 print("a and b are equal")
18

19 if a > b:
20 if a % 2 == 0:
21 print("a is greater and even")
22 else:
23 print("a is greater and odd")
24 elif b > a:
25 print("b is greater")
26 else:
27 print("a and b are equal")

Listing 1.2 Example of conditional statements using Python

Output of Listing 1.2:

a is even
b is odd
a is greater
a is greater and even

1.5.8.4 Loops
Loops are used for repetitive tasks. A loop statement is executed when a certain
operation has to be performed repeatedly until a specified condition is satisfied.
Figure 1.22 demonstrates structures of different types of loops. There are three main
types of loops—for loop, while loop, and do...while loop:

Table 1.11 Explanation of
Listing 1.2

Line number Description

1–2 Creating two integer variables

4–5 If statement

7–10 If...else statement

12–17 If...elif...else statement

19–27 Nested if statement

1.5 Prerequisite Knowledge to Learn Machine Learning 43

Initialization expression

for loop body

Update expression

Loop terminates

(a) for loop

while loop body

Loop terminates

(b) while loop

True

do...while loop body

Loop terminates

(c) do … while loop

True

False

True

False

False

Fig. 1.22 Three types of loops: for loop, while loop, and do...while loop

1. For loop: The “for loop" consists of a condition and an execution body. The
loop executes the body for a pre-defined number of iterations and simultaneously
checks for the validity of the condition. The loop continues as long as it finds the
condition valid or until a pre-defined number of iterations.
Say an array of colors is given:
colors = ['red', 'black', 'orange', 'blue', 'pink'].
Using for loop, the colors in the array colors can be accessed as:

for color in colors:
print(color)

Here, the variable “color" iterates through the data sequentially in the array
colors.
Another function, range(), can be used to access the data using for loop. The
parameters for the range() function are range(start, stop, step).
The parameters used in range() are:

• start—It specifies the initial index for the loop to start iterating. If not
specified, the default value for “start" is 0.

44 1 Introduction to Machine Learning

• stop—The value for “stop" has to be specified; it is not optional. The loop
iterates till the stop value (excluding it).

• step—It specifies the incremental step for the loop. If not specified, the
default value for “step" is 1.

Some examples of range() are explained below:

• range(6): For loop will initiate from 0 and iterate for all values to 5 (six
places less than 6).

• range(1, 6): For loop will initiate from 1 and iterate for all values to 5.
This one is also up to less than 6.

• range(0, 6, 2): For loop will initiate from 0 and will increment and
iterate at an increment of 2 steps to output the values (0, 2, 4). This one is also
up to less than 6.

2. While loop: The “while loop" also consists of a condition and an execution
block. The number of iterations for the “while loop" is not pre-defined. The while
loop will keep executing its execution block as long as the condition is valid.
Once the condition is not fulfilled, the loop stops its execution. Here, the iteration
number is incremented in the execution block.

i=0
while i < 5:

print(i)
i += 1

The initialization has to be made before the execution of the loop. The loop will
keep executing as long as the value of i is less than 5.

3. Do...while loop: In a “do...while loop," the execution block is executed first,
the iteration number is incremented, and then the condition is checked. If the
condition is not fulfilled, the loop stops there. Otherwise, it proceeds with its
execution. In a “while loop", the condition is checked at first, but in a “do...while
loop," the condition is checked last.

Another special type of loop, known as the nested loop, involves one loop inside
another loop. This loop is used when there are more than one condition to be
satisfied.

Programming Example 1.3
A Python program demonstrating the use of conditional statements is given in
Listing 1.3 followed by its output and explanation in Table 1.12. The listing uses
two lists named colors and shapes to demonstrate the use of different types of
loops as well as conditional statements.

1.5 Prerequisite Knowledge to Learn Machine Learning 45

1 colors = ['red', 'black', 'orange', 'blue', 'pink']
2 shapes = ['circle', 'square', 'triangle']
3

4 for color in colors:
5 print(color)
6 print("---------------")
7

8 for color in colors:
9 if color == 'orange':

10 break
11 print(color)
12 print("---------------")
13

14 for color in colors:
15 if color == 'orange':
16 continue
17 print(color)
18 print("---------------")
19

20 for color in colors:
21 for shape in shapes:
22 print(color, shape)
23 print("---------------")
24

25 for a in range(5):
26 print(a)
27 print("---------------")
28

29 for a in range(1,5):
30 print(a)
31 print("---------------")
32

33 for a in range(1,6,2):
34 print(a)
35 print("---------------")
36

37 i = 0
38 while i < 5:
39 print(i)
40 i += 1

Listing 1.3 Example of looping operations using Python

Output of Listing 1.3:

red
black
orange
blue
pink

red
black

46 1 Introduction to Machine Learning

red
black
blue
pink

red circle
red square
red triangle
black circle
black square
black triangle
orange circle
orange square
orange triangle
blue circle
blue square
blue triangle
pink circle
pink square
pink triangle

0
1
2
3
4

1
2
3
4

1
3
5

0
1
2
3
4

1.5.8.5 Array
Array is a type of data structure that can store the same type of data in sequential
order. In Python, lists are used to implement arrays. Different types of operations
can be performed on arrays, such as traversing, inserting, deleting, etc. The indexing
in arrays starts from zero as shown in Fig. 1.23.

1.5 Prerequisite Knowledge to Learn Machine Learning 47

Table 1.12 Explanation of Listing 1.3

Line number Description

1–2 Creating two lists

4–6 Looping through all the elements

8–12 Breaking at color orange

14–18 Skipping color orange

20–23 Nested loop

25–27 Printing from 0 to 4

29–31 Printing from 1 to 4

33–35 Printing from 1 to 5, incrementing the value of “a" by 2

37–40 While loop

Fig. 1.23 Representation of
array in programming
languages

0 1 2 3 4 5 6 7 8 90 1 2 3 4 5 6 7 8 9

Array length is 10

First index

Element

(at index 8)

Indices

Programming Example 1.4
A Python program demonstrating the use of different operations on an array is given
in Listing 1.4 followed by its output and explanation in Table 1.13. An array named
colors is utilized in the listing to demonstrate how array elements can be accessed
one at a time. Again, it shows the process of looping through the array to update,
append, remove, and perform some other tasks.

1 # creating a list/array
2 colors = ['red', 'black', 'orange', 'blue']
3

4 # Accessing array elements
5 print("The first color in the array is", colors[0]) ## red
6 print("The second color in the array is", colors[1]) ## black
7

8 # looping through all the elements in the array
9 for color in colors:

10 print(color) ## red, black, orange, blue
11

12 # Slicing
13 print(colors[1:3]) ## ['black', 'orange']
14 print(colors[0:4]) ## ['red', 'black', 'orange', 'blue']
15 print("---------------")
16

17 # Updating
18 colors[2] = 'green'
19 for color in colors:

48 1 Introduction to Machine Learning

20 print(color) ## red, black, green, blue
21 print("---------------")
22

23 colors.append('pink')
24 for color in colors:
25 print(color) ## red, black, green, blue, pink
26 print("---------------")
27

28 colors.insert(3, 'yellow')
29 for color in colors:
30 print(color) ## red, black, green, yellow, blue, pink
31 print("---------------")
32

33 # Delete
34 colors.remove("pink")
35 for color in colors:
36 print(color) ## red, black, green, yellow, blue
37 print("---------------")
38

39 colors.pop(2)
40 for color in colors:
41 print(color) ## red, black, yellow, blue

Listing 1.4 Example of different operations performed on an array in Python

Output of Listing 1.4:

The first color in the array is red
The second color in the array is black
red
black
orange
blue
['black', 'orange']
['red', 'black', 'orange', 'blue']

red
black
green
blue

red
black
green
blue
pink

red
black
green
yellow
blue
pink

1.5 Prerequisite Knowledge to Learn Machine Learning 49

red
black
green
yellow
blue

red
black
yellow
blue

Table 1.13 Explanation of Listing 1.4

Line number Description

1 Creating array

4–6 Accessing one element from at a specific index

9–10 Accessing all the elements from the array

12–15 Accessing elements in the range from beginning to end-1

17–21 Updating the value at a certain index

23–26 Adding an element at the end of an array

28–31 Inserting an element at a specific index

33–37 Removing an element from the array without concern for the index

39–41 Removing element at certain index

1.5.8.6 Vector
Vector was introduced in this chapter earlier in section “Vector". In this section, we
will see the different kinds of arithmetic operations that can be performed on vectors
using Python. In machine learning, these operations come in handy.

Programming Example 1.5
A Python program demonstrating the use of different arithmetic operations on a
vector is given in Listing 1.5 followed by its output and explanation in Table 1.14.
The code showcases methods of creating vectors. Different arithmetic operations
between two vectors are also discussed in the code.

1 # importing numpy library
2 import numpy as np
3

4 # creating row vectors
5 a = np.array([2, 4, 6])
6 print("Row vector a: ",a)
7 b = np.array([1, 2, 3])
8 print("Row vector b: ",b)
9

10 # creating column vectors

50 1 Introduction to Machine Learning

11 s = np.array([[2],
12 [4],
13 [6]])
14 print("Column vector s: ",s)
15 t = np.array([[1],
16 [2],
17 [3]])
18 print("Column vector t: ",t)
19

20 # addition
21 c = a + b
22 print("Addition: ",c)
23

24 # substraction
25 d = a - b
26 print("Substraction: ",d)
27

28 # mutiplication
29 e = a * b
30 print("Multiplication: ",e)
31

32 # division
33 f = a / b
34 print("Division: ",f)
35

36 # dot product
37 g = a.dot(b)
38 print("Dot product: ",g)
39

40 # scalar multiplication
41 h = 0.5 * a
42 print("Scalar multiplication", h)

Listing 1.5 Example of arithmetic operations performed on vectors using Python

Output of Listing 1.5:

Row vector a: [2 4 6]
Row vector b: [1 2 3]
Column vector s: [[2]
[4]
[6]]

Column vector t: [[1]
[2]
[3]]

Addition: [3 6 9]
Substraction: [1 2 3]
Multiplication: [2 8 18]
Division: [2. 2. 2.]
Dot product: 28
Scalar multiplication [1. 2. 3.]

1.5 Prerequisite Knowledge to Learn Machine Learning 51

Table 1.14 Explanation of Listing 1.5

Line number Description

2 Importing NumPy library

4–8 Creating, printing row vectors

10–18 Creating, printing column vectors

20–22 Addition of vectors a and b

20–22 Subtraction of vectors a and b

24–26 Addition of vectors a and b

28–30 Multiplication of vectors a and b

32–34 Division of vectors a and b

36–38 Dot products of vectors a and b

40–42 Scalar multiplication with vector a

1.5.8.7 Functions
Functions are self-sufficient lines of code that can execute a specific action. They
are comparable to a black box that can take some arguments as input, perform an
operation using the inputs, and return an output. The function can be called from the
main program or other functions and can be used repeatedly.

Suppose we are to create a function named mean that can find the arithmetic
mean of a set of numbers. After writing the instructions for the function, we only
need to feed the function with a dataset whose mean will be determined. Then,
the function is executed, and the arithmetic mean of the input dataset is obtained.
Whenever we need to find the arithmetic mean in any place within the program,
we only need to call the function mean, and we can get the result within a moment
without having to write the same instructions over and over again. Thus, the use
of functions saves time and minimizes the necessary lines of code by adding the
reusability feature within the code.

The syntax for a function in Python is given below:

def "user defined function name" (parameters):
function block
return variables

The function block is initiated with the syntax def. Here, the name of the
function is defined by the users. The naming of the function follows the same
conventions of naming variables. The parameters or list of parameters are defined
in parentheses. In the function block, the code is written, which is to be performed
by the function. Python is sensitive to indentation. So, the spacing in lines should
be constantly checked while coding in Python. The statement return ends the
definition of the function and returns whatever the user defines to be returned. The
function ends at its last line without returning value if the return statement is not
given.

52 1 Introduction to Machine Learning

Programming Example 1.6
A Python program demonstrating a function for finding the arithmetic mean is
given in Listing 1.6 followed by its output and explanation in Table 1.15. The code
declares a user-defined function to find out the arithmetic mean of a list of numbers.

1 #defining function
2 def calculate_mean1(list):
3 a = len(list)
4 sum = 0
5 for i in list:
6 sum += i
7 result1 = sum / a
8 return result1
9

10 def calculate_mean2(list):
11 a = len(list)
12 sum = 0
13 for i in list:
14 sum += i
15 result2 = sum / a
16 print("The mean calculated from the second function: ", result2

)
17

18 list_of_numbers = [1, 2, 3, 4, 5, 6]
19 result = calculate_mean1(list_of_numbers)
20 print("The mean calculated from the first function: ", result)
21 calculate_mean2(list_of_numbers)

Listing 1.6 Example of a user-defined function to estimate the mean of a list of numbers using
Python

Output of Listing 1.6:

The mean calculated from the first function: 3.5
The mean calculated from the second function: 3.5

Table 1.15 Explanation of Listing 1.6

Line number Description

2–8 Defining a function that returns the value of the result

10–16 Defining a function that does not return any value

18 The list of numbers of which mean has to be calculated

19–20 Calling the first function and printing the result

21 Calling the second function

1.6 Programming Languages and Associated Tools 53

1.6 Programming Languages and Associated Tools

Python and R are the two most highly used programming languages for developing
ML programs. In addition, several other languages, such as Julia, Java, Javascript,
LISP (List Processing), C++, C, PHP, etc., are used by ML professionals. No
language can be selected as the best among these languages since each has distinct
features, packages, built-in libraries, and other attributes, making them suitable for
several tasks. It is mostly about preference rather than being the best programming
language. Someone skilled at Python will choose to use Python over the other
languages no matter what benefits the other languages may accrue. Table 1.16 enlists
four programming languages and provides a comparative view of their key features
to be considered in the field of ML.

1.6.1 Why Python?

Python will be used as the only programming language in all examples of this book
due to its ease of use, popularity, and the large, friendly, helpful, and interactive
community Python encompasses. It is open-source, highly used in academic and
research-based works, and is recommended by experts in almost every field. It is
very efficient in terms of the amount of code needed to be written. The short,
simple lines of Python code with obvious implications can be easily handled by
beginners and are easy to read, debug, and expand. Python is also a cross-platform
programming language, implying that it can run well on all operating systems and
computers.

Python has often been nicknamed the Swiss army knife of programming lan-
guages because of its versatile nature and a wide range of functionalities. It contains
many packages that can cater to almost all possible applications.

Table 1.16 Comparison of different programming languages. Python and R are most commonly
used for machine learning applications

Features Python R Java C++

Learning curve Smooth Steep Smooth Smooth

Packages/ libraries A lot Moderate Moderate A few

Syntax/code readability Easy Easy Moderate Moderate

Built-in ML techniques A few A lot Moderate Moderate

Performance on repetitive
tasks

Better Moderate Moderate Moderate

Mostly used by Data scientist/
engineers

Data analyst/
statistician

Developer Embedded computer
hardware

54 1 Introduction to Machine Learning

1.6.2 Installation

Machine learning problems are implemented using different algorithms based on
the problem type. The implementation of these algorithms can be very lengthy and
time-consuming. Frameworks and libraries are used to make the implementation of
the algorithms easier.

Libraries consist of written codes of different functions and operations that users
can reuse. Frameworks also consist of written codes of different functions and
operations, plus they consist of other tools and necessary stuff for the application.
Frameworks provide a skeleton for the developers to work with. Libraries and
frameworks save developers from many complex implementations and save time
from writing the same code repeatedly. There are different types of libraries to
deal with different things. For example, we have text processing libraries, graphics
libraries, data manipulation, and scientific computation. The most used ML libraries
are NumPy, Pandas, Scipy, Theano, Keras, Scikit-learn, Matplotlib, etc., while the
most common frameworks are PyTorch and TensorFlow.

An integrated development environment (IDE) is used as an environment to write
and compile the codes. An IDE contains a source code editor, compiler, debugger,
etc. For our purpose, we will be using Spyder and Jupyter Notebook. These IDEs
already contain many ML libraries required. Anaconda software will be used to
install Spyder and Jupyter Notebook.

1.6.3 Creating the Environment

Before experiencing problem solving using ML, we first need to create the necessary
environment for implementing and running the codes. Next, we will need to install
the necessary software for writing codes and running them. Finally, we will need
to install the necessary frameworks and libraries after installing and setting up the
software. The installation process is discussed step by step in the following sections.

1.6.3.1 Creating the Environment in Windows
1.6.3.1.1 Installing Python
We will be working with Python3. To download Python3, go to https://www.python.
org/downloads/ and download the latest version shown for Windows. To check
that Python3 has been successfully installed, run the following command on the
command prompt as shown in Fig. 1.24.

1.6.3.1.2 Installing Anaconda
Download Anaconda navigator from https://www.anaconda.com/products/
individual. The installation screen should look like the steps shown in Fig. 1.25.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual

1.6 Programming Languages and Associated Tools 55

Fig. 1.24 Checking Python version on command prompt

1.6.3.2 Creating the Environment in MacOS
1.6.3.2.1 Installing Python
Go to https://www.python.org/downloads/ and download the latest version that is
shown for MacOS. The Python version can be checked following Fig. 1.26. To
check that Python3 has been successfully installed, run the following command on
terminal:

python3 --version

1.6.3.2.2 Installing Anaconda
Download Anaconda navigator from https://www.anaconda.com/products/
individual. The installation screen should resemble Fig. 1.27.

Install and launch Jupiter notebook and Spyder IDE from the screen shown in
Fig. 1.28.

1.6.3.3 Installing Necessary Libraries
To use the TensorFlow library, we need to create the environment and install the
necessary libraries within that environment. To create a TensorFlow environment
named “test," run the following command in the terminal:

conda create -n test tensorflow

Now to install the necessary libraries inside this environment, at first, we need
to activate the environment “test." To do this, run the following commands on the
terminal:

conda activate test
pip3 install NumPy
pip3 install panda
pip3 install script
pip3 install matplotlib

Jupyter Notebook and Spyder IDE need to be installed for each environment. The
way to access applications in the desired environment is shown in Figs. 1.29, 1.30,
and 1.31.

https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.python.org/downloads/
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual
https://www.anaconda.com/products/individual

56 1 Introduction to Machine Learning

Fig. 1.25 The six steps of Anaconda installation in Windows OS. (a) Step 1 of Anaconda
installation. (b) Step 2 of Anaconda installation. (c) Step 3 of Anaconda installation. (d) Step 4
of Anaconda installation. (e) Step 5 of Anaconda installation. (f) Step 6 of Anaconda installation

1.6 Programming Languages and Associated Tools 57

Fig. 1.25 (continued)

58 1 Introduction to Machine Learning

Fig. 1.25 (continued)

1.6 Programming Languages and Associated Tools 59

Fig. 1.26 Checking Python version on terminal on macOS

Fig. 1.27 Installing Anaconda in macOS

To install the PyTorch framework on Windows, run the following command on
the Anaconda prompt.

conda install pytorch torchvision torchaudio cpuonly
-c pytorch

To install the PyTorch framework on MacOS, run the following command on the
terminal.

conda install pytorch torchvision -c pytorch
pip3 install torch torchvision

Besides, Google Colab offers a cloud-based solution for Python notebooks free
of cost. It even offers free graphics processing unit (GPU) access for hardware
acceleration with some limitations. Additional computing power can be accessed

60 1 Introduction to Machine Learning

Fi
g
.
1
.2
8

A
na
co
nd
a
N
av
ig
at
or
 s
cr
ee
n
on
 m

ac
O
S

1.7 Applications of Machine Learning 61

Fig. 1.29 Jupyter Notebook on macOS

through a paid subscription. Another good online platform for online machine
learning practice is Kaggle. It provides a large collection of open-source datasets
and cloud-based computing resources (CPU—Central Processing Unit, GPU, and
TPU—Tensor Processing Unit) free of cost. Users can also participate in various
machine learning competitions and engage in community discussion through the
Kaggle platform.

1.7 Applications of Machine Learning

Machine learning is ubiquitous today in the twenty-first century. It can be applied in
all domains of science and engineering. The expanse ofML is so vast that even if one
is not directly using it, one needs to have an understanding of ML to study the works
of others. It is an all-pervading tool in engineering research and development. ML is
a versatile field of science, finding applications not only in engineering problems but
also in computer science, economics, business analytics, marketing, finances, social
networks, travel and hospitality management, and so on. This book is intended for
engineers, so only some engineering applications of ML are explored in detail in
this section:

• Data Analysis: Data analysis is an obvious application of ML. With large
datasets, manual effort is simply pointless, ineffective, and prone to errors, not
to mention the monotony of the work. ML algorithms can efficaciously handle
large datasets, analyze them, detect patterns, and produce the intended results.

• Signal and Image Processing: The role of ML is unparalleled in the case of
image recognition, classification, editing, and processing.

• Spam Filter: The spam folder in your email inbox is one of the most highly
cited applications of ML. By analyzing patterns of spam mail encountered by
the users, ML algorithms detect spam mail and directly send them to the spam
folder.

• Fraud detection: When human detection falls short, the superior power of ML
helps to detect fraudulent activities very efficiently.

62 1 Introduction to Machine Learning

Fi
g
.
1
.3
0

Sp

yd
er
 I
D
E
 o
n
m
ac
O
S

1.7 Applications of Machine Learning 63

Fi
g
.
1
.3
1

In
st
al
la
tio

n
of
 J
up
yt
er
 N
ot
eb
oo
k
an
d
Sp

yd
er
 I
D
E
 f
or
 e
ac
h
en
vi
ro
nm

en
t o

n
m
ac
O
S

64 1 Introduction to Machine Learning

• Healthcare system: ML applications are not strictly limited to mathematics
and engineering but also pervade in biomedical systems, particularly for disease
identification through symptom analysis.

• Clustering or Segmentation: Clustering or segmenting similar groups of data
is a prominent type of unsupervised ML technique. From any random dataset,
an unsupervised ML algorithm can easily detect patterns and cluster data points
based on its observations.

• Robotics: Artificial intelligence lies at the heart of modern robotics. ML is so
intricately involved with the field of robotics that a new branch named robot
learning has emerged that involves a robot gathering experiences and adapting
to its environment using ML algorithms.

• Forecasting: ML is highly used in forecasting the weather, predicting natural
disasters, and electrical load or demand forecasting in power systems. The long-
term climate patterns can also be predicted using ML algorithms.

• Simulation: Simulations are used to run tests and predict probabilities of certain
aspects using a well-established model. ML can be combined with simulation to
achieve more remarkable results and solve many problems. ML can be applied to
the input data before feeding it to the simulation or during the simulation process.
It can even be applied to the output after the simulation is processed.

• Control systems: ML has deeply penetrated the world of control systems to such
an extent that a sub-field of ML is known as machine learning control, which
deals with optimal control problems using ML algorithms. These control systems
can be implemented in electric power systems, air conditioning and refrigeration
systems, satellite systems, navigation of deep water vessels, robotics, and so on.

• Natural Language Processing (NLP): ML has widespread applications in NLP,
where information is extracted from human speech or text, and actions are taken
accordingly. For example, you texted a friend saying that you were going to
buy a new phone. Your data are recorded and processed immediately. The cross-
app connectivity will make phone ads appear on your apps, such as Facebook,
YouTube, and even your browser. This is an example of NLP, and it utilizes
ML algorithms for analyzing the text. Besides digital advertising, NLP finds
applications in translating languages, making chatbots, personal assistants like
Siri and Alexa, sentiment analysis, auto-correct in text applications, and many
more. It would be folly not to mention the breakthrough technology called Chat
GPT at this point. Chat Generative Pre-trained Transformer (Chat GPT) is an
AI chatbot developed by OpenAI. It is an NLP tool that uses ML algorithms to
generate text responses based on input text prompts.

• Computer Vision: Computer vision is the technology that enables computers
and other machines to be able to see and glean information as we do. Deep
learning is necessary for computer vision applications. This technology is
inextricably used in self-driving cars, facial recognition systems, image searches
on search engines, captcha codes, security and protection systems, and so on.

• Cybersecurity: ML has widespread applications in ensuring the security of
wireless networks. Network intrusion detection and prevention systems are built
using ML algorithms.

1.8 Conclusion 65

• Holography: ML, particularly deep learning, is used for generating digital
holograms, which are used for securely storing vital information.

• Power System: Load forecasting is a key function in all operational power
systems. ML techniques can be used to forecast load demand, detect faulty con-
ditions, predict overloads, clear faults, control interconnected systems, control
switching operations, and so on.

• Power Electronics: Power electronics can be benefited from ML in the design,
control, and maintenance stages. Design optimization of power electronics
devices, intelligent controller design and application, anomaly detection in
inverter signal, and remaining useful life prediction of supercapacitors—ML
techniques contribute to all of these. With the application of ML, self-aware and
self-adaptive power electronic solutions can be developed.

• Agriculture: Although agriculture is one of mankind’s oldest practices, modern
science and technology have revolutionized agricultural tools and techniques
worldwide. The world has entered into the era of digital agriculture, also known
as smart farming, which combines the magic of ML, AI, and data science with
a touch of other technologies. ML can be used for crop management, prediction,
and estimation of farming parameters to optimize the economic efficiency of
livestock production systems, such as cattle and egg production.

• Manufacturing and automation: Industrial manufacturing processes require
several cascaded, automated machines that can run efficiently and deliver the
right products at the right time. ML can also help in the automation process and
in maintenance and monitoring.

• Game Development: Modern game development scenario has heavy machine
learning application. From environmental elements generation, improved non-
playable character (NPC) intelligence, and environmental responsiveness
improvement to high-end game playability at a higher framerate—ML has
significantly improved many aspects of modern game development and overall
gaming experience.

1.8 Conclusion

This chapter intends to introduce readers to the amazing and versatile world of
Machine Learning. Understandably, the complex math involved might overwhelm
beginners at this stage, but that is okay. Once you get the hang of it, ML will not
seem so complicated anymore. This chapter assumes that a reader knows nothing
about machine learning but is keen to learn the fundamentals. Accordingly, the basic
idea and workflow, the technical terminologies, the prerequisite knowledge, and
the diverse applications of machine learning are explored in depth in this chapter.
Hopefully, by the end of this chapter, you have a fair understanding of what machine
learning is all about. We will enter into the details in the next chapter. In the next
chapter, we will learn about the different criteria for evaluating and selecting models.

66 1 Introduction to Machine Learning

1.9 Key Messages from This Chapter

• Machine learning is required to achieve remarkable applications in daily lives in
the data-driven world.

• The four stages in a typical machine learning workflow are dataset collection,
data preprocessing, model training, and model evaluation.

• Basic mathematics, statistics, and programming knowledge is required to imple-
ment and understand machine learning concepts.

• Python and R programming languages are widely used to implement machine
learning algorithms. We will use Python in this book.

• The basics of Python programming can be learned through practice, which will
be beneficial to implementing machine learning algorithms efficiently.

• Machine learning applications have significantly made living standards easier in
all sectors, from healthcare, security, and entertainment to business, agriculture,
and engineering.

1.10 Exercise

1. Define artificial intelligence and machine learning. Why do we need them?
2. Describe the basic workflow of a machine learning algorithm.
3. What is meant by optimization?
4. Define and distinguish between each set of the following terms:

(a) Objective function, cost function, lost function
(b) Algorithm, model, technique
(c) Data science, machine learning, artificial intelligence, deep learning
(d) Tensor, vector, matrix
(e) Rank, dimension
(f) Mean, median, mode
(g) Global variable, local variable

5. What are the benefits of the Python programming language?
6. What are the applications of machine learning in electrical engineering?
7. Give some programming examples using loop and if statements such as:

(a) Given an array, check whether the sum of any two numbers in the array
equals a target sum. If yes, output 1, and if not, output 0.

(b) Print the Fibonacci series up to a pre-defined n number.
(c) Say you have an array with increasing and decreasing sequences. Find

the highest peak in that array. For example, in the array [1, 2, 3, 2, 0], the
third element is the highest in value, i.e., the peak. Similarly, in the array
[−1, −2,−100, 99, 98, 97], the fourth element is the peak.

1.10 Exercise 67

8. A list of marks obtained by twenty students in an exam is given: [70, 67, 56, 90,
78, 68, 87, 89, 87, 85, 86, 76, 75, 69, 74, 74, 84, 83, 77, 88]. Now, write three
different functions in Python to determine the following:
(a) The mean() to calculate the mean mark.
(b) The maxmin() to find the highest and the lowest mark.
(c) The std_dev() to calculate the standard deviation.
(d) Repeat the above three steps using NumPy library functions.

9. Find the output of the following code:

1 bands = ['Linkin Park', 'System Of A Down', 'Metallica', '
Megadeth', 'Evanescence', 'Poets of the Fall']

2

3 print("My favourite bands are: ")
4 for band in bands:
5 if band == 'Megadeth':
6 continue
7 print(band)
8

9 bands[3] = 'Imagine Dragons'
10

11 print("Now the list of my favourite bands are: ")
12 for band in bands:
13 print(band)
14

10. Perform matrix multiplication on the following matrix pairs both mathemati-
cally and using Python:

(a) A =
[
1 4
7 8

]
, B =

[
2 9
11 16

]
.

(b) A =

⎡

⎣
1 3 5
2 4 6
1 3 5

⎤

⎦ , B =

⎡

⎣
8 10 12
5 10 15
1 2 3

⎤

⎦.

(c) A =

⎡

⎣
1 3 5
2 4 6
1 3 5

⎤

⎦ , B =

⎡

⎣
1 9
7 6
4 3

⎤

⎦.

11. Write a function in Python that calculates the square of a matrix. The code
should take the following as inputs from the user:
(a) The dimension of the matrix, and
(b) The matrix values
Sample Input:
Dimension: 2

Matrix:

[
1 2
3 4

]

Sample Output:
[
7 10
15 22

]

68 1 Introduction to Machine Learning

12. For the following matrices, determine A × B and B × A using Python. Print
“Matrix multiplication is invalid!" if the multiplication operation cannot be
performed:

(a) A =
[

0.5 0.8
−0.96 1.1

]
, B =

[−0.5 0.5
0.5 0.5

]
.

(b) A =

⎡

⎣
0.1 0.56 0.38
0.77 0.1 −0.87
0.84 −0.91 0.1

⎤

⎦ , B =

⎡

⎣
0.25 −0.33 0.65 1.13

−0.68 0.34 1 −0.98
−0.33 1.63 0.47 −0.44

⎤

⎦.

13. Matrix A =

⎡

⎣
1 2 3
4 5 6
7 8 9

⎤

⎦, Matrix B =

⎡

⎣
2 0 0
0 2 0
0 0 2

⎤

⎦, Output =

⎡

⎣
2 4 6
8 10 12
14 16 19

⎤

⎦.

A sample code for multiplying Matrix A and Matrix B is provided below.
Find the syntax and logical errors in the code to give the given output.

1 matrixA = [[1,2,3] [4,5,6] [7,8,9]]
2 matrixB = [[2 0 0], [0 2 0], [0 0 2]]
3 Output = [[0,0,0], [0,0,0], [0,0,0]]
4

5 for i in range(0,2):
6 for j in range(3):
7 sum = 0
8 for k in range(3):
9 sum += matrixA[j][k] * matrixB[k][j]

10 result[j][i] = sum
11

12 print(Output)
13

References

1. Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development, 3, 210–229.

2. Mitchell, T. M. (1997). Machine learning. McGraw-Hill.
3. McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133.
4. Deisenroth, M. P., Faisal, A. A., & Ong, C. S. (2020). Mathematics for machine learning.

Cambridge University Press.
5. Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation functions:

Comparison of trends in practice and research for deep learning. Preprint arXiv:1811.03378.

2Evaluation Criteria and Model Selection

2.1 Introduction

When a building is built, it demands much more than just bricks and cement. Solid
planning and analytical studies are followed by a rough sketch, simulations, editing,
and many other stages before the foundation is set. Similarly, machine learning
(ML) is not only about algorithms and models, but it also requires testing the
models, choosing the suitable algorithm, observing the performance, minimizing
the errors, optimizing the model, and many other criteria. A crucial step in the
ML workflow is appropriate model selection, and this process depends on various
evaluation criteria. In common practice, the ML model is selected by comparing
different potential model candidates for a given task. This comparison is based on
pre-defined criteria, which differ from task to task. The success of an ML-based
solution for a particular application depends on finding the best possible ML model.
So, choosing the appropriate evaluation criteria is of paramount importance. In this
chapter, we are going to study the evaluation criteria for an ML model and know
why they are important. Moreover, we shall also discuss the process of choosing
an ML algorithm for creating a model and the key factors to be analyzed before
choosing an algorithm.

2.2 Error Criteria

The concept of errors and the different types of errors have been introduced in
Sect. 1.5.2.6 in Chap. 1. Error criteria or loss function is required in machine
learning to evaluate model performance. Generally, a small value of error is desired.
This small error value can sometimes be overlooked because it has an insignificant
effect on model performance and produces almost accurate results. This small
error value varies based on each specific problem and application. However, this
negligible value is different for all problems. For example, a negligible error value

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
E. Hossain, Machine Learning Crash Course for Engineers,
https://doi.org/10.1007/978-3-031-46990-9_2

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46990-9protect T1	extunderscore 2&domain=pdf
https://doi.org/10.1007/978-3-031-46990-9_2
https://doi.org/10.1007/978-3-031-46990-9_2
https://doi.org/10.1007/978-3-031-46990-9_2
https://doi.org/10.1007/978-3-031-46990-9_2
https://doi.org/10.1007/978-3-031-46990-9_2
https://doi.org/10.1007/978-3-031-46990-9_2
https://doi.org/10.1007/978-3-031-46990-9_2
https://doi.org/10.1007/978-3-031-46990-9_2
https://doi.org/10.1007/978-3-031-46990-9_2
https://doi.org/10.1007/978-3-031-46990-9_2
https://doi.org/10.1007/978-3-031-46990-9_2

70 2 Evaluation Criteria and Model Selection

for house price prediction may be equivalent to a significant error for medical data
prediction. In the following sections, we will discuss four types of errors and three
types of loss functions in greater detail.

2.2.1 MSE

The mean squared error (MSE) is calculated by taking the mean of the sum of the
square of the difference (error) between the actual value and predicted value of all
data points. The MSE is also called average squared error. MSE is sensitive to
outliers.

Suppose the total number of data points in a sample is n. The output form of the
ML model for the ith data point is . y(i), and the actual value is . ŷ(i); then the MSE is
calculated as shown in Eq. 2.1:

.MSE = 1

n

nE

i=1

(
y(i) − ŷ(i)

)2
. (2.1)

2.2.2 RMSE

As the name implies, the root mean squared error (RMSE) is defined as the square
root of the MSE. So, Eq. 2.2 calculates the RMSE from Eq. 2.1. As the square of
the error is taken in the MSE, it gives value in positive real number; thus, the square
root of the MSE is also a real number. RMSE is also sensitive to outliers.

.RMSE =
r|||1

n

nE

i=1

(
y(i) − ŷ(i)

)2
. (2.2)

2.2.3 MAE

The mean absolute error (MAE) is formulated as the mean of the sum of the absolute
value of the difference between the actual value and predicted value of all data
points. Compared to MSE, rather than taking the square of the error, the absolute
value of the error is considered in MAE, as shown in Eq. 2.3. MAE is robust to the
negative effects of the presence of outliers.

.MAE = 1

n

nE

i=1

|y(i) − ŷ(i)|. (2.3)

2.2 Error Criteria 71

2.2.4 MAPE

In calculating the mean absolute percentage error (MAPE), the ratio of the differ-
ence between the actual value and predicted value to the actual value is calculated
first. Then, the percentage of the average of the sum of these ratios over all the data
points is called MAPE. It is also known as the mean absolute percentage deviation
(MAPD). MAPE is also robust to the negative effects of the presence of outliers.

.MAPE = 100

n

nE

i=1

|||||
y(i) − ŷ(i)

ŷ(i)

||||| . (2.4)

In conclusion, in the presence of outliers, MAE and MAPE are preferable to be
used as error criteria. MSE and RMSE should be avoided because of their sensitivity
to outliers. We want to select the error criteria based on the dataset and algorithms
we want to use. Sensitivity toward any elements in the dataset or algorithms, such
as outliers, may result in undesirable outputs.

2.2.5 Huber Loss

Peter Jost Huber, a Swiss statistician, proposed this loss function in 1964 [1]. It is
used mainly for regression problems. This function is less sensitive to data outliers
than squared errors (MSE, RMSE) because the squared error is taken only at specific
intervals. This problem is resolved by combining the squared error function and
absolute value function in a piecewise function format as follows:

.L = 1

n

⎧
⎪⎪⎨

⎪⎪⎩

1
2 (y

(i) − ŷ(i))2, f or |y(i) − ŷ(i)| ≤ δ;

En
i=1 δ(|y(i) − ŷ(i)| − 1

2δ), otherwise.

(2.5)

Here, . δ is an arbitrary small value. The function above is quadratic in nature for
small error values and shows linear characteristics for larger error values. The two
parts of the function have equal value and slope at .|y(i) − ŷ(i)| = δ. This function
and some variants can also be used for classification problems.

Example 2.1 The output of an ML model for a certain regression problem is . ŷ =
[0.7, 1.1, 1.5, 1.9, 2.3, 2.7, 3.1]. The true values corresponding to these predicted
values are .y = [1.08, 1.2, 1.4, 2.1, 1.9, 7, 2.9]. Determine the MSE, MAE, and
Huber loss. Assume .δ = 1.35.

Solution to Example 2.1
Here, no of data points, .n = 7.

72 2 Evaluation Criteria and Model Selection

. MSE = 1

n

nE

i=1

(y(i) − ŷ(i))
2
,

=
(1.08 − 0.7)2 + (1.2 − 1.1)2 + (1.4 − 1.5)2 + (2.1 − 1.9)2

+(1.9 − 2.3)2 + (7 − 2.7)2 + (2.9 − 3.1)2

7
,

= 18.894

7
,

∴ MSE = 2.699.

MAE = 1

n

nE

i=1

|y(i) − ŷ(i)|,

=
|1.08 − 0.7| + |1.2 − 1.1| + |1.4 − 1.5| + |2.1 − 1.9| + |1.9 − 2.3|

+|7 − 2.7| + |2.9 − 3.1|
7

,

∴ MAE = 0.811.

Huber loss, . L = 1

n

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

2
(y(i) − ŷ(i))2, f or |y(i) − ŷ(i)| ≤ δ;

nE

i=1

δ(|y(i) − ŷ(i)| − 1

2
δ), otherwise.

Here, only .|y6 − ŷ6| > δ, i.e., . |7 − 2.7| = 4.3 > 1.35.

For this value, . L6 = δ

(
|y6 − ŷ6| − 1

2
δ

)
= 1.35 ×

(
4.3 − 1.35

2

)
= 4.894.

Now, Huber loss

. =
0.5{(1.08 − 0.7)2 + (1.2 − 1.1)2 + (1.4 − 1.5)2 + (2.1 − 1.9)2

+(1.9 − 2.3)2 + (2.9 − 3.1)2} + 4.894

7
,

. = 0.2022 + 4.894

7
,

. ∴ Huber loss .= 0.728.

Programming Example 2.1
Example 2.1 is solved in Python using a user-defined function in Listing 2.1
followed by its output and explanation in Table 2.1. The code calculates the MSE
and the MAE separately, using a user-defined function, to determine the value of the
Huber loss. The Huber loss incorporates these two depending on the delta value.

2.2 Error Criteria 73

1 import numpy as np
2

3 # MSE function
4 def MSE(y, y_hat):
5

6 y, y_hat = np.array(y), np.array(y_hat) # Converting
python list into numpy array

7 dif = np.subtract(y, y_hat) # Subtraction
operation

8 squared_dif = np.square(dif) # Squaring
the terms

9

10 return np.mean(squared_dif) # Taking the
mean of squared terms

11

12 # MAE function
13 def MAE(y, y_hat):
14

15 y, y_hat = np.array(y), np.array(y_hat)
16

17 return np.mean(np.abs(y - y_hat)) # Taking the
mean of the absolute values

18

19 # Huber Loss function
20 def huber_loss(y, y_hat, delta=1.0):
21

22 y, y_hat = np.array(y), np.array(y_hat)
23 huber_mse = 0.5*np.square(y - y_hat) # MSE part of

Huber Loss
24 huber_mae = delta*(np.abs(y -y_hat) - 0.5*delta) # MAE part of

Huber Loss
25

26 # Taking the mean of conditional error values
27 return np.mean(np.where(np.abs(y-y_hat) <= delta, huber_mse,

huber_mae))
28

29

30 y = [1.08, 1.2, 1.4, 2.1, 1.9, 7, 2.9]
31 y_hat = [0.7, 1.1, 1.5, 1.9, 2.3, 2.7, 3.1]
32

33 mse = MSE(y=y, y_hat=y_hat)
34 mae = MAE(y=y, y_hat=y_hat)
35 huber = huber_loss(y=y, y_hat=y_hat, delta=1.35)
36 print("MSE = {}\nMAE = {}\nHuber Loss = {}".format(mse, mae,

huber))

Listing 2.1 Using a user-defined function in Python to solve Example 2.1

Output of Listing 2.1:

MSE = 2.6992
MAE = 0.8114285714285715
Huber Loss = 0.7279928571428573

74 2 Evaluation Criteria and Model Selection

Table 2.1 Explanation of
Listing 2.1

Line number Description

1 Importing NumPy library

4–10 Defining function to calculate MSE

13–17 Defining function to calculate MAE

20–27 Defining function to calculate Huber loss

30–31 Data points taken in array

33–35 Using the user-defined functions

36 Printing the results

Programming Example 2.2
Example 2.1 can also be solved using a pre-defined function in Listing 2.2 followed
by its output and explanation in Table 2.2. The code uses pre-defined functions to
execute the same tasks as in Listing 2.1.

1 import numpy as np
2 import tensorflow as tf
3 from sklearn.metrics import mean_squared_error,

mean_absolute_error
4

5 y = [1.08, 1.2, 1.4, 2.1, 1.9, 7, 2.9]
6 y_hat = [0.7, 1.1, 1.5, 1.9, 2.3, 2.7, 3.1]
7

8 y = np.array(y)
9 y_hat = np.array(y_hat)

10

11 # The error metrics are determined using pre-defined library
functions

12 mse = mean_squared_error(y, y_hat)
13 mae = mean_absolute_error(y, y_hat)
14

15 huber = tf.keras.losses.Huber(delta=1.35) # Creating huber()
api from Tensorflow

16 huber = huber(y, y_hat).numpy()
17

18 print("MSE = {}\nMAE = {}\nHuber Loss = {}".format(mse, mae,
huber))

Listing 2.2 Using a pre-defined function to solve Example 2.1

Output of Listing 2.2:

MSE = 2.6992
MAE = 0.8114285714285715
Huber Loss = 0.7279928922653198

2.2 Error Criteria 75

Table 2.2 Explanation of
Listing 2.2

Line number Description

1–3 Importing libraries

5–6 Data points taken in array

8–9 The arrays are converted into NumPy arrays

12–16 Calculations using pre-defined functions

18 Printing the results

2.2.6 Cross-Entropy Loss

The concept of cross-entropy comes from information theory, but it is extensively
used in machine learning for classification problems. In 1948, a famous American
mathematician, electrical engineer, and cryptographer, Claude Shannon, introduced
the information entropy concept, also known as Shannon entropy [2]. The value of
entropy of a random variable indicates the average “information” or “uncertainty”
level of that particular random variable’s possible outcomes. For example, if
a discrete random variable X has .x1, x2, x3, . . . , xn possible outcomes with a
probability of .P(x1), P (x2), P (x3), . . . , P (xn), the entropy of X will be as shown
in Eq. 2.6:

.H(X) = −
nE

i=1

P(xi) logP(xi). (2.6)

The base of the logarithm varies with applications. Usually, the base is taken as
2. A higher value of .H(X) indicates a higher level of uncertainty, i.e., information.
From the expression of entropy, the cross-entropy loss can be defined as Eq. 2.7:

.LCE = −
nE

i=1

yi log(ŷi), (2.7)

where n is the number of classes. For binary classification, .n = 2. So, Eq. 2.7
becomes Eq. 2.8:

.LCE = −
nE

i=1

yi log(ŷi) = −[ylog(ŷ) + (1 − y) log(1 − (ŷ))]. (2.8)

The cross-entropy is regarded as a loss function in machine learning models
for the classification task; hence, it is known as cross-entropy loss. The weights
associated with machine learning classification models are updated by minimizing
the cross-entropy loss to make the model’s output as close as possible to original
(truth) values.

Example 2.2 The output of a three-class classification model for a specific input is
.ŷ = [0.02, 0.97835, 0.00165]. The ground truth value corresponding to this output
is .y = [0, 1, 0]. Determine the log loss or cross-entropy loss.

76 2 Evaluation Criteria and Model Selection

Solution to Example 2.2

. Cross-entropy loss = −
nE

i=1

yi log(ŷi),

= −(0 × log(0.02) + 1 × log(0.97835)

+ 0 × log(0.00165)),

= − log(0.97835),

= 0.0095.

So, the cross-entropy loss is 0.0095.

Programming Example 2.3
Example 2.2 is solved in Python using a user-defined function in Listing 2.3,
followed by its output and explanation in Table 2.3. The code utilizes Eq. 2.7 to
find out the categorical cross-entropy loss.

1 import numpy as np
2

3 def categorical_cross_entropy(y, y_hat):
4

5 y, y_hat = np.array(y), np.array(y_hat)
6 ce = -np.sum(np.multiply(y,np.log10(y_hat)))
7

8 return ce
9

10 y = [0, 1, 0]
11 y_hat = [0.02,0.97835,0.00165]
12 ce_loss = categorical_cross_entropy(y=y, y_hat=y_hat)
13

14 print("Cross-Entropy Loss = {}".format(ce_loss))

Listing 2.3 Using a user-defined function to solve Example 2.2

Output of Listing 2.3:

Cross-Entropy Loss = 0.00950575065591544

2.2.7 Hinge Loss

Hinge loss is often introduced to machine learning for classification tasks. Apart
from errors, it is a great decision criterion for classification tasks, especially binary
classification. It penalizes the misclassification to create a distinct margin between

2.3 Distance Metrics 77

Table 2.3 Explanation of
Listing 2.3

Line number Description

1 Importing library function

3–8 Defining the function

10–11 Data points taken in array

12 Calculations using the user-defined function

14 Printing the results

different classes. Even if the classification result is correct, hinge loss will still incur
a penalty if the margin from the decision boundary is not large enough.

This loss function or error criterion is particularly used in maximal-margin
classification for support vector machine (SVM) classifiers, although it has some
usage in neural networks [3]. The hinge loss can be defined as shown in Eq. 2.9:

.l(y) = max(0, 1 − t.y), (2.9)

where t is the truth label that should be mapped in the {. −1,1} range. y is the output
of the SVM classifier. So, the output of linear SVM is given by Eq. 2.10:

.y = wx + b, (2.10)

where x and b are the parameters of the hyperplane. A more detailed explanation
of SVM is given in Chap. 3. If .|y| ≥ 1, and t and y have the same symbols, then
.l(y) = 0, i.e., the loss becomes 0. On the other hand, if .|y| < 1, then the loss
increases linearly with y regardless of their symbol.

2.3 Distance Metrics

Distance metrics can be used to get an idea about the distance between two places,
points, objects, etc. For example, distance metrics can tell how close or how far two
points are from each other. Furthermore, some machine learning algorithms, such
as KNN classification, K-means clustering, self-organizing map (SOM), SVM, etc.,
rely on the closeness between data points. Therefore, this “closeness” estimation can
be considered a “distance” calculation. For this reason, knowing different distance
metrics used in machine learning is essential. In the following sections, we are going
to explore seven types of distance metrics with relevant diagrams and equations.

2.3.1 Euclidean Distance

The most popularly used distance metric is Euclidean distance. The Euclidean
function calculates the square root of the sum of the differences between two
different data objects. Assume two data objects a and b, where each data object has

78 2 Evaluation Criteria and Model Selection

Fig. 2.1 Euclidean distance
between two points on a 2-D
plane

A(x1,y1)

B(x2,y2)

x2-x1

y2-y1

n attributes, .a = (p1, p2, p3, . . . , pn) and .b = (q1, q2, q3, . . . , qn). The function to
calculate the Euclidean distance between a and b is given in Eq. 2.11.

.d(a, b) =
/

(q1 − p1)2 + (q2 − p2)2 + · · · + (qn − pn)2. (2.11)

Figure 2.1 depicts the Euclidean distance between two data points . A(x1, y1)

and .B(x2, y2) with two features x and y. Many algorithms such as the k-nearest
neighbors algorithm and k-means algorithm use Euclidean distance as the objective
function where the data dimension is low. However, in the case of higher dimen-
sionality, the Euclidean distance may not perform effectively.

2.3.2 Cosine Similarity and Cosine Distance

Cosine similarity gives an estimation of the similarity between two or more vectors.
The mathematical concept of cosine similarity is quite simple. It is the cosine of the
angle between two vectors. Cosine similarity can be calculated by dividing the dot
product of two vectors by the product of the magnitude of the two vectors. If . θ is the

angle between two vectors .
−→
A and .

−→
B , the cosine similarity can be calculated using

Eq. 2.12.

. cos(θ) =
−→
A .

−→
B

||−→A || ||−→B ||
=

En
i=1 AiBi/En

i=1 A2
i

/En
i=1 B2

i

. (2.12)

The two vectors .
−→
A and .

−→
B are non-zero, and they exist within an inner product

space. The value of the cosine similarity metric ranges from . −1 to 1, where . −1
means total dissimilarity and 1 means total similarity between the two vectors.
Cosine distance can be calculated from cosine similarity. Cosine distance is opposite
to cosine similarity. The greater the distance, the less the similarity between data
objects. The cosine distance is calculated as shown in Eq. 2.13.

2.3 Distance Metrics 79

(a) Similar Vectors (b) Unrelated Vectors (c) Opposite Vectors

x x x
A

A

A

B

0 0 0

yy y

BBB

B

Fig. 2.2 Cosine similarity between two (a) similar, (b) unrelated, and (c) opposite vectors. The
similar vectors have nearly . 0◦ angle between them. The angle between unrelated vectors would
be around .90◦ or a bit more. Two opposite vectors would have nearly .180◦ angle between them.
There is no correlation between the length of the vectors and their cosine similarity

.d(
−→
A ,

−→
B) = 1 − cos(θ) = 1 −

−→
A .

−→
B

||−→A || ||−→B ||
. (2.13)

Figure 2.2 depicts the different cases of determining cosine similarity. Cosine
similarity is preferable when two data objects vary in their size. The Euclidean
distance between these two data objects could be huge due to their length mismatch,
even if they have similarities. This similarity can be captured by cosine similarity
because the angle remains constant regardless of the size of the data objects.

2.3.3 Manhattan Distance

Another popular distance metric is the Manhattan distance, also referred to as city
block distance or taxicab metric. The intuition behind these names derives from
calculating the shortest distance between any two blocks along the vertical and
horizontal axes. The summation of absolute differences between two points is the
Manhattan distance. The formula for calculating the Manhattan distance between
two data points .a = (x1, x2, x3, . . . , xn) and .b = (y1, y2, y3, . . . , yn) is given by
Eq. 2.14.

.d(a, b) = |x1 − y1| + |x2 − y2| + · · · + |xn − yn|. (2.14)

Figure 2.3 depicts the Manhattan distance between two data points A and B
with two features, x and y. The Manhattan distance is preferred over the Euclidean
distance in the case of higher dimensionality. It also works best for discrete
attributes.

80 2 Evaluation Criteria and Model Selection

Fig. 2.3 Manhattan distance
between two points on a 2-D
plane

Manhattan Distance (A, B) = |x1-x2| + |y1-y2|

A(x1,y1)

B
(x

2 ,y
2)

xx

yy

Fig. 2.4 Chebyshev distance
between two points(A(2,2)
and B(4,5)) on a 2-D plane

0 1 2 3 4 5 60 1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

x

y

A

B

2.3.4 Chebyshev Distance

Chebyshev distance, also referred to as the supremum distance, is the maximum
difference in the attributes between two data objects. The formula for calculating
the Chebyshev distance between two data points .a = (x1, x2, x3, . . . , xn) and . b =
(y1, y2, y3, . . . , yn) is given by Eq. 2.15.

.d(a, b) = max(|x1 − y1|, |x2 − y2|, . . . , |xn − yn|). (2.15)

Figure 2.4 depicts the Chebyshev distance for two points A and B. The
Chebyshev distance can be applied to specific logistical problems only. For instance,
it can determine the minimum moves required by the king on a chessboard to move
from one square to another.

2.3.5 Minkowski Distance

Amore generalized form of the Euclidean distance and theManhattan distance is the
Minkowski distance. The formula for calculating the Minkowski distance between

2.3 Distance Metrics 81

Fig. 2.5 The change in unit circles with various values of h in Minkowski distance. The path of
the unit circles represents points with the same Minkowski distance

two data points .a = (x1, x2, x3, . . . , xn) and .b = (y1, y2, y3, . . . , yn) is given by
Eq. 2.16.

.d(a, b) = h

/
(x1 − y1)h + (x2 − y2)h + · · · + (xn − yn)h, (2.16)

where .h ≥ 1. For .h = 1, the formula for the Minkowski distance calculates the
Manhattan distance, and for .h = 2, it calculates the Euclidean distance. Figure 2.5
shows the results for different values of h between two data points A and B with
two features x and y.

Let us now explore two mathematical examples related to the five distance
metrics that we have discussed so far.

Example 2.3 A(3,4) and B(5,2) are two points on a 2-dimensional XY plane.
Determine the Euclidean distance, Manhattan distance, Chebyshev distance, cosine
similarity, and Minkowski distance between them. Take .h = 2 for Minkowski
distance.

Solution to Example 2.3
Euclidean distance, . de(A,B) = /

(3 − 5)2 + (4 − 2)2 = 2
√
2.

Manhattan distance, . dm(A,B) = |3 − 5| + |4 − 2| = 4.
Chebyshev distance, . dc(A,B) = max(|3 − 5|, |4 − 2|) = 4.

Cosine similarity, . dcos(A,B) = cos(θ) =
−→
A .

−→
B

||−→A || ||−→B ||
.

Now,

82 2 Evaluation Criteria and Model Selection

Fig. 2.6 Various distance
metrics between A(3,4) and
B(5,2)

0 1 2 3 4 5 60 1 2 3 4 5 6

1

2

3

4

5

6

1

2

3

4

5

6

x

y

A(3,4)

B(5,2)

ehsyb sybehC ehC hev v diis eecncnaatts

attttahn ahnaaM an n dis eecncnaatts

aedediillcucuE an n, Minkowski distance

θ=31.328°

2

4

.||−→A || = √
32 + 42 = 5 and . ||−→B || = √

52 + 22 = √
29.

.
−→
A .

−→
B = (3 × 5) + (4 × 2) = 15 + 8 = 23.

So, . cos(θ) = 23

5 × √
29

≈ 0.8542.

. ∴ θ = cos−1(0.8542) = 31.328◦.
Cosine distance, . dcosine(A,B) = 1 − cos(θ) = 1 − 0.8542 = 0.1458.
Minkowski distance,
. dmk(A,B) = h

/|3 − 5|h + |4 − 2|h = /|3 − 5|2 + |4 − 2|2 = 2
√
2.

Here, the Minkowski distance and the Euclidean distance are equal.
Figure 2.6 illustrates the different distance metrics of Example 2.3.

Example 2.4 .A = [1, 3, 5, 7, 9] and .B = [2, 4, 6, 8, 12] are two data points.
Determine the Euclidean distance, Manhattan distance, Chebyshev distance, cosine
similarity, and cosine distance between this pair of data points.

Solution to Example 2.4
Euclidean distance,
. de(A,B) = /

(1 − 2)2 + (3 − 4)2 + (5 − 6)2 + (7 − 8)2 + (9 − 12)2 = √
13 =

3.605.
Manhattan distance,

. dm(A,B) = |1 − 2| + |3 − 4| + |5 − 6| + |7 − 8| + |9 − 12| = 7.
Chebyshev distance,

. dc(A,B) = max(|1−2|, |3−4|, |5−6|, |7−8|, |9−12|) = max(1, 1, 1, 1, 3) = 3.

Cosine similarity, . dcos(A,B) = cos(θ) =
−→
A .

−→
B

||−→A || ||−→B ||
.

Now,
. ||−→A || = √

12 + 32 + 52 + 72 + 92 = √
165.

.||−→B || = √
22 + 42 + 62 + 82 + 122 = 2

√
66.

2.3 Distance Metrics 83

.
−→
A .

−→
B = (1 × 2) + (3 × 4) + (5 × 6) + (7 × 8) + (9 × 12) = 208.

So, . cos(θ) = 208√
165 × 2

√
66

≈ 0.997.

. ∴ . θ = cos−1(0.997) = 4.728◦.
Cosine distance, . dcosine(A,B) = 1 − cos(θ) = 1 − 0.997 = 0.003.

Programming Example 2.4
Instead of doing all the math by ourselves, we can use Python to do the task more
quickly. Listing 2.4 demonstrates a Python program with a user-defined function to
solve Example 2.4, followed by the output of the program and the explanation in
Table 2.4. The listing generates user-defined functions for calculating the Euclidean
distance, cosine similarity, and the cosine distance between two vectors, A and B.
The Manhattan and Chebyshev distances are not shown in the program and have
been left as an exercise for the readers.

1 import numpy as np
2 from numpy.linalg import norm
3

4 # Euclidean Distance function
5 def euclidean_distance(A, B):
6

7 A, B = np.array(A), np.array(B)
8 sum = np.sum(np.square(A - B))
9

10 return np.sqrt(sum)
11

12 # Cosine Similarity function
13 def cosine_similarity(A, B):
14

15 A, B = np.array(A), np.array(B)
16 cosine = np.dot(A, B)/(norm(A)*norm(B))
17

18 return cosine
19

20 # Implement the rest of metrics yourself
21

22 A = [1, 3, 5, 7, 9]
23 B = [2, 4, 6, 8, 12]
24

25 euc = euclidean_distance(A=A, B=B)
26 cos = cosine_similarity(A=A, B=B)
27 d_cos = 1 - cos # Cosine distance = 1-cos

(theta)
28

29 print("Euclidean Distance = {}\nCosine Similarity = {}\nCosine
distance = {}".format(euc, cos, d_cos))

Listing 2.4 Using a user-defined function to solve Example 2.4

84 2 Evaluation Criteria and Model Selection

Table 2.4 Explanation of Listing 2.4

Line number Description

1–2 Importing libraries.

4–10 Defining function for calculating Euclidean distance

13–18 Defining function for calculating cosine similarity

22–23 Data points taken in array

25–27 Calculations using the user-defined function

29 Printing the results

Output of Listing 2.4:

Euclidean Distance = 3.605551275463989
Cosine Similarity = 0.9965965959318528
Cosine distance = 0.003403404068147209

2.3.6 Hamming Distance

The similarity between two strings of equal length can be determined by the
Hamming distance. This metric can be applied to only binary features. If two equal-
length strings can be assumed as rows of binary (0 or 1) features, the distance or
similarity between them can be calculated by comparing each binary string. It is
done by counting the number of positions with different string values.

Practically, the Hamming distance is calculated by performing a logical XOR
operation between the two strings and summing the non-zero values from the
resulting string. Then, the Hamming distance is normalized by dividing the distance
by the length of the strings to have a generalized estimation of the Hamming distance
independent of the length of the strings. For example, we have two binary strings
of the same length—00110110 and 10111011. The logical XOR operation between
them will be

.00110110 ⊕ 10111011 = 10001101. (2.17)

So, the hamming distance will be

.d(00110110, 10111011) = sum(10001101) = 4. (2.18)

This is also shown in Fig. 2.7. The normalized Hamming distance will be

.d(00110110, 10111011) = d(00110110, 10111011)

length of string
= 4

8
= 0.5. (2.19)

In machine learning practice, Hamming distance is calculated from natural
language strings. For example, the two strings “Euclidean” and “Manhattan” have

2.3 Distance Metrics 85

Fig. 2.7 The Hamming
distance between two data
points

Data point A

Data point B

Hamming Distance = 1 + 0 + 0 + 0 + 1 + 1 + 0 + 1 = 4

1 0 1 1 1 0 1 11 0 1 1 1 0 1 1

0 0 1 1 0 1 1 00 0 1 1 0 1 1 0

11 0 0 0 1 1 0 11 0 0 0 1 1 0

X-OR ()X-OR ()

the same length. Therefore, if we consider the Hamming distance output for each
similar string element pair as 0 and each different string element pair as 1, then the
Hamming distance will be

.d(Euclidean,Manhattan) = sum(111111100) = 7. (2.20)

This equals the number of different letter pairs between the two strings
(Euclidean, Manhattan).

Programming Example 2.5
This calculation uses Python in Listing 2.5, followed by its output and explanation
in Table 2.5. This code generates a function to calculate the Hamming distance
between two strings. Then it uses the function to find the Hamming distance between
strings A and B.

1 # Function for Hamming distance calculation
2

3 def hamming_distance(s1, s2):
4 dist = 0
5 if len(s1)!=len(s2):
6 print("Strings are not equal")
7 else:
8 for x, (i, j) in enumerate(zip(s1, s2)):
9 if i != j:

10 print(f'Characters do not match {i,j} in {x}')
11 dist+=1
12 return f'Hamming Distance = {dist}'
13

14 A = "Euclidean"
15 B = "Manhattan"
16

17 hamming = hamming_distance(A, B)
18 print(hamming)

Listing 2.5 Using a user-defined function to calculate Hamming distance

86 2 Evaluation Criteria and Model Selection

Table 2.5 Explanation of Listing 2.5

Line number Description

3–12 Defining function for calculating Hamming distance

14–15 Data points A and B to be checked

17 Calculations using the user-defined function

18 Printing the results

Output of Listing 2.5:

Characters do not match (’E’, ’M’) in 0
Characters do not match (’u’, ’a’) in 1
Characters do not match (’c’, ’n’) in 2
Characters do not match (’l’, ’h’) in 3
Characters do not match (’i’, ’a’) in 4
Characters do not match (’d’, ’t’) in 5
Characters do not match (’e’, ’t’) in 6
Hamming Distance = 7

2.3.7 Jaccard Similarity and Jaccard Distance

In 1910, Paul Jaccard, a botany and plant physiology professor at ETH Zurich,
published a similarity coefficient called Coefficient de Communauté, now known
as Jaccard Similarity Index. This distance metric measures the similarity between
finite sets. It is defined as the ratio between the intersection size and the union size
between two sets. This can also be referred to as Intersection over Union (IoU), as
shown in Fig. 2.8. For example, for two finite sets A and B, the Jaccard similarity,
.J (A,B), is calculated as shown in Eq. 2.21.

.J (A,B) = IoU = |A ∩ B|
|A ∪ B| = |A ∩ B|

|A| + |B| − |A ∩ B| . (2.21)

Certainly, .0 ≤ J (A,B) ≤ 1, where 0 means no similarity at all and 1 means
complete similarity. If both A and B are empty sets, i.e., .A = ∅ and .B = ∅, then
.J (A,B) = 1. The Jaccard distance, .d(A,B), can be calculated from the Jaccard
similarity as shown in Eq. 2.22.

.d(A,B) = 1 − J (A,B) = 1 − |A ∩ B|
|A ∪ B| = |A ∪ B| − |A ∩ B|

|A ∪ B| , (2.22)

where .0 ≤ d(A,B) ≤ 1. A Jaccard distance of 0 means complete similarity, and a
Jaccard distance of 1 means no similarity. If .A = ∅ and .B = ∅, then .d(A,B) = 0.

2.3 Distance Metrics 87

Fig. 2.8 Visualization of
Jaccard similarity

J(A,B) =
A∩

∩

∩

B

A B
=

A BA B

A∩BA B

In natural language processing (NLP), the Jaccard similarity determines the
similarity between two sentences or documents from the total number of each
word. Jaccard similarity is used in object identification applications to determine
the bounding box accuracies.

Let us now have a look at Example 2.5, which is a problem with Jaccard
similarity and Jaccard distance.

Example 2.5 Two commonly used sample sentences in NLP for determining
similarity are “This is a foo bar sentence.” and “This sentence is similar to a foo
bar sentence.” Determine the Jaccard similarity and Jaccard distance. Ignore the
words “is,” “a,” and “to” as they do not have much influence on similarity.

Solution to Example 2.5
Set of words in the first sentence, . S1 = {"T his", "f oo", "bar", "sentence", "."}.

Set of words in the second sentence, . S2 = {"T his", "sentence", "similar",
"f oo", . "bar", "."}.

Now, . S1 ∩ S2 = {"T his", "f oo", "bar", "sentence", "."}.
There are 5 items in set .S1 ∩ S2. . ∴ |S1 ∩ S2| = 5.
Similarly, . S1 ∪ S2 = {"T his", "similar", "f oo", "bar", "sentence""."}

. ∴ |S1 ∪ S2| = 6.

Therefore, Jaccard similarity, . J (S1, S2) = |S1 ∩ S2|
|S1 ∪ S2| = 5

6
= 0.833.

And Jaccard distance, . d(S1, S2) = 1 − J (S1, S2) = 1 − 0.833 = 0.167.

Programming Example 2.6
Example 2.5 is solved in Python in Listing 2.6 using a user-defined function. The
output of the code is also provided, and the explanation can be found in Table 2.6.
The code uses the Natural Language Toolkit (NLTK) library to successfully generate
the Jaccard similarity index and Jaccard distance between two input sentences A
and B.

88 2 Evaluation Criteria and Model Selection

1 # Importing Natural Language Toolkit library
2 # NLTK associated packages are downloaded
3

4 import nltk
5 nltk.download('punkt')
6 nltk.download('stopwords')
7

8 from nltk.corpus import stopwords
9 from nltk.tokenize import word_tokenize

10

11 def jaccard_similarity(s1, s2):
12

13 # Tokenizing sentences, i. e., splitting the sentences into
words

14 S1_list = word_tokenize(s1)
15 S2_list = word_tokenize(s2)
16

17 # Getting the English stopword collection
18 sw = stopwords.words('english')
19

20 # Creating word sets corresponding to each sentence
21 S1_set = {word for word in S1_list if not word in sw}
22 S2_set = {word for word in S2_list if not word in sw}
23

24 print(f'Word set Sentence 1 = {S1_set}')
25 print(f'Word set Sentence 2 = {S2_set}')
26

27 I = set(S1_set).intersection(set(S2_set)) # Intersection
operation

28 U = set(S1_set).union(set(S2_set)) # Union operation
29

30 print(f'Intersection = {I}')
31 print(f'Union = {U}')
32

33 IoU = len(I)/len(U) # Intersection
over Union (IoU)

34

35 return IoU
36

37 A = "This is a foo bar sentence ."
38 B = "This sentence is similar to a foo bar sentence ."
39

40 J = jaccard_similarity(A, B)
41 d_J = 1 - J # Jaccard

distance = 1 - J
42 print("Jaccard Similarity Index = {}\nJaccard distance = {}".

format(J, d_J))

Listing 2.6 Using a user-defined function to solve Example 2.5

Output of Listing 2.6:

Word set Sentence 1 = {’bar’, ’sentence’,
’This’, ’.’, ’foo’}

2.4 Confusion Matrix 89

Table 2.6 Explanation of Listing 2.6

Line number Description

1–2 Importing libraries

4–10 Defining function for calculating Euclidean distance

13–18 Defining function for calculating cosine similarity

22–23 Data points taken in array

25–27 Calculations using the user-defined function

29 Printing the results

Word set Sentence 2 = {’similar’, ’bar’, ’sentence’,
’This’, ’.’, ’foo’}

Intersection = {’bar’, ’sentence’, ’This’, ’.’, ’foo’}
Union = {’similar’, ’bar’, ’sentence’, ’This’, ’.’,

’foo’}
Jaccard Similarity Index = 0.8333333333333334
Jaccard distance = 0.16666666666666663

2.4 Confusion Matrix

A confusion matrix gives a comprehensible understanding of the performance of a
given classification model. Whether an evaluation score is meaningful or not can
be understood using a confusion matrix. For instance, an accuracy score of 90%
would imply that the performance of the model is very high and efficient. However,
consider the case that the model perfectly predicts all 90 data from one class and
entirely fails to predict the remaining 10 data from another class. This case would
prove that a model with an accuracy score of 90% can still be irrelevant and wrong.
In cases like this, the confusion matrix helps depict the actual scenario.

The terms used in the confusion matrix in Fig. 2.9 are described below:

1. True Positive (TP): These are the positive cases, and the model correctly
predicted them as positive cases.

2. False Positive (FP): These are the cases that are not positive, but the model
predicted them as positive. This error is a type 1 error.

3. True Negative (TN): These are the negative cases, and the model correctly
predicted them as negative cases.

4. False Negative (FN): These are the cases that are actually positive, but the model
has incorrectly predicted them as negative cases. This error is a type 2 error.

90 2 Evaluation Criteria and Model Selection

Positive Negative

P
o

si
ti

v
e

N
e
g
at

iv
e

Predicted class

ss
alc

l
a

ut
c

A

Precision
TP

(TP+FP)

Negative
Predictive Value

TN

(TN+FN)

Specificity
TN

(TN+FP)

Sensitivity
TP

(TP+FN)

Accuracy
TP+TN

(TP+TN+FP+FN)

True Positive (TP)

False Positive (FP)

Type I error

False Negative (FN)

Type II error

True Negative (TN)

False Negative (FN)

Type II error

True Negative (TN)

True Positive (TP)

False Positive (FP)

Type I error

False Negative (FN)

Type II error

True Negative (TN)

Fig. 2.9 Confusion matrix and the metrics associated with it

2.4.1 Accuracy

Accuracy is the simplest form of evaluation score. It is defined by the number
of correctly predicted observations over the total number of observations. The
accuracy score is valid when the dataset is balanced; each class in the dataset
has an equal number of data objects. However, for an imbalanced dataset, the
accuracy score can be meaningless as it does not provide a detailed insight into
the model’s performance. The formula for calculating accuracy for any model from
the confusion matrix is shown in Eq. 2.23:

.Accuracy = T P + T N

T P + FP + T N + FN
. (2.23)

2.4.2 Precision and Recall

Suppose a case of an imbalanced dataset is given, where 98 data belong to a positive
class, and 2 data belong to a negative class. Now, if the model trained can predict
all the 98 data of the positive class correctly but fails to predict the 2 data of the
negative class, then the accuracy score of the model will be 98%. Here, an accuracy
score of 98% gives a false sense of an effective and efficient model, but the model
fails to predict an entire class in reality. In such circumstances, precision and recall
scores are preferable over accuracy.

2.4.2.1 Precision
The precision score is used to understand the ratio of correctly predicted positive
cases among all the positive cases predicted by the model. It is used when the system

2.4 Confusion Matrix 91

is required to have a low false-positive rate. For instance, a rescue team must detect
injured human beings in a disaster area. Sending help to areas where incorrectly
detected injured human beings would waste resources, time, and energy. Therefore,
the system must have a low false-positive rate for an efficient and effective rescue
operation. Higher precision means a lower false-positive rate.

The precision score is calculated as shown in Eq. 2.24 by dividing the number
of true positives (T P) by the summation of the number of true positives and the
number of false positives (FP):

.Precision = T P

T P + FP
. (2.24)

2.4.2.2 Recall
The recall score, also called sensitivity, is used to calculate the true-positive rate.
It is calculated as the ratio of correctly predicted positive cases to all the cases in
the actual positive class. It is used when the system is required to have a low false-
negative rate. For instance, if an injured human being goes undetected by the system,
they will not be helped by the rescue team, which is a considerable risk. Sometimes a
rescue mission can afford some false positives (detecting non-injured human beings
as injured) but not false negatives (failing to detect actual injured human beings). A
higher recall score means a lower false-negative rate. Mathematically, recall can be
defined as shown in Eq. 2.25:

.Recall = T P

T P + FN
. (2.25)

There is a general trade-off between precision and recall. A system cannot
simultaneously have a high precision score and a high recall score. A high precision
leads to a poor recall score and vice versa. Figure 2.10 demonstrates the distinction
between precision and recall.

2.4.3 F1 Score

The F1 score is the harmonic mean of precision and recall score. It is used when both
the precision and recall scores need to be considered for the system. For instance,
Fig. 2.10 shows that neither a high precision nor a high recall is best for a rescue
mission. In cases like this, the F1 score best evaluates the model’s performance. The
best value of the F1 score of a model is 1. The formula to calculate the F1 score is
shown in Eq. 2.26:

.F1 score = 2 × Precision × Recall

P recision + Recall
. (2.26)

92 2 Evaluation Criteria and Model Selection

False negatives True negatives

Selected elements

Relevant elements

True

positives False

positives

How many selected

items are relevant?

How many relevant

items are selected?

Precision = Recall =

Fig. 2.10 Distinction between precision and recall

Now we will study an example related to the confusion matrix, accuracy,
precision, recall, and F1 score.

Example 2.6 Suppose we have built a cat–dog classifier model. For testing the
model, we have given it 100 images of cats and dogs containing 50 images of
cats and 50 images of dogs. 48 images of cats have been classified correctly, while
the other 2 are classified as dogs. On the other hand, only 30 images of dogs are
classified correctly, while the other 20 images are classified as cats.

Develop a confusion matrix from this model output. What is the accuracy of this
classifier model? Also determine the precision, recall, and F1 score of this model.

Solution to Example 2.6
Let us assume that “Cat” is the positive class and “Dog” is the negative class. So:

• True positive, .T P = is cat and is classified as cat = 48.
• True negative, .T N = is not cat and is not classified as cat . = is dog and is

classified as dog . = 30.
• False positive, .FP = is not cat but is classified as cat . = 50 . − 30 . = 20.
• False negative, .FN = is cat but is classified as dog . = 2.

So, the confusion matrix is: .

(
T P FN

FP T N

)
=

(
48 2
20 30

)
.

Accuracy = . T P + T N
T P + T N + FP + FN

= 48 + 30
48 + 30 + 20 + 2 = 78

100 = 0.78 ≈
78%.

Precision = .
T P

T P + FP
= 48

48 + 20 = 48
68 = 0.706 ≈ 70.6%.

2.6 Hyperparameter Space 93

Recall = . T P
T P + FN

= 48
48 + 2 = 48

50 = 0.96 ≈ 96%.

F1 score = . 2 × Precision × Recall
P recision + Recall

= 2 × 0.706 × 0.96
0.706 + 0.96 = 0.814.

The model seems to perform better for cat images than dog images. For this
reason, the precision score of this model is somewhat lower, even though it has a
higher recall score.

2.5 Model Parameter and Hyperparameter

The term learning in ML indicates that an ML model learns something from input
data. However, what is learned in an ML model? For example, in regression models,
linear or logistic regression coefficients are learned; the weights and biases are
learned in neural networks; cluster centroids of clustering algorithms are learned,
and so on. These learned coefficients, weights, bias, cluster centroids, etc., are
known as the parameters in ML. Parameters are said to be internal to the model
as the value of parameters is supposed to change during training.

On the other hand, model hyperparameters cannot be estimated from data.
The learning process of an ML algorithm depends on model hyperparameters. It
directly controls the learned parameters of an ML model. Hyperparameters can be
considered external to the model because the hyperparameter values are set before
model training starts, and they remain constant throughout the training process.
Batch size, pooling size, kernel size, the number of iterations or epochs, choice
of optimization algorithms and learning rate of optimization algorithms, the number
of clusters in clustering algorithms, choice of loss/cost function, choice of activation
function, and the number of hidden layers in a neural network, etc., are regarded as
model hyperparameters.

2.6 Hyperparameter Space

Different ML algorithms come with different types of hyperparameters. The
hyperparameters associated with different ML algorithms are as follows:

• Polynomial Regression:
– Degree of polynomials

• Logistic Regression:
– Regularization
– Class weights

• Decision Tree and Random Forest:
– Maximum tree depth
– Minimum split samples
– Minimum number of leaf samples
– Maximum number of features

94 2 Evaluation Criteria and Model Selection

Fig. 2.11 Hyperparameter
space consisting of three
different hyperparameters.
Points indicating higher
cross-validation accuracy are
desired

– Split quality criterion
• Neural Network:

– Number of layers
– Number of neurons
– Activation function
– Optimizer algorithm
– Learning rate

If a system has several possible solutions, the set of those possible solutions
is called the search space. Similarly, an ML model can be developed using many
sets of hyperparameters. These sets of hyperparameters can be referred to as
hyperparameter space, which is demonstrated in Fig. 2.11. The hyperparameter
space can be visualized as an n-dimensional plot where n is the number of
hyperparameters, and each axis represents each hyperparameter. Each point in the
hyperparameter space represents a set of hyperparameters. The optimal point in this
hyperparameter space is found by performing hyperparameter tuning.

2.7 Hyperparameter Tuning and Model Optimization

An ML model consists of some hyperparameters and parameters. The job of an ML
model is to learn the parameters to give the correct hypothesis in a given context,
but the structure of the ML model depends on the hyperparameters. It is evident
that an optimized ML model is expected for the final application, so a proper choice

2.7 Hyperparameter Tuning and Model Optimization 95

of hyperparameters is required. Identifying the correct set of hyperparameters to
achieve an optimized ML model is known as hyperparameter tuning. It plays a
crucial part in building an ML model. The steps associated with hyperparameter
tuning are given below:

1. Visualize the data and understand the problem.
2. Select the best possible ML algorithm suitable for that problem.
3. Split the dataset into three sets—train set, validation set, and test set.
4. Determine the list of parameters and create the hyperparameter space (HS).
5. Select the most suitable method for searching the optimal set of hyperparameters

from the HS and apply that.
6. Implement cross-validation.
7. Evaluate the model score.
8. Repeat steps 5, 6, and 7 until the best possible model score is achieved. The

hyperparameter set with the best model score is expected to be optimal.

Sometimes, ML models fail to perform well on real-world data even if they
had performed well in the training stage. This performance degradation happens
when the ML model has already learned some test data during the training stage.
Data sharing between the train, validation, and test sets causes the model to overfit
and, in turn, underperform in the application stage. This phenomenon is known as
data leakage. For this reason, the whole dataset is split before performing cross-
validation.

Some hyperparameter tuning and model optimization techniques are described
in the following sections.

2.7.1 Manual Search

This is the most straightforward hyperparameter tuning technique. In this method,
the hyperparameters are selected in a trial-and-error method. One can create a
hyperparameter space and select the best possible hyperparameters from there. With
proper expertise and experience, this method can sometimes help build an ML
model quickly. This method also does not require any extra computational resources.
However, this method is not recommended most of the time because the probability
of achieving an optimized model using this method is low.

2.7.2 Exhaustive Grid Search

This is an exhaustive or brute-force search method. The steps followed in this
method are as follows:

1. The hyperparameter space is created from all available sets of hyperparameters.

96 2 Evaluation Criteria and Model Selection

Fig. 2.12 Exhaustive grid
search in a two-dimensional
hyperparameter space

2. Cross-validation is performed on all the possible combinations of the hyperpa-
rameters.

3. The combination with the best evaluation metrics is picked to be the hyperparam-
eter of the model.

The grid search method is time-consuming since it evaluates all possible
combinations of hyperparameters. If the dataset is huge, it takes a lot of time, and
an exhaustive search method is not recommended. This search method can find the
best possible set of hyperparameters, but this might also make the ML model more
prone to overfitting. The exhaustive grid search method is depicted in Fig. 2.12.

2.7.3 Halving Grid Search

The grid search method can be made faster by implementing a successive halving
algorithm (SHA). In this method, the hyperparameters are evaluated using fewer
resources first, i.e., the training process of the ML model is stopped early so that
fewer computing resources are required. Then half of the hyperparameter sets
are eliminated based on model performance. This process is repeated until one
hyperparameter set remains. The computational resources are increased each time
the process is repeated. This method requires significantly less time than only grid
search, as more resources are allocated to more potential models.

2.7.4 Random Search

As the name implies, this method randomly selects different combinations of
hyperparameters and performs cross-validation on the dataset instead of searching
the entire hyperparameter space, as depicted in Fig. 2.13. It is faster than grid

2.7 Hyperparameter Tuning and Model Optimization 97

Fig. 2.13 Random search in
a two-dimensional
hyperparameter space

search, but sometimes it can miss the best combination of hyperparameters due
to selecting randomly. It may still be very time-staking for massive datasets and
hyperparameters, but it is less prone to model overfitting than an exhaustive grid
search.

2.7.5 Halving Random Search

This searching method also utilizes a successive halving algorithm (SHA) like a
halving grid search. The difference is that the hyperparameter sets are selected
randomly from hyperparameter space. This method is also faster than any brute-
force method.

2.7.6 Bayesian Optimization

A function that produces output without revealing its internal mechanisms is called
a black-box function. Sometimes, ML models are considered black block functions.
So, it brings a black-box optimization problem. If that black-box function is
computationally cheaper, optimizing it using previous methods is convenient.

The Bayesian optimization technique becomes handy when the model or the
black-box function is computationally expensive. Just as grid search and random
search, the Bayesian optimization technique also trains multiple ML models from
multiple hyperparameter sets from the hyperparameter space. However, instead
of going through all hyperparameter sets or randomly picking them, Bayesian
optimization considers the model performance on previous hyperparameter sets.
It selects the future hyperparameters based on that information. This method is
expected to perform much faster than the previously discussed methods.

98 2 Evaluation Criteria and Model Selection

Weight

L
o

ss

Minimum

loss

Initial

weight

Gradient

Fig. 2.14 Gradient descent visualization

2.7.7 Gradient-Based Optimization

The primary purpose of training specific ML models would be to achieve the point
where the loss or cost function has the minimum value. This loss minimization
is done in a gradient-based optimization technique. This method helps achieve an
optimal set of parameters (not hyperparameters), i.e., weights, biases, etc.

For example, imagine a hiker has lost his sense of direction but can still sense
whether he is approaching his destination or not. Based on his sense, he can
adjust his path and eventually find his destination. This is done in gradient-based
optimization as depicted in Fig. 2.14.

The loss values are plotted against a parameter, i.e., weight. The gradient of this
loss curve is found by taking its derivative. The parameters are updated based on the
gradient values. The minimum loss is found where the derivative is equal to or close
to zero. The parameters corresponding to this minima are selected for the model.
This is known as the gradient descent algorithm, which is used to apply gradient-
based optimization. Based on the parameter updating techniques, there are many
types of gradient descent (GD) algorithms, such as Batch/Vanilla Gradient Descent,
Stochastic Gradient Descent (SGD), Mini-batch Gradient Descent, etc.

The convergence speed in GD algorithms largely depends on the learning rate,
which can again be considered a hyperparameter. The learning rate determines the
length of the incremental learning steps shown in Fig. 2.14.

2.7.8 Evolutionary Algorithm

The evolutionary algorithm mimics biological mechanisms. It solves problems by
emulating the reproduction pattern of living organisms. It is mainly based on the
Darwinian evolution theory. The solutions (i.e., model output due to a hyperparam-

2.7 Hyperparameter Tuning and Model Optimization 99

Fig. 2.15 Evolutionary
algorithm process that mimics
the biological process

Initialize

population
Evaluate fitness

Termination

Recombination SelectionMutation

Variation

eter set) may be considered individual organisms from a specific hyperparameter
space. These individual organisms create a population sample. The evolutionary
algorithms often include selection, reproduction, mutation, and recombination
functions. The population is then evaluated for fitness based on model performance.
The trimmest fit individuals are eliminated, and the hyperparameter sets evolve with
each iteration or generation. This is loosely analogous to Darwin’s survival of the
fittest.

The whole process is shown in a diagram in Fig. 2.15. Evolutionary algorithms
perform excellently at optimizing models but cannot always find the best possible
solution. They also require high computational resources.

2.7.9 Early Stopping

The early stopping approach can be used on both continuous and discrete operations.
This approach is mainly used to prevent the model from overfitting. The problem
of overfitting a model is discussed in the next section. This method is especially
relevant when the search space is massive, and the computational costs are
significantly expensive.

2.7.10 Python Coding Example for Hyperparameter Tuning
Techniques

The Wisconsin Breast Cancer dataset [4] contains measurements for breast cancer
cases. The aim is to predict whether the breast tumors are malignant or benign. So,
this is a binary classification problem.

A random forest classifier algorithm has been used for this classification purpose.
Do not worry about the ML algorithm or the different types of hyperparameters
related here, as these will be discussed in detail in the later chapters. Just focus on
the performance of different hyperparameter tuning techniques shown here.

Programming Example 2.7
To start with, we need to import the necessary libraries and packages. Then, we will
download and prepare the dataset. Listing 2.7 imports necessary library functions

100 2 Evaluation Criteria and Model Selection

for hyperparameter tuning. Additionally, it imports the breast cancer dataset from
the scikit-learn library.

1 # ----------------------Importing Libraries----------------------
2 from sklearn import datasets
3 import pandas as pd
4 from scipy.stats import randint as sp_rand
5 from sklearn.model_selection import train_test_split
6 from sklearn.ensemble import RandomForestClassifier
7 from sklearn.metrics import accuracy_score
8 from sklearn.model_selection import train_test_split
9 from sklearn.experimental import enable_halving_search_cv

10 from sklearn.model_selection import GridSearchCV,
HalvingGridSearchCV

11 from sklearn.model_selection import RandomizedSearchCV,
HalvingRandomSearchCV

12 from datetime import datetime
13

14

15 # ------------------------Loading Dataset------------------------
16 # Downloading the Breast Cancer Dataset from Scikit-learn Library
17 dataset = datasets.load_breast_cancer()
18 data = pd.DataFrame(dataset.data, columns = dataset.feature_names

)
19 data['target'] = dataset.target
20 data.head()
21

22 # Creating dataset variables
23 X = dataset.data
24 y = dataset.target
25

26 # Splitting Dataset
27 X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.2, random_state=42)

Listing 2.7 Importing libraries and preprocessing

After importing the library and packages, loading the dataset, creating dataset
variables, and splitting the dataset into test data and train data, we will implement
the different techniques of hyperparameter tuning one by one.

2.7.10.1 Manual Search
At first, we will go through the hyperparameter space manually. Then, we will build
the ML models based on the hyperparameter space. Next, the models are evaluated
on the accuracy metric to compare the performance. We have used the Random
Forest Classifier algorithm to build the models, which will be discussed in Chap. 3.

Programming Example 2.8
Listing 2.8 depicts the Python code for the manual search technique.

2.7 Hyperparameter Tuning and Model Optimization 101

1 # ---------------------Hyperparameter Space----------------------
2 params_1 = {'n_estimators': 10, 'criterion': 'entropy',
3 'max_features': 15, 'min_samples_split': 6,
4 'min_samples_leaf': 8, 'bootstrap': True}
5 params_2 = {'n_estimators': 50, 'criterion': 'entropy',
6 'max_features': 30, 'min_samples_split': 8,
7 'min_samples_leaf': 11, 'bootstrap': True}
8 params_3 = {'n_estimators': 80, 'criterion': 'gini',
9 'max_features': 30, 'min_samples_split': 10,

10 'min_samples_leaf': 6, 'bootstrap': False}
11

12

13 # ---------------------Create and Fit Model----------------------
14 model_1 = RandomForestClassifier(**params_1)
15 model_2 = RandomForestClassifier(**params_2)
16 model_3 = RandomForestClassifier(**params_3)
17

18 # Training Models
19 model_1.fit(X_train, y_train)
20 model_2.fit(X_train, y_train)
21 model_3.fit(X_train, y_train)
22

23 # Results
24 print(f'Model 1 accuracy: {model_1.score(X_test, y_test)}')
25 print(f'Model 2 accuracy: {model_2.score(X_test, y_test)}')
26 print(f'Model 3 accuracy: {model_3.score(X_test, y_test)}')

Listing 2.8 Hyperparameter manual search

Output of Listing 2.8:

Model 1 accuracy: 0.956140350877193
Model 2 accuracy: 0.956140350877193
Model 3 accuracy: 0.9473684210526315

2.7.10.2 Grid Search
Next, we will implement the grid search method using pre-defined functions.
The hyperparameter is created first, and then the models are built upon the
hyperparameter space. After training the models, the accuracy is evaluated for each
model.

Programming Example 2.9
Listing 2.9 depicts the Python code for the grid search technique.

1 # ---------------------Hyperparameter Space----------------------
2 h_space = {'n_estimators': [30, 60, 80, 100],
3 'criterion':['gini', 'entropy'],
4 'max_features': [10, 20, 25, 30],
5 'min_samples_split':[5, 11],
6 'min_samples_leaf': [5, 11],
7 'bootstrap': [True, False]}

102 2 Evaluation Criteria and Model Selection

8

9

10 # ---------------------Create and Fit Model----------------------
11 random_forest_clf = RandomForestClassifier()
12

13 # Creating and training models
14 # The datetime function has been used to calculate operation time
15 start = datetime.now()
16 models = GridSearchCV(random_forest_clf, param_grid = h_space, cv

=5)
17 models.fit(X_train, y_train)
18 end = datetime.now()
19

20 # Getting 5-fold cross-validated score
21 scores = models.cv_results_['mean_test_score']
22 # Getting best hyperparameters
23 best_hparams = models.best_params_
24

25 print(f'Duration: {end-start}')
26 print(f'Best model training Score: {max(scores)}')
27 print(f'Best hyperparameters: {best_hparams}')

Listing 2.9 Hyperparameters creation for grid search

Output of Listing 2.9:

Duration: 0:05:16.174259
Best model training Score: 0.9604395604395604
Best hyperparameters: {’bootstrap’: True,
’criterion’: ’entropy’, ’max_features’: 10,
’min_samples_leaf’: 5,
’min_samples_split’: 5, ’n_estimators’: 80}

Programming Example 2.10
Next, the model is built using the best set of hyperparameter combinations, as shown
in Listing 2.10.

1 # ------------------------Training Model-------------------------
2 # Training model with best hyperparameters from Grid Search
3 best_model = RandomForestClassifier(bootstrap = True,
4 criterion = 'entropy',
5 max_features = 10,
6 min_samples_leaf = 5,
7 min_samples_split = 5,
8 n_estimators = 80)
9 best_model.fit(X_train, y_train)

10 print('Best model accuracy: {best_model.score(X_test, y_test)}')

Listing 2.10 Grid search from hyperparameters

2.7 Hyperparameter Tuning and Model Optimization 103

Output of Listing 2.10:

Best model accuracy: 0.9649122807017544

2.7.10.3 Halving Grid Search
We will now use the halving grid search method. This is also implemented using
pre-defined functions.

Programming Example 2.11
Listing 2.11 depicts the Python code for the halving grid search technique.

1 # ---------------------Create and Fit Model----------------------
2 # The hyperparameter space is the same as Grid Search
3 start = datetime.now()
4 # The datetime function has been used to calculate operation time
5 models = HalvingGridSearchCV(random_forest_clf,
6 param_grid = h_space, cv=5)
7 models.fit(X_train, y_train)
8 end = datetime.now()
9

10

11 # Getting 5-fold cross-validated score
12 scores = models.cv_results_['mean_test_score']
13 # Getting best hyperparameters
14 best_hparams = models.best_params_
15

16 print(f'Duration: {end-start}')
17 print(f'Best model training Score: {max(scores)}')
18 print(f'Best hyperparameters: {best_hparams}')

Listing 2.11 Model for halving grid search technique

Output of Listing 2.11:

Duration: 0:02:38.249521
Best model training Score: 0.9555555555555555
Best hyperparameters: {’bootstrap’: True,
’criterion’: ’gini’,
’max_features’: 10, ’min_samples_leaf’: 5,
’min_samples_split’: 5, ’n_estimators’: 30}

Programming Example 2.12
Next, the model is built using the best set of hyperparameter combinations, as shown
in Listing 2.12.

1 # ------------------------Training Model-------------------------
2 # Training model with best hyperparameters from Halving Grid

Search
3 best_model = RandomForestClassifier(bootstrap = True,

104 2 Evaluation Criteria and Model Selection

4 criterion = 'gini',
5 max_features = 10,
6 min_samples_leaf = 5,
7 min_samples_split = 5,
8 n_estimators = 30)
9 best_model.fit(X_train, y_train)

10 print(f'Best model accuracy: {best_model.score(X_test, y_test)}')

Listing 2.12 Halving grid search technique

Output of Listing 2.12:

Best model accuracy: 0.956140350877193

2.7.10.4 Random Search
Now, we will implement the random search method. Again, the pre-defined func-
tions will be used for implementing the random search along the hyperparameter
space.

Programming Example 2.13
Listing 2.13 depicts the Python code for the random search technique.

1 # ---------------------Hyperparameter Space----------------------
2 h_space = {'bootstrap': [True, False],
3 'criterion': ['gini', 'entropy'],
4 'max_features': sp_rand(2, 30),
5 'min_samples_split': sp_rand(2, 11),
6 'min_samples_leaf': sp_rand(2, 11),
7 'n_estimators': sp_rand(30, 100)}
8

9

10 # ---------------------Create and Fit Model----------------------
11 start = datetime.now()
12 models = RandomizedSearchCV(random_forest_clf,

param_distributions = h_space, cv=5,
13 random_state = 42)
14 models.fit(X_train, y_train)
15 end = datetime.now()
16

17 # Getting 5-fold cross-validated score
18 scores = models.cv_results_['mean_test_score']
19 # Getting best hyperparameters
20 best_hparams = models.best_params_
21

22 print(f'Duration: {end-start}')
23 print(f'Best model training Score: {max(scores)}')
24 print(f'Best hyperparameters: {best_hparams}')

Listing 2.13 Hyperparameters creation for random search method

2.7 Hyperparameter Tuning and Model Optimization 105

Output of Listing 2.13:

Duration: 0:00:12.967197
Best model training Score: 0.956043956043956
Best hyperparameters: {’bootstrap’: True,
’criterion’: ’entropy’, ’max_features’: 16,
’min_samples_leaf’: 9, ’min_samples_split’: 6,
’n_estimators’: 53}

Programming Example 2.14
Next, the model is built using the best set of hyperparameter combinations, as shown
in Listing 2.14.

1 # ------------------------Training Model-------------------------
2 # Training model with best hyperparameters from Random Search
3 best_model = RandomForestClassifier(bootstrap = True,
4 criterion = 'entropy',
5 max_features = 16,
6 min_samples_leaf = 9,
7 min_samples_split = 6,
8 n_estimators = 53)
9 best_model.fit(X_train, y_train)

10 print(f'Best model accuracy: {best_model.score(X_test, y_test)}')

Listing 2.14 Random search method

Output of Listing 2.14:

Best model accuracy: 0.9649122807017544

2.7.10.5 Halving Random Search
Finally, we will implement the halving random search method. Again, the pre-
defined functions will be used for implementing the halving random search along
the hyperparameter space.

Programming Example 2.15
Listing 2.15 depicts the Python code for the halving random search technique.

1 # ---------------------Create and Fit Model----------------------
2 # The hyperparameter space is the same as Random Search
3 start = datetime.now()
4 models = HalvingRandomSearchCV(random_forest_clf,
5 param_distributions = h_space,
6 cv=5,
7 random_state = 42)
8 models.fit(X_train, y_train)
9 end = datetime.now()

10

106 2 Evaluation Criteria and Model Selection

11 # Getting 5-fold cross-validated score
12 scores = models.cv_results_['mean_test_score']
13 # Getting best hyperparameters
14 best_hparams = models.best_params_
15

16 print(f'Duration: {end-start}')
17 print(f'Best model training Score: {max(scores)}')
18 print(f'Best hyperparameters: {best_hparams}')

Listing 2.15 Model for halving random search method

Output of Listing 2.15:

Duration: 0:00:14.086538
Best model training Score: 0.9666666666666666
Best hyperparameters: {’bootstrap’: True,
’criterion’: ’gini’,
’max_features’: 9, ’min_samples_leaf’: 3,
’min_samples_split’: 2, ’n_estimators’: 77}

Programming Example 2.16
Next, the model is built using the best set of hyperparameter combinations, as shown
in Listing 2.16.

1 # ------------------------Training Model-------------------------
2 # Training model with best hyperparameters from Halving Random

Search
3 best_model = RandomForestClassifier(bootstrap = True,
4 criterion = 'gini',
5 max_features = 9,
6 min_samples_leaf = 3,
7 min_samples_split = 2,
8 n_estimators = 77)
9 best_model.fit(X_train, y_train)

10 print(f'Best model accuracy: {best_model.score(X_test, y_test)}')

Listing 2.16 Halving random search method

Output of Listing 2.16:

Best model accuracy: 0.956140350877193

Both random search and halving random search take almost the same amount of
time and give almost identical scores, but they require significantly less time than
brute-force (grid search and halving grid search) methods.

2.8 Bias and Variance 107

2.8 Bias and Variance

Bias and variance are two reducible errors in machine learning. For accurate
prediction by the ML models, a low value of bias and variance is desired. However,
both cannot be achieved at the same time. This section will teach us about bias,
variance, and the bias–variance trade-off:

1. Bias: Bias is the difference in the predicted and actual values of the target
variable. When training a model on a specific dataset, the model makes some
assumptions about the dataset. Based on this assumption, the model is trained.
Two types of scenarios need to be dealt with while working with biases—low
bias and high bias:
(a) Low bias: Low bias indicates that the model makes fewer assumptions

about the dataset, which helps the model learn about new features, thus
increasing the performance of the model. However, low bias can make it time-
consuming for the model to train. One of the significant characteristics of
non-linear algorithms is low bias, such as decision trees, k-nearest neighbors,
support vector machines, etc.

(b) High Bias: High bias indicates that the model has made more assumptions
about the dataset. These assumptions speed up the training process for the
model. However, because of a higher number of assumptions, the model
cannot adapt to new features on the dataset. So if the assumptions made prior
to training are incorrect, the model’s performance decreases. Usually, linear
algorithms have high bias, i.e., linear regression, linear discriminant analysis,
and logistic regression.

2. Variance: Variance is a measure of how the output of a model will vary if a
different portion of the training data is used one at a time. In ideal circumstances,
it is expected that the variation of the model’s output based on different portions
of the training data should not be significant. However, if the variation is
significant, the algorithm has failed to establish a concrete relation between
the features and the target variable. There are also two scenarios to discuss for
variance—low and high:
(a) Low variance: A low variance indicates moderate fluctuation of the model’s

output based on a different portion of the training data.
(b) High variance: A high variance indicates significant fluctuation of the

model’s output based on different portions of the training data, resulting in
the model’s failure to relate between input and output. The model has to
learn repeatedly from the dataset to make a relation. Thus, it learns even the
minuscule features, i.e., noise from the dataset. Eventually, the model does
not perform well with unobserved data.

108 2 Evaluation Criteria and Model Selection

Fig. 2.16 The trade-off
between bias and variance

Model complexity

E
rr

o
r

Overfitting

(High variance)

Underfitting

(High bias)

Optimal model

complexity

2.8.1 Bias–Variance Trade-off

There exists a trade-off between bias and variance, which can be observed from
Fig. 2.16. If the bias of the model is increased, the variance will decrease. On the
contrary, if the model’s variance is increased, the bias will decrease. The target of
building a model is always to perform well with unobserved data. A low bias and
high variance can make a model overfit the training dataset. On the other hand, a
model with high bias and low variance may underfit the dataset. Therefore, a balance
between bias and variance is required to be determined while training the models.

2.9 Overfitting and Underfitting

While training a model on the dataset, the goal is to find a good fit. A balance must
be found so the model does not overfit or underfit. The techniques for finding a good
fit vary depending on the models used and the dataset being worked with:

1. Overfitting: When a model overlearns a dataset, to the extent of learning all the
noise and errors in a dataset, it is said that the model has overfitted. An overfit
model fails to perform well for unobserved data. Therefore, the model loses its
credibility for not predicting correctly. The model has been overfitted when train
accuracy is significantly higher than the test accuracy. Overfitting occurs when
the model has low bias and high variance.

Several preventive measures can be taken to prevent the model from over-
fitting. One way can be to stop the training early to prevent it from learning
trivial features from the dataset. Cross-validation is also an effective way to
prevent overfitting. If the model is trained with a larger dataset, the probability of
overfitting lessens. Regularization and ensembling techniques also help stop the
overfitting of the model.

2.10 Model Selection 109

Underfitting

Optimal fitting

Overfitting

Regression Classification Deep learning

x

y

x

y

x

y

x

y

x

y

x

y

Feature A

F
ea

tu
re

 B

Feature A

F
ea

tu
re

 B

Feature A

F
ea

tu
re

 B

Feature A

F
ea

tu
re

 B

Feature A

F
ea

tu
re

 B

Feature A

F
ea

tu
re

 B

Epochs

E
rr

o
r

Training

Validation

Epochs

E
rr

o
r

Training

Validation

Epochs

E
rr

o
r

Training

Validation

Epochs

E
rr

o
r

Training

Validation

Epochs

E
rr

o
r

Training

Validation

Epochs

E
rr

o
r

Training

Validation

Fig. 2.17 The effect of overfitting and underfitting on training data

2. Underfitting: When a model fails to learn anything from the dataset, it is
called an underfit model. It is straightforward to identify an underfit model.
The train accuracies are very poor. Therefore, the model has to be trained for
a more extended amount of time to prevent underfitting. Another way to prevent
underfitting is to increase the number of features. A model is underfitted when
the model has high bias and low variance.

The effect of overfitting and underfitting on training data is illustrated in
Fig. 2.17.

2.10 Model Selection

The technique to pick a model among many built models that would be the most
relevant and efficient to solve the model.

There are two approaches to model selection:

• Probabilistic Methods: Picks a model based on the performance and complexity
of training data.

110 2 Evaluation Criteria and Model Selection

• Resampling Methods: Picks a model based on the performance and complexity
of test data.

2.10.1 Probabilistic Methods

Probabilistic measures work well if linear models are used, e.g., regression or
logistic regression. Three of the most used approaches of probabilistic model
selection are discussed below.

2.10.1.1 Akaike Information Criterion (AIC)
The AIC method is one of the probabilistic methods widely used for model selection
[5]. It is named after Hirotugu Akaike, a Japanese statistician who gave the formula
for this method. The lowest AIC-scored model is selected among the given models
and used to perform respective tasks. The AIC method focuses more on model
performance with respect to the training dataset than model complexity. However, it
does not penalize the complexity of the model. Therefore, complex models can get
selected if their performances are good. The formula for calculating AIC is given
by Eq. 2.27:

.AIC = − 2

N
∗ LL + 2 ∗ k

N
, (2.27)

where AIC denotes the Akaike Information Criterion score, N denotes the existing
number of examples that are present in the training dataset, LL denotes the log
likelihood of the model based on the training dataset, and k denotes the present
number of parameters in the model.

2.10.1.2 Bayesian Information Criterion (BIC)
The BIC is another probabilistic model selection method very similar to the AIC
method [6]. This method, also known as the Schwarz Information Criterion, was
developed by Gideon E. Schwarz, who introduced the Bayesian adaption for the
method, thus naming it the Bayesian Information Criterion. The model with the
lowest BIC score is selected as the best model among the given models. With the
increase in model complexity, the penalty for the model is also increased by the BIC
method, thus lowering the chance of selecting the complex models. The formula for
calculating the BIC is given by Eq. 2.28:

.BIC = −2 ∗ LL + log(N) ∗ k, (2.28)

where BIC denotes the Bayesian Information Criterion, .log() denotes the natural
logarithm, N denotes the example size present in the training dataset, LL denotes
the log likelihood of the model based on the training dataset, and k denotes the
present number of parameters in the model.

2.10 Model Selection 111

2.10.1.3 Minimum Description Length (MDL)
The MDL is another widely used probabilistic method for model selection. The
model with the least MDL score is selected as the best model on a given training
set. The formula for calculating the MDL is given by Eq. 2.29:

.MDL = L(h) + L(D|h), (2.29)

where MDL denotes the Minimum Description Length, h is the model, D denotes
the predictions outputted by the model, .L(h) denotes the number of bits that are
needed to represent the model, and .L(D|h) denotes the number of bits that are
needed to represent the model’s outputted predictions on the training dataset. The
target is to minimize both .L(h) and .L(D|h).

2.10.2 Resampling Methods

The resampling method focuses more on evaluating a model on out-of-sample data.
Three of the most used approaches for resampling model selection are discussed
below.

2.10.2.1 Random Train/Test Splits
This technique divides the dataset into two smaller datasets: train set and test set.
The train set is used to train and build the model. The test set is the new unobserved
data for evaluating the model. The predictions made on the test set by the model are
compared to the expected results to make an evaluation.

The random train/test split technique is efficient when the available data are
large enough. However, this technique fails to evaluate the model appropriately
with a small dataset. Again, if the dataset does not contain all possible cases of the
specific problem to be worked with, this technique will fail to evaluate the model
performance properly.

2.10.2.2 Cross-Validation
This method is also known as K-fold cross-validation. This is a statistical method
to evaluate the performance of a model. This method is a much more stable way to
evaluate data than based on training and testing datasets.

Conventionally, we use 75% (. 34) of the data to train the data and 25% (. 14) of
the data to test the model. The idea is to see if the model can predict the test data
correctly. However, when the model does not have much data to train or faces any
unseen behavior, it cannot predict correctly.

This is where cross-validation comes in handy. Rather than dividing the whole
dataset into 4 parts, the dataset is divided into k parts (k-folds). For each of these
folds, k . ∈ 1,. . . , K, all but the k-th fold is trained and tested upon the k-th fold. Upon
completing the test on all the folds, all the errors are averaged, and the total error
percentage is calculated.

112 2 Evaluation Criteria and Model Selection

All data

Training data Test data

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Split 1

Split 2

Split 3

Split 4

Split 5

Test dataFinal evaluation

Final parameters

Fig. 2.18 Fivefold cross-validation visualization

Figure 2.18 shows the visualization of the fivefold cross-validation. First, the
entire training dataset is split into five folds. Then, a final test set is kept aside for
final evaluation. During each iteration, a different fold is used as the validation set
(marked in green) for performing test validation, and the rest folds are used to train
the model. For example, fold one is used as the validation set, and folds 2–5 are used
to train the model in the first iteration. Then, for the next iteration, fold 2 is used as
the validation set, and the rest of the folds are used as train sets. Finally, after five
iterations, the cross-validation is done, and the model is tested on a final test set that
is kept aside.

2.10.2.3 Bootstrap
Bootstrap is a statistical resampling method used to evaluate the model’s perfor-
mance. Bootstrap sampling repeatedly takes small samples from a dataset with
replacement and tries to estimate the population parameter. To understand the
technique, one should be familiarized with out-of-bag samples. After drawing one
sample, the model is fit on that sample and evaluated on the data that are not
included. These non-included data objects are out-of-bag samples.

The bootstrap sampling algorithm is given as follows:

1. Determine the number of bootstrap samples.
2. Determine the size of the sample to work with.
3. For every bootstrap sample:

(a) Draw samples, each time replacing the previous data objects.
(b) Make necessary statistical calculations on the sample.

4. Make necessary calculations on sample statistics.

2.13 Exercise 113

2.11 Conclusion

In this chapter, we learned different strategies for evaluating machine learning
models and selecting appropriate models. At first, we studied the different error
criteria, such as the MSE, RMSE, MAE, MAPE, Huber loss, cross-entropy loss,
and Hinge loss. Next, we studied different types of distance metrics for measuring
the distance between two points, such as the Euclidean distance, the cosine
similarity and cosine distance, the Manhattan distance, the Chebyshev distance,
the Minkowski distance, the Hamming distance, and Jaccard similarity and Jaccard
distance. After that, we read about the confusion matrix and some associated terms
such as accuracy, precision, recall, and the F1 score, followed by an overview
of model parameters, hyperparameters, and hyperparameter spaces and a detailed
section on the different methods of hyperparameter tuning and model optimization.
Then, we studied the concepts of bias, variance, overfitting, and underfitting. Finally,
we studied the different probabilistic and resampling methods of model selection.
In summary, this chapter talked us through the pre- and post-modeling stages of
machine learning modeling so that we know which models to select and how to
evaluate their performance. In the next chapter, we will study different types of
machine learning algorithms to help us in the modeling stage.

2.12 Key Messages from This Chapter

• Building any model is not sufficient. It should be efficient and relevant to the
problem and context.

• The different error criteria help us to evaluate the models. The minimum value
of the error is desired.

• Hyperparameters of the models are required to be tuned so that efficient models
can be built.

• A low value of bias and variance is desired. However, both cannot be achieved
simultaneously, so we have to go for a bias–variance trade-off.

• A good machine learning model should avoid overfitting or underfitting the data.
• After building models, necessary methods are required to apply to select the best

model. After selection, the model is applied to real-life applications.

2.13 Exercise

1. How should a model be selected for machine learning? Briefly discuss the steps.
2. What is meant by error criteria in machine learning? Classify different error

criteria and mention their usage.
3. What is determined by distance metrics in machine learning? Mention different

distance metrics and their usage.

114 2 Evaluation Criteria and Model Selection

4. What are parameters and hyperparameters in machine learning? Mention and
briefly explain some hyperparameter tuning techniques.

5. Define bias and variance. How do bias and variance relate to overfitting and
underfitting? How do we prevent overfitting and underfitting of a model?

6. Consider two arrays of equal size: A = [1, 2, 3, 4, 5] and B = [0, 0.9, 1.4, 1.7,
7]. Find the MSE, RMSE, MAE, and MAPE.

7. The output of a machine learning model is ŷ = [80, 86, 89, 95, 98]. The
corresponding ground truth value is y = [81, 84.5, 150, 95.6, 99]. Calculate
the MSE and the Huber Loss. Which error metric is less affected by an outlier?
Assume δ = 5.

8. A binary classifier can also be regarded as a multiclass classifier. For a certain
binary classifier, the predicted value, ŷ = 0, 98 for y = 1. If this is taken as a
multiclass classifier, then ŷ = [0.2, 0.98] and y = [0, 1]. Calculate the binary
cross-entropy loss and the multiclass cross-entropy loss. Do we get similar
results in both cases?

9. The test accuracy of an ML model is 98%, and the training accuracy is 90%.
Does the model overfit or underfit? Give some reasons and list some mitigation
techniques (e.g., increase/decrease train data, increase/decrease model size,
etc.).

10. For h = 1 and h = 2, we get the Manhattan distance and Chebyshev distance,
respectively, from the Minkowski distance. Can you prove it?

11. Given two data objects: A(7, 30, 0, 9, 87) and B(4, 67, 2, 54, 5). Perform the
following:
(a) Calculate:

i. Euclidean distance
ii. Manhattan distance
iii. Chebyshev distance
iv. Cosine distance
v. Minkowski distance (h = 3)

(b) Write Python programs to calculate the above.
12. Two DNA samples of different species are as follows:

(a) Sample A = AATGCATTCG
(b) Sample B = AATCGATTGC
Which distance metric will you choose to determine the similarity between
these two samples and why? Write a Python program to determine the similarity
between these two DNA samples.

13. Two sentences are given—“The men are playing soccer on the beach” and “The
boys are playing soccer near the beach.” Write Python program(s) to determine
cosine similarity and Jaccard similarity. Do these distance metrics agree? [Hint:
Follow the code snippet below to get the required numerical data for cosine
similarity.]

2.13 Exercise 115

1 '''
2 Get two different sets of words for the 2 different

sentences.
3 The two sets are denoted here as S1_set and S2_set. Follow

the
4 method described in Example~2.5 for getting S1_set and

S2_set.
5 '''
6

7 # Word count list for 1st sentence. Declared as empty list.
8 S1_list = []
9 # Word count list for 2nd sentence. Declared as empty list.

10 S2_list = []
11

12 # Getting the union operation output between the word sets of
two sentences.

13 # This is exactly the same union operation as the Jaccard
similarity example.

14 U = S1_set.union(S2_set)
15

16 for word in U:
17 if word in S1_set: S1_list.append(1) # Getting word list

in binary format for 1st sentence
18 else: S1_list.append(0)
19 if word in S2_set: S2_list.append(1) # Getting word list

in binary format for 2nd sentence
20 else: S2_list.append(0)
21

22 # Now calculate the cosine similarity between S1_list and
S2_list

23

14. A binary classifier model for classifying two objects A and B is developed. The
necessary information associated with testing the model is as follows:
(a) Total number of samples = 250
(b) Total number of samples of A = 130
(c) Total number of samples of B = 120
(d) Number of samples correctly classified for A = 128
(e) Number of samples correctly classified for A = 128
(f) Number of samples correctly classified for B = 110

Determine confusion matrix, accuracy, precision, recall, and F1 score by
taking A as positive and B as negative class. Repeat the operation by taking
A as a negative class and B as a positive class. Which metrics give the same
value, and which give different values for these two conditions? Why?

116 2 Evaluation Criteria and Model Selection

References

1. Huber, P. J. (1992). Robust estimation of a location parameter. In Breakthroughs in statistics
(pp. 492–518). Springer.

2. Shannon, C. E. (1951). Prediction and entropy of printed English. Bell System Technical
Journal, 30(1), 50–64.

3. Gentile, C., & Warmuth, M. K. K. (1998). Linear hinge loss and average margin. In Advances
in Neural Information Processing Systems (Vol. 11).

4. Mangasarian, O., Street, N., Wolberg, W., & Street, W. (1995). Breast Cancer Wisconsin
(Diagnostic). UCI Machine Learning Repository. https://doi.org/10.24432/C5DW2B

5. Stoica, P., & Selen, Y. (2004). Model-order selection: A review of information criterion rules.
IEEE Signal Processing Magazine, 21(4), 36–47.

6. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.

https://doi.org/10.24432/C5DW2B
https://doi.org/10.24432/C5DW2B
https://doi.org/10.24432/C5DW2B
https://doi.org/10.24432/C5DW2B
https://doi.org/10.24432/C5DW2B
https://doi.org/10.24432/C5DW2B

3Machine Learning Algorithms

3.1 Introduction

The world of machine learning is not a small one. There are lots of techniques and
algorithms that can be utilized in various applications. Machine learning is broadly
divided into several categories. However, the two main categories are supervised
learning and unsupervised learning. Supervised learning involves labeled data
and can be either a classification or a regression problem. On the other hand,
unsupervised learning involves unlabeled data, and the algorithm detects patterns
within the dataset. This type of learning is mainly used for clustering problems,
although several more applications of this category exist. A fusion of supervised
and unsupervised learning approaches is made in semi-supervised learning, which
involves a small amount of labeled data (similar to supervised learning) with a large
amount of unlabeled data (similar to unsupervised learning).

Each type of machine learning constitutes several algorithms. This chapter
unfolds the basics of each algorithm with practical examples and relevant code with
explanation. The reader is advised to walk through the codes and execute them to
ensure better learning. Since machine learning requires a huge amount of data for
training the models, we will talk about datasets and their preprocessing strategies
first.

3.2 Datasets

We get a dataset when we collect a set of corresponding data from a particular
statistical population and arrange them in some manner. The robustness of a model
significantly depends on the dataset preparation. Some standard datasets are readily
available that can be used as base datasets and can be altered or modified based on
the necessity for conducting machine learning research. The values of the dataset
are usually numerical, although some datasets may contain Boolean or string data.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
E. Hossain, Machine Learning Crash Course for Engineers,
https://doi.org/10.1007/978-3-031-46990-9_3

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46990-9protect T1	extunderscore 3&domain=pdf
https://doi.org/10.1007/978-3-031-46990-9_3
https://doi.org/10.1007/978-3-031-46990-9_3
https://doi.org/10.1007/978-3-031-46990-9_3
https://doi.org/10.1007/978-3-031-46990-9_3
https://doi.org/10.1007/978-3-031-46990-9_3
https://doi.org/10.1007/978-3-031-46990-9_3
https://doi.org/10.1007/978-3-031-46990-9_3
https://doi.org/10.1007/978-3-031-46990-9_3
https://doi.org/10.1007/978-3-031-46990-9_3
https://doi.org/10.1007/978-3-031-46990-9_3
https://doi.org/10.1007/978-3-031-46990-9_3

118 3 Machine Learning Algorithms

A dataset is best arranged in a tabular manner, where each row corresponds to a
single data entry and each column represents a specific variable associated with all
the available data in that dataset.

A dataset can be categorized based on its size. When the dataset becomes very
large (larger than a petabyte) and contains complex data features, the data processing
power requirements grow exponentially to the extent that traditional computing
systems fail to comprehend. This massive dataset is then referred to as big data.
Dataset size ranging from terabyte to megabyte may be referred to as a large dataset,
whereas a dataset in the kilobyte range is a small dataset. This book mainly deals
with large datasets in this sense. In this section, we will explore data wrangling,
feature scaling, different data types, and data splitting.

3.2.1 Data Wrangling

Data wrangling, or data munging, is the process of converting a raw dataset into
a digestible format for the ML algorithm. Data wrangling refines the data into a
suitable format that can be readily accessed and analyzed by the ML algorithm. The
process involves preprocessing, compensating for missing data, feature engineering,
and converting the data to an appropriate type. Thus, data wrangling makes the data
usable for various analytic purposes.

3.2.1.1 Preprocessing
Data preprocessing is a step wherein data is transformed so that machines can
easily understand it. For implementing ML techniques on data, features are a pivotal
factor. Therefore, features have been introduced earlier in Chap. 1 as part of the ML
workflow. A feature, also known as variables or fields, is a characteristic of each data
point of a specific dataset. For instance, Fig. 3.1 portrays a dataset with five features:
the id number, first name, last name, email address, and IP address, and the dataset
contains some missing data marked in red. A label is a feature that an ML algorithm

Fig. 3.1 A dataset having five features and some missing data

3.2 Datasets 119

extracts from the dataset for each data point. The features have different data types,
and some values are missing. The main objective of data preprocessing is to allow
machines to understand the features of the whole data frame. This involves feature
scaling, removing missing values, data augmentation, etc., which are discussed in
the following sections. In a tabular representation of datasets, features can typically
be seen as column headers.

3.2.1.2 Missing Data
Finding every piece of missing data while working on a vast dataset is implausible.
This is generally because of errors during data collection, validation, human error,
data merging between different datasets, etc. Missing data can cause an error if
the ML algorithm is implemented on such a faulty dataset. Hence, these missing
or corrupted data must be either changed or corrected or removed during the
preprocessing stage to ensure the smooth performance of the ML algorithm.

The following list demonstrates some methods to eliminate the missing data from
a large dataset. The dataset is read into a Pandas data frame, ipAddress. Here,
.dropna() is a method already implemented in the Pandas package. So, instead of
writing vigorous codes from scratch, we can simply use this Pandas method directly.
Pandas has their official documentation on how to deal with missing values [1].

1. Eliminating missing values

The command is ipAddress.dropna()
2. Eliminating selected rows or columns

The command is ipAddress.dropna([1, 2, 3])
3. Eliminating missing values in selected rows or columns

The command is ipAddress.dropna("email", axis=1)
4. Eliminating missing values based on condition

The command is ipAddress.dropna[df["email"] == "bsplaven7@nba.com"]
5. Eliminating null values

The command is ipAddress.dropna[df["email"].notnull()]

3.2.1.3 Imputation
Many datasets often have missing values. These values are a hurdle to properly
implementing the ML algorithm. ML algorithms require datasets to be complete.
Imputation can be a better way of filling in missing data.

Programming Example 3.1
Listing 3.1 shows a general method of using imputation followed by its output and
explanation in Table 3.1. The code shows the imputation process when dealing with
missing numbers. The missing values in this scenario are replaced with the average
of the adjacent numbers.

1 import numpy as np
2 from sklearn.impute import SimpleImputer
3

4 imp = SimpleImputer(missing_values=np.nan, strategy='mean')
5 imp.fit([[1, 5],
6 [2, 10],

120 3 Machine Learning Algorithms

7 [7, 35],
8 [15, 75],
9 [0, 0]])

10

11 X = [[1, 5],
12 [2, 10],
13 [np.nan, 2],
14 [7, 35],
15 [6, np.nan],
16 [15, 75],
17 [0, 0]]
18

19 print(imp.transform(X))

Listing 3.1 Data imputation

Output of Listing 3.1:

[[1. 5.]
[2. 10.]
[5. 2.]
[7. 35.]
[6. 25.]
[15. 75.]
[0. 0.]]

The code requires numpy and sklearn packages as prerequisites. The code to
install these packages is as follows:
pip install numpy

pip install sklearn

We used the mean of the existing values to get the remaining values, which can
be seen in Line 4. We can also use median, most_frequent, and constant
instead of mean.

• mean : The missing values are replaced by the mean of each column; it works
with only numeric data.

• median : The missing values are replaced by the median of each column; it
works with only numeric data.

• most_frequent : Then the missing values are replaced by the most frequent
value or the mode of each column; it works with strings or numeric data. For
multiple modes, only the smallest mode is returned.

Table 3.1 Explanation of
Listing 3.1

Line number Description

1–2 Importing libraries

4 Creating an instance of imputation

5–9 Fitting the imputation to existing data

11–17 Declaring a list with blank values

19 Predicting null values using mean strategy

3.2 Datasets 121

• constant : The missing values are replaced by fill_value; it works with
strings or numeric data.

3.2.2 Feature Scaling

When working with different features or variables, it is almost certain that we have
data on different features in different ranges. For instance, a dataset has two features:
temperature and humidity. The values for temperature range from 25 to . 35 ◦C,
and the values for humidity range from 70 to 90%. The range is different for the
two features, so they cannot be compared. This range difference is also unsuitable
for ML algorithms to work with. Therefore, a sort of transformation is done on
the attribute values so that all features come within a comparable and workable
range. The transformation done on the data for this purpose is feature scaling.
There are different methods for feature scaling, three of which are standardization,
normalization, and data augmentation. These are described in the following sections.

3.2.2.1 Standardization
Standardization is a very popular method for feature scaling. After standardizing
the dataset, we get a mean of zero and a unit standard deviation. This method is
used primarily in cases where the data distribution follows the normal distribution.
Standardizing the data does not bring the data to a specific pre-defined range.
Therefore, this feature scaling method is not affected by outliers. Whenever a feature
is standardized, each data is first subtracted from the mean and then divided by the
standard deviation. The formula to perform standardization of the data is given in
Eq. 3.1:

.z = x − μ

σ
, (3.1)

where z represents the standardized value, x is the attribute value, . μ is the respective
attribute mean, and . σ is the respective attribute standard deviation.

3.2.2.2 Normalization
Normalization is another popularly used method for feature scaling. Normalization
is a technique to convert different numeric values into a common range without
distorting the differences between the values. It scales all the feature values
within the range [0,1] or [. −1,1]. Since there is a specific range value normalizing
the data, the outliers present in the dataset affect this method. Normalization is
beneficial when the dataset’s data distribution is unknown. The formula to perform
normalization of the data is given in Eq. 3.2:

.x' = x − xmin

xmax − xmin
, (3.2)

122 3 Machine Learning Algorithms

Fig. 3.2 Difference between standardization and normalization

where . x' is the normalized value, x is the attribute value, .xmin is the minimum value
of the respective attribute, and .xmax is the maximum value of the respective attribute.

The difference between standardization and normalization has been demon-
strated through a box and whisker plot in Fig. 3.2. The normalized data brings all
the original values to the 0 to 1 range, while the standardized dataset has a mean of
zero.

Example 3.1 Suppose a weather dataset has two features—temperature and humid-
ity. Apply feature scaling on the dataset using standardization and normalization
methods.

Temperature 25 21 30 35 34 33 32 33 24 23

Humidity 78 75 88 72 83 79 76 88 85 77

Solution to Example 3.1
Standardization
For the temperature feature, we calculate the mean . μ first.

.μ = 25 + 21 + 30 + 35 + 34 + 33 + 32 + 33 + 24 + 23

10
= 290

10
= 29. (3.3)

Next, we calculate the standard deviation . σ for temperature:

.σ =
/

1

N

Σ
(xi − μ)2 =

/
244

10
= 4.9396. (3.4)

Applying the standardization method to the first temperature value, i.e., .x = 25,
we get

.z = x − μ

σ
= 25 − 29

4.9396
= −0.8097. (3.5)

Similarly, we get the standardized values given in Table 3.2 for temperature and
humidity features:

3.2 Datasets 123

Table 3.2 The standardized
values for temperature and
humidity

Temperature Humidity

. −0.8097 . −0.3962

. −1.6195 . −0.9622

0.2024 1.4905

1.2146 . −1.5283

1.0122 0.5471

0.8097 . −0.2075

0.6073 . −0.7735

0.8097 1.4905

. −1.0122 0.9245

. −1.2146 . −0.5849

Table 3.3 The normalized
values for temperature and
humidity

Temperature Humidity

0.2857 0.3750

0.0000 0.1875

0.6428 1.0000

1.0000 0.0000

0.9285 0.6875

0.8571 0.4375

0.7857 0.2500

0.8571 1.0000

0.2142 0.8125

0.1428 0.3125

Normalization
For the temperature, .xmin = 21 and .xmax = 35.

Applying the normalization method to the first temperature value, i.e., .x = 25,
we get

.x' = x − xmin

xmax − xmin
= 25 − 21

35 − 21
= 0.2857. (3.6)

Similarly, we get the normalized values given in Table 3.3 for temperature and
humidity features:

3.2.2.3 Data Augmentation
While working with a dataset, we may often come across the issue of insufficient
data. A larger dataset is always desired as it helps the models to make generaliza-
tions easily. A dataset that is huge in quantity and contains different possible data
scenarios is helpful for the model to perform efficiently. The more data fed to the
model during the training phase, the better the model performs. Data augmentation
is a technique that synthetically increases the training data size by creating modified

124 3 Machine Learning Algorithms

Fig. 3.3 Examples of different data augmentation techniques [2]

data from the existing ones. Various techniques can be applied to the existing dataset
to increase the amount and variety of data.

Figure 3.3 presents an example of different techniques to achieve data augmen-
tation, such as rotation, blurring, contrast, scaling, illumination, projection, etc.
Scaling the images creates the zoom-in effects, resulting in the diversity of data.
Another technique is arbitrarily rotating the original image, varying the degree
values to diversify the dataset. Augmentation can also be achieved by tweaking color
components such as hue, intensity, saturation, etc. An object can be viewed from
different angles. Changes in perspective points or projections are done to achieve
the effect of viewing the object from different angles.

3.2.3 Data Types

Machine learning algorithms deal with different types of data. Therefore, different
data types require different approaches to ML algorithms. The data types can
be categorized as (i) sequential and non-sequential and (ii) stationary and non-
stationary. These are discussed in the following sections.

3.2.3.1 Sequential vs. Non-sequential Data Type
Sequential data types are those that have a definite sequence, such as lists, strings,
tuples, byte sequences, byte arrays, and range objects. The elements in such data
types are accessible through their indexes, which indicate their position in the
sequence and start from 0.

On the contrary, non-sequential data types have no sequence, such as dictionaries
and sets. There is no maintained order among the elements in non-sequential
data types. Figure 3.4 depicts a visual representation of sequential data and non-
sequential data. For sequential data, an array is shown. The array is serially indexed.

3.2 Datasets 125

Fig. 3.4 Examples of sequential vs. non-sequential data types. (a) Sequential data type: an array.
(b) Non-sequential data type: a dictionary

On the contrary, a dictionary is shown with no serial indexing for non-sequential
data.

3.2.3.2 Stationary vs. Non-stationary Data Type
A stationary dataset is known to have constant statistical properties, such as mean,
variance, etc., over time. Data in such datasets are easy to forecast since their
properties do not change with time.

On the contrary, the dataset whose statistical properties change over time is
known as non-stationary data. These types of data cannot be forecasted or modeled
due to their variable nature. Non-stationary data have trends, cycles, or seasonality
in them. Figure 3.5 shows an example of stationary and non-stationary data.

3.2.4 Data Splitting

Data splitting has been previously mentioned in Chap. 1 as a step in the ML
workflow. Splitting data serves the purpose of appropriately training an ML model.
The proper splitting prevents a model from overfitting, ensures precise assessment,
and improves the performance of a model. The most common way of data splitting
is to split the dataset into two subsets—one train dataset and another test dataset. But
a convention of splitting into three subsets is also familiar. In this case, the dataset
is split into train, validation, and test datasets. These two ways of data splitting are
illustrated in Fig. 3.6. The percentages mentioned in the figure can vary according
to use cases.

126 3 Machine Learning Algorithms

Fig. 3.5 Stationary vs. non-stationary data

Train Validation Test

80%

60%

20%

20%20%

Fig. 3.6 The two ways of data splitting: training and testing data (top) and training, validation,
and testing data (bottom)

1. The training dataset: The training dataset is the subset used to train the model.
It is used by the model to recognize any pattern or relationships in the data. In
most cases, it is the largest chunk (nearly 60–80%) of the data.

2. The validation dataset: The validation dataset, also known as the development
dataset, is the subset used to understand the performance of the various models
and parameters and select the best model. In other words, it is used to get an
unbiased evaluation of how the model performance changes when using different
models and parameters instead of those that were used to train the model.

3. The testing dataset: The testing dataset is used to evaluate the model perfor-
mance on unseen data. How well it predicts the test data determines the model’s
accuracy.

Apart from this splitting technique, there are some that are often used for special
purposes, such as:

• k-Fold Cross-Validation: The dataset, in this case, is divided into k subsets (also
called k-folds). Then these subsets are used to train and validate the model. In
contrast to the normal training and validating process, it uses a different subset

3.2 Datasets 127

each time for validating and the rest of the subsets for training. More details on
cross-validation can be found in Sect. 2.10.2.2 of Chap. 2.

• Stratified Sampling: This method is used so that all the subsets contain each
class or label in an equal distribution after splitting. It ensures the data is correctly
distributed within the train, test, and validation datasets.

The most common method for splitting is scikit-learn’s train_test_split()
function, whose uses are demonstrated below:

1. For train–test split:

1 from sklearn.model_selection import train_test_split
2

3 X_train, X_test, y_train, y_test = train_test_split (
features, labels, test_size=0.2, random_state=42, shuffle=
False)

2. For train-validation-test split:

1 X_train_test, X_test, y_train_test, y_test =
train_test_split (signals, labels, test_size=0.2)

2

3 X_train, X_val, y_train, y_val = train_test_split (
X_train_test, y_train_test, test_size=0.3)

Sometimes, a label is not passed through the function for splitting.

X_train, X_test =
train_test_split (signal_df.values, test_size=0.2)

Different parameters can be passed into the function. The most common param-
eters are .train_size, .test_size, .random_state, and shuff le, which consecutively
define train dataset size, test dataset size, the randomness of the data, and whether
the data should be randomly shuffled before splitting. The parameter shuff le is
True by default. If you set the test dataset size, the remaining data will be used
as the training dataset. Consequently, no need to mention the train dataset size
in general. The .random_state parameter controls the shuffling but ensures the
splitting is reproducible across multiple function calls; e.g., random_state=42

means a specific random state is called for reproducing the same shuffle. In the
case of classification tasks, the parameter stratify needs to be used to have
approximately the same distribution of target classes as the original dataset.

X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, stratify=y)

Data splitting can cause the model performance drop in some specific cases. One
of them is in the case of overfitting. For instance, in a power system, most faults
(about 90% time) are single line-to-ground (SLG) faults. If the data taken from a live
system is directly used for training, it will overfit the SLG label and try to predict

128 3 Machine Learning Algorithms

everything as SLG. Maintaining the integrity of the dataset is crucial to preserve the
original data distribution and prevent any data leakage. This is necessary to ensure
that the testing set does not interfere with the training process and that it does not
degrade model performance.

In most cases, the train–test split or train–validation–test split is adequate
in general. However, data splitting is done according to the dataset and model
characteristics for special purposes.

3.3 Categorization of Machine Learning Algorithms

Machine learning is an infinitely vast field of science beyond hard-and-fast catego-
rization. Generally, in the most standard references, ML algorithms are divided into
supervised learning and unsupervised learning. In some other texts, semi-supervised
learning is presented as the third type. Therefore, it can be rightly stated that there
is no strict categorization of the algorithms, and whichever notion you decide to
follow is correct. However, in this book, the following main types of ML algorithms
are discussed in depth:

1. Supervised learning
2. Deep learning
3. Time series forecasting
4. Unsupervised learning
5. Semi-supervised learning
6. Reinforcement learning

Let us now dive into the world of machine learning.

3.4 Supervised Learning

Supervised learning is the most commonly used technique in ML. The technique
involves training the model with a labeled dataset, i.e., with definite features or
labels. The first task in dealing with any problem is to understand the nature of
the problem, i.e., whether the problem demands a supervised or an unsupervised
algorithm. If the problem contains an initial dataset, then the chances are high
that it might require a supervised algorithm to solve (albeit it may require a semi-
supervised approach too). Supervised learning can be primarily classified into two
broad categories—regression and classification. If it is clear that a supervised
approach can solve the problem, then the next consideration should be whether it is
a regression problem or a classification problem. This decision is necessary to help
decide which ML algorithm to use and which algorithm will provide the solution
with the minimum errors. In the following sections, we will explore regression and
classification in detail.

3.4 Supervised Learning 129

3.4.1 Regression

The regression analysis is defined as a set of statistical methods used to determine
the relationships between one dependent variable and one or more independent
variables. This technique is beneficial for predicting the value of a data point in
a continuous dataset.

Suppose we are to find out the price of solar photovoltaic modules in the year
1995, and we already have the information for some random years, such as 1980,
1983, 1989, 1990, 1993, 1999, 2003, and 2005. Notice that the years are not equally
spread apart or follow any definite pattern. In that case, having no other verified
source, ML models can be used to find out the price in 1995. An ML algorithm
will help to determine the unknown value based on the available information on the
prices in the other years. Such a problem is known as a regression problem, which
may also be called data interpolation in Layman’s terms.

Some commonly deployed regression models are elaborated on in the following
sections, along with implementations in Python.

3.4.1.1 Simple Linear Regression
Simple linear regression is a linear regression model involving a single dependent
variable and a single independent variable. It is expressed using the general equation
for a straight line in a regular two-dimensional rectangular coordinate system as

.y = β0 + β1x, (3.7)

where x and y are the independent and dependent variables, respectively, . β0 is the
intercept from the y-axis, and . β1 is the slope.

Simple linear regression is also termed ordinary least squares (OLS). It tries
to minimize (hence the name “least”) the sum of squares for error. The error is
the difference between the actual data point and its predicted value, as shown
in Eq. 3.9. Since it can be positive or negative, it is squared to yield a positive
quantity consistently. Although fitting a simple linear regression might not always
be accurate, it can try to fit in various environments, as portrayed in Fig. 3.7.

1
β1

β0 x

y

1

x

y

β0

β1

Fig. 3.7 Fitting straight line (left) and curve line (right) using a simple linear regression model

130 3 Machine Learning Algorithms

Equation 3.7 gives us the expected or predicted values based on regression. The
actual or observed values will be different from this value. For instance, if we
consider case i, the fitted value into Eq. 3.7 is given by

.ŷi = β̂0 + β̂1xi . (3.8)

The difference between observed values and predicted values leads us to
residuals. The sum of squared residuals is called the residual sum of squares (RSS),
which is given by

.RSS = L =
nΣ

i=1

(
yi − ŷi

)2
. (3.9)

A penalty term can be added to the OLS equation to obtain a higher model accu-
racy for complex data, which adds a bias with some values. The bias is symbolized
with . λ, the regularization parameter. These are known as L1 regularization (LASSO
regression) and L2 regularization (ridge regression). A model that minimizes both
bias and variance is deemed the best.

3.4.1.2 LASSO Regression
The term LASSO is an acronym for Least Absolute Shrinkage and Selection
Operator. It was coined by Robert Tibshirani in 1996 and was intended for linear
regression models. LASSO regression uses the L1 regularization technique to
reduce overfitting and improve prediction accuracy. In addition, shrinkage is used
in this technique to shrink the data points closer to their mean. LASSO regression
is useful for creating simple models with high levels of multicollinearity. The L1
penalty function is given by the absolute value: .λ×|slope|. The equation for LASSO
regression with standardized features is expressed as

.Llasso(β̂) =
nΣ

i=1

(
yi −

Σ
j

x
j
i β̂j

)2 + λ

mΣ
j=1

|||β̂j

|||
' '' '

penalty function

. (3.10)

Here, . λ is the amount of shrinkage.

• If .λ = 0, it is the same as linear regression, and all features are considered. The
residual sum of squares is only considered to build a predictive model.

• If .λ = ∞, no feature is considered. As . λ approaches infinity, it eliminates more
and more features.

When . λ increases, the bias increases, and the variance decreases. On the contrary,
when . λ decreases, the bias decreases, and the variance increases.

3.4 Supervised Learning 131

A key disadvantage of LASSO regression is the loss of information during the
elimination of all correlated variables except one. This loss of information hampers
the model’s accuracy.

3.4.1.3 LASSO LARS Regression
The Least-Angle Regression (LARS) algorithm was developed by Bradley Efron,
Trevor Hastie, Iain Johnstone, and Robert Tibshirani in 2004 [3]. The algorithm
can fit linear regression models to high-dimensional data. LARS is comparable
with forward stepwise regression. At every step, the feature with the highest
correlation with the target is determined. In the case of multiple features with the
same correlation, LARS propagates at a direction equiangular to all the features.
LassoLars is a LASSO model implemented using the LARS algorithm.

3.4.1.4 Ridge Regression
Ridge regression is a special case of Tikhonov regularization, which can help reduce
overfitting. This technique uses L2 regularization. The penalty function for L2
regularization is .bias×slope2. The equation for ridge regression with cost function
on the right side of the equation is

.Lridge(β̂) =
nΣ

i=1

(
yi −

Σ
j

x
j
i β̂j

)2 + λ

mΣ
j=1

β̂2
j . (3.11)

3.4.1.5 Elastic Net Regression
Elastic net regression is a convex combination of ridge regression and LASSO
regression. Besides setting and choosing a . λ value, elastic net also permits tuning
the mixing parameter named . α, where .α = 0 corresponds to ridge and .α = 1 to
LASSO.

The purpose of the elastic net regression method is to minimize the loss function,
a combination of the RSS and the regularization terms. The loss function is
expressed with the help of the equation:

.Lelastic(β̂) =
Σn

i−1(yi − x
j
i β̂)2

2n
+ λ

(
1 − α

2

mΣ
j=1

β̂j
2 + α

mΣ
j=1

|β̂j |
)

. (3.12)

3.4.1.6 Support Vector Regression
A support vector machine (SVM) is a set of supervised learning techniques that can
be used for regression, classification, and detection of outliers. The use of SVM in
regression problems is known as support vector regression (SVR). SVR has three
types of implementations: SVR, NuSVR, and LinearSVR [4]. LinearSVR is faster
than SVR but only considers the linear kernel, and NuSVR implements a slightly
different formulation than SVR and LinearSVR.

132 3 Machine Learning Algorithms

Fig. 3.8 Basic theme of the decision tree algorithm

3.4.1.7 Decision Tree Regression
The decision tree algorithm comprises two types of nodes: the decision node and
the leaf node, as shown in Fig. 3.8. A decision node is a point wherein a condition
is checked and a decision is made, whereas a leaf node is a point where a pure
dataset (i.e., with the same features) is obtained, and no further splits can be done.
A decision tree algorithm repeatedly splits the dataset into two parts until a pure leaf
node is obtained in each part.

In simple terms, a dataset is categorized based on a series of yes or no decisions
about a certain condition for the features at each node that eventually determine
the fate of a particular data point. For regression problems, the decisive condition
is determined based on the reduction of the variance of the dataset. The formula to
calculate the variance is

.V ariance = 1

n

Σ
(yi − ȳ)2. (3.13)

3.4.1.8 Random Forest Regression
The decision tree algorithm has the disadvantage of being highly sensitive to the
training dataset, and so the decision tree can yield completely different results by
a change of any single data. This is where the random forest algorithm comes into
play. From the training dataset, several data points are chosen randomly to create a
new dataset, and for each data point, a couple of features are selected for building
the decision tree for that new dataset. This process is termed as bootstrapping. The
random forest algorithm involves using several decision trees (hence the name as
multiple trees make up a forest, and the trees and the corresponding features are

3.4 Supervised Learning 133

Fig. 3.9 Basic theme of the random forest algorithm for regression problems

Table 3.4 Advantages and disadvantages of the random forest algorithm

Advantages Disadvantages

The problem of overfitting is mitigated The algorithm is complex

The accuracy of prediction is high Higher computational resources are necessary

Data scaling is not necessary The prediction process is time-consuming

chosen randomly from the training dataset). In the case of a regression problem,
the average of the results from each random forest decision tree is taken as the
final prediction for the new data point. This process is demonstrated in Fig. 3.9. The
advantages and disadvantages of the random forest algorithm are given in Table 3.4.

3.4.1.9 Bayesian Ridge Regression
Bayesian ridge regression is a type of ridge regression that uses the Bayesian
theorem, i.e., probabilistic terms for the analysis. The penalty function of the L2
regularization of ridge regression is estimated using the Bayesian theorem. For two
different events A and B, the Bayesian theorem can be expressed as follows:

.P(A|B) = P(B|A).P (A)

P (B)
, (3.14)

where

.P(A) and .P(B) are the prior probabilities of events A and B occurring, respectively,
without any condition.

.P(A|B) is the conditional probability of event A occurring given that B is true.

.P(B|A) is the conditional probability of event B occurring given that A is true.

.P(B) /= 0.

134 3 Machine Learning Algorithms

3.4.1.10 Multiple Linear Regression
Multiple linear regression (MLR) estimates the value of a variable dependent on two
or more independent variables. In other words, when one parameter is linked to two
or more factors, MLR is used. It is determined using the following equation:

.y = β◦ + β1X1 + · · · + βnXn + e, (3.15)

where

.X1, . . . , Xn are the independent variables.

. β◦ is the intercept from the y-axis.

.β1, . . . βn are the regression coefficients.
y is the unknown dependent variable or the target variable.
. e is the error.

3.4.1.11 Polynomial Regression
In linear regression, a straight line links all the scattered data points in a two-
dimensional plane. On the other hand, polynomial regression uses an nth degree
polynomial to fit all the scattered data points.

Programming Example 3.2
In this elaborate example, we show a simple linear regression model used to
determine the relationship between advertisements on TV, radio, and newspaper
with the amount of sales. The program is broken down into segments with a clear
description of the steps. Where applicable, the outputs of the steps are provided after
each step.

1 # Importing necessary libraries
2 import pandas as pd
3 import numpy as np
4 import matplotlib.pyplot as plt
5 from scipy.stats import pearsonr
6 from sklearn.metrics import r2_score

1 # Reading and initializing dataset
2 dataset = pd.read_csv("advertising.csv")
3 dataset.head()

Output:

TV Radio Newspaper Sales
0 230.1 37.8 69.2 22.1
1 44.5 39.3 45.1 10.4

3.4 Supervised Learning 135

2 17.2 45.9 69.3 12.0
3 151.5 41.3 58.5 16.5
4 180.8 10.8 58.4 17.9

1 # Detailed info about the dataset
2 dataset.info()

Output:

<class ’pandas.core.frame.DataFrame’>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 TV 200 non-null float64
1 Radio 200 non-null float64
2 Newspaper 200 non-null float64
3 Sales 200 non-null float64

dtypes: float64(4)
memory usage: 6.4 KB

1 # Checking the number of null data in the dataset
2 dataset.isnull().sum()

Output:

TV 0
Radio 0
Newspaper 0
Sales 0
dtype: int64

We calculate Pearson’s correlation coefficients between advertisements on dif-
ferent media (TV, radio, and newspapers) and the amount of sales. This operation
will decide on which data the linear regression will be performed.

1 # Checking the correlation between different types of
advertisement and sales

2 tv_corr, _ = pearsonr(dataset["TV"], dataset["Sales"])
3 radio_corr, _ = pearsonr(dataset["Radio"], dataset["Sales"])
4 news_corr, _ = pearsonr(dataset["Newspaper"], dataset["Sales"])
5

6 print("TV Correlation: {}\nRadio Correlation: {}\nNewspaper
Correlation: {}\n".format(

7 tv_corr, radio_corr, news_corr
8))

136 3 Machine Learning Algorithms

Output:

TV Correlation: 0.9012079133023307
Radio Correlation: 0.34963109700766914
Newspaper Correlation: 0.1579600261549263

Here, we can see that the correlation coefficient for TV data is the highest. So,
we will consider the TV data for our linear regression model.

1 # whether TV data contain outliers or not from box plot
2 dataset["TV"].plot(kind='box', subplots=True, layout=(4,1),

figsize=(8,8)# Checking)

Output:

TV AxesSubplot(0.125,0.71587;0.775x0.16413)
dtype: object

1 # String data from dataset into variable
2 tv = dataset["TV"]
3 sales = dataset["Sales"]

The input data is standardized before applying it to the linear regression model.

1 # Maximum value from TV data
2 tv_max = max(tv)
3 # Minimum value from TV data
4 tv_min = min(tv)
5

6 # Mean value from TV data
7 tv_mu = np.mean(tv)
8 # Standard deviation from TV data
9 tv_sigma = np.std(tv)

10

11 # Applying standard scaling on TV data
12 # This scaled data will be used as input data
13 tv = (tv-tv_mu) / (tv_sigma + 1e-6)
14 tv = np.array(tv)
15 tv = np.reshape(tv, (-1,1))

The equation for simple linear regression is .y = β0 + β1x. In our case, the
equation is .y = sales and .x = T V . So, we can write .sales = β0 × 1 + β1 × T V .
For this reason, we will need to add a column of ones to our input data.

3.4 Supervised Learning 137

1 # Creating a vector of ones
2 # It has the same length as TV data
3 X_ones = np.ones_like(tv)
4

5 # The one vector is concatenated to the TV data
6 # The concatenation is done row-wise
7 # Thus the input data now contains two columns
8 X = np.concatenate((X_ones, tv), axis=1)
9

10 # The sales data are stored as output
11 y_true = np.array(sales)
12 y_true = np.reshape(y_true, (-1,1))

1 # Defining MSE function
2 # MSE is used as loss function here
3 def loss_mse(y_hat, y_true):
4

5 loss = np.mean((y_hat - y_true)**2)
6

7 return loss

We calculate the gradients are calculated for backpropagation purposes, which
is required for performing gradient descent. Section 3.5.2 provides more details on
this.

1 # Function for gradient calculation
2 # Gradients are required for implementing the Gradient Descent

algorithm
3 def grad(y_hat, y_true, x):
4

5 # The expression for gradients are calculated manually
6 grad_c = 2 * np.mean(y_hat - y_true)
7 grad_m = 2 * np.mean((y_hat - y_true) * x)
8

9 return [grad_c, grad_m]

1 # Function for implementing model training
2 def train(x, y_true, params, learning_rate):
3

4 # Model prediction as y_hat
5 y_hat = (params * x).sum(axis=1)
6 y_hat = np.reshape(y_hat, (-1,1))
7

8 # Loss calculation from the loss function (MSE)
9 loss = loss_mse(y_hat, y_true)

10

11 # The next two steps are required for model optimization
12 # These two steps are the core learning process
13 # Gradient computation
14 grads = grad(y_hat, y_true, x)

138 3 Machine Learning Algorithms

15

16 # Parameter update
17 new_params = params - learning_rate*np.array(grads)
18

19 return loss, new_params

1 # Splitting the dataset
2 # First 180 datapoints are selected as training data
3 X_train = X[:180]
4 y_train = y_true[:180]
5 # Last 20 datapoints are selected as test data
6 X_test = X[180:]
7 y_test = y_true[180:]

1 # Number of iteration or epoch
2 epoch = 50
3 # Learning rate (alpha)
4 alpha = 0.1
5

6 # Empty list for storing training losses at each epoch
7 losses = []
8 # Both learnable parameters are initialized as 1
9 params = np.ones((1,2), dtype=np.float64)

10

11 # Commencing the training of the linear regression model
12 # Loop is used to iterate through every epoch
13 for i in range(epoch):
14 loss, new_params = train(X_train, y_train, params,

learning_rate=alpha)
15 params = new_params
16 losses.append(loss)
17 print("Epoch {} Loss: {}".format(i+1, loss))

Output:

Epoch 1 Loss: 217.74026464292425
Epoch 2 Loss: 136.62414046936394
Epoch 3 Loss: 87.5254734940006
Epoch 4 Loss: 57.85860889022964
Epoch 5 Loss: 39.91014552885682
Epoch 6 Loss: 28.983105073246357
Epoch 7 Loss: 22.23810175095949
Epoch 8 Loss: 17.972700566127372
Epoch 9 Loss: 15.175399587907759
Epoch 10 Loss: 13.25110878757679
Epoch 11 Loss: 11.853278577725417
Epoch 12 Loss: 10.78202906486732
Epoch 13 Loss: 9.922891293871576
Epoch 14 Loss: 9.210369755605814

3.4 Supervised Learning 139

Epoch 15 Loss: 8.606553371397444
Epoch 16 Loss: 8.088761797644178
Epoch 17 Loss: 7.642552764900449
Epoch 18 Loss: 7.257863963352305
Epoch 19 Loss: 6.9269539292918205
Epoch 20 Loss: 6.643350802398563
Epoch 21 Loss: 6.401347667439824
Epoch 22 Loss: 6.195780958046366
Epoch 23 Loss: 6.021945437742041
Epoch 24 Loss: 5.87556739504495
Epoch 25 Loss: 5.7527964841889725
...
Epoch 47 Loss: 5.172144547281532
Epoch 48 Loss: 5.170878793327431
Epoch 49 Loss: 5.16985094633049
Epoch 50 Loss: 5.169016486362349

1 # Training loss curve visualization
2 fig = plt.figure()
3 epochs = np.arange(1, epoch+1)
4 plt.plot(epochs, losses)
5 plt.xlabel('Epochs')
6 plt.ylabel('Training Loss')
7 plt.show()

The output of the above code is the graph illustrated in Fig. 3.10.
Figure 3.10 shows that the losses gradually decrease with respect to the number

of epochs and eventually become quite constant at some points. This is the expected
behavior. The coefficient of determination, . R2, scores are calculated for model
evaluation. The closer the value of . R2 is to 1, the better.

1 # Calculation of training R2 score
2 train_pred = (params*X_train).sum(axis=1)
3 train_pred = np.reshape(train_pred, (-1,1))

Fig. 3.10 Output for training
loss vs. epochs

140 3 Machine Learning Algorithms

4 train_r2 = r2_score(y_train, train_pred)
5

6 # Calculation of test R2 score
7 test_pred = (params*X_test).sum(axis=1)
8 test_pred = np.reshape(test_pred, (-1,1))
9 test_r2 = r2_score(y_test, test_pred)

10

11 print("Training R2 score: {}\nTest R2 score: {}\n".format(
train_r2, test_r2))

Output:

Training R2 score: 0.8092780603962393
Test R2 score: 0.8324002955411913

1 # Subplots for linear regression output
2 fig, (ax1, ax2) = plt.subplots(1,2, figsize=(15,7))
3

4 # Plotting output on training data
5 x = X_train[:, 1]
6 y = params[:, 0] + params[:, 1]*x
7

8 ax1.scatter(tv[:180], sales[:180], label='Training Data')
9 ax1.plot(x, y, c='r', label='Linear Regression Model')

10 ax1.set(xlabel='TV Advertisement', ylabel='Sales', title='
Training Output')

11 ax1.legend()
12

13 # Plotting output on test data
14 x = X_test[:, 1]
15 y = params[:, 0] + params[:, 1]*x
16

17 ax2.scatter(tv[180:], sales[180:], label='Test Data')
18 ax2.plot(x, y, c='r', label='Linear Regression Model')
19 ax2.set(xlabel='TV Advertisement', ylabel='Sales', title='Test

Output')
20 ax2.legend()

Output: The output of the above code is the graphs illustrated in Fig. 3.11. The
output line indicates that the line has fitted both the training data and test data quite
well. Thus, a successful linear regression model has been trained.

So far, we have discussed different types of regression algorithms. Now, we will
study the classification algorithms in the next section.

3.4.2 Classification

Classification, a type of supervised learning technique, is one of the most highly
used real-world applications of ML at present. It simply refers to classifying or
labeling data from a dataset based on the features provided in the training data.

3.4 Supervised Learning 141

Fig. 3.11 Training and test output

Say we are to classify the students of a class as good, average, or weak based
on several factors, such as their grades, attendance, interaction during classes,
homework, extracurricular activities, and behavior. Each of these five factors is a
feature, and the type assigned to the students (good, average, or weak) is the label of
the three defined classes. This is an example of a classification problem. The classes
are set such that whenever a new student enters, he/she can be easily classified
into one of the three classes based on the features. An ML model prepares these
classes, and when fed with the features of a new student, it can easily classify the
new student into a suitable class. This task might sound easy, but when it comes
to classifying hundreds of students (not to mention six times the features), the task
might be daunting as a manual effort. ML can come in handy in such cases of dealing
with a large number of data.

In the following sections, we shall discuss the most popular ML algorithms
for classification problems and explore several worked-out examples using
Python.

3.4.2.1 Logistic Regression
The name logistic regression might sound misleading, but it is indeed a linear model
for solving classification problems. Therefore, it is also referred to as the maximum-
entropy classification (MaxEnt), logit regression, or the log-linear classifier. In this
model, the logistic function (Eq. 3.16) is used to model the probabilities of the
possible outcomes of a single trial.

.f (x) = L

1 + e−k(x−x◦) , (3.16)

142 3 Machine Learning Algorithms

Fig. 3.12 Logistic function

where

L is the maximum value of the curve.
k is the logistic growth rate or steepness of the curve.
. x◦ is the x-value at the midpoint of the curve.
A standard logistic sigmoid (S-shaped) function or curve is shown in Fig. 3.12.

3.4.2.2 k-Nearest Neighbor (KNN)
The k-nearest neighbor (KNN) is one of the most popular and straightforward algo-
rithms in supervised learning. It can be used to solve regression and classification
problems, although it is more frequently used for the latter. Two common adjectives
of the KNN algorithm are that it is non-parametric (i.e., it makes no underlying
assumptions regarding the data distribution) and a lazy learner (i.e., it does not
immediately learn from the training dataset).

The Euclidean distance is measured from “k”-nearest neighboring points to the
data point that has to be classified. For example, among “k”-nearest neighboring
points, if the majority of the nearest neighboring points belong to Class A, then the
data point is classified as Class A. Figure 3.13 demonstrates the KNN algorithm
where .k = 3. Here, it can be seen that two of the nearest neighboring points belong
to the class “true,” and one nearest neighboring point belongs to the class “false.”
Therefore, the data point is classified as a class “true” data point. The advantages
and disadvantages of KNN are discussed in Table 3.5.

3.4 Supervised Learning 143

Fig. 3.13 KNN algorithm
with . k = 3

B
er

utae
F

Feature A

Class true

Class false

New data point

Table 3.5 Advantages and disadvantages of the KNN algorithm

Advantages Disadvantages

It has a simple implementation It has a high computational cost

It is good for large training data It requires the determination of the value of K each time

Example 3.3 A dataset is given with two features “A” and “B” and respective labels
as True or False. Using the KNN algorithm, classify the new data point (6, 5) where
.k = 3.

Feature A Feature B Label

5 2 True

5 4 True

7 4 False

8 6 False

7 3 False

Solution to Example 3.3
We will calculate the Euclidean distance of the new data point (6, 5) from every data
point in the dataset.

Feature A Feature B Label Euclidean distance

5 2 True .
/

(5 − 6)2 + (2 − 5)2 = 3.16

5 4 True .
/

(5 − 6)2 + (4 − 5)2 = 1.41

7 4 False .
/

(7 − 6)2 + (4 − 5)2 = 1.41

8 6 False .
/

(8 − 6)2 + (6 − 5)2 = 2.24

7 3 False .
/

(7 − 6)2 + (3 − 5)2 = 2.24

Now we will rank it in ascending order of the Euclidean distances.

144 3 Machine Learning Algorithms

Feature A Feature B Label Euclidean distance

5 4 True .
/

(5 − 6)2 + (4 − 5)2 = 1.41

7 4 False .
/

(7 − 6)2 + (4 − 5)2 = 1.41

8 6 False .
/

(8 − 6)2 + (6 − 5)2 = 2.24

7 3 False .
/

(7 − 6)2 + (3 − 5)2 = 2.24

5 2 True .
/

(5 − 6)2 + (2 − 5)2 = 3.16

Since .k = 3, we will pick the three nearest data points according to their
Euclidean distance. The three nearest data points to the new data point are (5, 4),
(7, 4), and (8, 6). Now according to their respective labels, we have to classify the
new data point. Data point (5, 4) classifies the data point as “True,” whereas both
the data points (7, 4) and (8, 6) classify the new data point as “False.” Since most
of the k-nearest neighbor is classifying the new data point as “False,” the new data
point (6, 5) is “False.”

3.4.2.3 Support Vector Classification
The use of SVM in classification problems is known as support vector classification
(SVC). SVC has three types of implementations: SVC, NuSVC, and LinearSVC [4].
The SVM algorithm works by creating a decision boundary or hyperplane among
the data to create different classes. The outermost data point in a class nearest to
the hyperplane is called a support vector. Support vectors are used to create this
decision boundary or hyperplane. A straight line would suffice for linear data as a
hyperplane. However, for non-linear data, a straight hyperplane will fail to segregate
the classes properly. Therefore, kernels are needed to determine the different shapes
of hyperplanes according to the data arrangement as depicted in Fig. 3.14.

Kernel machines are types of functions for analyzing the patterns within datasets.
The different types of kernel functions can be sigmoid, linear, non-linear, polyno-
mial, and radial basis functions (RBFs).

3.4.2.4 Naive Bayes
The naive Bayes methods are a family of supervised learning algorithms using
Bayes’ theorem with the “naive” assumption of conditional independence between
each feature pair given the value of the class variable [4]. According to the Bayes
theorem, for a class variable y and dependent feature vectors .x1, x2, . . . , xn, the
following relationship is applicable:

.P(y|x1, x2, . . . , xn) = P(y)P (x1, x2, . . . , xn|y)

P (x1, x2, . . . , xn)
. (3.17)

The following naive conditional independence assumption is made:

.P(xi |y, x1, . . . , xi−1, xi+1, . . . , xn) = P(xi |y). (3.18)

3.4 Supervised Learning 145

Second polynomial

Feature A

F
ea

tu
re

 B

B
er

utae
F

Feature A

Feature A

F
ea

tu
re

 B

B
er

utae
F

Feature A

Third polynomial

SigmoidRadial basis

Feature A

F
ea

tu
re

 B

Linear

Fig. 3.14 Logistic function

This relationship can be simplified for all i as

.P(y|x1, x2, . . . , xn) = P(y)
||n

i=1 P(xi |y)

P (x1, x2, . . . , xn)
. (3.19)

Since .P(x1, x2, . . . , xn) is a constant, the above equation can be represented as

.P(y|x1, x2, . . . , xn) ∝ P(y)

n||
i=1

P(xi |y). (3.20)

.ŷ = argmax
x

P (y)

n||
i=1

P(xi |y). (3.21)

146 3 Machine Learning Algorithms

Advantages of Naive Bayes Algorithms
The advantages of the naive Bayes algorithms are enlisted as follows [4]:

• These algorithms work well for real-world applications despite the oversimpli-
fied assumptions.

• A small amount of training data is sufficient for estimating the parameters.
• These algorithms are very fast in comparison to more sophisticated methods.
• Each feature distribution can be independently estimated as a 1D distribution,

which avoids dimensionality.

However, a disadvantage of the Naive Bayes algorithm is that it is a lousy
estimator because it is based on the assumption that the features are independent.

3.4.2.5 Gaussian Naive Bayes
This is a special type of naive Bayes algorithm. The Gaussian Naive Bayes
algorithm assumes that the continuous features associated with each class are
distributed in a normal or a Gaussian distribution. The dataset is first distributed
into classes, and then the mean and variance of each class are determined. Then the
probability density of . xi of class y is given by the following equation:

.P(xi |y) = 1/
2πσ 2

y

exp

(
− (xi − μy)

2

2σ 2
y

)
. (3.22)

The mean of the values is . μy and the Bessel corrected variance of the values is
. σ 2

y . Here, the maximum likelihood is used to estimate the parameters . σy and . μy .

3.4.2.6 Decision Tree Classification
As described in Sect. 3.4.1.7, a decision tree algorithm repeatedly splits the dataset
until a pure leaf node is obtained in each part. For classification problems, different
algorithms of decision tree construction use different attribute selection measures
(ASMs). In this section, we will talk about five ASMs.

Entropy
Entropy is the measure of randomness or disorder in the dataset. The formula to
calculate the entropy is

.Entropy(A) = −Pyes log2(Pyes) − Pno log2(Pno), (3.23)

where .Pyes is the probability of the attribute being yes, and .Pno is the probability of
the attribute being no.

The entropy of an attribute can be measured using the following equation:

.E(T ,X) =
Σ

P(X)E(X), (3.24)

where X is the attribute whose entropy we want to calculate, T is the target feature,
.P(X) is the probability of the attribute, and .E(X) is the entropy of the attribute.

3.4 Supervised Learning 147

Information Gain
The information gain is used to measure how much information can be obtained
from a certain feature based on its entropy. For instance, the ID3 algorithm uses
entropy and information gain as ASM. To calculate the information gain, the
following equation is used:

.Inf ormation Gain(T , X) = Entropy(T) − Entropy(T ,X), (3.25)

where T is the feature variable and X is the attribute.

Split Information
The formula to calculate split information is given below:

.Split Inf oA(D) = −
Σ |Dj |

|D| × log2

(|Dj |
|D|

)
, (3.26)

where A is the attribute, . Dj is the frequency of attribute values, and D is the total
number of attributes.

Gain Ratio
If the information gain of an attribute is divided by the split information, then we
get the gain ratio of that attribute. The C4.5 algorithm uses the gain ratio and split
information as the ASM. The gain ratio is calculated using the following equation:

.Gain Ratio(A) = Inf ormation Gain(A)

Split Inf o (A)
, (3.27)

where A is the attribute.

Gini Index
The Gini index is simply the measure of impurity in the dataset. The Classification
And Regression Tree (CART) algorithm uses the Gini index. The formula to
calculate the Gini index is given below:

.Gini = 1 −
Σ

(Pi)
2, (3.28)

where . Pi is the probability of the ith attribute.

Example 3.4 A dataset for playing golf is given in Table 3.6. Construct a decision
tree using entropy and information gain as the attribute selection measures.

148 3 Machine Learning Algorithms

Table 3.6 Dataset for
playing golf [5]

Outlook Temperature Humidity Windy Play Golf

Sunny Hot High Weak No

Sunny Hot High Strong No

Overcast Hot High Weak Yes

Rainy Mild High Weak Yes

Rainy Cool Normal Weak Yes

Rainy Cool Normal Strong No

Overcast Cool Normal Strong Yes

Sunny Mild High Weak No

Sunny Cool Normal Weak Yes

Rainy Mild Normal Weak Yes

Sunny Mild Normal Strong Yes

Overcast Mild High Strong Yes

Overcast Hot Normal Weak Yes

Rainy Mild High Strong No

Table 3.7 Datapoint counts
for the target class Play Golf

Yes No Total

9 5 14

Solution to Example 3.4 [6]
Here, the attributes are:

.> Outlook: Sunny, Overcast, Rainy

.> Temperature: Hot, Mild, Cool

.> Humidity: High, Normal

.> Wind: Weak, Strong

And the target class is Play Golf: Yes, No.
First, we will count the number of Yes and No for this target class (Table 3.7).

Now we will calculate the entropy for the target class Play Golf:

. E
(
Play Golf

) = −Pyes · log2
(
Pyes

)− Pno · log2
(
Pno

)

= − 9

14
· log2

(
9

14

)
− 5

14
· log2

(
5

14

)
= 0.94.

Next, we will calculate the information gain of each attribute to determine the root
node (Table 3.8).
Calculating the entropy for each branch, we get

.E
(
Sunny

) = −2

5
· log2

(
2

5

)
− 3

5
· log2

(
3

5

)
= 0.97

3.4 Supervised Learning 149

Table 3.8 The data point
counts in the outlook feature

Play Golf

Yes No Count

Outlook Sunny 2 3 5

Overcast 4 0 4

Rainy 3 2 5

Total 14

Table 3.9 Information gain
of the four attributes,
Outlook, Humidity, Windy,
and Temperature

Attribute Information gain

Outlook 0.25

Humidity 0.15

Windy 0.05

Temperature 0.03

E
(
Overcast

) = −4

4
· log2

(
4

4

)
−

0

4
· log2

(
0

4

)
= 0

E
(
Rainy

) = −3

5
· log2

(
3

5

)
−

3

5
· log2

(
3

5

)
= 0.97.

Next, we have to calculate the entropy of Outlook with respect to the target class.

. E
(
Play Golf, Outlook

) = P
(
Sunny

) · E(Sunny)+ P
(
Overcast

) · E(Overcast)
+ P
(
Rainy

) · E(Rainy)

= 5

14
· 0.97 − 4

14
· 0 + 5

14
· 0.97 = 0.69.

So, we get the information gain of Outlook:

. Information Gain (Outlook) = E(Play Golf) − E(Play Golf, Outlook)

= 0.94 − 0.69 = 0.25.

Similarly, we can calculate the information gain of all the attributes as given in
Table 3.9.

It can be seen that Outlook has the highest information gain among all the
attributes, so it is assigned as the root node. The next step is to split the Outlook
node. As calculated earlier, it is seen that the entropy of Overcast is 0. Therefore,
further splitting for Overcast will not be needed. We have found one leaf node, and
Fig. 3.15 visualizes the corresponding decision tree at this stage.

However, we can see that the entropy values for Sunny and Rainy are not zero.
Therefore, we need further splitting of the branches.

150 3 Machine Learning Algorithms

Fig. 3.15 Outlook has been
selected as the root node as it
has the highest information
gain

Table 3.10 Dataset for
playing golf when the
Outlook is Sunny

Play Golf

Yes No Count

Humidity High 0 3 3

Normal 2 0 2

Total 5

Table 3.11 Entropy of the
Humidity

E(High)
.−0

3
· log2

(
0

3

)
− 3

3
· log2

(
3

3

)
0

E(Normal)
.−2

2
· log2

(
2

2

)
− 0

2
· log2

(
0

2

)
0

So, first, we attempt to split the Sunny branch further. Now, we have to calculate
the information gain of the rest of the attributes with respect to Sunny (Table 3.10).

First, we calculate the entropy for each branch (Table 3.11).
Now, we calculate the entropy for Humidity.

. E
(
Sunny, Humidity

) = P
(
High

) · E(High)+ P
(
Normal

) · E(Normal
)

= 3

5
· 0 + 2

5
· 0

= 0.

We get the information gain for Humidity as

. Information Gain (Humidity) = E(Sunny) − E(Sunny, Humidity)

= 0.97 − 0

= 0.97.

Similarly, we will calculate the information gain for the remaining attributes as
given in Table 3.12.

Since Humidity gives the highest information gain, this will be the next assigned
node. As the calculated entropy values for the branches High and Normal are zero,
there will be no need for further splitting and hence reached leaf nodes. Figure 3.16
depicts this updated version of the decision tree.

3.4 Supervised Learning 151

Table 3.12 Information
gain of the three attributes,
Humidity, Windy, and
Temperature

Attribute Information gain

Humidity 0.97

Windy 0.02

Temperature 0.57

Fig. 3.16 Humidity has been selected as the next node

Fig. 3.17 The complete decision tree for the dataset in Table 3.6 using entropy and information
gain as ASM

Similarly, we repeat the process of splitting the branch Rain and determining the
next decision node. We will find that the next decision node will be Windy, and the
branches will have 0 entropy. The construction of the decision tree is complete as
shown in Fig. 3.17.

3.4.2.7 Random Forest Classification
The basic concept of the random forest algorithm has been explained in Sect. 3.4.1.8.
Then, the initial bootstrapping process is carried out similarly to the regression
problems. In the case of a classification problem, based on the results from each
decision tree of the random forest, the label found from the majority of the trees
is selected as the final label for the new data point. This process is known as
aggregation.

152 3 Machine Learning Algorithms

Programming Example 3.3
Listing 3.2 provides the implementation procedure of different classifiers. The
classifiers use four different datasets. Each classifier is trained on train samples
and visualized for test samples. The output of the listing is visualized in Fig. 3.18
followed by the explanation in Table 3.13.

1 # --------------------Importing Libraries------------------------
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from matplotlib.colors import ListedColormap
5 from sklearn.model_selection import train_test_split
6 from sklearn.preprocessing import StandardScaler
7 from sklearn.datasets import make_moons, make_circles,

make_classification
8 from sklearn.neighbors import KNeighborsClassifier
9 from sklearn.svm import SVC

10 from sklearn.gaussian_process import GaussianProcessClassifier
11 from sklearn.gaussian_process.kernels import RBF
12 from sklearn.tree import DecisionTreeClassifier
13 from sklearn.ensemble import RandomForestClassifier
14 from sklearn.naive_bayes import GaussianNB
15 from sklearn.datasets import make_gaussian_quantiles
16

17

18 # ----------Defining classifier models and datasets--------------
19 names = ["KNN", "SVM", "RBF SVM", "Gaussian Process",
20 "Gaussian NB", "Decision Tree", "Random Forest"]
21

22 # 6 classifiers are demonstrated here
23 models = [
24 KNeighborsClassifier(3), # KNN
25 SVC(kernel="linear", C=0.02), # SVM
26 SVC(gamma=2, C=1), # Non-Linear SVM
27 GaussianProcessClassifier(0.99 * RBF(1.0)), # Gaussian

classifier
28 GaussianNB(), # NB
29 DecisionTreeClassifier(max_depth=6), # Decision tree
30 RandomForestClassifier(max_depth=6, n_estimators=10,

max_features=2), # Random Forest
31]
32

33

34 datasets = [make_moons(noise=0.1, random_state=1),
35 # creates a moon shape 2 class dataset
36

37 make_classification(n_features=2, n_redundant=0,
38 n_informative=1,
39 n_clusters_per_class=1),
40 # creates a separable classification dataset
41

42 make_gaussian_quantiles(n_features=2, n_classes=2),

3.4 Supervised Learning 153

43 # creates two gaussian circle dataset
44

45 make_classification(n_features=2, n_redundant=0,
46 n_informative=2)
47 # creates a dataset with two class overlap
48]
49

50

51 Fig = plt.figure(figsize=(30, 10))
52 count = 1
53

54

55 # -------------------Training and Plotting-----------------------
56 for idxx, data in enumerate(datasets):
57 X, y = data
58 # pre-processing
59 X = StandardScaler().fit_transform(X)
60 X_train, X_test, y_train, y_test = \
61 train_test_split(X, y, test_size=.5, random_state=10)
62

63 # Minimum and maximum range for creating the plot mesh
64 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
65 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
66 xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
67 np.arange(y_min, y_max, 0.02))
68

69

70 # Using the scikit-learn plotting of decision boundary
example

71 cm = plt.cm.gray
72 cm_bright = ListedColormap(['#F000A0', '#00FFAA'])
73 ax = plt.subplot(len(datasets), len(models) + 1, count)
74 if idxx == 0:
75 ax.set_title("Different types of data")
76

77 # plotting test samples
78 ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=

cm_bright, alpha=0.6,
79 edgecolors='k')
80 ax.set_xlim(xx.min(), xx.max())
81 ax.set_ylim(yy.min(), yy.max())
82 ax.set_xticks(())
83 ax.set_yticks(())
84 count += 1 # Counting column
85

86

87 for name, classifier in zip(names, models):
88 ax = plt.subplot(len(datasets), len(models) + 1, count)
89 classifier.fit(X_train, y_train) # Training
90 acc = classifier.score(X_test, y_test) *100 # Accuracy
91

92 # Decision boundary plotting
93 # Point in the mesh [x_min, x_max]x[y_min, y_max]

154 3 Machine Learning Algorithms

94 if hasattr(classifier, "decision_function"):
95 hh = classifier.decision_function(np.c_[xx.ravel(),
96 yy.ravel()])
97 else:
98 hh = classifier.predict_proba(np.c_[xx.ravel(),
99 yy.ravel()])[:,1]
100

101 # Put the result into a color plot
102 hh = hh.reshape(xx.shape)
103 ax.contourf(xx, yy, hh,cmap=cm, alpha=.8)
104

105

106 # Ploting test samples
107 ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=

cm_bright,
108 edgecolors='k', alpha=0.8)
109

110 ax.set_xlim(xx.min(), xx.max())
111 ax.set_ylim(yy.min(), yy.max())
112 ax.set_xticks(())
113 ax.set_yticks(())
114 if idxx == 0:
115 ax.set_title(name)
116 ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % acc).

lstrip('0'),
117 size=15, color= 'red', horizontalalignment='right

')
118 count += 1 # counting within each row
119

120

121 plt.savefig('./results/classifier.png', bbox_inches='tight')

Listing 3.2 Performance of different classifiers [7]

3.5 Deep Learning

The growth of computational resources at the beginning of the twenty-first century
has expedited the development of modern artificial intelligence (AI). Deep learning
(DL) lies at the center of this AI research and development. Many branches of deep
learning gradually adopted different variations of AI models popularly known as
deep neural network. As hardware computational resources keep growing, deep
neural networks (DNNs) have become extremely popular in demonstrating excep-
tional performance in image recognition, speech recognition, medical applications,
and whatnot. This chapter summarizes the core algorithms of existing deep neural
networks. To do so, first, we look at the core element of every neural network,
formally known as a neuron.

3.5 Deep Learning 155

Fig. 3.18 Performance of different classifiers on four types of different data for a two-class
classification problem

3.5.1 What Is a Neuron?

Inspired by the biological concept of neurons in the human brain, in 1958,
psychologist Frank Rosenblatt proposed a neuron in an AI model. Neurons are
the building block of a neural network. In a modern neural network, billions of
neurons combine to perform a specific task. While neurons are formed using a
basic mathematical formula, billions of them put together can do wonders in solving
complex practical problems.

As displayed in Fig. 3.19, a formal structure of a neuron takes an input . x ∈
R
2 which has two dimensions, where . x1 and . x2 are the two-dimensional features.

Now consider a simple computation where two variables . w1 and . w2 form a simple
mathematical model of a neuron, given by Eq. 3.29.

156 3 Machine Learning Algorithms

Table 3.13 Explanation of Listing 3.2

Line number Description

2–15 Using scikit-learn modules

18–31 Defining the models

34 Moon shape two-class dataset

37–39 A separable Gaussian two-class dataset

42 Gaussian data with circle

45 Gaussian data with two overlap classes

59 Preprocessing the data

63–84 Preparing the plot for decision boundary

89–90 Classifier training and accuracy computation

92–118 Plotting the decision boundary

Fig. 3.19 The structure of a
neuron used in neural
networks

.

y = f (ŷ),

= f (w1x1 + w2x2 + b),

= σ(w1x1 + w2x2 + b).

(3.29)

Here, . w1 and . w2 form a simple feed-forward neural network with two weights
and a bias, b. Here f can be any activation function, such as the sigmoid function
(. σ). The goal of a neuron is to predict an output based on the weights and bias
values. In order to use this neuron to predict the future output, the weights and
bias values must be trained or adjusted based on the existing data. We call this the
training stage of a neural network. In the next section, we will discuss the details of
the training process of a neuron.

3.5.2 Backpropagation and Gradient Descent

Backpropagation is the key algorithm in training a neuron of a deep neural network.
We need backpropagation because the weights and biases will be updated based on
the gradient information of an error function with respect to weights and biases. Let
us assume that the values of . x1 and . x2 at the input will ideally generate a target

3.5 Deep Learning 157

output . yt . The goal is to learn the values of .w1, w2, and . b so that we can project the
target value at the output of the neuron. The error function can be a simple mean
squared error function given by

.L = (y − yt)
2. (3.30)

Recall the gradient descent algorithm discussed in Sect. 1.5.6 to minimize this
error. We need to compute the gradient of . Lwith respect to each trainable parameter
(e.g., weights and biases) so that the values of . L can be minimized. For example,
the gradient of Eq. 3.30 with respect to . w1 would be given by

.
∂L
∂w1

= 2(y − yt)
∂y

∂w1
. (3.31)

However, .y = σ(w1x1 + w2x2 + b) is not directly differentiable with respect to
. w1. To counter this, a formal approach is to apply the chain rule, as shown in the
equation below:

.
∂L
∂w1

= 2(y − yt)
∂y

∂ŷ

∂ŷ

∂w1
= 2(y − yt)

∂σ (ŷ)

∂ŷ

∂(w1x1 + w2x2 + b)

∂w1
. (3.32)

Thus the final gradient would be equal to

.
∂L
∂w1

= 2(y − yt)
∂σ (ŷ)

∂ŷ
x1. (3.33)

The formulation can even be simplified for the sigmoid case as for sigmoid

function .
∂σ(ŷ)

∂ŷ
= .σ(ŷ)(1 − σ(ŷ)). In a similar way, the .

∂L
∂w2

and .
∂L
∂b

can also

be computed:

.
∂L
∂w2

= 2(y − yt)σ (ŷ)(1 − σ(ŷ))x2, (3.34)

.
∂L
∂b

= 2(y − yt)σ (ŷ)(1 − σ(ŷ)). (3.35)

Once the gradient is computed at each training step, the values of weights and
biases can be updated based on the gradient descent formula:

.w1 = w1 − α
∂L
∂w1

, . (3.36)

w2 = w2 − α
∂L
∂w2

, . (3.37)

158 3 Machine Learning Algorithms

Table 3.14 Data for neuron
training

Features Output

(1,1) 0.25

(. −1,. −1) . −0.25

b = b − α
∂L
∂b

. (3.38)

The backpropagation algorithm continues until convergence, i.e., the target
output . yt and neuron-generated output y are almost equal. This is a widely adopted
approach to training a neuron, even in a DNN, where the number of neurons may
reach billions. Next, we will go through a very simple coding example of training
and testing a neuron.

Example 3.5 Train a neuron so that it gives the output equal to 0.25 when the inputs
are .x1 = 1 and .x2 = 1; else, it will give the output equal to .−0.25 when the inputs
are .x1 = −1 and .x2 = −1. The dataset is given below in Table 3.14.

Solution to Example 3.5
Programming Example 3.4
The code for training the neuron is presented in Listing 3.3, followed by its output
and explanation in Table 3.15. The listing addresses a two-class classification
problem. A class, Neuron, is defined using a basic neural network, which is trained
to minimize the MSE loss. The training process occurs over a set number of epochs,
during which the code performs a forward pass and calculates gradients. Weights
and biases are then updated using gradient descent.

1 import numpy as np
2 import math
3

4 # This is a two class classification problem which will be solved
using the sample neuron

5 # ----------------------Declaring Variables----------------------
6 learning_rate = 0.1 # Learning rate
7 trainig_epochs = 400 # Trainig epochs
8

9

10 # ------------------------Data Preparation-----------------------
11 # Two features for two classes for trainig
12 x_class1_feat1 = 1
13 x_class1_feat2 = 1
14 x_class2_feat1 = -1
15 x_class2_feat2 = -1
16 y_class1 = 0.25 # Target for class 1
17 y_class2 = -0.25 # Target for class 2

3.5 Deep Learning 159

18

19

20 # --------------Defining the Neuron and Activation---------------
21

22 def sigmoid(x):
23 "Sigmoid function output of a scalar value x"
24 return 1.0 / (1.0 + math.exp(-x))
25

26 class Neuron(object):
27 "This function will take two input x1 and x2 to produce an

output y neuron output"
28 def __init__(self):
29

30 self.w1 = 0.25 # Initializing the weight1 to 0.25
31 self.w2 = 0.25 # Initializing the weight2 to 0.25
32 self.b = 0.25 # Initializing the bias to 0.25
33

34 def update_weights_biases (self,grad_w1,grad_w2,grad_b,
learning_rate):

35

36 # Gradient update using the gradient descent formula
37 self.w1 = self.w1 - learning_rate * grad_w1
38 self.w2 = self.w2 - learning_rate * grad_w2
39 self.b = self.b - learning_rate * grad_b
40

41 return
42

43 def sigmoid(self,x): # Sigmoid function
44 return 1.0 / (1.0 + math.exp(-x))
45

46 def grad_w1(self,x1,output,target): # Gradient of W1
47 gradient = 2 * (output-target) * output*(1-output) * x1
48 return gradient
49

50 def grad_w2(self,x2,output,target): # Gradient of W2
51 gradient = 2 * (output-target) * output*(1-output) * x2
52 return gradient
53

54 def grad_b(self,output,target): # Gradient of bias
55 gradient = 2 * (output-target) * output*(1-output)
56 return gradient
57

58

59 def forward (self, x1,x2):
60 # forward path
61 y_in = np.sum(self.w1*x1 + self.w2*x2 + self.b) # W*X +

b
62 y = self.sigmoid(y_in)
63

64 return y
65

66 def error_function (x,y):
67 "Computes the MSE between x and y"

160 3 Machine Learning Algorithms

68 cost = np.sum((x-y) ** 2) # Mean Squred Error
69 return cost
70

71

72 # Defining the neuron
73 neuron = Neuron()
74

75

76 # -----------------Traininig Loop for the Neuron-----------------
77

78 for i in range(trainig_epochs):
79

80 # Forward class1 and cost
81 output1 = neuron.forward(x_class1_feat1,x_class1_feat2)
82 cost1 = error_function (output1,y_class1)
83

84 # Gradient
85 grad_w1 = neuron.grad_w1(x_class1_feat1,output1,y_class1)
86 grad_w2 = neuron.grad_w2(x_class1_feat2,output1,y_class1)
87 grad_b = neuron.grad_b(output1,y_class1)
88

89 # Update
90 neuron.update_weights_biases (grad_w1,grad_w2,grad_b,

learning_rate)
91

92 # Forward class2 and cost
93 output2 = neuron.forward(x_class2_feat1,x_class2_feat2)
94 cost2 = error_function (output2,y_class2)
95

96 # Gradient
97 grad_w1 = neuron.grad_w1(x_class2_feat1,output2,y_class2)
98 grad_w2 = neuron.grad_w2(x_class2_feat2,output2,y_class2)
99 grad_b = neuron.grad_b(output2,y_class2)
100

101 # Update
102 neuron.update_weights_biases (grad_w1,grad_w2,grad_b,

learning_rate)
103

104 if i == 0:
105 print("Initial Iteration values")
106 print("Cost =", cost1+cost2)
107 print("weight1 = ", neuron.w1)
108 print("weight2 = ", neuron.w2)
109 print("bias = ", neuron.b)
110

111 print("Final Solution")
112 print("Cost =", cost1+cost2)
113 print("weight1 = ", neuron.w1)
114 print("weight2 = ", neuron.w2)
115 print("bias = ", neuron.b)

Listing 3.3 Neuron training code.

3.5 Deep Learning 161

Table 3.15 Explanation of the training and testing code example of a neuron presented in Listing
3.3

Line number Description Equations

1–2 Using NumPy and math modules

6–7 Defining the hyper-parameters

12–17 Preparing the dataset as per Table 3.14

22–24 Sigmoid function Provided in Table 3.17

30–32 Initialize .w1, w2, b This is a random guess

37–39 Updating learnable parameter Equations 3.36, 3.37, and 3.38

46–55 Gradient of Loss with respect to .w1, w2, b Equations 3.33, 3.34, and 3.35

61–62 Output computation Equation 3.29

68 Mean Squared error Provided in Table 1.7

81–87 Compute output and gradient for one class

90 Update weights and biases

93–99 Compute output and gradient for second class

102 Update weights and biases again

104–115 Printing outputs

Output of Listing 3.3:

Initial Iteration values
Cost = 0.6636567265251024
weight1 = 0.26545948169695005
weight2 = 0.26545948169695005
bias = 0.19713416231123965
Final Solution
Cost = 0.0720120329701401
weight1 = 0.735913945982327
weight2 = 0.735913945982327
bias = -2.5201486542891023

3.5.3 Artificial Neural Network (ANN)

Artificial neural networks (ANNs) are popularly known as feed-forward networks.
An ANN usually consists of many neurons stacked together at specific layers. A
standard ANN should have an input layer, one or multiple hidden layers, and one
output layer as displayed in Fig. 3.20.

Here, the input layer takes multiple features as the inputs. For example, in
this chapter, we will mainly demonstrate a standard handwritten dataset problem
known as MNIST, which stands for Modified National Institute of Standards and
Technology and is shown in Fig. 3.21 [8, 9]. The MNIST is a popular visual
recognition dataset for image classification problems. It contains grayscale images
with size .28 × 28. This handwritten digit dataset has ten (0–9) different classes.

162 3 Machine Learning Algorithms

Fig. 3.20 The input layers,
hidden layers, and the output
layer of a typical artificial
neural network

Fig. 3.21 MNIST
handwritten dataset [8]

Programming Example 3.5
Next, we will look at a PyTorch example in Listing 3.4 to learn how to apply ANN in
this kind of classification problem. The code explanation is provided in Table 3.16.
The code performs a training and an evaluation cycle for the ANN model on the
MNIST dataset for simple digit classification. The dataset is preprocessed before
splitting into training and testing datasets. The ANN is implemented using the cross-
entropy loss function and stochastic gradient descent optimizer. The weights are
updated through forward and backward propagation. Once the training is complete,
the model’s performance is evaluated using the test function on the test dataset.

1 # -------------------------Torch Modules-------------------------
2 from __future__ import print_function
3 import numpy as np
4 import pandas as pd
5 import torch.nn as nn
6 import math
7 import torch.nn.functional as F
8 import torch
9 from torch.nn import init

10 import torch.optim as optim
11 from torchvision import datasets, transforms
12 from torchvision import models
13 import torch.nn.functional as F
14

3.5 Deep Learning 163

15

16 # ---------------------------Variables---------------------------
17 mean = [0.5] # For Normalization
18 std = [0.1]
19

20 BATCH_SIZE =128 # Batch size
21 Iterations = 20
22 learning_rate = 0.01
23

24

25 # -------Commands to download and prepare the MNIST dataset------
26 train_transform = transforms.Compose([
27 transforms.ToTensor(),
28 transforms.Normalize(mean, std)
29])
30

31 test_transform = transforms.Compose([
32 transforms.ToTensor(),
33 transforms.Normalize(mean, std)
34])
35

36

37 train_loader = torch.utils.data.DataLoader(
38 datasets.MNIST('./mnist', train=True, download=True,
39 transform=train_transform),
40 batch_size=BATCH_SIZE, shuffle=True) # train dataset
41 test_loader = torch.utils.data.DataLoader(
42 datasets.MNIST('./mnist', train=False,
43 transform=test_transform),
44 batch_size=BATCH_SIZE, shuffle=False) # test dataset
45

46

47 # -------------------------Defining ANN--------------------------
48 class ANN(nn.Module):
49 def __init__(self):
50 super(ANN, self).__init__()
51 self.l1 = nn.Linear(784, 100) # input layer 784 for

mnist and 100 neurons hidden layer
52 self.relu = nn.ReLU() # activation function
53 self.l3 = nn.Linear(100, 10) ## from 100 neuron hidden

layer to output 10 layer for 10 digits
54

55 def forward(self, x):
56 x = torch.flatten(x, 1) ## making the 28 x 28 images into

a 784 dimension input
57 x = self.l1(x)
58 x = self.relu(x)
59 x = self.l3(x)
60 return x
61

62 # defining ANN model
63 model = ANN()
64

164 3 Machine Learning Algorithms

65 ## Loss function
66 criterion = torch.nn.CrossEntropyLoss() # pytorch's cross entropy

loss function
67

68 # Definin which paramters to train only the ANN model parameters
69 optimizer = torch.optim.SGD(model.parameters(),learning_rate)
70

71 # Defining the training function
72 # Train baseline classifier on clean data
73 def train(model, optimizer,criterion,epoch):
74 model.train() # setting up for training
75 for batch_idx, (data, target) in enumerate(train_loader): #

data contains the image and target contains the label =
0/1/2/3/4/5/6/7/8/9

76 optimizer.zero_grad() # setting gradient to zero
77 output = model(data) # forward
78 loss = criterion(output, target) # loss computation
79 loss.backward() # back propagation here pytorch will take

care of it
80 optimizer.step() # updating the weight values
81 if batch_idx % 100 == 0:
82 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f

}'.format(
83 epoch, batch_idx * len(data), len(train_loader.

dataset),
84 100. * batch_idx / len(train_loader), loss.item()

))
85

86

87 # To evaluate the model
88 # Validation of test accuracy
89 def test(model, criterion, val_loader, epoch):
90 model.eval()
91 test_loss = 0
92 correct = 0
93

94 with torch.no_grad():
95 for batch_idx, (data, target) in enumerate(val_loader):
96

97 output = model(data)
98 test_loss += criterion(output, target).item() # Sum

up batch loss
99 pred = output.max(1, keepdim=True)[1] # Get the index

of the max log-probability
100 correct += pred.eq(target.view_as(pred)).sum().item()

If pred == target then correct +=1
101

102 test_loss /= len(val_loader.dataset) # Average test loss
103 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{}

({:.4f}%)\n'.format(
104 test_loss, correct, val_loader.sampler.__len__(),
105 100. * correct / val_loader.sampler.__len__()))
106

3.5 Deep Learning 165

107

108 # Training the ANN
109 for i in range(Iterations):
110 train(model, optimizer,criterion,i)
111 test(model, criterion, test_loader, i) # Testing the the

current ANN

Listing 3.4 ANN Example

Output of Listing 3.4:

Train Epoch: 0 [0/60000 (0%)] Loss: 2.461659
Train Epoch: 0 [12800/60000 (21%)] Loss: 0.594805
Train Epoch: 0 [25600/60000 (43%)] Loss: 0.318740
Train Epoch: 0 [38400/60000 (64%)] Loss: 0.300817
Train Epoch: 0 [51200/60000 (85%)] Loss: 0.354926

Test set: Average loss: 0.0022, Accuracy: 9169/10000 (91.6900%)

Train Epoch: 1 [0/60000 (0%)] Loss: 0.332806
Train Epoch: 1 [12800/60000 (21%)] Loss: 0.337252
Train Epoch: 1 [25600/60000 (43%)] Loss: 0.180066
Train Epoch: 1 [38400/60000 (64%)] Loss: 0.173537
Train Epoch: 1 [51200/60000 (85%)] Loss: 0.310849

Test set: Average loss: 0.0018, Accuracy: 9360/10000 (93.6000%)

Train Epoch: 2 [0/60000 (0%)] Loss: 0.267431
Train Epoch: 2 [12800/60000 (21%)] Loss: 0.146986
Train Epoch: 2 [25600/60000 (43%)] Loss: 0.224672
Train Epoch: 2 [38400/60000 (64%)] Loss: 0.221327
Train Epoch: 2 [51200/60000 (85%)] Loss: 0.281612

Test set: Average loss: 0.0015, Accuracy: 9446/10000 (94.4600%)

...

...

...

Train Epoch: 18 [0/60000 (0%)] Loss: 0.054460
Train Epoch: 18 [12800/60000 (21%)] Loss: 0.030821
Train Epoch: 18 [25600/60000 (43%)] Loss: 0.076624
Train Epoch: 18 [38400/60000 (64%)] Loss: 0.084313
Train Epoch: 18 [51200/60000 (85%)] Loss: 0.109154

Test set: Average loss: 0.0007, Accuracy: 9729/10000 (97.2900%)

Train Epoch: 19 [0/60000 (0%)] Loss: 0.085309
Train Epoch: 19 [12800/60000 (21%)] Loss: 0.034182
Train Epoch: 19 [25600/60000 (43%)] Loss: 0.035189
Train Epoch: 19 [38400/60000 (64%)] Loss: 0.057047
Train Epoch: 19 [51200/60000 (85%)] Loss: 0.082779

Test set: Average loss: 0.0007, Accuracy: 9734/10000 (97.3400%)

166 3 Machine Learning Algorithms

Table 3.16 Explanation of the ANN code presented in Listing 3.4

Line number Description

2–13 Using NumPy, pandas, and Torch modules

17–18 Mean and standard deviation for data normalization

20–22 List of hyper-parameters

26–34 Converting to tensor and normalization

37 Train loader has the train dataset 60k images

42 Test loader has 10k test images

48–60 Describing ANN

51 First linear layer 784 input features and 100 output

52 ReLu Activation

53 Output linear layer 100 input and 10 output class

56 Flattens a 28. ×28 image into 1D 784 features

66 Defining the cross-entropy loss of PyTorch

69 Using PyTorch SGD solver as optimizer

73–84 Training function

74 Setting the model for training

75 Loading the data and target for training

77–79 Computes output and calculates loss and backpropagation

80 This line updates the weights and other trainable parameters

89–110 Test function

90 Setting the model for evaluation

94 We do not need gradient here (i.e., no grad)

97–99 Computes output, calculates loss, and predicts

100 If predict . = target then correct prediction

109–111 Training and testing the ANN

3.5.4 Convolutional Neural Network

A convolutional neural network (CNN) is a popular network architecture used for
image classification purposes. Most of the image classification tasks nowadays use
some form of CNN. Typically, a CNN consists of a convolution layer, a pooling
layer, an activation function, a batch normalization (BN) layer, and a fully connected
(FC) layer. These layers are described in the following sections.

3.5.4.1 Convolution Layer
In Fig. 3.22, a basic convolution operation is visualized. A convolutional layer
contains filters/weights (i.e., kernel) and biases that are trainable parameters. The
figure displays how these weights and biases are used to compute the output of a
convolution layer from its inputs. In a practical CNN, there are many input channels
and output channels. Figure 3.22 shows a 7. ×7 input and a 3. ×3 filter which goes
through a series of multiplication and addition operations (1, 2, 3, 4, 5, 6, 7, 8,
and 9). In each consecutive figure (from 1. −→2, 2. −→3), the kernel window shifts by

3.5 Deep Learning 167

Input (+pad 1) (7x7x1)

x[:,:,0]

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

0 -1 -1

-1

-1

0 0

1 0

0 -1 -1

-1

-1

0 0

1 0

1

Filter (3x3x1)

w[:,:,0]

Bias (1x1x1)

b[:,:,0]

(2)

-1 -1 2

0

0

-3 -1

-2 0

-1 -1 2

0

0

-3 -1

-2 0

Output (3x3x1)

o[:,:,0]

Input (+pad 1) (7x7x1)

x[:,:,0]

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

0 -1 -1

-1

-1

0 0

1 0

0 -1 -1

-1

-1

0 0

1 0

1

Filter (3x3x1)

w[:,:,0]

Bias (1x1x1)

b[:,:,0]

(1)

-1 -1 2

0

0

-3 -1

-2 0

-1 -1 2

0

0

-3 -1

-2 0

Output (3x3x1)

o[:,:,0]

Input (+pad 1) (7x7x1)

x[:,:,0]

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

0 -1 -1

-1

-1

0 0

1 0

0 -1 -1

-1

-1

0 0

1 0

1

Filter (3x3x1)

w[:,:,0]

Bias (1x1x1)

b[:,:,0]

(3)

-1 -1 2

0

0

-3 -1

-2 0

-1 -1 2

0

0

-3 -1

-2 0

Output (3x3x1)

o[:,:,0]

Fig. 3.22 Visualization of convolution operation with one input channel and one output channel
using one filter. A .3× 3 filter with padding . = 1 and stride . = 2 is used on an input size of .6× 6. At
each window the corresponding output block is computed by multiplying each element of a kernel
and input and then adding them with the bias

168 3 Machine Learning Algorithms

Input (+pad 1) (7x7x1)

x[:,:,0]

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

0 -1 -1

-1

-1

0 0

1 0

0 -1 -1

-1

-1

0 0

1 0

1

Filter (3x3x1)

w[:,:,0]

Bias (1x1x1)

b[:,:,0]

(5)

-1 -1 2

0

0

-3 -1

-2 0

-1 -1 2

0

0

-3 -1

-2 0

Output (3x3x1)

o[:,:,0]

Input (+pad 1) (7x7x1)

x[:,:,0]

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

0 -1 -1

-1

-1

0 0

1 0

0 -1 -1

-1

-1

0 0

1 0

1

Filter (3x3x1)

w[:,:,0]

Bias (1x1x1)

b[:,:,0]

(4)

-1 -1 2

0

0

-3 -1

-2 0

-1 -1 2

0

0

-3 -1

-2 0

Output (3x3x1)

o[:,:,0]

Input (+pad 1) (7x7x1)

x[:,:,0]

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

0 -1 -1

-1

-1

0 0

1 0

0 -1 -1

-1

-1

0 0

1 0

1

Filter (3x3x1)

w[:,:,0]

Bias (1x1x1)

b[:,:,0]

(6)

-1 -1 2

0

0

-3 -1

-2 0

-1 -1 2

0

0

-3 -1

-2 0

Output (3x3x1)

o[:,:,0]

Fig. 3.22 (continued)

3.5 Deep Learning 169

Input (+pad 1) (7x7x1)

x[:,:,0]

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

0 -1 -1

-1

-1

0 0

1 0

0 -1 -1

-1

-1

0 0

1 0

1

Filter (3x3x1)

w[:,:,0]

Bias (1x1x1)

b[:,:,0]

(8)

-1 -1 2

0

0

-3 -1

-2 0

-1 -1 2

0

0

-3 -1

-2 0

Output (3x3x1)

o[:,:,0]

Input (+pad 1) (7x7x1)

x[:,:,0]

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

0 -1 -1

-1

-1

0 0

1 0

0 -1 -1

-1

-1

0 0

1 0

1

Filter (3x3x1)

w[:,:,0]

Bias (1x1x1)

b[:,:,0]

(7)

-1 -1 2

0

0

-3 -1

-2 0

-1 -1 2

0

0

-3 -1

-2 0

Output (3x3x1)

o[:,:,0]

Input (+pad 1) (7x7x1)

x[:,:,0]

0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0 0

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

1 2 0 1 1

1 0 0 1 2

0 2 1 1 2

2 1 0 1 1

1 0 2 0 1

0 -1 -1

-1

-1

0 0

1 0

0 -1 -1

-1

-1

0 0

1 0

1

Filter (3x3x1)

w[:,:,0]

Bias (1x1x1)

b[:,:,0]

(9)

-1 -1 2

0

0

-3 -1

-2 0

-1 -1 2

0

0

-3 -1

-2 0

Output (3x3x1)

o[:,:,0]

Fig. 3.22 (continued)

2 places to the right. This sliding window step is known as stride (e.g., 2 in this
case). Additionally, since 7 (input size) is not divisible by 3 (kernel width), the input
is zero-padded on both sides to make it 9. ×9. Finally, the output at each step is
computed by an element-wise dot product between the kernel and the input element
and adding each element with the bias (e.g., 1).

170 3 Machine Learning Algorithms

Fig. 3.23 Visualization of
maximum pooling at the top
and average pooling at the
bottom 4 8

7 6

2 3

4 0

7 8

1 0

1 4

7 6

6 5

2 4

Single depth slice

max pool

with 2×2 filters

and stride 2

4 4

5 3

2 8

1 5

7 8

1 0

1 4

9 6

1 5

2 4

average pool

with 2×2 filters

and stride 2

x

y

x

y

3.5.4.2 Pooling Layer
A pooling layer is usually used in between two convolutional layers. The purpose of
the pooling operation is to reduce the activation size of the previous convolutional
layer. A pooling layer generally reduces the activation map size and helps reduce
memory consumption during training, as displayed in Fig. 3.23. There are different
pooling layers, including but not limited to max pooling and average pooling.
Maximum pooling (or max pooling) generates the maximum value in each patch
of the feature map as the output. Average pooling determines the average value of
each patch (e.g., 2. ×2) on the feature map.

3.5.4.3 Activation Functions
The concept of activation function has been introduced in Chap. 1. The activation
functions that are generally used in CNN models are discussed in the following
paragraphs. Table 3.17 summarizes the seven types of activations functions dis-
cussed here with their equations. The graphical representations of the functions are
illustrated in Fig. 3.24.

1. Binary Step Function: A binary step function produces an output equal to 1 if
a certain threshold value of the input is reached and outputs 0 if the input is less
than the threshold. Since the output is constant, the gradient of the function is
zero, causing a hindrance in the backpropagation process.

2. Identity Function: The identity function creates an output signal equal to the
input signal. It outputs the same value as its input, so, technically, this function is
similar to the input multiplied by 1. Based on the input, the outputs of the identity
function may range from .−∞ to .+∞. The derivative of this function is constant,
so it is not possible to backpropagate to the original function.

3. Sigmoid Function: The sigmoid function resembles an S-shaped curve, as shown
in Fig. 3.24. The value of the sigmoid function ranges from 0 to 1, which is why
it is extensively used in probabilistic applications. Furthermore, the function is
differentiable, implying that its slope can be determined. In ML, the sigmoid

3.5 Deep Learning 171

Table 3.17 Different activation functions used in machine learning. Here, a is constant, and x is
variable

Name of function Equation

Identity function . f (x) = x

Binary step function
. f (x) =

{
0, when x < 0
1, when x ≥ 0

Sigmoid
. f (x) = 1

1 + e−x

tanh
. f (x) = ex − e−x

ex + e−x

Rectified linear unit (ReLU)
. f (x) =

{
0, when x < 0
x, when x ≥ 0

Parametric rectified linear unit (PReLU)
. f (x) =

{
αx, when x < 0
x, when x ≥ 0

Exponential linear unit (ELU)
. f (x) =

{
α.(ez − 1), when x < 0

x, when x ≥ 0

function is useful for mapping predictions to a probability. The sigmoid function
was coined by Pierre François Verhulst in three papers from 1838 to 1847 in his
attempts to model population growth by adjusting the exponential growth model.

4. Hyperbolic Tangent Function (tanh): The functionality of tanh is similar to the
sigmoid function up to some level, as depicted in Fig. 3.24. However, unlike the
sigmoid function, tanh outputs in the range of . −1 to 1. While developing an ML
model, it can be useful to let the model decide which direction to go and how
much change should be done in the process.

5. Rectified Linear Unit (ReLU): ReLU is a linear function that provides an
output equal to the input only when the input is greater than zero and outputs
0 otherwise. The output values range from 0 to .+∞, i.e., always non-negative
since the inputs must be non-negative for a non-zero output. Backpropagation
from the derivative of the function is possible in this case. The ReLU function
was first proposed by Nair and Hinton in their 2010 publication [10], which has
been cited over 13,000 times, thus proving the usefulness of the function in ML
applications, particularly in deep learning.

6. Parametric Rectified Linear Unit (PReLU): The Parametric Rectified Linear
Unit (PReLU) is an activation function used in neural networks which solves the
issue of vanishing gradient problems of other activation functions. Furthermore,
the PReLU activation function can adapt to drastic changes in the slope by using
backpropagation. The range of this function depends on the convergence value of
. α, which in turn depends on the training data. The PReLU function was first laid
down by He et al. in a conference paper in 2015 [11], having more than 11,500
citations.

172 3 Machine Learning Algorithms

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3.24 The graphical illustration of different activation functions used in machine learning. (a)
Identity function. (b) Binary step function. (c) Sigmoid function. (d) Tanh function. (e) Rectified
linear unit. (f) Parametric rectified linear unit. (g) Exponential linear unit. (h) GELU

3.5 Deep Learning 173

7. Exponential Linear Unit (ELU): The Exponential Linear Unit (ELU) is one of
the activation functions used in neural networks. The ELUs use negative values
to bring mean unit activation values to almost zero with way less computational
complexity. While other activation functions, such as LReLUs and PReLUs, also
use zero values, the ELU provides a more stable deactivation state unaffected by
noise. Clevert et al. first proposed the ELU function in 2015 [12].

8. Gaussian Error Linear Unit (GELU): The GELU thresholds inputs based on
their values rather than their signs, unlike ReLU. Furthermore, it is a function
that multiplies its input by a cumulative density function (CDF) which enables
the combination of non-linearity and stochasticity. Equation 3.39 presents the
mathematical formula for GELU [13]:

.GELU(x) = xP (X ≤ x) = x0(x). (3.39)

Here, .0(x) is the CDF for Gaussian distribution. This CDF can be expressed
using different approximations. For error function (erf) approximation, GELU
can be represented as

.GELU(x) = x0(x) = x.
1

2

[
1 + erf

(
x√
2

)]
. (3.40)

For .tanh approximation, GELU can be expressed as shown in the equation
below:

.GELU(x) ≈ 1

2
x

(
1 + tanh

[
x√
2

(
x + 0.044715x3)]) . (3.41)

GELU is a non-convex and non-monotonic non-linear function with curvature
and thus can approximate complicated functions better than ReLU and other
linear units. GELU has been implemented in BERT, ROBERTa, ALBERT, and
many other state-of-the-art natural language processing (NLP) models.

3.5.4.4 Dropout
Dropout is a popular regularization technique. These regularization techniques are
used in neural networks to prevent overfitting. Usually, a CNN/DNN suffers from
overfitting when the model has a large number of trainable parameters. Dropout has
a pre-defined rate that defines the probability of a neuron being dropped during one
iteration of the training process to resolve the overfitting issue. The pre-defined rate
is known as the dropout rate. Dropout helps remove specific neurons during training
to compensate for the overfitting of a DNN model.

3.5.4.5 Batch Normalization
A batch normalization (BN) is a layer that scales the output between different
convolutional layers. Typically, a BN would contain additional trainable parameters
as well. In Eq. 3.42, we show a channel-wise (c) BN normalization operation that
takes . xc as input across a particular channel c.

174 3 Machine Learning Algorithms

.Oc = γc ∗ (xc − μc)/
σ 2

c + e)
+ βc, (3.42)

where . Oc is the output of channel c, . μc is the channel-wise mean, and . σc is the
standard deviation. . γc and . βc are the trainable parameters that are trained using the
gradient descent algorithm. Finally, . e is a small value that ensures BN does not
suffer from the divide by zero operation.

3.5.4.6 Optimizers
An optimizer is an algorithm or a function that minimizes the loss function by
adjusting the attributes of the neural network, such as weights and learning rates.
In this section, we will discuss five different types of optimizers.

3.5.4.6.1 Gradient Descent
The theory of gradient descent has already been discussed in Sect. 2.7.7 as a
hyperparameter tuner. Here, we discuss gradient descent briefly as an optimizer.
This algorithm iterates the entire dataset each time to look for the optimal solution.
However, in search of global minima, the gradient descent optimizer may converge
to local minima and fail to recover from it. Moreover, this is a slower and
computationally expensive optimizer. The formula the gradient descent optimizer
uses to update its parameters is shown as follows:

.wi+1 = wi − α.∇wi
J (wi), (3.43)

where w is the weight parameter, i is the iteration index, . α is the learning rate, J is
the cost function, and . ∇ is used as an operator expressing the gradient of a function
at a particular point, i.e., .∇wi

J is the gradient of the cost function J at . wi .

3.5.4.6.2 Stochastic Gradient Descent (SGD)
To solve the issue of computation costs of gradient descent optimizer, SGD has
been introduced. It does not iterate the entire dataset each time. Instead, it iterates a
randomly shuffled dataset partition each time to reach the optimal solution. This
approach makes SGD computationally faster and cheaper than gradient descent
optimizers. However, this approach may make SGD prone to noise and outliers
in the dataset as it only considers a random portion of the dataset at a time. The
formula for the SGD optimizer is given below:

.wi+1 = wi − α.∇wi
J
(
xiyi;wi

)
, (3.44)

where w is the weight parameter, i is the iteration index, . α is the learning rate, J is
the cost function, x is the randomly shuffled dataset partition on a single observation,
and y is labeled data.

3.5 Deep Learning 175

3.5.4.6.3 Mini Batch Stochastic Gradient Descent (MB-SGD)
Mini Batch Stochastic Gradient Descent (MB-SGD) is a variant of an SGD
optimizer. It would be more appropriate to state that the MB-SGD optimizer is
an optimized combination of gradient descent and SGD. First, it divides the entire
dataset into different partitions called batches. Then it calculates the gradient for
each batch and, finally, an average gradient mini-batch. This average gradient is
used to update the weight parameters. This optimizer is more computationally cost-
efficient and time sufficient. As the MB-SGD optimizer is faster compared to the
previous optimizers, it can be used on extensive datasets. The formula for MB-SGD
optimizer is given below:

.wi+1 = wi − α.∇wi
J
(
xi:i+b, yi:i+b, wi

)
, (3.45)

where w is the weight parameter, i is the iteration index, . α is the learning rate, J is
the cost function, x is the randomly shuffled dataset partition, y is labeled data, and
b is the size of a single batch.

3.5.4.6.4 RMSprop Optimizer
The two gradients in the root mean squared propagation (RMSprop) algorithm are
first compared for signs. If they both have the same sign, then we are moving in
the right direction and can, therefore, slightly raise the step size. However, we must
reduce the step size if they have the opposite indications. After limiting the step
size, we may proceed with the weight update. The algorithm’s main goal is to
shorten the number of function evaluations necessary to obtain the local minima,
hence quickening the optimization process. The algorithm divides the gradient by
the square root of the mean square and keeps a moving average of the squared
gradients for each weight.

3.5.4.6.5 Adam Optimizer
The Adam optimization algorithm has been developed as an extension to the
classical gradient descent algorithms. It has been designed to maintain the advan-
tages of adaptive gradient and RMSProp algorithms. The term Adam is derived
from adaptive moment estimation. Adam optimizer uses bias correction and the
estimations of the first and second moments of the gradient for adjusting the learning
rate for each weight of the neural network.

Adam optimizer is computationally efficient and fast. It does not require huge
memory space. For extensive datasets, the Adam optimizer is the appropriate
algorithm. Adam optimizers work well with noisy and sparse gradients. It can be
applied if the dataset contains non-stationary data.

3.5.4.7 Fully Connected Layer
We already discussed an example of a fully connected linear layer in ANN. In a
classification problem, the last fully connected layer in a CNN network will always
have an output neuron equal to the amount of classification class. For example, in

176 3 Machine Learning Algorithms

our previous MNIST classification problem, the output class has 10 neurons and 10
output classes (e.g., 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).

Programming Example 3.6
Next, we look at the example of a CNN modeling in Listing 3.5. The code imple-
ments a CNN model for digit classification on the MNIST dataset. The problem
statement is exactly similar to the previous ANN model example in Listing 3.4. The
only difference is we replace the ANN model with a CNN architecture in lines 52–
57. The CNN architecture contains two convolution layers, two dropout layers, and
two fully connected linear layers.

1 # -------------------------Torch Modules-------------------------
2 from __future__ import print_function
3 import numpy as np
4 import pandas as pd
5 import torch.nn as nn
6 import math
7 import torch.nn.functional as F
8 import torch
9 from torch.nn import init

10 import torch.optim as optim
11 from torchvision import datasets, transforms
12 from torchvision import models
13 import torch.nn.functional as F
14

15

16 # ---------------------------Variables---------------------------
17 mean = [0.5] # for Normalization
18 std = [0.1]
19 # batch size
20 BATCH_SIZE =128
21 Iterations = 20
22 learning_rate = 0.01
23

24

25 # -------Commands to download and prepare the MNIST dataset------
26 train_transform = transforms.Compose([
27 transforms.ToTensor(),
28 transforms.Normalize(mean, std)
29])
30

31 test_transform = transforms.Compose([
32 transforms.ToTensor(),
33 transforms.Normalize(mean, std)
34])
35

36

37 train_loader = torch.utils.data.DataLoader(
38 datasets.MNIST('./mnist', train=True, download=True,
39 transform=train_transform),

3.5 Deep Learning 177

40 batch_size=BATCH_SIZE, shuffle=True) # train dataset
41

42 test_loader = torch.utils.data.DataLoader(
43 datasets.MNIST('./mnist', train=False,
44 transform=test_transform),
45 batch_size=BATCH_SIZE, shuffle=False) # test dataset
46

47 # -------------------------Defining CNN--------------------------
48 # Pytorch official Example site: https://github.com/pytorch/

examples/blob/master/mnist/main.py
49 class CNN(nn.Module):
50 def __init__(self):
51 super(CNN, self).__init__()
52 self.conv1 = nn.Conv2d(1, 32, 3, 1)
53 self.conv2 = nn.Conv2d(32, 64, 3, 1)
54 self.dropout1 = nn.Dropout(0.25)
55 self.dropout2 = nn.Dropout(0.5)
56 self.fc1 = nn.Linear(9216, 128)
57 self.fc2 = nn.Linear(128, 10)
58

59 def forward(self, x):
60 x = self.conv1(x)
61 x = F.relu(x)
62 x = self.conv2(x)
63 x = F.relu(x)
64 x = F.max_pool2d(x, 2)
65 x = self.dropout1(x)
66 x = torch.flatten(x, 1)
67 x = self.fc1(x)
68 x = F.relu(x)
69 x = self.dropout2(x)
70 x = self.fc2(x)
71 output = F.log_softmax(x, dim=1)
72 return output
73

74

75 # defining CNN model
76 model = CNN()
77

78 ## Loss function
79 criterion = torch.nn.CrossEntropyLoss() # pytorch's cross entropy

loss function
80

81 # definin which paramters to train only the ANN model parameters
82 optimizer = torch.optim.SGD(model.parameters(),learning_rate)
83

84 # defining the training function
85 # Train baseline classifier on clean data
86 def train(model, optimizer,criterion,epoch):
87 model.train() # setting up for training
88 for batch_idx, (data, target) in enumerate(train_loader): #

data contains the image and target contains the label =
0/1/2/3/4/5/6/7/8/9

178 3 Machine Learning Algorithms

89 optimizer.zero_grad() # setting gradient to zero
90 output = model(data) # forward
91 loss = criterion(output, target) # loss computation
92 loss.backward() # back propagation here pytorch will take

care of it
93 optimizer.step() # updating the weight values
94 if batch_idx % 100 == 0:
95 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f

}'.format(
96 epoch, batch_idx * len(data), len(train_loader.

dataset),
97 100. * batch_idx / len(train_loader), loss.item()

))
98

99

100 # to evaluate the model
101 ## validation of test accuracy
102 def test(model, criterion, val_loader, epoch):
103 model.eval()
104 test_loss = 0
105 correct = 0
106

107 with torch.no_grad():
108 for batch_idx, (data, target) in enumerate(val_loader):
109

110 output = model(data)
111 test_loss += criterion(output, target).item() # sum

up batch loss
112 pred = output.max(1, keepdim=True)[1] # get the index

of the max log-probability
113 correct += pred.eq(target.view_as(pred)).sum().item()

if pred == target then correct +=1
114

115 test_loss /= len(val_loader.dataset) # average test loss
116 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{}

({:.4f}%)\n'.format(
117 test_loss, correct, val_loader.sampler.__len__(),
118 100. * correct / val_loader.sampler.__len__()))
119

120

121 ## training the ANN
122 for i in range(Iterations):
123 train(model, optimizer,criterion,i)
124 test(model, criterion, test_loader, i) #Testing the the

current ANN

Listing 3.5 CNN Example [14]

3.5 Deep Learning 179

Output of Listing 3.5:

Train Epoch: 0 [0/60000 (0%)] Loss: 2.345949
Train Epoch: 0 [12800/60000 (21%)] Loss: 0.751740
Train Epoch: 0 [25600/60000 (43%)] Loss: 0.497667
Train Epoch: 0 [38400/60000 (64%)] Loss: 0.405288
Train Epoch: 0 [51200/60000 (85%)] Loss: 0.235314

Test set: Average loss: 0.0013, Accuracy: 9519/10000 (95.1900%)

Train Epoch: 1 [0/60000 (0%)] Loss: 0.320085
Train Epoch: 1 [12800/60000 (21%)] Loss: 0.134681
Train Epoch: 1 [25600/60000 (43%)] Loss: 0.241163
Train Epoch: 1 [38400/60000 (64%)] Loss: 0.128346
Train Epoch: 1 [51200/60000 (85%)] Loss: 0.114656

Test set: Average loss: 0.0007, Accuracy: 9707/10000 (97.0700%)

Train Epoch: 2 [0/60000 (0%)] Loss: 0.185234
Train Epoch: 2 [12800/60000 (21%)] Loss: 0.182811
Train Epoch: 2 [25600/60000 (43%)] Loss: 0.138322
Train Epoch: 2 [38400/60000 (64%)] Loss: 0.165857
Train Epoch: 2 [51200/60000 (85%)] Loss: 0.154645

Test set: Average loss: 0.0005, Accuracy: 9780/10000 (97.8000%)

...

...

...

Train Epoch: 18 [0/60000 (0%)] Loss: 0.050605
Train Epoch: 18 [12800/60000 (21%)] Loss: 0.099548
Train Epoch: 18 [25600/60000 (43%)] Loss: 0.040686
Train Epoch: 18 [38400/60000 (64%)] Loss: 0.040548
Train Epoch: 18 [51200/60000 (85%)] Loss: 0.040939

Test set: Average loss: 0.0002, Accuracy: 9890/10000 (98.9000%)

Train Epoch: 19 [0/60000 (0%)] Loss: 0.020478
Train Epoch: 19 [12800/60000 (21%)] Loss: 0.038522
Train Epoch: 19 [25600/60000 (43%)] Loss: 0.008525
Train Epoch: 19 [38400/60000 (64%)] Loss: 0.057977
Train Epoch: 19 [51200/60000 (85%)] Loss: 0.088406

Test set: Average loss: 0.0002, Accuracy: 9893/10000 (98.9300%)

180 3 Machine Learning Algorithms

3.5.4.8 Why Is CNN So Popular?
CNN is the most popular deep neural network nowadays for image classification,
object recognition, and object tracking tasks. First, the convolution operation
can precisely capture an image’s semantic information and extract detailed fea-
ture information. Second, the CNN architecture is much more efficient. It has
a smaller parameter size than a fully connected neural network. Hence, CNN
models are ideal for edge and mobile devices with low memory and computing
resources.

3.5.4.9 State-of-the-Art Model Architecture
A typical CNN architecture, also known as ConvNet architecture, is characterized
by alternate layers of CONV and pooling, followed by one or more FC layers at
the end [15]. Sometimes an FC layer is supplanted by a global average pooling
layer. Several mapping functions, regulatory units such as BN and dropout, etc.
are utilized to optimize the performance of the ConvNet. The arrangement of the
CNN component layers is pivotal in designing new architectures aiming for better
performances. Most of the computation time and memory space is invested in the
early CONV layers, and the majority of the parameters are in the FC layers at the
end of the network.

Some commonly used ConvNet architectures are described in this section. A
comparison of the architectures is provided in Table 3.18.

1. LeNet: The LeNet architecture is one of the first successful applications of CNN.
It was developed by Yann LeCun et al. in 1989–1998 [16]. It was used to read zip
codes, handwritten digits, etc.

2. AlexNet: AlexNet was the first CNN architecture used in computer vision, and
it was developed by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton in 2012
[17]. It is very similar to LeNet except that it is bigger and deeper and involves
several CONV layers stacked on top of one another.

3. GoogLeNet: The GoogLeNet, also recognized as Inception-V1, is a 22-layer
deep CNN developed by Szegedy et al. from Google in 2014 [18]. The inception
module used in this architecture significantly decreased the number of parameters
in the network to only 4 million compared to the 60 million in AlexNet. The

Table 3.18 Comparison among the CNN architectures [15]

Name of architecture Parameters Depth Test accuracy %

LeNet 0.06 M 5 MNIST 99.05

AlexNet 60 M 8 ImageNet 57

GoogLeNet 4 M 22 ImageNet 93.3

VGGNet 138 M 19 ImageNet 92.7

ResNet 25.6 M 152 ImageNet 96.4

3.5 Deep Learning 181

reduction is achieved through the use of average pooling rather than using FC
layers at the top of the ConvNet.

4. VGGNet: VGGNet was introduced by Karen Simonyan and Andrew Zisserman
from the Visual Geometry Group (by Oxford University) in 2014 [19] and is
known for its simplicity. It uses only 3 . × 3 CONV layers stacked atop one another
in an ascending order of depth. The use of max pooling helps to reduce the
volume size. However, this architecture is costly in terms of evaluation, training
time, memory consumption, and a number of parameters (140 million).

5. ResNet: The Residual Network, or ResNet, was proposed by Kaiming He et al. in
2015 [20]. This network has special skip connections, which is an extensive use
of BN. The purpose of the skip connection is to enhance the gradient computation
process during backpropagation. Such connection in a deeper network solves the
vanishing gradient problem in deep neural network (DNN).

3.5.5 Recurrent Neural Network (RNN)

Convolution neural networks can capture the semantic information of an image,
but to adapt to sequential data, we will adopt Recurrent Neural Network (RNN).
To classify character-level words as a series of characters, RNN combines input
and hidden state output to generate a class label as output for a specific word, as
displayed in Fig. 3.25.

The network in Fig. 3.25 has two linear layers that operate on a hidden and an
input state. The network operates by taking input and a prior hidden state from
the sequence of data. Then it will compute the classification output and a future
hidden state. The output layer uses a LogSoftmax function to generate the output
probability of the classes. We have demonstrated a practical example of Natural

Fig. 3.25 Architecture of an
RNN model containing
hidden state, combining layer,
and output layer

182 3 Machine Learning Algorithms

Language Processing using RNN in Sect. 4.9.4 of Chap. 4. In our example, we will
classify surnames from 18 different languages using the PyTorch official example
of RNN [21].

3.5.6 Generative Adversarial Network (GAN)

Deep adversarial networks have gained recent popularity in generating fake images,
videos, and other tasks. It was first proposed by IAN Goodfellow [22]. It consists of
two neural networks competing with each other in a min–max game. First, a network
known as generator outputs fake images from random noise which closely matches
an underlying target distribution. The second network is known as discriminator,
which functions as a decipher between the clean and fake images (Fig. 3.26). Next,
we describe the functionality of each GAN module and an overall training scheme:

1. Discriminator. The discriminator is trained to differentiate between a clean
image from the original distribution and a fake image generated from the
generator. During training, it ignores the generator loss function. It is trained
based on a binary classification loss function only to identify true/fake images.

2. Generator. The generator takes random input and transforms it into a target
distribution data instance. The goal is to fool the discriminator into misclassifying
this data point as true data. Hence, generator training takes the distribution loss
into account.

3. Overall Training. The overall training of GAN should alternate between the
generator and the discriminator. Typically, the discriminator is trained for a few
iterations and then the generator; this process of alternate training keeps repeating
until convergence. In the literature, there are different loss functions that can train
both generator and discriminator jointly. A typical min–max loss function using
the Kullback–Leibler (KL) divergence loss can be formulated as

Generator

Real images

Discriminator

Sample

Sample

t
u

p
ni

m
o

d
na

R

D
iscrim

in
ato

r

lo
ss

G
en

era
to

r

lo
ss

Fig. 3.26 GAN network

3.5 Deep Learning 183

Fig. 3.27 Transfer learning
process

Extract

pretrained

CNN

CNN layer

CNN layer

CNN layer

Input

Pretrained model

Old classifier

CNN layer

CNN layer

CNN layer

Input

New model

New classifier

.Ex[log(D(x))] + Ez[log(1 − D(G(z)))], (3.46)

where .D(x) is the discriminator’s estimate of the probability that real data
instance x is real, .G(z) is the generator’s output for random noise z, and . D(G(z))

is the discriminator’s estimate of the probability that a fake instance is real.
Another popular loss function for GAN training is Wasserstein loss. We would
encourage the reader to read some survey GAN papers to get familiar with a
wide range of GAN architectures [23]. We will present an example of a GAN
algorithm in a robotics application in Chap. 5.

3.5.7 Transfer Learning

Transfer learning refers to transferring one information domain into a different
application domain. For example, a neural network is trained on a 10-class
classification problem. Next, we want this pre-trained model to adapt to a new
knowledge domain (e.g., 100-class classification problem). A common approach
to transferring this 10-class classifier model into a 100-class classifier would be
to fix only a part of the model to replace the last classification layer, as displayed
in Fig. 3.27, because the initial convolution layers capture the high-level features
of the given data. Such high-level features are common in general across similar
types of datasets. However, the final few layers, especially the last layer, perform the
classification task on the extracted features. Hence, a common strategy in transfer
learning applications would be to fix the first few layers of the pre-trained model
and then only train the last classification layer after replacing it with new class

184 3 Machine Learning Algorithms

configurations. We will demonstrate an example of multi-domain transfer learning
in Chap. 7.

3.6 Time Series Forecasting

The statistical or machine learning technique called time series forecasting aims
to model past time series data in order to predict future time points. A time series
is a collection of observations made repeatedly over time, whether daily, weekly,
monthly, or annually. Time series analysis entails creating models to characterize
the observed time series and comprehend the “why” underlying its dataset. This
involves making predictions and interpretations based on the available data. Time
series forecasting uses the best-fitting model to predict future observations based on
the intricate processing of current and historical data. In this section, we will study
three algorithms for time series forecasting: ARIMA, SARIMA, and LSTM.

3.6.1 ARIMA

Auto-Regressive Integrated Moving Average (ARIMA) is a class of models that
defines different characteristics of a time series depending on the previous behavior
of that time series. The term ARIMA is made of initials of three different terms,
which are:

• Auto-regression (AR): indicating a model that uses the relationship between
current and past values. It is represented by p.

• Integrated (I): indicating the data is either stationary or made stationary by
differencing. It is represented by d.

• Moving Average (MA): indicating a model which linearly depends on the forecast
of that model, and also the errors are linear functions of past errors. It is
represented by q.

Together, these three terms are represented by the p, d, and q parameters. These
parameters are represented by integer values in the model to better understand which
model is being used. For example, if we use the first order for auto-regression,
difference a time series twice to make it stationary, and use the third order for
moving average, then we can say that we are using the ARIMA(1, 2, 3) model.

Before going into the method, we will study a few terms that will help us
understand the concepts:

1. Stationary Time Series: A time series whose statistical properties, such as
mean, standard deviation, variance, and covariance, do not vary with time is
known as a stationary time series. A time series is stationary if it fulfills three
conditions—constant mean with time, constant variance with time, and constant
auto-correlation with time.

3.6 Time Series Forecasting 185

2. White noise: A time series is a mix of signals and noise. Mathematically,

.Time series(t) = Signal(t) + Noise(t). (3.47)

When we fit a model to the series, we can predict the signal portion of the time
series but not the noise portion. A signal is known as a white noise if its mean is
zero and has a constant standard deviation with time, and the correlation between
lags is zero. If a time series is truly white noise, it maintains all these three
conditions of being white noise. So, it is unpredictable, and we should stop trying
to fit any model into it.

3. Lag or Backshift Operator: The lag (L) or the backshift operator (B) operates
on an element of a time series and produces the previous element. In a time series,
if a specific point in time is t , then .xt−j is called the j th lag of . xt .

.Bjxt ≡ xt−j . (3.48)

.∇xt = xt − xt−1 = xt − Bxt = (1 − B)xt . (3.49)

3.6.1.1 The Auto-regressive Process
In the auto-regressive process, the future data points are forecasted based on the past
values in the series. Starting our forecast with respect to the past 1 value, which is
AR(1). Here the past value is .Yt−1. We can now see that .Yt−1 depends on .Yt−2, and
so on.

. Yt = c + φYt−1 + et ,

Yt = c + φ2Yt−2 + φYt−1 + et ,

...

Yt = c

1 − φ
+ φtY1 + φt−1e2 + φt−2e3 + · · · + et .

The first observation term (.φtY1) in the last equation signifies that the first
observation still matters in any future forecast, even if it is very small. We use
stationary conditions to minimize this effect, which is .|φ| < 1.

A time series that is a linear function of p past values, i.e., AR(p) is given by

.Yt = c + φ1Yt−1 + φ2Yt−2 + · · · + φpYt−p + et . (3.50)

3.6.1.2 The Moving Average Process
In the moving average process, the future values are forecasted based on past errors.
Similar to the auto-regressive process, we can write

186 3 Machine Learning Algorithms

.Yt = c + θet − 1 + rt . (3.51)

A time series that is a linear function of q past errors, MA(q), is given by

.Yt = c + et + θ1et−1 + θ2et−2 + · · · + θqet−q . (3.52)

3.6.1.3 The Differencing Process
Combining auto-regression (AR) and moving average (MA) with differencing (I),
we will get the Auto-Regression Integrated Moving Average (ARIMA) process [24,
25].

.Y '
t = c + φ1Y

'
t−1 + · · · + φpY '

t−p + θ1et−1 + · · · + θqet−q + et , (3.53)

where . Yt is the differenced series, and we needed to difference only once to make
the time series stationary. But at times, the time series might have to be differenced
more than once.

The above equation can be expressed with the backshifting operator B for easier
calculation:

.

(1 − φ1B − · · · − φpBp) (1 − B)dYt = c + (1 + θ1B + · · · + θqBq)et

↑ ↑ ↑
AR(p) Degree of MA(q)

differencing(d)

.

3.6.1.4 Determining the Order
With the help of the autocorrelation plot (ACF) and partial autocorrelation plot
(PACF), the order of a model can be determined. The ACF plot basically visualizes
the relationship between . yt and .yt−q . The PACF is quite similar to ACF, showing
the relationship between two time series datapoints, . yt and .yt−p, but intervening
. yt removed. Often, the Akaike information criterion (AIC) and the Bayesian
information criterion (BIC) are also used to determine the best order for a model.

There are a few statistical tests to check the stationarity of a time series. If a time
series is stationary, then .d = 0. If the series needs to be differenced n times, then
.d = n. One of the most used statistical tests is the Augmented Dickey–Fuller (ADF)
test. It is a type of unit root test, indicating a time series being stationary. The ADF
test can calculate the p-value, which is the probability of achieving a result equal
to or more extreme than the actual observed under the assumption that there is no
relationship between the two sets of data here (null hypothesis). The p-value can
indicate whether the time series is stationary or not.

• p-value . > 0.05 . → non-stationary
• p-value . ≤ 0.05 . → stationary.

3.6 Time Series Forecasting 187

Programming Example 3.7
Listing 3.6 is basically for the purpose of determining the model order of ARIMA
and Table 3.19 explains the listing. After reading the CSV data, the data is plotted
to see what the dataset actually looks like (Fig. 3.28). Then, the dataset is checked
using the ADF test to determine whether the data is stationary. Based on the p-value,
we decide that these data are stationary. The auto_arima function is used to find
the best model for ARIMA. Here, auto_arima uses the ADF test to fit a model,
determine the error, and choose the model with the least error.

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from statsmodels.tsa.stattools import adfuller
5 from pmdarima import auto_arima
6 import warnings
7 warnings.filterwarnings("ignore")
8

9

10 # -------------------------Reading Data--------------------------
11 df = pd.read_csv('./data/MaunaLoaDailyTemps.csv',
12 index_col='DATE',
13 parse_dates=True).dropna()
14

15

16 # -------------------------Initial Plot--------------------------
17 df['AvgTemp'].plot(figsize=(12,6))
18 plt.show()
19

20

21 # ----------------------Check If Stationary----------------------
22 dftest = adfuller(df['AvgTemp'], autolag='AIC')
23 print('ADF Value: {0:.2f} \tP-Value: {1:.2f} \nNo of Lags: {2} \t

\tNo Of Observations: {3} \nCritical Values:'.format(
24 dftest[0], dftest[1], dftest[2], dftest[3]))
25

26 for i, values in dftest[4].items():
27 print("\t\t\t\t",i, " :", values)
28

29

30 # -------------------Finding Best Model Order--------------------
31 arima_model = auto_arima(df['AvgTemp'], error_action="ignore",
32 stepwise=True, test='adf',
33 suppress_warnings=True)
34

35 print(arima_model.summary())

Listing 3.6 Determination of ARIMA model order

188 3 Machine Learning Algorithms

Output of Listing 3.6:

ADF Value: -6.55 P-Value: 0.00
No of Lags: 12 No Of Observations: 1808
Critical Values:
1% : -3.433972018026501
5% : -2.8631399192826676
10% : -2.5676217442756872

SARIMAX Results
===
Dep. Variable y No. Observations 1821
Model SARIMAX(1, 0, 5) Log Likelihood -4139.680
Date Tue, 10 Aug 2021 AIC 8295.360
Time 192246 BIC 8339.417
Sample 0 HQIC 8311.613
Covariance Type opg
===

coef std err z Pz [0.025 0.975]

intercept 1.2241 0.367 3.338 0.001 0.505 1.943
ar.L1 0.9736 0.008 123.206 0.000 0.958 0.989
ma.L1 -0.1327 0.024 -5.573 0.000 -0.179 -0.086
ma.L2 -0.2113 0.024 -8.696 0.000 -0.259 -0.164
ma.L3 -0.2159 0.024 -9.010 0.000 -0.263 -0.169
ma.L4 -0.1352 0.023 -5.888 0.000 -0.180 -0.090
ma.L5 -0.0506 0.024 -2.065 0.039 -0.099 -0.003
sigma2 5.5306 0.174 31.778 0.000 5.189 5.872
===
Ljung-Box (L1) (Q) 0.08 Jarque-Bera (JB) 20.30
Prob(Q) 0.77 Prob(JB) 0.00
Heteroskedasticity (H) 0.81 Skew -0.17
Prob(H) (two-sided) 0.01 Kurtosis 3.39
==

Programming Example 3.8
Listing 3.7 is the program for fitting data and predicting output values and Table
3.20 explains the listing. First, the data is read in CSV form. The train and test data
are separated into two different arrays. The model with the least error is determined
in Listing 3.6. So, the order of this model will be ARIMA(1,0,5).

A model is trained with these data, which predicts in the range of test data. These
are compared and RMS error is calculated. The forecasted data and actual data are
plotted side by side in Fig. 3.29. In this figure, the ARIMA model predicts the trend

Table 3.19 Explanation of the ARIMA model selection code example presented in Listing 3.6

Line number Description

1–7 Importing some required modules

9–10 Reading data using read_csv function of Pandas module

17–18 Plotting the dataset with respect to date index

22–27 Printing the five outputs of Augmented Dickey–Fuller test

30–32 Search for the best model for this particular dataset using pmdarima module

34 Printing the best model and its summary

3.6 Time Series Forecasting 189

Fig. 3.28 Initial plot of the dataset used

component of the data. That is why the predicted data is a smooth line and the actual
data have a lot of deviation. Figure 3.33 is a great example of different components
of a dataset.

Another model is trained (again using ARIMA(1,0,5) order) with the whole
dataset and then forecasted similarly. The predicted result is reflected in Fig. 3.30.

1 import pandas as pd
2 import matplotlib.pyplot as plt
3 from statsmodels.tsa.arima.model import ARIMA
4 from math import sqrt
5 from sklearn.metrics import mean_squared_error
6

7

8 # -------------------------Reading Data--------------------------
9 df=pd.read_csv('./data/MaunaLoaDailyTemps.csv',index_col='DATE',

parse_dates=True)
10 df=df['AvgTemp'].dropna()
11

12

13 # -----------------------Splitting Dataset-----------------------
14 size = int(len(df)*0.80)
15 train, test = df[0:size], df[size:len(df)]
16

17

18 # --------------------Training with 80% Data---------------------
19 model=ARIMA(train,order=(1,0,5))
20 model_fit=model.fit()
21 model_fit.summary()
22

23

24 # -------------Prediction & Setting Index for Plot---------------
25 rng = pd.date_range(start='2017-12-30',end='2018-12-29')
26 prediction=model_fit.predict(start=len(train), end=len(train)+len

(test)-1, typ='levels')
27 prediction.index = rng

190 3 Machine Learning Algorithms

28

29

30 # -------------------------Ploting Data--------------------------
31 plt.figure(figsize=(12,6))
32 prediction.plot(label="Prediction", legend=True)
33 test.plot(label="Test Data", legend=True)
34 plt.show()
35

36

37 # --------------------------Evaluation---------------------------
38 mean=test.mean()
39 print('Mean:',mean)
40 rmse = sqrt(mean_squared_error(test, prediction))
41 print('Test RMSE: %.3f' % rmse)
42

43

44 # -------------------Training with Full Data---------------------
45 full_model = ARIMA(df,order=(1,0,5))
46 full_model_fit = full_model.fit()
47

48

49 # ------------------Prediction & Setting index-------------------
50 rng2 = pd.date_range(start='2018-12-30', end='2019-02-28', freq='

D')
51 full_prediction = full_model_fit.predict(start=len(df),end=len(df

)+2*30,typ='levels').rename('ARIMA Predictions')
52 full_prediction.index = rng2
53

54

55 # --------------------Plotting with Main Data--------------------
56 df.plot(figsize=(12,6), label="Full data", legend=True)
57 full_prediction.plot(figsize=(12,6), label="Full prediction",

legend=True)
58

59 plt.show()

Listing 3.7 ARIMA Model Implementation

Output of Listing 3.7:

Mean: 46.3041095890411
Test RMSE: 3.787

3.6.2 Seasonal ARIMA

Although ARIMA is widely used for forecasting univariate time series data, it has a
limitation. It cannot forecast data that has a seasonal component. Seasonal ARIMA,
or SARIMA, is an extension of ARIMA that can handle data with seasonality.

In a time series, the property of seasonality makes the time series predictable
over a certain period of time. However, seasonality is different from the cyclic
property. Seasonality is prevalent over a fixed period of time; that is, it has a fixed

3.6 Time Series Forecasting 191

Table 3.20 Explanation of the ARIMA code example presented in Listing 3.7

Line number Description

1–5 Importing Pandas, Matplotlib, ARIMA, and some required modules

9–10 Reading data using read_csv function of Pandas module

14–15 Splitting the dataset into train and test datasets

19–21 Fitting the train dataset with order (1.0,5) and also getting model fit summary

26 Making predictions

25–27 Setting index for newly predicted dataset

31–34 Plotting with test dataset to compare them both

38–39 Finding mean of test data and output it

40–41 Finding Root Mean Square Error

45–46 Fitting the whole dataset

50–52 Getting predictions and setting index to date values for proper plotting

56–58 Plotting the prediction with actual data

54–60 Search for the best model for this particular dataset using pmdarima module

62 Printing the best model and its summary

Fig. 3.29 Test data forecast using ARIMA model

Fig. 3.30 Out of sample data forecast using ARIMA model

192 3 Machine Learning Algorithms

Fig. 3.31 Additive and multiplicative seasonality in a time series dataset

frequency. On the other hand, if the period of time fluctuates and does not have a
fixed frequency, it is termed a cycle.

A time series is a combination of signal and noise, and a signal constitutes
different components, such as trends (.T (t)), seasonality (.S(t)), and residuals (.E(t)).
It is not mandatory for all series to have trends, seasonality, and residuals. But a
series can have any combination of these three components. The three components
can be decomposed from the signal using the decomposition process. As shown
in Fig. 3.31, there are two approaches to decomposing the components of a time
series:

1. Additive approach: .Y (t) = T (t) + S(t) + E(t).
2. Multiplicative approach: .Y (t) = T (t) × S(t) × E(t).

In addition to the ARIMA terms (.p, d, q), four other terms are required to
express an order of the SARIMA model. These are the seasonal AR (P), seasonal
difference order (D), seasonal MA (Q), and the length of season (m). So, the total
order of a SARIMA model is written as follows [26]:

.SARIMA(p, d, q)(P,D,Q)m. (3.54)

The SARIMA model is a bit complex to express directly, so we use the backshift
operator to describe it easily. Three examples are shown below:

1. .SARIMA(1, 1, 1)(1, 1, 1)4 is expressed (without constant) as

.

(1 − φ1B) (1 − 01B
4) (1 − B) (1 − B4)yt = (1 + θ1B) (1 + 01B

4)et .

↑ ↑ ↑ ↑ ↑ ↑
AR(1) AR(1)4 d = 1 D = 1 MA(1) MA(1)4

2. .SARIMA(1, 0, 4)(2, 0, 2)12 is expressed as

3.6 Time Series Forecasting 193

.

(1−φ1B) (1 − 01B
12−02B

24)yt

↑ ↑
AR(1) AR(2)12

= θ0 + (1−θ1B−θ2B
2 − · · · − θ4B

4) (1−01B
12 − 02B

24)et .

↑ ↑ ↑
constant MA(4) MA(2)12

3. .SARIMA(0, 0, 1)(2, 1, 2)12 is expressed (without constant) as

.

(1 − 01B
12 − 02B

24) (1 − B12)yt = (1 + θ1B) (1 + 01B
12 + 02B

24).

↑ ↑ ↑ ↑
AR(2)12 D = 1 MA(1) MA(2)12

You may refer to the references [27, 28] for further reading.

Programming Example 3.9
Listing 3.8 is almost similar to Listing 3.6 and Table 3.21 explains the listing. This
determines the best order we can use for the SARIMA model. The data used in this
case is non-stationary data. The dataset is monthly passenger data for an airplane
company. The objective is to predict the future data using the past data successfully.
The data is first plotted to get a brief idea about the data (Fig. 3.32). Then ADF test
checks whether the data is stationary. Seasonal decomposition is done to separate
different components (Fig. 3.33). Then, different models are grid-searched to find
the best one (one for the lowest error).

1 #Dataset: https://www.kaggle.com/rakannimer/air-passengers
2 import matplotlib.pyplot as plt
3 import pandas as pd
4 from statsmodels.tsa.stattools import adfuller
5 from pmdarima.arima import auto_arima
6 from statsmodels.tsa.seasonal import seasonal_decompose as sd
7

8 # -------------------------Reading Data--------------------------
9 passenger_data =pd.read_csv("./data/AirPassengers.csv")

10 passenger_data.Month = pd.to_datetime(passenger_data.Month)
11 passenger_data = passenger_data.set_index("Month")
12 plt.plot(passenger_data.Passengers)
13 plt.xlabel("Year")
14 plt.ylabel("No of Passengers")
15 plt.show()
16

17

18 # ----------------------Check If Stationary----------------------
19 dftest = adfuller(passenger_data, autolag='AIC')
20 print('ADF Value: {0:.2f} \tP-Value: {1:.2f} \nNo of Lags: {2} \t

\tNo Of Observations: {3} \nCritical Values:'.format(

194 3 Machine Learning Algorithms

21 dftest[0], dftest[1], dftest[2], dftest[3]))
22

23 for i, values in dftest[4].items():
24 print("\t\t\t\t",i, " :", values)
25

26

27 # ---------------------Seasonal Decomposition--------------------
28 comp = []
29 comp.append(passenger_data["Passengers"])
30

31 #Seasonal Decomposition
32 components = sd(passenger_data["Passengers"], model='additive')
33

34 trend_component = components.trend
35 comp.append(trend_component)
36

37 seasonal_component = components.seasonal
38 comp.append(seasonal_component)
39

40 residual_component = components.resid
41 comp.append(residual_component)
42

43

44 comp_names = ["Original", "Trend", "Seasonal", "Residual"]
45

46 plt.figure(figsize=(12, 6))
47 for i in range(4):
48 plt.subplot(411 + i)
49 plt.plot(comp[i], label=comp_names[i], color='red')
50 plt.legend(loc=2)
51 plt.show()
52

53

54 # -------------------Finding Best Model Order--------------------
55 sarima_model=auto_arima(passenger_data["Passengers"],start_p=1,d

=1,start_q=1,
56 max_p=5,max_q=5,m=12,
57 start_P=0,D=1,start_Q=0,max_P=5,max_D=5,

max_Q=5,
58 seasonal=True,
59 error_action="ignore",
60 suppress_warnings=True,
61 stepwise=True,n_fits=50,test='adf')
62

63 print(sarima_model.summary())

Listing 3.8 Determination of SARIMA model order [29, 30]

Output of Listing 3.8:

ADF Value: 0.81 P-Value: 0.99
Num Of Lags: 13 Num Of Observations: 130
Critical Values:

1% : -3.4816817173418295

3.6 Time Series Forecasting 195

5% : -2.8840418343195267
10% : -2.578770059171598

SARIMAX Results
===
Dep. Variable: y No. Observations: 144
Model: SARIMAX(0,1,1)x(2,1,[],12) Log Likelihood -505.589
Date: Tue, 10 Aug 2021 AIC 1019.178
Time: 20:01:12 BIC 1030.679
Sample: 0 HQIC 1023.851
Covariance Type: opg
===

coef std err z P>|z| [0.025 0.975]

ma.L1 -0.3634 0.074 -4.945 0.000 -0.508 -0.219
ar.S.L12 -0.1239 0.090 -1.372 0.170 -0.301 0.053
ar.S.L24 0.1911 0.107 1.783 0.075 -0.019 0.401
sigma2 130.4480 15.527 8.402 0.000 100.016 60.880
===
Ljung-Box (L1) (Q): 0.01 Jarque-Bera (JB): 59
Prob(Q): 0.92 Prob(JB): 0.10
Heteroskedasticity (H): 2.70 Skew: 0.15
Prob(H) (two-sided): 0.00 Kurtosis: 3.87
===

Table 3.21 Explanation of the SARIMA model selection code example presented in Listing 3.8

Line number Description

1–6 Importing Pandas, Matplotlib, ARIMA, and pmdarima modules

8–11 Reading data using read_csv function of Pandas module and setting dates as index

12–15 Plotting the dataset

8–24 Performing the Dickey–Fuller test

32–41 Decomposing into three different components considering additive model

44–51 Plotting different components of the dataset with the original dataset

55–61 Search for the best model for this particular dataset using pmdarima module

63 Printing the best model and its summary

Fig. 3.32 Initial plot of the
dataset used for the SARIMA
model

196 3 Machine Learning Algorithms

Fig. 3.33 Seasonal decomposition of the data

Programming Example 3.10
Listing 3.9 (explained in Table 3.22) first reads all the CSV data. Data are then split
into train and test data. The forecast is done based on train data in the range of test
data and compared with the test data. The comparison is shown in Fig. 3.34. The
forecasted value is evaluated using the mean value and the RMSE value. The full
data is trained again to forecast out of the sample data. The forecasted values are
plotted in Fig. 3.35.

1 #Dataset: https://www.kaggle.com/rakannimer/air-passengers
2 import matplotlib.pyplot as plt
3 import pandas as pd
4 from statsmodels.tsa.statespace.sarimax import SARIMAX
5 from math import sqrt
6 from sklearn.metrics import mean_squared_error
7 from sklearn.model_selection import train_test_split
8

9

10 # -------------------------Reading Data--------------------------
11 passenger_data =pd.read_csv("./data/AirPassengers.csv")
12 passenger_data.Month = pd.to_datetime(passenger_data.Month)
13 passenger_data = passenger_data.set_index("Month")
14

15

16 # -----------------------Splitting Dataset-----------------------
17 X_train, X_test = train_test_split(passenger_data, test_size=0.2,
18 random_state=42, shuffle=False)
19

20

21 # --------------------Training with 80% Data---------------------
22 SARIMA=SARIMAX(X_train["Passengers"],
23 order=(0,1,1),
24 seasonal_order=(2,1,1,12))
25 SARIMA_fit=SARIMA.fit()

3.6 Time Series Forecasting 197

26

27

28 # ------------Prediction & Plotting with Test Data---------------
29 trained_results=SARIMA_fit.predict(len(X_train),len(

passenger_data)-1)
30 trained_results.plot(legend=True)
31 X_test["Passengers"].plot(legend=True)
32 plt.show()
33

34

35 # --------------------------Evaluation---------------------------
36 mean=X_test["Passengers"].mean()
37 print('Mean:',mean)
38 rmse = sqrt(mean_squared_error(X_test, trained_results))
39 print('Test RMSE: %.3f' % rmse)
40

41

42 # -------------------Training with Full Data---------------------
43 year_to_forecast = 5
44 model_full=SARIMAX(X_train["Passengers"],
45 order=(0,1,1),
46 seasonal_order=(2,1,1,12))
47 model_fit_full=model_full.fit()
48

49

50 # -----------------Predicting out-of-sample data

51 forecast=model_fit_full.predict(start=len(passenger_data),
52 end=(len(passenger_data)-1)+

year_to_forecast*12,
53 typ="levels")
54

55

56 # ------------------Plotting with Original Data

57 plt.figure(figsize=(12, 6))
58

59 data_sets = [(X_train, 'Training Data', 'green'),
60 (X_test, 'Test Data', 'blue'),
61 (trained_results, 'In-sample Forecast', 'black'),
62 (forecast, 'Out-of-sample Forecast', 'red')]
63

64 for data, label, color in data_sets:
65 plt.plot(data.index, data, label=label, color=color)
66

67 plt.legend(loc=2)
68 plt.xlabel("Time")
69 plt.ylabel("Passenger Count")
70 plt.title("Seasonal Forecasting with SARIMA")
71 plt.grid(True)
72 plt.show()

Listing 3.9 SARIMA Model Implementation

198 3 Machine Learning Algorithms

Table 3.22 Explanation of the SARIMA code example presented in Listing 3.9

Line number Description

1–7 Importing Pandas, Matplotlib, SARIMAX, and some required modules

11–13 Reading data using read_csv function of Pandas module and setting date as index

17–18 Splitting the dataset into train and test datasets

22–25 Fitting the train dataset with order (0,1,1)(2,1,1,12)

29 Making predictions

30–32 Plotting with test dataset to compare them both

36–37 Finding mean of test data and output it

38–39 Finding Root Mean Square Error

43–47 Fitting the whole dataset

51–53 Getting predictions for the whole dataset

57–72 Plotting the prediction with actual data

Fig. 3.34 Test data forecast using the SARIMA model

Output of Listing 3.9:

Mean: 440.3103448275862
Test RMSE: 32.712

3.6.3 Long Short-Term Memory (LSTM)

Proposed by Horchreiter et al. in 1996 [31], long short-term memory (LSTM) is an
artificial recurrent neural network (RNN) architecture. It is used in deep learning
to predict output from time series or sequential data. As the name suggests, LSTM
has a memory capability to store information about long-term dependency. Similar
to RNN, it can be one-directional or bidirectional, and a stack of LSTM can be
used to capture features from more complex data. LSTM is widely used in speech

3.6 Time Series Forecasting 199

Fig. 3.35 Out of sample data forecast using SARIMA model

Fig. 3.36 An LSTM model consists of input, hidden state, cell state memory, and activation
functions (e.g., sigmoid and tanh)

recognition, music generation, sentiment analysis, translation, image captioning,
handwriting recognition, and many other fields.

Unlike a simple RNN, the core idea in LSTM is to use gates in order to control
the flow of information from one LSTM unit to another using cell state. Using this
cell state (.Ct−1 in Fig. 3.36), the information can run through an entire chain of
the network without vanishing. Thus, long-term dependency is achieved by solving
the short-term problem of RNN. Depending on the previous unit’s output (.ht−1)
and input (. xt), the sigmoid layer called the forget gate layer outputs a number . ft ,
which is between 0 and 1, and this controls the amount of information that will be
eliminated from the cell state. Then new information is stored in the cell state using
the input gate layer that is also a sigmoid layer, and the new value (. Ĉt) is determined
using the .tanh layer from the combined or concatenated form of (. xt and .ht−1). Then

200 3 Machine Learning Algorithms

this new information is multiplied with . it and added to the cell state, and now this
new cell state (. Ct) is ready to go to the next unit.

In the case of output (. ht), it is determined how much of the cell state will be
passed. So using the sigmoid layer, from . xt and .ht−1, . ot is determined. Then, using
.tanh, the new cell state(. Ct) is mapped between -1 and 1, which is finally used to
determine the output. The copied version of the output is also passed to the next
unit as the new hidden state. Finally, the operation of one LSTM unit is completed.
The equation governing the operation of every block of one LSTM unit has been
given from Eqs. 3.55 to 3.60 [31].

.ft = σ(Wf · [ht−1, xt] + bf). (3.55)

.it = σ(Wi · [ht−1, xt] + bi). (3.56)

.Ĉ = tanh(WC · [ht−1, xt] + bC). (3.57)

.Ct = ft ∗ Ct−1 + it ∗ Ĉ. (3.58)

.ot = σ(Wo · [ht−1, xt] + bo). (3.59)

.ht = ot ∗ tanh(Ct). (3.60)

Here, . Wf , . Wi , . Wc, and .Wo are weights and . bf , . bi , . bc, and . bo are biases
of their corresponding layers. We have already seen that we deal with numbers
to predict from the LSTM or any other ML model. But in the field of natural
language processing (NLP), we deal with sentences composed of words. So in the
case of sentiment analysis or any task in the field of NLP, we need a method to
somehow convert these sentences to numbers, which is done by tokenizing. Later
by embedding, the token or a number is converted into a vector. Vector represents
the word in such a way that in the vector space, it expresses the meaning, context,
as well as the semantics of that word. So words with similar context or meaning
will be put close in the vector space, such as the words “dog” and “cat.” It should
be noted that every vector must be of the same length. This vector representation is
called word embedding. We will not go into the details of word embedding; rather,
we will use the embedding layer of the TensorFlow module.

Programming Example 3.11
In this example, we will use one-directional many-to-one LSTM for sentiment
analysis using the IMDB movie review dataset. IMDB dataset has 50,000 movie
reviews for the NLP task. Every positive and negative review has positive and
negative numbers accordingly. So, if the model outputs a positive number, the
review is positive and vice versa. As many mathematical operations are involved in

3.6 Time Series Forecasting 201

implementing the LSTM network from scratch and optimization is also required, we
will use the LSTM layer of the Keras library, which is included in the TensorFlow
module. It will take care of these critical mathematical operations.

The code is provided in Listing 3.10 with its explanation in Table 3.23. Also, a
complete diagram of the overall task has been given in Fig. 3.37. The code embodies
a sentiment analysis procedure using an LSTM model implementation. The IMDB
review dataset from the TensorFlow dataset is used here. After preprocessing,
the TextVectorization layer converts the provided dataset into a numerical
format. A class, myCallback, is defined to stop training after reaching 87%
accuracy. The model utilizes a binary cross-entropy loss function and an Adam
optimizer. The process involves training the model with the training dataset,
followed by an evaluation of its performance using the test dataset (Fig. 3.38). For
further understanding, refer to the following references [32, 33].

1 #Source: https://www.tensorflow.org/text/tutorials/
text_classification_rnn

2 import numpy as np
3 import tensorflow as tf
4 import tensorflow_datasets as tfds
5 from tensorflow.keras import preprocessing
6 from tensorflow.keras.layers.experimental.preprocessing import

TextVectorization
7 from tensorflow.keras.layers import Embedding, LSTM, Dense,

Dropout
8 import matplotlib.pyplot as plt
9

10

11 # --------------------Load IMDB Review Dataset-------------------
12 imdb_dataset = tfds.load('imdb_reviews', as_supervised=True)
13 train_ds, test_ds = imdb_dataset['train'], imdb_dataset['test']

Split train and test data
14

15 # Declare buffer size to avoid overlap in data processing
16 BUFFER_SIZE = 100000
17 BATCH_SIZE = 64
18 # Shuffle the data and confugure for performance
19 autotune = tf.data.AUTOTUNE
20 train_ds = train_ds.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).

prefetch(autotune)
21 test_ds = test_ds.shuffle(BUFFER_SIZE).batch(BATCH_SIZE).prefetch

(autotune)
22

23 # Declare vocabulary size
24 Vocabulary_size = 1000
25 # Vectorization to convert text into corresponding number
26 vectorization = TextVectorization(max_tokens=Vocabulary_size)
27 # Extract only text from train data
28 train_text = train_ds.map(lambda text, labels: text)
29 # Map text to number using vectorization
30 vectorization.adapt(train_text)

202 3 Machine Learning Algorithms

31

32 # Creating callback to stop after 87% accuracy of the model
33 THRESHOLD = 0.87
34

35

36 class myCallback(tf.keras.callbacks.Callback):
37 def on_epoch_end(self, epoch, logs={}):
38 if(logs.get('accuracy') > THRESHOLD):
39 print(f"Reached {THRESHOLD*100}% accuracy")
40 self.model.stop_training = True
41

42

43 # --------------------Define the LSTM model----------------------
44 model = tf.keras.Sequential([
45 vectorization,
46 Embedding(input_dim=len(vectorization

.get_vocabulary()),
47 output_dim=32, mask_zero=

True),
48 LSTM(32),
49 Dropout(0.2),
50 Dense(32, activation=tf.nn.relu),
51 Dense(1)
52])
53

54 # Compile defined model
55 model.compile(loss=tf.keras.losses.BinaryCrossentropy(from_logits

=True),
56 optimizer=tf.keras.optimizers.Adam(1e-4),metrics

=['accuracy'])
57

58 # Fit the model on training data
59 history = model.fit(train_ds, epochs=10, callbacks=[myCallback()

])
60

61 model.summary() # Summary of the model
62

63

64 # ---------Plot Loss and Accuracy with respect to Epochs---------
65 fontsize = 20
66 linewidth = 3
67 plt.figure(figsize=(8, 8))
68 plt.plot(history.history['accuracy'], color="green", linewidth=

linewidth)
69 plt.plot(history.history['loss'], color="red", linewidth=

linewidth)
70 plt.xlabel("Epochs", fontsize=fontsize)
71 plt.ylabel("Accuracy, Loss", fontsize=fontsize)
72 plt.legend(["Accuracy", "Loss"], fontsize=fontsize)
73 plt.ylim(0, 1)
74 plt.grid()
75 plt.show()
76

3.6 Time Series Forecasting 203

77 # Evaluate loss and accuracy over test dataset
78 test_loss, test_acc = model.evaluate(test_ds, verbose=0)
79 print(f"Test loss:{test_loss}, Test accuracy:{test_acc}")
80

81

82 # -------------------Function for Prediction---------------------
83 def predict(text):
84 predictions = model.predict(np.array([text]))
85 if predictions >= 0:
86 print("Positive review!!")
87 else:
88 print("Negative review!!")
89

90 # Predict sentiment for given review
91 text = """Completely time waste!! Don't waste your time, rather

sleeping is better"""
92 predict(text)
93 text = """I love beautiful movies. If a film is eye-candy with

carefully designed decorations,
94 masterful camerawork, lighting, and architectural

frames, I can forgive anything else in """
95 predict(text)

Listing 3.10 Sentiment analysis using LSTM [34]

Output after line 59 of Listing 3.10:

Epoch 1/10
391/391 [==============================] - 62s 131ms/step -
loss: 0.6887 - accuracy: 0.5032
Epoch 2/10
391/391 [==============================] - 52s 131ms/step -
loss: 0.4939 - accuracy: 0.7617
Epoch 3/10
391/391 [==============================] - 52s 130ms/step -
loss: 0.3785 - accuracy: 0.8356
Epoch 4/10
391/391 [==============================] - 52s 130ms/step -
loss: 0.3391 - accuracy: 0.8542
Epoch 5/10
391/391 [==============================] - 52s 130ms/step -
loss: 0.3231 - accuracy: 0.8633
Epoch 6/10
391/391 [==============================] - 53s 131ms/step -
loss: 0.3166 - accuracy: 0.8668
Epoch 7/10
391/391 [==============================] - 53s 131ms/step -
loss: 0.3094 - accuracy: 0.8702
Reached 87.0% accuracy

Output after line 62 of Listing 3.10:

Model: "sequential"
__
Layer (type) Output Shape Param #

==
text_vectorization (TextVec (None, None) 0

204 3 Machine Learning Algorithms

torization)

embedding (Embedding) (None, None, 32) 32000

lstm (LSTM) (None, 32) 8320

dropout (Dropout) (None, 32) 0

dense (Dense) (None, 32) 1056

dense_1 (Dense) (None, 1) 33

==
Total params: 41,409
Trainable params: 41,409
Non-trainable params: 0

Table 3.23 Explanation of the sentiment analysis code using LSTM presented in Listing 3.10

Line number Description

2–8 Importing Matplotlib, TensorFlow module, LSTM, and embedding layers

4 Importing IMDB movie review dataset from TensorFlow dataset

10–13 Loading dataset and splitting into test and train datasets

17 Initialize batch size. Batch size 64 means 64 reviews will be fed at once into
the LSTM model

18–21 Shuffling test and train datasets to avoid bias

23–30 Initializing vocabulary size and tokenizing or vectorization is done in order to
map every word to a fixed number

32–40 Initializing accuracy threshold and defining callback function to terminate
training process at this threshold

36–52 Defining the whole sentiment analysis model

45–46 Vectorization is not a layer; it just creates a sequence of tokens for a review,
while the embedding layer outputs a sequence of vectors for the same review.
These vectors are trainable; thus, embedding is achieved after training based
on context, meaning, and semantics. Here, mask_zero is set to true to handle
variable sequence lengths.

48–52 Defining LSTM model with 32 units. This unit means the dimension of the
output (. ht in Fig. 3.36). The number of individual units depends on the
sequence of the given review. The LSTM unit iterates through each
embedding vector given by the embedding layer and passes output to the next
unit to finally give an output of dimension (batch_size, unit)—in our example
(64,32). This output is further processed in two dense layers to output the
number to predict review.

54–56 Compile the defined LSTM model

58–59 Training process begins here

61 Model summary with the total trainable parameter is shown here

64–75 Loss and accuracy of the model are plotted with respect to epochs

77–79 Accuracy and loss of the trained model are determined over the test dataset

81–87 Function to predict sentiment for the given sentence is defined

90–95 Prediction is performed (you can give your review to predict sentiment)

3.7 Unsupervised Learning 205

Output after line 79 of Listing 3.10:
Test loss:0.323529988527298, Test accuracy:0.8559200167655945

Output after lines 92 and 95 of Listing 3.10:

Negative review!!
Positive review!!

3.7 Unsupervised Learning

Sometimes, datasets do not consist of labeled data that can be used to train the model
for the purpose of classification or regression. In such cases as image captioning,
automated speech translation, self-driving cars, recommendation systems, and

Fig. 3.37 Overall structure of Listing 3.10

Fig. 3.38 Output after line
75 of Listing 3.10

206 3 Machine Learning Algorithms

others, unsupervised learning is used. Unsupervised learning is a method where the
models are provided with unlabeled data to explore and understand different patterns
and structures from the data. The model then categorizes the data into some groups
according to the similarities and dissimilarities in the data patterns and structures.
Unsupervised learning is instrumental to obtaining insightful observations from
underlying patterns. Furthermore, this machine learning method does not require
tedious manual input from the user to label the dataset. In this section, we will talk
about clustering, dimensionality reduction, and association learning.

3.7.1 Clustering

In unsupervised learning, similarities and dissimilarities in data patterns and
structures are explored. Then, this knowledge is used to group them into multiple
groups. These groups are formed so that the data in the same group have the most
similarity and the data from different groups have the most dissimilarity. These
groups are called clusters, and the method to form these groups is called clustering.

The characteristic of good clustering is that intra-clusters should have the most
similarity and inter-clusters should have the most dissimilarity. In Fig. 3.39 [36],
the datapoints in cluster A have the most similarity, and they have the most
dissimilarity from the datapoints in cluster B. The distance metrics are used to
measure the similarities and dissimilarities among clusters. Four algorithms to
perform clustering are discussed in the following sections.

3.7.1.1 K-Means Clustering
In k-means clustering, all the observations are divided into a certain number of
clusters, and each observation belongs to the cluster with the nearest mean. This
is an unsupervised learning method, so labeled data are not required. The only input
parameter is the number of clusters (k).

Feature 01

F
ea

tu
re

 0
2

Feature 01

2
0

er
utae

F

Fig. 3.39 Cluster identification [35]

3.7 Unsupervised Learning 207

3.7.1.1.1 The Elbow Method
The elbow method is the most used method for finding the best possible number of
clusters. In this case, the sum of squared errors (SSEs) or distances is measured for
a range of probable clusters for each observation, using Eq. 3.61:

.SSE =
mΣ

i=1

(xi − ci)
2 , (3.61)

where . xi is a data point and . ci is the appointed centroid. Then, a plot is made to
understand the number of clusters better. We take the point after which the SSE
decreases linearly as the elbow point. Thus, we find the optimal number of clusters
[37–39].

Programming Example 3.12
Listing 3.11 utilizes the elbow method to determine the optimal number of clusters.
The output of the code is illustrated in Fig. 3.40 followed by its explanation in
Table 3.24. The code generates a synthetic dataset and iterates through different
numbers of clusters to find out the SSE of each cluster. When the SSEs are plotted
with respect to the number of clusters, an elbow can be seen, which indicates the
proper number of clusters for the generated dataset.

1 import matplotlib.pyplot as plt
2 from sklearn.cluster import KMeans
3 from sklearn.datasets import make_blobs
4

5

6 # ---------------------Generate Sample Data----------------------
7 n_samples = 1500
8 random_state = 170
9 X, y = make_blobs(n_samples=n_samples, random_state=random_state)

10

11

12 # ---------Finding Out SSE Value for Number of Clusters----------
13 k_rng = range (1,10)
14 sse = []
15 for k in k_rng:
16 km = KMeans(n_clusters=k)
17 km.fit(X)
18 sse.append(km.inertia_)
19

20

21 # ---------------------------Plotting----------------------------
22 plt.xlabel('n')
23 plt.ylabel('sse')
24 plt.plot(k_rng,sse)
25 plt.show()

Listing 3.11 Number of cluster detecting using elbow method [40]

208 3 Machine Learning Algorithms

Fig. 3.40 Cluster elbow method

Table 3.24 Explanation of the elbow method coding example presented in Listing 3.11

Line number Description

1–3 Importing Matplotlib, k-means, and make_blob modules

7–9 Creating blobs as sample data

13–18 Testing what number of clusters (limited to 1–10 for fast
processing) gives the best Sum of Squared Error (SSE)

22–25 Plotting SSE vs. the number of clusters to find the elbow

3.7.1.1.2 The k-Means Algorithm
The k-means algorithm uses an iterative approach to divide a set of N samples into
several disjoint clusters. It aims to choose centroids that minimize the sum of the
squared errors (SSEs) between the centroid and the data points, as shown by the
following equation:

.SSE =
nΣ

i=0

min
μj ∈C

(||xi − μj ||2). (3.62)

The algorithm has two steps, as shown below. Alternating between these steps
completes the clustering process.

1. Assignment step: Each data point is assigned to the cluster with the nearest
mean.

2. Update step: The means for the data points assigned to each cluster are
recomputed.

The means are commonly called the cluster centroids. The cluster centroids are
not data points, although they live in the same space. The algorithm converges
when the assignments no longer change. A drawback of the algorithm is that the

3.7 Unsupervised Learning 209

formation of clusters is affected by outliers, which cause them to form entirely
different clusters.

Programming Example 3.13
Listing 3.12 is an example of k-means clustering using a synthetic dataset that
was used in Listing 3.11. The original data points and the clustered data points
are compared in Fig. 3.41 after the clustering operation is done using the k-means
function. The explanation is presented in Table 3.25.

1 import matplotlib.pyplot as plt
2 from sklearn.cluster import KMeans
3 from sklearn.datasets import make_blobs
4

5

6 # -----------Generate Sample Data & Initial Plotting-------------
7 plt.figure(figsize=(12,4))
8 X, y = make_blobs(n_samples=1500, cluster_std=0.5, random_state

=0)
9 plt.subplot(121)

10 plt.scatter(X[:, 0], X[:, 1])
11 plt.title("Original data")
12

13

14 # ----------------------KMeans Clustering------------------------
15 y_pred = KMeans(n_clusters=3, random_state=0).fit_predict(X)
16 plt.subplot(122)
17 plt.scatter(X[:, 0], X[:, 1], c=y_pred)
18 plt.title("Clustered data")
19 plt.show()

Listing 3.12 K-means clustering [40]

Fig. 3.41 K-means clustering output

210 3 Machine Learning Algorithms

Table 3.25 Explanation of the k-means code example presented in Listing 3.12

Line number Description

1–3 Importing Matplotlib, k-means, and make_blob modules

8 Creating blobs as sample data to apply k-means algorithm

7–11 Creating sample data and plotting them

15 Using the k-means function from scikit-learn to divide all the blobs into three

different clusters

16–19 Plotting with original blobs and visually identifying three different clusters in

different colors

Fig. 3.42 Availability and
responsibility of five data
points

3.7.1.2 Affinity Propagation Clustering
Affinity propagation is a clustering method that determines the number of clusters
(k) on its own. In each cluster, there is only one exemplar. This data point is the
most significant for a cluster, and this point is determined collectively by all the
data points of that cluster. Affinity propagation is a network where each data point
sends messages to all other data points, conveying their willingness to become an
exemplar.

For affinity propagation, two concepts are fundamental: availability and respon-
sibility. These are basically represented as graphs or matrices [41], as depicted in
Fig. 3.42.

1. Availability: Availability tells how appropriate it is for point i to choose point k
as its exemplar. It is represented as .a(i, k). The availability of sample k to be the
exemplar of sample i is given by

.a(i, k) ← min[0, r(k, k) +
Σ

i' s.t. i' /∈{i,k}
r(i', k)]. (3.63)

3.7 Unsupervised Learning 211

2. Responsibility: Responsibility tells how befitting point k is to be an exemplar
for point i. It is represented as .r(i, k). The responsibility of a sample k to be the
exemplar of sample i is given by [42]

.r(i, k) ← s(i, k) − max[a(i, k') + s(i, k')∀k' /= k]. (3.64)

Here .s(i, k) refers to the similarity between samples i and k.

The values for r and a are initialized to zero. The calculation is iterated
until convergence. To avoid numerical oscillations when updating the messages,
a damping factor . λ is introduced to the iteration process. The updated equations
for responsibility and availability are as follows, where t indicates the number of
iterations:

.rt+1(i, k) = λ · rt (i, k) + (1 − λ) · rt+1(i, k), (3.65)

.at+1(i, k) = λ · at (i, k) + (1 − λ) · at+1(i, k). (3.66)

Programming Example 3.14
The code for implementing affinity propagation is presented in Listing 3.13,
followed by its output in Fig. 3.43 and explanation in Table 3.26. A synthetic dataset
is processed with the AffinityPropagation function from scikit-learn. The
output compares the original data points with the clustered data points.

1 from sklearn.cluster import AffinityPropagation
2 from sklearn.datasets import make_blobs
3 import matplotlib.pyplot as plt
4 from itertools import cycle
5

6

7 # -----------Generate Sample Data & Initial Plotting-------------
8 X, labels_true = make_blobs(n_samples=300, cluster_std=0.5,

random_state=0)
9 plt.figure(figsize=(12,4))

10 plt.subplot(121)
11 plt.plot(X[:, 0], X[:, 1],'.')
12 plt.title("Original data")
13

14

15 # -----------------Compute Affinity Propagation------------------
16 af = AffinityPropagation(preference=-50).fit(X)
17 cluster_centers_indices = af.cluster_centers_indices_
18 labels = af.labels_
19

20 cluster_num = len(cluster_centers_indices)
21

22

212 3 Machine Learning Algorithms

Fig. 3.43 Output of affinity propagation

Table 3.26 Explanation of the affinity propagation code example presented in Listing 3.13

Line number Description

1–4 Importing Matplotlib, affinity propagation, and make_blob and cycle modules

8 Creating blobs as sample data

8–12 Creating sample data and plotting them

16–18 Using affinity propagation function to find out different sets of clusters where the

preference is chosen to be low for getting a small number of clusters

20 Determining the number of clusters set by the affinity propagation algorithm

24–35 Plotting original data with clustered data

23 # -------------------------Plot Results--------------------------
24 plt.subplot(122)
25 colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
26 for k, col in zip(range(cluster_num), colors):
27 class_members = labels == k
28 cluster_center = X[cluster_centers_indices[k]]
29 plt.plot(X[class_members, 0], X[class_members, 1], col + '.')
30 plt.plot(cluster_center[0], cluster_center[1], 'o',

markerfacecolor=col, markeredgecolor='k', markersize=14)
31 for x in X[class_members]:
32 plt.plot([cluster_center[0], x[0]], [cluster_center[1], x

[1]], col)
33

34 plt.title('Estimated number of clusters: %d' % cluster_num)
35 plt.show()

Listing 3.13 Affinity propagation implementation [43]

3.7.1.3 Mean-Shift Clustering
The mean-shift algorithm does not require any prior knowledge of the number of
clusters. Within a region, it updates the centroid candidates (i.e., kernels) to be the
mean of the neighboring points. A post-processing stage then filters the candidates
to remove the near-duplicates, and the final set of centroids is obtained.

The mean-shift algorithm follows a set of instructions [44]. These are:

3.7 Unsupervised Learning 213

Fig. 3.44 Finding the center
of mass within each
kernel [45]

10

5

0

–10

–5

–10 –5 50 10

1. Initialize kernels that cover every data point.
2. Calculate the center of mass within the kernel. This step is represented by

Fig. 3.44.
3. Translate the kernel to the center of the mean.
4. Repeat steps 2 and 3 until convergence.

For any iteration t , if the candidate centroid is . xi , then the candidate is updated
in the following way:

.xt+1
i = xt

i + m(xt
i), (3.67)

where .N(xi) refers to the samples within the neighborhood of . xi , and m is the
mean-shift vector that is calculated for each centroid in the direction of a region of
the maximum increase in the density of points.

The value of m is calculated using the following equation:

.m(xi) =
Σ

xj ∈N(xi)
K(xj − xi)xjΣ

xj ∈N(xi)
K(xj − xi)

. (3.68)

Thus, the centroid is updated until it becomes the mean of the samples in its
neighborhood.

Programming Example 3.15
Listing 3.14 presents a code that uses the mean-shift algorithm on a synthetic
dataset. The estimated number of clusters is shown in the title of the plot in
Fig. 3.45. The explanation of the code is presented in Table 3.27. In the mean-shift
clustering, the algorithm takes data points and bandwidth as input. Using proper
bandwidth is essential for mean shift, which in this case is determined using the
estimate_bandwidth function from scikit-learn. The parameter quartile
controls how small or big the bandwidth will be.

214 3 Machine Learning Algorithms

1 import numpy as np
2 from sklearn.cluster import MeanShift, estimate_bandwidth
3 from sklearn.datasets import make_blobs
4 import matplotlib.pyplot as plt
5 from itertools import cycle
6

7

8 # ---------------------Generate Sample Data----------------------
9 X, _ = make_blobs(n_samples=10000,cluster_std=0.5,random_state=0)

10

11

12 # ---------------------------Plotting----------------------------
13 plt.figure(figsize=(12,4))
14 plt.subplot(121)
15 plt.plot(X[:, 0], X[:, 1],'.')
16 plt.title("Original data")
17

18

19 # --------------Compute Clustering with MeanShift----------------
20 bandwidth = estimate_bandwidth(X, quantile=0.2, n_samples=500)
21

22 ms = MeanShift(bandwidth=bandwidth, bin_seeding=True)
23 ms.fit(X)
24 labels = ms.labels_
25 cluster_centers = ms.cluster_centers_
26

27 labels_unique = np.unique(labels)
28 n_clusters_ = len(labels_unique)
29

30

31 # -------------------------Plot Results--------------------------
32 plt.subplot(122)
33 colors = cycle('bgrcmykbgrcmykbgrcmykbgrcmyk')
34 for k, col in zip(range(n_clusters_), colors):
35 my_members = labels == k
36 cluster_center = cluster_centers[k]
37 plt.plot(X[my_members, 0], X[my_members, 1], col + '.')
38 plt.plot(cluster_center[0], cluster_center[1], 'o',

markerfacecolor=col,
39 markeredgecolor='k', markersize=14)
40 plt.title('Estimated number of clusters: %d' % n_clusters_)
41 plt.show()

Listing 3.14 Mean-shift implementation [46]

3.7.1.4 DBSCAN: Density-Based Spatial Clustering of Applications with
Noise

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a
density-based clustering algorithm, as the name suggests. The algorithm has two
important parameters:

3.7 Unsupervised Learning 215

Fig. 3.45 Mean-shift output

Table 3.27 Explanation of the mean-shift clustering code example presented in Listing 3.14

Line number Description

1–4 Importing Matplotlib, MeanShift, make_blob, NumPy, and cycle modules

9 Creating blobs as sample data

13–16 Plotting sample data

20 Setting bandwidth using estimate_bandwidth function from scikit-learn

22–28 Using MeanShift function and fitting sample data to determine clusters

32–41 Plotting original data with clustered data

Fig. 3.46 The concept of
DBSCAN clustering

1. eps: If the distance between two points is lower than or equal to eps, then they
are considered neighbors.

2. min_samples: It is the minimum number of neighbors (data points) within the
eps radius.

The core point, border point, and noise are also essential terminologies for this
algorithm. Figure 3.46 can help understand these terminologies.

The points neighboring eps are identified along with the core points (visited with
more than min_samples neighbors). If the core point does not already belong to
a cluster, it will be assigned to a new one. Then, we can get a complete cluster if we

216 3 Machine Learning Algorithms

find all its density-connected points and assign them to the same cluster as the core
point. The points that do not belong to any cluster are noise [47–49].

Programming Example 3.16
Listing 3.15 presents a Python implementation of a clustering algorithm, DBSCAN.
The code uses StandardScaler from scikit-learn to scale the dataset. The
parameters eps and min_samples are used as inputs of the DBSCAN function.
The scaled data points and the clustered data points are compared in Fig. 3.47.
Table 3.28 incorporates the explanation of the code in this listing.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from sklearn.cluster import DBSCAN
4 from sklearn.datasets import make_blobs
5 from sklearn.preprocessing import StandardScaler
6

7

8 # ---------------------Generate Sample Data----------------------
9 X, labels_true = make_blobs(n_samples=1000, cluster_std=0.5,

random_state=0)
10

11 X = StandardScaler().fit_transform(X)
12

13 plt.figure(figsize=(12,4))
14 plt.subplot(121)
15

16 plt.plot(X[:, 0], X[:, 1],'b.')
17

18 plt.title("Original data")
19

20

21 # ------------------------Compute DBSCAN-------------------------
22 db = DBSCAN(eps=0.3, min_samples=5).fit(X)
23 # the maximum distance between two samples (eps) is 0.3, and
24 # the minimum number of samples in a neighbourhood for a point to

be considered as a core point is 5
25 core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
26 core_samples_mask[db.core_sample_indices_] = True
27 labels = db.labels_
28

29 # Number of clusters in labels, ignoring noise if present.
30 n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
31 n_noise_ = list(labels).count(-1)
32

33 print('Estimated number of clusters: %d' % n_clusters_)
34 print('Estimated number of noise points: %d' % n_noise_)
35

36

37 # -------------------------Plot Result---------------------------
38 plt.subplot(122)

3.7 Unsupervised Learning 217

39

40 # Black removed and is used for noise instead.
41 unique_labels = set(labels)
42 colors = [plt.cm.Spectral(each)
43 for each in np.linspace(0, 1, len(unique_labels))]
44 for k, col in zip(unique_labels, colors):
45 if k == -1:
46 # Black used for noise.
47 col = [0, 0, 0, 1]
48

49 class_member_mask = (labels == k)
50

51 xy = X[class_member_mask & core_samples_mask]
52 plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
53 markeredgecolor='k', markersize=14)
54

55 xy = X[class_member_mask & ~core_samples_mask]
56 plt.plot(xy[:, 0], xy[:, 1], 'o', markerfacecolor=tuple(col),
57 markeredgecolor='k', markersize=6)
58 plt.title('Estimated number of clusters: %d' % n_clusters_)
59 plt.show()

Listing 3.15 DBSCAN implementation [50]

Output of Listing 3.15:

Estimated number of clusters: 3
Estimated number of noise points: 3

3.7.2 Dimensionality Reduction

In the modern world, objects are represented by digital data. Very high-dimensional
data signals are required to represent these objects. When we need to work with such
large amounts of data, for example, when we need to analyze thousands of people’s
facial identification or search over a large database for matching bank accounts, we

Fig. 3.47 DBSCAN output diagram

218 3 Machine Learning Algorithms

Table 3.28 Explanation of the DBSCAN code example presented in Listing 3.15

Line number Description

1–5 Importing Matplotlib, DBSCAN, make_blob, NumPy, and StandardScaler

modules

9 Creating blobs as sample data

13 Processing (scaling) the data to something useable

15–18 Plotting sample data

22–27 Using DBSCAN function and fitting sample data to determine clusters

30–31 Counting the number of clusters and the number of noise points

33-34 Printing the number of clusters and the number of noise points

41–43 Setting up colors and labels

44–59 Plotting clustered data with noise points marked in black color

Fig. 3.48 Dimensionality
reduction concept

need to reduce the dimension of the data without losing important information [51–
53]. Figure 3.48 expresses the concept of dimensionality reduction. The first image
is a sphere, which is a three-dimensional object. Then, its dimension is reduced to
two when it becomes a circle. Again, when it becomes a line segment, its dimension
further reduces to one.

In this section, we will discuss three techniques for dimensionality reduction:
principal component analysis, linear discriminant analysis, and singular value
decomposition.

3.7.2.1 Principal Component Analysis (PCA)
The principal component analysis (PCA) is a prominent technique for dimension-
ality reduction. The main idea is to reduce the dimensionality of a dataset that still
contains most of the information. Suppose we have a set of d-dimensional data
(.yi ∈ R

d ; .i = 1, . . . , N). PCA is handy in finding a linear manifold of a dimension
q containing most of the data variables, which is lower than the initial dimension
(.q < d). Now if the mean is .y = 1

N

ΣN
i=1 yi , then PCA computes the covariance

matrix of these data as

.C = 1

N − 1

NΣ
i=1

(y − y)(y − y)T . (3.69)

After determining the eigenvalues and corresponding eigenvectors, we can define
a .d × q matrix, and after proper mapping, we will find the principal components
[52–57].

3.7 Unsupervised Learning 219

Programming Example 3.17
Listing 3.16 (explained in Table 3.29) is an example of dimensionality reduction
using PCA. The dataset we are using has data regarding the classification of
mushrooms. Assuming the data has no null value, a label encoder represents the
features numerically. The class data is stored in the first column, so we separate
class features as label and others as features_columns. These datasets are
now properly scaled. The scaling, in this case, is not for using a classifier. Scaling
may impact how PCA analyzes these data.

PCA is implemented using a scikit-learn module to calculate the variance of each
feature. Then, these data are sorted and plotted according to the variance of these
features (maximum variance to minimum variance). The plot in Fig. 3.49 shows
that 95% of the data are represented with up to the 15th feature. Thus, deducting the
remaining features will not affect the data very much.

1 #Dataset: https://www.kaggle.com/datasets/uciml/mushroom-
classification

2 import pandas as pd
3 import matplotlib.pyplot as plt
4 from sklearn.decomposition import PCA
5 from sklearn.preprocessing import LabelEncoder, StandardScaler
6 from sklearn.model_selection import train_test_split
7

8 # -------------------------Reading Data--------------------------
9 df = pd.read_csv('./data/mushrooms.csv')

10

11

12 # ---------Encode These String Characters into Integers----------
13 encoder = LabelEncoder()
14

15

16 # Applying transformation
17 for column in df.columns:
18 df[column] = encoder.fit_transform(df[column])
19

20 X = df.iloc[:,1:23]
21 Y = df.iloc[:, 0]
22

23

24 # ----------------------Scale the Features-----------------------
25 ss = StandardScaler()
26 X = ss.fit_transform(X)
27

28

29 # -------------------------Fit and Plot--------------------------
30 pca = PCA()
31 X_pca = pca.fit_transform(X)
32 explained_variance = pca.explained_variance_
33

34 # Plot before dimension reduction

220 3 Machine Learning Algorithms

35 plt.figure(figsize=(12, 4))
36 plt.subplot(121)
37 plt.bar(range(22), explained_variance, alpha=0.5, align='center',

label='individual variance')
38 plt.title("Original data")
39

40

41 # Reduce the number of features using PCA
42 pca_reduced = PCA(n_components=15)
43 X_pca_reduced = pca_reduced.fit_transform(X)
44 explained_variance_reduced = pca_reduced.explained_variance_
45

46 # Plot after dimension reduction
47 plt.subplot(122)
48 plt.bar(range(15), explained_variance_reduced, alpha=0.5, align='

center')
49 plt.title("Dimension Reduced")
50 plt.show()

Listing 3.16 PCA algorithm

3.7.2.2 Linear Discriminant Analysis (LDA)
The linear discriminant analysis (LDA) distinguishes the samples from the training
dataset with respect to the class values. This method searches for a linear combi-
nation of input variables. The linear combination should be such that the amount
of separation between the samples of different class centroids or means is the
maximum and the amount of separation between the samples of the same class is
the minimum.

When the class centroids are far from each other, it performs best. In case the
class centroids are common in more than one class, it will be impossible for LDA
to distinguish the samples of those classes [57–62].

Table 3.29 Explanation of the PCA code example presented in Listing 3.16

Line number Description

1–7 Importing PyPlot, pandas, and some of sklearn modules for labeling, scaling, and

implementation of PCA

9 Reading CSV data

13 Encoder for encoding non-numerical features

17–18 Encoding with label encoder

20–21 Splitting up the features (columns) and labels

25–26 Scaling features using StandardScaler [Optional]

30–32 Using PCA to fit and transform in order to get the list of features that have

the most variance

34–38 Plotting the features with the order of maximum and minimum variance

42–50 Considering the first 15 features as top features plotting the features again

3.7 Unsupervised Learning 221

Fig. 3.49 PCA output

LDA works in the following three major steps to generate a new plot separating
the two data points:

1. Based on the distance between the class centroids, the separability is determined.
2. The distance between samples and centroids for different classes is calculated.
3. The lower dimensional space has to be constructed to maximize the variance (the

distance between the class centroids) between different classes.

Programming Example 3.18
Listing 3.17 (explained in Table 3.30) is an example of dimensionality reduction
using LDA. The dataset used represents different features of the passengers of the
ship Titanic.

After reading the data, a null check is done. Upon finding any null values in
the Age & Embarked column, the null value will be replaced by the median &
"S" accordingly. The non-numeric values in the Sex & Embarked column will
be replaced by numeric values using LabelEncoder(). Reshaping the Age &
Fare column as these will be scaled later using the StandardScaler().

Once the data are split into training and testing sets, the model is fitted to the
training set and used to predict the testing set. The printed output displays the
accuracy of the predictions. The dataset is again transformed with a specific number
of components expected for LDA and fitted the model to features and labels. The
original and reduced features are compared and printed out for a better idea. A
logistic regression classifier is used on these data. If the accuracy test is run again,
the change in performance is noticed.

1 #Dataset: https://www.kaggle.com/competitions/titanic/data?select
=train.csv

2 import pandas as pd
3 import numpy as np
4 from sklearn.metrics import accuracy_score, f1_score
5 from sklearn.preprocessing import LabelEncoder, StandardScaler

222 3 Machine Learning Algorithms

6 from sklearn.discriminant_analysis import
LinearDiscriminantAnalysis as LDA

7 from sklearn.model_selection import train_test_split
8 from sklearn.linear_model import LogisticRegression
9

10 # -------------------------Reading Data--------------------------
11 df = pd.read_csv("./data/train.csv")
12 df["Age"].fillna(df["Age"].median(), inplace=True)
13 df["Embarked"].fillna("S", inplace=True)
14 encoder = LabelEncoder()
15

16

17 # ------------------------Label Encoding-------------------------
18 encoder.fit(df["Sex"])
19

20

21

22 df_temp = encoder.transform(df["Sex"])
23 df["Sex"] = df_temp
24 encoder.fit(df["Embarked"])
25 df_temp = encoder.transform(df["Embarked"])
26 df["Embarked"] = df_temp
27

28

29 # Reshape data
30 agesArray = np.array(df["Age"]).reshape(-1, 1)
31 faresArray = np.array(df["Fare"]).reshape(-1, 1)
32

33

34 # Scale the X
35 ss = StandardScaler()
36 df["Age"] = ss.fit_transform(agesArray)
37 df["Fare"] = ss.fit_transform(faresArray)
38

39

40 # -------------------------Split Dataset-------------------------
41 X = df.drop(labels=['PassengerId', 'Survived'], axis=1)
42 Y = df['Survived']
43

44

45 # Splitting & fitting train data
46 xtrain, xval, ytrain, yval = train_test_split(X, Y, test_size

=0.2, random_state=27)
47

48 lda_model = LDA()
49 lda_model.fit(xtrain, ytrain)
50 lda_predictions = lda_model.predict(xval)
51 lda_acc = accuracy_score(yval, lda_predictions)
52 lda_f1 = f1_score(yval, lda_predictions)
53

54 print("LDA Model - Accuracy: {}".format(lda_acc))
55 print("LDA Model - F1 Score: {}".format(lda_f1))
56

3.7 Unsupervised Learning 223

57

58 # ----------------------LDA Transformation-----------------------
59 lda_new = LDA(n_components=1)
60 lda_new.fit(X, Y)
61 X_lda = lda_new.transform(X)
62

63

64 # Printing result
65 print('Original feature #:', X.shape[1])
66 print('Reduced feature #:', X_lda.shape[1])
67

68

69 # Splitting with the new features and run the classifier
70 x_train_lda, x_val_lda, y_train_lda, y_val_lda = train_test_split

(X_lda, Y, test_size=0.2, random_state=27)
71

72 logistic_regression = LogisticRegression()
73 logistic_regression.fit(x_train_lda, y_train_lda)
74 logreg_predictions = logistic_regression.predict(x_val_lda)
75 logreg_acc = accuracy_score(y_val_lda, logreg_predictions)
76 logreg_f1 = f1_score(y_val_lda, logreg_predictions)
77 print("Logistic Regression Model - Accuracy: {}".format(

logreg_acc))
78 print("Logistic Regression Model - F1 Score: {}".format(logreg_f1

))

Listing 3.17 LDA algorithm

Output of Listing 3.17:

Accuracy: 0.8100558659217877
F1 Score: 0.734375

Original feature #: 7
Reduced feature #: 1

Accuracy: 0.8212290502793296
F1 Score: 0.7500000000000001

3.7.2.3 Singular Value Decomposition (SVD)
The singular value decomposition (SVD) technique is similar to PCA, but more
general. The motivation of SVD is to make the process of calculation with matrices
easier. We basically reduce the columns of the matrix.

In this case, as shown in Fig. 3.50, we are assuming that matrix A can be
represented by three other matrices—an orthogonal matrix (U), a diagonal matrix
(. Σ), and the transpose of another orthogonal matrix (V). U has m. ×m items, . Σ has
m. ×n items, . V t has n. ×n items, and matrix A has m. ×n items.

As U and V are orthogonal and . Σ is a diagonal matrix, we can deduce the
following equations for the three matrices:

.UUT = UT U = I. (3.70)

224 3 Machine Learning Algorithms

Table 3.30 Explanation of the LDA code example presented in Listing 3.17

Line number Description

1–7 Importing NumPy, pandas, and some of sklearn modules

11–13 Reading CSV data and filling in any missing data in the case of the Age

and Embarked feature

14 Encoder for non-numerical features

18–26 Encode both the Sex and Embarked feature

30–31 Converting to arrays and reshaping the arrays

35–37 Scaling both features using StandardScaler

41–42 Selecting necessary features and label

46 Splitting test and train data

48–52 Fit training data and validate predict with actual values

54–55 Print metrics for the predictions

59–61 Transforming the features (with a specific number of desired components

for LDA)

65–66 Printing out the number of original and reduced features

70–76 Executing the classifier again to notice performance change

77–78 Print metrics for the new predictions

Fig. 3.50 A matrix is
represented by three other
matrices

.V V T = V T V = I. (3.71)

.σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σn ≥ 0. (3.72)

Each term of the diagonal matrix . Σ is greater than the next term. This indicates
that the terms multiplied with the next terms will have less (or no) value over
the reconstruction of matrix A. As both the singular matrices are multiplied with
the diagonal matrix, we can easily assume that the dependency on the right-most
variables of matrix A will reduce to some extent. Thus, by dividing a large set of
data into three matrices, SVD reduces the dimensions of the dataset [53, 57, 61, 63–
65].

Programming Example 3.19
Listing 3.18 is an application of SVD and Table 3.31 explains the listing. Figure
3.51a is the image working as input. The file size of the image is 1.15 MB. Here the
objective is to reduce the file size without compromising the image quality.

3.7 Unsupervised Learning 225

There are three different functions defined in Listing 3.18 for easily performing
this operation. These three functions are:

• Loading image: This function uses the Image module from the PIL library to
open and then converts the image data into an array. Furthermore, it separates
three different channels (Red, Blue, and Green) and returns these as an array.

• Channel compression: This is the function where we truly use the singular
value decomposition. Here, three matrices (u, s, and v) are separated from the
color_channel matrix using the same concept from Fig. 3.50. In this case,
n or singular_val_lim is the first n-terms considered for SVD among
m total terms. Then, the three matrices are multiplied to get a compressed but
non-distorted image.

• Image compression: This function basically uses the previous function for
compressing each channel and outputs the image.

The program initiates and uses these three functions to get a compressed image
of the input image. The resulting image size is 779 KB. This is a 32.3% compression
in file size.

1 import numpy as np
2 from numpy.linalg import svd as singular_value_decomposition
3 from numpy import zeros as create_zeros_matrix
4 from numpy import matmul as matrix_multiplication
5 from PIL import Image
6

7

8 # ------------------Class for Image Compression------------------
9 class ImageCompressor:

10 def __init__(self, file_path, singular_value_limit):
11 self.file_path = file_path
12 self.singular_value_limit = singular_value_limit
13

14 def load_image(self):
15 image = Image.open(self.file_path)
16 image_channels = np.array(image)
17 r = image_channels[:, :, 0]
18 g = image_channels[:, :, 1]
19 b = image_channels[:, :, 2]
20 return r, g, b
21

22

23 # ---------Function for compressing each color channels----------
24 @staticmethod
25 def compress_channel(channel, limit):
26 u, s, v = singular_value_decomposition(channel)
27 compressed_channel = create_zeros_matrix((channel.shape

[0], channel.shape[1]))
28 n = limit

226 3 Machine Learning Algorithms

29

30 left_matrix = matrix_multiplication(u[:, 0:n], np.diag(s)
[0:n, 0:n])

31 inner_compressed = matrix_multiplication(left_matrix, v
[0:n, :])

32 compressed_channel = inner_compressed.astype('uint8')
33 return compressed_channel
34

35 # ----Function for compressing & combining all color channels----
36 def compress_and_combine_channels(self):
37 red_channel, green_channel, blue_channel = self.

load_image()
38

39 compressed_red = self.compress_channel(red_channel, self.
singular_value_limit)

40 compressed_blue = self.compress_channel(blue_channel,
self.singular_value_limit)

41 compressed_green = self.compress_channel(green_channel,
self.singular_value_limit)

42

43 red_array = Image.fromarray(compressed_red)
44 blue_array = Image.fromarray(compressed_blue)
45 green_array = Image.fromarray(compressed_green)
46

47 compressed_image = Image.merge("RGB", (red_array,
green_array, blue_array))

48 compressed_image.show()
49 compressed_image.save("./results/compressed.jpg")
50

51

52 # ----------------------Image Compression------------------------
53 if __name__ == "__main__":
54 file_path = "data/alex-knight-2EJCSULRwC8-unsplash.jpg"
55 singular_value_limit = 1200
56

57 compressor = ImageCompressor(file_path, singular_value_limit)
58 compressor.compress_and_combine_channels()

Listing 3.18 SVD algorithm

Table 3.31 Explanation of the SVD code example presented in Listing 3.18

Line number Description

1–5 Importing NumPy, SVD, and Image modules

9 Creating a class for compression

14–20 Function for loading the image and splitting Red, Green, and Blue into different

arrays

25–33 Function for compressing each channel using the SVD technique and returning

compressed array of that channel

57 Loading image and splitting each channel

57 Compressing each channel and getting the compressed image

3.7 Unsupervised Learning 227

Fig. 3.51 The effect of SVD on the image of a robot. (a) An image of a robot before the SVD
technique. Photo by Alex Knight on Unsplash [66]. (b) An image of a robot after the SVD
technique (32% compressed in size)

3.7.3 Association Learning

The association rule is used in market basket analysis, bioinformatics, web usage
mining, and intrusion detection. From transaction history, the association rule
explores the pattern and relationships in the data. The difference between the
association rule and collaborative filtering is that the former studies data from the
transaction of all the users as a group, while the latter focuses on one user to identify
similar items, which is used in e-commerce websites to recommend similar items.

The association rule is written as {Corn flakes, Bread}. →{Milk}, meaning that if
a user purchases corn flakes and bread, he will also buy milk in the same transaction.
Here the set {Corn flakes, Bread} is called the antecedent and {Milk} is called the
consequent. There can be multiple items in both of these sets. The itemset is the

228 3 Machine Learning Algorithms

Fig. 3.52 An example to
demonstrate the confidence
and lift concept

Soap

3
8

Bread

72

Total transactions = 100

combined list of all the items in antecedent and consequent. Here, the itemset is
{Corn flakes, Bread, Milk}.

Three metrics will help us understand association learning: support, confidence,
and lift. These three terms are discussed below. The example in Fig. 3.52 will
support the description.

1. Support: Support is the frequency of an itemset in all the considered transactions.
A low support implies that there is insufficient information on the relationship
between the items, and we cannot derive conclusions from such a rule. Mathe-
matically,

.Support({X} → {Y}) = P(X ∪ Y) = frequency(X,Y)

total transactions
. (3.73)

For instance, the itemset {Bread, Milk} has high support as it is purchased
commonly. However, the itemset {Bread, Soap} has low support as this itemset
is not purchased frequently.

2. Confidence: Confidence is the probability of an item being in the itemset
provided another item is present. Regardless of the antecedent, the confidence of
a frequent consequent will be high, as it is brought frequently with other items.
Mathematically,

.Confidence({X} → {Y}) = Support (X ∪ Y)

Support X
= frequency(X,Y)

frequency(X)
. (3.74)

In Fig. 3.52, the confidence for {Soap}. →{Bread} is .8÷(8+3) = 0.73, which
is a high confidence. But these products have less association, so something is
wrong here. The next metric, “Lift,” will eradicate this confusion.

3. Lift: Lift indicates the correlation between two items in an itemset. For lift, at
first, we assume that the two items are independent. Then, lift is the ratio of the
observed support to the expected support. Mathematically,

.Lift({X} → {Y}) = Support (X ∪ Y)

Support X × Support Y
. (3.75)

3.7 Unsupervised Learning 229

• If lift = 1, there is no correlation between X and Y.
• If lift > 1, there is a positive correlation between X and Y.
• If lift < 1, there is a negative correlation between X and Y.

For the first case, the confidence for {Soap}. →{Bread} was 0.8. Now the
probability of having bread without having statistics of soap is .80 ÷ 100 = 0.8.
So lift is .0.73÷0.8 = 0.91. As the lift < 1, there is a negative correlation between
soap and bread.

Now to generate a rule from the transactions, we need to generate a list of items
that will consist of items that occur at least once in the transactions. So first we need
to generate itemset like {Corn flakes, Bread, Milk} and then need to extract the rule
from a subset of this such as {Corn flakes, Milk}, {Bread, Milk}, etc. [67].

3.7.3.1 Apriori Algorithm
Rule generation is computationally expensive as a huge number of rules are required
even for a few items. The Apriori algorithm gives a systematic approach to reducing
the number of rules, thus making it more computationally efficient and practically
realizable. Let us look at the steps of using the Apriori algorithm.

1. Generating itemset: First, all the frequent itemsets that are present at least a
minimum number of times are extracted. This can be less than the total number of
items. The brute-force approach would be highly time-consuming, but the Apriori
principle can do this efficiently. This principle is “All subsets of a frequent itemset
must also be frequent.” For example, {Bread}. →{Milk} has a greater or equal
number of transactions than {Corn flakes, Bread}. →{Milk}. Thus if {Corn flakes,
Bread}. →{Milk} has a support value of 0.2, then {Bread}. →{Milk} will have a
support value . ≥0.2, which is anti-monotone property of support, thus dropping
itemset increase or keeping the support value same.

Thus, a frequent itemset is generated using support value . ≥ minimum support
for length = 1,2,3,. . . ., by checking the threshold each time. This is the Apriori
algorithm, which prunes the item at every step for the next itemset.

2. Generating rule: Now, from the generated frequent itemset, the rules are
extracted. A candidate from itemset for rules is made. For example, the candi-
dates from {Corn flakes, Bread}. →{Milk} will be:

• (Bread, Milk . → Corn flakes)
• (Corn flakes, Milk . → Bread)
• (Corn flakes . → Bread, Milk) etc.

The confidence is checked from this list and the rules with confidence greater
than a minimum confidence value are sorted out. Thus again, pruning is done
based on this confidence value. Now these extracted rules satisfy the minimum
support and minimum confidence value.

230 3 Machine Learning Algorithms

Finally, on these rules, the highest value of lift is searched to make a decision.
All these steps can be performed using a standard library.

Here, we will use a standard Python package, named mlxtend.frequent_patterns,
having “Apriori” and association rules modules. Refer to Table 3.32 to understand
the code given in Listing 3.19. For further reading, please check reference [68].

Programming Example 3.20
Listing 3.19 demonstrates association rule mining using the Apriori algorithm.
The code reads a bakery transaction dataset (Fig. 3.53), preprocesses it (Fig. 3.54),
and converts it into a crosstab format (Fig. 3.55), which is a way to present
the relationship between two or more categorical variables in a tabular format.
Implementing the Apriori algorithm, the listing efficiently identifies item sets that
frequently occur and meets a minimum support threshold of 4% (Fig. 3.56). From
there, it generates association rules with a minimum confidence level of 50%,
allowing for a comprehensive understanding of the relationships between items in
bakery transactions (Fig. 3.57a). The resulting rules are then sorted by lift, providing
a clear picture of the most highly associated item sets in transaction patterns
(Fig. 3.57b). The explanation of the code is presented in Table 3.32. The output
of this code can be best viewed in an IPython Notebook environment.

1 #Data: https://github.com/viktree/curly-octo-chainsaw/blob/master
/BreadBasket_DMS.csv

2

3 import pandas as pd
4 import numpy as np
5 from mlxtend.frequent_patterns import apriori, association_rules
6

7 #Loading dataset
8 dataset = pd.read_csv('data/BreadBasket_DMS.csv')
9

10 print(dataset.head(10))
11

12 #Dropping Duplicate Transaction
13 dataset = dataset.drop_duplicates()
14

15 #Taking Date, Time, Transaction and Item columns
16 print(dataset[['Date', 'Time', 'Transaction', 'Item']].head(10))
17

18 #Convert transacton & item into Crosstab
19 transaction = pd.crosstab(index= dataset['Transaction'], columns=

dataset['Item'])
20 print(transaction.head(10))
21

22 #Removing "NONE"
23 transaction = transaction.drop(['NONE'], axis = 1)
24

25 print(transaction.head(10))

3.7 Unsupervised Learning 231

26

27 #Frequent itemset with min support = 4%
28 frequent_itemset = apriori(df = transaction, min_support= 0.04,

use_colnames= True)
29 frequent_itemset.sort_values(by = 'support', ascending = False)
30

31 #Rule with minimun confidence = 50%
32 Rules = association_rules(frequent_itemset, min_threshold= 0.5)
33 print(Rules.head())
34

35 #Sorting results by lift to get highly associated itemsets
36 print(Rules.sort_values(by='lift', ascending= False).head())

Listing 3.19 Association learning using the Apriori algorithm [69, 70]

3.7.3.2 ECLAT Algorithm
The Equivalence Class Clustering and bottom-up Lattice Traversal (ECLAT) is a
popular association algorithm used for mining data for frequent items in a dataset.
It is a more computationally efficient variant of the Apriori algorithm. Unlike the
Apriori algorithm, it follows the depth-first search method (i.e., in a vertical manner)
of a graph rather than the breadth-first search method (i.e., in a horizontal manner).

Fig. 3.53 Output after line
10 of Listing 3.19

Fig. 3.54 Output after line
16 of Listing 3.19

232 3 Machine Learning Algorithms

Fig. 3.55 Output of Listing 3.19. (a) Output after line 20. (b) Output after line 25

As the depth first search has lesser computational requirements, ECLAT is faster
than Apriori.

Table 3.33 shows a transaction database in both a horizontal and a vertical
manner. The concept of “Transaction ID Set (TIDset)” is important for ECLAT.
From the table, it can be observed that item I4 has been present in TID 1, 3, and 4 in
the horizontal transaction section. The TIDset of I4 can be expressed as TIDset(I4)
. = {1, 3, 4}, which is also shown in the vertical transaction section of the table.

The main idea of ECLAT is to use TIDset for scanning frequent 1-itemsets,
creating and refining frequent 2-itemsets and frequent 3-itemsets, and repeating this
procedure until there are no more possible sets of candidate items to be found [71].
The process of the ECLAT algorithm is depicted in Fig. 3.58, which uses the table
for the input.

3.7 Unsupervised Learning 233

Fig. 3.56 Output after line
29 of Listing 3.19

Fig. 3.57 Output of Listing 3.19. (a) Output after line number 33. (b) Output after line number
36

234 3 Machine Learning Algorithms

Table 3.32 Explanation of the association learning code using Apriori presented in Listing 3.19

Line number Description

1–2 Reference of data and code

3–5 Required library and modules

7–10 Loading dataset and displaying first 10 entries

12–13 Dropping duplicate transaction

15–16 Displaying date, time, transaction, and item columns

18–20 Converting to crosstab and displaying

22–25 Removing “NONE” entries

27–29 Generating frequent itemset with the minimum support of 0.04

31–33 Extracting rules with a minimum confidence of 0.5

35–36 Sorting result according to lift in order to make decision

Table 3.33 Sample transaction database for association learning

Horizontal transaction (Apriori) Vertical transaction (ECLAT)

TID Itemset TID Itemset

1 I0, I1, I4 I0 1, 4, 5, 7, 8, 9

2 I1, I3 I1 1, 2, 3, 4, 6, 8, 9

3 I1, I2 I2 3, 5, 6, 7, 8, 9

4 I0, I1, I3 I3 2, 4

5 I0, I2 I4 1, 8

6 I1, I2

7 I0, I2

8 I0, I1, I2, I4

9 I0, I1, I2

3.8 Semi-supervised Learning

We have already discussed supervised and unsupervised learning so far. We use
labeled data in supervised learning, whereas in unsupervised learning, we use
unlabeled data to train the model. For semi-supervised learning, we use a mixture
of a small amount of labeled data with a huge amount of unlabeled data in the
training process. So, a little supervision is present to guide the model. Though a lot
of unlabeled data are used compared to the labeled data, this mixture improves the
learning accuracy by a considerable amount.

In the real world, data acquisition of labeled data is expensive, involves a lot of
effort and time, and requires experts in that particular field. On the other hand, the
production of unlabeled data is inexpensive and easy. So semi-supervised learning
plays a vital role in modeling these real-world data. Some real-world examples
are web page classification, web content classification, text-based image retrieval,
speech analysis, protein sequence classification, etc. In this section, we are going to
explore semi-supervised GAN and semi-supervised classification.

3.8 Semi-supervised Learning 235

Fig. 3.58 The process of ECLAT algorithm

3.8.1 Semi-supervised GAN (SGAN)

We have already introduced the working principle of the GAN algorithm in
Sect. 3.5.6 as a part of deep learning. In this section, we will show the use of GAN in
semi-supervised learning algorithms. For example, in the ANN section (Sect. 3.5.3),
we built and trained an ANN model to classify digits from the MNIST handwritten
dataset, where around 60,000 images have been used. However, if we use SGAN,
we can train the model with very little data.

The architecture of the SGAN model is presented in Fig. 3.59. There are 10 extra
softmax output layers for the classification and 1 “Fake/Real” unit for the GAN.
So this model has three components (Generator, Discriminator, and Classifier).
Here, the discriminator acts as the classifier too. Here, the MNIST generative
model is learned simultaneously with the training of the classifier. If we eliminate
the generator and “Fake/Real” class in Fig. 3.59, this model is the same as a
classifier model with convolution and dense layers. Regardless of the small training
dataset, accuracy is still comparable with the baseline classifier. This is because
the discriminator is also acting as the classifier; as a result, it is learning feature
extraction during the training of the classifier and at the time of training the GAN
model. As a result, this is a very data-efficient classifier. At the end of the training,
we can independently use the discriminator as a classifier without the generator

236 3 Machine Learning Algorithms

Generator

Real

Samples

(MNIST

dataset)

Discriminator

/Classifier

Class-1

Class-2

Class-9

Class-10

Fake/Real

.

.

.

Latent

space

Noise

Fig. 3.59 Architecture of SGAN model

model; the generator can produce data similar to the MNIST handwritten dataset.
The code for this SGAN using PyTorch has been given in Listing 3.20 and a
description of the code in Table 3.34.

Programming Example 3.21
Listing 3.20 provides a code for implementing an SGAN to generate images
resembling handwritten digits from the MNIST dataset. The process involves
defining and training the generator and discriminator networks. The generator
network utilizes a noise vector to produce an image, whereas the discriminator
network takes an image and delivers a validity score (real or fake) along with
a label (image class). The model is trained using binary cross-entropy loss for
the adversarial component and cross-entropy loss for the auxiliary component.
The accuracy of the discriminator is evaluated and printed for both authentic and
generated images individually. The code is explained in Table 3.34.

1 #https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/
sgan/sgan.py

2 #Paper: https://arxiv.org/abs/1606.01583
3 import numpy as np
4 import math
5 import torchvision.transforms as transforms
6 from torch.utils.data import DataLoader
7 from torchvision import datasets
8 from torch.autograd import Variable
9 import torch.nn as nn

10 import torch.nn.functional as F
11 import torch
12

13 #Loading dataset
14 transform = transforms.Compose([transforms.ToTensor(),
15 transforms.Normalize((0.5,), (0.5,)

),
16])
17 dataset = datasets.MNIST('./mnist', download=True, train=True,

transform=transform)

3.8 Semi-supervised Learning 237

18 dataloader = torch.utils.data.DataLoader(dataset, batch_size=64,
shuffle=True)

19

20 #Variables
21 latent_dim = 100
22 img_size = 32
23 num_epochs = 3
24 batch_size = 64
25 num_classes = 10
26

27 #Defining generator
28 class Generator(nn.Module):
29 def __init__(self):
30 super(Generator, self).__init__()
31

32 self.init_size = img_size // 4
33 self.l1 = nn.Sequential(nn.Linear(latent_dim, 128 * self.

init_size ** 2))
34

35 self.conv_blocks = nn.Sequential(
36 nn.BatchNorm2d(128),
37 nn.Upsample(scale_factor=2),
38 nn.Conv2d(128, 128, 3, stride=1, padding=1),
39 nn.BatchNorm2d(128, 0.8),
40 nn.LeakyReLU(0.2, inplace=True),
41 nn.Upsample(scale_factor=2),
42 nn.Conv2d(128, 64, 3, stride=1, padding=1),
43 nn.BatchNorm2d(64, 0.8),
44 nn.LeakyReLU(0.2, inplace=True),
45 nn.Conv2d(64, 1, 3, stride=1, padding=1),
46 nn.Tanh()
47)
48

49 def forward(self, noise):
50 out = self.l1(noise)
51 out = out.view(out.shape[0], 128, self.init_size, self.

init_size)
52 img = self.conv_blocks(out)
53 return img
54

55 #Defining discriminator
56 class Discriminator(nn.Module):
57 def __init__(self):
58 super(Discriminator, self).__init__()
59

60 self.conv_blocks = nn.Sequential(
61 nn.Conv2d(1, 16, 3, 2, 1),
62 nn.LeakyReLU(0.2, inplace=True),
63 nn.Dropout2d(0.25),
64

65 nn.Conv2d(16, 32, 3, 2, 1),
66 nn.LeakyReLU(0.2, inplace=True),
67 nn.Dropout2d(0.25),

238 3 Machine Learning Algorithms

68 nn.BatchNorm2d(32, 0.8),
69

70 nn.Conv2d(32, 64, 3, 2, 1),
71 nn.LeakyReLU(0.2, inplace=True),
72 nn.Dropout2d(0.25),
73 nn.BatchNorm2d(64, 0.8),
74

75 nn.Conv2d(64, 128, 3, 2, 1),
76 nn.LeakyReLU(0.2, inplace=True),
77 nn.Dropout2d(0.25),
78 nn.BatchNorm2d(128, 0.8)
79)
80

81 ds_size = img_size // 2 ** 4 # The height and width of
downsampled image

82

83 # Output layers
84 self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size **

2, 1), nn.Sigmoid())
85 self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size **

2, num_classes + 1), nn.Softmax())
86

87 def forward(self, img):
88 out = self.conv_blocks(img)
89 out = out.view(out.shape[0], -1)
90 validity = self.adv_layer(out)
91 label = self.aux_layer(out)
92

93 return validity, label
94

95 #Loss functions
96 adversarial_loss = torch.nn.BCELoss()
97 auxiliary_loss = torch.nn.CrossEntropyLoss()
98

99 #Initialize generator and discriminator
100 generator = Generator()
101 discriminator = Discriminator()
102

103 #Optimizers
104 optimizer_G = torch.optim.Adam(generator.parameters(), lr=0.0001,

betas=(0.5, 0.999))
105 optimizer_D = torch.optim.Adam(discriminator.parameters(), lr

=0.0001, betas=(0.5, 0.999))
106

107 # Training
108 for epoch in range(num_epochs):
109 for i, (imgs, labels) in enumerate(dataloader):
110

111 batch_size = imgs.shape[0]
112

113 # Adversarial ground truths
114 valid = Variable(torch.FloatTensor(batch_size, 1).fill_

(1.0), requires_grad=False)

3.8 Semi-supervised Learning 239

115 fake = Variable(torch.FloatTensor(batch_size, 1).fill_
(0.0), requires_grad=False)

116 fake_aux_gt = Variable(torch.LongTensor(batch_size).fill_
(num_classes), requires_grad=False)

117

118 # Configure input
119 real_imgs = Variable(imgs.type(torch.FloatTensor))
120 labels = Variable(labels.type(torch.LongTensor))
121

122 ###Train Generator
123

124 optimizer_G.zero_grad()
125

126 # Sample noise and labels as generator input
127 z = Variable(torch.FloatTensor(np.random.normal(0, 1, (

batch_size, latent_dim))))
128

129 # Generate a batch of images
130 gen_imgs = generator(z)
131

132 # Loss measures generator's ability to fool the
discriminator

133 validity, _ = discriminator(gen_imgs)
134 g_loss = adversarial_loss(validity, valid)
135

136 g_loss.backward()
137 optimizer_G.step()
138

139 ###Train Discriminator
140

141 optimizer_D.zero_grad()
142

143 # Loss for real images
144 real_pred, real_aux = discriminator(real_imgs)
145 d_real_loss = (adversarial_loss(real_pred, valid) +

auxiliary_loss(real_aux, labels)) / 2
146

147 # Loss for fake images
148 fake_pred, fake_aux = discriminator(gen_imgs.detach())
149 d_fake_loss = (adversarial_loss(fake_pred, fake) +

auxiliary_loss(fake_aux, fake_aux_gt)) / 2
150

151 # Total discriminator loss
152 d_loss = (d_real_loss + d_fake_loss) / 2
153

154

155 # Calculate discriminator accuracy
156 pred = np.concatenate([real_aux.data.numpy(), fake_aux.

data.numpy()], axis=0)
157 gt = np.concatenate([labels.data.numpy(), fake_aux_gt.

data.numpy()], axis=0)
158 d_acc = np.mean(np.argmax(pred, axis=1) == gt)
159

240 3 Machine Learning Algorithms

160 d_loss.backward()
161 optimizer_D.step()
162

163 # Calculate discriminator mnist accuracy
164 d_acc_mnist = np.mean(np.argmax(real_aux.data.numpy(),

axis=1) == labels.data.numpy())
165 d_acc_fake = np.mean(np.argmax(fake_aux.data.numpy(),

axis=1) == fake_aux_gt.data.numpy())
166

167 print(
168 "[Epoch %d/%d] [Batch %d/%d] [D loss_real: %f,

loss_fake: %f, acc_mnist: %d%%, acc_fake: %d%%] [G loss: %f]"
169 % (epoch, num_epochs, i, len(dataloader),

d_real_loss.item(), d_fake_loss.item(), 100*d_acc_mnist, 100*
d_acc_fake, g_loss.item())

170)

Listing 3.20 Semi-supervised GAN [72, 73]

Output of Listing 3.20:

[Epoch 0/3] [Batch 0/938] [D loss_real: 1.550232,
loss_fake: 1.539532, acc_mnist: 4%, acc_fake: 9%]
[G loss: 0.703786]
[Epoch 0/3] [Batch 1/938] [D loss_real: 1.550391,
loss_fake: 1.539539, acc_mnist: 4%, acc_fake: 3%]
[G loss: 0.703941]
[Epoch 0/3] [Batch 2/938] [D loss_real: 1.549383,
loss_fake: 1.539355, acc_mnist: 7%, acc_fake: 6%]
[G loss: 0.703729]
.....
.....
.....
.....
[Epoch 2/3] [Batch 932/938] [D loss_real: 0.918866,
loss_fake: 0.773814, acc_mnist: 70%, acc_fake: 100%]
[G loss: 8.777421]
[Epoch 2/3] [Batch 933/938] [D loss_real: 0.900834,
loss_fake: 0.772494, acc_mnist: 76%, acc_fake: 100%]
[G loss: 8.913239]
[Epoch 2/3] [Batch 934/938] [D loss_real: 0.943198,
loss_fake: 0.772426, acc_mnist: 68%, acc_fake: 100%]
[G loss: 8.530702]
[Epoch 2/3] [Batch 935/938] [D loss_real: 0.923197,
loss_fake: 0.776373, acc_mnist: 70%, acc_fake: 100%]
[G loss: 8.833928]
[Epoch 2/3] [Batch 936/938] [D loss_real: 0.912454,
loss_fake: 0.774332, acc_mnist: 75%, acc_fake: 100%]
[G loss: 8.576003]

3.8 Semi-supervised Learning 241

[Epoch 2/3] [Batch 937/938] [D loss_real: 0.873888,
loss_fake: 0.772086, acc_mnist: 87%, acc_fake: 100%]
[G loss: 8.941827]

3.8.2 Semi-supervised Classification

A typical semi-supervised learning problem starts with a bunch of unlabeled data
and a very small fraction of the labeled data. The training algorithm remains the
same as a supervised learning algorithm (e.g., Naive Bayes or SVD). However,

Table 3.34 Explanation of the SGAN code presented in Listing 3.20

Line number Description

3–11 Importing NumPy and PyTorch

13–18 Loading and transforming MNIST handwritten dataset for training

20–25 Defining variables such as latent dimension and the number of classes

27–53 Defining generator using convolution layer, which takes noise as input

and generates an image using further up-sampling and conv layer

55–93 Defining discriminator

60–79 Regular sequential convolution layer, which determines the fake image and also

the class of the image

83–85 Output layer of discriminator. First, using a sigmoid layer fake of the real image

is determined, that is, the adversarial output layer, and then using auxiliary

layer class is determined using the softmax layer. These two layers are

independent of each other, and both take input from the sequential convolution

layer

87–93 Executes outputs from the adversarial and auxiliary layers. So discriminator

has two output validity and label of the input image

95–97 Loss function for the generator and the discriminator is defined

99–101 Initialize the discriminator and the generator from the predefined class

103–105 Optimizer for the discriminator and the generator is initialized

107–170 Training of the model performed here

113–116 Ground truths are initialized

119–120 Real images and corresponding labels are converted into an appropriate

form

127 Noise is extracted to generate a fake image

130 Fake images are generated

133–137 Loss is calculated, and backpropagation is performed for generator

144–152 Loss for real images and fakes images; thus the total discriminator loss

is calculated

156–161 Backpropagation for discriminator is performed here

164–165 Accuracy for MNIST dataset is calculated

169 Overall metrics are printed

242 3 Machine Learning Algorithms

the following changes need to be made in order to handle the unlabeled data and
complete the learning process:

1. Train a classifier (e.g., SVM and Naive Bayes) on the labeled training data.
2. Collect the labels of the unlabeled data from the pre-trained model at the first

stage.
3. Only include those unlabeled observations into the previous label dataset with a

higher confidence score at step 2.
4. Use the augmented data to retrain the previous pre-trained model to complete the

training.

Adopting the above procedure can turn any supervised learning into a semi-
supervised learning scheme. Figure 3.60 depicts semi-supervised classification by
showing how a small amount of labeled data can be used to improve the performance
of a model on a large amount of unlabeled data using pseudo-labeling. Labeling
the unlabeled data with the output predicted by neural networks is called pseudo-
labeling.

3.9 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning where the agent
learns by sequential interactions at discrete time steps with the environment.

Fig. 3.60 Semi-supervised
classification

Pseudo label

Pseudo-labelled class 1Pseudo-labelled class 1

Class 2Class 2

Class 1Class 1

Pseudo-labelled class 2Pseudo-labelled class 2

Still unlabeled as not confident Still unlabeled as not confident

3.9 Reinforcement Learning 243

Reinforcement learning has applications in the field of robotics, self-driving cars,
healthcare, industry automation, natural language processing, trading finance, and
robot motion control.

We have already seen that ML models are trained using some sort of labeled or
unlabeled data. However, RL algorithms learn by interacting with the environment,
even if there is no previous experience with that environment, so no dataset is
necessary for training in RL. In the learning process, as experiences are acquired
by the data (which are being fed to the agent in real time), a neural network, CNN,
or RNN that we have already learned can be used for learning, though a simple
gradient method cannot be used.

As described in Fig. 3.61, in RL, we have an agent that interacts with the
environment by performing actions. Actions are taken based on the state of the
environment. The state (frame of the video in case of a game) of the environment is
fed to the agent; then, the policy network (which can be a neural network) transforms
the input (state) into the output, which is an action. The policy is written as .π(a|s),
which tells the probability of taking an action a under state s. In addition, the policy
gradient is used to backpropagate compared to the normal gradient used in the
conventional ML model. After applying the action, the current state . st is changed
into a new state .st+1, and a reward (positive reward) is given to the agent if the
action is right; otherwise, a penalty is given for the wrong action.

The main goal of the training in RL is to optimize the policy network using policy
gradient to receive as much reward as possible across an episode. An episode can be
defined as the sequence of interactions until the environment reaches the final state
from the initial state. For example, if a robot is being trained to walk, the episode
is the interactions done from the first action to the last action when the robot will
walk properly (positive reward) or fall down (negative reward). After an episode,
the environment is reset to a standard starting state, . s0, or to a random starting state
sampled from the distribution; a positive reward is also given, and a normal policy
gradient is applied to increase the probability of that action in the future. On the
other hand, for a negative reward or for a penalty, the policy gradient is applied with
a negative sign to reduce the probability of that action.

In Fig. 3.62, the sequence of state changes, applying an action, and gaining
reward has been shown. The first action . at is applied based on the current state

Fig. 3.61 Reinforcement
learning

Reward rt

Agent

Environment

State st

rt+1

st+1

Action at

Fig. 3.62 Sequence of
action, state, and reward State Action Reward

244 3 Machine Learning Algorithms

. st , after which the state is changed into .st+1 due to the performed action . at , and the
reward .rt+1 is given based on the final state .st+1. It should be noted that . rt is the
reward for the transition of the state from .st−1 into . st .

Now we shall discuss some terms briefly.

1. Policies (. π) and value functions: Policy map state from the state space to the
probabilities of taking possible action for each state. On the other hand, if state
and state–action pair is given, then the expected return can be extracted from the
value function and can be analyzed.

2. Optimal policy: A policy will be considered better than the other if it has a
greater expected return than the compared one for all states.

3. Optimal state-value function: This gives the largest expected return possible by
any given policy for each state. Mathematically an optimal state-value function
is given by

.v∗(s) = max
π

vπ (s). (3.76)

4. Optimal Action-Value Function: This is the optimal Q-value function that
gives the largest expected return by any policy for each state–action pair.
Mathematically an optimal Q-function is given by

.q∗(s, a) = max
π

qπ (s, a). (3.77)

5. Bellman Optimality Equation: . q∗ must fulfil the Bellman Optimality equation:

.q∗(s, a) = E

[
Rt+1 + γ max

a' q∗
(
s', a')] . (3.78)

The expected reward from starting in state s with executing action a while
following optimum policy is the expected reward for action pair .(s, a), which
is .Rt+1 plus max possible discounted return which can be found from the next
action pair .(s', a').

6. Exploration: In exploration methods, the agents try to explore different actions
to accumulate knowledge about each possible action rather than accumulating
rewards through repeating certain actions over and over again. Exploration
techniques tend to find the best overall action or decision.

7. Exploitation: In exploitation methods, the agents try to accumulate as many
rewards as possible by utilizing already known actions. Exploitation techniques
tend to find the best action or decision based on current knowledge.

8. Regret:We humans tend to regret our decision when it fails to achieve the desired
outcome. The same goes for RL. Regret can be seen as a difference between
the rewards accumulated through the actions taken and the highest possible
accumulated rewards if the most optimal action was taken.

3.9 Reinforcement Learning 245

If an action a is taken, then the action value will be the mean reward for action
a, that is,

.Q(a) = E[r|a]. (3.79)

The optimal action value will be found from optimal action . a∗:

.V ∗ = Q(a∗) = max
a∈A

Q(a). (3.80)

Then the regret for one particular step t is

.lt = E[V ∗ − Q(at)]. (3.81)

And the total regret is

.lt = E

tΣ
τ=1

[V ∗ − Q(at)]. (3.82)

Regret may be considered analogous to the loss function. More rewards can
be accumulated by minimizing regret.

3.9.1 Multi-armed Bandit Problem

A famous problem in the ML domain, specifically in the RL domain, is the multi-
armed bandit problem, also known as the k-armed bandit problem. This problem
represents the exploration vs. exploitation dilemma in RL very well.

Suppose you live in a big city with lots of restaurants. You have visited some of
the restaurants, but not all. Of all the restaurants you have visited, you get the most
satisfaction from a few of them. To achieve maximum satisfaction, you can go to a
restaurant you already like or visit a new one with the hope that they can do better.
This dilemma is illustrated in Fig. 3.63. Replace the city, restaurant visits, yourself,
and your satisfaction with the environment, actions, agent, and rewards, respectively,
and then you get the formal statement of a multi-armed bandit problem. Here, the
term bandit is derived from casino slot machines with one arm or one lever, except
this problem deals with k levers.

The multi-armed bandit can be expressed as a tuple—.<A,R>, where A is the set
of k actions or arms, and R is the set of rewards. Now, the unknown probability
distribution over the set of rewards will be given by the equation:

.Ra
r = P

[r

a

]
. (3.83)

Here r and a are individual rewards and actions where .r ∈ R and .a ∈ A. For
a particular step t , the agent selects an action . at . For this action, the accumulated

246 3 Machine Learning Algorithms

Restaurant Restaurant Restaurant

1 2 3

Fig. 3.63 Visual representation of the restaurant dilemma example of the multi-armed bandit
problem

reward from the environment will be . rt . Here, .at ∈ A and .rt ∈ R. The cumulative
reward will then become .

Σt
τ=1 rt .

The purpose of the agent (yourself) is to maximize the amount of cumulative
rewards (maximum satisfaction). In RL, there are various techniques to solve this
problem. Some of these will be briefly discussed in the following sections.

3.9.1.1 The Greedy Strategy
This is a simple action-value strategy. The aim is to select the action with the highest
reward. This action is known as the greedy action. If there are multiple greedy
actions, then the selection is done randomly. The greedy action can be estimated
as follows:

.a∗
t = argmax

a∈A

Qt(a). (3.84)

Although the greedy algorithm focuses on accumulating as many rewards as
possible, it has a tendency to stick to the sub-optimal action.

3.9.1.2 The Epsilon (∈)-Greedy Strategy
The greedy strategy can miss the most optimal action. A solution to this problem
can be to explore a bit with a certain probability, say . ∈, every once in a while and
behave greedily for the rest of the time (with .1− ∈ probability).

In short, select .at = argmaxa∈A Qt(a) with probability .1− ∈ and then select
a random action with probability . ∈. In this case, the probability of obtaining the
optimal action should be near certainty (greater than .1− ∈).

3.9 Reinforcement Learning 247

3.9.1.3 Upper Confidence Bound (UCB)
This is a non-greedy method, i.e., this method does not exclusively focus on the
current known action. In UCB, the action is selected based on the optimal action
estimation and the uncertainty of that selection. This can be achieved from the
following equation:

.at = argmax
a∈A

[
Qt(a) + c

/
ln(t)

Nt (a)

]
, (3.85)

where .Nt(a) is the number of actions a taken prior to time t , and .c (c > 0) is
the degree of exploration. The squared-root term in Eq. 3.85 determines the level of
uncertainty of the action [74]. As the name suggests, UCB focuses on exploration
and exploitation based on a confidence boundary. The agent optimistically chooses
the actions in case of uncertainty that has the highest upper bound. This boundary
decreases as it explores more and more.

3.9.1.4 Thompson Sampling
Thomson sampling utilizes the Bayes theorem to determine the reward distribution
of various arms of the multi-armed bandit. The posterior distribution of rewards is
determined from the Bayes theorem as follows [75]:

.P(R|ht) = P(ht |R)P (ht)

P (R)
, (3.86)

where .P(R|ht) is the posterior distribution, .P(ht |R) is the likelihood of obtaining
R given . ht , and .P(ht) indicates the prior belief on . ht distribution.

The reward distribution R is sampled from the posterior distribution. Then the
action value becomes .Q(a) = E[r|a], where .r ∈ R. Then the action . at is selected
based on this sampled value:

.at = argmax
a∈A

Q(a). (3.87)

Thus, this method selects action by making trade-offs between exploration and
exploitation to maximize the reward accumulation.

3.9.1.5 Q-Learning
The Q-learning technique can be used to learn the optimal policy we already
discussed in the previous section. After selecting the optimal Q-function, the
RL algorithm is applied to determine the optimal policy to find the action that
maximizes the Q-function for each state.

The Q-function takes input from a state and an action for a given policy and
returns the expected return, for which Eq. 3.78 can be used. For Q-learning, at
first, the Q-table (shown in Fig. 3.64) is initialized. Its dimension is found by the

248 3 Machine Learning Algorithms

Q table

State and action Q valueState and action Q value

(S2,A2) V2

(S3,A3) V3(S3,A3) V3

--- ------ ---

(Sn,An) Vn(Sn,An) Vn

(S1,A1) V1(S1,A1) V1State

Action

Q value

Fig. 3.64 The Q-table used in Q-learning

Fig. 3.65 The steps for
training the Q-learning
algorithm

Initialize Q

Choose action from Q

Perform action

Measure reward

Update Q

number of actions and the number of states. Normally it is initialized with zeros,
and after each episode, the Q-table is updated after taking action and according to
the reward. The formula for determining the new Q-value for a state–action pair
.(s, a) combination at a given point in time t is given by Eq. 3.88.

. qnew (s, a) = (1 − α) q(s, a)' '' '
old value

+α

learned value' '' '⎛
⎜⎜⎝Rt+1 + γ × max

a' q
(
s', a')

' '' '
max estimate of future value

⎞
⎟⎟⎠ .

(3.88)

Here, . α denotes the learning rate, .Rt+1 stands for reward, and . γ stands for discount
rate.

For taking action, the agent randomly selects exploration and exploitation during
the training in order to make a trade-off between them. The typical steps for training
using the Q-learning algorithm are given in Fig. 3.65.

3.9 Reinforcement Learning 249

Fig. 3.66 The map
visualized in Listing 3.21

Here, the new Q-value is the summation of the weighted old value and the new
learned value. This topic will be clarified in the following example.

Programming Example 3.22
We will demonstrate the Q-learning algorithm using the “FrozenLake” environment
from “Open AI Gymnasium” [76]. The reader is advised to read the environment
description from the given reference. In this environment, the start point is marked
with a “Player Character,” and the final point is pointed with a “Gift Box.” The agent
can move left, right, up, and down (Fig. 3.66). The goal is to reach the gift without
falling into any hole. If the agent can reach the goal traversing the frozen surface, a
reward of +1 is given, and if the agent falls into a hole, there is 0 reward. After both
cases, the game is over, and a new game starts from the starting point.

The Python code for this problem is provided in Listing 3.21 with its output
following it (Fig. 3.67). Table 3.35 explains the code.

1 # ----------------------Importing Libraries----------------------
2 import numpy as np
3 import gymnasium as gym
4 import random
5 from IPython.display import clear_output
6 import matplotlib.pyplot as plt
7 from collections.abc import Sequence
8

9

10 # ----------------------Initiate Environment---------------------
11 custom_map = ["SFFH",
12 "FFHF",
13 "HFFF",
14 "HFFG"]
15

16 env_gym = gym.make('FrozenLake-v1', desc=custom_map, render_mode=
"rgb_array")

17

18 env_gym.reset()
19 plt.imshow(env_gym.render())

250 3 Machine Learning Algorithms

20

21

22 # --------------------------Parameters---------------------------
23 # Generating Q-table
24 a_size = env_gym.action_space.n
25 s_size = env_gym.observation_space.n
26 # Initializing Q-table with zero
27 Q_table = np.zeros((s_size, a_size))
28

29 # Total number of episodes
30 num_episodes = 9000
31 # Maximum number of steps agent is allowed to take within a

single episode
32 maximum_step_each_episode = 90
33

34 learn_rate = 0.1
35 discount_rate = 0.99
36

37 exploration_rate = 1
38 max_exploration_rate = 1
39 min_exploration_rate = 0.01
40 exploration_decay_rate = 0.001
41

42 def check_state(state):
43 if isinstance(state, Sequence):
44 return state[0]
45 else:
46 return state
47

48

49 # ---------------------------Training----------------------------
50 # List to hold reward from each episodes
51 all_rewards = []
52

53 # Q-learning algorithm
54 for episode in range(num_episodes):
55 # Initialize new episode params
56 state = env_gym.reset()
57 state = check_state(state)
58 # Done parameter keep to keep track of episode when finish
59 finished_flag = False
60 rewards_current_episode = 0
61

62 # For each time step within this episode
63 for step in range(maximum_step_each_episode):
64

65 # Choosing between exploration and exploitation
66 exploration_rate_threshold = random.uniform(0, 1)
67 if exploration_rate_threshold > exploration_rate:
68 action = np.argmax(Q_table[state, :])
69 else:
70 action = env_gym.action_space.sample()
71

3.9 Reinforcement Learning 251

72 outs = env_gym.step(action)
73 if len(outs) == 4:
74 observation, reward, finished_flag, _ = env_gym.step(

action)
75 else:
76 observation, reward, terminated, truncated, _ =

env_gym.step(action)
77 finished_flag = terminated
78

79 # Update Q-table for Q(s,a)
80 Q_table[state, action] = Q_table[state, action] * (1 -

learn_rate) + learn_rate * (
81 reward + discount_rate * np.max(Q_table[

observation, :]))
82

83 state = observation
84 rewards_current_episode += reward
85

86 if finished_flag == True:
87 break
88

89 # Exploration rate decay using exponential decay
90 exploration_rate = min_exploration_rate + (

max_exploration_rate - min_exploration_rate) * np.exp(
91 -exploration_decay_rate * episode)
92

93 all_rewards.append(rewards_current_episode)
94

95 # Calculate and print the average reward per thousand episodes
96 rewards_per_thousand_episodes = np.split(np.array(all_rewards),

num_episodes / 1000)
97 count = 1000
98

99 print("Average reward summary:")
100 for r in rewards_per_thousand_episodes:
101 print(count, ": ", str(sum(r / 1000)))
102 count += 1000
103

104 # Updated Q-table
105 print("Updated Q-table:")
106 print(Q_table)
107

108

109

110 # -----------------Iterations of agent playing-------------------
111 # Watching the agent playing with best actions from the Q-table
112 for episode in range(4):
113 state = env_gym.reset()
114 state = check_state(state)
115 finished_flag = False
116 print("==")
117 print("EPISODE: ", episode+1)
118

252 3 Machine Learning Algorithms

119 for step in range(maximum_step_each_episode):
120

121 action = np.argmax(Q_table[state, :])
122 outs = env_gym.step(action)
123

124 if len(outs) == 4:
125 observation, reward, finished_flag, _ = env_gym.step(

action)
126 else:
127 observation, reward, terminated, truncated, _ =

env_gym.step(action)
128 finished_flag = terminated
129

130 if finished_flag:
131 plt.imshow(env_gym.render())
132 if reward == 1:
133 print("The agent reached the Goal")
134 else:
135 print("The agent fell into a hole")
136

137 print("Number of steps", step)
138

139 break
140

141 state = observation
142

143 env_gym.close()

Listing 3.21 Reinforcement learning using OpenAI frozen lake environment [77]

Output after Line 19 of Listing 3.21:
Output after Line 102 of Listing 3.21:

Average reward summary:
1000 : 0.04900000000000004
2000 : 0.20200000000000015
3000 : 0.3820000000000003
4000 : 0.5420000000000004
5000 : 0.6120000000000004
6000 : 0.6680000000000005
7000 : 0.6570000000000005
8000 : 0.6500000000000005
9000 : 0.6680000000000005

Output after Line 106 of Listing 3.21:

Updated Q-table:
[[5.50579416e-02 5.47402216e-02 5.23440673e-02 5.33719782e-02]
[7.92652688e-02 6.57612005e-02 6.42740679e-02 6.91404070e-02]
[1.82775052e-02 1.92826368e-02 3.80034093e-04 1.98099025e-02]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]

3.9 Reinforcement Learning 253

[4.46883633e-02 2.93065726e-02 4.40962298e-02 4.92429277e-02]
[6.88198255e-02 3.57139646e-02 5.30218450e-02 4.51624282e-02]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[6.21450787e-02 0.00000000e+00 4.56000428e-03 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[9.10521593e-02 8.81886916e-02 1.57974619e-01 6.67273365e-02]
[3.20439214e-02 4.18211567e-01 2.72005863e-01 1.94268929e-01]
[7.85680685e-02 1.65205077e-01 1.21904562e-01 1.74734821e-02]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[7.67063001e-02 2.14511902e-01 3.95164778e-01 1.89810501e-01]
[1.91633412e-01 8.17657490e-02 8.67790192e-02 5.06268910e-02]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]]

Output after Line 143 of Listing 3.21:

==
EPISODE: 1
The agent fell into a hole
Number of steps 6
==
EPISODE: 2
The agent fell into a hole
Number of steps 2
==
EPISODE: 3
The agent fell into a hole
Number of steps 11
==
EPISODE: 4
The agent reached the Goal
Number of steps 16

Fig. 3.67 Output of Listing
3.21

254 3 Machine Learning Algorithms

Table 3.35 Explanation of the Q-learning example using frozen lake environment presented in
Listing 3.21

Line number Description

1–7 Importing necessary libraries and modules

10–19 Define a custom environment and visualize the map

23–40 Set various parameters for Q-learning

42–46 A function to keep state value always as an integer

50–106 Q-learning algorithm to train the agent

51 List to hold rewards from each episode

54–93 Loop for training the Q-table

66–70 Decide whether to explore or exploit based on the exploration rate

72–81 Perform an environment step and update Q-table using Eq. 3.88

90 Decay exploration rate over episodes

100–102 Calculate and print average reward per 1000 episodes

106 Print the updated Q-table

111–143 Watch the agent play using the Q-table

130–137 Display the environment and outcomes

180 Close the environment

3.10 Conclusion

This chapter introduces the readers to different types of algorithms used in machine
learning. At first, the different types of datasets and dataset preprocessing strategies
are discussed. Then, a large section is dedicated to supervised learning, which
includes regression and classification techniques with relevant examples. Then
comes a section on deep learning, which includes important concepts such as
gradient descent and backpropagation, artificial neural networks, convolutional
neural networks, recurrent neural networks, and generative adversarial networks.
The chapter also discusses time series forecasting techniques, such as ARIMA,
SARIMA, and LSTM. Next, the chapter covers unsupervised learning (clustering,
dimensionality reduction, and association learning), semi-supervised learning, and
reinforcement learning as well. The topics are explained briefly, and some examples
are implemented in Python using built-in libraries. Overall, this chapter provides
a decent familiarity with machine learning algorithms and demonstrates numerous
programming examples that will help the readers to clearly understand the practical
applications of the theories. In the next chapter, we will study machine learning
applications in signal processing.

3.11 Key Messages from This Chapter

• In supervised learning, ML models are explicitly given the features and target
labels for them to learn and train.

3.12 Exercise 255

• Data without labeling require unsupervised learning. Without any manual inter-
vention, ML models pick up the critical patterns within data.

• Semi-supervised learning is used when we have a limited amount of labeled data.
The dataset consists of both labeled and unlabeled data.

• When the size of the dataset becomes massive and computations become more
complex and time-consuming, deep learning is preferred over machine learning.

3.12 Exercise

1. How are input data handled before implementing ML algorithms? Mention the
steps.

2. Why is data augmentation required, and how is it implemented?
3. The datasets often contain missing data. How can this problem be addressed?
4. What do stationary and non-stationary time series signify? Differentiate

between them using an example.
5. Why do we need different types of ML algorithms? Briefly discuss.
6. Discuss the relationship between deep learning and neural networks. What are

the advantages of deep learning methods?
7. Briefly describe the learning process of a single neuron and develop a simple

neural network structure using multiple neurons.
8. How is a CNN architecture built? Briefly discuss some state-of-the-art CNN

architectures.
9. Describe the differences between the following:

(a) Supervised, semi-supervised, and unsupervised algorithm
(b) CNN and RNN
(c) Classification, regression, and clustering

10. Briefly explain the mechanism of reinforcement learning.
11. Every year, a massive amount of CO2 is emitted from electricity generation

worldwide. To reduce CO2 emissions and plan our energy strategy accordingly,
it is essential to gather an idea about future CO2 emissions. Therefore, develop
a 10-year CO2 emission forecasting model. The dataset and its description are
available here: https://www.kaggle.com/datasets/txtrouble/carbon-emissions.

12. Perform a multiclass classification on the iris dataset [78] using the Random
Forest classifier. Load the iris dataset using the scikit-learn library as follows:

1 from sklearn import datasets
2

3 iris = datasets.load_iris()
4 X = iris.data
5 y = iris.target
6

13. Develop a multiclass classifier for the MNIST dataset. Implement the same
classifier for the Fashion MNIST dataset. Compare the results.

https://www.kaggle.com/datasets/txtrouble/carbon-emissions
https://www.kaggle.com/datasets/txtrouble/carbon-emissions
https://www.kaggle.com/datasets/txtrouble/carbon-emissions
https://www.kaggle.com/datasets/txtrouble/carbon-emissions
https://www.kaggle.com/datasets/txtrouble/carbon-emissions
https://www.kaggle.com/datasets/txtrouble/carbon-emissions
https://www.kaggle.com/datasets/txtrouble/carbon-emissions
https://www.kaggle.com/datasets/txtrouble/carbon-emissions

256 3 Machine Learning Algorithms

14. Implement the IMDB movie rating sentiment analysis using LSTM and bidi-
rectional LSTM. Which one performs better and why?

15. Implement Q-learning algorithm in the CartPole environment. The CartPole
environment is available on OpenAI-gym. A description of this environ-
ment is available on their website: https://gymnasium.farama.org/environments/
classic_control/cart_pole/

16. Using the golf playing dataset from Table 3.6, construct a decision tree using
Gain Ratio as the attribute selection measure.

References

1. Working with missing data. https://pandas.pydata.org/docs/user_guide/missing_data.html#
2. Pawara, P., Okafor, E., Schomaker, L., & Wiering, M. (2017). Data augmentation for plant

classification. In Advanced concepts for intelligent vision systems (pp. 615–626). Springer
International Publishing.

3. Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals
of Statistics, 32(2), 407–499.

4. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12, 2825–2830.

5. Quinlan, J. R. (986). Induction of decision trees. Machine Learning, 1(1), 81–106.
6. noushin.gauhar. Constructing a decision tree: Entropy & Information gain - Decision Tree

- Learn with Gauhar—learnwithgauhar.com. https://learnwithgauhar.com/constructing-a-
decision-tree-entropy-information-gain/. Accessed September 07, 2023.

7. Classifier comparison—scikit-learn.org. https://scikit-learn.org/stable/auto_examples/
classification/plot_classifier_comparison.html. Accessed September 07, 2023.

8. MNIST dataset. https://www.tensorflow.org/datasets/catalog/mnist
9. Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to

document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
10. Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted Boltzmann machines.

In Proceedings of the 27th International Conference on Machine Learning (ICML-10).
11. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-

level performance on ImageNet classification. In Proceedings of the IEEE International
Conference on Computer Vision (pp. 1026–1034).

12. Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep network
learning by exponential linear units (ELUs). Preprint arXiv:1511.07289.

13. Hendrycks, D., & Gimpel, K. (2016). Gaussian error linear units (GELUs). Preprint
arXiv:1606.08415.

14. Examples/mnist/main.py at main · PyTorch/examples—github.com. https://github.com/
pytorch/examples/blob/main/mnist/main.py. Accessed September 07, 2023.

15. Khan, A., Sohail, A., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures
of deep convolutional neural networks. Artificial Intelligence Review, 53(8), 5455–5516.

16. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

17. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–
1105.

18. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (pp. 1–9).

https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://gymnasium.farama.org/environments/classic_control/cart_pole/
https://pandas.pydata.org/docs/user_guide/missing_data.html#
https://pandas.pydata.org/docs/user_guide/missing_data.html#
https://pandas.pydata.org/docs/user_guide/missing_data.html#
https://pandas.pydata.org/docs/user_guide/missing_data.html#
https://pandas.pydata.org/docs/user_guide/missing_data.html#
https://pandas.pydata.org/docs/user_guide/missing_data.html#
https://pandas.pydata.org/docs/user_guide/missing_data.html#
https://pandas.pydata.org/docs/user_guide/missing_data.html#
https://pandas.pydata.org/docs/user_guide/missing_data.html#
https://pandas.pydata.org/docs/user_guide/missing_data.html#
https://learnwithgauhar.com/constructing-a-decision-tree-entropy-information-gain/
https://learnwithgauhar.com/constructing-a-decision-tree-entropy-information-gain/
https://learnwithgauhar.com/constructing-a-decision-tree-entropy-information-gain/
https://learnwithgauhar.com/constructing-a-decision-tree-entropy-information-gain/
https://learnwithgauhar.com/constructing-a-decision-tree-entropy-information-gain/
https://learnwithgauhar.com/constructing-a-decision-tree-entropy-information-gain/
https://learnwithgauhar.com/constructing-a-decision-tree-entropy-information-gain/
https://learnwithgauhar.com/constructing-a-decision-tree-entropy-information-gain/
https://learnwithgauhar.com/constructing-a-decision-tree-entropy-information-gain/
https://learnwithgauhar.com/constructing-a-decision-tree-entropy-information-gain/
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
https://www.tensorflow.org/datasets/catalog/mnist
https://www.tensorflow.org/datasets/catalog/mnist
https://www.tensorflow.org/datasets/catalog/mnist
https://www.tensorflow.org/datasets/catalog/mnist
https://www.tensorflow.org/datasets/catalog/mnist
https://www.tensorflow.org/datasets/catalog/mnist
https://www.tensorflow.org/datasets/catalog/mnist
https://github.com/pytorch/examples/blob/main/mnist/main.py
https://github.com/pytorch/examples/blob/main/mnist/main.py
https://github.com/pytorch/examples/blob/main/mnist/main.py
https://github.com/pytorch/examples/blob/main/mnist/main.py
https://github.com/pytorch/examples/blob/main/mnist/main.py
https://github.com/pytorch/examples/blob/main/mnist/main.py
https://github.com/pytorch/examples/blob/main/mnist/main.py
https://github.com/pytorch/examples/blob/main/mnist/main.py
https://github.com/pytorch/examples/blob/main/mnist/main.py
https://github.com/pytorch/examples/blob/main/mnist/main.py

References 257

19. Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. Preprint arXiv:1409.1556.

20. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–
778).

21. Robertson, S. (2017). NLP from scratch: Classifying names with a character-level RNN.
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

22. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM,
63(11), 139–144.

23. Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., & Zheng, Y. (2019). Recent progress on generative
adversarial networks (GANs): A survey. IEEE Access, 7, 36322–36333.

24. Prabhakaran, S. Arima model – complete guide to time series forecasting in python. https://
www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/

25. Athanasopoulos, G., & Hyndman, R. J. Non-seasonal ARIMA models. https://otexts.com/fpp2/
non-seasonal-arima.html

26. Athanasopoulos, G., & Hyndman, R. J. Seasonal ARIMA models. https://otexts.com/fpp2/
seasonal-arima.html

27. Pathak, P. How to create an ARIMA model for time series forecasting in
python. https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-
time-series-forecasting-in-python/

28. Palachy, S. Stationarity in time series analysis. https://towardsdatascience.com/stationarity-
in-time-series-analysis-90c94f27322

29. Brownlee, J. (2018). A gentle introduction to SARIMA for time series forecasting in Python.
https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/

30. Sarkar, S. Time series forecasting and analysis: ARIMA and seasonal-ARIMA. https://
medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-
arima-cacaf61ae863

31. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. https://direct.mit.edu/
neco/article/9/8/1735-1780/6109. November 1997.

32. Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning word
vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, Portland, Oregon, USA, June
2011 (pp. 142–150). Association for Computational Linguistics.

33. Olah, C. Understanding lstm networks. https://colah.github.io/posts/2015-08-Understanding-
LSTMs/

34. TensorFlow. Text classification with an RNN. https://www.tensorflow.org/text/tutorials/text_
classification_rnn/

35. Priy, S. Clustering in machine learning. https://www.geeksforgeeks.org/clustering-in-
machine-learning/

36. Google Developers. What is clustering? https://developers.google.com/machine-learning/
clustering/overview

37. Google Developers. k-means advantages and disadvantages. https://developers.google.com/
machine-learning/clustering/algorithm/advantages-disadvantages/

38. Sckit-learn. Clustering. https://scikit-learn.org/stable/modules/clustering.html#k-means
39. Simplilearn. K-means clustering algorithm: Applications, types, and how does it work. https://

www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
40. Demonstration of k-means assumptions—scikit-learn.org. https://scikit-learn.org/stable/

auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-
kmeans-assumptions-py. Accessed September 10, 2023.

41. Maklin, C. Affinity propagation algorithm explained. https://towardsdatascience.com/
unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8/

42. Sckit-Learn. Affinity propagation. https://scikit-learn.org/stable/modules/clustering.html#
affinity-propagation/

https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://www.machinelearningplus.com/time-series/arima-model-time-series-forecasting-python/
https://otexts.com/fpp2/non-seasonal-arima.html
https://otexts.com/fpp2/non-seasonal-arima.html
https://otexts.com/fpp2/non-seasonal-arima.html
https://otexts.com/fpp2/non-seasonal-arima.html
https://otexts.com/fpp2/non-seasonal-arima.html
https://otexts.com/fpp2/non-seasonal-arima.html
https://otexts.com/fpp2/non-seasonal-arima.html
https://otexts.com/fpp2/non-seasonal-arima.html
https://otexts.com/fpp2/seasonal-arima.html
https://otexts.com/fpp2/seasonal-arima.html
https://otexts.com/fpp2/seasonal-arima.html
https://otexts.com/fpp2/seasonal-arima.html
https://otexts.com/fpp2/seasonal-arima.html
https://otexts.com/fpp2/seasonal-arima.html
https://otexts.com/fpp2/seasonal-arima.html
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://www.analyticsvidhya.com/blog/2020/10/how-to-create-an-arima-model-for-time-series-forecasting-in-python/
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
https://towardsdatascience.com/stationarity-in-time-series-analysis-90c94f27322
https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/
https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/
https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/
https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/
https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/
https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/
https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/
https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/
https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/
https://machinelearningmastery.com/sarima-for-time-series-forecasting-in-python/
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://medium.com/analytics-vidhya/time-series-forecasting-and-analysis-arima-and-seasonal-arima-cacaf61ae863
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://direct.mit.edu/neco/article/9/8/1735-1780/6109
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://www.tensorflow.org/text/tutorials/text_classification_rnn/
https://www.tensorflow.org/text/tutorials/text_classification_rnn/
https://www.tensorflow.org/text/tutorials/text_classification_rnn/
https://www.tensorflow.org/text/tutorials/text_classification_rnn/
https://www.tensorflow.org/text/tutorials/text_classification_rnn/
https://www.tensorflow.org/text/tutorials/text_classification_rnn/
https://www.tensorflow.org/text/tutorials/text_classification_rnn/
https://www.tensorflow.org/text/tutorials/text_classification_rnn/
https://www.tensorflow.org/text/tutorials/text_classification_rnn/
https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://www.geeksforgeeks.org/clustering-in-machine-learning/
https://developers.google.com/machine-learning/clustering/overview
https://developers.google.com/machine-learning/clustering/overview
https://developers.google.com/machine-learning/clustering/overview
https://developers.google.com/machine-learning/clustering/overview
https://developers.google.com/machine-learning/clustering/overview
https://developers.google.com/machine-learning/clustering/overview
https://developers.google.com/machine-learning/clustering/overview
https://developers.google.com/machine-learning/clustering/overview
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages/
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages/
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages/
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages/
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages/
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages/
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages/
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages/
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages/
https://developers.google.com/machine-learning/clustering/algorithm/advantages-disadvantages/
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
https://www.simplilearn.com/tutorials/machine-learning-tutorial/k-means-clustering-algorithm/
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_assumptions.html#sphx-glr-auto-examples-cluster-plot-kmeans-assumptions-py
https://towardsdatascience.com/unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8/
https://towardsdatascience.com/unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8/
https://towardsdatascience.com/unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8/
https://towardsdatascience.com/unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8/
https://towardsdatascience.com/unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8/
https://towardsdatascience.com/unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8/
https://towardsdatascience.com/unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8/
https://towardsdatascience.com/unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8/
https://towardsdatascience.com/unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8/
https://towardsdatascience.com/unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8/
https://towardsdatascience.com/unsupervised-machine-learning-affinity-propagation-algorithm-explained-d1fef85f22c8/
https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation/
https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation/
https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation/
https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation/
https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation/
https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation/
https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation/
https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation/
https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation/
https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation/

258 3 Machine Learning Algorithms

43. Demo of affinity propagation clustering algorithm—scikit-learn.org. https://scikit-learn.
org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-
cluster-plot-affinity-propagation-py. Accessed September 07, 2023.

44. Niebles, J. C., & Krishna, R. (2016). K-means & mean-shift clustering - Stanford university.
45. Comaniciu, D., Meer, P. (2002). Mean shift: A robust approach toward feature space analysis.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.
46. A demo of the mean-shift clustering algorithm—scikit-learn.org. https://scikit-learn.org/stable/

auto_examples/cluster/plot_mean_shift.html. Accessed September 07, 2023.
47. Sckit-learn. Dbscan. https://scikit-learn.org/stable/modules/clustering.html#dbscan
48. Dey, D. Dbscan clustering in ml | density based clustering. https://www.geeksforgeeks.org/

dbscan-clustering-in-ml-density-based-clustering/
49. Dobilas, S. Dbscan clustering algorithm — how to build powerful density-based

models. https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-
density-based-models-21d9961c4cec/

50. Demo of DBSCAN clustering algorithm—scikit-learn.org. https://scikit-learn.org/stable/
auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py.
Accessed September 09, 2023.

51. GeeksforGeeks. Introduction to dimensionality reduction. https://www.geeksforgeeks.org/
dimensionality-reduction/

52. Kramer, O. (2013). Dimensionality reduction with unsupervised nearest neighbors (1st ed.).
Springer.

53. Wang, J. (2012). Geometric structure of high-dimensional data and dimensionality reduction
(1st ed.). Springer.

54. Scikit-learn. Principal component analysis. https://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.PCA.html

55. Jaadi, Z. A step-by-step explanation of principal component analysis (PCA). https://builtin.
com/data-science/step-step-explanation-principal-component-analysis

56. Brems, M. A one-stop shop for principal component analysis. https://towardsdatascience.com/
a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c

57. Cadima, J., & Jolliffe, I. T. (2016). Principal component analysis: a review and recent
developments. Philosophical Transactions of the Royal Society A, 374, 20150202.

58. Ali, A. Dimensionality reduction(PCA and LDA) with practical implementation.
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-
6be91734f567

59. Brownlee, J. Linear discriminant analysis for dimensionality reduction in python. https://
machinelearningmastery.com/linear-discriminant-analysis-for-dimensionality-reduction-in-
python/

60. Nelson, D. Dimensionality reduction in python with scikit-learn. https://stackabuse.com/
dimensionality-reduction-in-python-with-scikit-learn/

61. Kumar, V. Practical approach to dimensionality reduction using PCA, LDA and Kernel
PCA. https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-
pca-lda-and-kernel-pca/

62. Scikit-learn. Linear discriminant analysis. https://scikit-learn.org/stable/modules/generated/
sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html

63. Mahendru, K. Master dimensionality reduction with these 5 must-know applications of
singular value decomposition (SVD) in data science. https://www.analyticsvidhya.com/blog/
2019/08/5-applications-singular-value-decomposition-svd-data-science/

64. Putalapattu, R. Montecarlo calculation of Pi. https://github.com/rameshputalapattu/
jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb

65. Putalapattu, R. Jupyter, python, image compression and SVD — an interactive explo-
ration. https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-
svd-an-interactive-exploration-703c953e44f6

66. Unsplash (2017). Photo by Alex Knight on Unsplash—unsplash.com. https://unsplash.com/
photos/2EJCSULRwC8. Accessed September 09, 2023.

https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_affinity_propagation.html#sphx-glr-auto-examples-cluster-plot-affinity-propagation-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/auto_examples/cluster/plot_mean_shift.html
https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://www.geeksforgeeks.org/dbscan-clustering-in-ml-density-based-clustering/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://towardsdatascience.com/dbscan-clustering-algorithm-how-to-build-powerful-density-based-models-21d9961c4cec/
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html#sphx-glr-auto-examples-cluster-plot-dbscan-py
https://www.geeksforgeeks.org/dimensionality-reduction/
https://www.geeksforgeeks.org/dimensionality-reduction/
https://www.geeksforgeeks.org/dimensionality-reduction/
https://www.geeksforgeeks.org/dimensionality-reduction/
https://www.geeksforgeeks.org/dimensionality-reduction/
https://www.geeksforgeeks.org/dimensionality-reduction/
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://builtin.com/data-science/step-step-explanation-principal-component-analysis
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://towardsdatascience.com/a-one-stop-shop-for-principal-component-analysis-5582fb7e0a9c
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://medium.com/machine-learning-researcher/dimensionality-reduction-pca-and-lda-6be91734f567
https://machinelearningmastery.com/linear-discriminant-analysis-for-dimensionality-reduction-in-python/
https://machinelearningmastery.com/linear-discriminant-analysis-for-dimensionality-reduction-in-python/
https://machinelearningmastery.com/linear-discriminant-analysis-for-dimensionality-reduction-in-python/
https://machinelearningmastery.com/linear-discriminant-analysis-for-dimensionality-reduction-in-python/
https://machinelearningmastery.com/linear-discriminant-analysis-for-dimensionality-reduction-in-python/
https://machinelearningmastery.com/linear-discriminant-analysis-for-dimensionality-reduction-in-python/
https://machinelearningmastery.com/linear-discriminant-analysis-for-dimensionality-reduction-in-python/
https://machinelearningmastery.com/linear-discriminant-analysis-for-dimensionality-reduction-in-python/
https://machinelearningmastery.com/linear-discriminant-analysis-for-dimensionality-reduction-in-python/
https://machinelearningmastery.com/linear-discriminant-analysis-for-dimensionality-reduction-in-python/
https://machinelearningmastery.com/linear-discriminant-analysis-for-dimensionality-reduction-in-python/
https://stackabuse.com/dimensionality-reduction-in-python-with-scikit-learn/
https://stackabuse.com/dimensionality-reduction-in-python-with-scikit-learn/
https://stackabuse.com/dimensionality-reduction-in-python-with-scikit-learn/
https://stackabuse.com/dimensionality-reduction-in-python-with-scikit-learn/
https://stackabuse.com/dimensionality-reduction-in-python-with-scikit-learn/
https://stackabuse.com/dimensionality-reduction-in-python-with-scikit-learn/
https://stackabuse.com/dimensionality-reduction-in-python-with-scikit-learn/
https://stackabuse.com/dimensionality-reduction-in-python-with-scikit-learn/
https://stackabuse.com/dimensionality-reduction-in-python-with-scikit-learn/
https://stackabuse.com/dimensionality-reduction-in-python-with-scikit-learn/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://analyticsindiamag.com/practical-approach-to-dimensionality-reduction-using-pca-lda-and-kernel-pca/
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://www.analyticsvidhya.com/blog/2019/08/5-applications-singular-value-decomposition-svd-data-science/
https://github.com/rameshputalapattu/jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb
https://github.com/rameshputalapattu/jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb
https://github.com/rameshputalapattu/jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb
https://github.com/rameshputalapattu/jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb
https://github.com/rameshputalapattu/jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb
https://github.com/rameshputalapattu/jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb
https://github.com/rameshputalapattu/jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb
https://github.com/rameshputalapattu/jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb
https://github.com/rameshputalapattu/jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb
https://github.com/rameshputalapattu/jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb
https://github.com/rameshputalapattu/jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb
https://github.com/rameshputalapattu/jupyterexplore/blob/master/jupyter_interactive_environment_exploration.ipynb
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://medium.com/@rameshputalapattu/jupyter-python-image-compression-and-svd-an-interactive-exploration-703c953e44f6
https://unsplash.com/photos/2EJCSULRwC8
https://unsplash.com/photos/2EJCSULRwC8
https://unsplash.com/photos/2EJCSULRwC8
https://unsplash.com/photos/2EJCSULRwC8
https://unsplash.com/photos/2EJCSULRwC8

References 259

67. Garg, A. Complete guide to association rules (1/2). https://towardsdatascience.com/
association-rules-2-aa9a77241654/

68. Garg, A. Complete guide to association rules (2/2). https://towardsdatascience.com/complete-
guide-to-association-rules-2-2-c92072b56c84/

69. Umredkar, R. K. Guide to association rule mining from scratch. https://analyticsindiamag.
com/guide-to-association-rule-mining-from-scratch/

70. Venkataramanan, V. Breadbasket dataset. https://github.com/viktree/curly-octo-chainsaw/
blob/master/BreadBasket_DMS.csv/

71. Zhang, C., Tian, P., Zhang, X., Liao, Q., Jiang, Z. L., & Wang, X. (2019). HashEclat:
An efficient frequent itemset algorithm. International Journal of Machine Learning and
Cybernetics, 10(11), 3003–3016.

72. Odena, A. Semi-supervised GAN. https://gitee.com/nj520/PyTorch-GAN/blob/master/
implementations/sgan/sgan.py.

73. Odena, A. (2016). Semi-supervised learning with generative adversarial networks. https://
arxiv.org/abs/1606.01583

74. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT Press.
75. Agrawal, S., & Goyal, N. (2012). Analysis of Thompson sampling for the multi-armed bandit

problem. In Conference on Learning Theory (pp. 39–1). JMLR Workshop and Conference
Proceedings.

76. OpenAI. Frozenlake-v1 environment for reinforcement learning. https://gymnasium.farama.
org/environments/toy_text/frozen_lake

77. Deeplizard. OpenAI gym and python set up for q-learning. https://deeplizard.com/learn/video/
QK_PP_2KgGE.

78. Iris Species. https://www.kaggle.com/datasets/uciml/iris

https://towardsdatascience.com/association-rules-2-aa9a77241654/
https://towardsdatascience.com/association-rules-2-aa9a77241654/
https://towardsdatascience.com/association-rules-2-aa9a77241654/
https://towardsdatascience.com/association-rules-2-aa9a77241654/
https://towardsdatascience.com/association-rules-2-aa9a77241654/
https://towardsdatascience.com/association-rules-2-aa9a77241654/
https://towardsdatascience.com/association-rules-2-aa9a77241654/
https://towardsdatascience.com/complete-guide-to-association-rules-2-2-c92072b56c84/
https://towardsdatascience.com/complete-guide-to-association-rules-2-2-c92072b56c84/
https://towardsdatascience.com/complete-guide-to-association-rules-2-2-c92072b56c84/
https://towardsdatascience.com/complete-guide-to-association-rules-2-2-c92072b56c84/
https://towardsdatascience.com/complete-guide-to-association-rules-2-2-c92072b56c84/
https://towardsdatascience.com/complete-guide-to-association-rules-2-2-c92072b56c84/
https://towardsdatascience.com/complete-guide-to-association-rules-2-2-c92072b56c84/
https://towardsdatascience.com/complete-guide-to-association-rules-2-2-c92072b56c84/
https://towardsdatascience.com/complete-guide-to-association-rules-2-2-c92072b56c84/
https://towardsdatascience.com/complete-guide-to-association-rules-2-2-c92072b56c84/
https://towardsdatascience.com/complete-guide-to-association-rules-2-2-c92072b56c84/
https://analyticsindiamag.com/guide-to-association-rule-mining-from-scratch/
https://analyticsindiamag.com/guide-to-association-rule-mining-from-scratch/
https://analyticsindiamag.com/guide-to-association-rule-mining-from-scratch/
https://analyticsindiamag.com/guide-to-association-rule-mining-from-scratch/
https://analyticsindiamag.com/guide-to-association-rule-mining-from-scratch/
https://analyticsindiamag.com/guide-to-association-rule-mining-from-scratch/
https://analyticsindiamag.com/guide-to-association-rule-mining-from-scratch/
https://analyticsindiamag.com/guide-to-association-rule-mining-from-scratch/
https://analyticsindiamag.com/guide-to-association-rule-mining-from-scratch/
https://analyticsindiamag.com/guide-to-association-rule-mining-from-scratch/
https://github.com/viktree/curly-octo-chainsaw/blob/master/BreadBasket_DMS.csv/
https://github.com/viktree/curly-octo-chainsaw/blob/master/BreadBasket_DMS.csv/
https://github.com/viktree/curly-octo-chainsaw/blob/master/BreadBasket_DMS.csv/
https://github.com/viktree/curly-octo-chainsaw/blob/master/BreadBasket_DMS.csv/
https://github.com/viktree/curly-octo-chainsaw/blob/master/BreadBasket_DMS.csv/
https://github.com/viktree/curly-octo-chainsaw/blob/master/BreadBasket_DMS.csv/
https://github.com/viktree/curly-octo-chainsaw/blob/master/BreadBasket_DMS.csv/
https://github.com/viktree/curly-octo-chainsaw/blob/master/BreadBasket_DMS.csv/
https://github.com/viktree/curly-octo-chainsaw/blob/master/BreadBasket_DMS.csv/
https://github.com/viktree/curly-octo-chainsaw/blob/master/BreadBasket_DMS.csv/
https://github.com/viktree/curly-octo-chainsaw/blob/master/BreadBasket_DMS.csv/
https://github.com/viktree/curly-octo-chainsaw/blob/master/BreadBasket_DMS.csv/
https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/sgan/sgan.py
https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/sgan/sgan.py
https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/sgan/sgan.py
https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/sgan/sgan.py
https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/sgan/sgan.py
https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/sgan/sgan.py
https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/sgan/sgan.py
https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/sgan/sgan.py
https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/sgan/sgan.py
https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/sgan/sgan.py
https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/sgan/sgan.py
https://gitee.com/nj520/PyTorch-GAN/blob/master/implementations/sgan/sgan.py
https://arxiv.org/abs/1606.01583
https://arxiv.org/abs/1606.01583
https://arxiv.org/abs/1606.01583
https://arxiv.org/abs/1606.01583
https://arxiv.org/abs/1606.01583
https://arxiv.org/abs/1606.01583
https://gymnasium.farama.org/environments/toy_text/frozen_lake
https://gymnasium.farama.org/environments/toy_text/frozen_lake
https://gymnasium.farama.org/environments/toy_text/frozen_lake
https://gymnasium.farama.org/environments/toy_text/frozen_lake
https://gymnasium.farama.org/environments/toy_text/frozen_lake
https://gymnasium.farama.org/environments/toy_text/frozen_lake
https://gymnasium.farama.org/environments/toy_text/frozen_lake
https://gymnasium.farama.org/environments/toy_text/frozen_lake
https://gymnasium.farama.org/environments/toy_text/frozen_lake
https://deeplizard.com/learn/video/QK_PP_2KgGE
https://deeplizard.com/learn/video/QK_PP_2KgGE
https://deeplizard.com/learn/video/QK_PP_2KgGE
https://deeplizard.com/learn/video/QK_PP_2KgGE
https://deeplizard.com/learn/video/QK_PP_2KgGE
https://deeplizard.com/learn/video/QK_PP_2KgGE
https://deeplizard.com/learn/video/QK_PP_2KgGE
https://deeplizard.com/learn/video/QK_PP_2KgGE
https://www.kaggle.com/datasets/uciml/iris
https://www.kaggle.com/datasets/uciml/iris
https://www.kaggle.com/datasets/uciml/iris
https://www.kaggle.com/datasets/uciml/iris
https://www.kaggle.com/datasets/uciml/iris
https://www.kaggle.com/datasets/uciml/iris
https://www.kaggle.com/datasets/uciml/iris

4Applications of Machine Learning: Signal
Processing

4.1 Introduction

Information from the real world is represented via signals, and the analysis,
synthesis, and modification of these signals are called signal processing. Fast and
accurate feature extraction, pattern recognition, and data interpretation capabilities
of machine learning models have made machine learning a lucrative tool for signal
processing. Image processing, image classification, natural language processing,
adversarial input attack, etc., are all applications of machine learning and deep
learning for signal processing.

Deep learning is a subset of machine learning in which algorithms are organized
in layers to build a artificial neural network that can learn and make decisions
independently. In deep learning, a model learns to execute classification tasks
directly from texts, images, or sound. It is based on the neural network architecture.
Signal processing is an area of electrical engineering that deals with modeling and
analyzing data representations of physical occurrences. Images, movies, music, and
sensor data are all examples of signals. Signal data of fine standards are difficult to
derive, and there is a lot of noise and fluctuation in it. Machine learning is well-
suited to the limitations and solutions demanded by signal processing issues. Image
classification is one of the most dominant aspects where deep learning excels. The
task of assigning a label to an image is called image classification. For increased
accuracy, deep learning involves a convolutional neural network (CNN) for image
processing. In order to have a deeper understanding of how machines look at
and label an image using deep learning, we need to explore CNN profoundly.
This chapter will further discuss the application of machine learning in different
spheres of our lives. Here, we talk about seven different ML applications: image
classification, neural style transfer, anomaly detection, adversarial input attack,
malicious input detection, and natural language processing.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
E. Hossain, Machine Learning Crash Course for Engineers,
https://doi.org/10.1007/978-3-031-46990-9_4

261

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46990-9protect T1	extunderscore 4&domain=pdf
https://doi.org/10.1007/978-3-031-46990-9_4
https://doi.org/10.1007/978-3-031-46990-9_4
https://doi.org/10.1007/978-3-031-46990-9_4
https://doi.org/10.1007/978-3-031-46990-9_4
https://doi.org/10.1007/978-3-031-46990-9_4
https://doi.org/10.1007/978-3-031-46990-9_4
https://doi.org/10.1007/978-3-031-46990-9_4
https://doi.org/10.1007/978-3-031-46990-9_4
https://doi.org/10.1007/978-3-031-46990-9_4
https://doi.org/10.1007/978-3-031-46990-9_4
https://doi.org/10.1007/978-3-031-46990-9_4

262 4 Applications of Machine Learning: Signal Processing

4.2 Signal and Signal Processing

We perceive our surrounding environment through our senses—vision, touch,
hearing, etc. Similarly, various types of devices we use today for different purposes
interact with us and the surrounding environment. Nevertheless, how does this
interaction occur? An agent—whether a human, an animal, or any device—acts on
the decisions made in their brain, i.e., the processing unit. The decisions are made
based on different necessary information gathered from the environment, which
comes through a form known as a signal. Theoretically, a signal can be considered a
mathematical function that depends on one or more variables carrying information
about a particular phenomenon. From a practical perspective, we can think of a
signal as a quantity that varies with respect to time, distance, temperature, or any
other quantity, conveying specific information. A signal should be measurable and
sensible—manually or with the help of a machine. Radio signals, temperature, EEG,
speech, image, voltage, and current are commonly known signals.

A signal can be very simple, such as a plain sinusoidal wave. However, most
of the natural signals are way more complex. We can think of these signals as a
combination of many sinusoidal signals with different amplitudes and frequencies.
If we want to find the individual sinusoidal signals that constitute the original signal,
we can perform Fourier transform on that particular signal. This mathematical
operation is an instance of signal processing. Of course, numerous other types
of signal processing methods are available besides the Fourier transform, such as
wavelet transform, data compression, modulation, and digital signal processing. In
short, the mathematical operations we perform on signals to get insight into the
signals and uncover information that is otherwise impossible to gather from direct
observation of the signals are known as signal processing. Signal processing is done
for signal analysis, optimization, and denoising purposes.

Real-world signals are not ideal signals, often complex, and contain noise. Gath-
ering information from these signals can be a very complex and time-consuming
process. In our current state of technology, we produce a huge amount of data
every moment. So, different types of signals are abundant, be it images, speech,
or others. We can develop efficient machine learning algorithms and models to find
the hidden structures or patterns from these signals, where we can get the necessary
information. We can automate and perform complex signal processing operations if
we implement machine learning for signal processing tasks.

4.3 Image Classification

When we look at a car, a cat, an apple, or a cloud, our brain instantly recognizes
it from past exposure to it. The human brain can recall from memory and does not
have a problem recognizing objects as they are. We do not need to deeply analyze
objects in order to identify them. However, a machine cannot recognize an object

4.3 Image Classification 263

as effortlessly as a human does. But machine learning gives machines the ability to
identify images, too.

If this process of identifying and labeling the object of the image is done with
computer analysis, it is called image classification, which is a prominent application
of deep learning [1]. A number of classes or labels are given, and the computer
assigns one of the classes to the image. For example, the computer does not give a
direct output, whether the image is of a cat or a dog. Instead, it gives a probability
that the image may be 80% cat and 20% dog. The class of the image is determined
with the higher probability value.

In this section, we will learn how image classification works, its applications and
challenges, and one worked-out example of an image classification problem using
ML.

4.3.1 Image Classification Workflow

The workflow of image classification can be broken down into five steps, as shown
in Fig. 4.1. The steps are briefly described below:

1. Data collection: The first and foremost step is to define the problem and define
the type of dataset required. What kind of image is required? How will the data
be collected? How much data would be collected? Images can be collected from
online sources using web scrapping methods. Besides, raw image datasets can be
made using cameras or drones based on domain requirements. Many established
datasets can also be used if they fulfill the domain-specific requirements.

2. Data augmentation: The concept of data augmentation has been discussed
in Sect. 3.2.2.3 of Chap. 3. One crucial way to overcome image classification
challenges is to create a dataset with all possible scenarios. The model becomes
robust if we can create and train the model with a very diverse dataset.
Furthermore, with a diverse dataset that includes all possible cases, the model
becomes more capable of detecting all possible cases.

3. Building and training model: Generally, CNN is used for image classification.
The concept of CNN has been discussed in Sect. 3.5.4 of Chap. 3. Building a

Fig. 4.1 Workflow of image
classification

264 4 Applications of Machine Learning: Signal Processing

CNN model is comprehensible using Keras or PyTorch APIs. Once the dataset
has been built, it needs to be trained on the dataset. For this purpose, the dataset
is split into train, validation, and test sets. The train set is used to train the model,
the validation set is used for hyperparameter tuning, and the test set is used to
evaluate the model.

4. Interpreting results: Comprehensibility of the results is crucial for image
classification. It does not matter what the result is if it produces no meaningful
interpretation. Determining and defining the metrics used to interpret the results
is essential. To gain insights into the data, we can use the confusion matrix
visualization and a dependent performance variable to improve. For example,
we can learn more about what kinds of images are under-represented when
characterizing the class by visually representing incorrectly categorized cases.

5. Model improvement: Based on the evaluation of the results, the model can
be tweaked and trained again to create better results. The dataset may even be
tweaked to create diverse and balanced data representing all possible cases.

4.3.2 Applications of Image Classification

Image classification has significant applications in almost every field. Some of these
applications are concisely discussed below to give a picture of the scope of image
classification. In addition, researchers are finding more innovative and valuable
scopes of image classification in various fields:

1. Autonomous Cars: An autonomous car uses image classification to identify
other vehicles, pedestrians, pavements, blocks, traffic signals, etc., while driving
around. It utilizes different types of sensors to take input from their surroundings
and uses image classification to identify objects. After image classification, object
localization (locating the presence of an object in the image using a bounding
box) is performed, and the car decides its move.

2. Security Systems: There are many applications of image classification in the
security sector. One such application is the facial recognition system. The face
unlock system on our mobile devices primarily uses facial recognition systems.
Similarly, the retina, iris, and fingerprint recognition systems are some prominent
examples of image classification in security systems.

3. Reverse Image Search: Reverse image search is a process of searching for
something using an image. The image is given as input to the search engine.
After the classification, the search engine provides information about the image’s
subject.

4. Healthcare: There is ample application of image classification in the world of
healthcare. For example, medical images from different tests are used to analyze
and diagnose abnormalities and diseases, such as brain tumors and cancer.
Another application of image classification in the healthcare industry is used to
aid people with visual impairment navigate their daily lives.

4.3 Image Classification 265

5. Manufacturing Industries: In manufacturing industries, image classification
is used to inspect and manage the quality of products without the manual
intervention of human beings. Therefore, it saves time, as a human is not required
to inspect each product thoroughly. Moreover, the inspection is more precise
compared to human inspection, which is prone to errors.

6. Land Mapping: Another great use of image classification is land mapping. For
example, geo-images can be analyzed to identify different types of terrains, such
as forests, deserts, urban areas, agricultural lands, etc. This process is constructive
to planning out where to build farmland or where to build residential areas.

7. Agriculture: In the agricultural field, image classification is also used for various
purposes, such as plant disease detection, animal monitoring, pest detection,
quality control, harvest monitoring, and more. Constant human intervention is
not required, which makes the process more reliable and fast.

4.3.3 Challenges of Image Classification

A machine often struggles to learn from images due to its inherent limitations in
identifying objects. For instance, an object may appear different in different images
for several reasons, such as the following. These challenges make it hard for the
machine to correctly identify images:

1. Orientation Variation: Some of the reasons that cause this variation are the
orientation and positioning of the object, the environment’s lighting, the angle
at which the image is taken, the background, etc. For example, a cat’s silhouette
appears different when it is standing, sitting, lying down, or running.

2. Object Positioning:An image can be captured in various orientations and angles.
For example, the head of the cat can be straight, tilted to an angle, or put down.
Recognizing a cat in all these positions is a very trivial task for the human eyes.
However, it is not such an easy task for a machine. Figure 4.2 shows how a

Fig. 4.2 Different
orientation and positioning of
one object

266 4 Applications of Machine Learning: Signal Processing

Fig. 4.3 Top view, front
view, and side view of the
same object that makes image
classification challenging

Rubik’s cube can look different from various angles and positions. A human
eye can instinctively tell that the object is a Rubik’s cube. However, it becomes
challenging for the machines to do so.

3. Feature Similarity: The human eye can easily distinguish between a cat and a
dog. However, a machine finds it hard to distinguish between a cat and a dog
because they visually have many similar features, such as four limbs, one tail,
two ears, two eyes, etc.

4. Background: The human eye can easily recognize objects with various back-
grounds. However, if the background is too cluttered or too similar to the object,
it is hard even for the human eyes to distinguish objects from the background.
So, a cluttered background makes image classification more challenging.

5. Viewpoint Variation: The same object can appear differently due to the viewing
perspective, i.e., top, side, or front views. For example, a car’s top, side, and front
views are entirely different, as shown in Fig. 4.3. Nevertheless, we never fail to
recognize a car with our human eyes. However, this is deemed to be a difficult
task for the computer.

6. Different Lighting: The images of an object with different environmental
lightings but the same orientation, angle, view, etc., can challenge the computer
to identify it. For instance, a big green tree with all its leaves would appear
differently in images on a clear, foggy, or rainy day. Again, the tree looks
completely different when all the leaves have fallen out. This difference makes
image classification especially challenging. Figure 4.4 shows how the same
portrait of a human face can vary in different lighting angles.

4.3.4 Implementation of Image Classification

Many extensive works have been done on deep-learning-based image classification
techniques. The ability of an artificially intelligent model to identify an image has
already been implemented in several prominent applications such as the Apple Face
ID lock. In the ANN section of Chap. 3, we already discussed an image classification
problem, e.g., the MNIST handwritten dataset. In addition to the MNIST dataset,
PyTorch’s official website provides popular image classification datasets such as
CIFAR-10 and CIFAR-100 [2]. Figure 4.5 shows the CIFAR-10 dataset for image
classification.

4.3 Image Classification 267

Fig. 4.4 Different lighting of the same object makes it seem to appear different. (Image courtesy:
Shetu Mohanto)

Fig. 4.5 CIFAR-10 dataset
for image classification into
10 categories [2]

Programming Example 4.1
A program to download and process CIFAR-10 and CIFAR-100 datasets using
PyTorch commands is shown in Listing 4.1. The parameters of these datasets are
enlisted in Table 4.1. The listing defines train transformation and test transformation,
which transforms the data to tensor and normalizes the data. The train transforma-
tion also includes random cropping and random horizontal flipping. Similarly, a
separate data loader for both train and test data is also defined, which utilizes the
transformations mentioned earlier. It is worth noting that all the sections are almost
identical for both datasets.

268 4 Applications of Machine Learning: Signal Processing

1 from torch.utils.data import DataLoader as DL
2 import torchvision.transforms as Trans
3 import torchvision.datasets as ds
4 BATCH_SIZE = 5
5

6 # -----Commands to Download and Prepare the CIFAR10 Dataset-----
7

8 train_transform = Trans.Compose([
9 Trans.RandomCrop(32, padding=4),

10 Trans.RandomHorizontalFlip(),
11 Trans.ToTensor(),
12 Trans.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994,

0.2010)),
13])
14

15 test_transform = Trans.Compose([
16 Trans.ToTensor(),
17 Trans.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994,

0.2010)),
18])
19

20 # train dataset
21 train_dataloader = DL(ds.CIFAR10('./data', train=True,
22 download=True,
23 transform=train_transform),
24 batch_size=BATCH_SIZE, shuffle=True)
25

26 # test dataset
27 test_dataloader = DL(ds.CIFAR10('./data', train=False,
28 transform=test_transform),
29 batch_size=BATCH_SIZE, shuffle=False)
30 print('CIFAR10 Dataset Pre-processing Done')
31

32

33 # -----Commands to Download and Prepare the CIFAR100 Dataset-----
34

35 train_transform = Trans.Compose([
36 Trans.RandomCrop(32, padding=4),
37 Trans.RandomHorizontalFlip(),
38 Trans.ToTensor(),
39 Trans.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994,

0.2010)),
40])
41

42 test_transform = Trans.Compose([
43 Trans.ToTensor(),
44 Trans.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994,

0.2010)),
45])
46

47 # train dataset
48 train_dataloader = DL(ds.CIFAR100('./data', train=True,
49 download=True,

4.3 Image Classification 269

50 transform=train_transform),
51 batch_size=BATCH_SIZE, shuffle=True)
52

53 # test dataset
54 test_dataloader = DL(ds.CIFAR100('./data', train=False,
55 transform=test_transform),
56 batch_size=BATCH_SIZE, shuffle=False)
57 print('CIFAR100 Dataset Pre-processing Done')

Listing 4.1 Loading and preprocessing CIFAR dataset

Table 4.1 Parameters of the
CIFAR-10 and CIFAR-100
datasets

Parameters CIFAR-10 CIFAR-100

Class 10 100

Image Per Class 6000 600

Test Sample 10,000 100 (Per Class)

Training Sample 50,000 500 (Per Class)

Categorization of Class Not applicable 20 Superclasses. a

. aEach image of the CIFAR-100 dataset comes with a “fine”
label (the class to which it belongs) and a “coarse” label (the
superclass to which it belongs)

Once downloaded and prepared for the classification task, we will demonstrate
the application of classifying the CIFAR-10 data model in this section. In addition,
we leave the task of classifying the CIFAR-100 dataset as an exercise at the end of
the chapter. However, in comparison to Listing 3.5 (CNN example), the following
modifications are necessary to modify the MNIST classification problem into a
CIFAR-10/CIFAR-100 classification task:

1. MNIST is a grayscale dataset with only one input channel, but both CIFAR-
10 and CIFAR-100 are color images with 3 input channels. Hence, line 51 of
Listing 3.5 should have 3 input channels instead of 1.

2. For CIFAR-100, there are 100 output classes. So, the final classification layer
should have 100 output neurons instead of 10.

By applying the above modifications to the MNIST classification problem listed
in Listing 3.5, we can perform image classification of both the CIFAR-10 and
CIFAR-100 datasets. This task will also be left as an exercise to classify the CIFAR
dataset using Listing 3.5, which uses the PyTorch module.

Programming Example 4.2
We will perform an image classification on the CIFAR-10 dataset using the Tensor-
Flow and Keras modules. We need to use the GPU to accelerate the model’s training
process. For this purpose, make sure the notebook in Google Colab is connected to
the GPU. You can set the “Hardware accelerator” to GPU in “Notebook settings”

270 4 Applications of Machine Learning: Signal Processing

Table 4.2 Architecture of the model used in Listing 4.2

Layer (type) Output shape Parameters

conv2d (Conv2D) (None, 30, 30, 64) 1792

max_pooling2d (MaxPooling2D) (None, 15, 15, 64) 0

dropout (Dropout) (None, 15, 15, 64) 0

conv2d_1 (Conv2D) (None, 13, 13, 128) 73,856

max_pooling2d_1 (MaxPooling2D) (None, 6, 6, 128) 0

dropout_1 (Dropout) (None, 6, 6, 128) 0

conv2d_2 (Conv2D) (None, 4, 4, 256) 295,168

conv2d_3 (Conv2D) (None, 2, 2, 256) 590,080

max_pooling2d_2 (MaxPooling2D) (None, 1, 1, 256) 0

dropout_2 (Dropout) (None, 1, 1, 256) 0

flatten (Flatten) (None, 256) 0

dense (Dense) (None, 128) 32,896

dense_1 (Dense) (None, 100) 12,900

dense_2 (Dense) (None, 80) 8080

dense_3 (Dense) (None, 60) 4860

dense_4 (Dense) (None, 10) 610

from the “Edit” on the menu bar. We are going to build a simple sequential CNN
model for image classification. The architecture of the model is given in Table 4.2.

The Python code to implement the problem is provided in Listing 4.2, which is
explained in Table 4.3.

We need to preprocess the data before feeding the model with data. The pixel
values of the images range from 0 to 255. Therefore, they need to be normalized to
the range of 0 to 1. The label data are categorical data. The labels are as follows:
“Airplane,” “Automobile,” “Bird,” “Cat,” “Deer,” “Dog,” “Frog,” “Horse,” “Ship,”
“Truck.” One-hot encoding is performed on the label data, as CNN models cannot
work with categorical data.

The outputs are visualized in Fig. 4.6. We can see that the first output, a frog, has
been inaccurately predicted as a deer with 82% confidence. The second output has
been accurately predicted as a cat with 85% confidence. The model’s accuracy can
be increased by tweaking and making changes to the architecture, which we will
leave as a task for you to do.

1 # ----------------------Importing Modules------------------------
2 import tensorflow as tf
3 from tensorflow import keras
4 import numpy as np
5 import matplotlib.pyplot as plt
6 from tensorflow.keras.utils import to_categorical, plot_model
7 from tensorflow.keras import models, layers

4.3 Image Classification 271

8 from keras.layers import Conv2D, MaxPooling2D, Flatten , Dense,
Activation,Dropout

9

10

11 # --------------------Loading CIFAR-10 Dataset-------------------
12 (xtrain,ytrain),(xtest,ytest)= keras.datasets.cifar10.load_data()
13

14 #Preprocessing data
15 xtrain = xtrain/255
16 xtest = xtest/255
17 ytrain=to_categorical(ytrain)
18 ytest=to_categorical(ytest)
19

20

21 # -----------------------Creating CNN Model----------------------
22 model=models.Sequential()
23 model.add(layers.Conv2D(64,(3,3),input_shape=(32,32,3),activation

='relu'))
24 model.add(layers.MaxPooling2D(pool_size=(2,2)))
25 model.add(Dropout(0.25))
26

27 model.add(layers.Conv2D(128,(3,3),activation='relu'))
28 model.add(layers.MaxPooling2D(pool_size=(2,2)))
29 model.add(Dropout(0.25))
30

31 model.add(layers.Conv2D(256,(3,3),activation='relu'))
32 model.add(layers.Conv2D(256,(3,3),activation='relu'))
33 model.add(layers.MaxPooling2D(pool_size=(2,2)))
34 model.add(Dropout(0.25))
35

36 model.add(layers.Flatten(input_shape=(32,32)))
37 model.add(layers.Dense(128, activation='relu'))
38 model.add(layers.Dense(100, activation='relu'))
39 model.add(layers.Dense(80, activation='relu'))
40 model.add(layers.Dense(60, activation='relu'))
41 model.add(layers.Dense(10, activation='softmax'))
42 model.compile(optimizer='adam', loss='categorical_crossentropy',

metrics=['accuracy'])
43 model.summary()
44

45 #Train model
46 xtrain2=xtrain.reshape(50000,32,32,3)
47 xtest2=xtest.reshape(10000,32,32,3)
48 model.fit(xtrain2,ytrain,epochs=40,batch_size=56,verbose=True,

validation_data=(xtest2,ytest))
49

50

51 # ---------------------------Evaluation--------------------------
52 test_loss, test_acc = model.evaluate(xtest2, ytest)
53 print("accuracy:", test_acc)
54

55 #Visualising the output
56 predictions=model.predict(xtest2)

272 4 Applications of Machine Learning: Signal Processing

57 class_labels = ["airplane","automobile","bird","cat","deer","dog"
,"frog","horse","ship","truck"]

58 def visualize_output(predicted_label, true_label, img):
59 plt.xticks([])
60 plt.yticks([])
61 plt.imshow(img, cmap=plt.cm.binary)
62 predicted_label_index =np.argmax(predicted_label)
63 true_label_index=np.argmax(true_label)
64

65 if predicted_label_index == true_label_index:
66 color='blue' # accurate prediction
67 else:
68 color='red' # inaccurate prediction
69

70 plt.xlabel("{} {:2.0f}% ({})".format(class_labels[
predicted_label_index], 100*np.max(predicted_label),
class_labels[true_label_index]), color=color)

71

72 plt.figure(figsize=(12,6))
73 visualize_output(predictions[1], ytest[1], xtest[1])
74

75 plt.show()

Listing 4.2 Implementation of image classification using the CIFAR-10 dataset

Table 4.3 Explanation of the image classification code in Listing 4.2

Line number Description

1–8 Importing modules

12 Downloading CIFAR-10 dataset

15–16 Performing normalization

17–18 Performing one-hot encoding for label data

22 Creating a sequential CNN model

23–25 Adding first convolutional block

27–29 Adding second convolutional block

31–34 Adding third convolutional block

36 Adding flattening layer

37–40 Adding fully connected layer

41 Adding the output layer

42 Compiling the model

43 The summary of model

45–48 Training the model

52–53 Evaluation of the model

55–70 Visualizing the output

72–75 Visualizing a random output

4.4 Neural Style Transfer (NST) 273

Fig. 4.6 Output of Listing 4.2

4.4 Neural Style Transfer (NST)

Neural Style Transfer [3] is an optimization method that blends two images—the
content image and the style image—for imposing the style of the style image onto
the content image to create the final output image. NST is used to change the style of
an image (content image) based on any other image (style image) style or painting.
For example, one may want the style of The Starry Night painting by Vincent van
Gogh onto their own portrait by applying NST.

The neural network used in NST is trained on neither the content image nor
the style image. Rather, it is used to extract the features from both images. The
feature maps are crucial for NST. The lower layers of a CNN model contain
detailed features and information about the image, such as pixel colors and textures.
However, it does not contain the arrangement information of the pixels. Therefore,
the lower layers are used as a feature extractor for style images. The higher layers
of the CNN contain the features of the content of an image, that is, the arrangement
of the pixels in the image. Thus, the higher layers are used as a content extractor for
the content image. Then these two feature information, style features and content
features, are blended to produce the final product. The big idea is that the output
style should be the same as the style image, and the content of the output should be
the same as the content image.

Programming Example 4.3
An implementation of NST is shown in this example using a pre-trained model from
TensorFlow Hub in Python, whose output is provided in Fig. 4.7. For style image, it
uses a colorful painting shown in Fig. 4.7a and a content image shown in Fig. 4.7b,
which consists of coffee and a book. It is clear from the output image shown in
Fig. 4.7c that the style image’s style has been transferred from the style image.

274 4 Applications of Machine Learning: Signal Processing

Fig. 4.7 Output of the NST
implementation in
Listing 4.2. (a) Style image
[4]. (b) Content image.
(Image courtesy: Noushin
Gauhar). (c) Output image

4.4 Neural Style Transfer (NST) 275

The code to implement the NST example is given in Listing 4.3 with its
explanation in Table 4.4.

1 import tensorflow_hub as hub
2 import tensorflow as tf
3 from matplotlib import pyplot as plt
4 import numpy as np
5 import cv2
6

7 model = hub.load('https://tfhub.dev/google/magenta/arbitrary-
image-stylization-v1-256/2')

8

9

10 def load_image(img_path):
11 img = tf.io.read_file(img_path)
12 img = tf.image.decode_image(img, channels=3)
13 img = tf.image.convert_image_dtype(img, tf.float32)
14 img = img[tf.newaxis, :]
15 return img
16

17 content = load_image('./data/content_image.png')
18 style = load_image('./data/style.png')
19

20 output = model(tf.constant(content), tf.constant(style))[0]
21

22 cv2.imwrite('./results/output.png', cv2.cvtColor(np.squeeze(
output)*255, cv2.COLOR_BGR2RGB))

Listing 4.3 Implementation of Neural Style Transfer using TensorFlow Hub model

4.4.1 NST Applications

Some popular applications of NST are discussed below:

1. Gaming: NST manipulates the gaming interface video. Google introduced Stadia
[5] during a press conference at the 2019 Game Developers Conference, which
uses NST to impose different styles of texture and color palettes into the gaming
world. The integration of NST with the gaming interface has given the power

Table 4.4 Explanation of
the NST code in Listing 4.3

Line number Description

1–5 Importing modules

7 Importing TensorFlow Hub model

10–15 Function for loading images

17–18 Loading content and style images

20 Performing NST

22 Saving output

276 4 Applications of Machine Learning: Signal Processing

of mapping different textures from different paintings, images, videos, and more
into the virtual interface of games.

2. Virtual reality: The field of virtual reality is still in the experimental phase with
NST. NST is used to transfer the style of real-life surroundings to the virtual
world to give the experience of different scenarios. It also gives the experience
of living and roaming around in famous paintings. One can experience the
surrealism of living in The Starry Night painting.

3. Image and video editor: One of the explicit examples of NST is various photo
and video editing tools and software. Many software are available now both on
computers and mobile devices. These software use NST to impose the style of
different paintings or templates on input images. This allows users to create
creative portraits, selfies, and images of themselves. It also enables users to be
creative in editing their video clips. Some of the widely used applications that
use NST for photo and video editing are Prisma, Video Star (Art Studio, iOS),
Painter’s Lens (iOS), Looq (iOS), Instapainting’s AI Painter (Desktop), Arbitrary
Style Transfer in the Browser (Desktop), etc.

4.5 Feature Extraction or Dimensionality Reduction

In Chap. 3, we have already discussed the possibility of using Principal Component
Analysis (PCA) as a dimensionality reduction method. This section demonstrates
another dimensionality reduction technique ideal for large input dimensions, popu-
larly known as AutoEncoder [6].

Autoencoders consist of two key parts—encoder and decoder. The encoder can
project input data . X to a latent space vector . Z. A latent vector is a low-dimensional
representation of the information contained in . X. A decoder can decode the encoded
latent space . Z back to the original input space as . X̂. The sample illustration of an
autoencoder is shown in Fig. 4.8.

X

Z = e(X)

X̂ = d(Z)

Fig. 4.8 A sample autoencoder

4.5 Feature Extraction or Dimensionality Reduction 277

Programming Example 4.4
We will demonstrate an example of the MNIST dataset where we extract two-
dimensional features from 784 input features of the image. The autoencoder
is defined using three classes: Encoder, Decoder, and Autoencoder. The
Encoder encodes images to a latent space, while the Decoder reconstructs
input images from the latent space. The Autoencoder combines both of these
to complete the autoencoder model. The Python code is given in Listing 4.4 with its
explanation in Table 4.5.

1 # -------------------------Torch Modules-------------------------
2 from __future__ import print_function
3 import numpy as np
4 import pandas as pd
5 import torch.nn as nn
6 import math
7 import torch.nn.functional as F
8 import torch
9 from torch.nn import init

10 import torch.optim as optim
11 from torch.utils.data import DataLoader as DL
12 import torchvision.transforms as Trans
13 import torchvision.datasets as ds
14 from torchvision import models
15 import torch.nn.functional as F
16 import matplotlib.pyplot as plt;
17 # ---------------------------Variables---------------------------
18 # batch size
19 BATCH_SIZE = 128
20 Iterations = 20
21 feature_dims = 2
22

23 # ------Commands to Download and Prepare the MNIST Dataset-------
24 train_transform = Trans.Compose([
25 Trans.ToTensor(),
26])
27 test_transform = Trans.Compose([
28 Trans.ToTensor(),
29]) # no normalization for Autoencoder training
30

31 # train dataset
32 train_dataloader = DL(ds.MNIST('./mnist', train=True,
33 download=True,
34 transform=train_transform),
35 batch_size=BATCH_SIZE, shuffle=True)
36 # test dataset
37 test_dataloader = DL(ds.MNIST('./mnist', train=False,
38 transform=test_transform),
39 batch_size=BATCH_SIZE, shuffle=False)
40

41

42 # -------------------Defining the Autoencoder--------------------
43 class Encoder(nn.Module):

278 4 Applications of Machine Learning: Signal Processing

44 def __init__(self, feature_dims):
45 # Encoder part of the Autoencoder whcih projects x to a

latent space z
46 super(Encoder, self).__init__()
47 self.linear1 = nn.Linear(784, 512)
48 self.linear2 = nn.Linear(512, feature_dims)
49

50 def forward(self, x):
51 x = torch.flatten(x, start_dim=1)
52 x = F.relu(self.linear1(x))
53 return self.linear2(x)
54

55

56 class Decoder(nn.Module):
57 def __init__(self, feature_dims):
58 # Decoder part of the latent space which project the

intermediate features back to reconstruct the image
59 super(Decoder, self).__init__()
60 self.linear1 = nn.Linear(feature_dims, 512)
61 self.linear2 = nn.Linear(512, 784)
62

63 def forward(self, z):
64 z = F.relu(self.linear1(z))
65 z = torch.sigmoid(self.linear2(z))
66 return z.reshape((-1, 1, 28, 28))
67

68

69 class Autoencoder(nn.Module):
70 def __init__(self, feature_dims):
71 # combining the encoer and decoder to create the auto

encoder
72 super(Autoencoder, self).__init__()
73 self.encoder = Encoder(feature_dims)
74 self.decoder = Decoder(feature_dims)
75

76 def forward(self, x):
77 z = self.encoder(x)
78 return self.decoder(z)
79

80

81 # defining Autoencoder model
82 model = Autoencoder(feature_dims)
83

84 # defining which paramters to train only the CNN model parameters
85 optimizer = torch.optim.Adam(model.parameters())
86

87

88 # -------------------Training of Autoencoder---------------------
89 # Train baseline classifier on clean data
90 def train(model, optimizer, epoch):
91 model.train() # setting up for training
92 for id_batch, (data, target) in enumerate(

4.5 Feature Extraction or Dimensionality Reduction 279

93 train_dataloader): # data contains the image and
target contains the label = 0/1/2/3/4/5/6/7/8/9

94 optimizer.zero_grad() # setting gradient to zero
95 output = model(data) # forward
96 loss = ((output - data) ** 2).sum() # MSE loss
97 loss.backward() # back propagation here pytorch will

take care of it
98 optimizer.step() # updating the weight values
99 if id_batch % 100 == 0:
100 print('Epoch No: {} [{:.0f}%] \tLoss: {:.3f}'.

format(
101 epoch, 100. * id_batch / len(train_dataloader),

loss.item()))
102

103

104

105 ## training the Autoencoder
106 for i in range(Iterations):
107 train(model, optimizer, i) # train Function
108

109

110 # plotting function
111 def plot(model, data_loader):
112 for i, (x, y) in enumerate(data_loader):
113 z = model.encoder(x)
114 z = z.detach().numpy()
115 plt.scatter(z[:, 0], z[:, 1], c=y, cmap='tab10')
116 plt.xlabel("Value of Feature 1")
117 plt.ylabel("Value of Feature 2")
118 plt.savefig("./results/features.png")
119

120

121 # plotting the latent space feature
122 plot(model, train_dataloader)

Listing 4.4 Autoencoder Feature Extraction

Table 4.5 Explanation of
the name classification task
listed in Listing 4.4

Line number Description

2–14 Using our previous Torch modules

16–21 Declaring the variables

24–41 Download and prepare the MNIST
dataset

43–54 Encoder model

56–66 Decoder model

68–77 Autoencoder model

88–100 Training function; in particular, line 93
uses MSE loss between decoder output
and input data

106–113 Plot function

280 4 Applications of Machine Learning: Signal Processing

Fig. 4.9 Two-dimensional
feature extracted from the
MNIST digits. Each color
represents a specific class of
image

The code in Listing 4.4 takes .28 × 28 grayscale MNIST images as input and
plots their extracted features in 2D. The extracted 2D features of the ten classes
have been shown in ten colors in Fig. 4.9. The features extracted in Fig. 4.9 can be
used to perform classification tasks instead of the original digit images.

4.6 Anomaly or Outlier Detection

An anomaly or outlier is something that significantly and statistically deviates from
what is expected. The outlier points have different statistical characteristics than the
rest of the dataset. For example, a scenario exists where a person regularly drives
from point A to point B during office hours. If suddenly it is seen from their driving
history that a person has driven from point A to point C, it is seen as an anomaly.
It may raise suspicions about whether the person is in danger or involved in some
criminal activities. There are many critical applications of outlier detection.

Figure 4.10 shows four types of outliers—local, global, contextual, and collec-
tive. These types are discussed below:

1. Local Outliers: When a data point significantly differs from its neighboring
points in the dataset, it is called a local outlier. For instance, in a daily load curve,
if there is a sudden peak demand at midnight, it is a local outlier. This peak is not
usual at midnight, but if the full-day curve is observed, it is still lower than the
evening peak.

2. Global Outliers: When the data point deviates significantly from all the existing
data points in the dataset, it is called a global outlier. It is also often referred to as
a point anomaly. The diagram in Fig. 4.10 point B visually depicts deviation from
the rest of the set. This is a case of a global outlier. For instance, a person spends
$500 on average in a week. If the person suddenly spends more than 1 million
dollars in one week, this will be a prime case of a global outlier.

4.6 Anomaly or Outlier Detection 281

Fig. 4.10 Different types of
outliers

3. Contextual Outliers: When the concern arises about whether a data point is
an anomaly or not based on a specific context, it is considered a contextual
outlier. It is often referred to as a conditional outlier because whether the data
point would be viewed as an outlier or not is conditioned on its context. Time is
often considered the context in this case. For instance, a temperature of . 30 ◦C is
expected in the summer, but this would be a case of a contextual outlier in the
winter because this high temperature is not expected in winter.

4. Collective Outliers: When a set of data points significantly deviate from the rest
of the dataset, it is called a collective outlier. For instance, if a sudden increase is
seen in a transaction in the stock market within specific groups, it can be identified
as a collective outlier.

Next, we will discuss how outliers can be detected.

4.6.1 How Does It Work?

For simpler cases, simpler statistical methods such as standard deviations and inter-
quartile range are used for outlier detections. There are also some other outlier
detection algorithms that are used in the case of high-dimensional feature space,
i.e., when many input variables are present. Two outlier detection algorithms used
for such purposes are isolation forest and local outlier factor. These four methods of
outlier detection are briefly discussed below.

4.6.1.1 Standard Deviation
The standard deviation can be used to detect outliers or anomalies for datasets that
follow the Gaussian distribution. The data points that fall outside the range from
three standard deviations below the mean (.μ − 3σ) to three standard deviations
above the mean (.μ + 3σ) are considered outliers. These are depicted in Fig. 4.11.
Here, . μ denotes the mean of the dataset, and . σ denotes the standard deviation.

282 4 Applications of Machine Learning: Signal Processing

Fig. 4.11 Data points that
fall outside the .μ ± 3σ are
outliers

Fig. 4.12 Calculating Q1,
Q3, and IQR for a dataset

4.6.1.2 Inter-quartile Range (IQR)
For datasets with a skewed distribution, the inter-quartile range can detect outliers or
anomalies. The data points that fall below .Q1−1.5IQR or fall above . Q3+1.5IQR

are considered outliers. Here, Q1 is the .25th percentile of the dataset, Q3 is the . 75th
percentile of the dataset, and IQR is the inter-quartile range that is calculated as
.Q3 − Q1. Figure 4.12 denotes the Q1, Q3, and IQR of a dataset.

4.6.1.3 Isolation Forest
The core concept of isolation forest, an unsupervised model, is similar to random
forest and is built using decision trees. Randomly subsampled data is processed
in an isolation forest using a tree structure based on randomly chosen attributes.
Since it took more cuts to isolate the samples that traveled further into the tree, they
are less likely to be abnormalities. Therefore, the data that get on shorter branches
are considered anomalies or outliers because it shows that they had few similar
attributes. Liu et al. [7] proposed the method in 2008 and have stated in their paper
that this method leverages two quantitative properties of anomalies: “i) they are the
minority consisting of fewer instances, and ii) they have attribute values that are
very different from those of normal instances.”

4.6 Anomaly or Outlier Detection 283

4.6.1.4 Local Outlier Factor (LOF)
LOF is a density-based outlier technique [8]. It mainly detects local outliers and
does not deal with global outliers. It basically works by detecting data points in
the feature space that have sparse density, i.e., scattered away from the rest of the
dataset. LOF assigns an anomaly score to each data point based on their density
level or local neighborhood in the feature space. The points with an anomaly score
that exceeds a threshold are detected as outliers. This threshold is set by a domain
expert given the scenario for which the outliers are being detected.

4.6.2 Applications of Anomaly Detection

Some of the significant applications of anomaly detection are given below:

1. Fraud detection: A person usually maintains a habitual event while using their
credit card. Usually, they spend a specific amount and do not exceed the amount.
Again, they usually maintain a habit of buying from certain places. If the credit
card gets stolen, the spending pattern of the thief will not match the owner’s
spending pattern. The thief will exceed in spending amount and will buy from
random places. This anomaly may raise suspicion and block the credit card from
being used.

2. Security: Any network has almost consistent traffic in its course. When a
hacker or intruder tries to break into the network, the number of traffic deviates
drastically. This drastic change in traffic in a network may suggest an attack
on the network. According to the detection, the defense system may take the
necessary steps and save the network.

3. Business transaction: Transactions in stock markets are a regular occurrence.
Every transaction follows a pattern with a slight deviation. When suddenly a
drastic change is seen in the transaction within specific groups, this alerts the
stock market, and immediate actions are taken to control the transaction. This
sudden change of transaction may occur when one group is trying to dominate
the stock market.

4. Healthcare: During different medical tests, anything that is not normal can be
detected using outlier detection methods. According to the detection, further
necessary tests and treatments can be done to treat the patient. For instance,
normal cells and cancerous cells act differently. If a sudden change is found in
the cell’s characteristic, it will be marked and tested further to see whether it is a
case of cancer or any other disease.

4.6.3 Challenges of Anomaly Detection

There exist many challenges in detecting anomalies. Some of the challenges are
briefly discussed below:

1. Modeling of outlier data: Generally, when training models, we train them
with normal data. Any data that statistically deviate from the normal data are

284 4 Applications of Machine Learning: Signal Processing

considered outlier data. This process is basically how outliers are detected.
Therefore, it is essential that normal data are modeled very carefully because
if not, outlier detection will be erroneous. Modeling normal data is a challenging
task. We need to define every possible normal behavior of data and create a
dataset accordingly. Often it becomes difficult to define the boundary line that
differentiates the normal data from outlier data. This makes outlier detection
challenging.

2. Noise vs. Outliers: The presence of noise is inevitable in real-world datasets.
Noise and outliers are different concepts, and they are not the same. Outliers are
valid data, except they are generated statistically differently from normal data. On
the other hand, noises are unwanted data point in the dataset. They can be missing
values, incorrect values, duplicate values, etc. The presence of noise throws off
the expected characteristic of normal data, and it becomes challenging to retrieve
normal data and model them, thus making the work of detecting outliers difficult.

3. Domain-specific knowledge: Not all statistically deviated data is considered an
outlier in every context. Therefore, only some outlier detection is significant
in some scenarios. We need to establish outlier detection based on context and
application. The characteristics of normal data have to be defined based on the
domain outlier detection used. Again, the level of deviation and input type is
different for different applications. For instance, the slightest deviation can be
considered in medical fields. On the other hand, for fraud detection in credit
cards, the deviation needs to be significant enough to be detected as an outlier.

4. Interpretability: It is not only challenging to detect outliers but also to interpret
why the detected data are outliers. What is the purpose of a detected outlier in a
specific case, and what are the imposed conditions for those specific data points
to be outliers? For application-based outlier detection, it is crucial to interpret the
condition and criterion of outliers.

4.6.4 Implementation of Anomaly Detection

The Beijing Multisite Air-Quality dataset [9] will be used to implement anomaly
detection. This time series dataset includes hourly air pollutants data from 12
nationally controlled air-quality monitoring sites. However, data for only one site
will be considered for implementation. We will implement the local outlier factor
algorithm for this purpose.

Programming Example 4.5
The Python code is provided in Listing 4.5 with its explanation in Table 4.6. The
code preprocesses the dataset. The LocalOutlierFactor class from scikit-
learn was used to identify and remove outliers from the training data, and the refined
data were trained through a linear regression model.

4.7 Adversarial Input Attack 285

1 Dataset: https://www.kaggle.com/datasets/sid321axn/beijing-
multisite-airquality-data-set

2

3 # ----------------------Importing Modules------------------------
4 import numpy as np
5 import pandas as pd
6 import missingno
7 import matplotlib.pyplot as plt
8 import seaborn as sb
9 from sklearn.neighbors import LocalOutlierFactor

10 from sklearn.model_selection import train_test_split
11 from sklearn.linear_model import LinearRegression
12 from sklearn.metrics import mean_absolute_error
13

14

15 # -------------------------Reading Data--------------------------
16

17 dataset = pd.read_csv("./data/PRSA_Data_Aotizhongxin_20130301
-20170228.csv")

18

19

20 # preprocessing dataset
21 dataset.isnull().sum()
22 df = dataset.dropna()
23

24 X = df[['PM10', 'CO']]
25 Y = df['PM2.5']
26

27 X_train, X_test, y_train, y_test = train_test_split(X, Y,
test_size=0.20, random_state=1)

28

29

30 # ------------------Local Outlier Factor (LOF)-------------------
31 model = LocalOutlierFactor(n_neighbors= 35 , contamination= 0.1)
32 predict = model.fit_predict(X_train)
33 mask = predict != -1
34 X_train, y_train = X_train.iloc[mask, :], y_train.iloc[mask]
35

36

37 model = LinearRegression()
38 model.fit(X_train, y_train)
39 yhat = model.predict(X_test)
40 mae = mean_absolute_error(y_test, yhat)
41 print('MAE: %.3f' % mae)

Listing 4.5 Outlier detection using the LOF algorithm

4.7 Adversarial Input Attack

Recently, the deep learning models have been shown to be vulnerable to slight
malicious noise formally known as adversarial example [10, 11]. In Fig. 4.13, we
display an example of an adversarial image where a malicious attacker can add

286 4 Applications of Machine Learning: Signal Processing

Table 4.6 Explanation of
the outlier detection code in
Listing 4.5

Line number Description

3–12 Importing modules

17 Reading dataset

21 Checking if null values exist

22 Dropping all the rows that contain null
values

24 Selecting features

25 Target variable

27 Splitting the dataset into train and test
sets

31–32 Fitting LOF model

33 Selecting rows without outliers

34 Setting trainset without outliers

37–41 Fitting and evaluating the model

Fig. 4.13 Adversarial example of a panda image. (Source: Open AI Blog [12])

slight, imperceptible noise to the incoming panda image with the objective of
misclassifying it into a wrong output class gibbon.

Among the popular adversarial input attacks are Fast Gradient Sign Method
(FGSM) [10] and Projected Gradient Descent (PGD) method [11]. A typical FGSM
algorithm follows the mathematical strategy expressed by Eq. 4.1.

. x̂
︸︷︷︸

adversarial example

= x
︸︷︷︸

clean data

+ ε · sign(∇xL(g(x; θ), t)
)

︸ ︷︷ ︸

perturbation

. (4.1)

In Eq. 4.1, the attacker takes the clean data . x and adds a perturbation, which is
the sign of the loss function of a neural network with respect to the input data scaled
by . ε. Here . ε is the .L∞ norm between the clean data . x and the adversarial data . x̂.
Next, we take our MNIST image classification problem from Chap. 3 and apply the
above algorithm to generate adversarial examples of each test image.

4.7 Adversarial Input Attack 287

Programming Example 4.6
A simple adversarial example generation code is given in Listing 4.6 with the attack
module. The code explanation can be found in Table 4.7. The FGSM test involves
testing machine learning models with adversarial attacks. This code trains a CNN
model on the MNIST dataset and performs an FGSM attack on the trained model.
A perturbed image is created by adjusting each pixel of the input image. The attack
function evaluates the attack’s success rate by computing the test loss and accuracy
on the perturbed data. It also saves some of the original and perturbed images for
visualization.

1 # -------------------------Torch Modules-------------------------
2 from __future__ import print_function
3 import numpy as np
4 import pandas as pd
5 import torch.nn as nn
6 import math, torch
7 import torch.nn.functional as F
8 from torch.nn import init
9 import torch.optim as optim

10 from torchvision import datasets as ds
11 from torchvision import transforms as Trans
12 from torchvision import models
13 import torch.nn.functional as F
14 from torchvision.utils import save_image
15 from torch.utils.data import DataLoader as DL
16 # ---------------------------Variables---------------------------
17 # for Normalization
18 mean = [0.5]
19 std = [0.5]
20 # batch size
21 bs = 128
22 Iterations = 5
23 learn_rate = 0.01
24

25

26 # ------Commands to download and perpare the MNIST dataset-------
27 train_transform = Trans.Compose([
28 Trans.ToTensor(),
29 Trans.Normalize(mean, std)
30])
31

32 test_transform = Trans.Compose([
33 Trans.ToTensor(),
34 Trans.Normalize(mean, std)
35])
36

37 # train dataset
38 train_loader = DL(ds.MNIST('./mnist', train=True, download=True,

transform=train_transform),
39 batch_size=bs, shuffle=True)
40

288 4 Applications of Machine Learning: Signal Processing

41 # test dataset
42 test_loader = DL(ds.MNIST('./mnist', train=False, transform=

test_transform),
43 batch_size=bs, shuffle=False)
44

45

46 # --------------------------Defining CNN-------------------------
47 class CNN(nn.Module):
48 def __init__(self):
49 super(CNN, self).__init__()
50 self.conv1 = nn.Conv2d(1, 32, 3, 1)
51 self.conv2 = nn.Conv2d(32, 64, 3, 1)
52 self.dropout1 = nn.Dropout(0.25)
53 self.dropout2 = nn.Dropout(0.5)
54 self.fc1 = nn.Linear(9216, 128)
55 self.fc2 = nn.Linear(128, 10)
56

57 def forward(self, x):
58 x = self.conv1(x)
59 x = F.relu(x)
60 x = self.conv2(x)
61 x = F.relu(x)
62 x = F.max_pool2d(x, 2)
63 x = self.dropout1(x)
64 x = torch.flatten(x, 1)
65 x = self.fc1(x)
66 x = F.relu(x)
67 x = self.dropout2(x)
68 x = self.fc2(x)
69 output = F.log_softmax(x, dim=1)
70 return output
71

72

73 # defining CNN model
74 model = CNN()
75

76 # Loss function
77 criterion = torch.nn.CrossEntropyLoss() # pytorch's cross

entropy loss function
78

79 # defining which parameters to train only the CNN model
parameters

80 optimizer = torch.optim.SGD(model.parameters(), learn_rate)
81

82

83 # -----------------------Training Function-----------------------
84 # Train baseline classifier on clean data
85 def train(model, optimizer, criterion, epoch):
86 model.train() # setting up for training
87 for id, (data, target) in enumerate(
88 train_loader): # data contains the image and target

contains the label = 0/1/2/3/4/5/6/7/8/9
89 optimizer.zero_grad() # setting gradient to zero

4.7 Adversarial Input Attack 289

90 output = model(data) # forward
91 loss = criterion(output, target) # loss computation
92 loss.backward() # back propagation here pytorch will

take care of it
93 optimizer.step() # updating the weight values
94 if id % 100 == 0:
95 print('Train Epoch No: {} [{:.0f}%] \tLoss: {:.6f

}'.format(
96 epoch, 100. * id / len(train_loader), loss.item()

))
97

98

99 # -----------------------Testing Function------------------------
100 # validation of test accuracy
101 def test(model, criterion, val_loader):
102 model.eval()
103 test_loss = 0
104 correct = 0
105

106 with torch.no_grad():
107 for id, (data, target) in enumerate(val_loader):
108 output = model(data)
109 test_loss += criterion(output, target).item() # sum

up batch loss
110 pred = output.max(1, keepdim=True)[1] # get the

index of the max log-probability
111 correct += pred.eq(target.view_as(pred)).sum().item()

if pred == target then correct +=1
112

113 test_loss /= len(val_loader.dataset) # average test loss
114 print('\nTest set: \nAverage loss: {:.4f}, \nAccuracy: {}/{}

({:.4f}%)\n'.format(
115 test_loss, correct, val_loader.sampler.__len__(),
116 100. * correct / val_loader.sampler.__len__()))
117

118

119 # training the CNN
120 for i in range(Iterations):
121 train(model, optimizer, criterion, i)
122 test(model, criterion, test_loader) # Testing the the

current CNN
123

124

125 # -----------------------FGSM Attack Code------------------------
126 def fgsm(model, data, target, epsilon=0.1, data_min=0, data_max

=1):
127 'this function takes a data and target model as input and

produces a adversarial image to fool model'
128 data_min = data.min()
129 data_max = data.max()
130 model.eval() # evaluation mode
131 perturbed_data = data.clone() # data setup
132

290 4 Applications of Machine Learning: Signal Processing

133 perturbed_data.requires_grad = True
134 output = model(perturbed_data) # ouput
135 loss = F.cross_entropy(output, target) # loss
136

137 if perturbed_data.grad is not None:
138 perturbed_data.grad.data.zero_()
139

140 loss.backward() # backward loss
141

142 # Again set gradient requirement to true
143 perturbed_data.requires_grad = False
144

145 with torch.no_grad():
146 # Create the perturbed image by adjusting each pixel of

the input image
147 perturbed_data += epsilon * perturbed_data.grad.data.sign

()
148 # Adding clipping to maintain [min,max] range, default

0,1 for image
149 perturbed_data.clamp_(data_min, data_max)
150

151 return perturbed_data
152

153

154 # ---------------Evaluating the Attack Success Rate--------------
155 def Attack(model, criterion, val_loader):
156 model.eval()
157 test_loss = 0
158 correct = 0
159

160 for id, (data, target) in enumerate(val_loader):
161

162 adv_img = fgsm(model, data, target, epsilon=0.3)
163 if id == 0: # saving the image
164 save_image(data[0:100], './results/data' + '.png',

nrow=10)
165 save_image(adv_img[0:100], './results/adv' + '.png',

nrow=10)
166 output = model(adv_img)
167 test_loss += criterion(output, target).item() # sum up

batch loss
168 pred = output.max(1, keepdim=True)[1] # get the index of

the max log-probability
169 correct += pred.eq(target.view_as(pred)).sum().item() #

if pred == target then correct +=1
170

171 test_loss /= len(val_loader.dataset) # average test loss
172 print('\nTest set: \nAverage loss: {:.4f}, \nAccuracy After

Attack: {}/{} ({:.4f}%)\n'.format(
173 test_loss, correct, val_loader.sampler.__len__(),
174 100. * correct / val_loader.sampler.__len__()))
175

176

4.7 Adversarial Input Attack 291

177 # Executing the attack code
178 Attack(model, criterion, test_loader)

Listing 4.6 Adversarial Examples

Table 4.7 Explanation of the adversarial attack generation code in Listing 4.6

Line number Description

1–15 Import necessary libraries and modules

16–23 Define variables for data normalization and hyperparameters

27–35 Define data transformations for training and testing datasets

37–43 Create data loaders for the MNIST dataset

46–70 Define a CNN model with two convolutional layers, dropout layers, and fully
connected layers

74 Create an instance of the CNN model

77 Define the loss function for training

80 Define the optimizer SGD for training

84–96 Define a training function that iterates through training data, computes loss,
performs backpropagation, and updates model weights

100–116 Define a testing function to evaluate the accuracy of the model on the test dataset

119–122 Train the CNN model for a specified number of iterations, printing loss during
training, and testing the model after each iteration

126–151 FGSM attack generation code

128–129 Taking the minimum and maximum values of the data

130 Setting the model to evaluation mode

133–135 Computing the loss with respect to the input image

137–138 Setting the gradient of the input to zero before calling backward

140 Calling the backpropagation function

147 Adding the noise using the gradient sign similar to Equation 4.1

149 Ensuring pixel values of the adversarial examples are within the .L∞ norm

154–174 Evaluates the attack methodology

162 Generating the adversarial image; the rest of the function is similar to the test
function of Listing 3.5

178 Calling the attack function

We will get the following output if we apply the above part of the code at the end
of Listing 3.5.

Output of Listing 4.6:

Train Epoch No: 0 [0%] Loss: 2.317856
Train Epoch No: 0 [21%] Loss: 1.753910
Train Epoch No: 0 [43%] Loss: 0.838018
Train Epoch No: 0 [64%] Loss: 0.636633
Train Epoch No: 0 [85%] Loss: 0.532179

Test set:

292 4 Applications of Machine Learning: Signal Processing

Average loss: 0.0026,
Accuracy: 9058/10000 (90.5800%)

Train Epoch No: 1 [0%] Loss: 0.515063
Train Epoch No: 1 [21%] Loss: 0.461006
Train Epoch No: 1 [43%] Loss: 0.350277
Train Epoch No: 1 [64%] Loss: 0.460339
Train Epoch No: 1 [85%] Loss: 0.309240

Test set:
Average loss: 0.0018,
Accuracy: 9354/10000 (93.5400%)

Train Epoch No: 2 [0%] Loss: 0.249620
Train Epoch No: 2 [21%] Loss: 0.244345
Train Epoch No: 2 [43%] Loss: 0.470304
Train Epoch No: 2 [64%] Loss: 0.302229
Train Epoch No: 2 [85%] Loss: 0.275732

Test set:
Average loss: 0.0014,
Accuracy: 9490/10000 (94.9000%)

Train Epoch No: 3 [0%] Loss: 0.249589
Train Epoch No: 3 [21%] Loss: 0.248986
Train Epoch No: 3 [43%] Loss: 0.220321
Train Epoch No: 3 [64%] Loss: 0.183422
Train Epoch No: 3 [85%] Loss: 0.180923

Test set:
Average loss: 0.0011,
Accuracy: 9584/10000 (95.8400%)

Train Epoch No: 4 [0%] Loss: 0.165640
Train Epoch No: 4 [21%] Loss: 0.224271
Train Epoch No: 4 [43%] Loss: 0.146689
Train Epoch No: 4 [64%] Loss: 0.220537
Train Epoch No: 4 [85%] Loss: 0.167554

Test set:
Average loss: 0.0010,
Accuracy: 9601/10000 (96.0100%)

Test set:
Average loss: 0.0128,

4.8 Malicious Input Detection 293

Accuracy After Attack: 4530/10000 (45.3000%)

In Fig. 4.14, we show some sample adversarial images that a human can
recognize clearly. However, such maliciously designed samples can greatly fool a
neural network. For Listing 4.6, the attack can fool the target neural network and
degrade the accuracy to 45.3%. In the next section, we will train a binary classifier
to detect such adversarial examples.

4.8 Malicious Input Detection

Once we generate adversarial examples with malicious noise, the next question
would be: can we detect such an anomaly (malicious noise)? In this section, we
train a convolution neural network (CNN) to detect adversarial samples from clean
MNIST images. We will train a binary classifier whose output would be 1 for
adversarial images and 0 if the incoming image is a clean sample.

Programming Example 4.7
The Python code for this problem is given in Listing 4.7 with its explanation
in Table 4.8. A CNN class is defined within the script to build a CNN model
specifically designed for the MNIST dataset. An instance of this class is then
created and loaded with pre-trained weights from a file. The code also implements
a Detector class to detect adversarial examples using a binary classifier. An
optimizer is defined to facilitate the updating of the parameters of this class during
training. The fgsm function is also implemented in the script, which employs the
FGSM attack. This function takes a model, data, target, and an optional epsilon
value as input and generates an adversarial image intended to deceive the model.

Fig. 4.14 Sample
adversarial examples

294 4 Applications of Machine Learning: Signal Processing

1 # -------------------------Torch Modules-------------------------
2 from __future__ import print_function
3 import numpy as np
4 import pandas as pd
5 import torch.nn as nn
6 import math
7 import torch.nn.functional as F
8 import torch
9 from torch.nn import init

10 import torch.optim as optim
11 from torch.utils.data import DataLoader as DL
12 import torchvision.transforms as Trans
13 import torchvision.datasets as ds
14 from torchvision import models
15 import torch.nn.functional as F
16 # ---------------------------Variables---------------------------
17 mean = [0.5] # for Normalization
18 std = [0.5]
19

20 BATCH_SIZE =128
21 Iterations = 2
22 learning_rate = 0.001
23

24

25 # ------Commands to Download and Perpare the MNIST Dataset-------
26 train_transform = Trans.Compose([
27 Trans.ToTensor(),
28 Trans.Normalize(mean, std)
29])
30

31 test_transform = Trans.Compose([
32 Trans.ToTensor(),
33 Trans.Normalize(mean, std)
34])
35

36

37 train_dataloader = DL(
38 ds.MNIST('./mnist', train=True, download=True,
39 transform=train_transform),
40 batch_size=BATCH_SIZE, shuffle=True) # train dataset
41

42 test_dataloader = DL(
43 ds.MNIST('./mnist', train=False,
44 transform=test_transform),
45 batch_size=BATCH_SIZE, shuffle=False) # test dataset
46

47

48 # -----------------Loading the pre-trained model-----------------
49 class CNN(nn.Module):
50 def __init__(self):
51 super(CNN, self).__init__()
52 self.conv1 = nn.Conv2d(1, 32, 3, 1)
53 self.conv2 = nn.Conv2d(32, 64, 3, 1)

4.8 Malicious Input Detection 295

54 self.dropout1 = nn.Dropout(0.25)
55 self.dropout2 = nn.Dropout(0.5)
56 self.fc1 = nn.Linear(9216, 128)
57 self.fc2 = nn.Linear(128, 10)
58

59 def forward(self, x):
60 x = self.conv1(x)
61 x = F.relu(x)
62 x = self.conv2(x)
63 x = F.relu(x)
64 x = F.max_pool2d(x, 2)
65 x = self.dropout1(x)
66 x = torch.flatten(x, 1)
67 x = self.fc1(x)
68 x = F.relu(x)
69 x = self.dropout2(x)
70 x = self.fc2(x)
71 output = F.log_softmax(x, dim=1)
72 return output
73

74 # defining CNN model
75 model = CNN()
76 # loading a pre-trained model
77 model = torch.load('./data/mnist.pt')
78

79

80 # -----------------------Defining Detector-----------------------
81 class Detector(nn.Module):
82 def __init__(self):
83 super(Detector, self).__init__()
84 self.conv1 = nn.Conv2d(1, 32, kernel_size=3, padding=1,

stride=1)
85 self.maxpool1 = nn.MaxPool2d(2)
86 self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1,

stride=1)
87 self.maxpool2 = nn.MaxPool2d(2)
88 self.linear1 = nn.Linear(7*7*64, 200)
89 self.linear2 = nn.Linear(200, 1)
90

91

92 def forward(self, x):
93

94 out = self.maxpool1(F.relu((self.conv1((x)))))
95 out = self.maxpool2(F.relu((self.conv2(out))))
96 out = out.view(out.size(0), -1)
97 #print(out.size())
98 out = F.relu((self.linear1(out)))
99 out = F.sigmoid(self.linear2(out))
100 return out
101

102 # defining the detector
103 D= Detector()
104

296 4 Applications of Machine Learning: Signal Processing

105

106

107 # loss function for binary classification
108 criterion = nn.BCELoss()
109 optimizer = torch.optim.Adam(D.parameters(), lr=learning_rate)
110

111

112 # -----------------------FGSM Attack Code------------------------
113 def fgsm(model, data, target, epsilon=0.1, data_min=0, data_max

=1):
114 'this function takes a data and target model as input and

produces a adversarial image to fool model'
115 data_min = data.min()
116 data_max = data.max()
117 model.eval() # evaluation mode
118 perturbed_data = data.clone() # data setup
119

120 perturbed_data.requires_grad = True
121 output = model(perturbed_data) # ouput
122 loss = F.cross_entropy(output, target) # loss
123

124 if perturbed_data.grad is not None:
125 perturbed_data.grad.data.zero_()
126

127 loss.backward() ## backward loss
128

129 # Again set gradient requirement to true
130 perturbed_data.requires_grad = False
131

132 with torch.no_grad():
133 # Create the perturbed image by adjusting each pixel

of the input image
134 perturbed_data += epsilon*perturbed_data.grad.data.

sign()
135 # Adding clipping to maintain [min,max] range,

default 0,1 for image
136 perturbed_data.clamp_(data_min, data_max)
137 return perturbed_data
138

139

140 # ---------------------Training and Testing----------------------
141 # Train the detector model
142 def train(model, adv, optimizer,criterion,epoch):
143 model.train() # setting up for training
144 for id_batch, (data, target) in enumerate(train_dataloader):

data contains the image and target contains the label =
0/1/2/3/4/5/6/7/8/9

145 optimizer.zero_grad() # setting gradient to zero
146

147 # clean data loss
148 output = model(data) # forward
149 real_labels = torch.zeros(target.size()[0], 1) # clean

sample labels = 0

4.8 Malicious Input Detection 297

150 loss = criterion(output, real_labels) # loss computation
151

152 # adversarial data loss
153 adv_img = fgsm(adv, data, target, epsilon=0.3) ##

geerating the adversarial samples
154 output1 = model(adv_img)
155 fake_labels = torch.ones(target.size()[0], 1) #

adversarialsample label =1
156

157 loss1 = criterion(output1, fake_labels)
158 loss = (loss+ loss1)/2 # overall loss function
159 loss.backward() # back propagation here pytorch will take

care of it
160

161 optimizer.step() # updating the weight values
162 if id_batch % 100 == 0:
163 print('Epoch No: {} [{:.0f}%] \tLoss: {:.3f}'.

format(
164 epoch, 100. * id_batch / len(train_dataloader),

loss.item()))
165

166

167

168 # --------------Evaluating the Attack Success Rate---------------
169 # Validation of detection rate of malicious samples
170 def test(model, adv,val_loader, epoch):
171 model.eval()
172 test_loss = 0
173 correct = 0
174

175 for id_batch, (data, target) in enumerate(val_loader):
176 adv_img = fgsm(adv, data, target, epsilon=0.3)
177 output = model(adv_img)
178

179 for i in range(data.size()[0]):
180 if output [i] > 0.9:
181 correct +=1
182

183 print('\n Detection Rate:',
184 100. * correct / 10000)
185

186

187 # Training the detector and testing
188 for i in range(Iterations):
189 train(D, model,optimizer,criterion,i)
190 test(D, model, test_dataloader, i) # Testing the the current

CNN

Listing 4.7 Malicious Input Detection

298 4 Applications of Machine Learning: Signal Processing

Table 4.8 Explanation of
the detection code in
Listing 4.7

Line number Description

2–76 Similar as prior code in Listing 3.5

78 Loading a pre-trained model trained to
classify MNIST images

81–103 Detector model is a CNN architecture with
one output neuron

108 The loss function presented here is a
binary cross-entropy loss

109 Using the ADAM optimizer

113–138 FGSM attack code

142–165 Train function

149 Creating real image label 0

155 Creating fake image label 1

158 Combining both losses

170–184 Testing the detection rate of malicious
samples

Output of Listing 4.7:

Epoch No: 0 [0%] Loss: 0.694
Epoch No: 0 [21%] Loss: 0.001
Epoch No: 0 [43%] Loss: 0.000
Epoch No: 0 [64%] Loss: 0.000
Epoch No: 0 [85%] Loss: 0.000

Detection Rate: 100.0

Epoch No: 1 [0%] Loss: 0.000
Epoch No: 1 [21%] Loss: 0.000
Epoch No: 1 [43%] Loss: 0.000
Epoch No: 1 [64%] Loss: 0.000
Epoch No: 1 [85%] Loss: 0.000

Detection Rate: 100.0

The above code has a detection rate of 100%, indicating the binary classifier
can always detect malicious adversarial samples from clean data provided that the
malicious sample generation method is FGSM. This demonstrates a supervised
detection problem of any incoming data, which shows an anomaly compared to
the original clean data.

4.9 Natural Language Processing 299

4.9 Natural Language Processing

Natural language processing (NLP) is the subfield of artificial intelligence con-
cerned with giving the computer the human capacity to process language. Humans
read texts and hear audio and can instinctively understand, interpret, and act
accordingly. The goal of NLP is for the machine to take in both audible and visual
text, which is natural language, and interpret it. It is challenging for computers to
reach the human level in terms of processing languages. NLP has a broad real-world
application in many fields, including medical, business, and educational industries.
Researchers are pushing boundaries further and further to perfect the art of NLP.
IBM Watson [13] is one of the most significant accomplishments in the field of
NLP.

4.9.1 How Does NLP Work?

Figure 4.15 also gives a visual representation of the workflow of NLP. The four
basic steps of NLP are described in this section:

1. Morphological processing: In this step, the input text is broken down into sets
of tokens. Paragraphs are broken down into sentences, then sentences are broken
down into words, and words are broken down into units. For example, the word
“unbreakable” can be broken into un, break, and able.

2. Syntax Analysis: This step checks whether the sentences are developed using
correct grammatical rules or not. According to syntax analysis, the sentence “I

Fig. 4.15 Workflow of NLP

300 4 Applications of Machine Learning: Signal Processing

eat brick” is valid because it is formed correctly according to English grammar
rules, although the sentence makes no sense.

3. Semantic Analysis: This step analyzes and checks if the sentences or phrases
hold accurate meanings according to their dictionary meanings. The previous
example shown, “I eat brick,” would be rejected in semantic analysis because the
sentence has no meaning.

4. Pragmatic Analysis: The relevance of the given text is checked during pragmatic
analysis based on the present context. “Bring the pen from the holder that is
blue”—here, either the pen is blue or the holder is blue. The sentence is open to
two different interpretations.

4.9.2 Applications of NLP

NLP has revolutionized many aspects of modern technology. Some of the most
common applications of NLP are stated below:

1. Text prediction and auto-correction: While texting on mobile devices or
computers, the next word is often predicted and shown on the screen. The
probability of the words is calculated, and the word with the highest probability
is shown. There are rules by which the probability is calculated. Sometimes a
misspelled word is automatically corrected. This process of auto-correction is
also done in the same. The probability of the right spelling is calculated, and the
word with the highest probability is replaced with the misspelled word.

2. Email filtering: It will be a tremendous job to review each email we receive daily.
Email filtering is the process of categorizing emails according to their content and
priority. Some emails have higher priority over others. It is easy to scroll through
emails categorically. In this way, the most urgent emails are checked first. Emails
are categorized into business, socials, marketing promotions, etc., categories.

3. Grammar checker: Different software are used to check for spelling and
grammatical errors. These software are applications of NLP. The software checks
and corrects the spelling when a sentence or paragraph is given as input. It also
points out and rectifies grammatical errors. It can also paraphrase the text for
better readability. According to the goal of the text, the software can point out if
the writing is too formal or informal. It also provides better synonyms to make
the writing more interesting.

4. Spam detection: Spam detection is used to scan and filter out spam or phishing
emails and messages and send them to spam messages. Text classification is
used for spam detection. A set of words or phrases is kept as indicators of
this text classification. These words or phrases can be foul language, specific
financial terms, inappropriate phrases, suspicious and unverified links, specific
brand names, etc.

5. Machine translation: While translating a text from one language to another, it
is not enough to replace the words. The translated form should also capture the
true essence and tone of the authentic text. Machine translation is a modern NLP
technology. Google Translate is a widely used example of machine translation.

4.9 Natural Language Processing 301

6. Sentiment analysis: NLP has emerged as a crucial commercial tool to extract
hidden data insights from social media channels. Sentiment analysis can examine
the language used in social media postings, comments, reviews, and more
to extract attitudes and emotions in response to products, promotions, and
events. Businesses can use this information to create new products, launch new
marketing initiatives, and more.

7. Text summarization: Text summarization is used to summarize massive
amounts of digital text and produce summaries and synopses for indexes, research
databases, etc. Text summarizing uses NLP techniques. The finest text summary
software uses natural language generation (NLG) and semantic reasoning to
summarize relevant context and conclusions.

8. Speech recognition: Speech recognition aims to take audio as input and output
equivalent text. Then, it performs the necessary operations according to the
equivalent text. Similar to image classification tasks, voice recognition tasks of
AI models are extremely popular in the forms of Apple Siri [14], Google Assistant
[15], and Amazon Alexa [14].

4.9.3 Challenges of NLP

When a word is misspelled, it is easy for humans to detect and replace it with
the correct spelling. However, it is hard for the computer to detect and correct the
spelling. There are many challenges to NLP, some of which are discussed below
briefly:

1. Multiple meanings: Many words have more than one meaning. For example, in
English, the word “blue” means color and sadness. It is instinctive for humans to
interpret the meaning of “blue” based on the context. For example, “I am feeling
blue”—We can easily understand that the word “blue” means sadness. However,
it is difficult for machines to interpret the meanings instinctively.

2. Irony and sarcasm: Human beings use irony and satirical phrases. A person
who had an awful day might say sarcastically, “I had the best day today!” A
human being will quickly understand the sarcasm based on the given scenario
and delivery tone. Nevertheless, it is hard for machines to pick up on sarcastic
phrases.

3. Synonyms: Many words have synonymous meanings but are sometimes used
differently to express feelings. “You look good” is a very generic compliment,
and it is given in for formalities even though they might not look so good. “You
look amazing!” tells that the person looks really good. It is not just for the sake
of formalities. It is challenging for machines to pick up on this degree with
synonymous words.

4. Ambiguity: Ambiguity makes NLP very challenging. In case of lexical or
semantic ambiguity, some words take different meanings based on the context.
For example, the word “water” can be used as both a noun and a verb in English.
“Please give me a glass of water”—here, “water” is used as a noun. “Please

302 4 Applications of Machine Learning: Signal Processing

do not forget to water the plants”—here, “water” is used as a verb. In case
of syntactic or structural ambiguity, the sentence structure creates a confusing
meaning, such as “I spotted the guy with the telescope.” Who has the telescope
in this sentence? Did I spot the guy using the telescope, or was the guy holding a
telescope? These types of ambiguity are hard to understand for machines.

5. Domain-specific language: Language used by various firms and industries might
vary considerably. For instance, an NLP processing model required for the
processing of medical records might differ significantly from one required for
processing legal papers. Although many analysis tools that have been trained for
particular disciplines are available now, specialized companies may still need to
develop or train their own models.

4.9.4 Implementation of NLP

As an application of NLP, speech recognition will be implemented in this section. In
this task, we try to demonstrate one voice recognition application using a language
dataset from PyTorch’s official website [16]. The dataset has the names of different
people in 18 different languages. The list of the 18 different languages is given
below:

1. Polish 4. Japanese 7. English 10. French 13. Greek 16. Dutch

2. Russian 5. Italian 8. Scottish 11. German 14. Spanish 17. Chinese

3. Czech 6. Portuguese 9. Arabic 12. Irish 15. Korean 18. Vietnamese

Programming Example 4.8
In this task, we will train an RNN model to learn to classify the names into a
specific class. For example, Akrivopoulos is a Greek name, and Chang is a Korean
name. Next, we provide a sample code for the language recognition task based
on the speech (e.g., name). Listing 4.8 shows the Python code for this task, and
Table 4.9 explains the code. The code defines an RNN class implementing a simple
RNN model, which incorporates two linear layers and a softmax layer. The forward
method of the class takes an input tensor and a hidden state tensor as input and
computes the output and the updated hidden state of the model. The forward method
of the class accepts an input tensor and a hidden state tensor as input, computes the
output, and updates the model’s hidden state.

1 ## Datset: https://pytorch.org/tutorials/intermediate/
char_rnn_classification_tutorial.html

2 ## This is the RNN word classification problem in PyTorch
Official Website

3 from __future__ import unicode_literals, print_function, division
4 from io import open
5 import glob
6 import os

4.9 Natural Language Processing 303

7 import unicodedata
8 import string
9 import torch

10 import torch.nn as nn
11 import random
12 import time
13 import math
14

15 # ---------------------Data Preparation--------------------------
16 def findFiles(path): return glob.glob(path)
17

18

19 all_letters = string.ascii_letters + " .,;'"
20 n_letters = len(all_letters)
21

22 # Turn a Unicode string to plain ASCII from stack overflow https
://stackoverflow.com/a/518232/2809427

23 def unicodeToAscii(s):
24 return ''.join(
25 c for c in unicodedata.normalize('NFD', s)
26 if unicodedata.category(c) != 'Mn'
27 and c in all_letters
28)
29

30

31

32 # Build the category_lines dictionary, a list of names per
language

33 category_lines = {}
34 all_categories = []
35

36 # Read a file and split into lines
37 def readLines(filename):
38 lines = open(filename, encoding='utf-8').read().strip().split

('\n')
39 return [unicodeToAscii(line) for line in lines]
40

41 for filename in findFiles('data/names/*.txt'):
42 category = os.path.splitext(os.path.basename(filename))[0]
43 all_categories.append(category)
44 lines = readLines(filename)
45 category_lines[category] = lines # category_lines is a

dictionary mapping each category (language) to a list of
lines (names).

46

47 n_categories = len(all_categories)
48

49 # category_lines is a dictionary mapping each category (language)
to a list of lines (names).

50

51

52 # ---------One hot vector represnetation of letters--------------
53

304 4 Applications of Machine Learning: Signal Processing

54 # Find letter index from all_letters, e.g. "a" = 0
55 def letterToIndex(letter):
56 return all_letters.find(letter)
57

58 # Just for demonstration, turn a letter into a <1 x n_letters>
Tensor

59 def letterToTensor(letter):
60 tensor = torch.zeros(1, n_letters)
61 tensor[0][letterToIndex(letter)] = 1
62 return tensor
63

64 # Turn a line into a <line_length x 1 x n_letters>,
65 # or an array of one-hot letter vectors
66 def lineToTensor(line):
67 tensor = torch.zeros(len(line), 1, n_letters)
68 for li, letter in enumerate(line):
69 tensor[li][0][letterToIndex(letter)] = 1
70 return tensor
71

72 print(letterToTensor('J'))
73

74 print(lineToTensor('Jones').size())
75

76

77

78 # -------------------------RNN Model-----------------------------
79 class RNN(nn.Module):
80 def __init__(self, input_size, hidden_size, output_size):
81 super(RNN, self).__init__()
82

83 self.hidden_size = hidden_size
84 self.i2h = nn.Linear(input_size + hidden_size,

hidden_size) ## the basic blocks of RNN again is the simple
linear layers

85 self.i2o = nn.Linear(input_size + hidden_size,
output_size)

86 self.softmax = nn.LogSoftmax(dim=1)
87

88 def forward(self, input, hidden):
89 combined = torch.cat((input, hidden), 1)
90 hidden = self.i2h(combined)
91 output = self.i2o(combined)
92 output = self.softmax(output)
93 return output, hidden
94

95 def initHidden(self):
96 return torch.zeros(1, self.hidden_size)
97

98 n_hidden = 128 ## We keep the basic structure similar to pytorch
official implementation

99 rnn = RNN(n_letters, n_hidden, n_categories)
100

101 # ------------Some important function for training---------------

4.9 Natural Language Processing 305

102

103 def categoryFromOutput(output):
104 "This function interprets the output of using topk function

to locate which language category the output indicates"
105 top_n, top_i = output.topk(1)
106 category_i = top_i[0].item()
107 return all_categories[category_i], category_i
108

109 ## the following lines 118-130 randomly slects some training
samples in different catergory

110

111 def randomChoice(l):
112 return l[random.randint(0, len(l) - 1)]
113

114 def randomTrainingExample():
115 category = randomChoice(all_categories)
116 line = randomChoice(category_lines[category])
117 category_tensor = torch.tensor([all_categories.index(category

)], dtype=torch.long)
118 line_tensor = lineToTensor(line)
119 return category, line, category_tensor, line_tensor
120

121 for i in range(10):
122 category, line, category_tensor, line_tensor =

randomTrainingExample()
123 print('category =', category, '/ line =', line)
124

125 # loss function
126 criterion = nn.NLLLoss()
127

128 learning_rate = 0.005 # learning rate
129

130

131 # ------------------------Training loop--------------------------
132 def train(category_tensor, line_tensor):
133

134 """Each loop of training will
135 Create input and target tensors
136 Create a zeroed initial hidden state
137 Read each letter in and
138 Keep hidden state for next letter
139 Compare final output to target
140 Back-propagate
141 Return the output and loss"""
142

143 hidden = rnn.initHidden()
144

145 rnn.zero_grad()
146

147 for i in range(line_tensor.size()[0]):
148 output, hidden = rnn(line_tensor[i], hidden)
149

150 loss = criterion(output, category_tensor)

306 4 Applications of Machine Learning: Signal Processing

151 loss.backward()
152

153 # Add parameters' gradients to their values, multiplied by
learning rate

154 for p in rnn.parameters():
155 p.data.add_(p.grad.data, alpha=-learning_rate)
156

157 return output, loss.item()
158

159 ## some hyper parameters
160 n_iters = 100000
161 print_every = 5000
162

163

164

165 # Keep track of losses
166 current_loss = 0
167 all_losses = []
168

169 def timeSince(since):
170 now = time.time()
171 s = now - since
172 m = math.floor(s / 60)
173 s -= m * 60
174 return '%dm %ds' % (m, s)
175

176 start = time.time()
177

178 # training loop
179 for iter in range(1, n_iters + 1):
180 category, line, category_tensor, line_tensor =

randomTrainingExample()
181 output, loss = train(category_tensor, line_tensor)
182 current_loss += loss
183

184 # Print iter number, loss, name and guess
185 if iter % print_every == 0:
186 guess, guess_i = categoryFromOutput(output)
187 correct = ' ' if guess == category else ' (%s)' %

category
188 print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter /

n_iters * 100, timeSince(start), loss, line, guess, correct))
189

190 all_losses.append(current_loss /1)
191 current_loss = 0
192

193

194 # -------------------------Evaluation----------------------------
195

196 ## evlauation function return the output
197 def evaluate(line_tensor):
198 hidden = rnn.initHidden()
199

4.9 Natural Language Processing 307

200 for i in range(line_tensor.size()[0]):
201 output, hidden = rnn(line_tensor[i], hidden)
202

203 return output
204

205 ##predicts the output language of a given class
206 def predict(input_line, n_predictions=3):
207 print('\n> %s' % input_line)
208 with torch.no_grad():
209 output = evaluate(lineToTensor(input_line))
210

211 # Get top N categories
212 topv, topi = output.topk(n_predictions, 1, True)
213 predictions = []
214

215 for i in range(n_predictions):
216 value = topv[0][i].item()
217 category_index = topi[0][i].item()
218 print('(%.2f) %s' % (value, all_categories[

category_index]))
219 predictions.append([value, all_categories[

category_index]])
220

221

222 # Testing how accurate the output will be:
223 predict('Dovesky')
224 predict('Daheri')
225 predict('Jackson')
226 predict('Satoshi')

Listing 4.8 Speech Recognition [16]

Table 4.9 Explanation of
the name classification code
in Listing 4.8

Line number Description

3–13 Using Unicode and Torch modules

16–28 Data preparation and converting letter into
ASCII code

33–34 Two empty dictionary per language

36–45 Reading the text files in data folder

54–56 Converting letter into index

59–70 Converting the index into one-hot coded
value

79–97 Describing RNN model

101–128 Defining some important functions for
training

133–191 Training function and training loop

196–203 Evaluation function

205–220 Prediction function

223–226 Evaluating four names whose output is
shown

308 4 Applications of Machine Learning: Signal Processing

Output of Listing 4.8:

> Dovesky
(-0.70) Polish
(-1.36) Russian
(-1.59) Czech

> Daheri
(-0.97) Japanese
(-1.73) Italian
(-1.98) Portuguese

> Jackson
(-0.68) English
(-1.40) Scottish
(-2.25) Russian

> Satoshi
(-0.97) Japanese
(-1.07) Arabic
(-2.16) Italian

As displayed above, our trained RNN model clearly predicts Dovesky as Polish,
Daheri as Japanese, Jackson as English, and Satoshi as a Japanese name. In this way,
we can use the program to identify the origin of any name.

4.10 Conclusion

In our increasingly digitalized world, signals are present everywhere. Machine
learning has stepped into the world of signal processing to help in multidimensional
tasks. This chapter focuses on the signal processing applications of machine learning
and deep learning. It covers the concepts, applications, and Python implementations
of a wide range of signal processing use cases, such as image classification,
neural style transfer, feature extraction or dimensionality reduction, anomaly/outlier
detection, adversarial input attack, malicious input detection, and natural language
processing. All these topics have wonderful real-world applications that are used
daily worldwide. The readers will gain a concise overview of signal processing and
study the different ways in which machine learning can make signal processing easy
and interesting. In the next chapter, we will study machine learning applications in
energy systems.

4.12 Exercise 309

4.11 Key Messages from This Chapter

• The applications of machine learning and deep learning for signal processing
have become integrated into our lives, from email writing to mobile face lock ID
systems.

• Machine learning can be used for image classification applications whose
practical implementations are boundless.

• Neural style transfer allows adopting the style of one image into another image,
thus resulting in a stylized image.

• Adversarial input attack and malicious input detection are useful in the cyber-
security domain and have important practical implementations.

• Natural language processing is bringing about a massive revolution today, and its
applications are used everyday by everyone.

4.12 Exercise

1. Describe the relationship between signal processing and machine learning.
Show some examples.

2. Sometimes, the available image dataset might not be sufficient to properly train
a machine learning model. Explain how you will respond to this problem if you
cannot collect external data.

3. Define feature and feature extraction. Why is feature extraction/dimensionality
reduction required?

4. What is meant by adversarial input attack? Show a workaround to this problem:
5.(a) Define natural language and natural language processing (NLP).
(b) Briefly describe some aspects of NLP.

6. Modify the CIFAR-10 image classification model architecture from Listing 4.2
to improve model performance.

7. Create and train a CIFAR-100 image classifier. Use CNN for image classifica-
tion.

8. Capture a portrait of yours and stylize that image with another image of your
choice by applying neural style transfer.

9. Create an AutoEncoder to project the MNIST classifier dataset into the latent
space of 20 dimensions and use these 20 features to create an MNIST image
classifier.

10. Create a PGD adversarial attack algorithm by modifying the FGSM attack in
Listing 4.6. PGD attack algorithm can be found in [11].

11. Train a classifier with both clean and adversarial images so that the model can
recognize both clean and noisy images into the correct class. This is popularly
known as adversarial training [11].

310 4 Applications of Machine Learning: Signal Processing

References

1. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–
1105.

2. Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.
3. Gatys, L. A., Ecker, A. S., & Bethge, M. (2015). A neural algorithm of artistic style. arXiv

preprint arXiv:1508.06576.
4. Britto, R. https://www.pakocampo.com/garden/
5. Wiggers, K. Google’s Stadia uses style transfer ML to manipulate video game environ-

ments. https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-
game-environments/

6. Wang, Y., Yao, H., & Zhao, S. (2016). Auto-encoder based dimensionality reduction.
Neurocomputing, 184, 232–242.

7. Liu, F. T., Ting, K. M., & Zhou, Z.-H. (2008). Isolation forest. In 2008 Eighth IEEE
International Conference on Data Mining (pp. 413–422). IEEE.

8. Breunig, M. M., Kriegel, H.-P., Ng, R. T., & Sander, J. (2000). LOF: Identifying density-
based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data (pp. 93–104).

9. Dong, A., He, J., Xu, Z., Chen, S. X., Zhang, S., & Guo, B. Beijing Multisite Air-Quality
dataset. https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data

10. Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572.

11. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2018). Towards deep
learning models resistant to adversarial attacks. In International Conference on Learning
Representations.

12. Huang, S., Duan, Y., Abbeel, P., Clark, J., Goodfellow, I., Papernot, N. (2017). Attack-
ing machine learning with adversarial examples—openai.com. https://openai.com/research/
attacking-machine-learning-with-adversarial-examples [Accessed 09 Sep 2023].

13. High, R. (2012). The era of cognitive systems: An inside look at IBM Watson and how it
works. IBM Corporation, Redbooks, 1, 16.

14. Hoy, M. B. (2018). Alexa, Siri, Cortana, and more: An introduction to voice assistants. Medical
Reference Services Quarterly, 37(1), 81–88.

15. Google. Google voice assistant. https://assistant.google.com/
16. Robertson, S. NLP from scratch: Classifying names with a character-level RNN. https://

pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

https://www.pakocampo.com/garden/
https://www.pakocampo.com/garden/
https://www.pakocampo.com/garden/
https://www.pakocampo.com/garden/
https://www.pakocampo.com/garden/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://venturebeat.com/ai/googles-stadia-uses-style-transfer-ml-to-manipulate-video-game-environments/
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://archive.ics.uci.edu/ml/datasets/Beijing+Multi-Site+Air-Quality+Data
https://openai.com/research/attacking-machine-learning-with-adversarial-examples
https://openai.com/research/attacking-machine-learning-with-adversarial-examples
https://openai.com/research/attacking-machine-learning-with-adversarial-examples
https://openai.com/research/attacking-machine-learning-with-adversarial-examples
https://openai.com/research/attacking-machine-learning-with-adversarial-examples
https://openai.com/research/attacking-machine-learning-with-adversarial-examples
https://openai.com/research/attacking-machine-learning-with-adversarial-examples
https://openai.com/research/attacking-machine-learning-with-adversarial-examples
https://openai.com/research/attacking-machine-learning-with-adversarial-examples
https://openai.com/research/attacking-machine-learning-with-adversarial-examples
https://assistant.google.com/
https://assistant.google.com/
https://assistant.google.com/
https://assistant.google.com/
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html
https://pytorch.org/tutorials/intermediate/char_rnn_classification_tutorial.html

5Applications of Machine Learning: Energy
Systems

5.1 Introduction

Since the beginning of the electrical power systems implementation, it has under-
gone numerous significant changes, improvements, and evolution, such as the
transformation from DC power to AC power and now to smart grid systems. His-
torically, conventional energy systems have been passive in nature since the power
and information flow are unidirectional. The smart grid system incorporates various
renewable energy sources and distributed energy resources into the conventional
grid. The integration of different energy resources requires mutual communication,
data, and power flow between them; thus, the grid system becomes active in nature.
This bidirectional power and information flow helps more efficient and reliable
energy system operations and management.

The smart grid ecosystem’s interconnected communication and management
strategy is executed through various dedicated advanced communication devices,
protocols, phasor measurement units (PMU), and Internet of Things (IoT) devices.
These operations result in a large amount of data generation and accumulation.
Insights from these data can be utilized to ensure the most efficient and optimal
smart grid application. The application of machine learning (ML) models comes
into play in this data-centric decision-making process. For example, historical load
usage data can be used to train predictive ML models for short and long-term
electrical load forecasting. Various measurement data from PMUs can be used to
train ML models to detect and classify different electrical faults in real-time to
provide accurate and instantaneous protective measures.

Renewable energy integration plays a major part in smart grid systems. In
order to establish a sustainable renewable energy-based solution, proper long-
term planning of renewable energy establishment is essential. ML-based predictive
models can play a significant part in this regard. Moreover, ML can be implemented
to provide real-time power factor control and correction mechanism more efficiently

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
E. Hossain, Machine Learning Crash Course for Engineers,
https://doi.org/10.1007/978-3-031-46990-9_5

311

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46990-9protect T1	extunderscore 5&domain=pdf
https://doi.org/10.1007/978-3-031-46990-9_5
https://doi.org/10.1007/978-3-031-46990-9_5
https://doi.org/10.1007/978-3-031-46990-9_5
https://doi.org/10.1007/978-3-031-46990-9_5
https://doi.org/10.1007/978-3-031-46990-9_5
https://doi.org/10.1007/978-3-031-46990-9_5
https://doi.org/10.1007/978-3-031-46990-9_5
https://doi.org/10.1007/978-3-031-46990-9_5
https://doi.org/10.1007/978-3-031-46990-9_5
https://doi.org/10.1007/978-3-031-46990-9_5
https://doi.org/10.1007/978-3-031-46990-9_5

312 5 Applications of Machine Learning: Energy Systems

and quickly. ML models can also be applied in load monitoring, energy security, and
even as a helping hand for protection against cyber vulnerabilities and exploits.

Thus, data-driven ML-based methods have revolutionized energy systems’ oper-
ations and management structures. Independent energy market ecosystem, the ever-
increasing renewable energy penetration in power systems along with increasing
power electronics applications, application of phasor measurement units (PMU),
advanced communication, and Internet of Things (IoT) infrastructures in smart
grid ecosystem, and increased hardware capabilities—all of these contribute to the
generation and acquisition of a large amount of data in the energy domain. These
collected and related synthetic data can be utilized to train and deploy various
predictive and discriminative (classification) machine learning models to ensure
more precise and robust design, control, management, system optimization, and
system response in smart energy systems.

This chapter focuses on building a basic understanding of ML applications in
energy systems, which will act as a knowledge base for further study and research in
this particular domain. At first, we will study load forecasting and then dive into fault
analysis studies, followed by future trend prediction in renewable energy systems,
reactive power control, and power factor correction.

5.2 Load Forecasting

Load forecasting refers to predicting the electrical power demand and ensuring
adequate supply to meet the demand. This is helpful in formulating planning
and operational strategies for continuous and reliable operation of the electrical
generation, transmission, and distribution systems [1]. Electric load forecasting can
be of several types based on duration, such as long-term, medium-term, short-term,
and very short-term load forecasting, corresponding to annual, monthly, single-day,
and hourly load forecasting [2].

This section demonstrates a practical example of electrical load forecasting using
the hourly energy consumption data at Northern Illinois [3]. This section will use
a special kind of RNN, popularly known as the Long Short-Term Memory (LSTM)
network, to perform the forecasting task.

An LSTM network consists of two states in comparison to just one in RNN—
the cell state and the hidden state, which is depicted in Fig. 5.1. Each input enters
the model, combines with the hidden short-term memory, and then goes through
a set of activation functions (e.g., softmax, tanh). Finally, the output is produced
through arithmetic operations (e.g., addition/multiplication) with the cell state long-
term memory. At the same time, the model generates a new cell state and a hidden
state for future inputs. This type of model is ideal for predicting a series of sequential
data.

The dataset is illustrated graphically in Fig. 5.2, where the energy load (GW) is
displayed with respect to each year. The sliding window takes a portion of the year
as the training input X and predicts the subsequent load output as Y. The idea of
a sliding window is similar to the moving average concept, where a larger window

5.2 Load Forecasting 313

Fig. 5.1 An LSTM model consists of input, hidden state, cell state memory, and activation
functions (e.g., sigmoid, tanh)

Fig. 5.2 Forecasting data at Northern Illinois: Energy (MW) vs. Year plot. Each sliding window
contains a pair of training data (X,Y)

size will reduce our dataset size, and a smaller window size will make each data
sample oscillate without any visible pattern for the training model. In this example,
we chose a moderate window size of 30.

Programming Example 5.1
In Fig. 5.3, we demonstrate the necessary steps to follow in the PyTorch code to
build a predictor for the forecasting prediction. Listing 5.1 shows the code for
building the load forecasting model for the said dataset. First, we must process the
data and prepare the training samples (X,Y) in lines 67–109 of Listing 5.1. Next,
we define the LSTM model as shown in Fig. 5.1 in lines 123–150 of Listing 5.1.
Finally, the training and evaluation of the model are presented in lines 154–223 of
Listing 5.1. The overall summary of the code is presented in Table 5.1. The code is
written for an IPython or Jupyter Notebook environment.

314 5 Applications of Machine Learning: Energy Systems

Creating

input

features

Preprocessing,

scaling and

grouping

Defining the

models

Training the

models

Evaluating

the models

Fig. 5.3 Steps for building the load forecasting model. First, the data goes through a preparation
step, then a processing step, then we define the LSTM model and train the given dataset. Finally,
we evaluate the model using a hold-out validation dataset

1 # Dataset: https://www.kaggle.com/robikscube/hourly-energy-
consumption

2

3 # -------------------------Torch Modules-------------------------
4 import torch
5 import torch.nn as nn
6 import torch.nn.functional as F
7 from torch.utils.data import TensorDataset as ds
8 from torch.utils.data import DataLoader as DL
9 from tqdm.notebook import tqdm

10 from sklearn.preprocessing import MinMaxScaler
11 import os
12 import numpy as np
13 import pandas as pd
14 import matplotlib.pyplot as plt
15

16

17 # -----------------------Hyper-Parameters------------------------
18 # to keep track of index column
19 tar_idx = 0
20 in_idx = range(5)
21

22 # Define window_size period
23 kw = 30
24

25 # batch size
26 bs = 256
27

28 # number of training iterations
29 iters = 5
30 # number of layers
31 layers = 3
32 # learning rate
33 lr = 0.001
34

35

36 # -----------------------Data Preperation------------------------
37 data_path = "./data/NI_hourly.csv"
38 filename = "NI_hourly.csv"
39

40

41 # prepares the dataset for training and testing
42 def data_prep(data_values, kw, in_idx, tar_idx):
43

5.2 Load Forecasting 315

44 '''
45 This function creates a sliding window of the data and each

slice will be a potential input to the model with a target
label

46 '''
47

48 # creates input and label for training and testing
49 inputs = np.zeros((len(data_values) - kw, kw, len(in_idx)))
50 target = np.zeros(len(data_values) - kw)
51

52 # this loop creates input containing samples from kw window
and target value

53 for i in range(kw, len(data_values)):
54

55 inputs[i - kw] = data_values[i - kw:i, in_idx]
56 target[i - kw] = data_values[i, tar_idx]
57

58 inputs = inputs.reshape(-1, kw, len(in_idx))
59 target = target.reshape(-1, 1)
60 print(inputs.shape, target.shape)
61

62 return inputs, target
63

64

65 # This dictionary re-scale the target during evaluation
66 target_scalers = {}
67 trainX = []
68 testX = {}
69 testY = {}
70

71

72 # --------Reading the File: North Ilinois Power Load (MW)--------
73 df = pd.read_csv(f'{data_path}', parse_dates=[0])
74

75 #reading each input
76 df['Hours'] = df['Datetime'].dt.hour
77 df['Day_of_weeks'] = df['Datetime'].dt.dayofweek
78 df['Months'] = df['Datetime'].dt.month
79 df['Day_of_year'] = df['Datetime'].dt.dayofyear
80 df = df.sort_values("Datetime").drop('Datetime', axis=1)
81

82 # scaling the input
83 scale = MinMaxScaler()
84 target_scale = MinMaxScaler()
85 data_values = scale.fit_transform(df.values)
86

87 # target scaling for evaluation
88 target_scale.fit(df.iloc[:, tar_idx].values.reshape(-1, 1))
89 target_scalers[filename] = target_scale
90

91 # prepare dataset
92 inputs, target = data_prep(data_values, kw, in_idx=in_idx,

tar_idx=tar_idx)

316 5 Applications of Machine Learning: Energy Systems

93

94

95 testing_percent = int(0.2*len(inputs)) # 20 percent will be used
for testing

96

97 if len(trainX) == 0:
98 trainX = inputs[:-testing_percent]
99 trainY = target[:-testing_percent]
100 else:
101 trainX = np.concatenate((trainX, inputs[:-testing_percent]))
102 trainY = np.concatenate((trainY, target[:-testing_percent]))
103 testX[filename] = (inputs[-testing_percent:])
104 testY[filename] = (target[-testing_percent:])
105

106

107 # prepare train data
108 train_load = ds(torch.from_numpy(trainX), torch.from_numpy(trainY

))
109 train_dataloader = DL(train_load, shuffle=True, batch_size=bs,

drop_last=True)
110

111 # checking GPU availability
112 is_cuda = torch.cuda.is_available()
113

114 # If GPU available then train on GPU
115 device = torch.device("cuda") if is_cuda else torch.device("cpu")
116

117

118

119

120

121 # --------------------Defining the LSTM Model--------------------
122

123 class LSTMModel(nn.Module):
124 def __init__(self, input_dimension, hidden_dimension,

output_dimension, layers):
125

126 "LSTM model"
127

128 super(LSTMModel, self).__init__()
129 self.hidden_dimension = hidden_dimension
130 self.layers = layers
131

132 self.lstm = nn.LSTM(input_dimension, hidden_dimension,
layers,

133 batch_first=True, dropout=0.1)
134 # lstm layer
135 self.fc = nn.Linear(hidden_dimension, output_dimension)
136

137

138 def forward(self, x, h):
139 # forward path
140 out, h = self.lstm(x, h)

5.2 Load Forecasting 317

141 out = self.fc(F.relu(out[:, -1]))
142 return out, h
143

144 def init_hidden(self, bs):
145 w = next(self.parameters()).data
146

147 h = (w.new(self.layers, bs, self.hidden_dimension).zero_
().to(device),

148 w.new(self.layers, bs, self.hidden_dimension).
zero_().to(device))

149 return h
150

151

152 # ------------------------Train Function-------------------------
153

154 def train_model(train_dataloader, learning_rate, hidden_dimension
, layers, num_of_epoch):

155

156 ## training parameters
157 input_dimension = next(iter(train_dataloader))[0].shape[2]
158 output_dimension = 1
159

160 model = LSTMModel(input_dimension, hidden_dimension,
output_dimension, layers)

161 model.to(device)
162

163 # Mean Squared Error
164 loss_criterion = nn.MSELoss()
165 Adam_optimizer = torch.optim.Adam(model.parameters(), lr=

learning_rate)
166

167 model.train() # set to train mode
168

169

170 # Training start
171 for iteration in range(1, num_of_epoch+1):
172

173 h = model.init_hidden(bs)
174 avg_loss_cal = 0.
175

176 for data_values, target in train_dataloader:
177

178 h = tuple([e.data for e in h])
179

180 # as usual
181 model.zero_grad()
182

183 out, h = model(data_values.to(device).float(), h)
184 loss = loss_criterion(out, target.to(device).float())
185

186 # Perform backward differentiation
187 loss.backward()
188 Adam_optimizer.step()

318 5 Applications of Machine Learning: Energy Systems

189 avg_loss_cal += loss.item()
190

191 print(f"Epoch [{iteration}/{num_of_epoch}]: MSE: {
avg_loss_cal/len(train_dataloader)}")

192 return model
193 # Defining the model
194 model = train_model(train_dataloader, lr, 256, layers,iters)
195

196

197 # --------------------------Test Phase---------------------------
198 def test_model(model, testX, testY, target_scalers):
199 model.eval()
200 predictions = []
201 true_values = []
202

203 # get data of test data for each state
204 for filename in testX.keys():
205 inputs = torch.from_numpy(np.array(testX[filename]))
206 target = torch.from_numpy(np.array(testY[filename]))
207

208 h = model.init_hidden(inputs.shape[0])
209

210 # predict outputs
211 out, h = model(inputs.to(device).float(), h)
212

213 predictions.append(target_scalers[filename].
inverse_transform(

214 out.cpu().detach().numpy()).reshape(-1))
215

216 true_values.append(target_scalers[filename].
inverse_transform(

217 target.numpy()).reshape(-1))
218

219 # Merge all files
220 f_outputs = np.concatenate(predictions)
221 f_targets = np.concatenate(true_values)
222 Evaluation_error = 100/len(f_targets) * np.sum(np.abs(

f_outputs - f_targets) / (np.abs(f_outputs + f_targets))/2)
223 print(f"Evaluation Error: {round(Evaluation_error, 3)}%")
224

225 # list of targets/outputs for each state
226 return predictions, true_values
227

228

229 predictions, true_values = test_model(model, testX, testY,
target_scalers)

230

231

232 # --------------------------Visualizing--------------------------
233 plt.rcParams.update({'font.size': 18})
234 plt.figure(figsize=(12, 10))
235 plt.plot(predictions[0][-100:], "-r", color="r", label="LSTM

Output", markersize=2)

5.3 Fault/Anomaly Analysis 319

236 plt.plot(true_values[0][-100:], color="b", label="True Value")
237 plt.xlabel('Time (Data points)')
238 plt.ylabel('Energy Consumption (MW)')
239 plt.title(f'Energy Consumption for North Illinois state')
240 plt.legend()
241 plt.savefig('./results/load_forecasting.png')

Listing 5.1 Load Forecasting code

Table 5.1 Explanation of the load forecasting code in Listing 5.1

Line number Description

3–14 Importing PyTorch module

18–33 Setting hyperparameters

23 Sliding window size of 30 as describe by Fig. 5.2

37–38 The data folder contains the CSV file NI. _hourly

42–62 Data generating function

72–104 Reading the North Illinois power generation data

107–109 Creating dataloader

112–115 Enable GPU if available

123–149 LSTM model as depicted in Fig. 5.1

154–192 A train function to perform forward, backward, and model optimization

194 Training function call

198–230 Evaluation function and generating prediction output

233–241 Plotting the actual and predicted output

Figure 5.4 shows the performance of the trained LSTM model in predicting the
next energy consumption load at a given current state. The red curve—predicted
by the LSTM model—closely matches the blue curve, which is the true load of the
dataset with negligible error, proving the accuracy of the model for load forecasting.
So, this LSTM model can be used to predict any sequential forecasting or future
prediction problem, such as share market data, price of houses, and so on.

5.3 Fault/Anomaly Analysis

In electrical power systems, faults occur due to the passage of abnormal current
flowing through one or more phases. For example, when a live wire touches a neutral
wire, a short circuit fault occurs. Again, the current flows to the ground in the case
of a ground fault. The detection and clearing of faults is important to ensure the
reliable operation of the electrical power system. After successfully detecting the
fault, the circuit breaker and other protective devices operate immediately to protect
the system. ML techniques can be used for quick and accurate detection of electrical
faults. Before learning the application of ML in fault detection, let us quickly review
the different types of faults in electrical power systems.

320 5 Applications of Machine Learning: Energy Systems

Fig. 5.4 The output of the LSTM model (red curve) closely matches the original data (blue curve)

Types of faults

Asymmetric fault Symmetric fault

Line-to-line fault (LL)
Line-to-line-to-line

fault (LLL)

Line-to-line-to-line-to

ground fault (LLLG)-to-ground

fault (LLG)

Double line

Single line-to-ground

fault (SLG)

Fig. 5.5 Different types of faults in three-phase transmission line

5.3.1 Different Types of Electrical Faults

The three-phase faults in electrical power systems can be broadly classified into
asymmetric and symmetric faults. The complete classification is shown in Fig. 5.5.

1. Asymmetric faults: Asymmetric faults occur in only one or two phases in a
three-phase system, for which these faults are more difficult to analyze. The
asymmetric faults are of three types: line-to-line (LL) faults, single-line-to-

5.3 Fault/Anomaly Analysis 321

Fig. 5.6 Illustration of the sub-transient, transient, and steady-state periods during a short circuit
fault condition

ground (SLG) faults, and double line-to-ground (LLG) faults. The SLG fault is
the most common in power systems, making up about 65–70% of all faults. On
the other hand, the LL faults comprise only 5–10% of the faults, and the LLG
faults comprise 15–20% of the faults. The method of clearing the LL and LLG
faults is similar, so they are grouped as one type of fault here.

2. Symmetric faults: Symmetric faults occur on all three phases of the three-phase
system. So, the system remains balanced, but it causes severe damage to the
equipment connected to the system as the largest amount of fault current flows in
these faults. For this reason, the protective equipment of the system is rated based
on the symmetric fault current ratings. The protective measures should have faster
response capabilities because the amount of fault current is much higher for
symmetrical faults than for asymmetric faults. Two types of symmetric faults are
three-phase (3P) faults and triple-line-to-ground (LLLG) faults. Together, these
faults constitute only 2–5% of the power system faults.

When a fault occurs in an electrical system, a significant change in current is
observed. This change occurs in three main steps: the sub-transient, transient, and
steady state. These steps are depicted in Fig. 5.6 and described as follows.

1. Sub-transient state: When a circuit is suddenly switched on, the voltage and
the current do not immediately reach stable values. They start with a very high
peak value. This temporary condition is known as the sub-transient state. The AC

322 5 Applications of Machine Learning: Energy Systems

current flowing through the circuit during the sub-transient state is known as the
sub-transient current and is denoted by . I '', shown in Fig. 5.6. The amplitude of
this current can be up to ten times higher than the steady-state fault current. The
sub-transient reactance . X'' is expressed by the following equation, where . EA is
the voltage:

.X'' = EA

I '' . (5.1)

2. Transient state: After a switching operation in a circuit, the state with the high
peak values of the voltage and the current just after the sub-transient state is
known as the transient state. This state is also temporary, but the peak values
are slightly lesser than those in the sub-transient state. The AC current flowing
through the circuit during the transient state is known as the transient current,
denoted by . I ', shown in Fig. 5.6. The amplitude of this current can be up to
five times higher than the steady-state fault current. The transient reactance . X' is
expressed by the following equation, where . EA is the voltage:

.X' = EA

I ' . (5.2)

3. Steady State: The steady state refers to the condition where the current and
voltage within the circuit do not change. A definite amplitude and frequency
are maintained. The AC current flowing through the circuit during the steady-
state period is known as the steady-state current. It is denoted by . ISS , shown in
Fig. 5.6. The steady-state reactance .XSS is expressed by the following equation,
where . EA is the voltage:

.XSS = EA

ISS

. (5.3)

The knowledge of these three states is pivotal to understanding electrical fault
analysis. In the next section, we will learn about electrical fault detection.

5.3.2 Fault Detection

We use a synthetic dataset, i.e., an artificially made dataset, for the fault detection
task. The dataset is generated in a Simulink environment. Figure 5.7 shows the
Simulink block diagram, which is used to generate the required dataset for the fault
detection task. The simulation consists of a three-phase 60Hz AC power source with
480 V phase-to-phase voltage. The three-phase fault block is used to generate the
data during the fault condition (SLG, LL, LLG, and LLLG). The parameters of the
fault block are shown in Fig. 5.8.

The faults can be emulated by checking the corresponding boxes in the “Fault
between” section in the Block Parameters window. The output data are monitored

5.3 Fault/Anomaly Analysis 323

Fig. 5.7 Simulink block diagram for data generation

Fig. 5.8 Block parameters of the three-phase fault

324 5 Applications of Machine Learning: Energy Systems

through two different bus scopes—“Bus A Scope” and “Bus B Scope.” The three-
phase fault block is connected to Bus B to induce a fault in the system and is
separated by an instantaneous overcurrent relay. The instantaneous overcurrent relay
block was imported from MathWorks file exchange, developed by Rodney Tan [4].
The block has been modified to give its output in per-unit, and a block “cnvrt” has
been implemented to match the per-unit system. Before and after the fault occurs,
Bus A maintains a steady state.

The data from the steady state, transient, overload, and fault conditions are
collected from the two bus scopes and are logged to create an array variable. Some
samples of each current state are shown in Fig. 5.9. The array is then converted to

Fig. 5.9 Samples of different states of current. (a) Steady-state. (b) Transient. (c) Overload. (d)
Fault condition

5.3 Fault/Anomaly Analysis 325

Table 5.2 Data participation of different current states

State Steady-State Transient Overload Fault

Class 0 1 2 3

Current Level Up to 100% 115% to 175% 105% More than 800%

Participation 50% 20% 10% 20%

Table 5.3 Dataset sample

ID Class 0 0.005 0.01 0.99 0.995 1

1 1 . −0.18512 0.39479 . −0.05887 0.18512 . −0.39479 0.058872

2 3 . −0.10734 . −0.12703 0.18584 0.10734 0.12703 . −0.18584

.

499 0 . −0.09221 0.197 . −0.02954 0.092209 . −0.197 0.029544

500 2 0.97743 . −0.42154 . −0.7169 −0.97743 0.42154 0.7169

a CSV file using MATLAB. The data in the dataset have been acquired by taking
each current signal of 1 second time window, sampled at 5 ms. Table 5.2 shows the
four current states considered for this dataset.

A sample of the synthesized dataset consisting of signal id, class, and time stamps
is depicted in Table 5.3.

Programming Example 5.2
This fault detection task turns out to be a classification task, a four-class classi-
fication in our case. The features of this dataset are one-dimensional time series.
Therefore, we will use a 1D CNN-based classifier for the fault detection task.
Listing 5.2 narrates the code for the fault detection system, followed by its output,
confusion matrix in Fig. 5.10 and explanation in Table 5.4.

1 import numpy as np
2 import pandas as pd
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 import torch
6 import torch.nn as nn
7 import torch.optim as optim
8 from sklearn.preprocessing import LabelEncoder
9 from sklearn.model_selection import train_test_split

10 from sklearn.metrics import confusion_matrix
11 from torch.utils.data import DataLoader as DL
12 from torch.utils.data import TensorDataset as ds
13 # ---------------Read the dataset & Preprocess-------------------
14 df_class = pd.read_csv("./data/Dataset.csv")
15

16 df_trans = df_class.iloc[:, 2:].T

326 5 Applications of Machine Learning: Energy Systems

17 df_norm = (df_trans - df_trans.min()) / (df_trans.max() -
df_trans.min())

18

19

20 df = pd.concat([df_class.iloc[:, :2].T, df_norm]).T
21

22

23 encoder = LabelEncoder()
24 df['Class'] = encoder.fit_transform(df['Class'])
25

26 X = df.drop(['Class'], axis=1)
27 y = df['Class']
28

29

30 signals = torch.from_numpy(X.values).float()
31 signals = signals.unsqueeze(1)
32 target = torch.tensor(y, dtype=torch.long)
33

34

35 # -------------------Splitting the dataset-----------------------
36 X_train_test, X_test, y_train_test, y_test = train_test_split(

signals, target, test_size=0.2, random_state=42)
37 X_train, X_val, y_train, y_val = train_test_split(X_train_test,

y_train_test, test_size=0.2, random_state=42)
38

39

40 # ------------------------Define model---------------------------
41 class CNNModel(nn.Module):
42 def __init__(self):
43 super(CNNModel, self).__init__()
44 self.conv1 = nn.Conv1d(1, 32, kernel_size=3)
45 self.pool = nn.MaxPool1d(kernel_size=2)
46 self.flatten = nn.Flatten()
47 self.fc1 = nn.Linear(32 * ((signal_length // 2) - 1), 4)
48 self.fc2 = nn.Linear(4, num_classes)
49 def forward(self, x):
50 x = self.conv1(x)
51 x = self.pool(x)
52 x = self.flatten(x)
53 x = self.fc1(x)
54 x = self.fc2(x)
55 return x
56

57 # Set the hyperparameters
58 learn_rate = 0.001
59 bs = 1 #batch_size
60 no_of_epochs = 320
61 signal_length = X.shape[1]
62 num_classes = len(encoder.classes_)
63

64

65 # ----------------------Initialize model-------------------------
66 model = CNNModel()

5.3 Fault/Anomaly Analysis 327

67

68 loss_criterion = nn.CrossEntropyLoss()
69 optimizer = optim.Adam(model.parameters(), lr=learn_rate)
70

71 # Set the device to use GPU if available, otherwise use CPU
72 device = torch.device("cuda" if torch.cuda.is_available() else "

cpu")
73 model.to(device)
74

75

76 training_dataset = ds(X_train, y_train)
77 training_loader = DL(training_dataset, batch_size=bs, shuffle=

True)
78

79 validation_dataset = ds(X_val, y_val)
80 validation_loader = DL(validation_dataset, batch_size=bs)
81

82 test_dataset = ds(X_test, y_test)
83 test_loader = DL(test_dataset, batch_size=bs)
84 # Lists to store epoch and test accuracy
85 epoch_list = []
86 test_accuracy_list = []
87

88

89 # ------------------------Training loop--------------------------
90 for epoch in range(no_of_epochs):
91 model.train()
92 running_loss = 0.0
93 for data, target in training_loader:
94 data, target = data.to(device), target.to(device)
95 optimizer.zero_grad()
96 outputs = model(data)
97 loss = loss_criterion(outputs, target)
98 loss.backward()
99 optimizer.step()
100 running_loss += loss.item()
101

102 model.eval()
103 val_loss = 0.0
104 correct_flag = 0
105 total = 0
106

107 with torch.no_grad():
108 for data, target in validation_loader:
109 data, target = data.to(device), target.to(device)
110 outputs = model(data)
111 loss = loss_criterion(outputs, target)
112 val_loss += loss.item()
113 _, predicted_value = torch.max(outputs.data, 1)
114 total += target.size(0)
115 correct_flag += (predicted_value == target).sum().

item()
116

328 5 Applications of Machine Learning: Energy Systems

117 # Store epoch number and test accuracy
118 epoch_list.append(epoch + 1)
119 test_accuracy_list.append((correct_flag / total) * 100)
120

121 print(f"Epoch No {epoch+1:3d}: Training Loss: {running_loss/
len(training_loader):.4f},Validation Loss: {val_loss/len(
validation_loader):.4f},\n Validation Accuracy:
{(correct_flag/total)*100:.2f}%")

122

123

124 # -------------------------Evaluation----------------------------
125 model.eval()
126 testing_loss = 0.0
127 correct_flag = 0
128 total = 0
129 predictions = []
130 true_labels = []
131 with torch.no_grad():
132 for data, target in test_loader:
133 data, target = data.to(device), target.to(device)
134 outputs = model(data)
135 loss = loss_criterion(outputs, target)
136 testing_loss += loss.item()
137 _, predicted_value = torch.max(outputs.data, 1)
138 total += target.size(0)
139 correct_flag += (predicted_value == target).sum().item()
140 predictions.extend(predicted_value.cpu().numpy())
141 true_labels.extend(target.cpu().numpy())
142

143 print(f"Testing Loss: {testing_loss / len(test_loader):.4f},
Testing Accuracy: {(correct_flag / total) * 100:.2f}%")

144

145 predictions = np.array(predictions)
146 true_labels = np.array(true_labels)
147

148 # Calculate confusion matrix
149 cm = confusion_matrix(true_labels, predictions)
150

151

152 # --------------------------Plotting-----------------------------
153 plt.figure(figsize=(8, 6))
154 sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")
155 plt.xlabel("Predicted")
156 plt.ylabel("True")
157 plt.show()

Listing 5.2 Code for the fault detection by different states of current detection

5.3 Fault/Anomaly Analysis 329

Fig. 5.10 Confusion matrix

Output of Listing 5.2:

Epoch 1: Train Loss: 1.1283, Validation Loss: 0.8917,
Validation Accuracy: 70.00%

Epoch 2: Train Loss: 0.9092, Validation Loss: 0.8454,
Validation Accuracy: 72.50%

Epoch 3: Train Loss: 0.7046, Validation Loss: 0.6727,
Validation Accuracy: 78.75%

Epoch 4: Train Loss: 0.6034, Validation Loss: 0.6303,
Validation Accuracy: 75.00%

Epoch 5: Train Loss: 0.5551, Validation Loss: 0.5597,
Validation Accuracy: 75.00%

.

.

.

.

.
Epoch 318: Train Loss: 0.0275, Validation Loss: 0.0699,

Validation Accuracy: 96.25%
Epoch 319: Train Loss: 0.0286, Validation Loss: 0.2215,

Validation Accuracy: 92.50%
Epoch 320: Train Loss: 0.1019, Validation Loss: 0.1029,

Validation Accuracy: 93.75%
Testing Loss: 0.2265, Testing Accuracy: 96.00%

Fault detection is the preliminary step to a safe and healthy network. The use of
ML is a boon to accurately and quickly detect faults in the electrical power system.
Next, we will study fault classification using ML.

5.3.3 Fault Classification

We should know the type of fault to implement the remedial action to eradicate the
fault. So, in addition to fault detection, fault classification is also necessary. This
section will apply artificial neural networks (ANN) to detect and classify faults in
three-phase electrical transmission lines. Each fault is detected by observing the
three-phase line currents and voltages, so these will be the input parameters for the
ANN model. Also, we have seen that we now have three types of faults depending
on their occurrence and method of clearing. So, there are a total of four parameters

330 5 Applications of Machine Learning: Energy Systems

Table 5.4 Explanation of the fault detection code example presented in Listing 5.2

Line number Description

1–10 Importing library files

14–20 Data loading normalizing the data

23–24 Encoding the labels

26–32 Separating labels converting to tensors

36–37 Train, test, and validation data split

39–55 Defining CNN

57–62 Setting up hyperparameters

66 Initializing the CNN model

68–69 Loss function and optimizer defining

72–73 Code for using GPU, if available

76–83 Creating data loaders for training, testing, and validation data

85–86 List for accuracy vs. epoch plot

90–100 Training loop optimizes

102 Initialize model evaluation

107–115 After each epoch, the model is evaluated on the validation data from val_loader
to calculate the validation loss and accuracy

118–119 Update epoch and accuracy list

121 Print Epoch number, train loss, validation loss, accuracy

124–130 Evaluation phase initialization

131–143 Tests predicted data with testing dataset

145–150 From “true_labels” and “predictions” creating confusion matrix

152–157 Plotting confusion matrix

I1

I2

I3

V1

V2

V3

Hidden

layer 1

30

(relu)

Hidden

layer 2

30

(relu)

Hidden

layer 3

30

(relu)

Hidden

layer 4

30

(relu)

Hidden

layer 5

30

(relu)

Output

Layer

4

(sigmoid)

Input

Layer

6

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

LG

LL or

LLG

LLL

or

LLLG

No

fault

I1, I2, I3 are three phase line currents.

V1, V2, V3 are three phase line to line voltages.

Fig. 5.11 ANN model used in Listing 5.3 for fault classification in transmission line

5.3 Fault/Anomaly Analysis 331

as output from the ANN model—three for the fault types and one for the no-fault or
healthy case. The fault is detected from the largest value of the output layer. We will
use five hidden layers—each of 30 units—in the ANN as shown in Fig. 5.11. The
accuracy of the model is 100%, which is required for the safety of the transmission
line.

Programming Example 5.3
Listing 5.3 shows the code for this, and its explanation is provided in Table 5.5.

The data for this example has been obtained from simulation using MATLAB or
Simulink. Two 400 kV (rms) generators have been used to simulate the model. The
total transmission length is 600 km, and the fault is considered at the middle of the
line. The simulation is not discussed here since it is not relevant to the scope of this
book. The dataset has been uploaded into the data folder of the GitHub repository
named “data_fault_detection.csv”; this file contains the value of the 3-phase line
currents and voltages and their corresponding one hot encoded vector for four types
of output.

1 #Source: https://www.kaggle.com/esathyaprakash/electrical-fault-
detection-and-classification

2 #Paper: https://springerplus.springeropen.com/articles/10.1186/
s40064-015-1080-x

3

4

5 # -------------------------Torch Modules-------------------------
6 import numpy as np
7 import pandas as pd
8 import torch.nn as nn
9 import math

10 import torch
11 from torch.nn import init
12 import torch.utils.data as data_utils
13 import torch.optim as optim
14 from torchvision import models
15 import torch.nn.functional as F
16

17

18 # ---------------------------Variables---------------------------
19 BATCH_SIZE = 128
20 Iterations = 100
21 learning_rate = 0.01
22

23

24 # ------------------Commands to Prepare Dataset------------------
25 data_set = pd.read_csv("./data/data_fault_detection.csv")
26 torch.manual_seed(18)
27

28 target_value = torch.tensor(data_set["Fault_type"].values.astype(
np.float32))

29 input_value = torch.tensor(data_set.drop(columns = ["Fault_type"
]).values.astype(np.float32))

30

332 5 Applications of Machine Learning: Energy Systems

31 data_tensor = data_utils.TensorDataset(input_value, target_value)
32

33 train_set_size = math.floor(input_value.size()[0]*0.90)
34 test_set_size = input_value.size()[0]-train_set_size
35

36 train_set, test_set = torch.utils.data.random_split(data_tensor,
[train_set_size, test_set_size])

37

38 train_loader = data_utils.DataLoader(dataset = train_set,
batch_size = BATCH_SIZE, shuffle = True)

39 test_loader = data_utils.DataLoader(dataset = test_set,
batch_size = BATCH_SIZE, shuffle = True)

40

41

42 # --------------------------Defining ANN-------------------------
43 class ANN(nn.Module):
44 def __init__(self):
45 super(ANN, self).__init__()
46 self.l1 = nn.Linear(6, 30)
47 self.relu = nn.ReLU()
48 self.l2 = nn.Linear(30, 30)
49 self.l3 = nn.Linear(30, 4)
50 self.sigmoid = nn.Sigmoid()
51

52 def forward(self, x):
53 x = self.l1(x)
54 x = self.relu(x)
55

56 x = self.l2(x)
57 x = self.relu(x)
58

59 x = self.l2(x)
60 x = self.relu(x)
61

62 x = self.l2(x)
63 x = self.relu(x)
64

65 x = self.l2(x)
66 x = self.relu(x)
67

68 x = self.l3(x)
69 x = self.sigmoid(x)
70 return x
71

72 # defining ANN model
73 model = ANN()
74 ## Loss function
75 criterion = torch.nn.CrossEntropyLoss()
76

77 # definin which paramters to train only the ANN model parameters
78 optimizer = torch.optim.SGD(model.parameters(), lr =

learning_rate)
79

5.3 Fault/Anomaly Analysis 333

80 # defining the training function
81 def train(model, optimizer, criterion,epoch):
82 model.train()
83 total_trained_data = 0
84 for batch_idx, (data, target) in enumerate(train_loader):
85 optimizer.zero_grad()
86 output = model(data)
87 loss = criterion(output, target.type(torch.LongTensor))
88 loss.backward()
89 optimizer.step()
90 total_trained_data += len(data)
91 if (batch_idx !=0 and batch_idx % 30 == 0) or

total_trained_data == len(train_loader.dataset):
92 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f

}'.format(
93 epoch, total_trained_data, len(train_loader.

dataset),
94 100. * batch_idx / len(train_loader), loss.item()

))
95

96

97 # ---------------------------Evaluation--------------------------
98 def test(model, criterion, val_loader, epoch):
99 model.eval()
100 test_loss = 0
101 correct = 0
102

103 with torch.no_grad():
104 for batch_idx, (data, target) in enumerate(val_loader):
105 output = model(data)
106 test_loss += criterion(output, target.type(torch.

LongTensor)).item()
107 pred = output.max(1, keepdim=True)[1]
108 correct += pred.eq(target.view_as(pred)).sum().item()
109

110 test_loss /= len(val_loader.dataset)
111 if epoch:
112 print('\nTrain set: Average loss: {:.4f}, Accuracy: {}/{}

({:.4f}%)\n'.format(
113 test_loss, correct, val_loader.sampler.__len__(),
114 100. * correct / val_loader.sampler.__len__()))
115 else:
116 print('Test set: Average loss: {:.4f}, Accuracy: {}/{}

({:.4f}%)\n'.format(
117 test_loss, correct, val_loader.sampler.__len__(),
118 100. * correct / val_loader.sampler.__len__()))
119

120 ## training the ANN
121 for i in range(Iterations):
122 train(model, optimizer,criterion,i)
123 test(model, criterion, train_loader, i)
124 test(model, criterion, test_loader, False)
125

334 5 Applications of Machine Learning: Energy Systems

126 def pred(data): #prediciton function for single data
127 output = model(data)
128 output = output.tolist()
129 index = output.index(max(output))
130

131 if index == 3:
132 print("No fault detected.")
133 else:
134 string = ["SLG", "LL or LLG", "LLL or LLLG"]
135 type_fault = string[index]
136 print(f"Fault detected. Type of fault is {type_fault}.")
137

138 for input_data, _ in test_loader:
139 for value in input_data:
140 pred(value)

Listing 5.3 Transmission line fault detection using ANN [5, 6]

Output after line 121 of Listing 5.3:

Train Epoch: 0 [3968/16093 (24%)] Loss: 1.119744
Train Epoch: 0 [7808/16093 (48%)] Loss: 1.088864
Train Epoch: 0 [11648/16093 (71%)] Loss: 0.936920
Train Epoch: 0 [15488/16093 (95%)] Loss: 0.947128
Train Epoch: 0 [16093/16093 (99%)] Loss: 0.918876
Test set: Average loss: 0.0073,
Accuracy: 11987/16093 (74.4858%)

Train Epoch: 1 [3968/16093 (24%)] Loss: 0.967388
Train Epoch: 1 [7808/16093 (48%)] Loss: 0.879457
Train Epoch: 1 [11648/16093 (71%)] Loss: 0.887392
Train Epoch: 1 [15488/16093 (95%)] Loss: 0.875771
Train Epoch: 1 [16093/16093 (99%)] Loss: 0.876310

Train set: Average loss: 0.0069,
Accuracy: 11950/16093 (74.2559%)
......
......
......
......
Train Epoch: 98 [3968/16093 (24%)] Loss: 0.743768
Train Epoch: 98 [7808/16093 (48%)] Loss: 0.743760
Train Epoch: 98 [11648/16093 (71%)] Loss: 0.743745
Train Epoch: 98 [15488/16093 (95%)] Loss: 0.743782
Train Epoch: 98 [16093/16093 (99%)] Loss: 0.743839

Train set: Average loss: 0.0058,
Accuracy: 16093/16093 (100.0000%)

5.3 Fault/Anomaly Analysis 335

Train Epoch: 99 [3968/16093 (24%)] Loss: 0.743809
Train Epoch: 99 [7808/16093 (48%)] Loss: 0.743778
Train Epoch: 99 [11648/16093 (71%)] Loss: 0.743793
Train Epoch: 99 [15488/16093 (95%)] Loss: 0.743708
Train Epoch: 99 [16093/16093 (99%)] Loss: 0.743869

Train set: Average loss: 0.0058,
Accuracy: 16093/16093 (100.0000%)

Test set: Average loss: 0.0058,
Accuracy: 1789/1789 (100.0000%)

Output after line 139 of Listing 5.3

Table 5.5 Explanation of the fault classification code example presented in Listing 5.3

Line number Description

5–12 Importing Matplotlib, Pandas, PyTorch

18–21 Defining batch size, iteration number, and learning rate

24–39 Preparing dataset using pandas. Test-train split, data shuffle have also been done
here

42–70 Defining ANN model as presented in Fig. 5.11

72–75 Defining loss function and model optimizer

77–94 Function to train the model has been defined here

97–118 Function to evaluate the model during and after the training

120–124 Training of the model begins here

126–136 Function to predict fault from data

138–140 A prediction of the faults has been demonstrated

:

Fault detected. Type of fault is LL or LLG.
Fault detected. Type of fault is SLG.
Fault detected. Type of fault is SLG.
Fault detected. Type of fault is LLL or LLLG.
......
......
......
......
Fault detected. Type of fault is LLL or LLLG.
No fault detected.
Fault detected. Type of fault is SLG.
Fault detected. Type of fault is SLG.
Fault detected. Type of fault is LLL or LLLG.
Fault detected. Type of fault is LLL or LLLG.

336 5 Applications of Machine Learning: Energy Systems

Thus, we have studied different types of electrical faults and devised ML models
to detect and classify them when they occur. In the next section, we will study partial
discharge detection using ML.

5.3.4 Partial Discharge Detection

In electrical systems, a partial discharge occurs when the space between any two
conductors is very small, and the voltage across the space is high enough to cause
a localized dielectric breakdown. Electrical faults can lead to a partial discharge
phenomenon in the power systems. Partial discharge gradually damages the power
lines, and a prolonged partial discharge may lead to catastrophic failure and power
outage. Overhead high voltage and medium voltage power lines span hundreds of
miles in a typical grid system. A partial discharge might occur at any part of the line,
but it is impractical to continuously inspect the power lines manually for any type
of minor physical damage or disturbance that does not readily destroy the lines. So,
it is essential to automatically detect any occurrence of partial discharge as early as
possible to take necessary preventive measures.

A potential solution to this problem is to train a classifier on power line signals
to detect the faulty signal and inspect that respective power line. Here, we will use
the dataset from the VSB Power Line Fault Detection competition [7] for partial
discharge detection.

Programming Example 5.4
We will make a 1D convolutional neural network (CNN)-based approach to train our
partial discharge classifier shown in Listing 5.4 (explained in Table 5.6). A subset
of the dataset is considered, maintaining a ratio between the number of positive
and negative samples. If the full dataset were taken for training, it would overfit
the training. From the balanced combination of the positive and negative samples,
the training and testing datasets are created. All the data are reshaped to match the
input layer of the CNN layer. The train and test dataset are created utilizing the train
and test dataloader. A CNN model is defined, which incorporates convolutional,
fully connected, and activation layers. As this is a binary classification task, the
BCELoss is used as the loss function and the Adam optimizer is employed for
optimization. Afterward, evaluation is done on both the training and test datasets.
The code is written for the Python environment, but the computational time will be
reduced if it is executed in any cloud IPython environment. Sometimes, the system
cannot allocate enough memory to execute the code. In such cases, switch to cloud
platforms.

1 # Dataset: https://www.kaggle.com/competitions/vsb-power-line-
fault-detection/data

2 # Download train.parquet and metadata_train.csv files
3

5.3 Fault/Anomaly Analysis 337

4 import torch
5 import torch.nn as nn
6 import torch.optim as optim
7 import torch.utils.data as Data
8 import numpy as np
9 import pandas as pd

10 import pyarrow.parquet as pq
11 import matplotlib.pyplot as plt
12 import seaborn as sns
13 from sklearn.preprocessing import StandardScaler
14 from sklearn.metrics import confusion_matrix
15 from sklearn.model_selection import train_test_split
16

17

18 # ---------------Read the dataset & Preprocess-------------------
19 # Download from the dataset link and replace the path
20 subset_train = pq.read_pandas('../input/vsb-power-line-fault-

detection/train.parquet',
21 columns=[str(i) for i in range(5000)]).to_pandas()
22 # Read half of the data among 800000 samples
23 subset_train = subset_train.iloc[200000:600000, :]
24 subset_train.info()
25

26 metadata_train = pd.read_csv('../input/vsb-power-line-fault-
detection/metadata_train.csv')

27 metadata_train.info()
28

29 # Reduce the sample sizes to stay within memory limits
30 S_decimation = subset_train.iloc[0:25000:8, :]
31 small_subset_train = S_decimation
32 small_subset_train = small_subset_train.transpose()
33 small_subset_train.index = small_subset_train.index.astype(np.

int32)
34 train_dataset = metadata_train.join(small_subset_train, how='

right')
35

36 ### Uncomment the following to train on the full dataset
37 # subset_train = subset_train.transpose()
38 # subset_train.index = subset_train.index.astype(np.int32)
39 # train_dataset = metadata_train.join(subset_train, how='right')
40

41

42 # ----------Separating positive and negative samples-------------
43 positive_samples = train_dataset[train_dataset['target'] == 1]
44 positive_samples = positive_samples.iloc[:, 3:]
45

46 print("positive_samples data shape: " + str(positive_samples.
shape) + "\n")

47 positive_samples.info()
48

49 y_train_pos = positive_samples.iloc[:, 0]
50 X_train_pos = positive_samples.iloc[:, 1:]
51 scaler = StandardScaler()

338 5 Applications of Machine Learning: Energy Systems

52 scaler.fit(X_train_pos.T) # Normalize the data set
53 X_train_pos = scaler.transform(X_train_pos.T).T
54

55 negative_samples = train_dataset[train_dataset['target'] == 0]
56 negative_samples = negative_samples.iloc[:, 3:]
57

58 print("negative_samples data shape: " + str(negative_samples.
shape) + "\n")

59 negative_samples.info()
60

61 y_train_neg = negative_samples.iloc[:, 0]
62 X_train_neg = negative_samples.iloc[:, 1:]
63 scaler.fit(X_train_neg.T)
64 X_train_neg = scaler.transform(X_train_neg.T).T
65

66

67 # -------------------Splitting the dataset-----------------------
68 X_train_pos, X_valid_pos, y_train_pos, y_valid_pos =

train_test_split (X_train_pos,
69 y_train_pos,
70 test_size=0.3,
71 random_state=0,
72 shuffle=False)
73 X_train_neg, X_valid_neg, y_train_neg, y_valid_neg =

train_test_split (X_train_neg,
74 y_train_neg,
75 test_size=0.3,
76 random_state=0,
77 shuffle=False)
78

79 print("X_train_pos data shape: " + str(X_train_pos.shape))
80 print("X_train_neg data shape: " + str(X_train_neg.shape))
81 print("y_train_pos data shape: " + str(y_train_pos.shape))
82 print("y_train_neg data shape: " + str(y_train_neg.shape))
83

84 print("\nX_valid_pos data shape: " + str(X_valid_pos.shape))
85 print("X_valid_neg data shape: " + str(X_valid_neg.shape))
86 print("y_valid_pos data shape: " + str(y_valid_pos.shape))
87 print("y_valid_neg data shape: " + str(y_valid_neg.shape))
88

89

90 # -----------Combine positive and negative samples---------------
91 # Keeping the the samples balanced
92 # 550 and 270 is used to make sure
93 # a correct ratio of positive and negative samples
94 def combine_pos_and_neg_samples(pos_samples, neg_samples, y_pos,

y_neg):
95 X_combined = np.concatenate((pos_samples, neg_samples))
96 y_combined = np.concatenate((y_pos, y_neg))
97 combined_samples = np.hstack((X_combined, y_combined.reshape(

y_combined.shape[0], 1)))
98 np.random.shuffle(combined_samples)
99 return combined_samples

5.3 Fault/Anomaly Analysis 339

100

101

102 train_samples = combine_pos_and_neg_samples(X_train_pos,
103 X_train_neg[:550, :],
104 y_train_pos,
105 y_train_neg[:550])
106 X_train = train_samples[:, :-1]
107 y_train = train_samples[:, -1]
108

109 print("X_train data shape: " + str(X_train.shape))
110 print("y_train data shape: " + str(y_train.shape))
111 print("train_samples data shape: " + str(train_samples.shape))
112

113 validation_samples = combine_pos_and_neg_samples(X_valid_pos,
114 X_valid_neg[:270, :],
115 y_valid_pos,
116 y_valid_neg[:270])
117 X_valid = validation_samples[:, :-1]
118 y_valid = validation_samples[:, -1]
119

120 print("\nX_valid data shape: " + str(X_valid.shape))
121 print("y_valid data shape: " + str(y_valid.shape))
122 print("validation_samples data shape: " + str(validation_samples.

shape))
123

124

125 # -----Reshape training and validation data for input layer------
126 X_train = X_train.reshape(-1, 1, 3125)
127 X_valid = X_valid.reshape(-1, 1, 3125)
128 print("X_train data shape: " + str(X_train.shape))
129 print("X_valid data shape: " + str(X_valid.shape))
130 print("y_train data shape: " + str(y_train.shape))
131 print("y_valid data shape: " + str(y_valid.shape))
132

133 X_valid = X_valid.astype(np.float32)
134 y_valid = y_valid.astype(np.float32)
135 X_train = X_train.astype(np.float32)
136 y_train = y_train.astype(np.float32)
137 print("Type of data: " + str(X_train.dtype))
138

139

140 # ---------------------Normalize feature-------------------------
141 print("Total samples in train dataset: " + str(np.sum(y_train)))
142 print("Total samples in validation dataset: " + str(np.sum(

y_valid)))
143

144 def feature_normalize(data):
145 mu = np.mean(data, axis=0)
146 std = np.std(data, axis=0)
147 return (data - mu) / std
148

149

150 X_valid = feature_normalize(X_valid)

340 5 Applications of Machine Learning: Energy Systems

151 X_train = feature_normalize(X_train)
152

153

154 # ---------------------Define dataloader-------------------------
155 class torch_Dataset(Data.Dataset):
156 def __init__(self, x, y):
157 self.x = torch.from_numpy(x)
158 self.y = torch.from_numpy(y)
159

160 def __getitem__(self, index):
161 data = (self.x[index], self.y[index])
162 return data
163

164 def __len__(self):
165 return len(self.y)
166

167

168 def training_loader(train_data, batch_size, shuffle):
169 return torch.utils.data.DataLoader(train_data, batch_size,

shuffle)
170

171 Train_dataset = torch_Dataset(X_train, y_train)
172 test_dataset = torch_Dataset(X_valid, y_valid)
173 train_loader = training_loader(Train_dataset, batch_size=1,

shuffle=False)
174 test_loader = training_loader(test_dataset, batch_size=1, shuffle

=False)
175

176

177 # ------------------------Define model---------------------------
178 class CNNModel(nn.Module):
179 def __init__(self):
180 super(CNNModel, self).__init__()
181

182 # Convolutional layers
183 self.conv1 = nn.Conv1d(1, 32, kernel_size=3, stride=1)
184 self.relu1 = nn.ReLU()
185 self.pool1 = nn.MaxPool1d(kernel_size=2, stride=2)
186

187 self.conv2 = nn.Conv1d(32, 64, kernel_size=3, stride=1)
188 self.relu2 = nn.ReLU()
189 self.pool2 = nn.MaxPool1d(kernel_size=2, stride=2)
190

191 # Fully connected layers
192 self.fc1 = nn.Linear(64 * 779, 128)
193 self.relu3 = nn.ReLU()
194 self.fc2 = nn.Linear(128, 1)
195 self.sigmoid = nn.Sigmoid()
196

197 def forward(self, x):
198 x = self.conv1(x)
199 x = self.relu1(x)
200 x = self.pool1(x)

5.3 Fault/Anomaly Analysis 341

201

202 x = self.conv2(x)
203 x = self.relu2(x)
204 x = self.pool2(x)
205

206 x = x.view(x.size(0), -1)
207

208 x = self.fc1(x)
209 x = self.relu3(x)
210 x = self.fc2(x)
211 x = self.sigmoid(x)
212

213 return x
214

215

216 model = CNNModel()
217 print(model)
218 optimizer = optim.Adam(model.parameters())
219 criterion = nn.BCELoss()
220

221

222 # ------------------------Training loop--------------------------
223 for epoch in range(10):
224 losses = []
225 for data, target in train_loader:
226 output = model(data)
227 target = target.view([1, 1])
228 loss = criterion(output, target)
229 losses.append(loss.item())
230 optimizer.zero_grad()
231 loss.backward()
232 optimizer.step()
233 print(f"Epoch {epoch + 1}: loss {sum(losses) / len(losses)}")
234

235

236 # -------------------------Evaluation----------------------------
237 def validate(model, train_loader, val_loader):
238 accdict = {}
239 for name, loader in [("train dataset", train_loader), ("test

dataset ", val_loader)]:
240 correct = 0
241 total = 0
242 predictions = []
243 true_labels = []
244 with torch.no_grad():
245 for imgs, labels in loader:
246 imgs = imgs.float()
247 outputs = model(imgs)
248 predicted = torch.max(outputs)
249 if (predicted > 0.5):
250 fault_detected = 1
251 else:
252 fault_detected = 0

342 5 Applications of Machine Learning: Energy Systems

253 total += labels.shape[0]
254 correct += int((fault_detected == labels).sum())
255 predictions.append(fault_detected)
256 true_labels.append(round(labels.item()))
257

258

259 print("Accuracy {0}: {1:.2f}(%)".format(name, 100 * (
correct / total)))

260 accdict[name] = correct / total
261

262 validate(model, train_loader, test_loader)

Listing 5.4 Power line fault or partial discharge detection

Output of Listing 5.4:
————-Read the dataset and Preprocess——————-

<class ’pandas.core.frame.DataFrame’>
RangeIndex: 400000 entries, 200000 to 599999
Columns: 5000 entries, 0 to 4999
dtypes: int8(5000)
memory usage: 1.9 GB
<class ’pandas.core.frame.DataFrame’>
RangeIndex: 8712 entries, 0 to 8711
Data columns (total 4 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 signal_id 8712 non-null int64
1 id_measurement 8712 non-null int64
2 phase 8712 non-null int64
3 target 8712 non-null int64

dtypes: int64(4)
memory usage: 272.4 KB

———-Separating positive and negative samples————-

positive_samples data shape: (332, 3126)

<class ’pandas.core.frame.DataFrame’>
Int64Index: 332 entries, 3 to 4940
Columns: 3126 entries, target to 224992
dtypes: int64(1), int8(3125)
memory usage: 1018.4 KB

negative_samples data shape: (4668, 3126)

<class ’pandas.core.frame.DataFrame’>
Int64Index: 4668 entries, 0 to 4999
Columns: 3126 entries, target to 224992

5.3 Fault/Anomaly Analysis 343

dtypes: int64(1), int8(3125)
memory usage: 14.0 MB

——————-Splitting the dataset———————–

X_train_pos data shape: (232, 3125)
X_train_neg data shape: (3267, 3125)
y_train_pos data shape: (232,)
y_train_neg data shape: (3267,)

X_valid_pos data shape: (100, 3125)
X_valid_neg data shape: (1401, 3125)
y_valid_pos data shape: (100,)
y_valid_neg data shape: (1401,)

———–Combine positive and negative samples—————

X_train data shape: (782, 3125)
y_train data shape: (782,)
train_samples data shape: (782, 3126)

X_valid data shape: (370, 3125)
y_valid data shape: (370,)
validation_samples data shape: (370, 3126)

—–Reshape training and validation data for input layer——

X_train data shape: (782, 1, 3125)
X_valid data shape: (370, 1, 3125)
y_train data shape: (782,)
y_valid data shape: (370,)
Type of data: float32

———————Normalize feature————————-

Total samples in train dataset: 232.0
Total samples in validation dataset: 100.0

————————Define model—————————

CNNModel(
(conv1): Conv1d(1, 32, kernel_size=(3,), stride=(1,))
(relu1): ReLU()
(pool1): MaxPool1d(kernel_size=2, stride=2, padding=0,

dilation=1, ceil_mode=False)
(conv2): Conv1d(32, 64, kernel_size=(3,), stride=(1,))
(relu2): ReLU()
(pool2): MaxPool1d(kernel_size=2, stride=2, padding=0,

dilation=1, ceil_mode=False)
(fc1): Linear(in_features=49856, out_features=128, bias=True)
(relu3): ReLU()
(fc2): Linear(in_features=128, out_features=1, bias=True)
(sigmoid): Sigmoid()

)

344 5 Applications of Machine Learning: Energy Systems

————————Training loop————————–

Epoch 1: loss 0.8164422646736628
Epoch 2: loss 0.4948220962638653
Epoch 3: loss 0.1427917082643386
Epoch 4: loss 0.05073368033861952
Epoch 5: loss 0.0036601704486090457
Epoch 6: loss 0.0003970232848365052
Epoch 7: loss 0.00012066281708122702
Epoch 8: loss 6.312557864259138e-05
Epoch 9: loss 3.8254333689510956e-05
Epoch 10: loss 2.3528139867673672e-05

————————-Evaluation—————————-

Accuracy train dataset: 100.00(%)
Accuracy test dataset : 73.51(%)

From the result, we can see that our classifier has a 100% accuracy on the training
data and 73.51% accuracy on the test data. This happened due to class imbalance and
noise in the data. The test accuracy can be improved by applying proper denoising
techniques on the dataset and some advanced ML concepts that are beyond this
chapter’s scope.

5.4 Future Trend Prediction in Renewable Energy Systems

Predicting the future price, product usage, demand or supply, etc. is very important
for us to prepare for the best and worst possible situations in the future. This section
demonstrates two real-life examples of future trend prediction in renewable energy
systems—solar PV installed capacity prediction and wind power output prediction.

5.4.1 Solar PV Installed Capacity Prediction

Solar energy is the most abundant resource in the world. According to the latest
findings by the International Energy Agency, solar photovoltaic (PV) system is on
its way to surpassing natural gas by 2026 and coal by 2027 in terms of installed
power capacity [8]. In 2022, solar PV systems had the highest growth among all
renewable energy systems, consistent with the growth rate required for reaching
Net Zero Emissions by 2050 [8]. Solar PV produces 4.5% of the global electricity
and remains the third largest renewable electricity technology after hydropower and
wind [8]. The annual solar PV capacity will continue to increase.

5.4 Future Trend Prediction in Renewable Energy Systems 345

Table 5.6 Explanation of the power line fault detection code presented in Listing 5.4

Line number Description

4–16 Import the necessary libraries

19–20 Read the dataset

23–24 Take half of the dataset for easier processing

26–27 Load metadata file

30–31 Select a subset of rows from the subset_train

32–34 It is then transposed, its index is converted to an integer data type, and it is
joined with the metadata_train

36–39 Code snippet for using full data, for higher memory or computational limit

43–44 Select rows from the train_dataset where “target” = 1 (i.e., positive samples)

46–47 Shows information about the positive_samples

49–50 Separate the positive_samples into a target variable and a feature matrix

51–52 A StandardScaler is then fit to the transposed feature matrix

53 The feature matrix is then transformed using the fitted scaler and transposed

55–64 Repeat the process for negative samples

67–78 Split the positive and negative samples into training and validation sets

90–99 Define a function that concatenates the positive and negative samples

102–105 Use the function to combine the positive and negative samples

106–107 Separate target variable y_train and feature matrix X_train

113–118 Repeat the process for validation_samples

126–127 Reshape the training and validation feature matrices to have a shape of (-1, 1,
3125), where -1 means that NumPy will decide the best size/dimension

128–131 Information about the shapes of these arrays is then printed

133–137 Convert the data type of all variables to 32-bit floating point

140–151 Define a function that normalizes the features

155–158 Define a Dataset class that converts feature and target matrix to tensors

160–165 __getitem__ and __len__ methods to allow indexing and to get length

168–169 A function defined that create DataLoader object for the given dataset

171–174 Instances of torch_Dataset created and passed to the training_loader function

179–195 The __init__ method of this class defines the layers of the model, including 2
convolutional layers with activation, pooling, and fully connected layers

197–213 The forward method defines the forward pass of the model by passing the input
x through each layer in turn and returning the output of the final layer

216–217 Create an instance of CNNModel class and print its architecture

218–219 Adam optimizer and binary cross entropy loss function is instantiated

223–233 Define a training loop that runs for 10 epochs in which loss is computed using
the previously defined BCE loss function

237 Define a function that evaluates the model’s performance on both datasets

239 The function iterates over both data loaders and computes predictions

244 torch.no_grad() is used to avoid changing gradients while updating weights, as
this would interfere with backpropagation

245–260 The number of correct predictions and the accuracy is computed

346 5 Applications of Machine Learning: Energy Systems

In this section, we will predict the installed capacity of solar PV systems in the
coming years. An existing annual solar PV module installed capacity dataset is used
for this example [9].

Programming Example 5.5
From Listing 5.5 (explained in Table 5.7) it can be seen that each year’s data is read
from a CSV file and separated into two arrays for further processing. One array
contains the year value, and the other array contains the respective PV solar module
installation value. A portion of the data is used to train the model, and a portion
is kept for testing purposes. Then, we fit year values to a third-order polynomial.
After setting the parameters of the Bayesian ridge regression, the model is fitted,
and we get the predictions based on these. The training, test, and predicted data are
plotted in Fig. 5.12. Next, the data from 1995 to 2020 are fitted to the model using a
second-order polynomial and predicted up to 2040.

1 from sklearn.linear_model import BayesianRidge
2 from sklearn.model_selection import train_test_split
3 from sklearn.metrics import mean_squared_error
4 import matplotlib.pyplot as plt
5 from numpy import sqrt
6 import pandas as pd
7 import numpy as np
8

9

10 # --------------------------Reading Data-------------------------
11 data = pd.read_csv('./data/PV.csv',header=0)
12 X = data.iloc[:, 0].values # values converts it into a numpy

array
13 Y = data.iloc[:, 1].values
14 xtrain, xtest, ytrain, ytest=train_test_split(X, Y, test_size

=0.1, shuffle=False)
15

16

17 # -------------------------Data Processing-----------------------
18 n_order = 3
19 Xtrain = np.vander(xtrain, n_order + 1, increasing=True)
20 Xtest = np.vander(xtest, n_order + 1, increasing=True)
21

22

23 # -----------------------Setting Parameter-----------------------
24 reg = BayesianRidge(tol=1e-18, fit_intercept=False, compute_score

=True)
25

26

27 # -------------------------Fit and Predict-----------------------
28 reg.set_params(alpha_init=0.1, lambda_init=1e-15)
29 reg.fit(Xtrain, ytrain)
30 ymean = reg.predict(Xtest)
31

5.4 Future Trend Prediction in Renewable Energy Systems 347

32

33 # ----------------------------Plotting---------------------------
34 plt.figure(figsize=(12,4))
35 plt.subplot(1, 2, 1)
36 plt.plot(xtest, ytest, color="blue", label="Test data")
37 plt.scatter(xtrain, ytrain, s=50, alpha=0.5, label="Training data

")
38 plt.plot(xtest, ymean, color="red", label="Predicted data")
39 plt.legend()
40

41

42 # ----------------------Fitting on Full Data---------------------
43 n_order = 2
44 Xfull = np.vander(X, n_order + 1, increasing=True)
45 Xpred = np.array([2025, 2030, 2035, 2040])
46 XPred = np.vander(Xpred, n_order + 1, increasing=True)
47

48

49 # Setting parameter
50 bay = BayesianRidge(tol=1e-18, fit_intercept=False, compute_score

=True)
51

52

53 # Fit & predict
54 bay.set_params(alpha_init=0.1, lambda_init=1e-30)
55 bay.fit(Xfull, Y)
56 Yfull = bay.predict(XPred)
57

58

59 # Plotting
60 plt.subplot(1, 2, 2)
61 plt.scatter(X, Y, s=50, alpha=0.5, label="Training data")
62 plt.plot(Xpred, Yfull, color="red", label="Predicted data")
63 plt.legend()
64 plt.show()

Listing 5.5 Solar PV installed capacity prediction using the Bayesian ridge regression model

100000

80000

60000

40000

20000

0

1995 2000

Test data
Predicted data
Training data

Predicted data
Training data

2005
Year

In
st

al
le

d
ca

pa
cit

y,
M

W

In
st

al
le

d
ca

pa
cit

y,
M

W

2010 2015 2020 2000 2010 2020
Year

2030 2040

400000

300000

200000

250000

150000

350000

100000

50000

0

Fig. 5.12 Solar PV installed capacity future trend prediction with the input value

348 5 Applications of Machine Learning: Energy Systems

Table 5.7 Explanation of the solar PV installation future trend prediction code example presented
in Listing 5.5

Line number Description

1–7 Importing NumPy, pandas, and some of sklearn modules

11 Read data from csv file

12–13 Separate year and PV installation into different array

14 Separate train and test data

18–24 Preparing data and setting parameters to fit to a model

28–30 Fit and predict the test values

34–39 Plotting train data, test data, and predicted data

43–56 Fit the whole dataset and predict up to 2040

60–64 Plotting overall result for final prediction

5.4.2 Wind Power Output Prediction

Wind energy is undoubtedly a major renewable energy source, providing a pathway
toward net zero carbon emission. The energy share of wind power has been growing
rapidly since the early 2000s. According to the International Renewable Energy
Agency (IRENA), the global wind generation capacity has increased by a factor
of 98 in the last two decades—from around 7.5GW in 1997 to around 733 GW
in 2018 [10]. From 2009 to 2019, the overall wind power production increased
by a factor of 5.2, reaching 1412 TWh annual production [10]. Wind electricity
generation increased by a record 265 TWh in 2022, becoming the second-highest
power generation sector among all renewable energy sources after solar PV [11].

Electricity generated by wind power is intermittent due to the wind’s changing
speed, direction, and flow. Therefore, power forecasting is essential to tackle wind
power fluctuation in power system dispatch. Various predictive modeling has been
used and implemented, from statistical methods to neural networks, for wind power
forecasting.

Programming Example 5.6
Listing 5.6 shows the wind power predictor model code followed by its output and
explanation in Table 5.8. Random forest regression has been used for wind power
forecasting in the example presented in this section. The Texas Wind dataset from
Kaggle has been used here [12]. From the dataset, 30% has been used for testing,
and the rest has been used for training the regression model (Fig. 5.13).

1 # Dataset: https://www.kaggle.com/datasets/pravdomirdobrev/texas-
wind-turbine-dataset-simulated

2 # ---------------Import the necessary libraries------------------
3 import pandas as pd; import numpy as np
4 import plotly.express as px
5 from sklearn.model_selection import train_test_split

5.4 Future Trend Prediction in Renewable Energy Systems 349

6 from sklearn.ensemble import RandomForestRegressor
7 from sklearn.metrics import mean_squared_error
8 import matplotlib.pyplot as plt
9

10 # --------------------Import the dataset-------------------------
11 df = pd.read_csv("./data/TexasTurbine.csv")
12 df.set_index("Time stamp", inplace=True)
13 print(df.head())
14

15

16 # -------------------Define X and y values-----------------------
17 X = df.drop(columns="System power generated | (kW)")
18 y = df["System power generated | (kW)"]
19

20

21 # --------------------Split the dataset--------------------------
22 X_train, X_test, y_train, y_test = train_test_split(X, y,

test_size=0.30, random_state=None, shuffle=False)
23

24 print("X Train shape:", X_train.shape)
25 print("X Test shape:", X_test.shape)
26 print("Y Train shape:", y_train.shape)
27 print("Y Test shape:", y_test.shape)
28

29

30 # --------------------Create a RFR model-------------------------
31 RFR = RandomForestRegressor()
32

33

34 # ---------------------Train the model---------------------------
35 RFR.fit(X_train, y_train)
36 train_preds = RFR.predict(X_train)
37 test_preds = RFR.predict(X_test)
38

39

40 # ------Print the model score, train RMSE, and test RMSE---------
41 print("Model score:", RFR.score(X_train, y_train))
42 print("Train RMSE:", mean_squared_error(y_train, train_preds)

**(0.5))
43 print("Test RMSE:", mean_squared_error(y_test, test_preds)**(0.5)

)
44

45

46 # ----------Plot the predictions and actual values---------------
47 plt.figure().set_figwidth(12)
48 X_test["RFR Prediction"] = test_preds
49 X_test["System power generated | (kW)"] = y_test
50 x_index = np.linspace(0, 250, 250)
51 plt.plot(x_index, X_test["RFR Prediction"].tail(250), color='red'

, linewidth=1, label='RFR prediction')
52 plt.plot(x_index, X_test["System power generated | (kW)"].tail

(250), color='green', linewidth=1,label='Actual power
generated')

350 5 Applications of Machine Learning: Energy Systems

53 plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05),
fancybox=True, shadow=True, ncol=5)

54 plt.show()

Listing 5.6 Wind turbine power output prediction

Output of Listing 5.6:

System power generated|(kW) Air temperature|(°C)
Jan 1, 12:00 am 1766.64 18.263
Jan 1, 01:00 am 1433.83 18.363
Jan 1, 02:00 am 1167.23 18.663
Jan 1, 03:00 am 1524.59 18.763
Jan 1, 04:00 am 1384.28 18.963

[5 rows x 5 columns]
X Train shape: (6132, 4)
X Test shape: (2628, 4)
Y Train shape: (6132,)
Y Test shape: (2628,)
Model score: 0.9999943031205266
Train RMSE: 2.1351364248882674
Test RMSE: 9.312500866528874

5.5 Reactive Power Control and Power Factor Correction

An important application of ML is in power factor correction, which is of great
importance in electrical power systems. Maintaining the power factor within a
reasonable range is an essential regulatory mechanism in power systems. Typically,
power factor correction is employed by controlling the reactive power through
capacitor bank, relay, and conductor arrangements or by using phase advancers and
synchronous condensers. However, there are some challenges with these traditional
approaches, such as slower response time, mechanical faults, harmonics injection in
the system, sizing and siting issues, and human errors.

Before going into the details of this section, we will review some basic concepts
regarding power and power factor. The power triangle, shown in Fig. 5.14, depicts
three quantities—real, reactive, and apparent power.

1. Real power (P) is the power that is used up by the loads in the system. It is
also called true or active power and the wattful component of electric power. It is
measured in Watt (W).

2. Reactive power (Q) is the power that moves back and forth within the circuit. It
is not used up by the loads. It is the power that can act again and again, hence,
the name reactive. It is also called the wattless component of electric power. It is
measured in volt-ampere-reactive (VAR).

5.5 Reactive Power Control and Power Factor Correction 351

Table 5.8 Explanation of the power output code example presented in Listing 5.6

Line number Description

3–7 Importing the necessary libraries

11–13 Read the dataset from file & setting index

17–18 Separate the feature matrix X and the target variable y from the dataframe

22 Split the data into training and testing sets

24–27 Print train & test data shape

31 Create an instance of the RandomForestRegressor as RFR

35 Fit the random forest regressor model to the training data, training the model on
the features (X_train) and target variable (y_train)

36–37 Generate predictions using the trained model

41–43 Print the score of the model

46–54 Compare the predicted values and actual values from test set

Fig. 5.13 Comparison of the (red) predicted values and the (green) actual values

Fig. 5.14 The power triangle

352 5 Applications of Machine Learning: Energy Systems

3. Apparent power (S) is the vector sum of the real and reactive power. The
apparent power is a vector or complex quantity; the horizontal or real component
is the real power, and the vertical or imaginary component is the reactive power.
It is measured in volt-ampere (VA).

The power factor (pf) is the ratio of real power (P) to apparent power (S). It can
also be expressed as the cosine of the phase angle . θ between the voltage and the
current,

.pf = P

S
= cos θ. (5.4)

Equation 5.4 shows that the pf is a fraction ranging between 0 and 1. A pf of 1
is ideal, but it can be achieved only in purely resistive circuits. A pf of 0.85 means
that of the total apparent power available, 85% is real power, and the remaining 15%
is reactive power. The pf can be leading, lagging, or unity depending on the phase
angle between the voltage and current. The pf is said to be unity when the voltage
and the current are in phase with each other, i.e., when .θ = 0◦. This is the case in
purely resistive circuits. The pf is lagging for inductive loads, where the current lags
the voltage, and leading for capacitive loads, where the current leads the voltage. In
Fig. 5.15, for both the inductive and capacitive circuits, the phase angle is .θ = 30◦,
which means that the power factor is .cos θ = cos 30◦ = 0.866.

A higher value of pf is desired since a low pf can cause a myriad of problems,
such as higher internal current, excessive heat, damage to the equipment, reduced
output voltage, an overall expensive system, and higher bills. The pf can be kept
high if the reactive power is low, but a low reactive power in the system also causes
several problems. Reactive power is necessary for maintaining a constant voltage
level in the utility grid. With low reactive power, the voltage drops, leading to poor
performance of the equipment and a rise in the current. The rise of the current
value can incur higher losses and, thus higher costs and create overloads, eventually
leading to cascading failures. So, a trade-off between the pf and reactive power is

Voltage
Current

time time time

Voltage
Current

Voltage

Current

Resistive circuit

θ = 0º, Unity power factor

Inductive circuit

θ = 30º, Lagging power factor

Capacitive circuit

θ = 30º, Leading power factor

θ θ

Fig. 5.15 Unity pf is found in a purely resistive circuit, lagging pf in an inductive circuit, and
leading pf in a capacitive circuit

5.5 Reactive Power Control and Power Factor Correction 353

essential to ensure the smooth operation of the system. In addition to pf control
techniques, a suitable reactive power compensation technique is also adopted in
utility systems to maintain the balance between pf and reactive power.

ML can help facilitate many tasks related to reactive power control and power
factor correction. For example, in the design phase, it can determine the type,
location, and size of the compensator. ML can help with instant sizing, operation
technique, switching sequence, and automation in the operation phase. In the
maintenance phase, ML can be used for degradation modeling and unit replacement
(partial or complete), transient responses, and grid service capability verification.

Most industrial loads are inductive, so capacitor banks inject reactive power into
the system to increase the power factor. One use of ML (such as linear regression or
ridge regression) is to estimate the size of the capacitor for controlling the pf [13].
This section applies ML to constantly monitor the pf and regulate the capacitor bank
to ensure an acceptable range of reactive load.

As shown in Fig. 5.16, the monitoring system takes pf and voltage level as inputs
to control the output capacitor bank level. It can operate between three discrete
voltage levels, viz. 11, 33, and 69 kV, which are controlled by a switch at the
beginning. Based on the voltage level, system frequency, and the pf value, the model
outputs the required capacitance value for injecting the necessary reactive power
into the system.

Now we want to create a dataset to train a regression model that will take the
current power factor as input and return a capacitor bank value (. μF) as output.
Equation 5.4 can be rewritten as:

.S = P

pf
. (5.5)

The reactive power Q can be measured in terms of kVAR, which can be calculated
from the following equation:

.Q = kV AR =
/

S2 − P 2. (5.6)

For a desired pf, . p̂f , we can compute the new apparent power as:

.Ŝ = P

p̂f
. (5.7)

The new Q, . Q̂, or kVAR requirement would be

.Q̂ = kV ARnew =
/

Ŝ2 − P 2. (5.8)

354 5 Applications of Machine Learning: Energy Systems

Input power factor
and voltage

Switch

11 kV regression
model

33 kV regression
model

69 kV regression
model

Output capacitor
bank

Fig. 5.16 Basic flowchart for the capacitor bank control regression model

So, the additional requirement of kVAR to maintain the same reactive power
would be

.AkV AR = kV ARnew − kV AR. (5.9)

If . ω is the angular frequency, then the capacitor bank requirement in .μF would
be

.C = AkV AR

ω × V 2 × 109. (5.10)

Programming Example 5.7
To obtain the train and test dataset, we generate a random pf set for a 24-hour
period as the inputs and compute the capacitor bank values as a target value using
Equation 5.10. Then, we train a Bayesian Ridge regression model to fit this input
pf and target capacitor value. After training, at the inference phase, the regression

5.5 Reactive Power Control and Power Factor Correction 355

model will predict the required capacitor bank value for an input pf to the model.
Listing 5.7 shows this model’s code, and the code’s explanation is given in Table 5.9.

1 # -------------------------Torch Modules-------------------------
2 from __future__ import print_function
3 import numpy as np
4 import torch
5 from sklearn.linear_model import BayesianRidge
6 from matplotlib import pyplot as plt
7

8

9 # ---------------------------Variables---------------------------
10 # parameters
11 Iterations = 3
12 frequency = 377 ## rad/s
13 voltage = torch.Tensor([11,33,69]) ## KV 11kv 33kv , 69kv
14 real = 2000 ## KW
15 pf = 0.95 # power factor
16 Apower = real / pf # aparent power
17 sizes =1024 # 24 hours day data generation
18 KVARs = np.sqrt(Apower ** 2 - real ** 2) # kvars
19 print("Target KVARs: ", KVARs)
20

21

22 # ------------------Commands to Prepare Dataset------------------
23 def create_powerfactor_dataset(sizes,real,KVARs,voltage,frequency

):
24 ## generating the power factor with respect to time
25 thetas = np.arange(sizes) ## creating list of theta
26 data_pf = (90 + 10*np.cos(thetas/2) - 0.5 + 0.5* (2*np.random

.rand(sizes) - 1))/100 # computing power factor dataset
27

28 Apower = real /data_pf
29 new_KVARs = np.sqrt(Apower ** 2 - real ** 2)
30 dels = (new_KVARs - KVARs) ## required Kvar
31 voltages = voltage.repeat(sizes)
32

33 for k in range (len(dels)):
34 if dels[k] < 0:
35 dels[k] = 0
36 else:
37 dels [k] = dels[k] /(frequency * (voltages[k] ** 2))

* 1000 # Capacitance in F, not μF
38

39 return torch.Tensor(data_pf).view(sizes,1), torch.Tensor(dels
).view(sizes,1)

40

41

42 # -----------------Using BayesianRidge Regression----------------
43 regressor_11 = BayesianRidge()
44

356 5 Applications of Machine Learning: Energy Systems

45 regressor_33= BayesianRidge()
46

47 regressor_69 = BayesianRidge()
48

49

50 # ------------------------Plotting Function----------------------
51 def plot_func(data, y, target, v_level):
52 plt.rcParams['font.sans-serif'] = ['Times New Roman']
53 plt.rcParams.update({'font.size': 21})
54 color1 = 'purple'
55 color2 = 'dodgerblue'
56 color3 = 'orange'
57

58 fig, ax1 = plt.subplots(figsize=(12, 6))
59 line1 = ax1.plot(y[-24:], color=color1, linewidth='1')
60 line2 = ax1.plot(target[-24:], color=color3, linewidth='1')
61 ax1.set_ylabel('Capacitor Bank values, F')
62 ax1.tick_params(axis='y')
63 ax2 = ax1.twinx()
64 line3 = ax2.plot(data[-24:], color=color2, linewidth='1')
65 ax2.set_ylabel('Power Factor')
66 ax2.tick_params(axis='y')
67

68 lines = line1 + line2 + line3
69 labels = ['Capacitor Bank Predicted', 'Capacitor Bank Ideal',

'Power Factor for '+str(v_level)+'kV']
70 ax2.legend(lines, labels);
71 ax1.set_xlabel('Time (Datapoints)')
72

73 ax1.plot(0, 19 if v_level==11 else (2.2 if v_level==33 else
0.54), marker="^", ms=12, color="k", transform=ax1.
get_yaxis_transform(), clip_on=False)

74 ax2.plot(1, 1.01, marker="^", ms=12, color="k", transform=ax2
.get_yaxis_transform(), clip_on=False)

75 ax1.set_ylim(-0.01, 19 if v_level == 11 else (2.2 if v_level
== 33 else 0.54))

76 ax2.set_ylim(0.79, 1.01)
77

78 ax2.spines['top'].set_visible(False)
79 ax1.spines['top'].set_visible(False)
80 ax1.spines['bottom'].set_visible(False)
81 ax1.spines['left'].set_visible(False)
82 ax1.spines['right'].set_visible(False)
83

84 fig.tight_layout()
85 plt.savefig('./results/' + str(v_level) + 'control.png', dpi

=300)
86 plt.close()
87

88

89 # ----------------------Training and Testing---------------------
90 for i in range(Iterations):
91 #Training

5.6 Conclusion 357

92 ## 11KV case
93 if i == 0:
94 data_11, target_11 = create_powerfactor_dataset(sizes,

real,KVARs,voltage[i],frequency) ## creating the dataset
95 regressor_11.fit(data_11[:1000], target_11[:1000].ravel()

) ## training
96 y_11 = regressor_11.predict(data_11) ## testing
97 y_11[y_11<0] = 0
98

99 plot_func(data_11, y_11, target_11, 11)
100

101 if i == 1: ## 33kv case
102 data_33, target_33 = create_powerfactor_dataset(sizes,

real,KVARs,voltage[i],frequency) ## creating the dataset
103

104 regressor_33.fit(data_33[:1000], target_33[:1000].ravel()
) ## training

105 y_33 = regressor_33.predict(data_33) ## testing
106 y_33[y_33<0] = 0
107

108 plot_func(data_33, y_33, target_33, 33)
109

110 if i == 2: # 69 Kv case
111 data_69, target_69 = create_powerfactor_dataset(sizes,

real,KVARs,voltage[i],frequency) ## creating the dataset
112

113 regressor_69.fit(data_69[:1000], target_69[:1000].ravel()
) ## training

114

115 y_69 = regressor_69.predict(data_69) ## testing
116 y_69[y_69<0] = 0
117

118 plot_func(data_69, y_69, target_69, 69)

Listing 5.7 Code for controlling the power factor using a capacitor bank

The result of our model is presented in Fig. 5.17. For each voltage level, e.g.,
11/33/69 kV, our model predicted capacitor bank values (shown in orange) that
match the ideal case (in green). Thus, a simple regression model can monitor
the current pf level and regulate the capacitor bank accordingly. To utilize the
full advantage of ML, mechanical switching in traditional power systems is a
hindrance. So, ML usage in power systems is not yet widespread. However, the
newer smart grid and microgrid systems utilize solid state or electronic switching,
so the application of ML is increasing gradually.

5.6 Conclusion

Machine learning has become quite prevalent in energy systems, particularly elec-
trical power systems. This chapter presents some of these applications, including
electrical load forecasting, electrical fault detection and classification, partial dis-

358 5 Applications of Machine Learning: Energy Systems

Table 5.9 Explanation of the power factor correction code in Listing 5.7

Line number Description

2–6 PyTorch Modules

9–19 Hyperparameters and computing the target kVAR

22–39 Creating dataset with power factor and corresponding require kVARs

37 The equation here differs from Eq. 5.10 as it calculates output in F (not . μF)

43–47 Three Bayesian ridge regression model for each voltage

50–86 Function for plotting figure with pf and capacitor bank values

90 Initiating the training and testing loops for three different voltages

94 Dataset creation for 11 kV case

95–97 Training and testing using Bayesian Ridge regression

99 Plotting comparison of predicted and idea capacitor bank

101–108 Training, testing, and comparing results with idea data for 33 kV case

110–118 Repeating the process for 69 kV case

charge detection, future trend prediction of solar PV installed capacity, wind power
forecasting, reactive power control, and power factor correction. The programming
examples are presented in each section with detailed explanations and relevant
output graphs. The clear narratives will help the reader to replicate the works easily
and customize the programming examples as required. The knowledge gained from
this chapter will prepare the readers to conduct further studies on advanced topics
associated with the concepts of this chapter and help them initiate their own works in
this particular research domain. In the next chapter, we will study machine learning
applications in robotics.

5.7 Key Messages from this Chapter

• Modern energy systems are abundant in useful data, and proper utilization
of these data can help ensure fast, reliable, and efficient system operation. A
machine learning-based approach can play a significant role in this area.

• Machine learning models can provide energy systems with improved load
forecasting capabilities to ensure proper operations, planning, and management
strategy.

• Machine learning-based electrical fault detection and classification techniques
improve energy security by providing fast and reliable system insights.

• Efficient planning of renewable energy facilities can be done through machine
learning.

• Machine learning can increase energy system efficiency and stability by pro-
viding highly responsive, fast, and accurate power factor correction and control
schemes.

5.7 Key Messages from this Chapter 359

Fig. 5.17 Controlling the kVARs using capacitor bank through regression model for each voltage

360 5 Applications of Machine Learning: Energy Systems

5.8 Exercise

1. Define the following:
(a) load forecasting
(b) electrical fault
(c) power factor
(d) power triangle

2. Discuss how machine learning techniques can be utilized in electrical power
systems.

3. What are the key advantages of load forecasting? How can ML contribute to this
process?

4. Develop a load forecasting model on the Panama Case Study dataset [14] (Link:
https://data.mendeley.com/datasets/byx7sztj59/1).

5. What are the consequences of having low power factor? How can ML contribute
to solving this problem?

6. Develop a machine learning-based power factor correction model for a
20,000 kW, 132 kV line. Generate 1024–2048 random power factor values to
use as the dataset.

7. Apply simple LSTM model to detect transmission line fault as done in Sect. 5.3.3
and compare results with the given one. List the benefits and drawbacks of
utilizing LSTM over the given data format. [Hint: For fault analysis, we used
time series data.]

8. Besides the topics discussed in this chapter, in what other applications can
machine learning be used in energy systems? Give examples.

References

1. Rafi, S. H., Deeba, S. R., Hossain, E., et al. (2021). A short-term load forecasting method using
integrated CNN and LSTM network. IEEE Access, 9, 32436–32448.

2. Al Mamun, A., Sohel, M., Mohammad, N., Sunny, M. S. H., Dipta, D. R., & Hossain, E.
(2020). A comprehensive review of the load forecasting techniques using single and hybrid
predictive models. IEEE Access, 8, 134911–134939.

3. Mulla, R. PJM hourly energy consumption data. https://www.kaggle.com/robikscube/hourly-
energy-consumption

4. Tan, R. (2017). Instantaneous overcurrent relay, Mar 2017.
5. Prakash, E. S. Electrical fault detection and classification. https://www.kaggle.com/

esathyaprakash/electrical-fault-detection-and-classification/
6. Jamil, M., Sharma, S. K., & Singh, R. (2015). Fault detection and classification in electrical

power transmission system using artificial neural network. SpringerPlus, 4(1), 334.
7. VSB power line fault detection. https://www.kaggle.com/competitions/vsb-power-line-fault-

detection/data
8. International Energy Agency. Solar PV. https://www.iea.org/energy-system/renewables/solar-

pv
9. Tabassum, S., Rahman, T., Islam, A. U., Rahman, S., Dipta, D. R., Roy, S., Mohammad, N.,

Nawar, N., & Hossain, E. (2021). Solar energy in the United States: Development, challenges
and future prospects. Energies, 14(23), 8142.

https://data.mendeley.com/datasets/byx7sztj59/1
https://data.mendeley.com/datasets/byx7sztj59/1
https://data.mendeley.com/datasets/byx7sztj59/1
https://data.mendeley.com/datasets/byx7sztj59/1
https://data.mendeley.com/datasets/byx7sztj59/1
https://data.mendeley.com/datasets/byx7sztj59/1
https://data.mendeley.com/datasets/byx7sztj59/1
https://www.kaggle.com/robikscube/hourly-energy-consumption
https://www.kaggle.com/robikscube/hourly-energy-consumption
https://www.kaggle.com/robikscube/hourly-energy-consumption
https://www.kaggle.com/robikscube/hourly-energy-consumption
https://www.kaggle.com/robikscube/hourly-energy-consumption
https://www.kaggle.com/robikscube/hourly-energy-consumption
https://www.kaggle.com/robikscube/hourly-energy-consumption
https://www.kaggle.com/robikscube/hourly-energy-consumption
https://www.kaggle.com/esathyaprakash/electrical-fault-detection-and-classification/
https://www.kaggle.com/esathyaprakash/electrical-fault-detection-and-classification/
https://www.kaggle.com/esathyaprakash/electrical-fault-detection-and-classification/
https://www.kaggle.com/esathyaprakash/electrical-fault-detection-and-classification/
https://www.kaggle.com/esathyaprakash/electrical-fault-detection-and-classification/
https://www.kaggle.com/esathyaprakash/electrical-fault-detection-and-classification/
https://www.kaggle.com/esathyaprakash/electrical-fault-detection-and-classification/
https://www.kaggle.com/esathyaprakash/electrical-fault-detection-and-classification/
https://www.kaggle.com/esathyaprakash/electrical-fault-detection-and-classification/
https://www.kaggle.com/esathyaprakash/electrical-fault-detection-and-classification/
https://www.kaggle.com/competitions/vsb-power-line-fault-detection/data
https://www.kaggle.com/competitions/vsb-power-line-fault-detection/data
https://www.kaggle.com/competitions/vsb-power-line-fault-detection/data
https://www.kaggle.com/competitions/vsb-power-line-fault-detection/data
https://www.kaggle.com/competitions/vsb-power-line-fault-detection/data
https://www.kaggle.com/competitions/vsb-power-line-fault-detection/data
https://www.kaggle.com/competitions/vsb-power-line-fault-detection/data
https://www.kaggle.com/competitions/vsb-power-line-fault-detection/data
https://www.kaggle.com/competitions/vsb-power-line-fault-detection/data
https://www.kaggle.com/competitions/vsb-power-line-fault-detection/data
https://www.kaggle.com/competitions/vsb-power-line-fault-detection/data
https://www.iea.org/energy-system/renewables/solar-pv
https://www.iea.org/energy-system/renewables/solar-pv
https://www.iea.org/energy-system/renewables/solar-pv
https://www.iea.org/energy-system/renewables/solar-pv
https://www.iea.org/energy-system/renewables/solar-pv
https://www.iea.org/energy-system/renewables/solar-pv
https://www.iea.org/energy-system/renewables/solar-pv
https://www.iea.org/energy-system/renewables/solar-pv
https://www.iea.org/energy-system/renewables/solar-pv

References 361

10. International Renewable Energy Agency. Wind energy. https://www.irena.org/Energy-
Transition/Technology/Wind-energy

11. International Energy Agency. Wind. https://www.iea.org/energy-system/renewables/wind
12. Texas wind turbine dataset—Simulated. https://www.kaggle.com/datasets/pravdomirdobrev/

texas-wind-turbine-dataset-simulated
13. Bayindir, R., Gok, M., Kabalci, E., & Kaplan, O. (2011). An intelligent power factor correction

approach based on linear regression and ridge regression methods. In 2011 10th International
Conference on Machine Learning and Applications and Workshops (Vol. 2, pp. 313–315).
IEEE.

14. Madrid, E. A. (2021). Short-term electricity load forecasting (Panama case study). https://
data.mendeley.com/datasets/byx7sztj59/1

https://www.irena.org/Energy-Transition/Technology/Wind-energy
https://www.irena.org/Energy-Transition/Technology/Wind-energy
https://www.irena.org/Energy-Transition/Technology/Wind-energy
https://www.irena.org/Energy-Transition/Technology/Wind-energy
https://www.irena.org/Energy-Transition/Technology/Wind-energy
https://www.irena.org/Energy-Transition/Technology/Wind-energy
https://www.irena.org/Energy-Transition/Technology/Wind-energy
https://www.irena.org/Energy-Transition/Technology/Wind-energy
https://www.irena.org/Energy-Transition/Technology/Wind-energy
https://www.iea.org/energy-system/renewables/wind
https://www.iea.org/energy-system/renewables/wind
https://www.iea.org/energy-system/renewables/wind
https://www.iea.org/energy-system/renewables/wind
https://www.iea.org/energy-system/renewables/wind
https://www.iea.org/energy-system/renewables/wind
https://www.iea.org/energy-system/renewables/wind
https://www.iea.org/energy-system/renewables/wind
https://www.kaggle.com/datasets/pravdomirdobrev/texas-wind-turbine-dataset-simulated
https://www.kaggle.com/datasets/pravdomirdobrev/texas-wind-turbine-dataset-simulated
https://www.kaggle.com/datasets/pravdomirdobrev/texas-wind-turbine-dataset-simulated
https://www.kaggle.com/datasets/pravdomirdobrev/texas-wind-turbine-dataset-simulated
https://www.kaggle.com/datasets/pravdomirdobrev/texas-wind-turbine-dataset-simulated
https://www.kaggle.com/datasets/pravdomirdobrev/texas-wind-turbine-dataset-simulated
https://www.kaggle.com/datasets/pravdomirdobrev/texas-wind-turbine-dataset-simulated
https://www.kaggle.com/datasets/pravdomirdobrev/texas-wind-turbine-dataset-simulated
https://www.kaggle.com/datasets/pravdomirdobrev/texas-wind-turbine-dataset-simulated
https://www.kaggle.com/datasets/pravdomirdobrev/texas-wind-turbine-dataset-simulated
https://www.kaggle.com/datasets/pravdomirdobrev/texas-wind-turbine-dataset-simulated
https://data.mendeley.com/datasets/byx7sztj59/1
https://data.mendeley.com/datasets/byx7sztj59/1
https://data.mendeley.com/datasets/byx7sztj59/1
https://data.mendeley.com/datasets/byx7sztj59/1
https://data.mendeley.com/datasets/byx7sztj59/1
https://data.mendeley.com/datasets/byx7sztj59/1
https://data.mendeley.com/datasets/byx7sztj59/1

6Applications of Machine Learning: Robotics

6.1 Introduction

A robot is a programmable machine that can perform certain routine tasks via
external or internal control. The primary purpose of a robot is to reduce human
workload and make our work more effective in terms of money and effort. A
robot may or may not resemble a human appearance. Robotics deals with the
theoretical and engineering aspects of robots. Robot concepts, design, development,
manufacture, operation, and control are all fundamental parts of robotics. The study
of robotics and the investigation of robot capabilities and possible applications has
expanded significantly in the twenty-first century. Industrial robots and various other
robots are utilized nowadays to carry out monotonous tasks. They could appear
as standard humanoid robots, robotic exoskeletons, or robotic arms. A robot or
robotic system’s actions are guided by a combination of computer programming and
algorithms, a remotely controlled manipulator, actuators, control systems—action,
processing, perception—real-time sensors, and an element of automation.

Traditionally, robots are programmed to perform tasks in a well-controlled
environment, which renders them unable to perform various tasks in a changing
environment. This problem can be resolved if robots can make their decisions
optimally on their own through their perception of the outside environment.
Different machine learning and artificial intelligence-based approaches can be taken
to give robots their perception and decision-making power. This integration of
machine learning and robotics is referred to as robot learning. Robot learning
has been used for various tasks, such as handling items, categorizing objects, and
even interacting linguistically with a human peer. Learning can occur through self-
discovery or with the help of a human operator. Intelligent robots must gather
knowledge from human input or sensors in order to learn. The processing unit of
the robot will then compare the recently acquired data to the information that has
already been recorded and decide the best course of action based on the data it has
acquired.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
E. Hossain, Machine Learning Crash Course for Engineers,
https://doi.org/10.1007/978-3-031-46990-9_6

363

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46990-9protect T1	extunderscore 6&domain=pdf
https://doi.org/10.1007/978-3-031-46990-9_6
https://doi.org/10.1007/978-3-031-46990-9_6
https://doi.org/10.1007/978-3-031-46990-9_6
https://doi.org/10.1007/978-3-031-46990-9_6
https://doi.org/10.1007/978-3-031-46990-9_6
https://doi.org/10.1007/978-3-031-46990-9_6
https://doi.org/10.1007/978-3-031-46990-9_6
https://doi.org/10.1007/978-3-031-46990-9_6
https://doi.org/10.1007/978-3-031-46990-9_6
https://doi.org/10.1007/978-3-031-46990-9_6
https://doi.org/10.1007/978-3-031-46990-9_6

364 6 Applications of Machine Learning: Robotics

This chapter talks about the application of machine learning in the field of
robotics. A robot must be able to see or track objects, recognize them, and follow
pre-defined instructions. All these aspects are covered in this chapter. This chapter
first discusses computer vision, including object tracking, recognition, and image
segmentation. At the end of this chapter is an example of a line follower robot that
can follow a given non-linear path defined by an equation.

6.2 Computer Vision and Machine Vision

Vision is our ability to see and comprehend things. The same goes for computers
and machines. The term computer vision refers to an automated image capture
and analysis system governed by a computer. Computer vision mainly focuses
on extracting as much information as possible from captured images. It is a
subset of machine learning. Computer vision and machine learning aim to teach
computers how to analyze and respond to data in a particular circumstance.
While machine learning concentrates on other forms of data and seeks to address
picture classification, object recognition, object segmentation, and object tracking in
movies, computer vision is far more focused on imaging and visual data. Machine
learning is a method that gives computers the ability to learn how to analyze and
respond to data inputs based on precedents established by prior actions. With the
integration of machine learning with computer vision technologies, it is possible to
teach computers to see patterns in visual data, similar to how humans do.

When computer vision is applied to interacting with the physical world by means
of some devices or machines, e.g., self-driving cars, autonomous drones, automated
product inspection systems, etc., then it is called machine vision. Machine vision
also deals with the post-image processing part, i.e., making decisions based
on image analysis information. It enables machines to comprehend the visual
environment to precisely recognize, categorize, and respond to objects. When
performing computer vision tasks, the availability of computing resources is of little
concern. As computer vision tasks are generally done using standard computing
platforms, the computing resources are usually expandable and can be allocated as
per requirement. In the case of machine vision, the executing devices usually have
less computing power and are not expandable. So, hardware-related constraints play
an important part in performing machine vision tasks.

In this section, we will discuss some machine vision-related tasks in robotics—
object tracking, object recognition/detection, and image segmentation.

6.2.1 Object Tracking

One of the critical applications of robotics is object tracking. Any vision task, either
a robot or a self-driving car, must first identify the object’s location in front of
them. Once the location is spotted accurately, the algorithm can then classify the
located object using the image classification algorithms discussed in Chaps. 3 and 4.

6.2 Computer Vision and Machine Vision 365

input size

12x12x3

Conv: 3x3

MP: 3x3 Conv: 3x3 Conv: 3x3

5x5x10 3x3x16 1x1x32

face
classification

bounding box
regression

facial landmark
localization

1x1x2

1x1x4

1x1x10P-Net

input size

24x24x3

Conv: 3x3

MP: 3x3 Conv: 3x3 Conv: 2x2
fully

connect

11x11x28 4x4x48 3x3x64 128

face
classification

bounding box
regression

facial landmark
localization

2

4

10R-Net

Conv: 3x3

MP: 3x3

Conv: 3x3

MP: 2x2 Conv: 2x2
fully

connect

10x10x64
input size

48x48x3

Conv: 3x3

MP: 3x3

23x23x32 4x4x64 3x3x128 256

face
classification

bounding box
regression

facial landmark
localization

2

4

10O-Net

Fig. 6.1 The architecture of the MTCNN model [2]. It consists of three CNN architectures: P-Net,
R-Net, and O-Net

This section will look at a famous face tracking PyTorch module known as the
FaceNet-PyTorch [1]. For this purpose, first, we will study the MultiTask Cascaded
Convolutional Neural Network (MTCNN) architecture for face detection and then
study a face tracking example using the MTCNN.

6.2.1.1 The MTCNN Architecture
The MTCNN architecture [2] uses three cascaded CNN networks for face detection.
This three-stage architecture of the MTCNN is illustrated in Fig. 6.1.

As shown in Fig. 6.2, the face tracking algorithm in MTCNN operates at three
specific stages—the P-Net, the R-Net, and the O-Net. These three stages are
described below:

1. P-Net: To obtain the candidate (target) facial windows and their bounding box
regression vectors, the P-Net or propose network is used. The candidates are then
calibrated using the bounding box regression vectors that have been estimated.
After that, non-maximum suppression (NMS) is used to merge candidates with

366 6 Applications of Machine Learning: Robotics

Fig. 6.2 Three working
stages of MTCNN model
using P-Net, R-Net, and
O-Net [2]. Image courtesy:
Ashraf Ul Islam Shihab

high overlap. NMS is a technique to discard candidates that fall below a
probability bound.

2. R-Net: All candidates are fed into another CNN called the refined network (R-
Net), which rejects a large number of false candidates, calibrates using bounding
box regression, and performs NMS.

3. O-Net: The output network (O-Net) is similar to the R-Net, but face regions
are identified with more supervision in this stage. The network will output the
positions of five facial landmarks in particular.

The main challenge here is to work with videos, which means tracking faces
in consecutive frames one after the other rather than from single images. Another
crucial challenge is detecting and tracking faces in real-time; otherwise, the main
purpose of face tracking will fail.

6.2.1.2 Face Tracking Example Using MTCNN
Programming Example 6.1
We will demonstrate a simple face tracking example using the MTCNN module of
FaceNet in Listing 6.1. The explanation of the code can be found in Table 6.1. The
code loads a video using the pre-defined mmcv.VideoReader class. Each frame
of the image is converted to an object and passed through the MTCNN to detect
faces. The tracked faces are compiled together to make a video at the end.

6.2 Computer Vision and Machine Vision 367

1 # ----------------------------Modules----------------------------
2 from facenet_pytorch import MTCNN
3 import torch
4 import numpy as np
5 import mmcv, cv2
6 from PIL import Image, ImageDraw
7

8

9 # --------------------------MTCNN Model--------------------------
10 mtcnn = MTCNN(keep_all=True, device='cpu')
11

12

13 # --------------Loading a Video for Face Recognition-------------
14 video = mmcv.VideoReader('./data/video.mp4')
15 frames = [Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))

for frame in video]
16

17

18 ## we will track each frame using
19 frames_tracked = []
20 for i, frame in enumerate(frames):
21 print('\rTracking frame: {}'.format(i + 1), end='')
22

23 # Detect faces within each boxes
24 boxes, _ = mtcnn.detect(frame)
25

26 # Draw a rectagle around the faces
27 frame_draw = frame.copy()
28 draw = ImageDraw.Draw(frame_draw)
29 for box in boxes:
30 draw.rectangle(box.tolist(), outline=(255, 0, 0), width

=6)
31

32 # Add to frame list
33 frames_tracked.append(frame_draw.resize((640, 360), Image.

BILINEAR))
34 print('\nDone')
35

36

37 # ---------------------Saving Tracked Video----------------------
38 dim = frames_tracked[0].size
39 fourcc = cv2.VideoWriter_fourcc(*'FMP4')
40 video_tracked = cv2.VideoWriter('./results/video_tracked.mp4',

fourcc, 25.0, dim)
41 for frame in frames_tracked:
42 video_tracked.write(cv2.cvtColor(np.array(frame), cv2.

COLOR_RGB2BGR))
43 video_tracked.release()

Listing 6.1 Face tracking in a video frame

In Fig. 6.3, we demonstrate the results of Listing 6.1 in tracking a video frame
with multiple faces. A pre-trained MTCNN model from FaceNet PyTorch can
successfully detect the location of the faces. Usually, the object tracking datasets

368 6 Applications of Machine Learning: Robotics

Table 6.1 Explanation of
the face tracking example in
Listing 6.1

Line number Description

2–6 PyTorch FaceNet and OpenCV to
track faces in a video

10 Defining the MTCNN model

14–15 Loading a sample video

19–24 Detecting each frame face within
a box

26–34 Drawing the rectangle

37–43 Saving the tracked video

Fig. 6.3 A demonstration of
face detection in a video
frame. Video snippet
courtesy: GitHub source [3]

are larger, and architectures are more complex than most domains we discussed in
this book. Hence, we have presented a simple example of tracking faces in a demo
video of FaceNet PyTorch [4]. For more analysis and application of object tracking,
please check famous CNN architectures such as YOLO-V2 [5].

6.2.2 Object Recognition/Detection

Once the algorithm performs the localization of an object inside a single video
frame, the next task is to identify the object. An object detection model should also
be able to detect all the different objects within a frame. Modern architectures such
as YOLO can simultaneously perform object tracking and detection tasks. However,
discussing the details of object tracking models and their datasets is beyond the
scope of this book. In the following sections, we focus on some practical object
detection problems.

6.2.2.1 Applications of Object Recognition/Detection
Some object recognition or detection applications are discussed briefly to give the
readers a picture of this broad spectrum of usage.

6.2 Computer Vision and Machine Vision 369

1. Retail Stores: To track customer footfall and acquire data on how customers
spend their time, many retail shops strategically put people counting equipment.
AI-based customer analysis that uses cameras to recognize and track customers
can be used to better understand consumer interaction and experience, improve
store layout, and streamline operations. Identifying queues to shorten wait times
in retail establishments is a common use case.

2. Agriculture: Object detection can be used in several agricultural activities,
including product quality assessment, animal monitoring, and counting. Machine
learning algorithms can be used to identify damaged food even as it is being
processed.

3. Security Applications: Object detection is the foundation for various security
applications in video surveillance, such as using computer vision to automate
inspection chores at remote locations or detect persons in dangerous or prohibited
areas.

4. Self-driving Cars: Using object detection, self-driving cars may identify pedes-
trians, traffic signs, other vehicles, and more. For instance, Tesla’s Autopilot AI
mainly relies on object detection to identify potential risks from the environment
and its surroundings, such as approaching vehicles or obstructions. An example
is shown in the next section to demonstrate a solution to a real-life self-driving
problem.

5. Healthcare: Numerous advances in the field of medicine have been made possi-
ble through object detection. Applying object detection and image segmentation
on CT and MRI scans can provide fast and accurate medical diagnostics.

6. Traffic Analysis: For traffic analysis, object recognition is used to count and
identify vehicles. It also identifies vehicles that stop in potentially hazardous
locations, such as on highways or crosswalks.

6.2.2.2 Self-Driving Car: Traffic Sign
An important application for a self-driving autonomous car is identifying street
traffic signs. To demonstrate the traffic sign recognition task, we use the German
Traffic Sign Recognition Benchmark dataset [6]. As shown in Fig. 6.4, it has 42
different traffic signs with 40,000 labeled train images. Among them, we have used
80% of the labeled images as the training dataset and the remaining 20% as the test
dataset for the recognition task.

Programming Example 6.2
For enabling the self-driving car to recognize traffic signs, we will use a ResNet-
18 model [7], which has 18 layers with only one fully connected layer and several
residual connections between convolution layers. Residual models such as ResNet-
18 perform exceptionally well in classifying large datasets. Listing 6.2 demonstrates
the Python program, and Table 6.2 explains the code.

370 6 Applications of Machine Learning: Robotics

Fig. 6.4 The German traffic sign recognition benchmark [6]

1 # -------------------------Torch Modules-------------------------
2 import numpy as np
3 import pandas as pd
4 import torch.nn as nn
5 import math
6 import torch.nn.functional as F
7 import torch
8 from torch.nn import init
9 import torch.optim as optim

10 from torchvision.datasets import ImageFolder as IF
11 from torchvision import models
12 import torch.nn.functional as F
13 import torchvision
14 from torchvision import transforms as Trans
15 from torch.utils.data import DataLoader as DL
16 from torch.utils.data import random_split
17 import time
18 import numpy as np
19 import os
20 import matplotlib.pyplot as plt
21 from torch.optim import SGD
22 # ---------------------------Variables---------------------------
23 bs = 128 #Batch Size
24 learning_rate = 0.005
25 Iterations = 5
26 CUDA_av = 1 # set to 1 for GPU training
27

28

29 # ----------------Prepare the German Sign Dataset----------------
30 # Define the transformations.
31 # To begin with, we shall keep it minimum
32 # Only resizing the images and converting them to PyTorch tensors

6.2 Computer Vision and Machine Vision 371

33

34 data_transforms = Trans.Compose([
35 Trans.Resize([112, 112]),
36 Trans.ToTensor(),
37])
38

39

40 # Create data loader for training and validation
41

42 train_directory = "../input/gtsrb-german-traffic-sign/Train"
43 train_dataset = IF(root = train_data_path, transform =

data_transforms)
44

45 # Divide data into training and validation (0.8 and 0.2)
46 ratio = 0.8
47 n_train_examples = int(len(train_dataset) * ratio)
48 n_val_examples = len(train_dataset) - n_train_examples
49

50 train_dataset, validation_data = random_split(train_dataset, [
n_train_examples, n_val_examples])

51

52 print(f"Training dataset samples: {len(train_dataset)}")
53 print(f"Validation dataset samples: {len(validation_data)}")
54

55 train_dataloader = DL(train_dataset, shuffle=True, batch_size =
bs)

56 test_dataloader = DL(validation_data, shuffle=True, batch_size =
bs)

57

58

59 # -------------------Defining a ResNet-18 Model------------------
60 class ModifiedBlock(nn.Module):
61 expansion_factor = 1
62 def __init__(self, input_channels, output_channels, stride=1)

:
63 super(ModifiedBlock, self).__init__()
64 self.conv1 = nn.Conv2d(
65 input_channels, output_channels, kernel_size=3,

stride=stride, padding=1, bias=False)
66 self.batch_norm1 = nn.BatchNorm2d(output_channels)
67 self.conv2 = nn.Conv2d(output_channels, output_channels,

kernel_size=3,
68 stride=1, padding=1, bias=False)
69 self.batch_norm2 = nn.BatchNorm2d(output_channels)
70

71 self.shortcut_connection = nn.Sequential()
72 if stride != 1 or input_channels != self.expansion_factor

*output_channels:
73 self.shortcut_connection = nn.Sequential(
74 nn.Conv2d(input_channels, self.expansion_factor*

output_channels,
75 kernel_size=1, stride=stride, bias=

False),

372 6 Applications of Machine Learning: Robotics

76 nn.BatchNorm2d(self.expansion_factor*
output_channels)

77)
78

79 def forward(self, x):
80 out = F.relu(self.batch_norm1(self.conv1(x)))
81 out = self.batch_norm2(self.conv2(out))
82 out += self.shortcut_connection(x)
83 out = F.relu(out)
84 return out
85

86

87 class ModifiedResNet(nn.Module):
88 def __init__(self, block, num_blocks, num_classes=43):
89 super(ModifiedResNet, self).__init__()
90 self.input_channels = 64
91

92 self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
93 stride=1, padding=1, bias=False)
94 self.batch_norm1 = nn.BatchNorm2d(64)
95 self.layer1 = self._make_layer(block, 64, num_blocks[0],

stride=1)
96 self.layer2 = self._make_layer(block, 128, num_blocks[1],

stride=2)
97 self.layer3 = self._make_layer(block, 256, num_blocks[2],

stride=2)
98 self.layer4 = self._make_layer(block, 512, num_blocks[3],

stride=2)
99 self.linear = nn.Linear(4608, num_classes)
100

101 def _make_layer(self, block, output_channels, num_blocks,
stride):

102 strides = [stride] + [1]*(num_blocks-1)
103 layers = []
104 for stride in strides:
105 layers.append(block(self.input_channels,

output_channels, stride))
106 self.input_channels = output_channels * block.

expansion_factor
107 return nn.Sequential(*layers)
108

109 def forward(self, x):
110 out = F.relu(self.batch_norm1(self.conv1(x)))
111 out = self.layer1(out)
112 out = self.layer2(out)
113 out = self.layer3(out)
114 out = self.layer4(out)
115 out = F.avg_pool2d(out, 4)
116 out = out.view(out.size(0), -1)
117

118 out = self.linear(out)
119 return out
120

6.2 Computer Vision and Machine Vision 373

121

122 def ModifiedResNet18():
123 return ModifiedResNet(ModifiedBlock, [2, 2, 2, 2])
124

125

126 # defining CNN model
127 CNN_Model = ModifiedResNet18()
128 if CUDA_av == 1:
129 CNN_Model = CNN_Model.cuda()
130 ## Loss function
131 loss_criterion = torch.nn.CrossEntropyLoss() # pytorch's cross

entropy loss function
132 if CUDA_av == 1:
133 loss_criterion = loss_criterion.cuda()
134 # definin which paramters to train only the CNN model parameters
135 optimizer = SGD(CNN_Model.parameters(),learning_rate)
136

137 # defining the training function
138 # Train baseline classifier on clean data
139 def train_model(CNN_Model, optimizer,loss_criterion,epoch_no):
140 CNN_Model.train() # setting up for training
141 for id, (input_images, labels) in enumerate(train_dataloader)

: # data contains the image and target contains the label =
0/1/2/3/4/5/6/7/8/9

142 if CUDA_av == 1:
143 input_images, labels = input_images.cuda(), labels.

cuda()
144 optimizer.zero_grad() # setting gradient to zero
145 output = CNN_Model(input_images) # forward
146 loss = loss_criterion(output, labels) # loss computation
147 loss.backward() # back propagation here pytorch will take

care of it
148 optimizer.step() # updating the weight values
149 if id % 100 == 0:
150 print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f

}'.format(
151 epoch_no, id * len(input_images), len(

train_dataloader.dataset),
152 100. * id / len(train_dataloader), loss.item()))
153

154

155 # to evaluate the model
156 ## validation of test accuracy
157 def test_model(CNN_Model, loss_criterion, val_loader, epoch_no):
158 CNN_Model.eval()
159 test_loss = 0
160 correct_flag = 0
161

162 with torch.no_grad():
163 for id, (input_images, labels) in enumerate(val_loader):
164 if CUDA_av == 1:
165 input_images, labels = input_images.cuda() ,

labels.cuda()

374 6 Applications of Machine Learning: Robotics

166 output = CNN_Model(input_images)
167 test_loss += loss_criterion(output, labels).item()
168 pred = output.max(1, keepdim=True)[1]
169 correct_flag += pred.eq(labels.view_as(pred)).sum().

item() # if pred == labels then correct_flag +=1
170

171 test_loss /= len(val_loader.dataset)
172 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{}

({:.4f}%)\n'.format(
173 test_loss, correct_flag, val_loader.sampler.__len__(),
174 100. * correct_flag / val_loader.sampler.__len__()))
175

176

177 ## training the CNN
178 for i in range(Iterations):
179 train_model(CNN_Model, optimizer,loss_criterion,i)
180 test_model(CNN_Model, loss_criterion, test_dataloader, i) #

Testing the the current CNN

Listing 6.2 Traffic sign detection code [8]

Table 6.2 Explanation of
the traffic sign detection
example in Listing 6.2

Line number Description

3–22 Import the required modules

25–28 Hyper-parameters; if you have
GPU set CUDA_av = 1

30–56 Preparing the dataset

59–123 Defining the classifier model
ResNet-18

126–135 Training setup

139–180 Same train and test functions used
prior

Output of Listing 6.2:

Training dataset samples: 31367
Validation dataset samples: 7842
Train Epoch: 0 [0/31367 (0%)] Loss: 3.835121
Train Epoch: 0 [12800/31367 (41%)] Loss: 1.762058
Train Epoch: 0 [25600/31367 (81%)] Loss: 1.356717

Test set: Average loss: 0.0231, Accuracy: 2667/7842 (34.0092%)

Train Epoch: 1 [0/31367 (0%)] Loss: 2.470074
Train Epoch: 1 [12800/31367 (41%)] Loss: 0.797109
Train Epoch: 1 [25600/31367 (81%)] Loss: 0.488599

Test set: Average loss: 0.0094, Accuracy: 4972/7842 (63.4022%)

Train Epoch: 2 [0/31367 (0%)] Loss: 0.802156

6.2 Computer Vision and Machine Vision 375

Train Epoch: 2 [12800/31367 (41%)] Loss: 0.377860
Train Epoch: 2 [25600/31367 (81%)] Loss: 0.274211

Test set: Average loss: 0.0177, Accuracy: 3503/7842 (44.6697%)

Train Epoch: 3 [0/31367 (0%)] Loss: 1.994194
Train Epoch: 3 [12800/31367 (41%)] Loss: 0.163087
Train Epoch: 3 [25600/31367 (81%)] Loss: 0.170656

Test set: Average loss: 0.0071, Accuracy: 5945/7842 (75.8097%)

Train Epoch: 4 [0/31367 (0%)] Loss: 0.313496
Train Epoch: 4 [12800/31367 (41%)] Loss: 0.132293
Train Epoch: 4 [25600/31367 (81%)] Loss: 0.105552

Test set: Average loss: 0.0037, Accuracy: 6767/7842 (86.2918%)

The output of the above code shows that the ResNet-18 model can recognize
6,767 street signs among the total 7,842 test images with a success rate of 86.29%.
We would encourage the reader to apply other advanced models, such as Mobile-
Net-V2, and try to improve the accuracy even further.

Recent advances in computer vision have made it easy to train a convolution or
fully connected neural network and perform classification tasks with high accuracy.
We already presented the classification problem of hand-written digits of MNIST in
Chap. 3. Also, we have demonstrated the classification problem of RGB images in
Chap. 4 (CIFAR-10 dataset). In summary, we have covered a wide range of vision
(e.g., grey-scale or RGB) classification examples throughout this book. Based on
these samples, we can detect any other objects from our daily life.

6.2.3 Image Segmentation

A major objective of computer vision and machine vision is extracting information
from target images. One way of extracting information from an image could be by
isolating and marking different objects within an image, which can be done through
image segmentation. Image segmentation is the process of identifying each pixel
within an image and creating segments by isolating different objects from each
other so that the identity and location of each object within an image can be easily
determined.

Image segmentation can be classified into three main categories: semantic,
instance, and panoptic.

1. Semantic Segmentation: In semantic segmentation, each object within an image
is separated from the other, but the objects from the same class are given the same
label. For example, if an image contains four different bottles, all the bottles will
be labeled similarly. The main goal of semantic segmentation is to classify objects
within an image at the pixel level. Semantic segmentation is used when counting
the number of objects in each class is unnecessary. Its output contains the original

376 6 Applications of Machine Learning: Robotics

image background with separate masks to highlight different objects belonging
to different classes.

2. Instance Segmentation: In instance segmentation, each object within an image
is separated from the other and is labeled separately, even if those objects are of
the same class. For example, if an image contains four different bottles, they will
be separately labeled even though they are in the same class. The main goal of
instance segmentation is to detect the addition or removal of objects belonging to
any particular class to an image. It is especially useful where multiple instances of
the same type of objects are present. The output of instance segmentation usually
contains a black background with varying colored masks to highlight separate
instances of a particular class.

3. Panoptic Segmentation: The term pan means whole, and optic relates to vision.
Therefore, panoptic segmentation refers to the image segmentation process
dealing with all the vision segmentation aspects within an image. This is achieved
by combining instance segmentation and semantic segmentation. In panoptic
segmentation, each object within an image is given two labels—one is the class
label, and another is the instance label to which it belongs. Panoptic segmentation
considers both countable and uncountable objects so that the image can be
analyzed and segmented thoroughly.

Figure 6.5 shows different types of image segmentation. This chapter will look
at an example of an image segmentation application in autonomous drone flight to
ensure flight and landing safety. This is a semantic segmentation application, and
we will use the U-Net architecture to implement our image segmentation task.

6.2.3.1 The U-Net Architecture
The U-Net architecture is a modified and evolved form of traditional convolutional
neural networks developed in 2015 by Ronneberger et al. [10] to perform biomedical
image segmentation. As shown in Fig. 6.6, the U-Net has a symmetric U-shaped
architecture. It consists of two major parts: the contracting and expansive paths.

1. Contracting Path: The left portion of the U-shape of the network is known
as the contracting path. It consists of traditional convolution layers. This path

Fig. 6.5 Image segmentation categories. Photo by Andrey Haimin on Unsplash [9]

6.2 Computer Vision and Machine Vision 377

Fig. 6.6 U-Net architecture

follows the top-down approach. Each step consists of two convolution layers
followed by a max pooling layer, which proceeds to the next step. In the first
step, the resolution of the input image is unchanged, but the number of channels
is increased to 64. After a .2×2 max pooling operation, the resolution of the input
image becomes halved, and it proceeds to the second step, where the number of
channels is further increased to 128 through two consecutive convolution layers.
This operation is repeated several times until the number of channels becomes
1024. In this part of the network, the resolution of the input image gets halved at
each step; that is why it is called the contracting path. In the lowest part of the
network, there is no max pooling operation.

2. Expansive Path: The right portion of the U-shape of the network is known
as the expansive path. This path follows the bottom-up approach. Each step
consists of two convolution layers followed by a transposed convolution layer.
A transposed convolution layer is an up-sampling technique that expands the size
of its input by adding some padding to the input. Here, the output resolution of
the transposed convolution operation is the same as the output resolution of the
corresponding contracting path step. Some information gets altered or missing
during the up-sampling process, so the up-sampled image is concatenated with
the corresponding contracting path image to retain information for more precise
segmentation output. This operation is repeated several times until the image’s
resolution becomes the same as the input. In the uppermost step, the last layer
is a convolution layer of shape .1 × 1 to map the segmented output. The number
of channels gets doubled at each step in this path; that is why it is called the
expansive path.

There is no dense layer in U-Net architecture. The operating process of this
network consisting of contracting and expansive path is analogous to the encoder-
decoder operation. The input and output resolution of the U-Net is the same. This
architecture is able to provide good segmentation performance even if the input
dataset size is small.

378 6 Applications of Machine Learning: Robotics

6.2.3.2 Aerial Semantic Segmentation Example
An application of image segmentation in robotics is the aerial semantic segmenta-
tion performed by unmanned aerial vehicles (UAVs).

Programming Example 6.3
To demonstrate an example, we will use the semantic drone dataset [11], which
is also available in Kaggle. We first load the dataset and apply several data
augmentation techniques to improve model performance. We then use the U-Net
architecture using PyTorch to perform semantic aerial segmentation. Table 6.3

Table 6.3 Explanation of the state detection code example presented in Listing 6.3

Line number Description

1–18 Importing necessary library files

18–22 Reading the images and masks

24–28 Iterate each file in the directories to append them in an object

31–32 Split train, test, and validation dataset

37–49 Defines a train dataset class and initializes the instance variables

50–57 Reads an image, converts the color space, and applies the transformation

66–67 If patches are set to True, split the image and mask into patches

71–79 Defines the tiles method to split the image and mask into patches

84–93 Defines transformations for training data and for validation data

98–105 Create a dataset and data loader for training and validation loop

110–115 Creates an instance of the U-Net model where ‘mobilenet_v2’ with pre-trained
weights from ‘imagenet’

120–125 Defines a function that calculates the accuracy given the output predictions

127–129 Defines a function that returns the learning rate of the optimizer

131–140 Defines a function that trains the model for the specified number of epochs

142–143 Iterates over the specified number of epochs for training

147–148 Iterates over the training data batches

149–152 If patch = True; retrieves and reshapes the tensor

154–186 Computes the loss function and accuracy

188–194 Checks if current val_loss is lower than previous; saves least one

196–202 If it is higher, not_improve counter increases

204–205 Appends the average accuracy of the epoch

218–220 Sets the maximum learning rate, total number of epochs, and weight decay

222–223 CrossEntropyLoss criterion and AdamW optimizer used

224–227 Creates a learning rate scheduler that adjusts the learning rate

232–243 Plot accuracy and loss function improvement with each epoch

247–273 Define a test dataset properties as before

276–277 Transformation and dataset is created

281–305 Defines functions to calculate the accuracy

313–315 Create a path for saving figure, if it does not exist

317–333 Plot random images to cross-validate results

6.2 Computer Vision and Machine Vision 379

explains the code of Listing 6.3. The model performance is shown in Fig. 6.7 while
Fig. 6.8 shows the final output. The listing is written for the IPython or Jupyter
Notebook environment. At the start of the notebook, there is a shell command that
starts with “. !”. The notebook environment can easily handle that. However, if a
Python environment is preferred, comment line 2 and run the following command
in the shell command window before running the code.

pip install -q segmentation-models-pytorch

1 # Dataset: https://www.kaggle.com/datasets/bulentsiyah/semantic-
drone-dataset

2 !pip install -q segmentation-models-pytorch
3 import os, torch
4 import cv2 as cv
5 import numpy as np
6 import pandas as pd
7 import matplotlib.pyplot as plt
8 from torch.optim import AdamW as AW
9 import torch.nn as nn

10 from torch.utils.data import Dataset as ds
11 from torch.utils.data import DataLoader as DL
12 from torchvision import transforms as Trans
13 import torch.nn.functional as F
14 import segmentation_models_pytorch as smpy
15 from PIL import Image
16 import albumentations as ae
17 from sklearn.model_selection import train_test_split
18 from torch.optim.lr_scheduler import OneCycleLR as ocLR
19 # ---------------Read the dataset & Preprocess-------------------
20 full_path = []
21 image_folder = "../input/semantic-drone-dataset/dataset/

semantic_drone_dataset/original_images/"
22 label_folder = "../input/semantic-drone-dataset/dataset/

semantic_drone_dataset/label_images_semantic/"
23

24 for _, _, file_name_list in os.walk(image_folder):
25 for file_name in file_name_list:
26 full_path.append(file_name.split('.')[0])
27

28 df = pd.DataFrame({'index_id': full_path}, index = np.arange(0,
len(full_path)))

29

30

31 Xtrain_val, Xtest = train_test_split(df['index_id'].values,
test_size=0.2)

32 Xtrain, Xval = train_test_split(Xtrain_val, test_size=0.2)
33

34

35 # ----------------Define dataset & dataloader--------------------

380 6 Applications of Machine Learning: Robotics

36 class CreateTrainDataset(ds):
37 def __init__(self, image_dir, mask_dir, list_files, mean, std

, transform=None, patch=False):
38 self.image_dir = image_dir
39 self.mask_dir = mask_dir
40 self.list_files = list_files
41 self.transform = transform
42 self.patches = patch
43 self.mean = mean
44 self.std = std
45

46 def __len__(self):
47 return len(self.list_files)
48

49 def __getitem__(self, id):
50 images = cv.imread(self.image_dir + self.list_files[id] +

'.jpg')
51 images = cv.cvtColor(images, cv.COLOR_BGR2RGB)
52 masks = cv.imread(self.mask_dir + self.list_files[id] + '

.png', cv.IMREAD_GRAYSCALE)
53

54 if self.transform is not None:
55 aug = self.transform(image=images, mask=masks)
56 images = Image.fromarray(aug['image'])
57 masks = aug['mask']
58

59 if self.transform is None:
60 images = Image.fromarray(images)
61

62 tr = Trans.Compose([Trans.ToTensor(), Trans.Normalize(
self.mean, self.std)])

63 images = tr(images)
64 masks = torch.from_numpy(masks).long()
65

66 if self.patches:
67 images, masks = self.divide_into_patches(images,

masks)
68

69 return images, masks
70

71 def divide_into_patches(self, images, masks):
72 image_patches = images.unfold(1, 512, 512).unfold(2, 768,

768)
73 image_patches = image_patches.contiguous().view(3, -1,

512, 768)
74 image_patches = image_patches.permute(1, 0, 2, 3)
75 masks_patches = masks.unfold(0, 512, 512).unfold(1, 768,

768)
76 masks_patches = masks_patches.contiguous().view(-1, 512,

768)
77

78

79 return image_patches, masks_patches

6.2 Computer Vision and Machine Vision 381

80

81

82

83 # ------Transformation for train and validation dataset----------
84 transformation_train = ae.Compose([ae.Resize(800, 1216,

interpolation=cv.INTER_NEAREST),
85 ae.HorizontalFlip(),
86 ae.VerticalFlip(),
87 ae.GridDistortion(p=0.2),
88 ae.RandomBrightnessContrast

((0,0.5),(0,0.5)),
89 ae.GaussNoise()])
90

91 transformation_val = ae.Compose([ae.Resize(800, 1216,
interpolation=cv.INTER_NEAREST),

92 ae.HorizontalFlip(),
93 ae.GridDistortion(p=0.2)])
94

95 # ---------------Dataset & dataloader creation-------------------
96 mean_values = [0.485, 0.456, 0.406]
97 std_values = [0.229, 0.224, 0.225]
98 training_dataset = CreateTrainDataset(image_folder, label_folder,

Xtrain, mean_values, std_values, transformation_train, patch
=False)

99 validation_dataset = CreateTrainDataset(image_folder,
label_folder, Xval, mean_values, std_values,
transformation_val, patch=False)

100

101

102 bs= 3 #Batch Size
103 train_dataloader = DL(training_dataset,
104 batch_size=bs, shuffle=True)
105 val_dataloader = DL(validation_dataset,
106 batch_size=bs, shuffle=True)
107

108

109 # -----------------------Define model----------------------------
110 Unet_model = smpy.Unet('mobilenet_v2',
111 encoder_weights='imagenet',
112 classes=23,
113 activation=None,
114 encoder_depth=5,
115 decoder_channels=[256, 128, 64, 32, 16])
116

117

118

119 # ------------------Define training functions--------------------
120 def get_accuracy_score(output_tensor, mask_tensor):
121 with torch.no_grad():
122 output_tensor = torch.argmax(F.softmax(output_tensor, dim

=1), dim=1)
123 correct_predictions = torch.eq(output_tensor, mask_tensor

).int()

382 6 Applications of Machine Learning: Robotics

124 accuracy_score = float(correct_predictions.sum()) / float
(correct_predictions.numel())

125 return accuracy_score
126

127 def lr_from_optimizer(optimizer):
128 for param_group in optimizer.param_groups:
129 return param_group['lr']
130

131 def fit(num_of_epochs, Unet_model, train_dataloader,
val_dataloader, loss_criterion, optimizer, scheduler, patch=
False):

132 torch.cuda.empty_cache()
133 training_losses = []
134 testing_losses = []
135 validation_accuracy = []
136 training_accuracy = []
137 learning_rates = []
138 min_val_loss = np.inf
139 decrease_counter = 1;
140 no_improvement_count = 0
141

142 Unet_model.to(device)
143 for e in range(num_of_epochs):
144 running_loss = 0
145 accuracy_score = 0
146 Unet_model.train() # Set model to training mode
147 for i, data in enumerate(train_dataloader): # Iterate

over training data loader
148 image_tiles, mask_tiles = data
149 if patch: # If patch-based training enabled, image

and mask need to be flattened
150 bs, num_tiles, channels, height, width =

image_tiles.size()
151 image_tiles = image_tiles.view(-1, channels,

height, width)
152 mask_tiles = mask_tiles.view(-1, height, width)
153

154 image = image_tiles.to(device); # Forward pass image
155 mask_tensor = mask_tiles.to(device);
156 output_tensor = Unet_model(image)
157 loss = loss_criterion(output_tensor, mask_tensor) #

Calculate the loss
158 accuracy_score += get_accuracy_score(output_tensor,

mask_tensor) #Accuracy measurement for evaluation
159 loss.backward() # Backpropagate the loss
160 optimizer.step() # Update model weights
161 optimizer.zero_grad() # Reset gradient
162 learning_rates.append(lr_from_optimizer(optimizer)) #

Update learning rate
163 scheduler.step()
164 running_loss += loss.item()
165

166 else:

6.2 Computer Vision and Machine Vision 383

167 Unet_model.eval() # Set model to evaluation mode
168 testing_loss = 0
169 testing_accuracy = 0
170 with torch.no_grad(): # Iterate over validation data

loader
171 for i, data in enumerate(val_dataloader):
172 image_tiles, mask_tiles = data
173 if patch:
174 bs, num_tiles, channels, height, width =

image_tiles.size()
175 image_tiles = image_tiles.view(-1,

channels, height, width)
176 mask_tiles = mask_tiles.view(-1, height,

width)
177

178 image = image_tiles.to(device);
179 mask_tensor = mask_tiles.to(device);
180 output_tensor = Unet_model(image)
181 testing_accuracy += get_accuracy_score(

output_tensor, mask_tensor)
182 loss = loss_criterion(output_tensor,

mask_tensor)
183 testing_loss += loss.item()
184

185 training_losses.append(running_loss / len(
train_dataloader))

186 testing_losses.append(testing_loss / len(
val_dataloader))

187

188 if min_val_loss > (testing_loss / len(val_dataloader)
):

189 print('Loss Decreasing {:.3f} >> {:.3f} '.format(
min_val_loss, (testing_loss / len(val_dataloader))))

190 min_val_loss = (testing_loss / len(val_dataloader
))

191 decrease_counter += 1
192 if decrease_counter % 5 == 0:
193 print('Model saved')
194 torch.save(Unet_model, 'Unet-Mobilenet_v2_acc

-{:.3f}.pt'.format(testing_accuracy / len(val_dataloader)))
195

196 if (testing_loss / len(val_dataloader)) >
min_val_loss:

197 no_improvement_count += 1
198 min_val_loss = (testing_loss / len(val_dataloader

))
199 print(f'The loss has not decreased for {

no_improvement_count} iterations.')
200 if no_improvement_count == 50:
201 print('The loss has not decreased in the last

50 iterations, so stop training.')
202 break
203

384 6 Applications of Machine Learning: Robotics

204 training_accuracy.append(accuracy_score / len(
train_dataloader))

205 validation_accuracy.append(testing_accuracy / len(
val_dataloader))

206 print("\nEpoch {}/{}:".format(e + 1, num_of_epochs),
207 "\nTrain Loss: {:.3f}".format(running_loss /

len(train_dataloader)),
208 "Val Loss: {:.3f}".format(testing_loss / len(

val_dataloader)),
209 "\nTrain Accuracy: {:.3f}".format(

accuracy_score / len(train_dataloader)),
210 "Val Accuracy: {:.3f}".format(testing_accuracy

/ len(val_dataloader)))
211

212 train_results = {'training_losses': training_losses, '
testing_losses': testing_losses,

213 'training_accuracy': training_accuracy, '
validation_accuracy': validation_accuracy}

214 return train_results
215

216

217 # ------------------------Training loop--------------------------
218 max_learning_rate = 1e-3
219 epoch_no = 100
220 w_decay = 1e-4
221

222 loss_criterion = nn.CrossEntropyLoss()
223 optimizer = AW(Unet_model.parameters(), lr=max_learning_rate,

weight_decay=w_decay)
224 sched = ocLR(optimizer, max_learning_rate, epochs=epoch_no,
225 steps_per_epoch=len(

train_dataloader))
226 device = torch.device("cuda" if torch.cuda.is_available() else "

cpu")
227 train_results = fit(epoch_no, Unet_model, train_dataloader,

val_dataloader, loss_criterion, optimizer, sched)
228

229 torch.save(Unet_model, 'Unet-Mobilenet.pt')
230

231 # ------------------------Plot results---------------------------
232 plt.plot(train_results['testing_losses'], label='val_loss',

marker='o')
233 plt.plot(train_results['training_losses'], label='train_loss',

marker='o')
234 plt.plot(train_results['training_accuracy'], label='

train_accuracy', marker='P')
235 plt.plot(train_results['validation_accuracy'], label='

val_accuracy', marker='P')
236 plt.title('Loss/Accuracy per epoch');
237 plt.ylabel('loss');
238 plt.xlabel('epoch')
239 plt.legend(), plt.grid()
240 plt.show()

6.2 Computer Vision and Machine Vision 385

241

242 train_results_df = pd.DataFrame(train_results, columns = ['
training_losses','testing_losses','training_accuracy','
validation_accuracy'])

243 train_results_df.to_csv("plot_data.csv", index = False)
244

245

246 # -------------------------Evaluation----------------------------
247 class CreateTestDataset(ds):
248

249 def __init__(self, image_dir, mask_dir, list_files, transform
=None):

250 self.image_dir = image_dir
251 self.mask_dir = mask_dir
252 self.list_files = list_files
253 self.transform = transform
254

255 def __len__(self):
256 return len(self.list_files)
257

258 def __getitem__(self, id):
259 images = cv.imread(self.image_dir + self.list_files[id] +

'.jpg')
260 images = cv.cvtColor(images, cv.COLOR_BGR2RGB)
261 masks = cv.imread(self.mask_dir + self.list_files[id] + '

.png', cv.IMREAD_GRAYSCALE)
262

263 if self.transform is not None:
264 aug = self.transform(image=images, mask=masks)
265 images = Image.fromarray(aug['image'])
266 masks = aug['mask']
267

268 if self.transform is None:
269 images = Image.fromarray(images)
270

271 masks = torch.from_numpy(masks).long()
272

273 return images, masks
274

275

276 transformation_test = ae.Resize(800, 1216, interpolation=cv.
INTER_NEAREST)

277 test_dataset = CreateTestDataset(image_folder, label_folder,
Xtest, transform=transformation_test)

278

279

280

281 def predict_image_mask_acc(Unet_model, image, masks, mean=[0.485,
0.456, 0.406], std=[0.229, 0.224, 0.225]):

282 Unet_model.eval()
283 tr = Trans.Compose([Trans.ToTensor(), Trans.Normalize(mean,

std)])
284 image = tr(image)

386 6 Applications of Machine Learning: Robotics

285 Unet_model.to(device);
286 image = image.to(device)
287 masks = masks.to(device)
288 with torch.no_grad():
289 image = image.unsqueeze(0)
290 masks = masks.unsqueeze(0)
291

292 output_tensor = Unet_model(image)
293 acc = get_accuracy_score(output_tensor, masks)
294 masked = torch.argmax(output_tensor, dim=1)
295 masked = masked.cpu().squeeze(0)
296 return masked, acc
297

298

299 def acc(Unet_model, test_dataset):
300 accuracy_score = []
301 for i in range(len(test_dataset)):
302 images, masks = test_dataset[i]
303 pred_mask, acc = predict_image_mask_acc(Unet_model,

images, masks)
304 accuracy_score.append(acc)
305 return accuracy_score
306

307 t_acc = acc(Unet_model, test_dataset)
308

309 print('Test Accuracy: ', np.mean(t_acc))
310

311

312 # -------------Cross validate with ground truth------------------
313 path = '../working/fig'
314 if not os.path.exists(path):
315 os.makedirs('../working/fig')
316

317 for n in (32, 34, 36):
318 image, masks = test_dataset[n]
319 pred_mask, score = predict_image_mask_acc(Unet_model, image,

masks)
320

321 fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 4))
322 ax1.imshow(image)
323 ax1.set_title('Picture {:d}'.format(n));
324 ax1.set_axis_off()
325 ax2.imshow(masks)
326 ax2.set_title('Ground truth')
327 ax2.set_axis_off()
328 ax3.imshow(pred_mask)
329 ax3.set_title('Predicted | Accuracy {:.3f}'.format(score))
330 ax3.set_axis_off()
331 plt.savefig('../working/fig/' + str(n) + '.png', format='png'

, dpi=300, facecolor='white', bbox_inches='tight',
332 pad_inches=0.25)
333 plt.show()

Listing 6.3 Aerial semantic segmentation using U-Net architecture

6.2 Computer Vision and Machine Vision 387

Output of Listing 6.3:

Loss Decreasing inf >> 2.269

Epoch 1/100:
Train Loss: 2.786 Val Loss: 2.269
Train Accuracy:0.220 Val Accuracy:0.452
Loss Decreasing 2.269 >> 1.848

Epoch 2/100:
Train Loss: 2.298 Val Loss: 1.848
Train Accuracy:0.468 Val Accuracy:0.600
Loss Decreasing 1.848 >> 1.587

Epoch 3/100:
Train Loss: 2.012 Val Loss: 1.587
Train Accuracy:0.565 Val Accuracy:0.689
Loss Decreasing 1.587 >> 1.353
Model saved

Epoch 4/100:
Train Loss: 1.731 Val Loss: 1.353
Train Accuracy:0.633 Val Accuracy:0.702
Loss Decreasing 1.353 >> 1.217

Epoch 5/100:
Train Loss: 1.532 Val Loss: 1.217
Train Accuracy:0.652 Val Accuracy:0.709
Loss Decreasing 1.217 >> 1.076

...

...

...

Epoch 97/100:
Train Loss: 0.240 Val Loss: 0.304
Train Accuracy:0.924 Val Accuracy:0.908
Loss Not Decrease for 43 time

Epoch 98/100:
Train Loss: 0.238 Val Loss: 0.313
Train Accuracy:0.926 Val Accuracy:0.908
Loss Decreasing 0.313 >> 0.308

Epoch 99/100:

388 6 Applications of Machine Learning: Robotics

Fig. 6.7 Loss/accuracy per epoch

Train Loss: 0.249 Val Loss: 0.308
Train Accuracy:0.923 Val Accuracy:0.908
Loss Decreasing 0.308 >> 0.291

Epoch 100/100:
Train Loss: 0.244 Val Loss: 0.291
Train Accuracy:0.924 Val Accuracy:0.912

Test Accuracy: 0.9042500770970395

6.3 Robot: A Line Follower Data Predictor Using Generative
Adversarial Network (GAN)

In this section, we demonstrate a semi-supervised algorithm, the Generative Adver-
sarial Network (GAN) [12], which uses a generator and a discriminator to learn a
given task. The generator’s job is to produce the desired output with some random
numbers as input. In other words, the generator learns to predict sequential data by
observing random noise at the input. The algorithm uses a discriminator network
to challenge the generation of the generator. Hence, the generator itself is a semi-
supervised data predictor that does not use labeled data but utilizes the discriminator
to learn to predict a given data sequence.

Programming Example 6.4
We have already provided a comprehensive description of the GAN algorithm in
Chap. 3. Here, we will use a simple GAN architecture to fit a path according to a
given equation .y = 7x2+2x+1. One can imagine this GAN as a robot that learns to
predict data points that match the non-linear equation presented above. The Python

6.3 Robot: A Line Follower Data Predictor Using Generative Adversarial. . . 389

Fig. 6.8 Cross-validate predicted results with ground truth

code to build the GAN is provided in Listing 6.4, followed by its explanation in
Table 6.4. Figure 6.9 depicts the code output.

1 # ----------------------------Modules----------------------------
2 import torch
3 from torch import nn, optim
4 from torch.autograd import Variable
5 import numpy as np
6 from numpy.random import randn
7 from matplotlib import pyplot as plt
8 import math
9 import torch.nn.functional as F

10

11

12 # ---------------------------Variables---------------------------
13 batch_s = 256 # batchsize
14 Iterations = 5000 # iteraiton for training
15 plot_epoch = 4999 # final output printing epoch
16 learning_rate = 0.001 # learning Rate
17 d_step = 10 # generator training steps
18 g_step = 10 # discriminator training steps
19

20

21 # -------------------Dataset Using an Equation-------------------
22 # We want to fit a path to the following equation:
23 # 7x^2 + 2x + 1
24

25 def functions(x):

390 6 Applications of Machine Learning: Robotics

26 return 7*x*x + 2*x + 1
27

28 def data_generation():
29

30 'This function generates the data of batch size = batch_s'
31

32 data = []
33 x = 20 * randn(batch_s) # random inputs
34

35 for i in range(batch_s):
36 y = functions(x[i])
37 data.append([x[i], y]) # dataset
38

39 return torch.FloatTensor(data)
40

41 def plotting(real, fake, epoch):
42

43 'plotting the real and fake data'
44

45 x, y = zip(*fake.tolist())
46 plt.scatter(x, y, label='Generated Data')
47 x, y = zip(*real.tolist())
48 plt.scatter(x, y, label='Original Data')
49 plt.legend(loc='upper left')
50 plt.xlabel("inputs")
51 plt.savefig('GAN.png', bbox_inches='tight')
52 plt.show()
53

54

55 # -------------Defining Generator and Discriminator--------------
56

57 class Generator(nn.Module):
58 def __init__(self):
59 super(Generator, self).__init__()
60 "Generator Model 3-layer fully connected"
61 self.layer1 = nn.Linear(4, 20)
62 self.layer2 = nn.Linear(20, 10)
63 self.layer3 = nn.Linear(10, 2)
64

65

66 def forward(self, x):
67 x = F.relu(self.layer1(x))
68 x = F.relu(self.layer2(x))
69 x = self.layer3(x)
70 return x
71

72 generator = Generator()
73

74

75 class Discriminator(nn.Module):
76 def __init__(self):
77 super(Discriminator, self).__init__()
78 "Dicriminator Model 3-layer fully connected"

6.3 Robot: A Line Follower Data Predictor Using Generative Adversarial. . . 391

79 self.layer1 = nn.Linear(2, 20)
80 self.drop1 = nn.Dropout(0.4)
81

82 self.layer2 = nn.Linear(20, 10)
83 self.drop2 = nn.Dropout(0.4)
84

85 self.layer3 = nn.Linear(10, 1)
86

87 def forward(self, x):
88 x = F.leaky_relu(self.drop1(self.layer1(x)))
89 x = F.leaky_relu(self.drop2(self.layer2(x)))
90 x = torch.sigmoid(self.layer3(x))
91 return x
92

93 discriminator = Discriminator()
94

95

96 # Setting up the models
97 generator = Generator()
98 discriminator = Discriminator()
99

100

101

102 # Define Optimizer
103 optimizer_D = optim.Adam(discriminator.parameters(), lr=

learning_rate)
104 optimizer_G = optim.Adam(generator.parameters(), lr=learning_rate

)
105

106

107 # -----------------------Training Function-----------------------
108

109 def train(Iterations,optimizer_D,optimizer_G,discrimator,
generator):

110

111 "this function trains both generator and discriminator"
112 # Set the models to training mode
113 discriminator.train()
114 generator.train()
115 loss_f = nn.BCELoss() # BCE loss function
116

117 for epoch in range(Iterations):
118 # discriminator training
119 for d_steps in range(d_step):
120

121 data = data_generation()
122 z = torch.randn([batch_s, 4])
123

124

125 # no gradient computation at this stage
126 fake_data = generator(z).detach()
127

128

392 6 Applications of Machine Learning: Robotics

129 sizes = data.size()[0]
130 optimizer_D.zero_grad()
131

132 # the real data update
133 prediction_real = discriminator(data)
134 d_loss = loss_f(prediction_real, torch.ones(sizes, 1)

.fill_(0.95))
135 d_loss.backward()
136

137 # fake data update
138 prediction_generated = discriminator(fake_data)
139 loss_generated = loss_f(prediction_generated, torch.

zeros(sizes, 1))
140 loss_generated.backward()
141

142 optimizer_D.step()
143

144 for g_steps in range(g_step):
145 z = torch.randn([batch_s, 4])
146

147

148 fake_data = generator(z)
149

150 optimizer_G.zero_grad()
151

152 # Run the generated data through the
discriminator

153 prediction = discriminator(fake_data)
154

155 # Train the generator with the smooth target, i.e
. the target is 0.95

156 loss_gen = loss_f(prediction, torch.ones(sizes, 1).
fill_(0.95))

157 loss_gen.backward()
158

159 optimizer_G.step()
160

161 print("epoch:", epoch)
162 print("Genrator Loss:",d_loss)
163 print("Discriminator Loss:",loss_gen)
164

165 if((epoch+1) % plot_epoch == 0):
166 plotting(data, fake_data, epoch)
167

168

169 # ----------------------------Training---------------------------
170 train(Iterations,optimizer_D,optimizer_G,discriminator,generator)

Listing 6.4 LFR path generation using GAN

6.4 Conclusion 393

Table 6.4 Explanation of
the GAN example in Listing
6.4

Line number Description

2–10 Import PyTorch modules

13–18 Hyper-parameters

25–26 .y = 7x2 + 2x + 1 function based
on which the robot will fit a path

28–39 Data generation function

41–51 Plotting function

57–72 Defining the generator model

75–93 Defining the discriminator model

103–105 Two optimizers for generator and
discriminator

109–166 Training function declaration

170 Training and plotting output

Fig. 6.9 The original line data are shown in blue, and the line following robot’s predicted data is
shown in orange

6.4 Conclusion

The combination of machine learning and robotics can be regarded as the most
powerful technological combination of humankind up to date. Machine learning
and artificial intelligence allow robots to think and intelligently interact with
the environment. Machine learning enhances robots’ vision, motion, sensing, and
environment interaction abilities by providing them with a sense of intelligence;

394 6 Applications of Machine Learning: Robotics

thus, the robots are no longer confined to the barriers of pre-programmed activities.
This chapter introduces the concept of machine learning applications in robotics
through some basic theoretical concepts and real-life examples with programming
examples. This chapter discusses computer vision, which spans object tracking,
detection, and image segmentation and provides an example of a line follower robot
using a generative adversarial network. This chapter provides the readers with basic
concepts of robot learning, which will help them venture into further advanced
concepts in this domain. The readers are encouraged to solve the problems, try
them with different input images, and analyze the outputs. In the next chapter,
we will study some state-of-the-art technologies of machine learning and artificial
intelligence and their future possibilities.

6.5 Key Messages

• While interacting with the environment, robots come across a large data stream.
Machine learning can utilize these data to provide intelligence to robots, making
them smarter and more efficient.

• Computer vision and machine vision are integrated with the world of robotics.
Robots gain the power of sight through computer vision and machine vision,
which help them see and analyze various elements of their surrounding environ-
ment.

• The application of machine learning in robotics has freed the robots from their
pre-programmed and confined boundaries, thus giving them a true sense of
automation.

6.6 Exercise

1. Briefly explain the role of machine learning in robotics. How significant is the
influence of machine learning in robotics?

2. Show some differences between machine learning and machine vision.
3. Develop a face detection model and implement it on a video you have captured.

Make one video containing only one face and another containing several (3-5)
faces. Does your model detect faces correctly?

4. Self-driving car works based on object tracking. Provide a high-level overview of
implementing object tracking in a self-driving car environment.

5. Implement an object tracking model on the MS COCO (Microsoft Common
Objects in Context) dataset [13].

6. Design a hyperbolic, parabolic, and half-circular path for a line follower robot
(LFR). Train separate GAN models for the LFR to follow each of the paths. Can
the LFR predict each of the paths equally well?

References 395

References

1. Face recognition using Pytorch. https://github.com/timesler/facenet-pytorch
2. Zhang, K., Zhang, Z., Li, Z., & Qiao, Y. (2016). Joint face detection and alignment using

multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10), 1499–
1503.

3. FaceNet example video. https://github.com/timesler/facenet-pytorch/blob/master/examples/
video.mp4

4. Face tracking pipeline. https://github.com/timesler/facenet-pytorch/blob/master/examples/
face_tracking.ipynb

5. Yolo: Real-time object detection. https://pjreddie.com/darknet/yolov2/
6. GTSRB - German traffic sign recognition benchmark. https://www.kaggle.com/datasets/

meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
7. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–
778).

8. DeepSteal/TSIGN.py at main · adnansirajrakin/DeepSteal—github.com. https://github.com/
adnansirajrakin/DeepSteal/blob/main/TSIGN.py. Accessed September 07, 2023.

9. Unsplash. Photo by Andrey Haimin on Unsplash—unsplash.com (2020). https://unsplash.com/
photos/bpPJ2RSCyPE. Accessed September 09, 2023.

10. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical
image segmentation. arXiv:1505.04597.

11. Semantic drone dataset (2019). https://www.tugraz.at/index.php?id=22387
12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM,
63(11), 139–144.

13. COCO dataset. https://cocodataset.org/#home

https://github.com/timesler/facenet-pytorch
https://github.com/timesler/facenet-pytorch
https://github.com/timesler/facenet-pytorch
https://github.com/timesler/facenet-pytorch
https://github.com/timesler/facenet-pytorch
https://github.com/timesler/facenet-pytorch
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/face_tracking.ipynb
https://github.com/timesler/facenet-pytorch/blob/master/examples/face_tracking.ipynb
https://github.com/timesler/facenet-pytorch/blob/master/examples/face_tracking.ipynb
https://github.com/timesler/facenet-pytorch/blob/master/examples/face_tracking.ipynb
https://github.com/timesler/facenet-pytorch/blob/master/examples/face_tracking.ipynb
https://github.com/timesler/facenet-pytorch/blob/master/examples/face_tracking.ipynb
https://github.com/timesler/facenet-pytorch/blob/master/examples/face_tracking.ipynb
https://github.com/timesler/facenet-pytorch/blob/master/examples/face_tracking.ipynb
https://github.com/timesler/facenet-pytorch/blob/master/examples/face_tracking.ipynb
https://github.com/timesler/facenet-pytorch/blob/master/examples/face_tracking.ipynb
https://github.com/timesler/facenet-pytorch/blob/master/examples/face_tracking.ipynb
https://github.com/timesler/facenet-pytorch/blob/master/examples/face_tracking.ipynb
https://pjreddie.com/darknet/yolov2/
https://pjreddie.com/darknet/yolov2/
https://pjreddie.com/darknet/yolov2/
https://pjreddie.com/darknet/yolov2/
https://pjreddie.com/darknet/yolov2/
https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
https://www.kaggle.com/datasets/meowmeowmeowmeowmeow/gtsrb-german-traffic-sign
https://github.com/adnansirajrakin/DeepSteal/blob/main/TSIGN.py
https://github.com/adnansirajrakin/DeepSteal/blob/main/TSIGN.py
https://github.com/adnansirajrakin/DeepSteal/blob/main/TSIGN.py
https://github.com/adnansirajrakin/DeepSteal/blob/main/TSIGN.py
https://github.com/adnansirajrakin/DeepSteal/blob/main/TSIGN.py
https://github.com/adnansirajrakin/DeepSteal/blob/main/TSIGN.py
https://github.com/adnansirajrakin/DeepSteal/blob/main/TSIGN.py
https://github.com/adnansirajrakin/DeepSteal/blob/main/TSIGN.py
https://github.com/adnansirajrakin/DeepSteal/blob/main/TSIGN.py
https://unsplash.com/photos/bpPJ2RSCyPE
https://unsplash.com/photos/bpPJ2RSCyPE
https://unsplash.com/photos/bpPJ2RSCyPE
https://unsplash.com/photos/bpPJ2RSCyPE
https://unsplash.com/photos/bpPJ2RSCyPE
https://www.tugraz.at/index.php?id=22387
https://www.tugraz.at/index.php?id=22387
https://www.tugraz.at/index.php?id=22387
https://www.tugraz.at/index.php?id=22387
https://www.tugraz.at/index.php?id=22387
https://www.tugraz.at/index.php?id=22387
https://www.tugraz.at/index.php?id=22387
https://www.tugraz.at/index.php?id=22387
https://cocodataset.org/#home
https://cocodataset.org/#home
https://cocodataset.org/#home
https://cocodataset.org/#home

7State of the Art of Machine Learning

7.1 Introduction

With technological and hardware advancements, machine learning (ML) has started
influencing almost every aspect of our daily lives. The goal of ML is for machines
to perform specific tasks the way humans do but without human intervention. ML
has been applied to all aspects of modern life, from detecting objects to conversing
with other human beings. ML has left its footprints in computer vision, natural
language processing, the medical industry, music, art, fashion, and more. State-
of-the-art technologies have been developed to achieve desired goals with high
accuracy. Various ML models have been able to detect objects in real-time and take
action accordingly, work with more complex structure data by the day, and mimic
how a human communicates with another human. On the flip side, the use of ML
and artificial intelligence (AI) also poses some threats. Since ML and AI have been
so involved in our day-to-day prospects, privacy breaches, data loss, temperament
of data, and other cybersecurity-related issues have become a concern. However,
technologies and software are continuously being developed to make AI safer and
mitigate the risks associated with ML and AI.

In this chapter, we present the state of the art of ML by discussing the latest
advancements in ML, such as graph neural networks, EfficientNet, Inception v3,
YOLO, Facebook Prophet, and ChatGPT. Next, we discuss the security challenges
associated with ML/AI and their possible solutions, followed by the hardware
challenges of ML/AI and its future potential. This discussion includes the concepts
of quantization and weight pruning. Then, we will discuss multi-domain learning,
including transfer learning and domain adaptation. Finally, we will discuss AI in
greater detail, including the Turing test, AI limitations, and future possibilities.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
E. Hossain, Machine Learning Crash Course for Engineers,
https://doi.org/10.1007/978-3-031-46990-9_7

397

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-46990-9protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-3-031-46990-9_7
https://doi.org/10.1007/978-3-031-46990-9_7
https://doi.org/10.1007/978-3-031-46990-9_7
https://doi.org/10.1007/978-3-031-46990-9_7
https://doi.org/10.1007/978-3-031-46990-9_7
https://doi.org/10.1007/978-3-031-46990-9_7
https://doi.org/10.1007/978-3-031-46990-9_7
https://doi.org/10.1007/978-3-031-46990-9_7
https://doi.org/10.1007/978-3-031-46990-9_7
https://doi.org/10.1007/978-3-031-46990-9_7
https://doi.org/10.1007/978-3-031-46990-9_7

398 7 State of the Art of Machine Learning

7.2 State-of-the-Art Machine Learning

The journey of ML has been long and adorned with numerous milestones. New
possibilities emerge daily with the consistent and accelerating pace of research
and developments in this field. In this section, we will talk about some latest
developments in ML to present the current state-of-the-art of the field of ML.

7.2.1 Graph Neural Network

In graph theory, a graph may consist of several nodes and edges. City maps,
chemical compositions, protein structures, and many other types of data and
information can be organized using graph structure. The nodes of a graph can
represent cities, protein units, or any other object according to the problem, and the
edges represent the relationship among the nodes. They are intricate data structures
that can be of any size or shape. Graphs can also have dynamic structures, i.e.,
they do not have a fixed number of nodes and edges. No data point in a graph can be
indicated using 2D or 3D coordinates, as graphs do not have any Euclidean structure.

Although a graph is an excellent data structure for representing many types of
real-world data and information, its intricacy and amorphous nature make it incom-
patible with commonly used neural networks. For example, a convolutional neural
network (CNN) is a very commonly used neural network structure that operates on
static and easier-to-understand data formats like arrays, and for this reason, CNNs
and other standard neural networks cannot operate on graphs. The graph neural
network (GNN) is introduced to solve this data structure incompatibility issue.

GNNs apply the predictive capability of deep learning to complex data structures
that represent items and their interactions as points connected by lines in a graph.
To enable ML algorithms to make valuable predictions at the level of nodes (data
points), edges, or complete graphs, GNNs link data points together by lines known
as edges. The overall workflow of the GNN is shown in Fig. 7.1.

7.2.1.1 Applications of GNN
Some practical applications of GNN are briefly discussed below.

1. Computer Vision: A fundamental task in computer vision is image classifica-
tion. Most models produce satisfactory results when presented with a sizable
training set of classes with labels. GNN can fulfill the current goal of improv-
ing these models’ performance on tasks requiring zero-shot (a classification
technique where the model learns to classify objects from previously unseen
classes) and few-shot learning (a classification technique where the model is
pre-trained using a few training samples to generalize over new dataset). Other
uses for computer vision tasks include region classification, interaction detection,
and object detection. In human-computer interaction (HCI), GNNs operate as
message-passing tools between humans and objects.

7.2 State-of-the-Art Machine Learning 399

Input
GNN

Layer

GNN

Layer

Output

Node embedding

Edge embedding

Graph embedding

Training setting
Supervised

Semi-supervised

Unsupervised

Task
Node-level

Edge-level

Graph-level

Loss Function

Sampling

Operator

Conv/Recurrent

Operator

Pooling

Operator

Skip

Connection

Fig. 7.1 Workflow of graph neural network

2. Natural Language Processing (NLP): One of the most significant tasks of
GNN in NLP is text classification. Texts can be represented as graphs, and GNN
uses their interrelations among the words to perform the classification task. Text
classifications can be used for sentimental analysis, news classification, question
and answer segments, neural machine translations, etc. In addition, using a graph
to work with texts can take advantage of non-consecutive words.

3. Molecular Biology: AlphaFold is an AI-based software, used to predict protein
structures. It has been specifically designed to solve the problem of protein
folding in biology. Protein folding is the process through which it gains its
biological functionality. AlphaFold can also be used to study and predict protein
structures, which leads to the development of potential drugs and medicine.

4. Social Networks: Another significant use case of GNN is in the domain of social
media. GNN uses social graphs to develop a recommendation system for social
users. The friend circle or the social interaction group of a user mainly influences
the prediction of this recommendation system. For example, if most of the friends
on the list are from a similar background or race, the recommendation system
will keep recommending content more likely to be consumed by that particular
background or race. The Penn State team has been working with GNN on social
media influence to decrease this bias.

5. Particle Physics: The Compact Muon Solenoid (CMS) detector, a general-
purpose particle physics detector, at the Large Hadron Collider at CERN gener-
ates images. Researchers at Fermilab use GNN to analyze these CMS-generated
images and look for objective particles for particle physics experiments.

400 7 State of the Art of Machine Learning

6. Molecular Chemistry: Molecular fingerprinting is a method to represent a
molecular structure. Researchers use GNN to study, analyze, and research the
structures of different chemical compounds and structures from these molecular
fingerprints. The molecular fingerprints can also be analyzed and studied to
synthesize new chemical compounds that can lead to potential drug discovery.

7. Cyber-security: A network of computers can be represented as graphs. GNN
can be used on such graphs to study and analyze anomalies. In order to detect
malicious activities and identify these anomalies on individual nodes, within
pathways, or at the edge level to detect lateral movement, GNNs have been
utilized.

8. Traffic Jam Prediction: A key component of an intelligent transportation system
is the ability to forecast traffic volume, speed, or road density. The traffic network
can be represented as a spatial-temporal graph, with nodes representing the
sensors placed on roadways, edges representing the separation between pairs of
nodes, and dynamic input features representing the average traffic speed within a
window for each node in a GNN-based traffic solution. Google DeepMind uses
GNN to estimate the potential routes and travel time. Figure 7.2 demonstrates the
workflow of GNN to predict traffic jams using Google Maps API.

9. Combinatorial Optimization: The goal of combinatorial optimization (CO) is
to select the best object from limited options. It is the foundation for numerous
crucial applications in science, engineering, finance, and logistics. The majority
of CO problems are represented as graphs. In a recent project by DeepMind and
Google, bounding the goal value and joint variable assignment are the two main
subtasks for the MILP solver that uses graph nets. On large datasets, their neural
network technique outperforms conventional algorithms in speed.

Anonymised

travel data
Analysed

Super-

segments
Training

data

Graph

neural

netwrok

Predictions

Google

maps

routing

system

Google

maps

API

Google

maps

appCandidate

user routes

A→B

Routes

ranked

by ETA S
u
rf

ac
ed

Fig. 7.2 An application of Graph Neural Network on traffic jam prediction

7.2 State-of-the-Art Machine Learning 401

7.2.2 EfficientNet

Convolutional neural networks (CNNs) are often built at a fixed resource cost and
then scaled up when more resources become available to attain higher accuracy. This
scaling strategy has typically contributed to greater accuracy on most benchmarking
datasets. However, the traditional methods of model scaling are quite sporadic.
Some models have depth scaling, while others have width scaling. To achieve better
results, some models merely utilize photos with a higher resolution. This method
of arbitrarily scaling models necessitates human adjustment and numerous working
hours, frequently yielding little to no performance increase.

EfficientNet is a type of CNN architecture that uses a compound coefficient
method to scale up models quickly and easily. Compound scaling uniformly scales
each dimension with a predetermined fixed set of scaling coefficients instead of
randomly increasing width, depth, or resolution. The developers of EfficientNet cre-
ated seven models in different dimensions using the scaling approach and AutoML,
outperforming most convolutional neural networks’ state-of-the-art accuracy while
operating far more effectively.

The authors of EfficientNet thoroughly investigated the effects of each scaling
strategy on the functionality and effectiveness of the model before formulating the
compound scaling method. It was observed that scaling one dimension enhances
model performance. Similarly, scaling all three dimensions—width, depth, and
image resolution—while considering the varied resources can significantly improve
the model’s overall performance.

The idea behind neural networks is that larger input images require adding more
layers to enhance the receptive field and adding more channels to capture more
minute patterns on the larger image. Compared to other random scaling techniques,
the compound scaling strategy also helped enhance the efficiency and accuracy of
earlier CNN models, such as MobileNet and ResNet, by roughly 1.4% and 0.7%
ImageNet accuracy, respectively.

Based on the baseline network created by the neural architecture search utilizing
the AutoML MNAS framework, EfficientNet was created. The network is adjusted
for optimum accuracy, but it also suffers if it requires a lot of calculation. If
the network takes a long time to make predictions, it is also punished for slow
inference time. Due to the increase in FLOPS, the architecture uses a mobile
inverted bottleneck convolution that is larger than MobileNet V2. To create the
EfficientNet family, this basic model is scaled up.

For EfficientNet, only the B0 model has been shown in the example. The
weights of the pre-trained EfficientNetB0 have been downloaded. The weights have
been achieved by training the model on the ImageNet dataset with 1000 classes.
The next 7 models can also be used by importing the weights by simply calling
EfficientNetB1—EfficientNetB7.

402 7 State of the Art of Machine Learning

Table 7.1 Explanation of the code for implementing EfficientNet in Listing 7.1

Line number Description

1–12 Importing necessary libraries

15–35 Defining a custom image classification model based on the EfficientNetB0
architecture

39–48 Defining the model training process

50–59 Visualizing the training and validation accuracy

61–77 Defining function to predict class labels for unseen image

81–82 Initialize a model and print its summary

85–87 Loading the CIFAR-10 dataset, splitting it into training and testing sets, and
one-hot encoding class labels

95–96 Calculating the test accuracy of the trained model

99–100 Employing the trained model to predict the class label of unseen images

Fig. 7.3 Input image to the
model in Listing 7.1. (Photo
by Tom Cattini on Pexels [1])

Programming Example 7.1
Listing 7.1 demonstrates the code for image classification using EfficientNet, and
Table 7.1 explains the code. Figure 7.3 shows the image of an airplane. This image
is fed to the ML model as the input, and the model is expected to identify the object
in the image. This code uses the EfficientNetB0 architecture to train a model on the
CIFAR-10 dataset. Several additional layers are added to create a modified version
of the EfficientNetB0 model, which was trained on the CIFAR-10 dataset and used
to make predictions on unseen images (Figs. 7.4 and 7.5).

Input image:
1 # -----------------Importing Required Libraries------------------
2 import cv2
3 import numpy as np
4 import matplotlib.pyplot as plt
5 import tensorflow as tf
6 from tensorflow.keras.optimizers import Adam
7 from tensorflow.keras.models import Model
8 from tensorflow.keras.layers import Input, Dense,

GlobalAveragePooling2D

7.2 State-of-the-Art Machine Learning 403

9 from tensorflow.keras.datasets import cifar10
10 from tensorflow.keras.utils import to_categorical
11 from tensorflow.keras.applications import EfficientNetB0
12 from tensorflow.keras.applications.efficientnet import

preprocess_input
13

14

15 # ------------------------Model Formation------------------------
16 def modified_efficientNet(image_shape=(32, 32, 3), fc_units

=(1024, 512)):
17 input_src = Input(shape=image_shape)
18 base_model = EfficientNetB0(
19 include_top=False,
20 weights='imagenet',
21 input_shape=image_shape
22)(input_src)
23 x = GlobalAveragePooling2D()(base_model)
24

25 for units in fc_units:
26 x = Dense(units, activation='relu')(x)
27

28 output = Dense(10, activation='softmax')(x)
29

30 model = Model(input_src, output)
31 optimizer = Adam(learning_rate=0.0002, beta_1=0.5)
32 model.compile(loss='categorical_crossentropy', optimizer=

optimizer, metrics=['accuracy'])
33 return model
34

35 return x_train, y_train, x_test, y_test
36

37

38 # -----------------------Model Training--------------------------
39 def train_model(model, x_train, y_train, x_test, y_test, epochs

=50, batch_size=32):
40 predicted_output = model.fit(
41 x_train,
42 y_train,
43 validation_data=(x_test, y_test),
44 batch_size=batch_size,
45 epochs=epochs,
46 shuffle=True,
47)
48 return predicted_output
49

50 def plot_accuracy(predicted_output):
51 plt.plot(predicted_output.history['accuracy'])
52 plt.plot(predicted_output.history['val_accuracy'])
53 plt.title('Model Accuracy')
54 plt.ylabel('Accuracy')
55 plt.xlabel('Epoch')
56 plt.legend(['Train', 'Test'])
57 plt.savefig("./results/train_test.png")

404 7 State of the Art of Machine Learning

58 plt.show()
59

60

61 # -----------------Detection for Unseen Images-------------------
62 def predict_custom_image(model, img_path):
63 img = cv2.imread(img_path)
64 img = cv2.resize(img, (32, 32))
65 x = np.expand_dims(img, axis=0)
66 x = preprocess_input(x)
67

68 preds = model.predict(x)
69 predicted_label_index = np.argmax(preds)
70 class_labels = ["airplane", "automobile", "bird", "cat", "

deer", "dog", "frog", "horse", "ship", "truck"]
71 my_image = plt.imread(img_path)
72 plt.xticks([])
73 plt.yticks([])
74 plt.imshow(my_image)
75 plt.title('Predicted: {}'.format(class_labels[

predicted_label_index]))
76 plt.savefig("./results/predicted.png")
77 plt.show()
78

79

80 # -------------------Training and Evaluation---------------------
81 EffNet = modified_efficientNet()
82 print(EffNet.summary())
83

84 # Split Dataset
85 (x_train, y_train), (x_test, y_test) = cifar10.load_data()
86 y_train = to_categorical(y_train, num_classes=10)
87 y_test = to_categorical(y_test, num_classes=10)
88

89 predicted_output = train_model(EffNet, x_train, y_train, x_test,
y_test)

90

91 # Plot training and validation accuracy
92 plot_accuracy(predicted_output)
93

94 # Evaluate the model on the test dataset
95 test_loss, test_acc = EffNet.evaluate(x_test, y_test)
96 print("Test accuracy:", test_acc)
97

98

99 # Predict an unknown image
100 predict_custom_image(EffNet, './data/img.jpg')

Listing 7.1 Image classification using EfficientNet

Output of Listing 7.1:
Model: "model_2"

Layer (type) Output Shape Param #

===
input_5 (InputLayer) [(None, 32, 32, 3)] 0

7.2 State-of-the-Art Machine Learning 405

efficientnetb0 (Functional) (None, 1, 1, 1280) 4049571

global_average_pooling2d_2 (None, 1280) 0
(GlobalAveragePooling2D)

dense_6 (Dense) (None, 2048) 2623488

dense_7 (Dense) (None, 1024) 2098176

dense_8 (Dense) (None, 10) 10250

===
Total params: 8,781,485
Trainable params: 8,739,462
Non-trainable params: 42,023

Epoch 1/50
1563/1563 [==============================] - 123s 52ms/step
- loss: 1.1370 - accuracy: 0.6018
- val_loss: 0.7559 - val_accuracy: 0.7405
Epoch 2/50
1563/1563 [==============================] - 80s 51ms/step
- loss: 0.7509 - accuracy: 0.7421
- val_loss: 0.6585 - val_accuracy: 0.7714

...

...

...

Epoch 48/50
1563/1563 [==============================] - 75s 48ms/step
- loss: 0.0595 - accuracy: 0.9814
- val_loss: 0.7917 - val_accuracy: 0.8398
Epoch 49/50
1563/1563 [==============================] - 75s 48ms/step
- loss: 0.0711 - accuracy: 0.9790
- val_loss: 0.7920 - val_accuracy: 0.8425
Epoch 50/50
1563/1563 [==============================] - 75s 48ms/step
- loss: 0.0643 - accuracy: 0.9807
- val_loss: 0.7206 - val_accuracy: 0.8469

7.2.3 Inception v3

The convolutional neural network (CNN) named Inception v3 [2] was developed as
a plugin for GoogLeNet and is used to support object detection and image analysis.
The Google Inception CNN, first presented during the ImageNet Recognition
Challenge, is currently in its fourth iteration. Nevertheless, the third iteration,
i.e., Inception v3, is still the most popular Inception architecture. Inception v3
was created to enable deeper networks without making the number of parameters
unmanageable. It has a total of 42 layers and contains around 25 million parameters,
which is almost 40% of the number of parameters of AlexNet.

406 7 State of the Art of Machine Learning

Fig. 7.4 Train and test accuracy compared with respect to epochs of Listing 7.1

Fig. 7.5 Output image with
label of Listing 7.1

7.2 State-of-the-Art Machine Learning 407

3× 4× 2×

Input

Convolutional layer Max pooling layer Mean pooling layer Fully connected layer

Dropout layer Softmax layerConcat

Fig. 7.6 Inception v3 architecture

Densely connected

architecture

Sparsely connected

architecture

Fig. 7.7 Densely connected vs. sparsely connected network architectures

Inception aids in classifying items in computer vision, much like ImageNet can
be seen as a database of categorized visual objects. Numerous applications have
utilized the Inception v3 architecture, frequently using “pre-trained” data from
ImageNet. Figure 7.6 shows the architecture of the Inception v3 model. The model’s
name is inspired by the popular internet meme, “We need to go deeper,” from
Christopher Nolan’s film Inception.

The effectiveness of a deep learning model can be improved simply by increasing
the number of layers and/or neurons in each layer. However, creating more
depth in the model frequently leads to complications—the model becomes more
susceptible to overfitting as it gets larger, and training the larger model requires
more computational resources. The low availability of training data also makes the
model more susceptible to overfitting.

One way to address these issues is to switch from fully connected network struc-
tures to sparsely connected network architectures, particularly inside convolutional
layers. Figure 7.7 visually compares densely connected versus sparsely connected
network architectures. This is basically how the Inception model creates more depth
and does not increase the number of parameters.

408 7 State of the Art of Machine Learning

7.2.4 YOLO

YOLO (You Only Look Once) is a state-of-the-art object detection algorithm that can
produce real-time results. Redmon et al. [3] introduced YOLO and brought a new
dimension to the field of computer vision. Many improved versions of YOLO have
been developed since then. Its name comes from the way YOLO works. Most object
detection systems use a classifier model to recognize objects and then evaluate that
insight on different locations of an image. Many systems, such as deformable parts
models (DPM), use the sliding window technique for locating an object within an
image. DPM systems slide a classifier along the entire image at evenly spaced
locations. On the other hand, YOLO treats object detection as a single regression
problem. The system looks at the whole image at a time and makes its predictions.

7.2.4.1 Features of YOLO
Some of the features that make YOLO superior to other object detection algorithms
are briefly discussed below.

• Processing Time: YOLO has an extraordinarily fast processing time. It can
process images at 45 FPS (frames per second) in real-time. Fast YOLO, a smaller
version of the YOLO network, can process as many as 155 frames per second in
real-time.

• Fastest Object Detector: YOLO is regarded as the fastest object detector and
boasts the highest mean average precision (mAP) with less background error.
The mAP is an evaluation metric to analyze the performance of object detectors.
The mAP, weight (bits), and weight size (MB) of YOLO are compared to other
fast object detectors on the COCO dataset in Table 7.2. The COCO dataset [4]
is published by Microsoft for large-scale object detection, segmentation, and
captioning.

• Generalization Capability: The better the generalization a model can make,
the better its performance. In this regard, the latest YOLO versions have shown
incredible generalization performance. YOLO can be applied to almost any
domain for object detection due to its immense generalization capability.

• Open-source System: YOLO is an open-source system, and the online com-
munity has contributed to and developed many improved versions of it. This is

Table 7.2 Different algorithms compared with YOLO

Method mAP (%) W (bits) Weight size (MB)

YOLOv3 [5] 54.64 32 237

YOLOv2 [6] 48.1 32 194

Zhang et al. [7] 48.1 16 97

YOLOv3-tiny [5] 33.1 32 33.79

Gaussian YOLOv3-tiny [8] 39.3 32 33.82

Nayak et al. [9] 28.09 8 30.48

7.2 State-of-the-Art Machine Learning 409

also one of the critical reasons why YOLO is almost the first choice for object
detection for many beginners.

7.2.4.2 YOLO Concepts
Some key concepts regarding YOLO are briefly discussed below:

Residual Blocks The image is divided into equal .N ×N grids. Each cell of the grid
predicts individually if it contains any object. Therefore, each cell has to localize and
predict the object class it contains. The cell containing the detected object’s center
becomes the center coordinate for the bounding box.

Bounding Box The system uses dimension clusters as anchor boxes to predict the
bounding boxes for respective objects. It predicts four coordinates for each bounding
box: .tx, ty, tw, th. The assumption is made that the cell is offset from the top left
corner of the image by .(cx, cy), and the prior width and height of the bounding box
are . pw and . ph. Using these parameters, the system detects the bounding box for the
object using the necessary calculations below.

.bx = σ(tx) + cx, (7.1)

.by = σ(ty) + cy, (7.2)

.bw = pwetw , (7.3)

.bh = phe
th, (7.4)

where . bx is the x-coordinate of the center, . by is the y-coordinate of the center, . bw

is the width, . bh is the bounding box’s height, and . σ is the sigmoid function. The
bounding box’s width and height are predicted as offsets from cluster centroids.
The box’s center coordinates relative to the filter application’s location are predicted
using a sigmoid function. Figure 7.8 shows an example of the bounding box
prediction by YOLOv3.

Anchor Box YOLO uses anchor boxes to localize different objects within an
image. YOLO models start object detection by forming numerous bounding boxes
throughout the image. These bounding boxes are known as anchor boxes. These
anchor boxes are used as a baseline for bounding box prediction, and YOLO models
predict a bounding box by adjusting the anchor boxes. For each anchor box, some
offset from that box is predicted as a candidate box. The loss function is calculated
from that candidate box based on ground truth. Then, the probability of an offset box
overlapping with an object is calculated. By rewarding and penalizing the predicted
boxes through object overlapping probability calculation described in the bounding
box section and loss function optimization, YOLO models predict bounding boxes
closest to the ground truths.

410 7 State of the Art of Machine Learning

Fig. 7.8 Bounding box detection by YOLOv3

If you incompletely train a YOLO model, you will observe predicted bounding
boxes all over the image. This happens due to the anchor boxes, as the model has
yet to arrive at a bounding box decision from the anchor boxes.

Intersection Over Union (IoU) Intersection over union is defined as the ratio of
the intersection of the ground truth box and predicted bounding box to the union of
the ground truth box and predicted bounding box. It is expressed by Eq. 7.5:

.IoU = Area of Intersection

Area of Union
. (7.5)

An object can have more than one boundary box predicted against it. However,
not all boundary boxes will be relevant and accurate. Hence, any boundary box with
an IoU score below a threshold is discarded.

Objectness Score Objectness score determines the probability of an object existing
in a certain region of interest. A high objectness score for YOLO means an object
is correctly detected and localized within an image, and the object is perfectly
contained in a bounding box. The objectness score is calculated through this simple
equation:

.σ(to) = Pr(obj) × IoU, (7.6)

where .σ(to) is the objectness score, .Pr(obj) is the prediction score of an object,
and IoU is the intersection over union score.

7.2 State-of-the-Art Machine Learning 411

Non-Max Suppression (NMS) Often, an object may have more than one boundary
box with an IoU score exceeding the threshold value. However, the goal is to have
one boundary box per object. Therefore, non-max suppression is applied to keep the
most accurate and relevant boundary box with the highest objectness score.

7.2.4.3 YOLO Variants
The first version of YOLO consists of 24 convolutional layers, four maxpooling
layers, and two fully connected layers. Although superior to other fast object
detectors, it has limitations in detecting smaller or unusually shaped objects.

The YOLOv2 [6] used Darknet-19 as its architecture, which uses batch nor-
malization and improved the mAP by 2%. In addition, YOLOv2 incorporates the
concept of anchor boxes within the convolution layers. Another improvement is
that YOLOv2 uses higher resolution inputs of .448 × 448, improving the model
performance to extract and learn finer details or features of different objects.

The YOLOv3 [5] uses Darknet-53 as its architecture. It is a 106 neural network
consisting of upsampling networks and residual blocks. In addition, YOLOv3 uses
a logistic regression model to calculate the objectness score for each bounding box.

The next version of YOLO, YOLOv4, [10] uses CSPDarknet-53 as its archi-
tecture, which is a network of 29 convolution layers and consists of 27.6 million
parameters. YOLOv4 outperforms YOLOv3 by 10% in speed. Later, there were
more modifications, and YOLOR, YOLOX, YOLOv5, YOLOv6, and YOLOv7
were developed.

7.2.4.4 YOLOv3 Implementation for Object Detection
An implementation of object detection has been shown in this section using the
YOLOv3 variant. As discussed earlier in this section, YOLOv3 uses Darknet-53 as
its architecture. For this purpose, we need to download, compile, and configure the
Darknet architecture to train YOLOv3. The training should be continued for 3–4
hours. A custom dataset is used where only five classes are used.

YOLO is mostly implemented with the COCO dataset [4]. Even weights are
available for the COCO dataset, which we can use to easily detect almost every
daily life object. But to reduce the computational complexity, we will use a custom
dataset. The dataset is created with the help of Open Images Dataset [11]. It is a
publicly available dataset developed for object detection and image classification. It
contains diverse images with annotated labels. The procedure involves using some
shell commands that can be executed by a PowerShell, Command Prompt, or Shell,
depending upon the operating system. The shell is a text-based program that helps
users interact with the system. The process of creating a custom dataset is briefly
described here:

1. The repository on OIDv4_ToolKit [12] was cloned.
git clone {h}ttps://github.com/theAIGuysCode/OIDv4_ToolKit.git

2. The directory was changed to the newly cloned repository.
cd OIDv4_ToolKit

412 7 State of the Art of Machine Learning

3. All the required libraries were installed.
pip install -r requirements.txt

4. The main.py file was executed with appropriate parameters.
python main.py downloader --classes Person Laptop Mug Bicycle

Handbag --type_csv train --limit 1000 --multiclasses 1

Classes can be searched from Open Images Dataset website [11]. Classes with
two words can be concatenated using an underscore. CSV type should be train
in case of training or otherwise test. The limit sets how many images per class
will be used for creating the dataset. The multiclasses parameter ensures all the
images are stored in a folder.

5. Two CSV files were created before downloading the images.
6. For each class, the class names, i.e., the labels, were stored in a text file using an

echo command.
echo -e "Person\nLaptop\nMug\nBicycle\nHandbag" > classes.txt

7. A label file was created with each image.
python convert_annotations.py

After successfully creating the dataset, an archived file was created for easy data
transfer. The archive file is renamed to obj.zip in this case.

Programming Example 7.2
Listing 7.2 is an implementation of YOLOv3 for object detection, and Table 7.3
explains the code. This code is implemented using the darknet framework. It is a
deep learning framework primarily designed for object detection.

The listing incorporates some shell commands. In a Python environment, the
subprocess library can be used to run shell commands directly within a Python
script. But using the IPython environment, the process can be a bit more simplified.
For instance, . ! does not mean anything in a Python environment. But in the IPython
environment, it executes a shell command. Similarly, the . % does not mean anything
in Python, whereas it is defined as a magic command in the IPython environment.
For these reasons, this script is executed in an IPython environment.

The code creates necessary configuration files and trains an object detection
model on the custom-generated dataset. Although the code was written for the
Google Colab notebook environment, it can also be executed in any other notebook
environment.

1 # Framework: https://github.com/AlexeyAB/darknet
2

3 # -----------------Importing Necessary Framework-----------------
4 !git clone https://github.com/AlexeyAB/darknet
5

6

7 # -------------------Creating Location Shortcut------------------
8 from google.colab import drive
9 drive.mount('/content/gdrive/')

10 !ln -s /content/gdrive/My\ Drive/ /mydrive
11

7.2 State-of-the-Art Machine Learning 413

12

13 # -----------------------Compiling Darknet-----------------------
14 %cd darknet
15 !sed -i 's/OPENCV=0/OPENCV=1/' Makefile
16 !sed -i 's/GPU=0/GPU=1/' Makefile
17 !sed -i 's/CUDNN=0/CUDNN=1/' Makefile
18 !make
19

20

21 # --------------------Creating Configuration---------------------
22 !cp cfg/yolov3.cfg cfg/yolov3_training.cfg
23 !sed -i 's/batch=1/batch=64/' cfg/yolov3_training.cfg
24 !sed -i 's/subdivisions=1/subdivisions=16/' cfg/yolov3_training.

cfg
25 !sed -i 's/max_batches = 500200/max_batches = 10000/' cfg/

yolov3_training.cfg
26 !sed -i 's/steps=400000,450000/steps=8000,9000/' cfg/

yolov3_training.cfg
27 !sed -i '610 s@classes=80@classes=5@' cfg/yolov3_training.cfg
28 !sed -i '696 s@classes=80@classes=5@' cfg/yolov3_training.cfg
29 !sed -i '783 s@classes=80@classes=5@' cfg/yolov3_training.cfg
30 !sed -i '603 s@filters=255@filters=30@' cfg/yolov3_training.cfg
31 !sed -i '689 s@filters=255@filters=30@' cfg/yolov3_training.cfg
32 !sed -i '776 s@filters=255@filters=30@' cfg/yolov3_training.cfg
33

34

35 # -----------Create Folder on Google Drive to Save Data----------
36 !mkdir "/content/gdrive/MyDrive/yolov3"
37 !echo -e "Person\nLaptop\nMug\nBicycle\nHandbag" > data/obj.names
38 !echo -e 'classes= 5\ntrain = data/train.txt\nvalid = data/test

.txt\nnames = data/obj.names\nbackup = /mydrive/yolov3' >
data/obj.data

39

40

41 # ---------------------Copy and Unzip Dataset--------------------
42 !cp /mydrive/yolov3/obj.zip ../
43 !unzip ../obj.zip -d data/
44

45

46 # -----------------Generate Image and Label Paths----------------
47 !cp /mydrive/yolov3/generate_train.py ./
48 !python generate_train.py
49

50

51 # -------------------------Training Phase------------------------
52 !wget http://pjreddie.com/media/files/darknet53.conv.74
53 !./darknet detector train data/obj.data cfg/yolov3_custom.cfg

darknet53.conv.74 -dont_show
54 # !./darknet detector train data/obj.data cfg/yolov3_training.cfg

/mydrive/yolov3/yolov3_custom_last.weights -dont_show

Listing 7.2 Code for training YOLOv3 for object detection

414 7 State of the Art of Machine Learning

Table 7.3 Explanation of the code for training YOLOv3 in Listing 7.2

Line number Description

4 Cloning the darknet framework

8–10 Creating a shortcut for project folder, as it is necessary to work back and forth in
the project folder and darknet folder

14–18 Editing the Makefile to enable GPU processing and compile darknet

22–24 Setting up batch number and subdivisions to 64 and 16 respectively

25 Max batch should be 20 times of the number of classes

26 Steps should be 80% and 90% of max batch

27–32 Using 5 classes in this case and filters should be 3. ×(class number+5)

36 Creating a folder in the project directory

37–38 Creating obj.names and obj.data files as these are necessary for darknet to
execute

37 obj.names contains the classes name or label names each in new line

38 obj.data contains some directory where other files will be stored

41 Before this step, transfer obj.zip to newly created folder in line 36

42–43 Transferring dataset to darknet directory

46–48 Generating image and labels path for darknet

52 Fetching a weight for faster execution

53 Training object detection using YOLOv3

54 In case of any failure between training process, this line can be used to resume
training as line 53 stores trained weight files after each 100 steps to the backup
folder mentioned in the obj.data file

The dataset was created earlier and renamed to obj.zip for convenience. The
obj.zip file should be transferred to the preferred project folder location (in this
case, to yolov3 folder) before running the code after line 41. The code in Listing 7.2
outputs a weight file in the project folder.

Listing 7.3 (explained in Table 7.4) utilizes the weights generated by Listing 7.2
and outputs an image file in the project folder. A sample input and output of this
listing are shown in Fig. 7.9.

1 # Framework: https://github.com/AlexeyAB/darknet
2

3 # -----------------Importing Necessary Framework-----------------
4 !git clone https://github.com/AlexeyAB/darknet
5

6

7 # -------------------Creating Location Shortcut------------------
8 from google.colab import drive
9 drive.mount('/content/gdrive/')

10 !ln -s /content/gdrive/My\ Drive/ /mydrive
11

12

13 # -----------------------Compiling Darknet-----------------------
14 %cd darknet

7.2 State-of-the-Art Machine Learning 415

15 !sed -i 's/OPENCV=0/OPENCV=1/' Makefile
16 !sed -i 's/GPU=0/GPU=1/' Makefile
17 !sed -i 's/CUDNN=0/CUDNN=1/' Makefile
18 !make
19

20

21 # --------------------Creating Configuration---------------------
22 !cp cfg/yolov3.cfg cfg/yolov3_training.cfg
23 !sed -i 's/max_batches = 500200/max_batches = 10000/' cfg/

yolov3_training.cfg
24 !sed -i 's/steps=400000,450000/steps=8000,9000/' cfg/

yolov3_training.cfg
25 !sed -i '610 s@classes=80@classes=5@' cfg/yolov3_training.cfg
26 !sed -i '696 s@classes=80@classes=5@' cfg/yolov3_training.cfg
27 !sed -i '783 s@classes=80@classes=5@' cfg/yolov3_training.cfg
28 !sed -i '603 s@filters=255@filters=30@' cfg/yolov3_training.cfg
29 !sed -i '689 s@filters=255@filters=30@' cfg/yolov3_training.cfg
30 !sed -i '776 s@filters=255@filters=30@' cfg/yolov3_training.cfg
31

32

33 # -----------Create Folder on Google Drive to Save Data----------
34 !mkdir "/content/gdrive/MyDrive/yolov3"
35 !echo -e "Person\nLaptop\nMug\nBicycle\nHandbag" > data/obj.names
36 !echo -e 'classes= 5\ntrain = data/train.txt\nvalid = data/test

.txt\nnames = data/obj.names\nbackup = /mydrive/yolov3' >
data/obj.data

37

38

39 # ------------------------Object Detection-----------------------
40 !./darknet detector test data/obj.data cfg/yolov3_training.cfg /

mydrive/yolov3/yolov3_custom_final.weights /mydrive/yolov3/
img9.jpg -thresh 0.3

41 !cp predictions.jpg /mydrive/yolov3/detection9.jpg

Listing 7.3 Code for object detection using YOLOv3

7.2.5 Facebook Prophet

Facebook Prophet is an algorithm for forecasting time series data. It is available
as an open-source package in Python and R. Taylor and Letham [14], from the
core data science team at Meta (formerly known as Facebook), introduced the
Facebook Prophet algorithm in 2017. The official website for Facebook Prophet
states comprehensive documentation on installing and using this package alongside
different examples in different case scenarios.

This research and development aimed to provide the business industries with
a potent and easily interpretable forecasting tool without understanding its depth.
First, most of the existing forecasting tools are entirely automatic and leave very
little space for flexibility to integrate different necessary information about the
businesses. Next, most of the tools require experts with in-depth knowledge of

416 7 State of the Art of Machine Learning

Fig. 7.9 Input (top) and output (bottom) of Listing 7.3. (Input snippet source: GitHub source [13])

the domain and the forecasting tool itself. Such requirement is demanding and
expensive to meet.

7.2.5.1 Features of Facebook Prophet
The features of Facebook Prophet that make it a prominent and state-of-the-art
forecasting tool are briefly discussed below.

• Facebook Prophet can work with linear and non-linear trends alongside flat
trends. It allows users to select “changepoints” on the trend lines manually.

• Facebook Prophet can work with multiple seasonalities at once.

7.2 State-of-the-Art Machine Learning 417

Table 7.4 Explanation of the Object Detection using YOLOv3 code in Listing 7.3

Line number Description

4 Cloning the darknet framework

8–10 Creating a shortcut for project folder, as it is necessary to work back and forth
in the project folder and darknet folder

14–18 Editing the Makefile to enable GPU processing and compile darknet

23 Max batch should be 20 times of the number of classes

24 Steps should be 80% and 90% of max batch

25–30 Using 5 classes in this case and filters should be 3. ×(class number+5)

34 Creating a folder in the project directory

35–36 Creating obj.names and obj.data files as these are necessary for darknet to
execute

35 obj.names contains the classes name or label names each in new line

36 obj.data contains some directory where other files will be stored

40 Execute detection using the weight file generated in Listing 7.3

41 Copy the predicted image to project directory

• It can also work with seasonalities with characteristics of irregular intervals, e.g.,
the FIFA World Cup.

• Facebook Prophet can capture trend changes in historical data due to a significant
event, such as a product launch or hype of a product among specific populations.

• This algorithm does not require too much data preprocessing. It can handle
missing data and also is unaffected by the presence of outliers.

• Facebook Prophet has intuitive parameters that are easier to tune by analysts with
little to no expertise in forecasting tools.

• This algorithm can generate very accurate forecasts almost in real-time.

The Facebook Prophet forecasting tool uses a decomposable time series model,
allowing users to interpret the model’s decision effortlessly. The algorithm mainly
uses an additive regression model with three main model components: trend,
seasonality, and holidays.

7.2.6 ChatGPT

Chat Generative Pre-trained Transformer (ChatGPT) is a buzzword at present. The
AI company OpenAI, headquartered in San Francisco, developed the large language
model (LLM)-based chatbot named ChatGPT based on GPT-3.5 and GPT-4. The
prototype was released on November 30, 2022 and is open to all. It resembles a
chat interface, where we can input prompts, and ChatGPT provides responses in the
context of those prompts. It can engage in conversational interactions and respond
in a human-like manner in more than eighty languages, including Arabic, German,
French, Spanish, Greek, Japanese, Chinese, Bengali, and Hindi.

418 7 State of the Art of Machine Learning

LLMs can predict the next words in a train of words. So, ChatGPT uses
the keywords and generates sentences by predicting words that are commonly
used together. An additional layer, Reinforcement Learning with Human Feedback
(RLHF), which is a combination of supervised and reinforcement learning tech-
niques, was used to train ChatGPT to achieve the aptitude to obey instructions
and provide responses acceptable to humans by using human feedback. Python,
TensorFlow, and PyTorch were used to build the core structure of ChatGPT.

Massive volumes of data are used to train LLMs to precisely anticipate what word
will appear next in a phrase. 300 billion words and 175 million parameters were used
to train ChatGPT, which consists of 570GB of text data from about 8 million web
pages on the Internet, various articles, books, and online forum discussions (e.g.,
Reddit discussions). ChatGPT can remember the past dialogues in the conversation
up to 3000 words and adapt its responses accordingly. But it does not remember past
conversations.

In the next two sections, we will discuss some applications and limitations of
ChatGPT.

7.2.6.1 Applications of ChatGPT
ChatGPT is a powerful language tool that emerged with boundless possibilities
for applications. Despite its limitations, it is ubiquitously used in a wide range of
applications, some of which are discussed below:

1. Textual Applications: ChatGPT is great for generating textual content, so much
so that when ChatGPT was launched, writers felt threatened about their job
security. ChatGPT can generate articles on various topics, translate text excerpts,
summarize long texts, and even elaborate short prompts.

2. Coding: ChatGPT can be used for writing, editing, documenting, explaining,
refactoring, and debugging codes. It can prove to be a valuable assistant to
programmers by saving their time and also help novice programmers in coding.

3. Education and Research: ChatGPT provides very basic information in response
to prompts. So it is a good source if someone is looking for very simplified
explanations on specific topics. However, it is discouraged to trust ChatGPT on
the information it provides because it can hallucinate false information. So, it is
wise to double-check the information. It is also ethically wrong to plagiarize from
ChatGPT for academic or research writings.

4. Healthcare: ChatGPT can help doctors and patients to access healthcare-related
resources, such as diagnosis, medical advice, common prescriptions, etc. It can
also mediate between doctors and patients in telemedicine services, booking
appointments with the doctor and ensuring remote follow-up sessions.

5. Businesses: Businesses use ChatGPT for marketing content creation, advertising
ideas, product descriptions, keyword search for search engine optimization,
customer support, job descriptions, interview question preparation, creating
emails, etc.

7.3 AI/ML Security Challenges and Possible Solutions 419

7.2.6.2 Limitations of ChatGPT
ChatGPT or other LLMs are still in their primitive phase and have some limitations.
Some of the limitations of these remarkable human-like chatbots are briefly
discussed below.

1. Incorrect Information: ChatGPT sometimes fails to offer correct answers; it
hallucinates false information and confidently delivers it. When asked about the
mammal to lay the largest eggs, it responded with “elephants.” One reason is that
the data used to train the ChatGPT was obtained from online discussion forums,
some of which contained incorrect information. Although inaccurate information,
the style of conveying the information is human-like. Hence, ChatGPT picked
up on those patterns and sometimes responded with human-like inaccurate
information. Besides, ChatGPT was built based on training data up to September
2021. So it has no knowledge of any event after that as it is not connected to the
Internet.

2. Question Phrasing: The quality of the response frequently depends on the
phrasing of the question. For example, ChatGPT may give one answer to one
specific question and can give an entirely different answer if the question is
rephrased differently. Sometimes it may even fail to recognize questions if
phrased differently.

3. Unresponsiveness:ChatGPT is built to filter out and not respond to inappropriate
and harmful questions and requests. Although it may be able to provide accurate
responses accordingly, it has been programmed to avoid such conversations.

4. Redundancy: Although it has a human-like response, ChatGPT has been
observed to repeatedly use the same specific phrases and answer patterns. This
unnecessary overuse of phrases and patterns may have come from the biases and
optimizations during the training phase.

7.3 AI/ML Security Challenges and Possible Solutions

AI and ML-related security threats mostly come from the cybersecurity side
[15–17]. These security threats pose a potential challenge for different practical
applications. A system with AI can be sabotaged by manipulating the AI through
cyber-attacks in many ways. Therefore, proper protection against this issue has
become crucial. The security challenges of AI can be summarized into three major
categories, which are discussed below with their defense mechanisms:

1. Adversarial Input Attack: We already demonstrated the coding example of an
adversarial input attack in Chap. 4. As displayed in Fig. 7.10, the adversarial input
attack adds malicious imperceptible noise to the input to misclassify the image
of a panda as a gibbon. Two common adversarial input attacks are projected
gradient descent (PGD) [15] and fast gradient sign method (FGSM) [16]. A
popular defense technique against adversarial input attacks is to train the target

420 7 State of the Art of Machine Learning

Gibbon

Attacker Adversarial weight attack

Adversarial

input attack

PandaUser Camera

Computer running
neural network

Wrong
output

Fig. 7.10 Demonstration of adversarial input attack and weight attack

model with both adversarial and clean images, which is known as adversarial
training [15].

2. Adversarial Weight Attack: Similar to an adversarial input attack, a popular
weight attack tries to maliciously add noise to the weights of a neural network
[17]. These attacks use popular fault injection techniques (such as the row-
hammer [18]) to inject error into the main memory of a computer to objectively
cause malfunction of the neural network running in that specific computer. For
example, a popular bit-flip attack [18] on the main memory of a computer
can cause a ResNet-18 [19] model to drop its accuracy to 0.1% from 69% on
the ImageNet [20] dataset. Some common defenses against adversarial weight
attacks are using binary weights [21] and error corrections [22].

3. Trojan Attack: The Trojan attack [23, 24] is a combination of both input and
weight attacks. First, the attack injects malicious noise into the weights of a
neural network during the training or test phase of a neural network. Later, the
attacker adds a noise/sticker to the input to activate the Trojan, known as a trigger.
Analysis of activation function [25] and output entropy analysis [26] are some of
the existing methods to defend against these attacks.

7.4 AI/ML Hardware Challenges and Future Potential

After training a deep learning model, the real-time inference of that model often
relies on hardware implementation. But there is a problem—the trained neural
networks are often sized over several megabytes, e.g., Inception V3 and ResNet 50
are over 90MB, AlexNet is over 200MB, and VGG-16 is over 500MB [27]. Low-
power microcontrollers, smaller FPGAs, and edge devices cannot accommodate

7.4 AI/ML Hardware Challenges and Future Potential 421

this memory requirement. Hence, running a large deep neural network on a mobile
device presents a huge challenge as we need to shrink the model size by 33. ×. Thus,
some of the critical hardware limitations of deploying AI models in smart mobile
devices are:

1. Limited memory budget
2. Limited computational resources
3. Requirement for energy and power-efficient neural networks for hardware imple-

mentation

To mitigate hardware implementation-related issues, several approaches have
been adopted in the literature to develop potential solutions. In the following
sections, we will discuss two of them—quantization and weight pruning.

7.4.1 Quantization

In typical computer hardware, each deep learning model parameter (weights
and biases) and activation is represented by a 32-bit or a 64-bit floating point
representation. A 32-bit floating point precision means the values can take . 232

levels of values to represent any number. Thus, it is intuitive to quantize the
weights into lower precision, such as an 8-bit integer, which helps reduce the
model size by 4 times while decreasing the inference time significantly without
sacrificing much of inference accuracy [28, 29]. This significant reduction in
memory footprint also reduces power consumption, enabling low-power hardware
applications. Quantization consists of two basic operations:

1. Quantize: Transform higher precision data into lower precision data.
2. De-quantize: Transform quantized lower precision data back into higher preci-

sion data.

As displayed in Fig. 7.11, the 32-bit weights are first converted into integer
numbers representing the four levels of a 2-bit weight model. After that, the 2-
bit weights can be mapped into the digital hardware using 00, 01, 10, and 11.
The simple ways in which we can perform this quantization are discussed in the
following sections.

7.4.1.1 Affine Quantization
If x is a floating point value in the range .[A,B], i.e., .x ∈ [A,B], then it can be
mapped as .xq ∈ [Aq,Bq] where .Aq = −2b−1 and .Bq = 2b−1 − 1. Now, the affine
quantization process can be defined as:

.xq = round(
1

s
x + z). (7.7)

422 7 State of the Art of Machine Learning

32-bit 2-bit

0.1 0.4 -0.2

0 0.6 1

-0.7 1.2 0.3

0.1 0.4 -0.2

0 0.6 1

-0.7 1.2 0.3

1 2 1

1 2 3

0 3 2

1 2 1

1 2 3

0 3 2

Quantization

Index [In bits] Value

0 [00] -0.6

1 [01] 0

2 [10] 0.4

3 [11] 1.1

Index [In bits] Value

0 [00] -0.6

1 [01] 0

2 [10] 0.4

3 [11] 1.1

(a) (b)

Fig. 7.11 Converting 32-bit precision weights into a 2-bit quantized representation of 00, 01, 10,
and 11

And the de-quantization process will be:

.x = s(xq − z), (7.8)

where s is scale and z is the zero point. s and z can be determined as follows:

.s = B − A

2b − 1
; (7.9)

.z = −(round(A × s)) − 2b−1. (7.10)

For 8-bit integer quantization, the values will become:

.s = B − A

255
; (7.11)

.z = −(round(A × s)) − 128. (7.12)

7.4.1.2 Scale Quantization
In scale quantization, the values are symmetric. The zero point z does not play any
role as .(z = 0), and thus it is absent from the equation. This quantization maps
.x ∈ [−A,A] in such a way that .xq ∈ [−Aq,Aq], where .Aq = 2b−1. Therefore, the
scale quantization process is:

.xq = round

(
1

s
x + 0

)
= round

(
1

s
x

)
, (7.13)

where

.s = A

2b−1 − 1
. (7.14)

7.4 AI/ML Hardware Challenges and Future Potential 423

For 8-bit integer quantization,

.s = A

255
. (7.15)

In neural networks, the quantization process is applied in mainly two ways:

1. Post-training Quantization: In this method, the neural network is trained using
normal floating point operation at first. After training the neural network, the
trained parameters are then quantized. This quantized model is then deployed
for performing inference. This is a simple and straightforward method, but very
much susceptible to lower model accuracy as there is no way to compensate for
quantization-related error because the quantization is applied after model training
has commenced.

2. Quantization-aware Training: In quantization-aware training, quantization
operations are emulated during forward propagation, but the backward propa-
gation process is kept unchanged. By doing this, the quantization-related error
accumulates in the total training loss while the optimizer function minimizes the
error, hence adjusting the model parameter accordingly. This method reduces
quantization-related error; thus, model accuracy reduction is compensated in
most cases.

Our coding example will use scale quantization to convert a floating point
number into a quantized level representation. Our quantization implementation
technique will be quantization-aware training. Also, since quantization is a non-
differentiable function, we will adopt the popular straight-through estimator [30]
function to estimate the gradient of this quantization process during training.

7.4.2 Weight Pruning

Another popular approach to performing neural network compression is the pruning
of weight connections. For example, it is empirically observed that if some of the
weights below a certain threshold are totally cut off from the neural network (i.e.,
pruning or setting weights equal to zero), it does not hamper the performance of the
neural network [28]. Similar to lasso regression, a weight penalty can be added to
penalize the weights with larger weights. As a result, more weights in the neural
network will have smaller values, which can be pruned to generate a compact
network.

424 7 State of the Art of Machine Learning

7.4.3 Implementation of Quantization and Pruning
Programming Example 7.3
We will once again work on the MNIST classification problem, where we demon-
strate the efficacy of pruning and quantization in shrinking the model size of
the CNN. During the training process, the weight pruning step is implemented.
The percentage of weights pruned at each layer is monitored to ensure optimal
performance. Listing 7.4 shows the Python code for this, and Table 7.5 explains
the code.

1 # -------------------------Torch Modules-------------------------
2 from __future__ import print_function
3 import numpy as np
4 import pandas as pd
5 import torch.nn as nn
6 import math
7 import torch.nn.functional as F
8 import torch
9 from torch.nn import init

10 import torch.optim as optim
11 from torchvision import datasets as ds
12 from torchvision import transforms as Trans
13 from torchvision import models
14 import torch.nn.functional as F
15 from torch.utils.data import DataLoader as DL
16 # ---------------------------Variables---------------------------
17 # for Normalization
18 mean = [0.5]
19 std = [0.5]
20

21 # batch size
22 bs =128 #Batch Size
23 Iterations = 20
24 learn_rate = 0.01
25

26 # compresion hyper-paramters
27 Quantized_bit = 8 # quantization bit
28 Lasso_penalty = 0.000001 # lasso penalty on weight
29 Thresholds = 0.005 # threshold
30

31

32 # -------Commands to download and prepare the MNIST dataset------
33

34 train_transform = Trans.Compose([
35 Trans.ToTensor(),
36 Trans.Normalize(mean, std)
37])
38

39 test_transform = Trans.Compose([
40 Trans.ToTensor(),
41 Trans.Normalize(mean, std)

7.4 AI/ML Hardware Challenges and Future Potential 425

42])
43

44

45 train_dataloader = DL(ds.MNIST('./mnist', train=True, download=
True,

46 transform=train_transform),
47 batch_size=bs, shuffle=True)
48

49

50 test_dataloader = DL(ds.MNIST('./mnist', train=False,
51 transform=test_transform),
52 batch_size=bs, shuffle=False)
53

54

55 # -------------------------Defining CNN--------------------------
56 # Model Definition
57

58 #quantization function
59 class _Quantize(torch.autograd.Function):
60

61 @staticmethod
62 def forward(ctx, input, step):
63 ctx.step = step.item()
64 output = torch.round(input/ctx.step) ## quantized output
65 return output
66

67 @staticmethod
68 def backward(ctx, grad_output):
69 grad_input = grad_output.clone()/ctx.step ## Straight

through estimator
70 return grad_input, None
71

72 quantize1 = _Quantize.apply
73

74 class quantized_conv(nn.Conv2d):
75 def __init__(self,nchin,nchout,kernel_size,stride,padding=0,

bias=False):
76 super().__init__(in_channels=nchin,out_channels=nchout,

kernel_size=kernel_size, padding=padding, stride=stride, bias
=False)

77 "this function manually changes the original pytorch
convolution function into a quantized weight convolution"

78

79 def forward(self, input):
80 self.N_bits = Quantized_bit - 1
81 step = self.weight.abs().max()/((2**self.N_bits-1))
82

83 QW = quantize1(self.weight, step)
84

85 return F.conv2d(input, QW*step, self.bias,
86 self.stride, self.padding, self.dilation,

self.groups)
87

426 7 State of the Art of Machine Learning

88

89 class quantized_linear(nn.Linear):
90 def __init__(self, in_features, out_features, bias=True):
91 super().__init__(in_features, out_features)
92 "this function manually changes the original pytorch

Linear function into a quantized weight with Linear value"
93

94 def forward(self, input):
95

96 self.N_bits = Quantized_bit - 1
97 step = self.weight.abs().max()/((2**self.N_bits-1))
98

99 QW = quantize1(self.weight, step)
100

101 return F.linear(input, QW*step, self.bias)
102

103

104 class CNN(nn.Module):
105 def __init__(self):
106 super(CNN, self).__init__()
107 self.conv1 = quantized_conv(1, 32, 3, 1)
108 self.conv2 = quantized_conv(32, 64, 3, 1)
109 self.dropout1 = nn.Dropout(0.25)
110 self.dropout2 = nn.Dropout(0.5)
111 self.fc1 = quantized_linear(9216, 128)
112 self.fc2 = quantized_linear(128, 10)
113

114 def forward(self, x):
115 x = self.conv1(x)
116 x = F.relu(x)
117 x = self.conv2(x)
118 x = F.relu(x)
119 x = F.max_pool2d(x, 2)
120 x = self.dropout1(x)
121 x = torch.flatten(x, 1)
122 x = self.fc1(x)
123 x = F.relu(x)
124 x = self.dropout2(x)
125 x = self.fc2(x)
126 output = F.log_softmax(x, dim=1)
127 return output
128

129

130 # defining CNN model
131 model = CNN()
132

133 ## Loss function
134 criterion = torch.nn.CrossEntropyLoss() # pytorch's cross entropy

loss function
135

136 # definin which paramters to train only the CNN model parameters
137 optimizer = torch.optim.SGD(model.parameters(),learn_rate)
138

7.4 AI/ML Hardware Challenges and Future Potential 427

139

140 ## Lasso weight penalty
141 def lasso_p(var):
142 return var.abs().sum()
143

144 # defining the training function
145 # Train baseline classifier on clean data
146 def train(model, optimizer,criterion,epoch):
147 model.train() # setting up for training
148 lasso_penalty = 0
149 for id, (data, target) in enumerate(train_dataloader): # data

contains the image and target contains the label =
0/1/2/3/4/5/6/7/8/9

150 optimizer.zero_grad() # setting gradient to zero
151 output = model(data) # forward
152 loss = criterion(output, target) # loss computation
153

154 ## iterating all the layers
155 for name, module in model.named_modules():
156 if isinstance(module, nn.Linear) or isinstance(module

, nn.Conv2d):
157 lasso_penalty += lasso_p(module.weight.data) #

penalty on the weight
158

159

160 loss += lasso_penalty * Lasso_penalty
161 loss.backward() # back propagation here pytorch will take

care of it
162 optimizer.step() # updating the weight values
163 if id % 100 == 0:
164 print('Epoch No: {} [{:.0f}%] \tLoss: {:.6f}'.

format(
165 epoch, 100. * id / len(train_dataloader), loss.

item()))
166

167

168

169 # to evaluate the model
170 ## validation of test accuracy
171 def test(model, criterion, val_loader, epoch):
172 model.eval()
173 test_loss = 0
174 correct = 0
175

176 with torch.no_grad():
177 for id, (data, target) in enumerate(val_loader):
178

179 output = model(data)
180 test_loss += criterion(output, target).item() # sum

up batch loss
181 pred = output.max(1, keepdim=True)[1] # get the index

of the max log-probability

428 7 State of the Art of Machine Learning

182 correct += pred.eq(target.view_as(pred)).sum().item()
if pred == target then correct +=1

183

184 test_loss /= len(val_loader.dataset) # average test loss
185 print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{}

({:.4f}%)\n'.format(
186 test_loss, correct, val_loader.sampler.__len__(),
187 100. * correct / val_loader.sampler.__len__()))
188

189

190 ## training the CNN
191 for i in range(Iterations):
192 train(model, optimizer,criterion,i)
193

194 # pruning certain weights
195 ## iterating all the layers
196 layer_count = 1
197 for name, module in model.named_modules():
198 if isinstance(module, nn.Linear) or isinstance(module, nn

.Conv2d):
199 # pruning weights below a threshold = Thresholds *

maximum weight value at that layer
200 module.weight.data[module.weight.data.abs() <

Thresholds* module.weight.data.abs().max()] = 0
201

202 # percentage of weight pruned = no of weights
equal to zero / total weights * 100

203 weight_pruned = module.weight.data.view(-1)[
module.weight.data.view(-1) == 0].size()[0]/module.weight.
data.view(-1).size()[0]*100

204 print("Percentage of weights pruned at Layer " +
str(layer_count) + ":\t" + str(weight_pruned) + "%")

205 layer_count += 1
206

207 test(model, criterion, test_dataloader, i) #Testing the the
current CNN

Listing 7.4 Speech Recognition

Output of Listing 7.4:

Epoch No: 0 [0%] Loss: 2.312606
Epoch No: 0 [21%] Loss: 2.477860
Epoch No: 0 [43%] Loss: 2.347047
Epoch No: 0 [64%] Loss: 2.800500
Epoch No: 0 [85%] Loss: 3.244485
Percentage of weights pruned at Layer 1: 2.7777777777777777%
Percentage of weights pruned at Layer 2: 12.608506944444445%
Percentage of weights pruned at Layer 3: 71.74970838758681%
Percentage of weights pruned at Layer 4: 6.09375%

Test set: Average loss: 0.0030, Accuracy: 9000/10000 (90.0000%)

....................

Epoch No: 19 [0%] Loss: 0.043977

7.4 AI/ML Hardware Challenges and Future Potential 429

Epoch No: 19 [21%] Loss: 0.334064
Epoch No: 19 [43%] Loss: 0.487566
Epoch No: 19 [64%] Loss: 0.622565
Epoch No: 19 [85%] Loss: 0.755978
Percentage of weights pruned at Layer 1: 7.986111111111111%
Percentage of weights pruned at Layer 2: 33.75651041666667%
Percentage of weights pruned at Layer 3: 98.56906467013889%
Percentage of weights pruned at Layer 4: 14.21875%

Test set: Average loss: 0.0006, Accuracy: 9779/10000 (97.7900%)

Table 7.5 Explanation of the compression technique in Listing 7.4

Line number Description

1–54 Same description as Listing 3.5

63–64 Applying quantization

69 Calculating the gradient during the backward path

74–87 Modified 8-bit quantized convolution operation

89–101 Modified 8-bit quantized linear operation

104–131 CNN model using quantization

133–192 Similar as before for training and test function

140–142 Lasso Penalty function

150 Applying the lasso penalty on the total loss function

196–205 Printing the percentage of weights pruned at each layer

Table 7.6 By applying pruning and quantization, we can shrink the CNN model in each of the
four layers

Layer
Before compression After compression

Compression ratioPruning Precision Pruning Precision

1 0% 32-bit 10% 8-bit (100/90)*(32/8) = 4.4x

2 0% 32-bit 31.5% 8-bit (100/68.5)*(32/8) = 5.84x

3 0% 32-bit 98.4% 8-bit (100/1.6)*(32/8) = 250x

4 0% 32-bit 14.7% 8-bit (100/85.3)*(32/8) = 4.69x

Table 7.6 summarizes the code output. It represents the compression ratio of the
pruning and quantization method. In particular, the third layer is compressed by
250 times, which would certainly fit into the on-chip memory of an FPGA device.
Hence, compression techniques like pruning and quantization certainly can go a
long way in overcoming the hardware limitations of deep learning deployment.

430 7 State of the Art of Machine Learning

7.5 Multi-domain Learning

Deep learning (DL) models require separate datasets and task training routines. This
requirement might be time and resource-consuming for some tasks at times. One
way to tackle this issue is through multi-domain learning. Multi-domain learning
is a technique where a single model can be adjusted and applied to minor to
vastly different tasks at once. Multi-domain learning works by sharing a model’s
parameters among all domains while learning some domain-specific parameters for
each individual case. There are several approaches to multi-domain learning. The
following sections briefly discuss two major multi-domain learning approaches—
transfer learning and domain adaptation.

7.5.1 Transfer Learning

We have briefly discussed transfer learning in Chap. 3. In this chapter, we will learn
more about it through a programming example using Python.

Programming Example 7.4
This section presents an example of transfer learning using a pre-trained MNIST
model. Our initial four-layer MNIST classifier has an accuracy of 98.92%. We took
this model and fixed the first two convolution layer weights. We only train the last
two linear layers to adapt to the new domain. After training the last two layers, the
model adapts to a new dataset (e.g., Fashion-MNIST). To evaluate the efficacy of
the transfer learning scheme, we first directly evaluated the MNIST model on the
F-MNIST dataset and achieved only 8.25% accuracy. However, after fine-tuning
the last two layers, we could achieve 87.93% accuracy on the F-MNIST dataset.
We present the description of our code in Table 7.7 and the corresponding code in
Listing 7.2.

1 # -------------------------Torch Modules-------------------------
2 from __future__ import print_function
3 import numpy as np
4 import pandas as pd
5 import torch.nn as nn
6 import math, torch
7 import torch.nn.functional as F
8 from torch.optim import SGD
9 from torch.nn import init

10 import torch.optim as optim
11 from torchvision import datasets as ds
12 from torchvision import transforms as Trans
13 from torchvision import models
14 import torch.nn.functional as F
15 import torchvision.models as models
16 from torch.utils.data import DataLoader as DL

7.5 Multi-domain Learning 431

17 # ---------------------------Variables---------------------------
18 mean = [0.5] # for Normalization
19 std = [0.1]
20 # batch size
21 BATCH_SIZE =128
22 Iterations = 20
23 learn_rate = 0.01
24

25

26 # -------Commands to download and prepare the MNIST dataset------
27 train_transform = Trans.Compose([
28 Trans.ToTensor(),
29 Trans.Normalize(mean, std)
30])
31

32 test_transform = Trans.Compose([
33 Trans.ToTensor(),
34 Trans.Normalize(mean, std)
35])
36

37

38 train_dataloader = DL(ds.MNIST('./mnist', train=True, download=
True,

39 transform=train_transform),
40 batch_size=BATCH_SIZE, shuffle=True)
41

42

43 test_dataloader = DL(ds.MNIST('./mnist', train=False,
44 transform=test_transform),
45 batch_size=BATCH_SIZE, shuffle=False)
46

47

48

49 # -------------------------Defining CNN--------------------------
50 # Pytorch official Example site: https://github.com/pytorch/

examples/blob/master/mnist/main.py
51 class CNN(nn.Module):
52 def __init__(self):
53 super(CNN, self).__init__()
54 self.conv1 = nn.Conv2d(1, 32, 3, 1)
55 self.conv2 = nn.Conv2d(32, 64, 3, 1)
56 self.dropout1 = nn.Dropout(0.25)
57 self.dropout2 = nn.Dropout(0.5)
58 self.fc1 = nn.Linear(9216, 128,bias=False)
59 self.fc2 = nn.Linear(128, 10,bias=False)
60

61 def forward(self, x):
62 x = self.conv1(x)
63 x = F.relu(x)
64 x = self.conv2(x)
65 x = F.relu(x)
66 x = F.max_pool2d(x, 2)
67 x = self.dropout1(x)

432 7 State of the Art of Machine Learning

68 x = torch.flatten(x, 1)
69 x = self.fc1(x)
70 x = F.relu(x)
71 x = self.dropout2(x)
72 x = self.fc2(x)
73 output = F.log_softmax(x, dim=1)
74 return output
75

76

77 #defining CNN model
78 model = CNN()
79

80 ## Loss function
81 loss_criterion = torch.nn.CrossEntropyLoss() # pytorch's cross

entropy loss function
82

83 # definin which paramters to train only the CNN model parameters
84 optimizer = SGD(model.parameters(),learn_rate)
85

86 # defining the training function
87 # Train baseline classifier on clean data
88 def train(model, optimizer,train_dataloader,loss_criterion,epoch)

:
89 model.train() # setting up for training
90 for id, (data, target) in enumerate(train_dataloader): # data

contains the image and target contains the label =
0/1/2/3/4/5/6/7/8/9

91 optimizer.zero_grad() # setting gradient to zero
92 output = model(data) # forward
93 loss = loss_criterion(output, target) # loss computation
94 loss.backward() # back propagation here pytorch will take

care of it
95 optimizer.step() # updating the weight values
96 if id % 100 == 0:
97 print('Epoch No: {} [{:.0f}%] \tLoss: {:.6f}'.

format(
98 epoch, 100. * id / len(train_dataloader), loss.

item()))
99

100

101

102 # to evaluate the model
103 ## validation of test accuracy
104 def test(model, loss_criterion, val_loader, epoch):
105 model.eval()
106 test_loss = 0
107 correct = 0
108

109 with torch.no_grad():
110 for id, (data, target) in enumerate(val_loader):
111

112 output = model(data)

7.5 Multi-domain Learning 433

113 test_loss += loss_criterion(output, target).item() #
sum up batch loss

114 pred = output.max(1, keepdim=True)[1] # get the index
of the max log-probability

115 correct += pred.eq(target.view_as(pred)).sum().item()
if pred == target then correct +=1

116

117 test_loss /= len(val_loader.dataset) # average test loss
118 print('\nTest set: Average loss: {:.4f},\n Accuracy:

{}/{} ({:.4f}%)\n'.format(
119 test_loss, correct, val_loader.sampler.__len__(),
120 100. * correct / val_loader.sampler.__len__()))
121

122

123 ## training the CNN
124 for i in range(Iterations):
125 train(model, optimizer,train_dataloader,loss_criterion,i)
126 test(model, loss_criterion, test_dataloader, i) #Testing the

the current CNN
127

128 print("The model was initially trained for an MNIST dataset")
129 test(model, loss_criterion, test_dataloader, i)
130 print("The trained model has a good accuracy on MNIST")
131

132

133 # --------Transfer the Learning from One Domain to Another-------
134 # Downloading Fashion MNIST dataset
135 train_dataloader = DL(
136 ds.FashionMNIST('./mnist', train=True, download=True,
137 transform=train_transform),
138 batch_size=BATCH_SIZE, shuffle=True) # train dataset
139

140 test_dataloader = DL(
141 ds.FashionMNIST('./mnist', train=False,
142 transform=test_transform),
143 batch_size=BATCH_SIZE, shuffle=False) # test datase
144

145 ## Testing shows the model fails on Fashion MNIST dataset
146 print("But fails on Fashion-Mnist dataset:")
147 test(model, loss_criterion, test_dataloader, i)
148

149

150 ## No need to train the conv layer
151 for name, module in model.named_modules():
152 if isinstance(module, nn.Conv2d):
153 module.weight.requires_grad = False
154 module.bias.requires_grad = False
155

156 # Only train the last 2 fully connected layers
157 for name, module in model.named_modules():
158 if isinstance(module, nn.Linear):
159 module.weight.requires_grad = True
160

434 7 State of the Art of Machine Learning

161 optimizer = torch.optim.SGD(model.parameters(),0.005) ##
selecting a smaller learning rate for transfer learning

162

163 ## training the CNN for F-MNIST
164 for i in range(10):
165 train(model, optimizer,train_dataloader,loss_criterion,i)
166 test(model, loss_criterion, test_dataloader, i) #Testing the

the current CNN
167

168

169 print("After fine-tuning the model on the last layers the model
recovers good accuracy on Fashion MNIST as well")

170 test(model, loss_criterion, test_dataloader, i)

Listing 7.5 Transfer Learning from a MNIST pre-trained model to a Fashion MNIST dataset

Output of Listing 7.5:

Epoch No: 0 [0%] Loss: 2.341227
Epoch No: 0 [21%] Loss: 0.674251
Epoch No: 0 [43%] Loss: 0.313292
Epoch No: 0 [64%] Loss: 0.324727
Epoch No: 0 [85%] Loss: 0.159849

Test set: Average loss: 0.0012,
Accuracy: 9569/10000 (95.6900%)

...

...

...

...

...

Epoch No: 19 [0%] Loss: 0.017948
Epoch No: 19 [21%] Loss: 0.064786
Epoch No: 19 [43%] Loss: 0.068695
Epoch No: 19 [64%] Loss: 0.032498
Epoch No: 19 [85%] Loss: 0.041616

Test set: Average loss: 0.0002,
Accuracy: 9892/10000 (98.9200%)

The model was initially trained for an MNIST dataset

Test set: Average loss: 0.0002,
Accuracy: 9892/10000 (98.9200%)

But fails on Fashion-Mnist dataset:

7.5 Multi-domain Learning 435

Test set: Average loss: 0.0399,
Accuracy: 825/10000 (8.2500%)

Epoch No: 0 [0%] Loss: 5.325634
Epoch No: 0 [21%] Loss: 0.943522
Epoch No: 0 [43%] Loss: 0.699631
Epoch No: 0 [64%] Loss: 0.664727
Epoch No: 0 [85%] Loss: 0.641860

Test set: Average loss: 0.0039,
Accuracy: 8259/10000 (82.5900%)

...

...

...

...

...

Epoch No: 9 [0%] Loss: 0.425309
Epoch No: 9 [21%] Loss: 0.454595
Epoch No: 9 [43%] Loss: 0.333127
Epoch No: 9 [64%] Loss: 0.370811
Epoch No: 9 [85%] Loss: 0.331274

Test set: Average loss: 0.0026,
Accuracy: 8793/10000 (87.9300%)

After fine-tuning the model on the last layers the
model recovers good accuracy on Fashion MNIST as well

Test set: Average loss: 0.0026,
Accuracy: 8793/10000 (87.9300%)

The result shows a classifier that was trained to obtain 98.92% test accuracy
on the MNIST dataset. Later, we changed the domain of handwritten digits (i.e.,
MNIST) to a new domain of the fashion dataset Fashion-MNIST. We replace the
last layer and only train the last layer of the model to learn this new dataset. By only
fine-tuning the last layer, we could achieve 87.93% test accuracy on the Fashion-
MNIST dataset. In practice, even for complex tasks, it is possible to change the
domain of knowledge from one dataset to a new dataset by only fine-tuning the last
layer.

436 7 State of the Art of Machine Learning

Table 7.7 Explanation of the transfer learning code in Listing 7.5

Line number Description

2–14 Importing PyTorch modules

26–47 Data preparation for MNIST

50–78 CNN model Initialization

80–84 Setting up the training

86–120 Train and test functions

123–131 Training and testing the model on MNIST

134–143 Loading the second domain dataset Fashion MNIST (F-MNIST)

150–153 Setting the Convolution layer gradient to false (i.e., no training)

156–159 Only make the linear layers trainable

161–170 Retrain the last two layers on the new dataset Fashion-MNIST

7.5.2 Domain Adaptation

After training a neural network model on a certain dataset, a necessity arises to
adopt the model to a newer dataset. However, the newer dataset almost always has
a different distribution than the original dataset. This results in the underperfor-
mance of the deep learning model. Moreover, repeatedly training the model on
newer datasets consumes much time and resources. These issues are tackled by
implementing domain adaptation [31]. It is a modified version of transfer learning.

Instead of training the pre-trained model on the newer dataset, domain adaptation
aims at utilizing learned knowledge of the pre-trained model by finding the
meaningful correspondence between the source and target domain. Here, the source
domain is the original dataset on which the model was trained, and the target domain
is the newer dataset. Domain adaptation techniques can be unsupervised, supervised,
and even semi-supervised. Domain adaptation has extensive use cases in various
visual and audio applications [32].

7.6 Artificial Intelligence

Human beings perceive their surroundings and learn from their experiences. For
instance, an infant does not instinctively know what an apple is and how it looks.
This information about an apple (what it is, how it looks, what the varieties are, how
it tastes) is something learned and stored in our infant memory. An apple is such
a recognizable object that we do not even wonder how the information about an
apple gets embedded into our memory. This learning process is so natural to humans
that we can almost pick up on all objects we see and perceive our surroundings
effortlessly. Another impressive fact about human behavior is that we learn how
to respond to situations from our experiences. For example, our conversation style
differs significantly based on formal or casual situations, the audience, etc.

7.6 Artificial Intelligence 437

Artificial intelligence (AI) is the field designated to build systems that act and
think like humans and act and think rationally. AI systems are purposed to perform
actions like humans, such as playing games, performing surgeries, performing
diagnoses, driving a car, proving a theorem, and more. However, sometimes our
actions are based on our conscience and tend to be more biased toward our humane
side. Because human beings are sentimental creatures, prone to error, and cannot
calculate every possible solution in their head very quickly, we may often make
decisions that seem less rational than the other. With AI systems, they can think and
act more rationally. The system can run all possible scenarios, calculate the success
rate, and perform the best rational action.

AI has been used to develop technology that makes our lives easier and more
efficient. Smartly designed AI systems will make smarter decisions and will be less
prone to mistakes. Sometimes tasks that require sensitive calculations are better to
be done by AI systems. The mundane and repetitive tasks can be all handed over
to AI. Moreover, AI systems will always be faster than human beings. Although
AI systems have a lot of potential for the betterment of mankind, it comes with its
issues. Implementing AI systems regarding both the memory and processing units
is expensive. Another drawback is that no matter how proficient AI can be, it will be
a machine and needs more human-level creativity. Unlike AI, ML does not involve
a machine that can replicate human intelligence. By recognizing patterns, ML seeks
to train a machine how to carry out a certain task and produce reliable results.

7.6.1 The Turing Test

Now the question arises about the evaluation method and whether the built system
emulates the human being. Alan Turing, a pioneer of modern computer science,
proposed a test known as the Turing test to conclude if a built system has achieved
the intelligence level of a human being. Figure 7.12 demonstrates the visualization
of the Turing test.

The built system (Player A) and a human subject (Player B) are placed in a
room, and another human being (the interrogator, Player C) is placed in another
room, oblivious to the information regarding the players. The interrogator has to ask
questions to players A and B. From the responses, player C has to guess which one

Fig. 7.12 Illustration of the
Turing Test

438 7 State of the Art of Machine Learning

of the players is a human and which one is a machine. If player C cannot distinguish
between the human and the machine, it is concluded that the machine has achieved
human intelligence.

7.6.2 Limitations of AI and Solutions

Recent advances in computing resources and efficient hardware platforms have
made training and inference of AI effortless. AI is gradually stepping into the
doorstep of our daily life. We are using AI in our day-to-day lives with or without
being aware of it. Hence, the scientific community must raise their awareness in
combating the associated limitations of the AI model. We have already discussed
two major limitations of AI in previous sections. In Sect. 7.3, we discussed
the emerging vulnerabilities of AI models against adversarial attacks. We have
demonstrated how maliciously imperceptible noise can cause a target AI model
to malfunction. Such a threat makes large-scale deployment of self-driving cars,
medical robots, and other sophisticated applications challenging. A series of works
[33, 34] have been conducted to counter this safety issue. Another major concern
was the hardware constraints in deploying these powerful AI models in practice
(discussed in Sect. 7.4). However, recent advances in AI accelerators [35] and GPU
units [36] have made the path to the practical implementation of large-scale AI
models much easier.

Nowadays, we often see in the news how AI predicts racially biased results due
to biased data all over the Internet. The next major concern regarding widespread
AI usage is the lack of transparency in AI models, their training data, and prediction
outcomes. This will lead to biased and unfair predictions. The fairness problem of
AI can be attributed to poor data collection quality. The sensitive features associated
with input data force a model to learn racial representation and predict biased results.
Recently, scientists have adopted several techniques such as reliable data collection,
adversarial training, and post-processing of model and prediction to mitigate bias
and improve fairness in AI models [37].

The emerging AI community treated advanced AI models as a complete black
box without having knowing the underlying principles. Such a methodology has
led to the emergence of adversarial attacks and fairness issues in these models
despite performing exceptionally well with high accuracy. However, when AI
becomes an integral part of our lives, we will have to understand the principles
of these algorithms better, ensure the safety of the users, and provide a secure world
controlled and powered by AI for our future generation.

7.6.3 Future Possibilities of AI

AI has the capability to diffuse into every aspect of our lives, including healthcare,
education, banking, finance, transportation, military, warfare, industries, businesses,
entertainment, and even household management. In fact, we cannot even imagine

7.6 Artificial Intelligence 439

what AI can do within the next few years. However, as long as we keep educating
ourselves on the developments of AI, we do not have to worry about AI taking
over human jobs. AI is an industry itself that will require many people for its
development. AI would be nothing without human intelligence. Therefore, when
discussing the future possibilities of AI, we are also talking about the things for
which we should be prepared to keep up with the rapid development of AI. Some
noteworthy future possibilities of AI are discussed below:

1. Automobile Industry: Artificial intelligence is anticipated to significantly
impact future car development. AI can potentially revolutionize the automobile
sector in many ways, including increasing vehicle safety and enhancing driving
efficiency. One of the contributions of AI will be autonomous driving vehicles,
where every possible aspect of driving a vehicle will be controlled and decided
by AI. The aspects may include driving, navigating the map, parking, and even
managing traffic. The first and foremost concern for autonomous vehicles is
the safety of passengers and pedestrians. AI systems might be used to calculate
probable risks on the road beforehand by integrating sensors and cameras.
In addition, AI can be used to create a network of cars—autonomous cars
communicate among themselves and share necessary data. With AI in our cars,
all we have to do is sit back and enjoy the ride.

2. Smart Homes: AI could revolutionize how we perceive and live at home. AI
systems can control our homes’ temperature, heating, cooling, and humidity
levels. With the integration of an AI system, all levels will always be controlled
and maintained at optimal levels. It can also help with electricity usage and avoid
wasting energy. A smart fridge can help the owner with a menu based on the
existing ingredients. It could also remind the owners to buy groceries. The whole
cooking process can also be brought under AI systems, where the owner will not
have to tenaciously control every step of cooking. The system can keep the food
temperature at its optimum level for cooking and alert the owner when the food
has been cooked. The AI system can also help keep the houses safe and sufficient,
such as dealing with a power surge, gas leakage, plumbing issues, etc. AI has a
lot to surprise us with our everyday lifestyles at home.

3. Smart City: AI has been used to design and build smart cities. The goal is to
build sustainable infrastructure to collect information and data and analyze them
to allocate and use resources efficiently. The residents of smart cities will have
easy access to such technologies. For example, waste management would be
handled proficiently and automatically by integrating AI systems and the Internet
of Things (IoT). Sensors around the city will help collect and analyze the data to
keep the city pollution-free. Smart cities will also contribute to keeping climate
issues at bay.

4. Finance: A nation’s economic and financial status is an unambiguous indication
of its prosperity. Due to AI’s impressive potential in practically every subject,
it has the ability to significantly improve both the economic well-being of
an individual and a nation. While determining the most effective method of
managing finances, an AI system might consider many factors and be devoid

440 7 State of the Art of Machine Learning

of human errors. With the integration of AI systems, equity funding, trading, and
investments will be handled more efficacy.

The possibilities of AI are practically limitless, given the current pace of its
research and development worldwide. The research domain of AI has taken over
all branches of knowledge; it is no longer limited to the sciences. So, we need
to constantly update ourselves with the growing pace of AI to keep abreast with
modern technology. As AI systems become more intelligent, we should remain
careful about the ethics, uses, and abuses of AI applications. We must always
remember to use AI for the greater good of humankind.

7.7 Conclusion

ML and AI have come a long way and have recently begun to evolve beyond their
primitive stage. AI systems are still somewhat dependent on humans, as they are
susceptible to trivial errors that can be easily mitigated. ML and AI should be
implemented as a complementary workforce of humans. ML and AI are quickly
becoming inevitable in modern technologies, which will only continue to be more
advanced and more accessible in the future. As the final chapter of this book, this
chapter discusses state-of-the-art ML and AI technologies, such as graph neural
network, EfficientNet, Inception network, YOLO algorithm, Facebook Prophet
algorithm, and ChatGPT. Along with the potentials and challenges of emerging AI
technologies, this chapter also hints to the readers about the future possibilities of
ML and AI. With the information and insights gained from this chapter, readers can
start their ML and AI research endeavors independently.

7.8 Key Messages

• State-of-the-art ML and AI techniques have improved and enhanced the lifestyles
of mankind. In addition, these technologies have broadened the horizon to more
potential innovations and inventions.

• AI systems have their security challenges. Hence, it should be used with caution.
However, more research is being done to keep AI systems safe.

• As AI is becoming more advanced and the scope of AI applications is becoming
broader, the hardware implementation of AI is becoming more and more crucial.
The hardware implementation of AI and ML is a challenging task. Two of
the possible solutions to this task, quantization and weight pruning, have been
discussed in this chapter.

• AI has yet to unlock its full potential in the future. There are endless possibilities
for how AI systems will be built, used, and applied.

References 441

7.9 Exercise

1. Many ML-related problems have been discussed throughout this book. Among
these problems, which ones do you think can be solved using GNN? Discuss.

2. Take the Fashion MNIST dataset. Train three multiclass classification models
using this dataset. Use vanilla CNN, Inception, and EfficientNet as your models’
backbone. Now compare their performances.

3. Implement an object tracking model on the COCO dataset [4] using any YOLO
variant. Compare this result with your result from the previous chapter (Chap. 6,
Exercise 5).

4. Can Facebook Prophet be used for electrical load forecasting? Explain.
5. Train classification models on the Fashion-MNIST dataset with and without

weight pruning and quantization. Point out the differences in performance.
6. Develop a traffic sign detection model using a state-of-the-art CNN architecture

other than ResNet-18. Compare the result with the output from Listing 6.2. Did
you manage to improve the performance?

7. What are some major security challenges regarding ML-based systems? Briefly
explain.

8. Mention some hardware implementation-related issues of ML. How can we
mitigate them?

9. Define quantization and classify them. How does quantization improve ML
model performance?

10. Train a Fashion MNIST classifier using VGG-16 without utilizing saved
weights. Then use pre-trained VGG-16 for the same problem (i.e., utilize saved
weights). Comment on which method you would recommend and why.

11. Most of the basic ML and AI theories were established a long time ago. But
it was not until recently that ML and AI saw these many practical uses, such
as self-driving cars and advanced language models such as ChatGPT. This is
mainly due to the fact that we have been able to manufacture and utilize high-
performance hardware devices such as GPUs and TPUs in recent times. What
do you think could happen to AI in 2040, and how would it affect the overall
engineering sector? Discuss and provide insights.

References

1. Tom Cattini. (2018). Airplane in Mid Air Above Trees during Day, July 2018.
2. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking the Inception

Architecture for Computer Vision.
3. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified,

real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (pp. 779–788).

4. COCO dataset. https://cocodataset.org/#home
5. Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint

arXiv:1804.02767

https://cocodataset.org/##home
https://cocodataset.org/##home
https://cocodataset.org/##home
https://cocodataset.org/##home

442 7 State of the Art of Machine Learning

6. Redmon, J., & Farhadi, A. (2017). Yolo9000: Better, faster, stronger. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (pp. 7263–7271).

7. Zhang, S., Cao, J., Zhang, Q., Zhang, Q., Zhang, Y., & Wang, Y. (2020). An FPGA-based
reconfigurable CNN accelerator for YOLO. In 2020 IEEE 3rd International Conference on
Electronics Technology (ICET), May 2020. IEEE.

8. Choi, J., Chun, D., Lee, H.-J., & Kim, H. (2020). Uncertainty-based object detector for
autonomous driving embedded platforms. In 2020 2nd IEEE International Conference on
Artificial Intelligence Circuits and Systems (AICAS), Aug 2020. IEEE.

9. Nayak, P., Zhang, D., & Chai, S. (2019). Bit efficient quantization for deep neural networks.
10. Bochkovskiy, A., Wang, C.-Y., & Mark Liao, H.-Y. (2020). Yolov4: Optimal speed and

accuracy of object detection. arXiv preprint arXiv:2004.10934.
11. Open Images V7—storage.googleapis.com. https://storage.googleapis.com/openimages/web/

index.html [Accessed 26 Aug 2023].
12. The AI Guys. OIDv4 Toolkit. https://github.com/theAIGuysCode/OIDv4_ToolKit
13. FaceNet example video. https://github.com/timesler/facenet-pytorch/blob/master/examples/

video.mp4
14. Taylor, S. J., & Letham, B. (2018). Forecasting at scale. The American Statistician, 72(1),

37–45.
15. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2018). Towards deep

learning models resistant to adversarial attacks. In International Conference on Learning
Representations.

16. Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572.

17. Hong, S., Frigo, P., Kaya, Y., Giuffrida, C., & Tudor Dumitraş. (2019). Terminal brain damage:
Exposing the graceless degradation in deep neural networks under hardware fault attacks. In
28th {USENIX} Security Symposium ({USENIX} Security 19) (pp. 497–514).

18. Yao, F., Rakin, A. S., & Fan, D. (2020). DeepHammer: Depleting the intelligence of deep
neural networks through targeted chain of bit flips. In 29th {USENIX} Security Symposium
({USENIX} Security 20) (pp. 1463–1480).

19. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770–
778).

20. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep
convolutional neural networks. Advances in Neural Information Processing Systems, 25, 1097–
1105.

21. He, Z., Rakin, A. S., Li, J., Chakrabarti, C., & Fan, D. (2020). Defending and harnessing
the bit-flip based adversarial weight attack. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 14095–14103).

22. Li, J., Rakin, A. S., Xiong, Y., Chang, L., He, Z., Fan, D., & Chakrabarti, C. (2020).
Defending bit-flip attack through DNN weight reconstruction. In 2020 57th ACM/IEEE Design
Automation Conference (DAC) (pp. 1–6). IEEE.

23. Gu, T., Dolan-Gavitt, B., & Garg, S. (2017). BadNets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733.

24. Rakin, A. S., He, Z., & Fan, D. (2020). Tbt: Targeted neural network attack with bit Trojan.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(pp. 13198–13207).

25. Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., & Zhao, B. Y. (2019). Neural
cleanse: Identifying and mitigating backdoor attacks in neural networks. In 2019 IEEE
Symposium on Security and Privacy (SP) (pp. 707–723). IEEE.

26. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D. C., & Nepal, S. (2019). Strip: A defence
against Trojan attacks on deep neural networks. In Proceedings of the 35th Annual Computer
Security Applications Conference (pp. 113–125).

27. Keras Team. Keras documentation: Keras Applications. https://keras.io/api/applications/

https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://storage.googleapis.com/openimages/web/index.html
https://github.com/theAIGuysCode/OIDv4_ToolKit
https://github.com/theAIGuysCode/OIDv4_ToolKit
https://github.com/theAIGuysCode/OIDv4_ToolKit
https://github.com/theAIGuysCode/OIDv4_ToolKit
https://github.com/theAIGuysCode/OIDv4_ToolKit
https://github.com/theAIGuysCode/OIDv4_ToolKit
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://github.com/timesler/facenet-pytorch/blob/master/examples/video.mp4
https://keras.io/api/applications/
https://keras.io/api/applications/
https://keras.io/api/applications/
https://keras.io/api/applications/
https://keras.io/api/applications/

References 443

28. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M., Dally, B., et al. (2016). Deep
compression and EIE: Efficient inference engine on compressed deep neural network. In Hot
Chips Symposium (pp. 1–6).

29. Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W., & Keutzer, K. (2021). A
Survey of Quantization Methods for Efficient Neural Network Inference. arXiv preprint
arXiv:2103.13630.

30. Bengio, Y., Léonard, N., & Courville, A. (2013). Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432.

31. Ben-David, S., Blitzer, J., Crammer, K., & Pereira, F. (2006). Analysis of representations
for domain adaptation. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in Neural
Information Processing Systems (Vol. 19). MIT Press.

32. Farahani, A., Voghoei, S., Rasheed, K., & Arabnia, H. R. (2021). A brief review of domain
adaptation. In R. Stahlbock, G. M. Weiss, M. Abou-Nasr, C.-Y. Yang, H. R. Arabnia, & L.
Deligiannidis (Eds.), Advances in Data Science and Information Engineering (pp. 877–894).
Cham: Springer International Publishing.

33. Allen, B. (2019). The role of the FDA in ensuring the safety and efficacy of artificial
intelligence software and devices. Journal of the American College of Radiology, 16(2), 208–
210.

34. Bostrom, N., & Yudkowsky, E. (2018). The ethics of artificial intelligence. In Artificial
Intelligence Safety and Security (pp. 57–69). Chapman and Hall/CRC.

35. Yeoh, P. (2019). Artificial intelligence: Accelerator or panacea for financial crime? Journal of
Financial Crime, 26, 634–646.

36. Jouppi, N., Young, C., Patil, N., & Patterson, D. (2018). Motivation for and evaluation of the
first tensor processing unit. IEEE Micro, 38(3), 10–19.

37. Parikh, R. B., Teeple, S., & Navathe, A. S. (2019). Addressing bias in artificial intelligence in
health care. JAMA, 322(24), 2377–2378.

Answer Keys to Chapter Exercises

Chapter 1

1. See Sect. 1.2.4
2. See Sect. 1.2.1
3. See Sect. 1.2.3.3
4. See Sect. 1.6.1
5. See Sect. 1.7
6. See Sects. 1.5.8.3, and 1.5.8.4
7. See Sect. 1.5.8.7. To use NumPy built-in functions:

1 import numpy as np
2

3 marks = np.array([70, 67, 56, 90, 78, 68, 87, 89, 87,
4 85, 86, 76, 75, 69, 74, 74, 84, 83, 77, 88])
5

6 mean = np.mean(marks)
7 max = np.max(marks)
8 min = np.min(marks)
9 std_dev = np.std(marks)

10

11 print("Mean = {}\nMax = {}\nMin = {}\nSTD = {}".format(mean,
max, min, std_dev))

12

8. The output:

My favorite bands are:
Linkin Park
System Of A Down
Metallica
Evanescence
Poets of the Fall
Now the list of my favorite bands is:
Linkin Park

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
E. Hossain, Machine Learning Crash Course for Engineers,
https://doi.org/10.1007/978-3-031-46990-9

445

https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9

446 Answer Keys to Chapter Exercises

System Of A Down
Metallica
Imagine Dragons
Evanescence
Poets of the Fall

9. (a)

[
46 73
102 191

]

(b)

⎡

⎣28 50 72
42 72 102
28 50 72

⎤

⎦

(c)

⎡

⎣42 42
54 60
42 42

⎤

⎦

10. The ans:

1 a = int(input("Dimension size: "))
2

3 matrix = []
4 result = [[0 for i in range(a)]
5 for j in range(a)]
6

7 for i in range(a):
8 arr = []
9 for j in range(a):

10 arr.append(int(input()))
11 matrix.append(arr)
12

13 for i in range(a):
14 for j in range(a):
15 sum = 0
16 for k in range(a):
17 sum += matrix[i][k] * matrix[k][j]
18 result[i][j] = sum
19

20 print(result)
21

11. See Answer for 10. Hint: Check column size for the first matrix and row size
for the second matrix before multiplication

12. See Answer for 10
13. Skim through the code carefully

Answer Keys to Chapter Exercises 447

Chapter 2

1. See Sect. 2.10
2. See Sect. 2.2
3. See Sect. 2.3
4. See Sects. 2.5, 2.6, and 2.7
5. See Sects. 2.8 and 2.9
6. (a) MSE

. MSE = 1

n

n∑
i=1

(y(i) − ŷ(i))
2

= (1 − 0)2 + (2 − 0.9)2 + (3 − 1.4)2 + (4 − 1.7)2 + (5 − 7)2

5

= 2.812

(b) RMSE

. RMSE =
√√√√1

n

n∑
i=1

(y(i) − ŷ(i))
2

=
√

(1 − 0)2 + (2 − 0.9)2 + (3 − 1.4)2 + (4 − 1.7)2 + (5 − 7)2

5

= 1.677

(c) MAE

. MAE = 1

n

n∑
i=1

|y(i) − ŷ(i)|

= |1 − 0| + |2 − 0.9| + |3 − 1.4| + |4 − 1.7| + |5 − 7|
5

= 1.6

(d) MAPE

.MAPE = 100

n

n∑
i=1

∣∣∣∣∣
y(i) − ŷ(i)

ŷ(i)

∣∣∣∣∣

448 Answer Keys to Chapter Exercises

=
100

5
×

(∣∣∣∣1 − 0
1

∣∣∣∣ +
∣∣∣∣2 − 0.9

2

∣∣∣∣ +
∣∣∣∣3 − 1.4

3

∣∣∣∣ +
∣∣∣∣4 − 1.7

4

∣∣∣∣
+

∣∣∣∣5 − 7
5

∣∣∣∣
)

= 45.167

7. Plug in the numbers in Eqs. 2.1 and 2.5
Hint: MAE = 13.02, Huber Loss = 58.96

8. See Sect. 2.2.6
9. See Sect. 2.9

10. Take any two points. Calculate the Minkowski distance of these two points for
h = 1 and h = 2 from Eq. 2.16. Then, calculate the Manhattan distance and
Chebyshev distance of these two points

11. (a) Plug in the numbers in Eqs. 2.11, 2.14, 2.15, 2.13, and 2.16
(b) See Listing 2.4

12. See Sect. 2.3.6
13. See Sects. 2.3.7, and 2.3.2
14. See Sect. 2.4. Plug in the respective values in Eqs. 2.23, 2.24, 2.25, and 2.26

Chapter 3

1. See Sect. 3.2.1
2. See Sect. 3.2.2.3
3. See Sect. 3.2.1.2
4. See Sect. 3.2.3.2
5. See Sect. 3.3
6. See Sect. 3.5
7. See Sect. 3.5.1
8. See Sect. 3.5.4
9. (a) See Sects. 3.4, 3.7, and 3.8

(b) See Sects. 3.5.4 and 3.5.5
(c) See Sect. 3.4

10. See Sect. 3.9
11. The problem can be regarded as a time series prediction problem. Therefore,

study Sect. 3.6, follow the instructions stated in the problem, and provide your
own solution

12. You may get help from Listing 3.2
13. See Sect. 3.4.2, Listing 3.4, Listing 3.5, and follow problem instructions
14. Follow Listing 3.10 and provide your own solution
15. Follow Listing 3.21 and provide your own solution
16. Follow Example 3.4

Answer Keys to Chapter Exercises 449

Chapter 4

1. See Sect. 4.2
2. See Sect. 2
3. See Sect. 4.5
4. See Sect. 4.7
5. See Sect. 4.9
6. Try modifying the model by adding or removing layers and observing the results
7. See Listing 4.2
8. See Sect. 4.4
9. See Sect. 4.5

10. See Section See Listing 4.6 and follow the instructions stated in the problem
11. See Listings 4.6 and 4.7

Chapter 5

1. (a) See Sect. 5.2
(b) See Sect. 5.3
(c) See Sect. 5.5
(d) See Sect. 5.5

2. Share your own idea based on this chapter
3. See Sect. 5.2
4. See Sect. 5.2 and Listing 5.1
5. See Sect. 5.5
6. Follow listing 5.7
7. Follow Sect. 5.3.2 and provide your own solution
8. Besides this chapter, you might want to study further in this topic from other

sources. Use your imagination, too

Chapter 6

1. See Sect. 6.1
2. See Sect. 6.1
3. See Listing 6.1
4. See Sect. 6.2.2.2
5. See Listing 6.1. Instead of the dataset used in the example, use the COCO dataset
6. See Listing 6.3. Instead of using the equation of a straight line, use the equations

for hyperbola, parabola, and half circle

450 Answer Keys to Chapter Exercises

Chapter 7

1. See Sect. 7.2.1
2. See Sects. 7.2.2, 7.2.3, and use your previous CNN knowledge. Provide your

own solution
3. See Listing 7.2 and follow the instructions stated in the problem
4. See Sect. 7.2.5 and draw your conclusion based on its features
5. You can take help from Listing 7.4
6. Utilize your knowledge from Sect. 7.2 and provide your own solution
7. See Sect. 7.3
8. See Sect. 7.4
9. See Sect. 7.4.1

10. Import the VGG-16 model just like any of the other state-of-the-art CNN
architecture (e.g., Efficientnet, Inception, etc.). Then, follow the instructions
stated in the problem

11. Read the whole chapter and try to comprehend the trend. 2040 is not so far as it
seems

Index

A
Adversarial input attack, 261, 285–293, 308,

309, 419, 420
Adversarial weight attack, 420
Algorithm, 2, 69, 117, 261, 363, 398
Anaconda, 1, 54–56, 59, 60
Anomaly detection, 65, 261, 283–285
Applications, vii, viii, ix, 1, 2, 5, 9, 11, 13, 17,

22, 31, 36, 53–55, 61–66, 69, 75, 87,
94, 95, 113, 117, 140, 146, 154, 170,
171, 180, 183, 214–217, 224, 243, 254,
261–309, 311–360, 363–394, 398–400,
407, 409, 418, 419, 421, 436, 438, 440

Artificial intelligence (AI), vii, 1, 2, 8–11,
64–66, 154, 155, 299, 301, 363, 369,
393, 397, 399, 417, 419–429, 436–441

Artificial neural network (ANN), 10, 36,
161–166, 175, 176, 235, 254, 261, 266,
329–331, 334, 335

B
Bias, 24, 93, 98, 107–109, 113, 114, 130,

156–158, 161, 166–169, 175, 200, 204,
399, 419, 421, 437, 438

C
Capacitor bank, 350, 353–355, 357–359
Chat Generative Pre-trained Transformer

(Chat-GPT), viii, 64, 397, 417–419,
440, 441

Classification, 3, 10, 61, 71, 75–77, 89, 99,
109, 117, 127, 128, 131, 140–142, 144,
146–151, 155, 158, 161, 162, 166,
175, 176, 180–183, 205, 219, 234–236,
242, 254, 255, 261–273, 279, 280,
286, 300–302, 307–309, 312, 320, 325,
329–336, 357, 358, 364, 375, 398, 399,
402, 404, 411, 424, 441

Clustering, 64, 77, 93, 117, 206–217, 254, 255
Computer vision, 11, 64, 180, 364–338, 394,

397, 398, 407, 408
Confusion matrix, 89–93, 113, 115, 264, 325,

329, 330
Convolutional neural network (CNN), viii, 10,

166–181, 243, 254, 261, 263, 264, 269,
270, 272, 273, 287, 291, 293, 298, 309,
325, 330, 336, 365, 366, 368, 398, 401,
405, 424, 429, 436, 441

Cross-validation, 94–96, 108, 111–112, 126,
127

D
Data science, 8–9, 65, 66, 415
Deep learning (DL), 1, 8–11, 36, 65, 66, 128,

154–184, 198, 235, 254, 255, 261, 263,
266, 285, 308, 309, 398, 407, 412, 420,
421, 429, 430

Dimensionality reduction, 4, 10, 206, 217–227,
254, 276–280, 308

E
Error, vii, 7, 12, 24–25, 29, 36–38, 61, 68–77,

89, 107, 108, 111, 113, 114, 119, 128,
129, 134, 156, 157, 161, 173, 184, 187,
188, 193, 265, 300, 319, 350, 408, 420,
423, 437, 440

Evaluation, 2, 3, 66, 69–115, 126, 139, 162,
166, 175, 181, 201, 264, 272, 291, 313,
319, 330, 336, 344, 408, 437

F
Facebook Prophet, 397, 415–417, 440, 441
Fault detection, 319, 322–330, 334, 335, 345,

357, 358

© The Editor(s) (if applicable) and The Author(s), under exclusive license to
Springer Nature Switzerland AG 2024
E. Hossain, Machine Learning Crash Course for Engineers,
https://doi.org/10.1007/978-3-031-46990-9

451

https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9
https://doi.org/10.1007/978-3-031-46990-9

452 Index

Feature extraction, 261, 273, 276–280, 308,
309

F1 score, 91–93, 113, 115

G
Generative adversarial network (GAN), viii,

11, 182–183, 234, 235, 240, 254,
388–394

Graph neural network (GNN), 397–400, 441

H
History of machine learning, 1, 9–11
Hyperparameter tuning, 3, 94–106, 113, 114,

264

I
Image classification, 161, 166, 180, 261–273,

286, 301, 308, 309, 364, 402, 404,
411

Inception, 5, 180, 397, 405–407, 420, 440,
441

J
Jupyter, 54, 55, 61, 63, 313, 379

L
Load forecasting, viii, 65, 311–319, 357, 360,

441

M
Machine learning (ML), 1, 69, 117, 261, 311,

363, 397
Malicious input detection, 261, 293–298, 308,

309
Model selection, 69–115, 188, 195
Multi-domain learning, 397, 430–436

N
Natural language processing (NLP), viii, 11,

64, 87, 173, 200, 243, 261, 299–309,
399

Neural style transfer (NST), 261, 273–276,
308, 309

O
Object detection, 368, 369, 398, 405, 408, 409,

411–415, 417
Object recognition, 180, 364, 368–375
Object tracking, 180, 364–368, 394, 441
Overfitting, 3, 96, 97, 99, 108–109, 113, 114,

125, 127, 130, 131, 133, 173, 407

P
Power factor, ix, 311, 312, 350–358, 360
Precision, 3, 90–93, 113, 115, 421, 422, 429
Programming, viii, 1, 2, 4, 8, 12, 36–61,

66, 72–76, 83–89, 99–106, 119–121,
134–140, 152–154, 158–166, 176–179,
187–190, 193–198, 200–205, 207–209,
211–, 214, 216, 219–226, 230–231,
236–240, 249–252, 254, 267, 269–272,
277–280, 284, 287–298, 302–308,
313–319, 325–329, 331–336, 346–348,
354–358, 363, 366–369, 378–394, 402,
412, 424, 430–435

Python, 1, 37, 39, 41, 42, 44–55, 59, 66–68,
72, 73, 76, 83, 85, 87, 99–106, 114,
129, 141, 216, 230, 249, 254, 270, 273,
277, 284, 293, 302, 308, 336, 369, 379,
388–399, 412, 415, 418, 424, 430

Q
Quantization, 397, 421–429, 440, 441

R
Reactive power, ix, 312, 350–358
Recall, 3, 90–93, 113, 115, 157, 262
Regression, 10, 71, 93, 107, 110, 128–142,

147, 151, 205, 221, 254, 255, 284,
346–348, 353, 354, 357–359, 365, 366,
408, 411, 417, 423

Reinforced learning (RL), 2, 128, 242–255,
418

Renewable energy system, 312, 344–350
Robotics, viii, 64, 183, 243, 358, 363–394
Robot learning, 363, 388, 394

S
Semi-supervised learning, 117, 128, 234–245,

254
Signal processing, viii, 254, 261–309
Supervised learning, 2, 13, 117, 128–154, 234,

241, 242, 254, 418, 436

Index 453

T
Time series forecasting, 128, 184–205,

254
Trojan attack, 420
Turing test, 11, 397, 437–438

U
Underfitting, 3, 108–109, 113, 114
Unsupervised learning, 2, 117, 128, 205–234,

254, 255

V
Variance, 107–109, 113, 114, 125, 130, 132,

146, 184, 219, 221

W
Weight pruning, 397, 421, 423, 424, 429, 440,

441

Y
YOLO, viii, 368, 397, 408–415, 417, 440, 441

	Preface
	Why This Book?

	Acknowledgments
	Contents
	About the Author
	1 Introduction to Machine Learning
	1.1 Introduction
	1.2 What Is Machine Learning?
	1.2.1 Machine Learning Workflow
	1.2.2 What Is Not Machine Learning?
	1.2.3 Machine Learning Jargon
	1.2.3.1 Features
	1.2.3.2 Target Variable
	1.2.3.3 Optimization Problem
	1.2.3.4 Objective Function
	1.2.3.5 Cost Function
	1.2.3.6 Loss Function
	1.2.3.7 Comparison Between Loss Function, Cost Function, and Objective Function
	1.2.3.8 Algorithm, Model/Hypothesis, and Technique

	1.2.4 Difference Between Data Science, Machine Learning, Artificial Intelligence, Deep Learning

	1.3 Historical Development of Machine Learning
	1.4 Why Machine Learning?
	1.4.1 Motivation
	1.4.2 Purpose
	1.4.3 Importance

	1.5 Prerequisite Knowledge to Learn Machine Learning
	1.5.1 Linear Algebra
	1.5.1.1 Linear Equations
	1.5.1.2 Tensor and Tensor Rank

	1.5.2 Statistics
	1.5.2.1 Measures of Central Tendency
	1.5.2.2 Standard Deviation
	1.5.2.3 Correlation
	1.5.2.4 Outliers
	1.5.2.5 Histogram
	1.5.2.6 Errors

	1.5.3 Probability Theory
	1.5.3.1 Probability Distribution
	1.5.3.2 Gaussian or Normal Distribution
	1.5.3.3 Bernoulli Distribution
	1.5.3.4 Central Limit Theorem

	1.5.4 Calculus
	1.5.4.1 Derivative and Slope
	1.5.4.2 Partial Derivatives
	1.5.4.3 Maxima and Minima
	1.5.4.4 Differential Equation

	1.5.5 Numerical Analysis
	1.5.5.1 Newton–Raphson Method
	1.5.5.2 Gauss–Seidel Method

	1.5.6 Gradient Descent
	1.5.7 Activation Functions
	1.5.8 Programming
	1.5.8.1 Variables and Constants
	1.5.8.2 Data Types
	1.5.8.3 Conditional Statements
	1.5.8.4 Loops
	1.5.8.5 Array
	1.5.8.6 Vector
	1.5.8.7 Functions

	1.6 Programming Languages and Associated Tools
	1.6.1 Why Python?
	1.6.2 Installation
	1.6.3 Creating the Environment
	1.6.3.1 Creating the Environment in Windows
	1.6.3.2 Creating the Environment in MacOS
	1.6.3.3 Installing Necessary Libraries

	1.7 Applications of Machine Learning
	1.8 Conclusion
	1.9 Key Messages from This Chapter
	1.10 Exercise
	References

	2 Evaluation Criteria and Model Selection
	2.1 Introduction
	2.2 Error Criteria
	2.2.1 MSE
	2.2.2 RMSE
	2.2.3 MAE
	2.2.4 MAPE
	2.2.5 Huber Loss
	2.2.6 Cross-Entropy Loss
	2.2.7 Hinge Loss

	2.3 Distance Metrics
	2.3.1 Euclidean Distance
	2.3.2 Cosine Similarity and Cosine Distance
	2.3.3 Manhattan Distance
	2.3.4 Chebyshev Distance
	2.3.5 Minkowski Distance
	2.3.6 Hamming Distance
	2.3.7 Jaccard Similarity and Jaccard Distance

	2.4 Confusion Matrix
	2.4.1 Accuracy
	2.4.2 Precision and Recall
	2.4.2.1 Precision
	2.4.2.2 Recall

	2.4.3 F1 Score

	2.5 Model Parameter and Hyperparameter
	2.6 Hyperparameter Space
	2.7 Hyperparameter Tuning and Model Optimization
	2.7.1 Manual Search
	2.7.2 Exhaustive Grid Search
	2.7.3 Halving Grid Search
	2.7.4 Random Search
	2.7.5 Halving Random Search
	2.7.6 Bayesian Optimization
	2.7.7 Gradient-Based Optimization
	2.7.8 Evolutionary Algorithm
	2.7.9 Early Stopping
	2.7.10 Python Coding Example for Hyperparameter Tuning Techniques
	2.7.10.1 Manual Search
	2.7.10.2 Grid Search
	2.7.10.3 Halving Grid Search
	2.7.10.4 Random Search
	2.7.10.5 Halving Random Search

	2.8 Bias and Variance
	2.8.1 Bias–Variance Trade-off

	2.9 Overfitting and Underfitting
	2.10 Model Selection
	2.10.1 Probabilistic Methods
	2.10.1.1 Akaike Information Criterion (AIC)
	2.10.1.2 Bayesian Information Criterion (BIC)
	2.10.1.3 Minimum Description Length (MDL)

	2.10.2 Resampling Methods
	2.10.2.1 Random Train/Test Splits
	2.10.2.2 Cross-Validation
	2.10.2.3 Bootstrap

	2.11 Conclusion
	2.12 Key Messages from This Chapter
	2.13 Exercise
	References

	3 Machine Learning Algorithms
	3.1 Introduction
	3.2 Datasets
	3.2.1 Data Wrangling
	3.2.1.1 Preprocessing
	3.2.1.2 Missing Data
	3.2.1.3 Imputation

	3.2.2 Feature Scaling
	3.2.2.1 Standardization
	3.2.2.2 Normalization
	3.2.2.3 Data Augmentation

	3.2.3 Data Types
	3.2.3.1 Sequential vs. Non-sequential Data Type
	3.2.3.2 Stationary vs. Non-stationary Data Type

	3.2.4 Data Splitting

	3.3 Categorization of Machine Learning Algorithms
	3.4 Supervised Learning
	3.4.1 Regression
	3.4.1.1 Simple Linear Regression
	3.4.1.2 LASSO Regression
	3.4.1.3 LASSO LARS Regression
	3.4.1.4 Ridge Regression
	3.4.1.5 Elastic Net Regression
	3.4.1.6 Support Vector Regression
	3.4.1.7 Decision Tree Regression
	3.4.1.8 Random Forest Regression
	3.4.1.9 Bayesian Ridge Regression
	3.4.1.10 Multiple Linear Regression
	3.4.1.11 Polynomial Regression

	3.4.2 Classification
	3.4.2.1 Logistic Regression
	3.4.2.2 k-Nearest Neighbor (KNN)
	3.4.2.3 Support Vector Classification
	3.4.2.4 Naive Bayes
	3.4.2.5 Gaussian Naive Bayes
	3.4.2.6 Decision Tree Classification
	3.4.2.7 Random Forest Classification

	3.5 Deep Learning
	3.5.1 What Is a Neuron?
	3.5.2 Backpropagation and Gradient Descent
	3.5.3 Artificial Neural Network (ANN)
	3.5.4 Convolutional Neural Network
	3.5.4.1 Convolution Layer
	3.5.4.2 Pooling Layer
	3.5.4.3 Activation Functions
	3.5.4.4 Dropout
	3.5.4.5 Batch Normalization
	3.5.4.6 Optimizers
	3.5.4.7 Fully Connected Layer
	3.5.4.8 Why Is CNN So Popular?
	3.5.4.9 State-of-the-Art Model Architecture

	3.5.5 Recurrent Neural Network (RNN)
	3.5.6 Generative Adversarial Network (GAN)
	3.5.7 Transfer Learning

	3.6 Time Series Forecasting
	3.6.1 ARIMA
	3.6.1.1 The Auto-regressive Process
	3.6.1.2 The Moving Average Process
	3.6.1.3 The Differencing Process
	3.6.1.4 Determining the Order

	3.6.2 Seasonal ARIMA
	3.6.3 Long Short-Term Memory (LSTM)

	3.7 Unsupervised Learning
	3.7.1 Clustering
	3.7.1.1 K-Means Clustering
	3.7.1.2 Affinity Propagation Clustering
	3.7.1.3 Mean-Shift Clustering
	3.7.1.4 DBSCAN: Density-Based Spatial Clustering of Applications with Noise

	3.7.2 Dimensionality Reduction
	3.7.2.1 Principal Component Analysis (PCA)
	3.7.2.2 Linear Discriminant Analysis (LDA)
	3.7.2.3 Singular Value Decomposition (SVD)

	3.7.3 Association Learning
	3.7.3.1 Apriori Algorithm
	3.7.3.2 ECLAT Algorithm

	3.8 Semi-supervised Learning
	3.8.1 Semi-supervised GAN (SGAN)
	3.8.2 Semi-supervised Classification

	3.9 Reinforcement Learning
	3.9.1 Multi-armed Bandit Problem
	3.9.1.1 The Greedy Strategy
	3.9.1.2 The Epsilon ()-Greedy Strategy
	3.9.1.3 Upper Confidence Bound (UCB)
	3.9.1.4 Thompson Sampling
	3.9.1.5 Q-Learning

	3.10 Conclusion
	3.11 Key Messages from This Chapter
	3.12 Exercise
	References

	4 Applications of Machine Learning: Signal Processing
	4.1 Introduction
	4.2 Signal and Signal Processing
	4.3 Image Classification
	4.3.1 Image Classification Workflow
	4.3.2 Applications of Image Classification
	4.3.3 Challenges of Image Classification
	4.3.4 Implementation of Image Classification

	4.4 Neural Style Transfer (NST)
	4.4.1 NST Applications

	4.5 Feature Extraction or Dimensionality Reduction
	4.6 Anomaly or Outlier Detection
	4.6.1 How Does It Work?
	4.6.1.1 Standard Deviation
	4.6.1.2 Inter-quartile Range (IQR)
	4.6.1.3 Isolation Forest
	4.6.1.4 Local Outlier Factor (LOF)

	4.6.2 Applications of Anomaly Detection
	4.6.3 Challenges of Anomaly Detection
	4.6.4 Implementation of Anomaly Detection

	4.7 Adversarial Input Attack
	4.8 Malicious Input Detection
	4.9 Natural Language Processing
	4.9.1 How Does NLP Work?
	4.9.2 Applications of NLP
	4.9.3 Challenges of NLP
	4.9.4 Implementation of NLP

	4.10 Conclusion
	4.11 Key Messages from This Chapter
	4.12 Exercise
	References

	5 Applications of Machine Learning: Energy Systems
	5.1 Introduction
	5.2 Load Forecasting
	5.3 Fault/Anomaly Analysis
	5.3.1 Different Types of Electrical Faults
	5.3.2 Fault Detection
	5.3.3 Fault Classification
	5.3.4 Partial Discharge Detection

	5.4 Future Trend Prediction in Renewable Energy Systems
	5.4.1 Solar PV Installed Capacity Prediction
	5.4.2 Wind Power Output Prediction

	5.5 Reactive Power Control and Power Factor Correction
	5.6 Conclusion
	5.7 Key Messages from this Chapter
	5.8 Exercise
	References

	6 Applications of Machine Learning: Robotics
	6.1 Introduction
	6.2 Computer Vision and Machine Vision
	6.2.1 Object Tracking
	6.2.1.1 The MTCNN Architecture
	6.2.1.2 Face Tracking Example Using MTCNN

	6.2.2 Object Recognition/Detection
	6.2.2.1 Applications of Object Recognition/Detection
	6.2.2.2 Self-Driving Car: Traffic Sign

	6.2.3 Image Segmentation
	6.2.3.1 The U-Net Architecture
	6.2.3.2 Aerial Semantic Segmentation Example

	6.3 Robot: A Line Follower Data Predictor Using Generative Adversarial Network (GAN)
	6.4 Conclusion
	6.5 Key Messages
	6.6 Exercise
	References

	7 State of the Art of Machine Learning
	7.1 Introduction
	7.2 State-of-the-Art Machine Learning
	7.2.1 Graph Neural Network
	7.2.1.1 Applications of GNN

	7.2.2 EfficientNet
	7.2.3 Inception v3
	7.2.4 YOLO
	7.2.4.1 Features of YOLO
	7.2.4.2 YOLO Concepts
	7.2.4.3 YOLO Variants
	7.2.4.4 YOLOv3 Implementation for Object Detection

	7.2.5 Facebook Prophet
	7.2.5.1 Features of Facebook Prophet

	7.2.6 ChatGPT
	7.2.6.1 Applications of ChatGPT
	7.2.6.2 Limitations of ChatGPT

	7.3 AI/ML Security Challenges and Possible Solutions
	7.4 AI/ML Hardware Challenges and Future Potential
	7.4.1 Quantization
	7.4.1.1 Affine Quantization
	7.4.1.2 Scale Quantization

	7.4.2 Weight Pruning
	7.4.3 Implementation of Quantization and Pruning

	7.5 Multi-domain Learning
	7.5.1 Transfer Learning
	7.5.2 Domain Adaptation

	7.6 Artificial Intelligence
	7.6.1 The Turing Test
	7.6.2 Limitations of AI and Solutions
	7.6.3 Future Possibilities of AI

	7.7 Conclusion
	7.8 Key Messages
	7.9 Exercise
	References

	Answer Keys to Chapter Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7

	Index

