
Miroslav Kubat

An Introduction
to Machine
Learning
Third Edition

An Introduction to Machine Learning

Miroslav Kubat

An Introduction to Machine
Learning

Third Edition

Miroslav Kubat
Department of Electrical and Computer
Engineering
University of Miami
Coral Gables, FL, USA

ISBN 978-3-030-81934-7 ISBN 978-3-030-81935-4 (eBook)
https://doi.org/10.1007/978-3-030-81935-4

© Springer Nature Switzerland AG 2015, 2017, 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-81935-4

To my wife, Verunka

Acknowledgments

Writing a book is pleasant only at the beginning, when your heart overflows with
energy and ambition. Soon, reality sets in. The progress is slower than you expected,
and putting one word behind another is much harder than you once hoped. As the
days stretch to weeks, then months, your determination slides away; the soaring
spirits of the early days are gone. Somewhere deep inside, a nagging question burns:
why did you commit yourself to this drudgery? So many projects had to be pushed
aside, so many deadlines missed, so much time and energy invested—for a book
that may yet prove a failure. And then, did your family deserve all those cancelled
trips? The reader has got the message: moral support is important. Even the most
independent mind will not go far without at least one fan.

Grateful thanks to my wife Verunka, for her encouragements and tolerance!
The book’s contents owe a lot to my exposure to the hundreds of students that

have passed through my machine learning classes. An old saw has it that a professor
who wants to master a field proposes to teach it. There is an element of wisdom,
in this. To develop a course, you have to identify critical topics, logical structure,
illuminating examples, and the right level of detail. The classroom is your test-bed,
an implacable mirror. Some of the kids are truly intrigued; this is what encourages
you. Others are disgusted; this is what makes you try harder. Over the years, you
figure out what is easy and what is difficult; what inspires and what bores; what
deserves elaboration and what better be headed for a trash can.

Doctoral students are indispensable, too. How would I do without the innu-
merable discussions throughout those many years of graduate advising? Together
we pored over literature surveys, formulated research questions, fine-tuned experi-
ments, triumphed over successes, and lamented our failures. First they learned from
me; then I learned from them.

Grateful thanks to all my students, undergraduate and graduate alike!
A scholar’s mind is a product of countless encounters. Colleagues, mentors,

bosses, scientists, friends, and rivals, how many of them have I met and talked to
and argued with! Each has left a mark, even if a tiny one; they have made me who
I am. This book would be a thick volume if I were to give credit to every single
name, so let me narrow the field to those who offered a helping hand during the

vii

viii Acknowledgments

formative postdoctoral years, when my career still seemed a distant dream: Robert
Trappl, Gerhard Widmer, Ivan Bratko, Stan Matwin, Rob Holte, Ryszard Michalski,
TomMitchell, Pat Langley, Jan Zitkow, ... I have to stop, or the list would never end.

Grateful thanks to them all, thanks for all those memories!

Contents

1 Ambitions and Goals of Machine Learning . 1
1.1 Training Sets and Classifiers . 1
1.2 Expected Benefits of the Induced Classifier . 4
1.3 Problems with Available Data . 6
1.4 Many Roads to Concept Learning . 9
1.5 Other Ambitions of Machine Learning . 12
1.6 Summary and Historical Remarks . 13
1.7 Solidify Your Knowledge. 14

2 Probabilities: Bayesian Classifiers . 17
2.1 The Single-Attribute Case . 17
2.2 Vectors of Discrete Attributes . 21
2.3 Rare Events: An Expert’s Intuition. 25
2.4 Continuous Attributes: Probability Density Functions 28
2.5 Gaussian “Bell” Function: A Standard pdf . 31
2.6 Approximating PDFs with Sets of Gaussian Functions 33
2.7 Summary and Historical Remarks . 36
2.8 Solidify Your Knowledge. 38

3 Similarities: Nearest-Neighbor Classifiers . 41
3.1 The k-Nearest-Neighbor Rule . 41
3.2 Measuring Similarity . 44
3.3 Irrelevant Attributes and Scaling Problems . 47
3.4 Performance Considerations. 50
3.5 Weighted Nearest Neighbors . 53
3.6 Removing Dangerous Examples . 55
3.7 Removing Redundant Examples . 57
3.8 Limitations of Attribute-Vector Similarity . 60
3.9 Summary and Historical Remarks . 61
3.10 Solidify Your Knowledge. 62

ix

x Contents

4 Inter-Class Boundaries: Linear and Polynomial Classifiers 65
4.1 Essence . 65
4.2 Additive Rule: Perceptron Learning . 69
4.3 Multiplicative Rule: WINNOW .. 73
4.4 Domains with More Than Two Classes . 77
4.5 Polynomial Classifiers . 79
4.6 Specific Aspects of Polynomial Classifiers . 82
4.7 Support Vector Machines . 84
4.8 Summary and Historical Remarks . 87
4.9 Solidify Your Knowledge. 88

5 Decision Trees . 91
5.1 Decision Trees as Classifiers . 91
5.2 Induction of Decision Trees . 94
5.3 How Much Information in an Attribute?. 97
5.4 Binary Split of a Numeric Attribute. 101
5.5 Pruning . 103
5.6 Decision Tree Can Be Converted to Rules. 108
5.7 Why Decision Trees? . 110
5.8 Summary and Historical Remarks . 112
5.9 Solidify Your Knowledge. 113

6 Artificial Neural Networks . 117
6.1 Multilayer Perceptrons. 117
6.2 Neural Network’s Error . 121
6.3 Backpropagation of Error. 123
6.4 Practical Aspects of MLP’s. 127
6.5 Big Networks or Small? . 131
6.6 Modern Approaches to MLP’s . 135
6.7 Radial Basis Function Networks . 137
6.8 Summary and Historical Remarks . 139
6.9 Solidify Your Knowledge. 141

7 Computational Learning Theory . 145
7.1 PAC Learning . 145
7.2 Examples of PAC-Learnability . 148
7.3 Practical and Theoretical Consequences . 151
7.4 VC-Dimension and Learnability . 153
7.5 Summary and Historical Remarks . 156
7.6 Exercises and Thought Experiments . 158

8 Experience from Historical Applications . 161
8.1 Medical Diagnosis . 161
8.2 Character Recognition . 163
8.3 Oil-Spill Recognition . 167
8.4 Sleep Classification . 170
8.5 Brain–Computer Interface . 172

Contents xi

8.6 Text Classification . 175
8.7 Summary and Historical Remarks . 177
8.8 Solidify Your Knowledge. 178

9 Voting Assemblies and Boosting . 181
9.1 Bagging. 181
9.2 Schapire’s Boosting . 184
9.3 Adaboost: Practical Version of Boosting . 187
9.4 Variations on the Boosting Theme . 191
9.5 Cost-Saving Benefits of Boosting . 193
9.6 Summary and Historical Remarks . 195
9.7 Solidify Your Knowledge. 195

10 Classifiers in the Form of Rule-Sets . 199
10.1 Class Described by Rules. 199
10.2 Inducing Rule-Sets by Sequential Covering . 202
10.3 Predicates and Recursion . 204
10.4 More Advanced Search Operators . 207
10.5 Summary and Historical Remarks . 208
10.6 Solidify Your Knowledge. 209

11 Practical Issues to Know About . 211
11.1 Learner’s Bias . 211
11.2 Imbalanced Training Sets. 214
11.3 Dealing with Imbalanced Classes . 217
11.4 Context-Dependent Domains. 219
11.5 Unknown Attribute Values . 222
11.6 Attribute Selection . 224
11.7 Miscellaneous . 228
11.8 Summary and Historical Remarks . 230
11.9 Solidify Your Knowledge. 231

12 Performance Evaluation . 233
12.1 Basic Performance Criteria . 233
12.2 Precision and Recall . 236
12.3 Other Ways to Measure Performance . 240
12.4 Learning Curves and Computational Costs . 244
12.5 Methodologies of Experimental Evaluation . 246
12.6 Experimental Blunders to Avoid . 249
12.7 Summary and Historical Remarks . 250
12.8 Solidify Your Knowledge. 252

13 Statistical Significance . 255
13.1 Sampling a Population . 255
13.2 Benefiting from the Normal Distribution . 259
13.3 Confidence Intervals . 262
13.4 Statistical Evaluation of a Classifier . 264

xii Contents

13.5 Another Use of Statistical Evaluation . 267
13.6 Comparing Machine-Learning Techniques . 268
13.7 Summary and Historical Remarks . 271
13.8 Solidify Your Knowledge. 272

14 Induction in Multi-label Domains . 275
14.1 Classical Paradigms and Multi-label Data . 275
14.2 Principle of Binary Relevance . 278
14.3 Classifier Chains . 280
14.4 Another Possibility: Stacking . 282
14.5 Note on Hierarchically Ordered Classes . 284
14.6 Aggregating the Classes . 287
14.7 Criteria for Performance Evaluation . 289
14.8 Summary and Historical Remarks . 292
14.9 Solidify Your Knowledge. 293

15 Unsupervised Learning . 297
15.1 Cluster Analysis. 297
15.2 Simple Clustering Algorithm: k-Means . 301
15.3 Advanced Versions of k-Means . 305
15.4 Hierarchical Aggregation . 307
15.5 Self-Organizing Feature Maps: Introduction . 310
15.6 Some Details of SOFM . 312
15.7 Why Feature Maps?. 314
15.8 Auto-Encoding . 317
15.9 Why Auto-Encoding?. 320
15.10 Summary and Historical Remarks . 322
15.11 Solidify Your Knowledge. 323

16 Deep Learning . 327
16.1 Digital Image: Many Low-Level Attributes . 327
16.2 Convolution . 330
16.3 Pooling, ReLU, and Soft-Max. 334
16.4 Induction of CNNs . 339
16.5 Advanced Issues . 342
16.6 CNN Is Just Another ML Paradigm. 345
16.7 Word of Caution . 346
16.8 Summary and Historical Remarks . 348
16.9 Solidify Your Knowledge. 350

17 Reinforcement Learning: N -Armed Bandits and Episodes 353
17.1 Addressing the N -Armed Bandit Problem . 353
17.2 Additional Information . 356
17.3 Learning to Navigate a Maze . 361
17.4 Variations on the Episodic Theme . 365
17.5 Car Races and Beyond . 368
17.6 Practical Ideas . 371

Contents xiii

17.7 Summary and Historical Remarks . 374
17.8 Solidify Your Knowledge. 375

18 Reinforcement Learning: From TD(0) to Deep-Q-Learning 377
18.1 Immediate Rewards: Temporal Difference . 377
18.2 SARSA and Q-Learning . 379
18.3 Temporal Difference in Action . 381
18.4 Eligibility Traces: TD(λ) . 384
18.5 Neural Network Replaces the Lookup Table . 387
18.6 Reinforcement Learning in Game Playing. 390
18.7 Deep-Q-Learning . 393
18.8 Summary and Historical Remarks . 395
18.9 Solidify Your Knowledge. 396

19 Temporal Learning . 399
19.1 Temporal Signals and Shift Registers . 399
19.2 Recurrent Neural Networks . 403
19.3 Long Short-Term Memory . 405
19.4 Summary and Historical Remarks . 406
19.5 Solidify Your Knowledge. 407

20 Hidden Markov Models . 409
20.1 Markov Processes . 409
20.2 Revision: Probabilistic Calculations . 411
20.3 HMM: Indirectly Observed States . 414
20.4 Useful Probabilities: α, β, and γ . 417
20.5 First Problem and Second Problem of HMM.. 420
20.6 Third Problem of HMM .. 423
20.7 Summary and Historical Remarks . 425
20.8 Solidify Your Knowledge. 425

21 Genetic Algorithm . 429
21.1 Baseline Genetic Algorithm . 429
21.2 Implementing the Individual Functions . 431
21.3 Why It Works . 434
21.4 Premature Degeneration . 437
21.5 Other Genetic Operators . 439
21.6 Advanced Versions. 441
21.7 Choices Made by k-NN Classifiers . 444
21.8 Summary and Historical Remarks . 447
21.9 Solidify Your Knowledge. 448

Bibliography . 451

Index . 457

Introduction to Third Edition

Only six years have passed, and so much has happened. And yet it seems only
yesterday that the first edition of this textbook appeared! Its Introduction then began
with the following words.

Machine learning has come of age. And just in case you might think this an empty platitude,
let me clarify.

The dream that machines would one day be able to learn is as old as computers
themselves, perhaps older still. For a long time, however, it remained just that: a dream.
True, Rosenblatt’s perceptron did trigger a wave of activity, but in retrospect, the excitement
was short-lived. As for the attempts that followed, these fared even worse. Barely noticed,
happily ignored, they never really made it: no start-up companies, no follow-up research,
hardly any support from funding agencies. Machine learning remained an underdog,
condemned to the miserable life in the shadows of luckier disciplines. The grand ambition
lay dormant.

And then it all changed.
A group of visionaries pointed out a weak spot in the knowledge-based systems that

were all the rage in the 1970s’ artificial intelligence: where was the knowledge to come
from? The prevailing wisdom of the day insisted that it should take the form of if-then rules
put together by the joint effort of engineers and field experts. Practical experience, though,
was unconvincing. Experts found it difficult to communicate what they knew to engineers.
Engineers, in turn, were at a loss as to what questions to ask, and what to make of the
answers. A few widely-publicized success stories notwithstanding, most attempts to create
a knowledge base of, say, tens of thousands of such rules proved frustrating.

The proposition made by the visionaries was as simple as it was audacious. If it is so
hard to tell a machine exactly how to go about a certain problem, why not provide the
instruction indirectly, conveying the necessary skills by way of examples from which the
computer will—yes, learn!

Of course, this only makes sense if we have the algorithms to do the learning—and
this was the main difficulty. It turned out that neither Rosenblatt’s perceptron, nor the
techniques developed later were very useful. But the absence of the requisite machine-
learning techniques was not an obstacle; rather, it presented a challenge that inspired quite
a few brilliant minds. The idea of endowing computers with the ability to learn opened
new horizons and gave rise to no small amount of excitement. The world was about to take
notice.

xv

xvi Introduction to Third Edition

The bombshell exploded in 1983. Machine Learning: The AI Approach1 was a thick
volume of research papers which introduced the most diverse ways of addressing the great
mystery. Under their influence, a new scientific discipline was born—virtually overnight.
Three years later, a follow-up book appeared, then another. A soon-to-become-prestigious
scientific journal was founded. Annual conferences of undisputed repute were launched.
And dozens, perhaps hundreds, of doctoral dissertations were submitted and successfully
defended.

In this early stage, the question was not only how to learn, but also what to learn and
why. In retrospect, those were wonderful times, so creative that the memories are tinged with
nostalgia. It is only to be regretted that many great thoughts were later abandoned. Practical
needs of realistic applications got the upper hand, pointing to the most promising avenues
for further efforts. After a period of enchantment, concrete research strands crystallized:
induction of if-then rules for knowledge-based systems; induction of classifiers, programs
capable of improving their skills based on experience; automatic fine-tuning of Prolog
programs; and others. So many were the directions that some leading personalities felt
it necessary to try to steer further development by writing monographs, some successful,
others less so.

A critical watershed was Tom Mitchell’s legendary textbook.2 This summarized the
state-of-the-art of the field in a format appropriate for doctoral students and scientists alike.
One by one, universities started offering graduate courses that were usually built around
this book. Meanwhile, research methodology grew more systematic. A rich repository of
machine-leaning test-beds was created, making it possible to compare the performance of
diverse learning algorithms. Statistical methods of evaluation became wide-spread. Public-
domain versions of most popular programs were made available. The number of scientists
dealing with this discipline grew to thousands, perhaps even more.

Now we have reached the stage where a great many universities are offering Machine
Learning as an undergraduate course. This is a new situation because classes of this
kind call for a different sort of textbook. Apart from mastering the baseline techniques,
the future engineers need to develop a good grasp of the strengths and weaknesses of
alternative approaches, they have to become aware of the peculiarities and idiosyncrasies
of competing paradigms. Above all, they must understand the circumstances under which
some techniques succeed while others fail. Only then will they be able to make the right
choices when dealing with concrete applications. A textbook that is to provide all of the
above should contain less mathematics, but a lot of practical advice ...

So much for the 2015 Introduction.
Only six years, and so much water under the bridge! The world of machine-

learning has changed, having advanced from being grudgingly accepted to dom-
inating the mainstream. The field is now famous! Spectacular success stories are
reported by TV channels, analyzed in newspapers, and passionately discussed in
countless blogs. A generation ago, only dedicated specialists knew it even existed;
today, every educated person has heard about computers beating world champions in
chess, about language-understanding software, and about computer vision systems
outperforming humans. The technology that makes computers learn from data and
experience has become the magic wand that elevated Artificial Intelligence from
hazy dreams to hard reality.

1Edited by R. Michalski, J. Carbonell, and T. Mitchell.
2T. Mitchell,Machine Learning, McGraw-Hill, 1997.

Introduction to Third Edition xvii

In view of all these staggering advancements, you would expect the author to
rejoice: his passion has been vindicated, the object of his life-long studies now
triumphs. There is a flip side, though. The elemental force of all those massive
developments has rendered the first two editions of this book outdated. While the
foundations are still as solid as ever, the center of gravity has shifted. What was
hailed as revolutionary a few years ago, is now commonplace. What was labeled
cutting-edge is now introductory. There is no escaping: the author is bound to sit
down and start re-writing. Hence this third edition.

The most important topic that had to be added is deep learning; not because
of being the talk of the town but by virtue of its demonstrated ability to tackle
such daunting problems as learning to recognize complicated objects, scenes,
and situations in digitized images, even in videos. An entire new chapter is now
dedicated to convolutional neural networks, discussing the underlying principles,
architectures, and practical use.

No less important is reinforcement learning. Whereas the book’s previous edi-
tions only mentioned the related techniques in passing, it has now become necessary
to devote to them no less than two full-length chapters. Some recent achievements
are so spectacular that the textbook would seem ridiculously incomplete without
adequate treatment of the relevant algorithms.

Unsupervised learning, too, has gained in importance, especially those mecha-
nisms that from existing attributes create higher-level features to describe training
examples. Also mechanisms capable of visualizing multidimensional data have
become quite important. An entire new section dealing with auto-encoding had to
be added. Most of the other sections of this chapter were expanded.

One new chapter now focuses on temporal learning. Even a beginner needs to
know the basic principles of recurrent neural networks and needs to have an idea
of what is long short-term memory. Another chapter introduces the reader into the
realm of Hidden Markov Models. True, this is somewhat advanced, but the reader
must at least know that it exists.

The older topics all remain, but in this new edition, the author sought to improve
the clarity of exposition: to make the text easier to read and the pictures more
pleasant to look at. These re-written chapters include the Bayesian rule, the nearest-
neighbor principle, linear and polynomial classifiers, decision trees, artificial neural
networks, and the boosting algorithms. Significant space is devoted to practical
aspects of concrete engineering applications and to the ways of assessing their
performance, including statistical evaluation.

In the course of his writing, the author kept reminding himself that his goal was
an introductory text, not an encyclopedia. To prevent the volume from inflating
beyond reasonable bounds, some hard decisions had to be made. What is it that
really matters, what should better be eliminated? The answer is not immediately
obvious. “Will the removal of X degrade the book’s value?” “Is inclusion of Y really
helpful?” These are the question that the author struggled with during those long
months of work. In answering them, he relied on the following criteria.

xviii Introduction to Third Edition

1. Simplicity. Lofty theories are appreciated by scientists and seasoned profession-
als; for beginners, excessive sophistication is discouraging.

2. Programmer’s perspective. Each algorithm should be easy to implement in a
general-purpose programming language that does not rely on fancy built-in
functions typical of highly specialized languages.

3. Consistency. All material should be of about the same level of difficulty, and it
should rely on similar concepts and mathematical abstractions.

4. Personal preference. Whenever the previous three criteria made some alternatives
appear interchangeable, the author followed his heart.

General philosophy is the same as in the previous editions: major chapters are
divided into short sections such that each can be absorbed in one sitting. Each
section is followed by 2–4 control questions to make sure the reader has not
overlooked something serious. I find this important. Inadequate command of the
fundamentals can make what follows hard to understand; such difficulty can cause
antipathy, even a mental block, something to be avoided. To succeed, you need to
enjoy what you’re doing, and you will not enjoy it if you get lost early on.

Reading a textbook is not enough. One has to put in additional effort. To help
navigate the reader in his or her further work, the author included at the end of
each chapter a Solidify Your Knowledge section, usually consisting of three parts:
exercises, thought experiments, and computer assignment. Each serves its own
purpose, and there is no harm in making this explicit.

1. There is no learning without revision; and the best way to revise is by doing
exercises. Those in this book are not supposed to be difficult, and there was no
need for tricky catches.

2. Exercises are not enough. To master the technology, the engineer has to develop
a “gut feeling” for the strengths and weaknesses of the individual techniques,
to learn how to decide which of them to use under specific circumstances. One
way to reach beyond mere introduction is to ask questions that seem to lack clear
answers. To encourage this mental effort is the task for the Give It Some Thought
questions.

3. The ultimate test of whether a certain algorithm has been mastered is a running
computer program: implementation will force you to think through all the details
that might otherwise go unnoticed. Practical experimentation with the developed
software will help you appreciate subtleties that you may not have expected.

The reader will notice that the algorithms are presented in the form of pseudo-
code, and never in a concrete programming language. This is intentional. Program-
ming languages come and go, their popularity waxes and wanes. An author who
wants to see his book in print for a reasonable time to come does not want the text
to depend on Python any more than on C++ or Fortran.

Miami, FL, USA Miroslav Kubat
June 2021

Chapter 1
Ambitions and Goals of Machine
Learning

You will find it difficult to describe your mother’s face accurately enough for your
friend to recognize her in a supermarket. But if you show him a few of her pictures,
he will immediately see the tell-tale traits. As they say, a picture—an example—is
worth a thousand words. Likewise, you will not become a professional juggler by
just being told how to do it. The best any instructor can do is to offer some initial
advice, and then let you practice and practice and practice—and learn from your
own experience and failures.

This is what our technology is trying to emulate. Unable to define complicated
concepts with adequate accuracy, we will convey them to the machine by way of
examples. Unable to implement advanced skills, we instruct the computer to acquire
them by systematic experimentation. Add to all this the ability to draw conclusions
from the analysis of raw data, and to communicate them to the human user, and you
know what the essence of machine learning is.

The task for this chapter is to elaborate on these ideas.

1.1 Training Sets and Classifiers

Let us first characterize the problem and introduce certain fundamental concepts
that will keep us company us throughout the rest of the book.

Pre-Classified Training Examples Figure 1.1 shows six pies that Johnny likes,
and six that he does not. In the sequel, we will refer to them as the positive and
negative examples of the underlying concept. Together, they constitute a training
set from which the machine is to induce a classifier—an algorithm capable of
categorizing any future pie into one of the two classes: positive and negative.

The number of classes can of course be greater than just two. Thus a classifier that
decides whether a landscape snapshot was taken in spring, summer, fall,
or winter distinguishes four classes. Software that identifies characters scribbled

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_1

2 1 Ambitions and Goals of Machine Learning

Fig. 1.1 A simple
machine-learning task: induce
a classifier capable of labeling
future pies as positive and
negative instances of “a pie
that Johnny likes”

on a tablet needs at least 36 classes: 26 for letters and 10 for digits. And document-
categorization systems are capable of identifying hundreds, even thousands of
different topics. The only motivation for illustrating the input to machine learning
by a two-class domain was its simplicity.

Attribute Vectors To be able to communicate the training examples to the
machine, we have to describe them. The most common mechanism relies on the
so-called attributes. In the “pies” domain, five may be suggested: shape (circle,
triangle, and square), crust-size (thin or thick), crust-shade (white, gray,
or dark), filling-size (thin or thick), and filling-shade (white, gray, or
dark). Table 1.1 specifies the values of these attributes for the twelve examples in
Fig. 1.1. For instance, the pie in the upper-left corner of the picture (the table calls
it ex1) is described by the following conjunction:

(shape=circle) AND (crust-size=thick) AND (crust-shade=gray)
AND (filling-size=thick) AND (filling-shade=dark)

Classifier to Be Induced The training set constitutes the input from which we are
to induce the classifier. But what classifier?

Suppose we want it in the form of a Boolean function that is true
for positive examples and false for negative ones. Checking the expression
[(shape=circle) AND (filling-shade=dark)] against the training
set, we can see that it is false for all negative examples: while it is possible to find

1.1 Training Sets and Classifiers 3

Table 1.1 The twelve training examples described by attributes

Crust Filling Class

Example Shape Size Shade Size Shade

ex1 Circle Thick Gray Thick Dark pos

ex2 Circle Thick White Thick Dark pos

ex3 Triangle Thick Dark Thick Gray pos

ex4 Circle Thin White Thin Dark pos

ex5 Square Thick Dark Thin White pos

ex6 Circle Thick White Thin Dark pos

ex7 Circle Thick Gray Thick White neg

ex8 Square Thick White Thick Gray neg

ex9 Triangle Thin Gray Thin Dark neg

ex10 Circle Thick Dark Thick White neg

ex11 Square Thick White Thick Dark neg

ex12 Triangle Thick White Thick Gray neg

negative examples that are circular, none of these has a dark filling. As for the
positive examples, however, the expression is true for four of them and false for the
remaining two. This means that the classifier makes two errors, a transgression we
might refuse to tolerate, suspecting there is a better solution. Indeed, the reader will
easily verify that the following expression never goes wrong on the entire training
set:

[(shape=circle) AND (filling-shade=dark)] OR
[NOT(shape=circle) AND (crust-shade=dark)]

Problems with the Brute-Force Approach How does a machine find a classifier
of this kind? Brute force (something that computers are so good at) will not do here.
Just consider how many different examples can be distinguished by the given set
of attributes in the “pies” domain. For each of the three different shapes, there
are two alternative crust-sizes, the number of combinations being 3 × 2 = 6.
For each of these, the next attribute, crust-shade, can acquire three different
values, which brings the number of combinations to 3× 2× 3 = 18. Extending this
line of reasoning to all attributes, we realize that the size of the instance space is
3 × 2 × 3 × 2 × 3 = 108 different examples.

Each subset of these examples—and there are 2108 subsets!—may constitute the
list of positive examples of someone’s notion of a “good pie.” And each such subset
can be characterized by at least one Boolean expression. Running each one of these
classifiers through the training set is clearly out of the question.

Manual Approach and Search Uncertain about how to invent a classifier-
inducing algorithm, we may try to glean some inspiration from an attempt
to create a classifier “manually,” by the good old-fashioned pencil-and-paper
method. When doing so, we begin with some tentative initial version, say,
shape=circular. Having checked it against the training set, we find it to

4 1 Ambitions and Goals of Machine Learning

be true for four positive examples, but also for two negative ones. Apparently,
the classifier needs to be “narrowed” (specialized) so as to exclude the two
negative examples. One way to go about the specialization is to add a conjunction,
such as when turning shape=circular into [(shape=circular) AND
(filling-shade=dark)]. This new expression, while false for all negative
examples, is still imperfect because it covers only four (ex1, ex2, ex4, and
ex6) of the six positive examples. The next step should therefore attempt some
generalization, perhaps by adding a disjunction: {[(shape=circular) AND
(filling-shade=dark)] OR (crust-size=thick)}. We continue in
this way until we find a hundred-percent accurate classifier (if it exists).

The lesson from this little introspection is that the classifier can be created by
means of a sequence of specialization and generalization steps which gradually
modify a given version of the classifier until it satisfies certain predefined require-
ments. This is encouraging. Readers with background in Artificial Intelligence will
recognize this procedure as a search through the space of Boolean expressions.

1.1.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• What is the input of the learning problem we have just introduced? What is its
output?

• How do we describe the training examples? What is instance space? Can we
calculate its size?

• In the “pies” domain, find a Boolean expression that correctly classifies all the
training examples from Table 1.1.

1.2 Expected Benefits of the Induced Classifier

So far, we have measured the error rate by comparing the training examples’ known
classes with those recommended by the classifier. Practically speaking, though, our
goal is not to reclassify objects whose classes we already know; what we really want
is to label future examples of whose classes we are as yet ignorant. The classifier’s
anticipated performance on these is estimated experimentally. It is important to
know how.

Independent Testing Examples The simplest scenario will divide the available
pre-classified examples into two parts: the training set, from which the classifier is
induced, and the testing set, on which it is evaluated (Fig. 1.2). Thus in the “pies”
domain, with its 12 pre-classified examples, the induction may be carried out on
randomly selected eight, and the testing on the remaining four. If the classifier then

1.2 Expected Benefits of the Induced Classifier 5

Fig. 1.2 Pre-classified
examples are divided into the
training and testing sets

“guesses” correctly the class of three testing examples (while going wrong on a
single one), its performance is estimated as 75%.

Reasonable though this approach may appear, it suffers from a major drawback:
a random choice of eight training examples may not be sufficiently representative
of the underlying concept—and the same applies to the even smaller testing set.
If we induce the meaning of a mammal from a training set consisting of a whale,
a dolphin, and a platypus, the learner may be led to believe that mammals live in
the sea (whale, dolphin), and sometimes lay eggs (platypus), hardly an opinion a
biologist will endorse. And yet, another choice of training examples may result in a
classifier satisfying the highest standards. The point is, a different training/testing set
division gives rise to a different classifier—and also to a different estimate of future
performance. This is particularly serious if the number of pre-classified examples is
small.

Suppose we want to compare two machine-learning algorithms in terms of the
quality of the products they induce. The problem of non-representative training sets
can be mitigated by the so-called random sub-sampling.1 The idea is to repeat the
random division into the training and testing sets several times, always inducing a
classifier from the i-th training set, and then measuring the error rate, Ei , on the i-th
testing set. The algorithm that delivers classifiers with the lower average value of
Ei’s is deemed better—at least as far as classification performance is concerned.

Need for Explanations In some applications, establishing the class of each exam-
ple is not enough. Just as desirable is to know the reasons behind the classification.
Thus a patient is unlikely to give consent to amputation if the only argument in
support of surgery is, “this is what our computer says.” But how to find a better
explanation?

In the “pies” domain, a lot can be gleaned from the Boolean expression itself.
For instance, we may notice that a pie was labeled as negative whenever its shape
was square, and its filling white. Combining this observation with other sources of
knowledge may offer relevant insights: the dark shade of the filling may indicate
poppy, an ingredient Johnny is known to love; or the crust of circular pies turns out
to be more crispy than that of square ones; and so on. The knowledge obtained in
this manner can be more desirable than the classification itself.

1Chapter 12 will describe some other methodologies.

6 1 Ambitions and Goals of Machine Learning

Alternative Solutions Note that the given data make it possible to induce many
classifiers that are perfect in the sense that they correctly label the entire training set.
The “pies” domain contained 12 training examples, and the classes of the remaining
96 examples were unknown. Consider now only such classifiers that assign the
correct label to each training example. One such classifier will label as positive the
first of the remaining examples, and as negative all the other 95. Another will label
as positive the first two of the remaining examples, and as negative the remaining
94 . . . and so on. The fact that for each of the 96 examples two possibilities exist
(positive and negative) means that there are 296 different ways in which some
classifier can label them.

Shockingly, this means 296 different classifiers can label correctly all training
examples, while differing from each other in their behavior on the unknown 96. If
we only look of a logical expression that correctly classifies the available pies, we
may still get a classifier that will go wrong on any future example that has not been
seen in the training set.

1.2.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• How can we estimate the error rate on examples that have not been seen during
learning? What is random sub-sampling?

• Why is error rate usually higher on the testing set than on the training set?
• Give an example of a domain where the classifier also has to explain its action,

and an example of a domain where this is unnecessary.
• What do we mean by saying that, “there is a combinatorial number of classifiers

that correctly classify all training examples”?

1.3 Problems with Available Data

The class recognition task, schematically represented by Fig. 1.3, is the most popular
task of our discipline. Many concrete engineering problems can be cast in this
framework: recognition of visual objects, understanding natural language, medical
diagnosis, and identification of hidden patterns in scientific data. Each of these fields
may rely on classifiers capable of labeling objects with the right classes based on
the features, traits, and attributes characterizing these objects.

Origin of the Training Examples In some applications, the training set is created
manually: an expert prepares the examples, tags them with class labels, chooses
the attributes, and specifies the value of each attribute in each example. In other

1.3 Problems with Available Data 7

Fig. 1.3 Training examples are used to induce a classifier. The classifier is then used to classify
future examples

domains, the process is computerized. For instance, a company may want to be able
to anticipate an employee’s intention to leave. Their database contains, for each
person, the address, gender, marital status, function, salary raises, promotions—as
well as the information about whether the person is still with the company or, if not,
the day they left. From this, a program can obtain the attribute vectors, labeled as
positive if the given person left within a year since the last update of the database
record.

Sometimes, the attribute vectors are automatically extracted from a database and
labeled by an expert. Alternatively, some examples can be obtained from a database
and others added manually. Often, two or more databases are combined. The number
of such variations is virtually unlimited.

But whatever the source of the examples, they are likely to suffer from imperfec-
tions whose essence and consequences the engineer has to understand.

Different Types of Attributes In the toy domain from Fig. 1.1, any of the attributes
could only acquire one out of two or three different values. Such attributes are
referred to as “discrete” or “discrete-valued.” Other attributes, such as age, will
be called “numeric” because their values are numbers, say, age = 23. Sometimes
we want to emphasize that the numeric value is not necessarily an integer, coming
as it does from a continuous domain, such as price = 2.35. In this case we will
say that the attribute is “continuous-valued.”

Irrelevant Attributes Some attributes are important, while others are not. While
Johnny may be fond of poppy filling, his preference for a pie will hardly be driven by
the cook’s shoe size. This is something to be concerned about: irrelevant attributes
add to computational costs; they can even mislead the learner. Can they be avoided?

Usually not. True, in manually created domains, the expert is supposed to know
which attributes really matter, but even here, things are not so simple. Thus the
author of the “pies” domain might have done her best to choose those attributes she

8 1 Ambitions and Goals of Machine Learning

believed to matter. But unsure about the real reasons behind Johnny’s tastes, she may
have included attributes whose necessity she suspected—but could not guarantee.

Even more often will the problems with relevance occur when the examples are
extracted automatically from a database. Databases are developed primarily with the
intention to provide access to lots of information—of which usually only a tiny part
pertains to the learning task. As to which part this is, we usually have no idea.

Missing Attributes Conversely, some critical attributes can be missing. Mindful of
his parents’ finances, Johnny may be prejudiced against expensive pies. The absence
of attribute price will then make it impossible to induce a good classifier: two
examples, identical in terms of the available attributes, can differ in the values of the
vital “missing” attribute. No wonder that, though identically described, one example
is positive, and the other is negative. When this happens, we say that the training set
is inconsistent. The situation is sometimes difficult to avoid: not only may the expert
be ignorant of the relevance of attribute price; it may be impossible to provide this
attribute’s values, and the attribute thus cannot be used anyway.

Redundant Attributes Somewhat less damaging are attributes that are redundant
in the sense that their values can be obtained from other attributes. If the database
contains a patient’s date-of-birth as well as age, the latter is unnecessary
because its value can be calculated by subtracting date-of-birth from today’s
date. Fortunately, redundant attributes are less dangerous than irrelevant or missing
ones.

Missing Attribute Values In some applications, the user may find it easy to
identify the right set of attributes. Unfortunately, however, the values of some
attributes may be unknown. For instance, a company’s database may contain the
information about the number of children only for some employees, and not for
others. Or, in a database of a hospital’s patients file, each patient has undergone only
some laboratory tests. For these, the values are known; but since it is impossible (and
unreasonable) to subject each patient to all available tests, most test results will be
missing.

Attribute-Value Noise Attribute values and class labels often cannot be trusted on
account of unreliable sources of information, poor measurement devices, typos, the
user’s confusion, and many other reasons. We say that the data suffer from various
kinds of noise.

Stochastic noise is random. For instance, since our body-weight varies during
the day, the reading we get in the morning is different from the one in the evening.
A human error can also play a part: lacking the time to take a patient’s blood
pressure, a negligent nurse simply scribbles down a modification of the previous
reading. By contrast, systematic noise drags all values in the same direction. For
instance, a poorly calibrated thermometer always gives a lower reading than it
should. Something else occurs in the case of arbitrary artifacts; here, the given
value bears no relation to reality such as when an EEG electrode gets loose and,
from that moment on, all subsequent readings will be zero.

1.4 Many Roads to Concept Learning 9

Class-Label Noise Class labels suffer from similar problems as attributes. The
labels recommended by an expert may not have been properly recorded; alterna-
tively, some examples find themselves in a “gray area” between two classes, in
which event the correct labels are not certain. Both cases represent stochastic noise,
of which the latter will typically affect examples from the borderline region between
the two classes. However, class-label noise can also be systematic: a physician may
be reluctant to diagnose a rare disease unless the evidence is overwhelming—his
class labels are then more likely to be negative than positive. Finally, arbitrary
artefacts in class labels are encountered in domains where the classes are supplied
by an automated process that has gone wrong.

Class-label noise is usually more dangerous than attribute-value noise. An
incorrect value of an attribute may only slightly modify the example’s overall
characteristics and may thus only marginally affect the induced classifier. By
contrast, a positive example mislabeled as negative can be highly misleading.

1.3.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Explain the meaning of the following terms: irrelevant and redundant attributes,
missing attributes, and missing attribute values. Illustrate each of them using the
“pies” domain.

• What is an “inconsistent training set”? What can be the cause? How can it affect
the learning process?

• What kinds of noise do we know? What are their possible sources? In what way
can noise affect the success and/or failure of the learning enterprise?

1.4 Many Roads to Concept Learning

The reader now understands that learning from pre-classified training examples is
not easy. So many obstacles stand in the way. Even if the training set is perfect and
noise-free, many classifiers can be found that are capable of correctly classifying all
training examples but will differ in their treatment of examples that were not seen
during learning. How to choose the best one?

Facing the Real World The training examples are rarely perfect. Most of the
time, the class labels and attributes are noisy, a lot of the available information is
irrelevant, redundant, or missing, the training set may be far too small to capture all
critical aspects—the list goes on and on. There is no simple solution. No wonder that
an entire scientific discipline—machine learning—has come to being that seeks to

10 1 Ambitions and Goals of Machine Learning

Fig. 1.4 For class recognition, quite a few competing paradigms have been developed, each with
advantages and shortcomings

come to grips with all the above-mentioned issues and to illuminate all the tangled
complications of the underlying tasks.

As pointed out by Fig. 1.4, engineers have at their disposal several major and
some smaller paradigms, each marked by different properties, each exhibiting
different strengths and shortcomings when applied to a concrete task. To show the
nature of each of these frameworks, and to explain how it behaves under diverse
circumstances is the topic for the rest of this book. But perhaps we can mention
here at least some of the basic principles.

Probabilities We have seen that many classifiers can be induced that classify
perfectly the training data—but each with a different behavior on future data. Which
of the classifiers is the engineer to use? One way to avoid this difficulty is to rely on
the time-tested theory of probability. The relative frequencies of circular or square
pies in the training set surely give hints of a future pie being from the positive or
negative class? This is the avenue followed by the so-called Bayesian classifiers.

Similarities Another idea is to rely on similarities. Surely we may expect that
objects belonging to the same class have something in common that they are in some
way similar? This reasoning is behind the so-called nearest-neighbor classifiers.
The assumption is that mutual similarity of a pair of examples is captured by the
geometric distance between the attribute vectors describing them.

1.4 Many Roads to Concept Learning 11

Fig. 1.5 Learning to
recognize specific objects:
how many eyes does the
person have? is there a nose,
in the picture? an airplane?

Decision Surfaces Another major philosophy is built around the multidimensional
“space metaphor.” Suppose, for simplicity, that all attributes are numeric so that each
example can be identified with a single point in an N -dimensional space where N

is the number of attributes. If it is true that examples of the same class tend to find
themselves close to each other, geometrically (see the previous paragraph), then it
should be possible to delineate a region occupied by positive examples and another
region occupied by negative examples. These regions can then be separated by a
“decision surface”: positive examples on one side and negative examples on the
other. The reader will see that this is a very potent idea; a few chapters focus on the
various ways of implementing it, among them linear classifiers, decision trees, and
artificial neural networks.

Advanced Issues Once we have acquainted ourselves with the fundamental build-
ing blocks, and once we have learned to appreciate their subtle points, we are
ready to probe further. For example, classification performance can be increased
by combining groups of classifiers that vote. The behavior of baseline classifiers is
often compromised by circumstances known under fancy names as concept drift,
imbalanced classes, and bias. These will be discussed at great length and so will be
mathematical formulas quantifying the very notion of learnability.

Deep Learning Some of the currently most famous breakthroughs in machine
learning were achieved by novel mechanisms that convert low-level attributes (e.g.,
each giving the intensity of one pixel on a computer screen) into meaningful high-
level features which are then used for recognition purposes. Since these conversion
mechanisms usually employ artificial neural networks with several (or many) layers,
the tools came to be known under the collective name of deep learning.

This relatively new technology has become famous thanks to well-publicized
breakthroughs in computer vision. For instance, even undergraduate courses now
teach how to write computer program that learns to recognize in a picture (such as
the one in Fig. 1.5) certain specific objects such as eyes or noses.

Understanding the Principles Machine learning is more art than science. Instead
of relying on ready-made recipes, the engineer has to understand the critical aspects
of the task at hand; these aspects then guide his or her decisions. Figure 1.6 reminds

12 1 Ambitions and Goals of Machine Learning

Fig. 1.6 Alternative machine-learning paradigms offer different tools. The engineer needs to know
how to choose the best tool for the given task

us that the paradigms briefly summarized in this section are nothing but tools from
which the engineer chooses the one best-suited for the task at hand. It stands to
reason that such choice is only possible if the idiosyncrasies of each tool are properly
understood, and the peculiarities of the concrete application appreciated.

1.5 Other Ambitions of Machine Learning

Induction of classifiers is the most popular machine-learning task—but not the only
one! Let us briefly survey some of the other topics covered in this book.

Unsupervised Learning A lot of information can be gleaned even from examples
that are not labeled with classes. To begin with, analysis can reveal that the examples
create clusters of similar attribute vectors. Each such cluster can exhibit different
properties that may deserve to be studied.

We also know how to map unlabeled N -dimensional vectors to a neural field.
The resulting two-dimensional matrix helps visualize the data in ways different from
classical cluster analysis. One can see which parts of the instance space are densely
populated and which parts sparsely, we may even learn how many exceptions there
are. Approaches based on the so-called auto-encoding can create from existing
attributes meaningful higher-level attributes; such re-description often facilitates
learning in domains marked by excessive detail.

Reinforcement Learning Among the major triumphs of machine learning, per-
haps the most fascinating are computers beating the best humans in such games as
chess, Backgammon, and Go. For generations, such feats were deemed impossible!
And yet, here we are. Computer programs can learn to become proficient simply
by playing innumerable games against themselves—and by learning from this
experience. What other proof of the potential of our discipline does anybody want?

The secret behind these accomplishments is the techniques known as reinforce-
ment learning, frequently in combination with artificial neural networks and deep
learning. The application field is much broader than just game playing. The idea is
to let the machine develop an ability to act in real-world environments, to react to
changes in this environment, to optimize its behavior in tasks ranging from pole-
balancing to vehicle navigation to advanced decision-making in domains that lack
detailed technical description.

1.6 Summary and Historical Remarks 13

Hidden Markov Models Can we estimate how many years in the fourteenth
century were hot, and how many were cold, if the only information at our disposal
are tree rings? The answer is yes—provided that we know the probabilities that in
the hot or cold years the tree rings are small, medium, or large; and if we know how
likely it is, for instance, that a cold year is followed by a hot year. Lacking direct
measurements of temperatures in the middle ages, we can still develop reasonable
opinions from the indirect information provided by the tree rings.

The issue just described characterizes a whole class of tasks where the goal is
to make time-series predictions based on indirect variables. Problems of this sort
have been applied to an impressive range of applications, including finance, natural-
language processing, bioinformatics, and finance.

The task for machine learning is to induce from available data a reliable model
consisting of various probabilities: how likely is it that state X will be followed by
state Y, how likely it is that observation A is made if the underlying state is X, and
so on.

Odds and Pieces The author wanted to make this book as useful to engineers
as possible. This is why the text includes simple but instructive applications that
highlight practical issues often neglected by more theoretical volumes. Special
attention has been paid to performance evaluation, an issue that is trickier than a
beginner suspect, calling for a whole range of diverse metrics and experimental
methodologies. One chapter explains classical methods of statistical evaluation.

1.6 Summary and Historical Remarks

• Induction from a training set of pre-classified examples is the most deeply studied
machine-learning task.

• Historically, the task is cast as search. This, however, is not enough. The book
explores a whole range of more useful techniques.

• Classification performance is estimated with the help of pre-classified testing
data. The simplest performance criterion is error rate, the percentage of examples
misclassified by the classifier.

• Two classifiers that both correctly classify all training examples may differ
significantly in their handling of future examples.

• Apart from low error rate, some applications require that the classifier provides
the reasons behind the classification.

• The quality of the induced classifier depends on training examples. The quality
of the training examples depends not only on their choice but also on the
attributes used to describe them. Some attributes are relevant, others irrelevant
or redundant. Quite often, critical attributes are missing.

• The attribute values and class labels may suffer from stochastic noise, systematic
noise, and random artefacts. The value of an attribute in a concrete example may
not be known.

14 1 Ambitions and Goals of Machine Learning

Historical Remarks In the 1998s and 1990s the machine-learning task was usually
understood as an AI search. While several “founding fathers” came to see things
this way independently of each other, Mitchell (1982) is often credited with being
the first to promote the search-based approach; just as influential, however, was the
family of AQ-algorithms proposed by Michalski (1969). The discipline got a major
boost by the collection of papers edited by Michalski et al. (1983), a book that
framed the mindset of a whole generation of scientists. The interested reader will
find more about search techniques in textbooks of Artificial Intelligence, of which
perhaps the most comprehensive is Russell and Norvig (2003).

The reader may find it interesting that the question of proper representation
of concepts or classes intrigued philosophers for centuries. Thus John Stuart Mill
(1865) explored concepts that are close to what the next chapter calls probabilistic
representation; and William Whewel (1858) advocated prototypical representations
that remind us of the subject of our Chap. 3.

The example (my favorite) of tree rings helping us to decide which years were
hot or cold, in the past, is taken from Stamp (2018).

1.7 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

1.7.1 Exercises

1. What is the size of the instance space in a domain where examples are described
by ten Boolean attributes? How large is then the space of classifiers?

1.7.2 Give It Some Thought

1. In the “pies” domain, the size of the space of all classifiers is 2108, provided
that any subset of the instance space can represent a different classifier. How
much will the search space shrink if we permit only classifiers in the form of
conjunctions of attribute-value pairs?

2. What kind of noise do you think is possible in the “pies” domain? What can be
the source of this noise? What other issues may render training sets of this kind
less than perfect?

1.7 Solidify Your Knowledge 15

3. Some classifiers behave as black boxes that do not offer much in the way
of explanations. Suggest examples of domains where black-box classifiers are
impractical, and suggest domains where this limitation does not matter.

4. Consider the data-related difficulties summarized in Sect. 1.3. Which of them are
really serious, and which can be tolerated?

5. What is the difference between redundant attributes and irrelevant attributes?
6. Take a class that you think is difficult to describe—for instance, the recognition of

a complex biological object (oak tree, ostrich, etc.) or the recognition of a music
genre (rock, folk, jazz, etc.). Suggest the list of attributes to describe potential
training examples. Will the values of these attributes be easy to obtain? Which of
the problems discussed in this chapter do you expect will complicate the learning
process?

7. One strand of machine-learning research focuses on learning from examples that
are not labeled with classes. What do you think can be the practical benefits of
such programs?

8. The successes of reinforcement learning in game playing are impressive, but
perhaps not very useful in the real world, say, in industry or economy. Can you
think of some more practical application domain that might benefit from these
techniques?

1.7.3 Computer Assignments

1. Write a program that will implement the search for the description of the “pies
that Johnny likes.” Define your own generalization and specialization operators.
The evaluation function will rely on the error rate observed on the training
examples.

Chapter 2
Probabilities: Bayesian Classifiers

The earliest attempts to predict an example’s class from the knowledge of its
attribute values go back to well before World War II—prehistory, by the standards
of computer science. Of course, nobody used the term “machine learning,” in those
days, but the goal was essentially the same.

The strategy was to calculate for the given object (attribute vector) the proba-
bilities of its belonging to the individual classes, and identified the class with the
highest probability. This chapter will explain how to do this in the case of discrete
attributes, and then in the case of numeric attributes.

2.1 The Single-Attribute Case

Let us start with something so simple as to be almost unrealistic: a domain where
each example is described with a single attribute. Once we have grasped the
principles of Bayesian classifiers under these simplified circumstances, we will
generalize the idea for more realistic settings.
Prior probability and conditional probability. Let us return to the toy domain from
the previous chapter. The training set consists of twelve pies (Nall = 12), of which
six are positive examples of the given class (Npos = 6) and six are negative
(Nneg = 6). Assuming that the examples represent faithfully the given domain,
the probability of Johnny liking a randomly picked pie is fifty percent because fifty
percent of the training examples are positive.

P(pos) = Npos

Nall

= 6

12
= 0.5 (2.1)

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_2

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_2

18 2 Probabilities: Bayesian Classifiers

Let us now choose one of the attributes, say, filling-size. The training set
contains eight examples with thick filling (Nthick = 8), of which three are labeled
as positive (Npos|thick = 3). We say that the conditional probability of an example
being positive given that filling-size=thick is 37.5%: the relative frequency
of positive examples among those with thick filling indicates:

P(pos|thick) = Npos|thick

Nthick

= 3

8
= 0.375 (2.2)

Conditional Probability and Classification The relative frequency of the positive
class was calculated only for pies characterized by the given attribute value.
Among the same eight pies with thick filling, five belonged to the negative
class, P(neg|thick) = 5/8 = 0.625. Observing that P(neg|thick) >

P (pos|thick), we conclude that the probability of Johnny disliking a pie with
thick filling is greater than the probability of his liking it. For this reason,
a classifier based on the probabilistic principle will label any examples with
filling-size=thick as a negative instance of the “pie that Johnny likes.”

Conditional probability, P(pos|thick), inspires more confidence than the prior
probability, P(pos), because it uses more information. In a DayCare center with
about as many boys as girls, we expect a randomly selected child to be a boy with
probability P(boy) = 0.5. But the moment we hear someone refer to the child as
Johnny, we increase this expectation because we know that a girl is less likely to be
called by this name: P(boy|Johnny) > P (boy).

Joint Probability Conditional probability must not be confused with joint
probability of two events occurring simultaneously. Be sure to use the
right notation: in joint probability, the terms are separated by a comma,
P(pos,thick); in conditional probability, by a vertical bar, P(pos|thick).
Whereas P(pos,thick) denotes the probability that the example is positive and
its filling is thick, P(pos|thick) is the probability of a positive example among
those with filling-size=thick.

Numeric Example Figure 2.1 illustrates the terms just introduced. The rectan-
gle represents all pies. The positive examples are in one circle and those with
filling-size=thick in the other. The three instances in the intersection of the
two circles satisfy both conditions. Finally, one pie satisfies neither, which is why it
finds itself outside both circles. The conditional probability P(pos|thick) = 3/8
is obtained by dividing the size of the intersection (three) by the size of the circle
thick (eight). The joint probability, P(pos,thick) = 3/12, is obtained by
dividing the size of the intersection (three) by the size of the entire training set
(twelve). The prior probability of P(pos) = 6/12 is obtained by dividing the size
of the circle pos (six) with the size of the entire training set (twelve).

2.1 The Single-Attribute Case 19

Fig. 2.1 The key terms: prior
probabilities, P(pos) = 6

12
and P(thick) = 8

12 ;
conditional probabilities,
P(pos|thick) = 3

8 and

P(thick|pos) = 3
6 ; and the

joint probability,
P(likes,thick) = 3

12

Obtaining Conditional Probability from Joint Probability Figure 2.1 convinces
us that joint probability can be calculated from prior probability and conditional
probability:

P(pos,thick) = P(pos|thick) · P(thick) = 3

8
· 8

12
= 3

12

P(thick,pos) = P(thick|pos) · P(pos) = 3

6
· 6

12
= 3

12

Note that joint probability can never exceed the value of the corresponding
conditional probability, P(pos,thick) ≤ P(pos|thick), because conditional
probability is multiplied by prior probability, P(thick) or P(pos), and this can
never be greater than 1.

Notice, further, that P(thick,pos) = P(pos,thick) because both represent
the probability of thick filling and positive class occurring in the same example. The
left-hand sides of the previous two formulas thus being equal, the right-hand sides
have to equal, too:

P(pos|thick) · P(thick) = P(thick|pos) · P(pos)

Dividing both sides by P(thick), we obtain the Bayes formula that will provide
the foundations for the rest of this chapter:

P(pos|thick) = P(thick|pos) · P(pos)

P (thick)
(2.3)

Similar reasoning results in the formula for the opposite case, the probability that a
pie with filling-size = thick belongs to the negative class.

P(neg|thick) = P(thick|neg) · P(neg)

P (thick)
(2.4)

20 2 Probabilities: Bayesian Classifiers

Comparing the values obtained from these two formulas, we decide which of the
two classes, pos of neg, is more likely to be correct.

Practical calculations are even simpler than that. Seeing that the denominator,
P(thick), is the same for both classes, we realize that we can just as well ignore
it and just choose the class with the higher numerator.

Numeric Example The use of the Bayesian formula is illustrated by Table 2.1
that, for the sake of simplicity, deals with the trivial case where the examples are
described by a single Boolean attribute. So simple is the single-attribute world that
we might have obtained P(pos|thick) and P(neg|thick) directly from the
training set, without having to resort to the Bayes formula. This is how we can
verify the correctness of the results.

When the examples are described by two or more attributes, the probabilities are
calculated in much the same way. Usually, however, the simplifying assumption of

Table 2.1 Illustrating the principle of Bayesian classification

Let the training examples be described by a single attribute, filling-size, whose value is
either thick or thin. We want the machine to recognize the positive class (pos). Below are
eight training examples:

ex1 ex2 ex3 ex4 ex5 ex6 ex7 ex8

Size thick thick thin thin thin thick thick thick

Class pos pos pos pos neg neg neg neg

The probabilities of the individual attribute values and of the class labels are obtained
by relative frequencies. For instance, three out of the eight examples are characterized by
filling-size=thin; therefore, P(thin) = 3/8.

P(thin) = 3/8

P(thick) = 5/8

P(pos) = 4/8

P(neg) = 4/8

The conditional probability of a concrete attribute value within a given class is, again, determined
by relative frequency. Our training set yields the following values:

P(thin|pos) = 2/4

P(thick|pos) = 2/4

P(thin|neg) = 1/4

P(thick|neg) = 3/4

Employing these values in the Bayes formula, we obtain the following conditional probabilities:

P(pos|thin) = 2/3

P(pos|thick) = 2/5

P(neg|thin) = 1/3

P(neg|thick) = 3/5

(note that P(pos|thin) + P(neg|thin) = P(pos|thick) + P(neg|thick) = 1)

Seeing that P(pos|thin) > P (neg|thin), we conclude that an example with
filling-size=thin should be classified as positive. An example with filling-size
= thick is deemed negative because P(neg|thick) > P (pos|thick).

2.2 Vectors of Discrete Attributes 21

mutual independence of attributes is used. The concrete mechanism of doing so will
be presented in the next section.

2.1.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• How is the Bayes formula derived from the relation between conditional
probability and joint probability?

• What makes the Bayes formula so useful? What does it enable us to calculate?
• Can the joint probability, P(x, y), have a greater value than the conditional

probability, P(x|y)? Under what circumstances is P(x|y) = P(x, y)?

2.2 Vectors of Discrete Attributes

Let us now proceed to a simple way of using the Bayes formula in more realistic
domains where the examples are described by vectors of attributes such as x =
(x1, x2, . . . , xn), and where there are more than two classes.

Multiple Classes Many realistic applications are marked by more than two classes,
not just the pos and neg from the “pies” domain. If ci is the label of the i-th class,
and if x is the vector describing the object we want to classify, the Bayes formula
acquires the following form:

P(ci |x) = P(x|ci)P (ci)

P (x)

The denominator being the same for each class, we choose the class that maximizes
the numerator, P(x|ci)P (ci). Here, P(ci) is estimated by the relative frequency of
ci in the training set. With P(x|ci), however, things are not so simple.

AVector’s Probability P(x|ci) is the probability that a randomly selected instance
of class ci is described by vector x. Can the value of this probability be estimated by
relative frequency? Not really. In the “pies” domain, the size of the instance space
was 108 different examples, of which the training set contained twelve, while none
of the other vectors (the vast majority!) was represented at all. Relative frequency
would indicate that the probability of x being positive is P(x|pos) = 1/6 if we find
x among the positive training examples, and P(x|pos) = 0 if we do not. In other
words, any x identical to some training example “inherits” this example’s class label;
if the vector is not in the training set, we have P(x|ci) = 0 for any ci . In this case,
the numerator in the Bayes formula will always be P(x|ci)P (ci) = 0, which makes

22 2 Probabilities: Bayesian Classifiers

it impossible for us to choose the most probable class. Evidently, we are not getting
very far trying to calculate the probability of an event that occurs only once—if it
occurs at all.

The situation improves if only individual attributes are considered. For
instance, shape=circle occurs four times among the positive examples
and twice among the negative, the corresponding probabilities thus being
P(shape = circle|pos) = 4/6 and P(shape = circle|neg) = 2/6.
We see that, if an attribute can acquire only two or three values, chances are high
that each of these values is represented in the training set more than once, thus
providing better grounds for probability estimates.

Mutually Independent Attributes We need a formula that takes the probabilities
of individual attribute values and uses them to estimate the probability that a vector
of these values is found in a specific class, P(x|ci). As long as the attributes are
independent of each other, this is simple. If P(xi |cj) is the probability that the value
of the i-th attribute of an example in class cj is xi , then the probability, P(x|cj), that
a random representative of cj is described by x = (x1, x2, . . . , xn), is calculated as
follows:

P(x|cj) =
n∏

i=1

P(xi |cj) (2.5)

A mathematician will tell us that this is the probability of mutually independent
events occurring simultaneously.

In the context of Bayesian classifiers this means that x should be labeled with
class cj if this class maximizes the following version of the Bayes formula’s
numerator:

P(cj) ·
n∏

i=1

P(xi |cj) (2.6)

Naive Bayes Assumption The assumption of mutually independent attributes is
rarely justified. Indeed, can the interrelation of diverse variables ever be avoided?
An object’s weight grows with its size, the quality of health care may be traced to
living standards, a plant’s color can be derived from specific chemical properties.
In short, domains where no two attributes are in any way dependent on each other
are hard to find. No wonder that the above-described approach has acquired the
unflattering name of Naive Bayes.

Yet practical experience is rather good—and perhaps this should not come
as a surprise. True, the violation of the “independence requirement” renders all
probability estimates somewhat suspect. But poor probability estimates may not
necessarily lead to incorrect classification. We said that x should be labeled with the
class that maximizes P(x|ci) · P(ci). If the probability estimate is 0.8 for one class
and 0.2 for the other, then the classifier’s behavior will be unaffected even if the
true values are, say, [0.6, 0.4] instead of the estimated [0.8, 0.2]. While expecting

2.2 Vectors of Discrete Attributes 23

that the attributes should in principle be mutually independent, nothing much will
happen if in reality they are not.

When Mutual Independence Cannot Be Assumed This said, we need to know
how to handle a situation where the mutual interdependence of attributes is so
strong that it cannot be ignored. A scientist’s first instinct may be to resort to more
advanced ways of estimating P(x|ci). Unfortunately, while such methods do exist,
their complexity becomes unmanageable with the growing number of attributes, and
they tend to rely on terms whose values are hard to establish.

A more pragmatic approach will therefore attempt to reduce the attribute inter-
dependence by data pre-processing. A good way to start is to eliminate redundant
attributes, those whose values can be obtained from others. For instance, if the set of
attributes contains age, date-of-birth, and current-date, chances are
that Naive Bayes will do well if we use only one of them.

We can also try to replace two or three attributes by an artificially created
one that combines them. Thus in the “pies” domain, a baker might have
told us that filling-size is not independent of crust-size: if one is
thick, he prefers to make the other thin and vice versa. In this event, we
will benefit from replacing the two attributes with a new one, say, CF-size,
which acquires only two values: thick-crust-and-thin-filling or
thin-crust-and-thick-filling.

In the last resort, if we are uncomfortable with advanced methods of multivariate
probability estimates, and if we want to avoid data pre-processing, these are always
the possibility of giving up on Bayesian classifiers altogether, preferring other
machine-learning paradigms.

Numeric Example To get used to the mechanisms that use Naive Bayes for
classification, the reader is advised to go through the example detailed in Table 2.2.
Here the class of a previously unseen pie is established with the help of the training
set from Table 1.1, and with the help of the assumption that all attributes are
mutually independent.

For the reader’s convenience, Table 2.3 contains a pseudo code summarizing the
procedure just explained.

2.2.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Why do we want to assume that the attributes are mutually independent? What
benefit does this assumption bring us?

• Why is this assumption often harmless even in domains where the attributes are
not mutually independent?

• What can be done in domains where the mutual independence of attributes cannot
be ignored?

24 2 Probabilities: Bayesian Classifiers

Table 2.2 Bayesian classification in a domain where examples are described by vectors of
independent attributes

Suppose we want to apply the Bayesian formula to the training set from Table 1.1 in order to
determine the class of the following object:

x = [shape=square, crust-size=thick, crust-shade=gray

filling-size=thin, filling-shade=white]

There are two classes, pos and neg. The procedure is to calculate the numerator of the Bayes
formula separately for each class, and then choose class where the value is higher. In the training
set, each class has the same number of representatives: P(pos) = P(neg) = 0.5. The remaining
terms,

∏n
i=1 P(xi |pos) and

∏n
i=1 P(xi |neg), are calculated from the following conditional

probabilities:

P(shape=square|pos) = 1/6 P(shape=square|neg) = 2/6
P(crust-size=thick|pos) = 5/6 P(crust-size=thick|neg) = 5/6
P(crust-shade=gray|pos) = 1/6 P(crust-shade=gray|neg) = 2/6
P(filling-size=thin|pos) = 3/6 P(filling-size=thin|neg) = 1/6
P(filling-shade=white|pos) = 1/6 P(filling-shade=white|neg) = 2/6

From these numbers, we obtain the following conditional probabilities:

P(x|pos) =
n∏

i=1

P(xi |pos) = 1

6
· 5
6

· 1
6

· 3
6

· 1
6

= 15

65

P(x|neg) =
n∏

i=1

P(xi |neg) = 2

6
· 5
6

· 2
6

· 1
6

· 2
6

= 40

65

Since P(pos) = P(neg) = 0.5, we see that P(x|pos)·P(pos) < P (x|neg)·P(neg). Therefore,
we label x with the negative class

Table 2.3 Classification with Naive Bayes

The example to be classified is described by x = (x1, . . . , xn).

1. For each xi , and for each class cj , calculate the conditional probability, P(xi |cj), as the relative
frequency of xi among all training examples from cj .

2. For each class, cj , carry out the following two steps:

(i) estimate P(cj) as the relative frequency of this class in the training set;
(ii) calculate the conditional probability, P(x|cj), using the “naive” assumption of

mutually independent attributes:
P(x|cj) = ∏n

i=1 P(xi |cj)

3. Choose the class with the highest value of the product P(cj)
∏n

i=1 P(xi |cj).

2.3 Rare Events: An Expert’s Intuition 25

2.3 Rare Events: An Expert’s Intuition

For simplicity, probability is often estimated by relative frequency. Having observed
phenomenon x thirty times in one hundred trials, we conclude that its probability is
P(x) = 0.3. This is how we did it in the previous sections.

Estimates of this kind, however, can be trusted only when based on a great many
observations. While it is conceivable that a coin flipped four times comes up heads
three times, it would be silly to jump to the conclusion that P(heads) = 0.75.
The physical nature of the experiment suggests otherwise: a fair coin should come
up heads fifty percent of the time. Can this prior expectation help us improve our
probability estimates in domains with few observations?

The answer is yes. Prior expectations are employed in the so-called m-estimates.

Essence ofm-Estimates Let us consider experiments with a coin that may be fair—
or unfair. In the absence of any extra information, our estimate of the probability of
heads will be πheads = 0.5. But how confident are we in this estimate? This is
quantified by an auxiliary parameter, m, that informs the class-predicting program
about the amount of our uncertainty. The higher the value of m, the more the
probability estimate, πhead = 0.5, is to be trusted.

Returning to our experimental coin-flipping, let us denote by Nall the total
number of trials, and by Nheads the number of “heads” observed in these trials.
The following formula combines these values with the prior estimate and with our
confidence in this estimate’s reliability:

Pheads = Nheads + mπheads

Nall + m
(2.7)

Note that the formula degenerates to the prior estimate if no experimental evidence
has yet been accumulated, in which case, Pheads = πheads because Nall = Nheads =
0. Conversely, the formula converges to that of relative frequency if Nall and Nheads

are so big as to render negligible the terms mπheads and m.
With πheads = 0.5 and m = 2, we obtain the following:

Pheads = Nheads + 2 × 0.5

Nall + 2
= Nheads + 1

Nall + 2

Numeric Example Table 2.4 shows how the values thus calculated gradually
evolve, step by step, in the course of five coin flips. The reader can see that m-
estimate is for small numbers of experiments more in line with common sense than
is relative frequency. Thus after two trials, m-estimate suggests a 0.75 chance of
heads, whereas relative frequency interprets the two experiments as indicating a
zero chance of tails, a statement that is hard to accept. Only as the number of trials
increases do the values offered by m-estimate and relative frequency converge.

Impact of the User’s Confidence Let us take a closer look at the effect of m, the
parameter that quantifies our confidence in our prior estimate. A lot is revealed if

26 2 Probabilities: Bayesian Classifiers

Table 2.4 For each of the five successive trials, the second row gives the observed outcome; the
third, the relative frequency of heads; the last, the m-estimate of the head’s probability under the
assumptions πheads = 0.5 and m = 2

Trial number 1 2 3 4 5

Outcome Heads Heads Tails Heads Tails

Relative frequency 1.00 1.00 0.67 0.75 0.60

m-estimate 0.67 0.75 0.60 0.67 0.57

we compare the two different alternatives calculated below: m = 100 on the left and
m = 1 on the right (in both cases, πheads = 0.5).

Nheads + 50

Nall + 100

Nheads + 0.5

Nall + 1

The version with m = 100 allows the prior estimate to be modified only if really
substantial evidence is available (say, Nheads � 50, Nall � 100). By contrast, the
version with m = 1 makes it possible to invalidate the user’s opinion even with just
a few experiments.

Domains with More Than Two Outcomes Although we have so far confined
ourselves to a two-class domain, the same formula works just as well in multi-
outcome domains. For instance, rolling a fair die can result in six different values,
and we expect that the probability of obtaining, say, three points is πthree = 1/6.
Setting our “confidence” parameter to m = 6, we obtain the following:

Pthree = Nthree + mπthree

Nall + m
= Nthree + 6 · 1

6

Nall + 6
= Nthree + 1

Nall + 6

Again, if Nall is so high as to render m = 6 and mπthree = 1 negligible, the
formula converges to relative frequency: Pthree = Nthree

Nall
; an engineer having a high

confidence in his or her prior estimate, πthree), will choose for m a much higher
value. In that event, many more experimental trials will be needed to contradict the
estimates.

Limitations of m-Estimates Keep in mind that m-estimate is only as good as
the values it uses. If the prior estimate is poor, the results can be disappointing.
For instance, let us suppose that in the coin experiment, the prior estimate is
(unrealistically) specified as πheads = 0.9, with the confidence parameter set to
m = 10. Then we obtain the following:

Pheads = Nheads + 9

Nall + 10

Using this fraction to recalculate the m-estimates from Table 2.4, we realize that,
after the entire experiment (three heads in five trials), the probability is Pheads =

2.3 Rare Events: An Expert’s Intuition 27

3+9
5+10 = 12

15 = 0.8, surely a less plausible result than the one obtained in the case
of πheads = 0.5 where we got Pheads = 0.57. The reader may want to verify that
the situation is less serious if m = 1 is used. Smaller values of m make it easier to
correct poor estimates.

Mathematical Soundness We know from mathematics that the probabilities of all
possible events have to sum to 1. For an experiment with N different outcomes,
where Pi is the probability of the i-th outcome, this means

∑N
i=1 Pi = 1. It is

easy to verify that Eq. 2.7 satisfies this condition for any value of m. Thus in the
coin-tossing domain with two different outcomes whose prior estimates sum to 1
(πheads +πtails = 1), we derive the following (knowing that Nheads+Ntails = Nall):

Pheads + Ptails =
Nheads+mπheads

Nall+m
+ Ntails+mπtails

Nall+m

=
Nheads+Ntails+m(πheads+πtails)

Nall+m
= 1

The reader will easily generalize this result for any finite number of classes.

Another Benefit of m-Estimates In the problem shown in Table 2.5, we want
the Bayesian classifier to classify example x. To begin with, we need to calculate
the requisite conditional probabilities. Trying to do so for the positive class,
however, we realize that, since the training set is so small, none of the training
examples has crust-shade=gray, the value observed in x. Relative frequency
gives P(crust-shade=gray|pos) = 0/5 = 0, and the product of individual
conditional probabilities is P(x | pos) = ∏n

i=1 P(xi |pos) = 0, regardless of the
probabilities for the other attributes. This does not seem right.

In the case of m-estimates, this cannot happen because an m-estimate can never
drop to zero. Put another way, this provides protection against the situation where
a concrete attribute value does not occur for the given class (in the training set), a
circumstance that would zero out the overall probability of x if relative frequency
were used.

2.3.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Under what circumstances is relative frequency ill-suited to estimate discrete
probabilities?

• What is the impact of parameter m in Eq. 2.7? When will you prefer a high value
of m, and when will you prefer smaller a one?

28 2 Probabilities: Bayesian Classifiers

Table 2.5 Another reason to use m-estimates in Bayesian classification

Return to the “pies” domain from Table 1.1. Remove from the table the first example, then use the
rest for the calculation of the probabilities.

x = [shape=circle, crust-size=thick, crust-shade=gray

filling-size=thick, filling-shade=dark]

Let us first calculate the probabilities of the individual attribute values:

P(shape=circle|pos) = 3/5
P(crust-size=thick|pos) = 4/5
P(crust-shade=gray|pos) = 0/5
P(filling-size=thick|pos) = 2/5
P(filling-shade=dark|pos) = 3/5

Based on these values, we obtain the following:

P(x|pos) = 3×4×0×2×3
55

= 0.

The fact that none of the five positive examples has crust-shade=gray thus results in the zero
conditional probability P(x|pos). This does not happen when the probabilities are calculated by
the m-estimate—which can never drop to 0.

Let us suppose that each attribute value is equally likely. For instance, there are three different
shapes, and the probability of each shape is p = 1/3. Let us set the confidence parameter to
m = 1/p. The conditional probabilities are then as follows:

P(shape=circle|pos) = 3+1
5+3 = 4/8

P(crust-size=thick|pos) = 4+1
5+2 = 5/7

P(crust-shade=gray|pos) = 0+1
5+3 = 1/8

P(filling-size=thick|pos) = 2+1
5+2 = 3/7

P(filling-shade=dark|pos) = 3+1
5+3 = 4/8

Now we obtain the following:

P(x|pos) = 4×5×1×3×4
83×72

�= 0.

• What is the impact of the prior estimate, πheads , in Eq. 2.7? How is the credibility
of m-estimates affected by unrealistic values of πheads? Can appropriate setting
of m help alleviate the situation? Support your claim by concrete calculations.

2.4 Continuous Attributes: Probability Density Functions

So far, we have constrained our considerations to discrete attributes, estimating the
probabilities of these attributes’ individual values either by relative frequency or by
m-estimate. In many applications, however, examples are described by attributes
that acquire values from continuous domains, as is the case of price or age.

With continuous-valued attributes, relative frequency is impractical. While it is
easy to establish that the chances of an engineering student being male is, say,
Pmale = 0.7, the probability that this student’s body-weight is 184.5 pounds cannot

2.4 Continuous Attributes: Probability Density Functions 29

Fig. 2.2 A simple
discretization method that
represents each sub-interval
by a separate bin. The bottom
chart plots the histogram over
the sub-intervals

be addressed by frequency: the number of different weights being infinite, the
probability of any concrete value is infinitesimally small. How can this be handled?

Discretizing Continuous Attributes One possibility is to resort to the so-called
discretization. The simplest “trick” is to split the attribute’s original domain into
two. For instance, we can replace the continuous-valued attribute age with the
Boolean attribute old whose value is true for age > 60 and false otherwise.
Unfortunately, this means that at least part of the available information is lost: a
person may be old, but we no longer know how old; nor do we know whether one
old person is older than another old person.

The loss is mitigated if we divide the original domain into not two, but several
intervals, say, (0, 10], . . . (90, 100].1 Suppose we provide a separate bin for each of
these, and place a little black ball into the i-th bin for each training example whose
value of age falls into the i-th interval.

In this way, we may reach a situation similar to the one depicted in Fig. 2.2.
The upper part shows the bins, and the bottom part shows a step function created
in the following manner: if N is the size of the training set, and Ni is the number
of balls in the i-th bin, then the function’s value in the i-th interval is Ni/N , the
relative frequency of the i-the interval balls in the whole set. Since the area under
the function is �Ni

N
= 1, we have a mechanism to estimate the probability not of a

concrete value of age, but rather of this value falling into the given interval.

Probability Density Function If the step function thus constructed seems too
crude, we may fine-tune it by dividing the original domain into shorter—and thus
more numerous—intervals, provided that the number of balls in each bin is sufficient
for reliable probability estimates. If the training set is infinitely large, we can,
theoretically speaking, keep reducing the lengths of the intervals until these intervals
become infinitesimally short. The result of the bin-filling exercise will then no
longer be a step function, but rather a continuous function, p(x), such as the one

1We assume here that 100 is the maximum value observed in the training set.

30 2 Probabilities: Bayesian Classifiers

Fig. 2.3 For
continuous-valued attributes,
probability density function,
p(x), indicates the density of
values in the vicinity of x.
This graph shows the popular
theoretical pdf : the Gaussian
Bell Function

in Fig. 2.3. Its interpretation is obvious: a high value of p(x) indicates that there are
many examples with age close to x; conversely, a low value of p(x) tells us that
age values in the vicinity of x are rare.

Put another way, p(x) is the density of values around x. This is why p(x) is
usually referred to as a probability density function. Engineers often prefer the
acronym pdf.

Let us be disciplined about the notation. The probability of a discrete-valued x

will be indicated by an upper-case letter, P(x). By contrast, the value of a pdf at
x will be denoted by a lower-case letter, p(x). When we want to point out that the
pdf has been created exclusively from examples belonging to class ci , we do so by
using a subscript, pci

(x).

Bayes Formula for Continuous Attributes The good thing about the pdf is that
it makes it possible to employ the Bayes formula even in the case of continuous
attributes. We only replace the conditional probability P(x|ci) with pci

(x), and
P(x) with p(x). Let us begin with the trivial case where the object to be classified is
described by a single continuous attribute, x. The Bayes formula then assumes the
following form:

P(ci | x) = pci
(x) · P(ci)

p(x)
(2.8)

Here, P(ci) is estimated by the relative frequency of class ci in the training set, p(x)

is the pdf obtained by analyzing all training examples, and pci
(x) is a pdf created

only from training examples belonging to ci .
Again, the denominator can be ignored because it has the same value for each

class. A practical classifier will simply calculate, separately for each class, the value
of the numerator, pci

(x)P (ci), and then label the object with the class for which the
numerator is maximized.

Naive Bayes Revisited When facing the more realistic case where examples are
described not by a single attribute but by a vector of attributes, we use the same
“trick” as before: the (naive) assumption that all attributes are mutually independent.

2.5 Gaussian “Bell” Function: A Standard pdf 31

Consider an example described by x = (x1, . . . , xn). The pdf at x is approximated
by the product of the pdf ’s at the values of the individual attributes:

pcj
(x) = �n

i=1pcj
(xi) (2.9)

An accomplished statistician can suggest formulas that are theoretically sounder in
the sense that they do not need the naive assumption. However, higher sophistication
does not guarantee success. For one thing, we may commit the sin of making
precise calculations with imprecise numbers. For another, the more complicated the
technique, the greater the danger of applying it incorrectly.

2.4.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• What is the probability density function, pdf, and what are its benefits in the
context of Bayesian classification?

• Explain the discretization mechanism that helped us arrive at an informal
definition of a pdf.

• How does the Bayes formula change in domains with continuous attributes? How
is the Naive Bayes assumption used?

2.5 Gaussian “Bell” Function: A Standard pdf

One way to approximate a pdf is by the discretization technique from the previous
section. Alternatively, we may choose to rely on standardized models known to
work well in many realistic situations. Perhaps the most popular among these is the
Gaussian function, named after the great German mathematician.

The Shape and the Formula Describing It The shape of the curve in Fig. 2.3
explains why it is nicknamed “bell function.” The maximum is reached at the mean,
x = μ, and the curve slopes down gracefully with the growing distance of x from
μ. It is reasonable to expect that this is a good model of the pdf of such variables as
the body temperature where the density peaks at x = 99.7 degrees Fahrenheit.

Mathematically speaking, the Gaussian function is defined by the following
formula where e is the base of natural logarithm:

p(x) = k · e
− (x−μ)2

2σ2 (2.10)

32 2 Probabilities: Bayesian Classifiers

Parameters Note that the greater the difference between x and μ, the greater the
exponent’s numerator, and thus the smaller the value of p(x) because the exponent
is negative. The numerator is squared, (x−μ)2, to make sure that the function slopes
down symmetrically on both sides of the mean, μ. How steep the slope is depends
on σ 2, a parameter called variance. Greater variance means smaller sensitivity to
the difference between x and μ, and thus a “flatter” bell curve; conversely, smaller
variance implies a narrower bell curve.

The task for coefficient k is to make the area under the bell function equal to 1 as
required by the theory of probability. It would be relatively easy to prove that this
happens when k is determined as follows:

k = 1√
2πσ 2

(2.11)

Setting the Parameter Values To use Gaussian function when approximating
pci

(x) in a concrete application, we need to specify two parameters, μ and σ 2. This
is easy. Suppose that class ci is represented by m training examples. If xi is the value
of the given attribute in the i-th example, then the mean and variance, respectively,
are obtained by the following formulas:

μ = 1

m

m∑

i=1

xi (2.12)

σ 2 = 1

m − 1

m∑

i=1

(xi − μ)2 (2.13)

In plain English, the Gaussian center, μ, is the arithmetic average of the values
observed in the training examples, and the variance is the average of the squared
differences between xi and μ. Note that, when calculating variance, we divide the
sum by m − 1, and not by m, as the reader might expect. The reason is that the
formula has to compensate for the fact that μ is itself only an estimate. The variance
should therefore be somewhat higher than what it would have been be if we divided
by m. Of course, this matters only when the training set is small. For large m, the
difference between m and m − 1 is negligible.

2.5.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Suggest continuous variables whose pdf ’s can be expected to follow the Gaussian
distribution.

2.6 Approximating PDFs with Sets of Gaussian Functions 33

• What parameters define the Gaussian bell function? How can we establish their
values based on the training set?

• Why do we normalize the bell function? How do we do that?

2.6 Approximating PDFs with Sets of Gaussian Functions

While the bell function offers a good mechanism to approximate the pdf in many
realistic domains, it is not a panacea. Some variables simply do not behave that way.
Just consider the distribution of body-weight in a group that mixes grade-school
children with their parents. If we create the pdf using the discretization method, we
will observe two peaks: one for the kids, and the other for the grown-ups. There may
be three peaks if it turns out that body-weight of fathers is distributed around a
higher mean than that of the mothers. And the number of peaks can be higher still
if the families come from diverse ethnic groups.

Combining Gaussian Functions In domains of this kind, a single bell function
does not fit the data. But what if we combine two or more of them? If we know
the diverse data subsets (e.g., children, fathers, mothers), we may simply create a
separate Gaussian for each group and then superimpose the bell functions on each
other. Will this solve our problem?

The honest answer is, “yes, in this specific case.” In reality, prior knowledge
about diverse subgroups is rarely available. A better solution will divide the
body-weight values into many random groups; in the extreme, we may go as
far as to make each example a single-member “group” of its own and then identify a
Gaussian center with this example’s body-weight. For m examples, this results
in m bell function.

The Formula to Combine Them Suppose we want to approximate the pdf of a
continuous attribute, x. If we denote by μi the value of x in the i-th example, then
the pdf is approximated by the following sum of m Gaussian functions:

p(x) = k · �m
i=1e

− (x−μi)
2

2σ2 (2.14)

As before, the normalization constant, k, is to make sure that the area under the
curve is 1. This is achieved when k is calculated as follows:

k = 1

mσ
√
2π

(2.15)

If m is sufficiently high, Eq. 2.14 will approximate the pdf with almost arbitrary
accuracy.

Numeric Example Figure 2.4 illustrates the approach using a training set consist-
ing of m = 3 examples, the values of attribute x being x1 = 0.4, x2 = 0.5, and

34 2 Probabilities: Bayesian Classifiers

Fig. 2.4 Composing the pdf from three examples with the following values of attribute x: μ1 =
0.4, μ2 = 0.5, and μ3 = 0.7. The upper three charts show the contributing Gaussian functions;
the bottom chart, the composition. The variance is σ 2 = 1

2.6 Approximating PDFs with Sets of Gaussian Functions 35

x3 = 0.7. The upper three charts show three bell functions, each centered at one
of these points, the variance always being σ 2 = 1. The bottom chart shows the
composed pdf created by putting together Eq. 2.14 and Eq. 2.15, using the means,
μ1 = 0.4, μ2 = 0.5, and μ3 = 0.7, and σ 2 = 1:

p(x) = 1

3
√
2π

· [e− (x−0.4)2
2 + e− (x−0.5)2

2 + e− (x−0.7)2
2]

Impact of Parameter Values Practical utility of the pdf thus obtained (its likely
success when employed by the Bayesian classifier) depends on the choice of σ 2. In
Fig. 2.4, we used σ 2 = 1, but there is no guarantee that this will work in any future
application. To adjust it properly, we need to understand how it affects the shape of
the composite pdf.

Inspecting the Gaussian formula, we realize that the choice of a very small value
of σ 2 causes great sensitivity to the difference between x and μi ; the individual
bell functions will be “narrow,” and the resulting pdf will be marked by steep peaks
separated by extended “valleys.” Conversely, the consequence of a high σ 2 will be
an almost flat pdf. Seeking a compromise between the two extremes, we will do well
if we make σ 2 dependent on the distances between examples.

The simplest solution will use σ 2 = μmax − μmin, where μmax and μmin are the
maximum and minimum values of μi , respectively. If this seems too crude, you may
normalize the difference by the number of examples: σ 2 = (μmax−μmin)/m. Large
training sets (with high m) will then lead to smaller variations that will narrow the
contributing Gaussian functions. Finally, in some domains we might argue that each
of the contributing bell functions should have a variance of its own, proportional to
the distance from the center of the nearest other bell function. In this case, however,
we are no longer allowed to set the value of k by Eq. 2.15.

Numeric Example Table 2.6 illustrates the procedure using a very small training
set and a vector to be classified. The reader is encouraged to go through all details
so as to get used to the way the formulas are put together. See also the illustration in
Fig. 2.5.

Domains with Too Many Examples For a training set of realistic size, it is not
practical to identify each training example with one Gaussian centers—nor is it
necessary. More often than not, the examples tend to be grouped in clusters that
can be detected by cluster analysis techniques such as those that will be discussed
in Chap. 15. Once the clusters have been found, it is reasonable to identify each
Gaussian function with one cluster.

2.6.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

36 2 Probabilities: Bayesian Classifiers

Table 2.6 Using Naive Bayes in domains with three continuous attributes

Consider a training set that consists of six examples, ex1, . . ., ex6, each described by three
continuous attributes, at1, at2, . . . at3:

Example at1 at2 at3 Class

ex1 3.2 2.1 2.1 pos

ex2 5.2 6.1 7.5 pos

ex3 8.5 1.3 0.5 pos

ex4 2.3 5.4 2.45 neg

ex5 6.2 3.1 4.4 neg

ex6 1.3 6.0 3.35 neg

Using the Bayes formula, we are to find the most probable class of x = (9, 2.6, 3.3).

Let us evaluate ppos(x) ·P(pos) and pneg(x) ·P(neg). Seeing that P(pos) = P(neg), we will
label x with pos if ppos(x) > pneg(x) and with neg otherwise. When constructing the pdf ’s,
we follow the Naive Bayes assumption of independent attributes.

ppos(x) = ppos(at1) · ppos(at2) · ppos(at3) and

pneg(x) = pneg(at1) · pneg(at2) · pneg(at3)

The right-hand sides are obtained by Eq. 2.14, in which we use σ 2 = 1,m = 3, and, therefore,
k = 1/

√
(2π)3. Thus for the first of the terms, we get the following:

ppos(at1) = 1

3
√
2π

[e−0.5(at1−3.2)2 + e−0.5(at1−5.2)2 + e−0.5(at1−8.5)2]

Note that the values of at1 in the positive examples are μ1 = 3.2, μ2 = 5.2, and μ3 = 8.5,
respectively—see the exponents in the expression. The functions for the remaining five terms,
obtained similarly, are plotted in the right-most column of Fig. 2.5.

Substituting into these equations the coordinates of x, namely at1 = 9, at2 = 3.6, and at3 = 3.3,
will give us the following:

ppos(x) = 0.0561 × 0.0835 × 0.0322 = 0.00015

pneg(x) = 0.0023 × 0.0575 × 0.1423 = 0.00001

Observing that ppos(x) > pneg(x) (and knowing that both classes are equally represented,
P(pos) = P(neg) = 0.5), we label x with class pos.

• Under what circumstances will the Gaussian bell function poorly approximate
the pdf ?

• Why does the composite pdf have to be normalized by k?
• How do we establish the centers and variances of the individual bell functions?

2.7 Summary and Historical Remarks

• Bayesian classifiers calculate the product P(x|ci)P (ci) separately for each class,
ci , and then label x with the class where this product has the highest value.

• The main problem is how to calculate the probability, P(x|ci). Most of the
time, the job is simplified by the assumption that the attributes are mutually
independent, in which case P(x|ci) = ∏n

j=1 P(xj |ci), where n is the number
of attributes.

2.7 Summary and Historical Remarks 37

Fig. 2.5 Composing the pdf ’s separately for the positive and negative class (with σ 2 = 1). Each
row represents one attribute, and each of the left three columns represents one example. The right-
most column shows the composed pdf ’s

• The so-called m-estimate makes it possible to take advantage of a user’s prior
idea about an event’s probability. This comes handy in domains with small
training sets where relative frequency is unreliable.

• In domains with continuous attributes, the role of discrete probability, P(x|ci),
is taken over by pci

(x), the probability density function, pdf. Otherwise, the
procedure is the same: the example is labeled with the class that maximizes the
product, pci

(x)P (ci).
• The concrete shape of the pdf is approximated by discretization, or by the use of

standardized pdf s, or by the sum of Gaussian functions.

38 2 Probabilities: Bayesian Classifiers

• The estimates of probabilities are far from perfect, but the results are often
satisfactory even when rigorous theoretical assumptions are not satisfied.

Historical Remarks The first papers to propose the use of Bayesian decision
theory for classification purposes were Neyman and Pearson (1928) and Fisher
(1936), but the paradigm gained momentum only with the advent of the computer,
when it was advocated by Chow (1957). The first to use the assumption of
independent attributes was Good (1965). The idea of approximating pdf ’s by the
sum of bell functions comes from Parzen (1962).

When provided with perfect information about the probabilities, the Bayesian
classifier is guaranteed to provide the best possible classification accuracy. This
is why it is sometimes used as a reference to which the performance of other
approaches is compared.

2.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

2.8.1 Exercises

1. A coin tossed three times came up heads, tails, and tails, respectively. Calculate
the m-estimate for these outcomes, using m = 3 and πheads = πtails = 0.5.

2. Consider the following training examples, described by three attributes,
x1, x2, x3, and labeled by classes c1 and c2.

x1 x2 x3 Class

2.1 0.2 3.0 c1

3.3 1.0 2.9 c1

2.7 1.2 3.4 c1

0.5 5.3 0.0 c2

1.5 4.7 0.5 c2

Using these data, do the following:

(a) Assuming that the attributes are mutually independent, approximate the
following probability density functions: pc1(x), pc2(x), p(x). Hint: use the
idea of superimposed bell functions.

2.8 Solidify Your Knowledge 39

(b) Using the pdf ’s from the previous step, decide whether x = [1.4, 3.3, 3.0]
should belong to c1 or c2.

2.8.2 Give It Some Thought

1. How would you employ m-estimate in a domain with three possible outcomes,
[A,B,C], each with the same prior probability estimate, πA = πB = πC = 1/3?
What if you trust your expectations of A while not being so sure about B and C?
Is there a way to reflect this circumstance in the value of the parameter m?

2. Explain under which circumstances the accuracy of probability estimates benefits
from the assumption that attributes are mutually independent. Explain the
advantages and disadvantages.

3. How would you calculate the probabilities of the output classes in a domain
where some attributes are Boolean, others discrete, and yet others continuous?
Discuss the possibilities of combining different approaches.

2.8.3 Computer Assignments

1. Machine-learning researchers often test their algorithms on publicly available
benchmark domains. A large repository of such domains can be found at the fol-
lowing address: www.ics.uci.edu/˜mlearn/MLRepository.html.
Take a look at these data and see how they differ in the numbers of attributes,
types of attributes, sizes, and so on.

2. Write a computer program that uses the Bayes formula to calculate the class
probabilities in a domain where all attributes are discrete. Apply this program to
our “pies” domain.

3. For the case of continuous attributes, write a computer program that accepts
the training examples in the form of a table such as the one from Exercise 3
above. Based on these, the program approximates the pdf s and then uses them to
determine the class labels of future examples.

4. Apply this program to a few benchmark domains from the UCI repository
(choose from among those where all attributes are continuous) and observe that
the program succeeds in some domains better than in others.

Chapter 3
Similarities: Nearest-Neighbor Classifiers

Two trees that look very much alike probably represent the same species; likewise,
it is common that patients complaining of similar symptoms suffer from the same
disease. Similar objects often belong to the same class—an observation underlying
another popular approach to classification: when asked to determine the class of
object x, find the training example most similar to it, and then label x with this
similar example’s class.

The chapter explains how to evaluate example-to-example similarities, presents
concrete mechanisms that use these similarities for classification purposes, com-
pares the performance of this approach with that of Bayesian classifiers, discusses
sensitive aspects of this paradigm, such as scaling, data sparseness, and sensitivity
to harmful attributes and harmful examples, and introduces methods to overcome its
shortcomings.

Nearest-neighbor classifiers are somewhat outdated, and as such are rarely used.
The reason why this book dedicates to them an entire chapter is educational: the
simplicity of this paradigm makes it easy to explore various complications and
obstacles that are typical also of many other machine-learning approaches.

3.1 The k-Nearest-Neighbor Rule

How do we establish that a certain object is more similar to x than to y? Some
may doubt that this is at all possible. Is giraffe more similar to horse than to zebra?
Questions of this kind raise suspicion. Too many arbitrary and subjective factors
have to be considered when looking for an answer.

Similarity of Attribute Vectors The machine-learning task formulated in the
previous chapters keeps the situation relatively simple. Rather than real objects, the
classifier compares their attribute-based descriptions. Thus in the toy domain from
Chap. 1, the similarity of two pies can be established by counting the attributes in

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_3

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_3

42 3 Similarities: Nearest-Neighbor Classifiers

Table 3.1 Counting the numbers of differences between pairs of discrete-attribute vectors. Of the
twelve training examples, ex5 is the one most similar to x

Crust Filling

Example Shape Size Shade Size Shade Class # differences

x Square Thick Gray Thin White ? –

ex1 Circle Thick Gray Thick Dark pos 3

ex2 Circle Thick White Thick Dark pos 4

ex3 Triangle Thick Dark Thick Gray pos 4

ex4 Circle Thin White Thin Dark pos 4

ex5 Square Thick Dark Thin White pos 1

ex6 Circle Thick White Thin Dark pos 3

ex7 Circle Thick Gray Thick White neg 2

ex8 Square Thick White Thick Gray neg 3

ex9 Triangle Thin Gray Thin Dark neg 3

ex10 Circle Thick Dark Thick White neg 3

ex11 Square Thick White Thick Dark neg 3

ex12 Triangle Thick White Thick Gray neg 4

which they differ: the fewer the differences, the greater the similarity. The first row
in Table 3.1 gives the attribute values of object x. For each of the twelve training
examples that follow, the right-most column specifies the number of differences in
the attribute values of the given example and x. The smallest value being found in
the case of ex5, we conclude that this is the training example most similar to x, and
x should thus be labeled with pos, the class of ex5.

In Table 3.1, all attributes are discrete, but dealing with continuous attributes
is just as easy. Since each example can be represented by a point in an n-
dimensional space, we can use the Euclidean distance or some other geometric
formula (Section 3.2 will have more to say on this topic); and again, the smaller the
distance, the greater the similarity. This, by the way, is how the nearest-neighbor
classifier got its name: the training example with the smallest distance from x in the
instance space is, geometrically speaking, x’s nearest neighbor.

From a Single Neighbor to k Neighbors In noisy domains, the single nearest
neighbor cannot be trusted. What if its class label is incorrect due to noise? A
more robust approach will identify not one but several nearest neighbors, and let
them vote. This is the essence of the k-NN classifier, where k is the number of the
voting neighbors—usually a user-specified parameter. The pseudo-code in Table 3.2
summarizes the approach.

Note that, say, a 4-NN classifier, when applied to a 2-class domain, may result in
a situation where two neighbors are positive and two negative. In this event, it is not
clear how to classify. Ties of this kind are avoided by using for k an odd number.

In domains with more than two classes, however, an odd number of nearest
neighbors does not help. For instance, a 7-NN classifier can realize that three
neighbors belong to class C1, three neighbors to C2, and one neighbor to C3. The

3.1 The k-Nearest-Neighbor Rule 43

Table 3.2 The simplest version of the k-NN classifier

Suppose we have a mechanism to evaluate the similarity of attribute vectors. Let x denote the
object whose class we want to determine.

1. In the training set, identify the k nearest neighbors of x (the k examples most similar to x).
2. Let ci be the class most frequently found among these k nearest neighbors.
3. Label x with ci .

Fig. 3.1 Objects 1 and 2 find themselves deep in the “circles” and “squares” areas, respectively,
and are thus easy to classify. Object 3, finding itself in the borderline region between the two
classes, and its class is thus uncertain. In the class-noisy domain on the right, the 1-NN classifier
will misclassify object 4, but the mistake is corrected if the 3-NN classifier is used

engineer implementing this classifier must not forget to specify a mechanism that
chooses between the tied classes.

Illustration Certain aspects of this paradigm’s behavior can be illuminated by the
use of a fictitious domain where examples are described by two numeric attributes,
a situation easy to visualize. The two graphs in Fig. 3.1 show several positive
and negative training examples and also some objects (the big black digits) whose
classes the k-NN classifier is to determine. The reader can see that objects 1 and 2
are surrounded by examples that all belong to the same class, which makes their
classification straightforward. On the other hand, object 3 is located in the “no
man’s land” between the positive and negative regions so that even a small amount
of attribute noise can send it to either side. The classification of such borderline
examples is of course unreliable.

In the right-hand part of the picture, object 4 finds itself deep in the “black
circles” region, but class noise has mislabeled its nearest neighbor in the training
set as a square. Whereas the 1-NN classifier will go wrong, here, the 3-NN
classifier will classify correctly because the other two neighbors will outvote the
single offender.

44 3 Similarities: Nearest-Neighbor Classifiers

3.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How can we measure example-to-example similarity in domains where all
attributes are discrete and how in domains where they are continuous?

• Under what circumstances will the k-NN classifier (with k > 1) outperform the
1-NN classifier and why?

• Explain why, in 2-class domains, the k in the k-NN classifier should be an odd
number. Why is this unimportant in multi-class domains?

• How does attribute noise affect the classification of borderline examples? What
is the impact of class-label noise?

3.2 Measuring Similarity

As mentioned earlier, a natural way to identify the nearest neighbor of some x is to
use the geometrical distances of x from the training examples. Figure 3.1 shows a
two-dimensional domain where the distances can easily be measured by a ruler—
but the ruler surely cannot be used if there are more than three attributes. In that
event, we need a mathematical formula.

Euclidean Distance In a two-dimensional space, a plane, the geometric distance
between two points, x = (x1, x2) and y = (y1, y2), is measured by the Pythagorean
theorem as illustrated in Fig. 3.2: d(A,B) = √

(a1 − b1)2 + (a2 − b2)2. The fol-
lowing formula generalizes this to n-dimensional domains: the Euclidean distance
between x = (x1, . . . , xn) and y = (y1, . . . , yn):

dE(x, y) =
√

�n
i=1(xi − yi)2 (3.1)

The use of this metric in k-NN classifiers is illustrated in Table 3.3 where the training
set consists of four examples described by three numeric attributes.

More General Formulation The reader has noticed that the term under the square
root symbol is the sum of the squared distances along the individual attributes.1

Mathematically, this is expressed as follows:

dM(x, y) =
√

�n
i=1d(xi, yi) (3.2)

1One benefit of the differences being squared, and thus guaranteed to be positive, is that negative
differences, xi − yi < 0, will not be subtracted from positive differences, xi − yi > 0.

3.2 Measuring Similarity 45

Fig. 3.2 Euclidean distance
between two points in a
two-dimensional space is the
length of the corresponding
triangle’s hypotenuse

Table 3.3 The nearest-neighbor principle in a three-dimensional Euclidean space

Using the following training set of four examples described by three numeric attributes,
determine the class of x = [2, 4, 2].

Distance between exi and [2,4,2]

ex1 {[1,3,1],pos}
√

(2 − 1)2 + (4 − 3)2 + (2 − 1)2 = √
3

ex2 {[3,5,2],pos}
√

(2 − 3)2 + (4 − 5)2 + (2 − 2)2 = √
2

ex3 {[3,2,2],neg}
√

(2 − 3)2 + (4 − 2)2 + (2 − 2)2 = √
5

ex4 {[5,2,3],neg}
√

(2 − 5)2 + (4 − 2)2 + (2 − 3)2 = √
14

Calculating Euclidean distances between x and all training examples, we realize that x’s nearest
neighbor is ex2. Its label being pos, the 1-NN classifier returns the positive label.

The same result is obtained by the 3-NN classifier because two of x’s three nearest neighbors
(ex1 and ex2) are positive, and only one (ex3) is negative

This formula makes it possible to calculate the differences in domains with a
mixture of discrete and continuous attributes (in the symbol, dM(x, y), the mixture
is indicated by the subscript, M). In the term under the square root, we typically use
d(xi, yi) = (xi − yi)

2 for continuous attributes. For discrete attributes, we often put
d(xi, yi) = 0 if xi = yi and d(xi, yi) = 1 if xi �= yi .

Note that if all attributes are continuous, the formula reduces to Euclidean
distance, and if the attributes are all discrete, the formula simply specifies the
number of attributes in which the two vectors differ. In purely Boolean domains,
where for any attribute only the values true or false are permitted (let us abbreviate
these values as t and f , respectively), this latter case is called theHamming distance,
dH . For instance, the Hamming distance between the vectors x = (t, t, f, f) and
y = (t, f, t, f) is dH (x, y) = 2. In general, however, Eq. 3.2 is meant for domains
where examples are described by a mixture of discrete and continuous attributes.

Attribute-to-Attribute Distances Can Be Misleading We must be careful not to
use Formula 3.2 mechanically, ignoring the specific aspects of a given domain. Let
us briefly discuss two circumstances that make it is easy for us to go wrong.

46 3 Similarities: Nearest-Neighbor Classifiers

Suppose our examples are described by three attributes, size, price, and
season. Of these, the first two are obviously continuous and the last discrete. If
x = (2, 1.5,summer) and y = (1, 0.5,winter), then Eq. 3.2 gives the following
distance:

dM(x, y) =
√

(2 − 1)2 + (1.5 − 0.5)2 + 1 = √
3

Let us first consider the third attribute: since summer is different from winter, our
earlier considerations indicate that d(summer,winter) = 1. In reality, however,
the difference between summer and winter is sometimes deemed greater than
the difference between, say, summer and fall, which are “neighboring seasons.”
Another line of reasoning may stipulate that spring and fall are more similar
to each other than summer and winter—at least as far as weather is concerned.
This shows that the two distance values, 0 and 1, will not suffice, here. Intermediate
values should perhaps be considered, the concrete choice depending on the specific
needs of the given application. The engineer who does not pay attention to factors
of this kind may face disappointment.

Mixing continuous and discrete attributes can be risky in another way. A
thoughtless application of Eq. 3.2 can result in a situation where the difference
between two sizes (e.g., size1 = 1 and size1 = 12, which means that
d(size1,size2) = 112 = 121) can totally dominate the difference between two
seasons (which, in the baseline version, could not exceed 1). This observation is
closely related to the problem of scaling discussed in the next section.

General View of Distance Metrics The reader is beginning to see that the issue
of similarity is far from trivial. Apart from Eq. 3.2, quite a few other formulas have
been suggested, some fairly sophisticated.2 While it is good to know they exist, we
will not examine them here for fear of digressing too far from the main topic. Suffice
it to say that any distance metric has to satisfy the following requirements:

1. Distance can never be negative.
2. Distance between two identical vectors, x = y, is zero.
3. Distance from x to y is the same as distance from y to x.
4. Distance must satisfy triangular inequality: d(x, y) + d(y, z) ≥ d(x, z).

3.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

2Among these, perhaps the best known are polar distance, Minkowski’s metric, and the Maha-
lanobis distance.

3.3 Irrelevant Attributes and Scaling Problems 47

• What is the Euclidean distance, and what is the Hamming distance? In what
domains can they be used? How is distance related to similarity?

• Write down the distance formula for domains where examples are described
by a mixture of continuous and discrete attributes. Discuss the difficulties that
complicate its straightforward application in practice.

• What fundamental properties have to be satisfied by any method of measuring
distances?

3.3 Irrelevant Attributes and Scaling Problems

The reader now understands the principles of the k-NN classifier well enough to be
able to write a computer program that implements it. Caution is called for, though.
When applied mechanically, the tool may disappoint, and we have to understand
why this may happen.

The philosophy underlying this paradigm is telling us that “objects are similar if
the geometric distance between the vectors describing them is small.” This said we
know that the geometric distance is sometimes misleading. The following two cases
are typical.

Irrelevant Attributes It is not true that all attributes are created equal. From the
perspective of machine learning, some are irrelevant in the sense that their values
have nothing to do with the example’s class—and yet they affect the geometric
distance between vectors.

A simple illustration will clarify the point. In the training set from Fig. 3.3,
the examples are characterized by two numeric attributes: body-temperature
(horizontal axis) and shoe-size (vertical axis). Suppose the k-NN classifier is to
classify object 1 as healthy (pos) or sick (neg).

All positive examples find themselves in the shaded area delimited by two critical
points along the “horizontal” attribute: temperatures exceeding the maximum

Fig. 3.3 Shoe size is not
indicative of health, but it
does affect geometric
distances. Object 1 is in the
region of healthy patients
(squares), but its nearest
neighbor is in the region of
sick patients (circles)

48 3 Similarities: Nearest-Neighbor Classifiers

indicate fever, and those below the minimum indicate hypothermia. As for the
“vertical” attribute, though, we see that the positive and negative examples alike are
distributed along its entire domain, show-size not being able to affect a person’s
health. The object we want to classify is in the highlighted region, and by common
sense it should be labeled as positive—despite the fact that its nearest neighbor
happens to be negative.

Lesson If we use only the first attribute, the Euclidean distance between the two
examples is dE(x, y) = √

(x1 − y1)2 = |x1 − y1|. If both attributes are used, the
Euclidean distance is dE(x, y) = √

(x1 − y1)2 + (x2 − y2)2. If the second attribute
is irrelevant, then the term (x2 − y2)

2 is superfluous—and yet it can modify k-NN’s
notion of similarity. This is what occurred in Fig. 3.3, and this is why object 1 was
misclassified.

How much damage irrelevant attributes may cause depends on how many of
them are used. In a domain with hundreds of attributes, of which only a single one
is irrelevant, we are fairly safe: one lonely culprit is unlikely to distort the distances
in any meaningful way. Things get worse, however, if the percentage of irrelevant
attributes increases. In the extreme, if the vast majority of the attributes have nothing
to do with the class we want to recognize, the geometric distance becomes virtually
meaningless, and the classifier loses any practical value.

Scales of Attributes Suppose we want to evaluate the similarity of two examples,
x = (t, 0.2, 254) and y = (f, 0.1, 194), described by three attributes, of which the
first is Boolean, the second is continuous with values from [0, 1], and the third is
continuous with values from [0, 1000]. Equation 3.2 calculates the distance between
x and y as follows:

dM(x, y) =
√

(1 − 0)2 + (0.2 − 0.1)2 + (254 − 194)2

Inspecting this expression, we notice that the third term completely dominates,
reducing the other two to insignificance. No matter how we modify their values
within their ranges, the overall distance, dM(x, y), will hardly be affected.

The situation is easy to rectify. If we divide, in the training set, all values of
the third attribute by 1000, thus “squeezing” its range to [0, 1], the impacts of all
attributes will become more balanced. Of course, we must not forget to divide the
third attribute’s value by the same 1000 in any future object we decide to classify.

We have convinced ourselves that the scales of the attribute values can strongly
affect k-NN’s behavior.

Another Aspect of Attribute Scales Consider the following two training
examples, ex1 and ex2, and the object x whose class we want to determine:

ex1 = [(10, 10),pos)]
ex2 = [(20, 0),neg)]
x = (32, 20)

3.3 Irrelevant Attributes and Scaling Problems 49

The distances are dM(x,ex1) = √
584 and dM(x,ex2) = √

544. The latter
being smaller, 1-NN will label x as negative. Suppose, however, that the physical
meaning of the second attribute is temperature measured in Centigrade. If we decide
to use Fahrenheit, the three vectors will change into the following:

ex1 = [(10, 50),pos)]
ex2 = [(20, 32),neg)]
x = (32, 68)

Now the distances are dM(x,ex1) = √
808 and dM(x,ex2) = √

1440—and we
see that now it is the first distance that is smaller; 1-NN will therefore classify x as
positive. This seems a bit silly because the examples are still the same except that
we chose different units for temperature. The classifier’s verdict has changed
because it is based on numeric calculations, not physical interpretations.

Normalizing the Attributes One way out of some scale-related troubles is to
normalize the attributes: to rescale them so that all their values fall into the same
unit interval, [0, 1]. Perhaps the simplest way of doing so is to identify, for the given
attribute, its maximum (MAX) and minimum (MIN) and then replace each value,
x, of this attribute using the following formula:

x = x − MIN

MAX − MIN
(3.3)

Numeric Example A simple illustration will show us how this works. Suppose
that, in the training set consisting of five examples, the given attribute acquires the
following values:

[7, 4, 25,−5, 10]

We see that MIN = −5 and MAX = 25. Subtracting MIN from each of the five
values will result in the following:

[12, 9, 30, 0, 15]

The reader can see that the “newminimum” is 0 and the “newmaximum” isMAX−
MIN = 25− (−5) = 30. Dividing the obtained values by MAX−MIN , we reach
a situation where all the values fall into [0, 1]:

[0.4, 0.3, 1, 0, 0.5]

One Potential Weakness of Normalization Normalization reduces error rate in
many practical applications, especially if the sizes of the domains of the original
attributes vary significantly. The downside is that this may distort the examples’
descriptions. Moreover, the pragmatic decision to make all values fall between 0 and

50 3 Similarities: Nearest-Neighbor Classifiers

1 may not even be adequate. For instance, if the difference between summer and
fall is 1, it will always be bigger than, say, the difference between two normalized
body temperatures. Whether this matters or not is up to the engineer’s common sense
assisted by his or her experience (assisted perhaps by experimentation).

Normalize Also Attributes in Future Examples A typical mistake made by
beginners in their first attempts is not to apply the same normalization formula to
testing examples. Inevitably, if the same attribute has domain [0.100] in the testing
example but [0, 1] in the training set, similarity is destroyed.

3.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Why do irrelevant attributes impair the k-NN classifier’s performance? How is
the performance affected by different percentages of irrelevant attributes?

• Explain the basic problems pertaining to attribute scaling. Describe a simple
approach to normalization.

• Under what circumstances will normalization be misleading?

3.4 Performance Considerations

The k-NN technique is easy to implement in a computer program, and its behavior is
easy to understand. But is there a reason to believe that its classification performance
is good enough?

1-NNVersus Ideal Bayes The ultimate yardstick by which to assess any classifier’s
success is the Bayesian formula. If the probabilities and pdf ’s employed in the
Bayesian classifier are known with absolute accuracy, then this classifier—let us
call it Ideal Bayes—exhibits the lowest error rate theoretically achievable on the
given (noisy) data. It would be reassuring to realize that the k-NN paradigm does
not trail too far behind.

The question was subjected to rigorous mathematical analysis, and here are the
results. Figure 3.4 shows the comparison under such idealized circumstances as
infinitely large training sets filling the instance space with infinite density. The
solid curve represents the two-class case where each example is either positive
or negative. We can see that if the error rate of Ideal Bayes is 5%, the error rate
of the 1-NN classifier (vertical axis) is 10%. With the growing amount of noise,
the difference between the two classifiers decreases, only to disappear when Ideal
Bayes reaches 50% error rate—in which event, of course, the labels of the training
examples are virtually random, and any attempt at automated classification is futile.

3.4 Performance Considerations 51

Fig. 3.4 Theoretical error rate of 1-NN compared to that of Ideal Bayes

The situation is only slightly better in multi-class domains, represented in the graph
by the dotted curve. Again, Ideal Bayes outperforms the 1-NN classifier by a
comfortable margin.

Increasing the Number of Neighbors From the perspective of the 1-NN classifier,
the testimony of Fig. 3.4 is discouraging. But then, we know that the classifier’s
performance might improve when we use the more general k-NN (for k > 1),
where some of the noisy nearest neighbors are outvoted by better-behaved ones.
Does mathematics support to this intuition?

The answer is yes. Under the abovementioned ideal circumstances, the error rate
has been proved to decrease with the growing k and converges to that of Ideal
Bayes for k → ∞. At least in theory, then, the performance of the nearest-neighbor
classifier is able to reach the maximum.

Practical Limitations The engineer’s world hardly ever lives up to theoretical
expectations. In a realistic application, the training examples will but sparsely
populate the instance space, and increasing the number of voting neighbors can be
counterproductive. More often than not, the error rate will improve with the growing
k, but only up to a certain point beyond which it starts worsening again in a manner
indicated in Fig. 3.5, where the horizontal axis represents the values of k, and the
vertical axis represents the error rate measured on an independent testing set.

Here is the interpretation of the curve’s shape. Some of the more distant nearest
neighbors may already be too different to be deemed similar. As such, they only
mislead the classifier. Consider the extreme: if the training set contains 25 training

52 3 Similarities: Nearest-Neighbor Classifiers

Fig. 3.5 With the growing number of voting neighbors, the error rate of k-NN decreases until it
reaches a minimum from which it starts growing again

examples, then the 25-NN classifier simply labels any object with the class most
common in the training data.3

Curse of Dimensionality We now understand that some of the nearest neighbors
may not be sufficiently similar to x to deserve a vote. This often happens in domains
with a great many attributes. Suppose that the values of each attribute are confined
to the unit-length interval, [0, 1]. Using the Pythagorean theorem, we could easily
show that the maximum Euclidean distance in the n-dimensional space defined by
these attributes is dMAX = √

n. For n = 104 (a reasonable number in, say, text
categorization), this means dMAX = 100. The reader may find this surprising, given
that no attribute value can exceed 1. Yet it is a mathematical fact that explains why
the examples tend to be sparse unless the training set is really very large.

This is sometimes referred to as the curse of dimensionality: as we increase the
number of attributes, the number of training examples needed to fill the instance
space with adequate density grows very fast, perhaps so fast as to render the nearest-
neighbor paradigm impractical.

Conclusion Although the ideal k-NN classifier is capable of reaching the perfor-
mance of Ideal Bayes, the engineer has to be aware of the practical limitations of
both approaches. Ideal Bayes is unrealistic in the absence of perfect knowledge
of the probabilities and pdf ’s. On the other side, k-NN is prone to suffer sparse
data, irrelevant attributes, and inappropriate attribute scaling. The concrete choice
depends on the specific requirements of the given application.

3The optimal value of k (the one with minimum error rate) can be found experimentally.

3.5 Weighted Nearest Neighbors 53

3.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How does the performance of k-NN compare to that of Ideal Bayes? Summarize
this separately for k = 1 and k > 1. What theoretical assumptions do the two
paradigms rely on?

• How will the performance of the k-NN classifier depend on the growing values
of k? What is the difference between theory and practice?

• What is understood by the curse of dimensionality?

3.5 Weighted Nearest Neighbors

So far, the voting mechanism has been democratic in the sense that each nearest
neighbor has the same vote. But while this seems appropriate, classification
performance often improves if democracy is reduced.

Here is why. In Fig. 3.6, the task is to determine the class of object 1. Since
three of the nearest neighbors are squares and only two circles, the 5-NN classifier
decides the object is square. However, a closer look reveals that the three square
neighbors are quite distant from 1, so much so that they perhaps should not have the
same impact as the two circles in the object’s immediate vicinity. After all, we want
to adhere to the requirement that k-NN should classify based on similarity—and
more distant neighbors are less similar than closer ones.

Weighted Nearest Neighbors Domains of this kind motivate the introduction of
weighted voting in which the weight of each neighbor depends on its distance from
the object: the closer the neighbor, the greater its impact.

Fig. 3.6 In 5-NN, the
testimony of the two squares,
which are very close to the
classified object, should
outweigh the testimony of the
three more distant circles

54 3 Similarities: Nearest-Neighbor Classifiers

Let us denote the weights as w1, . . . , wk . The weighted k-NN classifier sums up
the weights of those neighbors that recommend the positive class (let the result be
denoted by �+) and then sums up the weights of those neighbors that support the
negative class (�−). The final verdict depends on which is higher: if�+ > �−, then
the object is deemed positive; otherwise, it is labeled as negative. Generalization to
domains with n > 2 classes is straightforward.

For illustration, suppose the positive label is found in neighbors with weights 0.6
and 0.7, respectively, and the negative label is found in neighbors with weights
0.1, 0.2, and 0.3. Weighted k-NN will choose the positive class because the
combined weight of the positive neighbors, �+ = 0.6 + 0.7 = 1.3, is greater
than that of the negative neighbors, �− = 0.1 + 0.2 + 0.3 = 0.6. Just as in
Fig. 3.6, the more frequent negative neighbors are outvoted by the less frequent
positive neighbors because the latter are closer (and thus more similar) to the object
we want to classify.

Concrete Formula Let us introduce a simple mechanism to calculate the weights.
Suppose the k neighbors are ordered by their distances, d1, . . . , dk , from object x so
that d1 is the smallest distance and dk is the greatest distance. The weight of the i-th
closest neighbor is calculated as follows:

wi =
{

dk−di

dk−d1
, dk �= d1

1 dk = d1
(3.4)

The weights thus obtained will range from 0 for the most distant neighbor to 1 for
the closest one. The approach thus actually considers only k −1 neighbors (because
wk = 0). Of course, this makes sense only for k > 3. If we used k = 3, then only
two neighbors would really participate, and the weighted 3-NN classifier would
degenerate into the 1-NN classifier.

Table 3.4 illustrates the procedure using a simple toy domain.

Table 3.4 Illustration of the weighted nearest-neighbor rule

Let the weighted 5-NN classifier determine the class of object x. Let the distances between x and
its five nearest neighbors be d1 = 1, d2 = 3, d3 = 4, d4 = 5, and d5 = 8. Since the minimum is
d1 = 1 and the maximum is d5 = 8, the individual weights are calculated as follows:

wi = d5 − di

d5 − d1
= 8 − di

8 − 1
= 8 − di

7

This leads to the following values:

w1 = 8−1
7 = 1, w2 = 8−3

7 = 5
7 , w3 = 8−4

7 = 4
7 , w4 = 8−5

7 = 3
7 , w5 = 8−8

7 = 0.

If the two nearest neighbors are positive and the remaining three are negative, then x is classified
as positive because �+ = 1 + 5

7 > �− = 4
7 + 3

7 + 0.

3.6 Removing Dangerous Examples 55

Another important thing to observe is that if all nearest neighbors have the same
distance from x, then they all get the same weight, wi = 1, on account of the
denominator in Eq. 3.4. The reader will easily verify that dk = d1 if and only if all
the k nearest neighbors have the same distance from x.

3.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the motivation behind the suggestion that the vote of each of the voting
neighbors should have a different weight?

• Discuss the behavior of the formula recommended in the text for the calculation
of the weights.

3.6 Removing Dangerous Examples

The value of each training example can be different. Some are typical of the classes
they represent, others less so, and yet others may be downright misleading. This
is why it is often a good thing to pre-process the training set: to remove examples
suspected of not being useful.

The method of pre-processing is guided by the two observations illustrated in
Fig. 3.7. First, an example labeled with one class but surrounded by examples of
another class may indicate class-label noise. Second, examples from the borderline
region separating two classes are unreliable: even small amount of noise in their
attribute values can shift their locations in the wrong directions, thus affecting
classification. Pre-processing seeks to remove these two types of examples from
the training set.

Fig. 3.7 Two potentially
harmful types of examples:
those surrounded by
examples of a different class,
and those in the “borderline
region”

56 3 Similarities: Nearest-Neighbor Classifiers

Table 3.5 The algorithm to identify (and remove) Tomek Links

Input: the training set of N examples

1. Let i = 1, and let T be an empty set.
2. Let x be the i-th training example, and let y be the nearest neighbor of x.
3. If x and y belong to the same class, go to 5.
4. If x is the nearest neighbor of y, let T = T ∪ {x, y}.
5. Let i = i + 1. If i ≤ N , go to 2.
6. Remove from the training set all examples that are now in T .

Tomek Links Before the culprit can be removed, it has to be detected. This can be
accomplished by the technique of Tomek Links, named so after the mathematician
who first mentioned a similar idea a few decades ago.4

Two examples, x and y, are said to form a Tomek Link if the following three
requirements are satisfied at the same time:

1. x is the nearest neighbor of y.
2. y is the nearest neighbor of x.
3. The class of x is different from the class of y.

These conditions being typical of borderline examples and also of examples
surrounded by examples of another class, it makes sense to remove from the training
set all such pairs. Even this may not be enough. Sometimes, the removal of existing
Tomek Links only creates new Tomek Links, and the procedure therefore has to be
repeated, sometimes more than once.

The algorithm is summarized by the pseudo-code in Table 3.5, and a few
instances of Tomek Links are shown in Fig. 3.8. Note that there are only three of
them; no other pair of examples satisfies the Tomek Link criteria. Note, also, that
the removal of the six participating examples in the picture gives rise to new Tomek
Links.

Fewer Neighbors Are Now Needed Once the training set has been cleaned of
Tomek Links, the number of the voting nearest neighbors can be reduced. The reason
is obvious. The reader will recall that the primary motivation for high-valued k

was to mitigate the negative impact of noise. Once a certain number of the noisy
examples have been removed, k does not have to be so high. The experimenter may
even observe that the single-neighbor 1-NN applied to the reduced set achieves the
performance of a k-NN classifier applied to the original training set.

Another aspect to keep in mind is that the removal of certain examples has made
the training set sparser. High values of k will then give a vote to neighbors that are
no longer sufficiently similar to the examples to be classified.

4However, he did not use the links for machine-learning purposes.

3.7 Removing Redundant Examples 57

Fig. 3.8 Dotted lines connect all Tomek Links. Each participant in a Tomek Link is its partner’s
nearest neighbor, and each of the two examples is labeled with a different class. Removal of one
set of Tomek Links can give rise to new ones

Limitation Nothing is perfect. The technique of Tomek Links does not identify all
dangerous examples, only some of them; conversely, some of the removed examples
can be “innocents” who deserved to be retained. Still, experience shows that the
removal of Tomek Links usually does improve the overall quality of the data. The
engineer has to be careful about two special situations. First, if the training set is
very small, removing examples can be counterproductive. Second, when one of the
classes significantly outnumbers the other, special precautions have to be made. The
latter case will be discussed in Sect. 11.2.

3.6.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What motivates the decision to “clean” the training set? What kinds of examples
do we want to remove?

• What are Tomek Links, and how do we identify them in the training set? Why
does the procedure sometimes have to be repeated?

• How does the removal of Tomek Links affect the k-NN classifier? Does this
removal influence the ideal setting of parameter k?

3.7 Removing Redundant Examples

Some training examples do not hurt classification, and yet we want to get rid of
them because they are redundant: they add to computational costs without affecting
the classifier’s classification performance.

58 3 Similarities: Nearest-Neighbor Classifiers

Fig. 3.9 The picture shows what happens with the training set if we remove borderline, noisy, and
redundant examples

Redundant Examples and Computational Costs In machine-learning practice,
we may encounter domains with 106 training examples described by some 104

attributes. Moreover, one may need to classify thousands of objects as quickly as
possible. To identify the nearest neighbor of a single object, the nearest classifier
relying on Euclidean distance has to carry out 106 × 104 = 1010 arithmetic
operations. Repeating this for thousands of objects results in 1010 × 103 = 1013

arithmetic operations. This may be impractical.
Fortunately, training sets are often redundant in the sense that the k-NN

classifier’s behavior will be unaffected by the deletion of many training examples.
Sometimes, a great majority of the examples can thus be removed with impunity.
This is the case of the domain shown in the upper-left corner of Fig. 3.9.

Consistent Subset Redundancy is reduced if we replace the training set, T , with
its consistent subset, S. In the machine-learning context, S is said to be a consistent
subset of T if replacing T with S does not affect the class labels returned by the k-
NN classifier. This definition, however, is not very practical because we do not know
how the k-NN classifier (whether using T or S) will behave on future examples. Let

3.7 Removing Redundant Examples 59

Table 3.6 Algorithm to create a consistent training subset by the removal of (some) redundant
examples

1. Let S contain one positive and one negative example, randomly selected from the training set,
T .

2. Using examples from S, let k-NN reclassify the entire set T , and see which examples the
classifier labeled correctly and which incorrectly. Let M be the set of those examples that have
been labeled incorrectly.

3. Copy to S all examples from M .
4. If the last step did not change the contents of S, stop; otherwise, go to step 1.

us therefore modify the criterion: S will be regarded as a consistent subset of T if
any ex ∈ T receives the same label from the classifier, no matter whether the k-NN
classifier is applied to T − {ex} or to S − {ex}.

Quite often, a realistic training set has many consistent subsets. How do we
choose the best one? Intuitively, the smaller the subset, the better. But a perfectionist
who insists on having the smallest consistent subset may come to grief because such
ideal can usually be achieved only at the price of enormous computational costs.
The practically minded engineer who does not believe exorbitant costs are justified
will welcome a computationally efficient algorithm that “reasonably downsizes” the
original set, unscientific though such formulation may appear to be.

Creating a Consistent Subset One such pragmatic technique is presented in
Table 3.6. The algorithm starts by placing one random example from each class
in set S. This set, S, is then used by the 1-NN classifier to decide about the labels
of all training examples. At this stage, it is likely that some training examples will
thus be misclassified. These misclassified examples are added to S, and the whole
procedure is repeated using this larger version of S. The procedure is then repeated
all over again. At a certain moment, S becomes sufficiently representative to allow
the 1-NN classifier to label all training examples correctly.

3.7.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the benefit of removing redundant examples from the training set?
• What do we mean by “consistent subset”? Why is it not necessary always to look

for the smallest consistent subset?
• Explain the principle of the simple algorithm that creates a reasonably sized

consistent subset.

60 3 Similarities: Nearest-Neighbor Classifiers

3.8 Limitations of Attribute-Vector Similarity

The successful practitioner of machine learning has to have a good understanding
of the limitations of the diverse tools. Here are some ideas concerning classification
based on geometric distances between attribute vectors.

Common Perception of Kangaroos Any child will tell you that a kangaroo is
easily recognized by the poach on its belly. Among all the attributes describing
the examples, the Boolean information about the presence or the absence of the
“pocket” is the most prominent, and it is not an exaggeration to claim that its
importance is greater than that of all the remaining attributes combined. Giraffe
does not have it, nor does a mosquito or an earthworm.

One Limitation of Attribute Vectors Dividing attributes into relevant, irrelevant,
and redundant is too crude. The “kangaroo” experience shows us that among the
relevant ones, some are more important than others; a circumstance is not easily
reflected in similarity measures, at least not in those discussed in this chapter.

Ideally, k-NN should perhaps weigh the relative importance of the individual
attributes and adjust the similarity measures accordingly. This is rarely done, in this
paradigm. In the next chapter, we will see that this requirement is more naturally
addressed by linear classifiers.

Relations Between Attributes Another clearly observable feature in kangaroos is
that their front legs are much shorter than the hind legs. This feature, however, is
not immediately reflected by similarities derived from geometric distances between
attribute vectors. Typically, examples of animals will be described by such attributes
as the length of a front leg and the length of a hind leg (among many others), but
relation between the different lengths is only implicit.

The reader will now agree that the classification may depend less on the original
attributes than on the relations between individual attributes, such as a1/a2. One
step further, a complex function of two or more attributes will be more informative
than the individual attributes.

Low-Level Attributes In domains, the available attributes are of a very low
informational level. Thus in computer vision, it is common to describe the given
image by a matrix of integers, each given the intensity of one “pixel,” essentially a
single dot in the image. Such matrix can easily comprise millions of such pixels.

Intuitively, though, it is not these dots, very low-level attributes, but rather the
way that these dots are combined into higher-level features such as lines, edges,
blobs of different texture, and so on.

Higher-Level Features Are Needed The ideas presented in the last few paragraphs
all converge to one important conclusion. To wit, it would be good if some more
advanced machine-learning paradigm were able to create from available attributes
meaningful higher-level features that would be more capable of informing us about
the given object’s class.

3.9 Summary and Historical Remarks 61

High-Level Features as a Recurring Theme in Machine Learning In later
chapters, we will encounter several approaches that create meaningful higher-
level features from lower-level ones. This is the case of artificial neural networks,
especially those linked to the idea of deep learning. Also, high-level features are
created by some unsupervised-learning approaches, particularly Kohonen networks
and auto-encoding.

What Is Similarity Anyway? The reservations presented in the above paragraphs
lead us to suspect that perhaps the very notion of similarity should somehow be
induced from data. Geometric distance of attribute vectors is just one possibility. Its
limitations were implied even by the opening example of this chapter, the one that
posed the rhetorical question whether giraffe is more similar to horse than to
zebra).

3.8.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Is it sufficient to divide attributes into relevant, irrelevant, and redundant?
Comment on the different importance of the individual attributes.

• What is meant by the observation that some attributes are too low level and that
a mechanism to create higher-level attributes is needed?

3.9 Summary and Historical Remarks

• When classifying object x, the k-NN classifier identifies in the training set k

examples most similar to x and then chooses the class label most common among
these “nearest neighbors.”

• The concrete behavior of the k-NN classifier depends to a great extent on how
it evaluates similarities of attribute vectors. The simplest way to establish the
similarity between x and y seems to be by calculating their geometric distance
by the following formula:

dM(x, y) =
√

�n
i=1d(xi, yi) (3.5)

Usually, we use d(xi, yi) = (xi − yi)
2 for continuous-valued attributes. For

discrete attributes, we put d(xi, yi) = 0 if xi = yi and d(xi, yi) = 1 if xi �= yi .
However, more advanced methods are sometimes used.

• The use of geometric distance in machine learning can be hampered by inappro-
priate scales of attribute values. This is why it is usual to normalize the domains
of all attributes to the unit interval, [0, 1]. The user should not forget to normalize
the descriptions of future examples by the same normalization formula.

62 3 Similarities: Nearest-Neighbor Classifiers

• The performance of the k-NN classifier may disappoint if many of the attributes
are irrelevant. Another difficulty is presented by the diverse domains (scales)
of the attribute values. The latter problem can be mitigated by normalizing the
attribute values to unit intervals.

• Some examples are harmful in the sense that their presence in the training set
increases error rate. Others are redundant in that they only add to computation
costs without improving classification performance. Harmful and redundant
examples should be removed.

• In many applications, each of the nearest neighbors has the same vote. In others,
the votes are weighted by distance.

• Classical approaches to nearest-neighbor classification usually do not weigh the
relative importance of individual attributes. Another limitation is caused by the
fact that, in some domains, the available attributes are too detailed. A mechanism
to construct from them higher-level features is then needed.

Historical Remarks The principle of the nearest-neighbor classifier was originally
proposed by Fix and Hodges (1951), but the first systematic analysis was offered
by Cover and Hart (1967) and Cover (1968). Exhaustive treatment of its various
aspects was then provided by the book by Dasarathy (1991). The weighted k-NN
classifier described here was proposed by Dudani (1975). The oldest technique to
find a consistent subset of the training set was described by Hart (1968)—the one
introduced in this chapter is its minor modification. The notion of Tomek Links is
due to Tomek (1976).

3.10 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

3.10.1 Exercises

1. Determine the class of y = [4, 2] with the 1-NN classifier and the 3-NN classifier
that are both using the training examples from Table 3.7. Explain why the
classification behavior of the two classifiers differs.

2. Use the examples from Table 3.7 to classify y = [3, 3] with the 5-NN classifier.
Note that two nearest neighbors are positive and three nearest neighbors are
negative. Will weighted 5-NN classifier change anything? To see what is going
on, plot the locations of the examples in a graph.

3. Again, use the training examples from Table 3.7. (a) Are there any Tomek links?
(b) Can you find a consistent subset of the training set by the removal of at least
one redundant training example?

3.10 Solidify Your Knowledge 63

Table 3.7 A simple set of
training examples for the
exercises

x1 1 1 1 2 3 3 3 4 5

x2 1 2 4 3 0 2 5 4 3

Class + − − + + + − − −

3.10.2 Give It Some Thought

1. Discuss the possibility of applying the k-NN classifier to the “pies” domain. Give
some thought to how many nearest neighbors to use, what distance metric to
employ, whether to make the nearest neighbors’ vote depend on distance, and so
on.

2. Suggest other variations on the nearest-neighbor principle, taking inspiration
from the following hints:

(a) Introduce your own distance metrics. Do not forget that they have to satisfy
the axioms mentioned at the end of Sect. 3.2.

(b) Modify the voting scheme by assuming that some examples were created by
a knowledgeable “teacher,” whereas others were extracted from a database
without considering how much representative each individual example may
be. The teacher’s examples should carry more weight.

3. Invent an alternative algorithm (different from the one in this chapter) for the
removal of redundant examples.

4. Invent an algorithm that uses some other approach (different from the one in
this chapter) to the removal of irrelevant attributes. Hint: withhold some training
examples on which to test 1-NN classifier’s performance for different subsets of
attributes.

3.10.3 Computer Assignments

1. Write a program whose input is the training set, a user-specified value of k, and
an object, x. The output is the class label of x.

2. Apply the program implemented in the previous assignment to some of the
benchmark domains from the UCI repository.5 Always take 40% of the examples
out and reclassify them with the 1-NN classifier that runs on the remaining 60%.

3. Create an artificial domain consisting of 1000 examples described by a pair
of attributes, each from interval [0,1]. In the square defined by these attribute
values, [0, 1]× [0, 1], define a geometric figure of your own choice, and label all
examples inside it as positive and all examples outside it as negative. From this
initial noise-free data set, create 5 files, each obtained by changing p percent of

5www.ics.uci.edu/˜mlearn/MLRepository.html.

64 3 Similarities: Nearest-Neighbor Classifiers

the class labels, with p ∈ {5, 10, 15, 20, 25} (thus obtaining different levels of
class-label noise).

Divide each of these data files into two parts, the second to be reclassified by
the k-NN classifier run the data from the first part. Observe how different values
of k result in different behaviors under different levels of class-label noise.

4. Implement the Tomek Link method for the removal of harmful examples. Repeat
the experiments from the previous assignments for the case where the k-NN
classifier uses only examples that survived this removal. Compare the results,
observing how the removal affects the classification behavior of the k-NN
classifier for different values of k and for different levels of noise.

Chapter 4
Inter-Class Boundaries: Linear and
Polynomial Classifiers

Each training example can be represented a point in an n-dimensional instance
space. In this space, positive examples are often clustered in one region and negative
examples in another. This motivates yet another machine-learning approach to
classification: instead of the probabilities and similarities from the previous two
chapters, the idea is to define a decision surface that separates the two classes. This
surface can be linear—and indeed, linear functions do a good job in simple domains
where examples of the two classes are easy to separate. The more flexible high-order
polynomials, capable of implementing complicated shapes of inter-class boundaries
have to be handled with care.

The chapter introduces two techniques for induction of linear classifiers from
examples described by Boolean attributes and then discusses how to apply them
in more general domains such as those with numeric attributes and more than two
classes. The idea is then extended to polynomial classifiers. The powerful support
vector machines are also mentioned.

4.1 Essence

To begin, let us constrain ourselves to Boolean domains where each attribute is
either true or false. To be able to use these attributes in algebraic functions, we will
represent them by integers: true by 1, and false by 0.

Linear Classifier In Fig. 4.1, one example is labeled as positive and the remaining
three as negative. In this particular case, the two classes are separated by the linear
function defined as follows:

− 1.2 + 0.5x1 + x2 = 0 (4.1)

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_4

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_4

66 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

Fig. 4.1 Linear classifier in a domain with two classes and two Boolean attributes (using 1 for
true and 0 for false)

In the expression on the left-hand side, x1 and x2 represent attributes. If we
substitute for x1 and x2 the concrete values of a given example (0 or 1), the
expression −1.2 + 0.5x1 + x2 will be either positive or negative. The sign then
determines the example’s class. The table on the right shows how the four examples
from the left are thus classified.

Equation 4.1 is not the only one capable of doing the job. Other expressions, say,
−1.5 + x1 + x2, will label the four examples in exactly the same way. As a matter
of fact, the same can be accomplished by infinitely many classifiers of the following
generic form:

w0 + w1x1 + w2x2 = 0

The function is easy to generalize to domains with n attributes:

w0 + w1x1 + . . . + wnxn = 0 (4.2)

If n = 2, Eq. 4.2 defines a line; if n = 3, a plane; and if n > 3, a hyper-
plane. If we introduce a “zeroth” attribute, x0, that is not used in example description
and whose value is always fixed at x0 = 1, the equation can be re-written in the
following compact form:

n∑

i=0

wixi = 0 (4.3)

Two Practical Considerations When writing a computer program implementing
the classifier, the engineer must specify how to label the rare example that finds itself
exactly on the hyper-plane—which happens when the expression equals 0. Common
practice either chooses the class at random or gives preference to the one that has
more representatives in the training set.

4.1 Essence 67

Further on, let us not forget that no linear classifier can separate the positive
and the negative examples if the two classes are not linearly separable. Thus if we
change in Fig. 4.1 the class label of x = (x1, x2) = (0, 0) from minus to plus,
no straight line will ever succeed. To handle situations of this kind, Sect. 4.5 will
introduce polynomial classifiers. Till then, however, we will constrain ourselves to
domains where the classes are linearly separable.

Parameters The classifier’s behavior is determined by its coefficients, wi , usually
called weights. The task for machine learning is to find weights that allow
satisfactory classification performance.

Geometrically speaking, the weights are responsible for two different tasks.
Those with non-zero indexes, w1, . . . wn, define the angle of the hyper-plane in the
system of coordinates. The zeroth weight, w0, called bias, determines the hyper-
plane’s offset: its distance from the origin of the system of coordinates.

Bias and Threshold In the example from Fig. 4.1, the bias was w0 = −1.2. A
higher value would “shift” the classifier further from the origin, [0, 0], whereas
w0 = 0 would make the classifier pass right through the origin. Our intuitive grasp
of the role played by bias in the classifier’s behavior will improve if we rewrite
Eq. 4.2 as follows:

w1x1 + . . . wnxn = θ (4.4)

The term on the right-hand side, θ = −w0, is the threshold that the weighted
sum has to exceed if the example is to be deemed positive. Note that threshold is
bias with opposite sign. Thus for bias w0 = −1.2, the corresponding threshold has
value θ = 1.2.

Simple Logical Functions Let us simplify our considerations by the somewhat
extreme requirement that all attributes have the same weight, wi = 1. Even under
such serious constraint, careful choice of the threshold will model certain useful
functions. For instance, the reader will easily verify that the following classifier
returns the positive class if and only if every single attribute has xi = 1, a situation
known as logical AND.

x1 + . . . + xn = n − 0.5 (4.5)

By contrast, the next classifier returns the positive class if at least one attribute is
xi = 1, a situation known as logical OR.

x1 + . . . + xn = 0.5 (4.6)

Finally, the classifier below returns the positive class if at least k attributes (out
of the total of n attributes) are xi = 1. This is known as the k-of-n function, of which
AND and OR are special cases: AND is n-of-n, whereas OR is 1-of-n.

x1 + . . . + xn = k − 0.5 (4.7)

68 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

Weights Now that we understand the role of bias (or threshold), let us abandon
the requirement that all weights be wi = 1, and observe the consequences of their
concrete values. For instance, consider the linear classifier defined by the following
equation:

2 + 3x1 − 2x2 + 0.1x4 − 0.5x6 = 0 (4.8)

The first thing to notice in the expression on the left is the absence of attributes
x3 and x5: their zero weights, w3 = w5 = 0, render them irrelevant for the given
classification.

As for the other attributes, their impacts depend on their weights’ absolute values
as well as on the signs: if wi > 0, then xi = 1 increases the chances of the
expression being positive; and if wi < 0, then xi = 1 increases the chances of
its being negative. Note that, in the classifier from Eq. 4.8, x1 provides stronger
support for the positive class than x4 because w1 > w4. Likewise, the influence of
x2 is stronger than that of x6—only in the opposite direction: by reducing the value
of the overall sum, this weight makes it more likely that an example with x2 = 1 will
be deemed negative. Finally, the very small value of w4 makes x4 almost irrelevant.

Consider now the classifier defined by the following function:

2x1 + x2 + x3 = 1.5 (4.9)

Here the threshold 1.5 is exceeded either by the sole presence of x1 = 1 (because
then 2x1 = 2 · 1 > 1.5) or by the combined contributions of x2 = 1 and x3 = 1.
This means that x1 will prevail when supporting the positive class even if x2 and x3
both support the negative class.

Low Computational Costs Note the relatively low computational costs of this
approach. Whereas the 1-NN classifier had to evaluate many geometric distances,
and then search for the smallest, the linear classifier only has to determine the sign
of a simple expression.

4.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Write the general expression defining the linear classifier in a domain with four
Boolean attributes. Why do we prefer to represent the true and false values by 1
and 0, respectively? How does the classifier determine an example’s class?

• How can a linear classifier implement functions AND, OR, and k-of-n?
• Discuss the behavior of the linear classifier defined by −2.5 + x2 + 2x3 = 0.

What do the weights tell us about the role of the individual attributes?
• Compare the computational costs of the linear classifier with those of the nearest-

neighbor classifier.

4.2 Additive Rule: Perceptron Learning 69

4.2 Additive Rule: Perceptron Learning

Having developed some basic understanding of how the linear classifier works, we
are ready to take a look at how to induce it from training data.

Learning Task Let us assume that each training example, x, is described by n

binary attributes whose values are either xi = 1 or xi = 0. A positive example is
indicated by c(x) = 1, and a negative by c(x) = 0. To make sure we do not confuse
the example’s real class with the one suggested by the classifier, we will denote the
latter by h(x) where the letter h emphasizes that this is the classifier’s hypothesis.
If

∑n
i=0 wixi > 0, the classifier “hypothesizes” that the example is positive and

therefore returns h(x) = 1. Conversely, if
∑n

i=0 wixi ≤ 0, the classifier returns
h(x) = 0. Figure 4.2 reminds us that the classifier labels x as positive only if the
cumulative evidence supporting this class exceeds 0.

Finally, we will assume that examples with c(x) = 1 are linearly separable from
those with c(x) = 0. This means that there exists a linear classifier that will label
correctly all training examples so that h(x) = c(x) for any x. The task for machine
learning is to find the weights, wi , that make this happen.

Learning from Mistakes Here is the essence of the most common approach to
induction of linear classifiers. Suppose we have a working version of the classifier,
even if imperfect. When presented with a training example, x, the classifier suggests
a label, h(x). If this differs from the true class, h(x) �= c(x), the learner concludes
that the weights should be modified in a way likely to correct this error.

Let the true class be c(x) = 1. In this event, h(x) = 0 will only happen if∑n
i=0 wixi < 0, an indication that the weights are too small. If we increase them,

the sum,
∑n

i=0 wixi , may exceed zero, making the returned label positive, and
therefore correct. Note that it is enough to increase only the weights of attributes
with xi = 1; when xi = 0, then the value of wi does not matter because anything
multiplied by zero is still zero: 0 · wi = 0.

Likewise, if c(x) = 0 and h(x) = 1, then the weights of all attributes with
xi = 1 should be decreased so as to give the sum the chance to drop below zero,∑n

i=0 wixi < 0, in which case the classifier will label x as negative.

Fig. 4.2 The output of a
linear classifier is h(x) = 1
when

∑n
i=0 wixi > 0 and

h(x) = 0 when∑n
i=0 wixi ≤ 0, thus

indicating that the example is
positive or negative,
respectively

70 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

Weight-Adjusting Formula The presentation of a training example, x, can result
in three different situations. The technique based on “learning from mistakes”
responds to them as indicated by the following table:

Situation Action

c(x) = 1 while h(x) = 0 Increase wi for each attribute with xi = 1

c(x) = 0 while h(x) = 1 Decrease wi for each attribute with xi = 1

c(x) = h(x) Do nothing

Interestingly, all these actions are accomplished by the same formula:

wi = wi + η · [c(x) − h(x)] · xi (4.10)

Let us take a closer look at its behavior.

1. Correct action. If c(x) = h(x) the term in the brackets is [c(x) − h(x)] = 0,
which leaves wi unchanged. If c(x) = 1 while h(x) = 0, the term in the brackets
is 1, and the weights are increased. And if c(x) = 0 while h(x) = 1, the term in
the brackets is negative, and the weights are reduced.

2. Only relevant weights are affected. If xi = 0, the term to be added to the i-th
weight, η · [c(x) − h(x)] · 0, is zero. This means that the formula will affect the
weight wi only when xi = 1.

3. Degree of change. How much the weight changes is controlled by the learning
rate, η, whose user-set value is chosen from the unit interval, η ∈ (0, 1],
Note that this weight modification is additive because a term is added to the

previous weight value. Section 4.3 will introduce the alternative: multiplicative
modification.

Perceptron Learning Algorithm Equation 4.10 is at the core of the Percep-
tron Learning Algorithm.1 The procedure is summarized by the pseudo-code in
Table 4.1. The principle is simple. Once the weights have been initialized to small
random values, the training examples are presented one at a time. After each
example presentation, every weight in the classifier is processed by Eq. 4.10. The
last training example signals that one training epoch has been completed. Unless
the classifier now labels correctly the entire training set, the learner returns to the
first example, thus beginning the second epoch, then the third, and so on. Typically,
several epochs are needed to achieve the goal.

Numeric Example Table 4.2 illustrates the procedure using a toy domain where
three training examples, e1, e2, and e3, are described by two binary attributes. After
the presentation of e1, the weights are reduced because h(e1) = 1 and c(e1) = 0;
however, this happens only to w0 and w1 because x2 = 0. In response to e2, all
weights of the classifier’s new version are increased because h(e2) = 0 and c(e2) =

1Its author, F. Rosenblatt, employed this learning technique in a device he called Perceptron.

4.2 Additive Rule: Perceptron Learning 71

Table 4.1 The perceptron learning algorithm

Assumption: the two classes, c(x) = 1 and c(x) = 0, are linearly separable.

1. Initialize all weights, wi , to small random numbers.
Choose an appropriate learning rate, η ∈ (0, 1].

2. For each training example, x = (x1, . . . , xn), whose class is c(x):

i) Let h(x) = 1 if
∑n

i=0 wixi > 0, and h(x) = 0 otherwise.
ii) Update each weight by wi = wi + η[c(x) − h(x)] · xi

3. If c(x) = h(x) for all training examples, stop; otherwise, return to step 2.

Table 4.2 Illustration of perceptron learning

Let the learning rate be η = 0.5, and let the randomly generated initial weights be w0 = 0.1,
w1 = 0.3, and w3 = 0.4. Set x0 = 1.

Goal: Using the following training set, the perceptron learning algorithm is to learn to separate
the negative examples, e1 and e3, from the positive example, e2.

Example x1 x2 c(x)

e1 1 0 0

e2 1 1 1

e3 0 0 0

The linear classifier’s hypothesis about x’s class is h(x) = 1 if
∑n

i=0 wixi > 0 and h(x) = 0
otherwise. After each example presentation, all weights are subjected to the same formula:
wi = wi + 0.5 · [c(x) − h(x)] · xi .

The table below shows, step by step, what happens to the weights in the course of learning.

x1 x2 w0 w1 w2 h(x) c(x) c(x) − h(x)

Random classifier 0.1 0.3 0.4

Example e1 1 0 1 0 −1

New classifier −0.4 −0.2 0.4

Example e2 1 1 0 1 1

New classifier 0.1 0.3 0.9

Example e3 0 0 1 0 −1

Final classifier −0.4 0.3 0.9

The final version of the classifier, −0.4+0.3x1 +0.9x2 = 0, no longer misclassifies any training

example. The training has thus been completed in a single epoch.

1, and all attributes have xi = 1. And after e3, the fact that h(e3) = 1 and c(e1) = 0
results in the reduction of w0, but not of the other weights because x1 = x2 = 0.
From now on, the classifier correctly labels all training examples, and the process
can thus be terminated.

Learning Depends on Initial Weights In the previous example, the training took
only a single epoch, but this was only thanks to some lucky choices. First of them
are the initial weights: different initialization may result in a different number of
epochs. Most of the time, the classifier’s initial version is all but useless, and a lot

72 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

of training is needed before the process converges to a useful classifier. Sometimes,
however, the very first version is so good that a single epoch is enough. Of course,
there is also the chance, however remote, that the random-number generator creates
a classifier that labels all training examples without a single error so that no training
is needed.

Longer Attribute Vectors Result in Longer Training Another factor affecting
the process of learning is the number of attributes that describe the training
examples. As a rule of thumb, how many epochs are needed to conclude the task
depends approximately linearly on the number of attributes (supposing the same
learning rate, η, is used). For instance, the number of epochs needed in a domain
with 3 × n attributes is likely to be about three times the number of epochs needed
in a domain with n attributes.

Learning Rate Critical role is played by the learning rate, η. In the example from
Table 4.2, the reader will have noticed the rapid weight changes. For instance, w0
jumped from 0.1 to −0.4 after the presentation of e1, then back to 0.1 after the
presentation of e2, only to return to −0.4 after e3. Similarly strong changes were
experienced also by w1 and w2. The phenomenon is visualized by Fig. 4.3. The
reader will easily verify that the four lines represent the four successive versions
of the classifier. Note how dramatic, for instance, is the change from classifier 1 to
classifier 2, and then from classifier 2 to classifier 3.

This sensitivity is caused by the relatively high learning rate, η = 0.5. A smaller
value, such as η = 0.1, would moderate the changes, thus “smoothing out” the
learning behavior. But if we overdo it by choosing an extremely low value, say,
η = 0.001, the weight changes will be minuscule, and the training process will be
unnecessarily slow because a great many epochs will be needed to classify correctly
all training examples.

Fig. 4.3 The four classifiers
from Table 4.2. The one
defined by the initial weights
is denoted by 1; numbers 2
and 3 represent the two
intermediate stages; and 4,
the final solution. The arrows
indicate the half-spaces
containing positive examples

4.3 Multiplicative Rule: WINNOW 73

If the Solution Exists, It Will Be Found Whatever the initial weights, whatever
the number of binary attributes, and whatever the learning rate, one thing is
guaranteed by a mathematical theorem: if the positive and negative classes are
linearly separable, the perceptron learning algorithm will find a class-separating
hyper-plane in a finite number of steps.

4.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Under what circumstances is perceptron learning guaranteed to find a classifier
that perfectly labels all training examples?

• When does the algorithm reduce the classifier’s weights, when does it increase
them, and when does it leave them unchanged? Why does it modify wi only if
the corresponding attribute’s value is xi = 1?

• What circumstances influence the number of epochs needed by the algorithm to
converge to a solution?

4.3 Multiplicative Rule: WINNOW

Perceptron learning responds to the classifier’s error using an additive rule: a
positive or negative term is added to the weights. An obvious alternative will be
a multiplicative rule where the weights are increased or reduced as a result of
being multiplied by a certain term. This is an approach adopted by WINNOW, an
algorithm summarized by the pseudo-code in Table 4.3.

Table 4.3 Algorithm WINNOW

Assumption: the two classes, c(x) = 1 and c(x) = 0, are linearly separable.

Input: User-specified value of WINNOW’s learning rate, α (usually, α ∈ (1, 2]).
1. Initialize the classifier’s weights to wi = 1.
2. If n is the number of attributes, set the threshold value to θ = n − 0.1.
3. Present a training example, x; let c(x) be the class of x.

If
∑n

i=1 wixi > θ then h(x) = 1; otherwise, h(x) = 0.
4. If c(x) �= h(x), update the weights of each attribute whose value is xi = 1:

if c(x) = 1 and h(x) = 0, then wi = αwi

if c(x) = 0 and h(x) = 1, then wi = wi/α

5. If c(x) = h(x) for all training examples, stop; otherwise, return to step 3.

74 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

Initialization In perceptron learning, the weights were initialized to small random
values. In the case of WINNOW, however, they are all initially set to 1. Another
difference is that perceptron learning requested also initialization of the weight of
the artificial zeroth attribute (the one that is always xo = 1), whereas WINNOW
initializes to wi = 1 only the weights of the real attributes (the index i acquires
values from 1 to n if there are n attributes).

In place of the zeroth weight, WINNOW uses a threshold, θ . In a domain with n

attributes, the threshold’s value is initialized to θ = n − 0.1, which is slightly less
than the number of attributes.

Classification All attributes are binary, with values either 1 or 0. If the weighted
some of these attributes exceeds the threshold, the classifier labels the example as
positive. More specifically, the following formula is used:

n∑

i=1

wixi > θ

If the weighted sum does not exceed the threshold, the classifier labels the
example as negative.

Learning in WINNOW The general scenario is the same as in perceptron learn-
ing. A training example, x, is presented, and the classifier returns a hypothesis about
the example’s label, h(x). WINNOW compares this hypothesis with the known
label, c(x). If the two differ, c(x) �= h(x), the weights of attributes with xi = 1
are modified as indicated in the table below. The weights of attributes with xi = 0
are left unchanged.

In the table, α > 1 is a user-specified learning rate. Since the role of the learning
rate is here somewhat different from that in perceptron learning (multiplicative
instead of additive), a different Greek letter, α, is used.

Situation Action

c(x) = 1 while h(x) = 0 wi = αwi

c(x) = 0 +while h(x) = 1 wi = wi/α

c(x) = h(x) Do nothing

The reader will easily verify that all three actions are accomplished by the
following formula whose specific behavior is determined by the mutual relation
between c(x) and h(x) in the exponent. For instance, if c(x) = h(x), the exponent
is 0, and the weight does not change.

wi = wi · αc(x)−h(x) (4.11)

Numeric Example Table 4.4 illustrates the algorithm’s behavior using a toy
domain. The training set consists of all examples that can be described by three

4.3 Multiplicative Rule: WINNOW 75

Table 4.4 Illustration of WINNOW’s behavior

Task. Using the training examples in the table on the left (below), induce the linear classifier. Let
α = 2. There being 3 attributes, the threshold is θ = 3 − 0.1 = 2.9.

Weights are updated only on two occasions: presentation of e5 (false negative) in the first epoch
and presentation of e3 (false positive) in the second. After these two weight modification, the
classifier labels all training examples correctly.

x1 x2 x3 c(x)

e1 1 1 1 1

e2 1 1 0 0

e3 1 0 1 0

e4 1 0 0 0

e5 0 1 1 1

e6 0 1 0 0

e7 0 0 1 0

e8 0 0 0 0

x1 x2 x3 w1 w2 w3 h(x) c(x)

Initial class 1 1 1

Example e5 0 1 1 0 1

New weights 1 2 2

Example e3 1 0 1 1 0

New weights 0.5 2 1

binary attributes. Those with x2 = x3 = 1 are labeled as positive and all others
as negative, regardless of the value of irrelevant attribute x1. The threshold is set to
θ = 3 − 0.1 = 2.9 because WINNOW, of course, does not know that one of the
attributes is irrelevant.

When the first four examples are presented, the classifier’s initial version labels
them all correctly and all weights are left unchanged. The first mistake is made in
the case of e5, a positive example for which the classifier incorrectly returns the
negative label. The learner multiplies by α = 2 the weights of attributes with xi = 1
(that is, w2 and w3). This new classifier then classifies correctly all the remaining
examples, e6 through e8. In the second epoch, the classifier errs on e3, a negative
example misclassified as positive. In response to this error, the algorithm reduces
weights w1 and w3 (but not w2 because x2 = 0). After this last weight modification,
the classifier labels correctly the entire training set.

Note that the weight of the irrelevant attribute, x1, is now smaller than the weights
of the relevant attributes. Indeed, the ability to penalize irrelevant attributes by
significantly reducing their weights, thus “winnowing them out,” hence the name, is
one of the main advantages of this technique over perceptron learning.

Parameter α Parameter α controls the learner’s sensitivity to errors in a manner
reminiscent of the learning rate in perceptron learning. One important difference is
the requirement that α > 1. This guarantees an increase in wi in the case of a false
negative, and a decrease in wi in the case of a false positive.

The parameter’s concrete value is not completely arbitrary. If it exceeds 1 by just
a little (say, if α = 1.1), the weight updates are very small, and convergence is slow
(requiring too many epochs). Increasing α’s value accelerates convergence but risks
overshooting the solution. The ideal value is best established experimentally. Good
results are often achieved with α = 1.5 but, of course, each domain is different.

76 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

No Negative Weights? Let us point out another fundamental difference between
WINNOW and perceptron learning. Since the (originally positive) weights are
always multiplied by α or 1/α, none of them can ever drop to zero, let alone turn
negative. This means that unless appropriate measures are taken a whole class of
linear classifiers has thus been eliminated: those with negative or zero coefficients.

The absence of negative weights is removed if we replace each of the original
attributes by a pair of “new” attributes: one copying the original attribute’s value,
the other having the opposite value (1 instead of 0 or 0 instead of 1). In a domain
that originally had n attributes, the total number of attributes will thus be 2n, the
value of the (n + i)th attribute, xn+i , being the opposite of xi .

For instance, suppose that an example is described by the following three
attribute values:

x1 = 1, x2 = 0, x3 = 1

In the new representation, the same example will be described by six attributes:

x1 = 1, x2 = 0, x3 = 1, x4 = 0, x5 = 1, x6 = 0

For these, WINNOWwill have to find six weights,w1, . . . , w6, or perhaps seven,
if w0 is used.

WINNOW Versus Perceptron In comparison with perceptron learning, WIN-
NOW tends to converge faster in domains with irrelevant attributes whose weights
are quickly reduced to small values. However, neither of the two, WINNOW
nor perceptron learning, will recognize (and eliminate) redundant attributes. For
instance, in the event of two attributes always having the same value, xi = xj ,
the learning process will converge to the same weight for both, making them look
equally important even though it is clear that only one of them is needed.

4.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What formula is used by the weight-updating mechanism in WINNOW? Why is
the formula called multiplicative?

• What is the shortcoming of multiplying or dividing the weights by α > 1? How
is the situation remedied?

• Summarize the differences between WINNOW and perceptron learning. What is
WINNOW’s main advantage?

4.4 Domains with More Than Two Classes 77

4.4 Domains with More Than Two Classes

Having only two sides, a hyper-plane may separate the positive examples from the
negative examples—and that is all. When it comes to multi-class domains, the tool
seems helpless. Or is it?

Groups of Binary Classifiers What exceeds the powers of an individual can be
solved by a team. One practical solution is shown in Fig. 4.4. The “team” consists
of four binary classifiers, each specializing on one of the four classes, C1 through
C4. Ideally, the presentation of an example from Ci results in the i-th classifier
returning hi(x) = 1, and all the other classifiers returning hj (x) = 0, assuming,
again, that each class is linearly separable from the other classes.

Modifying the Training Data To exhibit this behavior, the individual classifiers
need to be properly trained. This training can be accomplished by any of the two
algorithms from the previous sections. The only additional trick is that the engineer
needs to modify the training data.

Table 4.5 illustrates the principle. On the left is the original training set, T , where
each example is labeled with one of the four classes. On the right are four “derived”
sets, T1 through T4, each consisting of the same six examples which have now been
re-labeled so that an example that in the original set, T , represents classCi is labeled
with c(x) = 1 in Ti and with c(x) = 0 in all other sets.

Needing a Master Classifier The training sets, Ti , are presented to a program that
induces from each of them a linear classifier dedicated to the corresponding class.
This is not the end of the story, though. The training examples may poorly represent
the classes, they may be corrupted by noise, and even the requirement of linear
separability may be violated. As a result, the induced classifiers may overlap each
other in the sense that two or more of them will respond to the same example, x,
with hi(x) = 1, leaving the incorrect impression that x simultaneously belongs to

Fig. 4.4 Converting a 4-class
problem into four 2-class
problems

78 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

Table 4.5 A 4-class training set, T , converted to 4 binary training sets, T1 . . . T4

T T1 T2 T3 T4

e1 C2 e1 0 e1 1 e1 0 e1 0

e2 C1 e2 1 e2 0 e2 0 e2 0

e3 C3 e3 0 e3 0 e3 1 e3 0

e4 C4 e4 0 e4 0 e4 0 e4 1

e5 C2 e5 0 e5 1 e5 0 e5 0

e6 C4 e6 0 e6 0 e6 0 e6 1

more than one class. This is why a master classifier is needed; its task is to choose
from the returned classes the one most likely to be correct.

This is not difficult. The reader will recall that a linear classifier labels x as
positive if the weighted sum of x’s attribute values exceeds zero, �n

i=0wixi > 0.
This sum (usually different in each of the classifiers that have returned hi(x) = 1)
can be interpreted as the amount of evidence in support of the corresponding
class. The master classifier then simply gives preference to the class whose binary
classifier delivered the highest �n

i=0wixi .

Numeric Example The principle is illustrated by Table 4.6 where each row
represents a different class (with the total of four classes). Each classifier has a
different set of weights, each weight represented by one column in the table. When
an example is presented, its attribute values are in each classifier multiplied by the
corresponding weights. When checking the correctness of these calculations, do not
forget that x4 = 0, so that w4 is always ignored. We observe that in two classifiers,
C2 and C3, the weighted sums are positive, �n

i=0wixi > 0, which means that these
two classifiers both return h(x) = 1. Given that each example is to be labeled with
one and only one class, the master classifier has to make a choice. In this particular
case, it gives preference to C2 because this classifier’s weighted sum is greater than
that of C3.

Practical Limitations A little disclaimer is in place here. This method of employ-
ing linear classifiers in multi-class domains is reliable only if the number of classes
is moderate, say, 3–5. In domains with many classes, the “derived” training sets, Ti ,
will be imbalanced in the sense that most examples will have c(x) = 0 and only a
few c(x) = 1. As we will learn in Sect. 11.2, imbalanced training sets tend to cause
difficulties in noisy domains unless appropriate measures have been taken.

Also, do not forget the requirement that each class has to be linearly separable
from the others.

4.5 Polynomial Classifiers 79

Table 4.6 Illustration of the master classifier’s task: to choose the example’s class from two or
more candidates

Suppose we have four binary classifiers (the i-th classifier is used for the i-th class) defined
by the weights listed in the table below. How shall the master classifier label example x =
(x1, x2, x3, x4) = (1, 1, 1, 0)?

Class Classifier �n
i=0wixi h(x)

w0 w1 w2 w3 w4

C1 −1.5 1 0.5 −1 −5 −1 0

C2 0.5 1.5 −1 3 1 4 1

C3 1 −2 4 −1 0.5 2 1

C4 −2 1 1 −3 −1 −3 0

The right-most column tells us that two classifiers, C2 and C3, return h(x) = 1. From these, C2 is
supported by the higher value of �n

i=0wixi . Therefore, the master classifier labels x with C2.

4.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• When trying to use N linear classifiers in an N -class domain, how will you create
the training sets, Ti , for the induction of the individual binary classifiers?

• How is the example’s class chosen in a situation where two or more binary
classifiers return h(x) = 1?

4.5 Polynomial Classifiers

Let us now abandon the strict requirement that positive examples be linearly
separable from negative ones. Quite often, they are not. Not only can the linear
separability be destroyed by noise; the very shape of the region occupied by one of
the classes can render linear decision surface inadequate. Thus in the training set
shown in Fig. 4.5, no linear classifier ever succeeds in separating the two squares
from the circles. Such separation can only be accomplished by a non-linear curve
such as the parabola shown in the picture.

Non-linear Classifiers The point having been made, we have to ask how to induce
these non-linear classifiers from data. To begin with, we have to decide what
type of function to employ. This is not difficult. Math teaches us that any n-
dimensional curve can be approximated to arbitrary precision with some polynomial
of a sufficiently high order. Let us therefore take a look at how to induce from data
these polynomials. Later, we will discuss their practical utility.

80 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

Fig. 4.5 In some domains,
no linear classifier can
separate the positive
examples from the negative.
Only a non-linear classifier
can do so

Polynomials of the Second Order The good news is that the coefficients of
polynomials can be induced by the same techniques that we have used for linear
classifiers. Let us explain how.

For the sake of clarity, we will begin by constraining ourselves to simple domains
with only two Boolean attributes, x1 and x2. The second-order polynomial is then
defined as follows:

w0 + w1x1 + w2x2 + w3x
2
1 + w4x1x2 + w5x

2
2 = 0 (4.12)

The expression on the left is a sum of terms that have one thing in common: a
weight, wi , multiplies a product xk

1x
l
2. In the first term, we have k + l = 0, because

w0x
0
1x

0
2 = w0; next come the terms with k + l = 1, concretely, w1x

1
1x

0
2 = w1x1

and w2x
0
1x

1
2 = w1x2; and the sequence ends with three terms that have k + l = 2:

specifically, w3x
2
1 , w4x

1
1x

1
2 , and w5x

2
2 . The thing to remember is that the expansion

of the second-order polynomial stops when the sum of the exponents reaches 2.
Of course, some of the weights can bewi = 0, rendering the corresponding terms

“invisible” such as in 7 + 2x1x2 + 3x2
2 where the coefficients of x1, x2, and x2

1 are
zero.

Polynomials of the r-th Order More generally, the r-th order polynomial in a
two-dimensional domain is a sum of weighted terms, wix

k
1x

l
2, such that k + l = j ,

where j = 0, 1, . . . r .
The reader will easily make the next step and write down the general formula

that defines the r-th order polynomial for domains with more than two attributes. A
hint: the sum of the exponents in any single term never exceeds r .

Converting Polynomials to Linear Classifiers Whatever the polynomial’s order,
and whatever the number of attributes, the task for machine learning is to find the
weights that result in the separation of positive examples from negative examples.

4.5 Polynomial Classifiers 81

Fig. 4.6 A polynomial classifier can be converted into a linear classifier with the help of
multipliers that pre-process the data

The seemingly unfortunate circumstance that the terms are non-linear (the sum of
the exponents may exceed 1) is easily removed by multipliers. Thus in a domain
with binary inputs, the multiplier outputs a logical conjunction of inputs: 1 if all
inputs are 1; and 0 if at least one input is 0. With the help of multipliers, each
product of attributes can be replaced by a new attribute, zi . Equation 4.12 is then
re-written as follows:

w0 + w1z1 + w2z2 + w3z3 + w4z4 + w5z5 = 0 (4.13)

Note, for instance, that z3 = x2
1 and z4 = x1 ·x2. This “trick” has transformed the

originally non-linear problem with two attributes, x1 and x2, into a linear problem
with five (newly created) attributes, z1 through z5.

Figure 4.6 illustrates the situation where a second-order polynomial is used in a
domain with three attributes.

Induction of Linear Classifier Can Be Used Since the values of zi in each
example are known, the weights can be obtained without any difficulties by
perceptron learning or by WINNOW. Of course, we must not forget that these
techniques will find the solution only if the polynomial of the chosen order is indeed
capable of separating the two classes.

For simplicity, we have limited our discussions to Boolean attributes. In Sect. 4.7,
we will learn that if the weights are trained by the perceptron learning algorithm,

82 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

we usually succeed even if the attributes are numeric. WINNOW, however, should
preferably be used with Boolean attributes. Mechanisms to employ this technique
in numeric domains do exist, but their detailed discussion exceeds the scope of an
introductory text. Suffice it to say that one possibility is to “binarize” the continuous-
valued attributes by the technique used in numeric decision trees (see Sect. 5.4).

4.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• When do we resort to non-linear classifiers? What argument speaks in favor of
polynomial classifiers?

• Write down the mathematical expression that defines a polynomial classifier.
Explain the meaning of “r-th order.”

• What “trick” allows us to train polynomial classifiers with the same techniques
that are used for linear classifiers?

4.6 Specific Aspects of Polynomial Classifiers

Now that we understand that the main strength of polynomials is their almost
unlimited flexibility, it is time to turn our attention to their shortcomings and
limitations.

Overfitting Polynomial classifiers tend to overfit noisy training data. Since the
problem of overfitting is typical of many machine-learning paradigms, it is a
good idea discuss its essence in some detail. Let us constrain ourselves to two-
dimensional continuous domains that are easy to visualize.

The eight training examples in Fig. 4.7 fall into two groups. In one group,
all examples are positive (empty circles); in the other, all save one are negative
(filled circles). Two attempts at separating the two classes are shown. The one on
the left uses a linear classifier, ignoring the fact that one training example is thus
misclassified. The one on the right resorts to a polynomial classifier in an attempt to
avoid any error on the training set.

Inevitable Trade-Off Which of the two is to be preferred? The answer is not
straightforward because we do not know the underlying nature of the data. It may
be that the two classes are linearly separable, and the only cause for one positive
example to be found in the negative region is class-label noise. If this is the case,
the single error made by the linear classifier on the training set is inconsequential,
whereas the polynomial on the right, cutting deep into the negative area, will
misclassify those future examples that find themselves on the wrong side of the

4.6 Specific Aspects of Polynomial Classifiers 83

curve. Conversely, it is possible that the outlier does represent some legitimate,
even if rare, aspect of the positive class. In this event, the use of the polynomial
is justified. Practically speaking, however, the assumption that the single outlier is
only noise is more likely to be correct than the “special-aspect” alternative.

A realistic training set will contain not one, but quite a few, perhaps many
examples that appear to be in the wrong area of the instance space. And the inter-
class boundary that the classifier seeks to approximate may indeed be curved, though
how much curved is anybody’s guess. The engineer may regard the linear classifier
as too crude, and opt instead for the more flexible polynomial. This said, a high-
order polynomial will separate the two classes even in a very noisy training set—and
then fail miserably on future data. The ideal solution is usually somewhere between
the extremes and has to be determined experimentally.

HowManyWeights? The total number of the weights to be trained depends on the
the number of attributes, and on the polynomial’s order. A simple analysis would
reveal that, in the case of n attributes and the r-th order polynomial, the number of
weights is determined by the following expression known from combinatorics:

NW =
(

n + r

r

)
(4.14)

Note that NW is impractically high for high values of n. For instance, even for
the relatively modest case of n = 100 attributes and a polynomial’s order r = 3, the
number of weights to be trained is NW = 176,851 (103 choose 3). For today’s
computers, the computational costs thus incurred are not insurmountable. More
serious is the danger of overfitting the noisy training set; the polynomial is simply
too flexible to be trusted. The next paragraphs will tell us how much flexible.

Capacity of Linear Classifiers The trivial domain in Fig. 4.1 consisted of four
examples. Given that each example can be labeled as either positive or negative, we
have 24 = 16 different ways of assigning positive and negative labels to them. Of

Fig. 4.7 The two classes are linearly separable, but noise has caused one example to be mislabeled.
The polynomial on the right over-fits the data

84 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

these sixteen ways, only in two cases are the two classes not linearly separable. In
other words, linear inseparability is here a rare event. But what will the situation
look like in the more general case where m examples are described by n attributes?
What are the chances that a random labeling of the examples will result in linearly
separable classes?

Mathematics has found a simple guideline to be used in domains where n is
“reasonably high” (say, ten or more attributes): if the number of examples, m, is
less than twice the number of attributes (m < 2n), the probability that a random
distribution of the two labels among the examples will result in linear separability
is close to one hundred percent. Conversely, this probability converges to zero when
m > 2n. This is why we say that “the capacity of a linear classifier is twice the
number of attributes.”

Capacity of Polynomial Classifiers The result from the previous paragraph
applies to polynomial classifiers, too. The role of attributes is here played by the
terms, zi , obtained by the multipliers. Their number, NW , is given by Eq. 4.14. We
have seen that NW can be quite high—which makes the capacity high, too. In the
case of n = 100 and r = 3, the number of weights is 176,851. This means that the
3rd-order polynomial is almost certain to separate perfectly the two classes if the
size of the training set is less than 353,702; and it will do so regardless of any noise
in the data.

For this reason, polynomials are prone to overfit noisy training sets.

4.6.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is meant by overfitting? Explain why overfitting is difficult to avoid in
polynomial classifiers.

• What is the upper bound on the number of weights to be trained in a polynomial
of the r-th order in a domain that has n attributes?

• What is the capacity of the linear or polynomial classifier? What does capacity
tell us about linear separability?

4.7 Support Vector Machines

Now that we understand that polynomial classifiers do not call for any new learning
algorithms, we can return to linear classifiers, a topic we have not yet exhausted.
Let us abandon the restriction to the Boolean attributes, and consider also the
possibility of the attributes being continuous. Can we then still rely on the two
training algorithms described above?

4.7 Support Vector Machines 85

Perceptron Learning in Numeric Domains In the case of perceptron learning,
the answer is easy: yes, the same weight-modification formula can be used. Practical
experience shows, however, that it is a good idea to normalize all attribute values
so that they fall into the unit interval, xi ∈ [0, 1]. We can use to this end the
normalization technique described in the chapter dealing with nearest-neighbor
classifiers, in Sect. 3.3.

Let us repeat, for the reader’s convenience, the weight-adjusting formula:

wi = wi + η[c(x) − h(x)]xi (4.15)

Learning rate, η, and the difference between the real and hypothesized class
labels, [c(x)−h(x)], have the samemeaning and impact as before. What has changed
is the role of xi . In the case of Boolean attributes, the value of xi = 1 or xi = 0
decided whether or not the corresponding weight should change. Here, however, the
value of xi decides how much the weight should be affected: the change is greater if
the attribute’s value is higher.

Multiplicative Rule Also when working with WINNOW, we can essentially use
the same learning formula as in the case of Boolean attributes:

wi = wiα
c(x)−h(x) (4.16)

However, we have to be careful about when to apply the formula. Previously,
WINNOW modified only the weights of attributes with xi = 1. Now that the
attribute values come from a continuous domain, some modifications are needed.
One possibility is the following rule:

Update weight wi only if the value of the i-th attribute is xi ≥ 0.5.

Classes That Are Not Linearly Separable Let us only remark that both algo-
rithms, perceptron learning and WINNOW, usually find a relatively low-error
solution even if the two classes are not linearly separable, say, in the presence of
noise. Such success is not guaranteed by any theorem, only by practical experience.

Which Linear Classifier Is Best? Another question needs attention. Figure 4.8
shows three linear classifiers, each perfectly separating positive training examples
from negative ones. Knowing that “good behavior” on the training set does not
guarantee high performance in the future, we have to ask: which of the three is
likely to score best on future examples?

Support Vector Machine (SVM) In Fig. 4.8, the dotted-line classifier all but
touches the nearest examples on either side; we say that this classifier has a small
margin. The margin is much greater in the case of the solid-line classifier: the nearest
examples on either side are much more distant from the line than in the case of the
other classifiers. Mathematicians have been able to prove that the greater the margin,
the higher the chances that the classifier will do well on future data. This theoretical
result has very practical consequences.

86 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

Fig. 4.8 Which of the
classifiers that work perfectly
on the training set will do best
on future data?

Fig. 4.9 The technique of the
support vector machines
looks for a separating
hyper-plane with the
maximum margin

Figure 4.9 presents the principle of the so-called support vector machines,
(SVM). The solid line represents the best classifier, the one that maximizes the
margin, the graph shows also two thinner lines, parallel to the classifier, each at the
same distance from it. They are here to visualize the margin. The reader can see that
they pass through the examples nearest to the classifier. These examples are called
support vectors (recall that each example is a vector of attributes), thus giving the
name to the approach. Note that the classifier is located right in the middle between
the nearest example on either side.

The task for machine learning is to identify the support vectors that maximize
the margin. The simplest technique may try all possible n-tuples of examples and

4.8 Summary and Historical Remarks 87

measure the margin implied by each such choice. This, of course, is hardly practical
in domains with big training sets.

Algorithms that find the optimum support vectors in an efficient manner are
rather advanced and rely on some fancy mathematics; their treatment would surely
be beyond the ambitions of an introductory text. In reality, not many people would
consider implementing such an algorithm on their own. In the past, engineers relied
on software packages available for free on the internet. More recently, popular
programming languages have built-in SVM-functions, saving the programmer’s
time and effort.

4.7.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Can perceptron learning and WINNOW be used in numeric domains? Are any
modifications needed?

• Given that there are infinitely many linear classifiers capable of separating the
positive examples from the negative (assuming such separation exists), which of
them can be expected to give the best results on future data?

• What is a support vector? What do we have in mind when we say that the margin
is to be maximized?

• How would you summarize the principle of a support vector machine, SVM? Is
it necessary to know how to create it?

4.8 Summary and Historical Remarks

• Linear and polynomial classifiers define a decision surface that separates the
positive examples from the negative examples. Specifically, linear classifiers
label the examples according to the sign of the following expression where xi

is the value of the i-the attribute and w0 is the classifier’s bias:

w0 + w1x1 + . . . wnxn

The concrete behavior is determined by the weights, wi . The task for machine
learning is to find weights that maximize classification performance.

• Typical induction techniques rely on “learning from mistakes.” Training exam-
ples are presented to the learner one at a time. Whenever the learner misclassifies
an example, the weights are modified in a way likely to reduce the error. When
the entire training set has been presented, one epoch has been completed. Usually,
several epochs are needed.

88 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

• Two weight-modification techniques were considered here: the additive rule of
perceptron learning, and the multiplicative rule of WINNOW.

• In domains with more than two classes, one can induce a specialized classifier
for each class. A master classifier then chooses the class whose classifier had the
highest value of �n

i=0wixi .
• In domains with non-linear class boundaries, polynomial classifiers can some-

times be used. A second-order polynomial in a two-dimensional domain is
defined by the following expression:

w0 + w1x1 + w2x2 + w3x
2
1 + w4x1x2 + w5x

2
2

• The weights of the polynomial can be found by the same learning algorithms
as in the case of linear classifiers, provided that the non-linear terms (e.g., x1x2)
have been replaced (with the help of multipliers) by newly created attributes such
as, for example, z3 = x2

1 or z4 = x1x2.
• Polynomial classifiers are prone to overfit noisy training data. This is mainly due

to the high flexibility resulting from the very high number of trainable weights.
• The potentially best class-separating hyper-plane (among the infinitely many

candidates) is identified by the technique of the support vector machines (SVM).
The idea is to maximize the distance of the nearest positive and the nearest
negative example from the classifier’s hyper-plane.

Historical Remarks The principle of perceptron learning was developed by
Rosenblatt (1958), whereas WINNOW was proposed and analyzed by Littlestone
(1987). The question of the capacity of linear and polynomial classifiers was
analyzed by Cover (1965). The principle of Support Vector Machines was invented
by Vapnik (1995) as one of the consequences of the Computational Learning Theory
which will be discussed in Chap. 7.

4.9 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

4.9.1 Exercises

1. Write down equations for linear classifiers to implement the following func-
tions:

• At least two out of the Boolean attributes x1, . . . , x5 are true

4.9 Solidify Your Knowledge 89

• At least three out of the Boolean attributes x1, . . . , x6 are true, and at least one
of them is false.

2. Return to the examples from Table 4.2. Hand-simulate the perceptron learning
algorithm’s procedure, starting from a different initial set of weights than the one
used in the table. Try also a different learning rate.

3. Repeat the same exercise, this time using WINNOW. Do not forget to introduce
the additional “attributes” for what in perceptrons were the negative weights.

4. Write down the equation that defines a third-order polynomial in two dimensions.
How many multipliers (each with up to three inputs) would be needed if we
wanted to train the weights using the perceptron learning algorithm?

4.9.2 Give It Some Thought

1. How can induction of linear classifiers be used to identify irrelevant attributes?
Hint: try to run the learning algorithm on different subsets of the attributes, and
then observe the error rate achieved after a fixed number of epochs. Another hint:
look at the weights.

2. Explain in what way it is true that the 1-NN classifier applied to a pair of
examples (one positive, the other negative) in a plane defines a linear classifier.
Invent a machine-learning algorithm that uses this observation in yet another way
of creating linear classifiers. Generalize the procedure to n-dimensional domains.

3. Under what circumstances is a linear classifier likely to have better classification
performance on independent testing examples than a polynomial classifier?

4. Sometimes, a linearly separable domain becomes linearly non-separable on
account of class-label noise. Think of a technique capable of removing such noisy
examples. Hint: you may rely on an idea from the chapter on k-NN classifiers.

4.9.3 Computer Assignments

1. Implement the perceptron learning algorithm and run it on the following training
set where six examples (three positive and three negative) are described by four
attributes:

Observe that the linear classifier fails to reach zero error rate because the two
classes are not linearly separable.

2. Create a training set consisting of 20 examples described by five binary attributes,
x1, . . . , x5. Examples in which at least three attributes have values xi = 1
are labeled as positive, all other examples are labeled as negative. Using this
training set as input, induce by perceptron learning a linear classifier. Experiment
with different values of learning rate, η. Plot a function where the horizontal
axis represents η, and the vertical axis represents the number of example-

90 4 Inter-Class Boundaries: Linear and Polynomial Classifiers

x1 x2 x3 x4 Class

1 1 1 0 pos
0 0 0 0 pos
1 1 0 1 pos
1 1 0 0 neg
0 1 0 1 neg
0 0 0 1 neg

presentations needed for the classifier to correctly classify all training examples.
Discuss the results.

3. Use the same domain as in the previous assignment (five Boolean attributes, and
the same definition of the positive class). Add to each example N additional
Boolean attributes whose values are determined by a random-number generator.
Vary N from 1 through 20. Observe how the number of example-presentations
needed to achieve the zero error rate depends on N .

4. Again, use the same domain, but add attribute noise by changing the attribute
values in randomly selected examples (while leaving class labels unchanged).
Observe what minimum error rate can then be achieved.

5. Repeat the last three assignments for different sizes of the training set, evaluating
the results on (always the same) testing set of examples that were not used in
learning.

6. Design an experiment showing that the performance of K binary classifiers,
connected in parallel as in Fig. 4.4, will decrease if we increase the number of
classes. How much will this observation by affected by noise?

7. Run induction of linear classifiers on selected Boolean domains from the UCI
repository2 and compare the results.

8. Experimenting with selected domains from the UCI repository, observe the
impact of learning rate, η, on the convergence speed of the perceptron learning
algorithm.

9. Compare the behaviors of linear and polynomial classifiers. Observe how the
former wins in simple domains, and the latter in highly non-linear domains.

2www.ics.uci.edu/~mlearn/MLRepository.html.

www.ics.uci.edu/~mlearn/MLRepository.html

Chapter 5
Decision Trees

The classifiers discussed in previous chapters expect that all attribute values be
known at the same time; classification is then based on the complete attribute vector
that describes the example. In some applications, this scenario is unrealistic. A
physician looking for the cause of her patient’s ailment may have nothing to begin
with save a few subjective symptoms. To narrow the field of possible diagnoses, she
prescribes a few lab tests, and, based on their results, additional lab tests still. In
other words, the doctor considers only “attributes” likely to add to her momentary
understanding and ignores the remaining attributes.

Here is the lesson. Quite often, exhaustive information about attribute values
may not be immediately available—and it may not even be needed, provided that
the classifier focuses on one attribute at a time, always choosing the attribute that
offers maximum relevant information. A popular tool built around these thoughts is
known as a decision tree.

The chapter shows how to use decision trees to classify examples and introduces
a simple technique that induces them from data. The reader will learn how to benefit
from pruning, how to convert the tree to if-then rules, and how to use the tree for
data analysis.

5.1 Decision Trees as Classifiers

The training set in Table 5.1 consists of eight examples described by three attributes,
and labeled as positive or negative instances of a given class. For convenience,
let us assume, for the time being, that all attributes are discrete. Later, when the
underlying principles become clear, we will generalize the approach for domains
with continuous attributes or with mixed continuous and discrete attributes.

Decision Tree Figure 5.1 shows a few example decision trees that correctly classify
the data from Table 5.1. Internal nodes contain attribute-value tests, the edges

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_5

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_5

92 5 Decision Trees

Table 5.1 Eight training
examples described by three
discrete attributes and
classified as positive and
negative examples of a given
class

crust filling

Example size shape size Class

e1 big circle small pos
e2 small circle small pos
e3 big square small neg
e4 big triangle small neg
e5 big square big pos
e6 small square small neg
e7 small square big pos
e8 big circle big pos

Fig. 5.1 Example decision trees for the “pies” domain. Note how each tree differs in size and in
the way the tests are ordered. Each tree classifies correctly all training examples from Table 5.1

5.1 Decision Trees as Classifiers 93

indicate how to proceed based on the test results, and the leafs1 represent class
labels. An example to be classified is first subjected to the test prescribed at the top-
most node, the root. The test’s outcome then decides which edge leading from the
root to follow. The process continues until a leaf node is reached, and the example
is then labeled with the class associated with this leaf.

Let us illustrate the process using the tree from Fig. 5.1b. The root asks about
shape, and each of the three edges starting at the root represents one possible
outcome. In examples e1, e2, and e8, the shape is circle, and the examples
are therefore sent down the left edge—which ends in a leaf with the label pos; this
indeed is the class that Table 5.1 gives for all these three examples. In e4, the shape
is triangle, and the corresponding edge ends in a leaf labeled neg, again the
correct class. Somewhat more complicated is the situation with examples e3, e5, e6,
and e7 where the shape is square. The corresponding edge does not end in a leaf,
but rather in an internal node that asks for the value of filling-size. In the case
of e5 and e7, the value is big, which leads to a leaf labeled pos. In the other two
examples, e3 and e6, the value is small, which sends them to a leaf labeled neg.

We have convinced ourselves that the decision tree from Fig. 5.1b identifies the
correct class for all training examples. By way of a little exercise, the reader may
want to verify that the other three trees in the picture are just as successful.2

Supporting Explanations Comparing this classifier with those discussed in the
previous chapters, we notice one advantage: interpretability. If anybody asks why
example e1 is positive, the answer is, “because its shape is circle.” The other
paradigms do not offer explanations. Bayesian and linear classifiers are typical black
boxes: when presented with an example, they simply return its class and never offer
any reasons. The situation is only slightly better in the case of the k-NN classifier
that does offer a semblance of a rudimentary argument: for instance, “x is pos
because this is the class of the training example most similar to x.” This is a far cry
from the explicit attribute-based explanation offered by a decision tree.

One can go one step further and interpret a decision tree as a set of rules such
as “if shape=square and filling-size=big, then choose class pos.” A
domain expert inspecting these rules may tell us whether they make sense, and
whether they agree with his or her view of the given domain. For instance, the filling
may be black when poppy is used and white in the case of cheese, and inspection
of a concrete rule can lead to the conclusion that Johnny prefers poppy to cheese. In
this sense, induction of decision trees can generate useful new knowledge.

The expert may also be able to point out spurious tests that have found their
way into the data structure only due to some statistical glitch, an apparent regularity
that—just like the constellations in the night skies—cannot be traced to any concrete
material cause. A data analysis and an expert can then join forces in an effort to
eliminate the spurious tests “manually,” thus further improving the decision tree.

1In technical literature, both spellings are used: leaves and leafs.
2Note that the decision tree can serve as a simple mechanism for data compression.

94 5 Decision Trees

Missing Edges The reader will recall that, in linear classifiers, an example could
find itself exactly on the class-separating hyper-plane, in which case the class was
selected more or less at random. Something similar may happen in decision trees,
too. Suppose the tree from Fig. 5.1a is used to determine the class of the following
example:

(crust-size=small) AND (shape=triangle) AND (filling-size=small)

Let us follow the procedure step by step. The root asks about crust-size.
The value being small, the classifier sends the example down the right edge, to
the test on shape. Here, only two outcomes seem possible: circle or square,
but not triangle. The reason is that when the tree was being created, it was not
known that an object with crust-size=small could be triangular. Nothing of
that kind appeared in the training set, and there thus did not seem to be any reason to
create the corresponding edge. Even if the edge were created, it would not be clear
where it should point to.

The engineer implementing this classifier in a computer program must make sure
the program is instructed what to do in the case of “missing edges.” Choosing
the class at random or preferring the most frequent class are the most obvious
possibilities but of course, a concrete application may call for different measures.

5.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Describe the mechanism that uses a decision tree to classify examples. Illustrate
the procedure using the decision trees from Fig. 5.1 and the training examples
from Table 5.1.

• What do we mean by the statement that, “the decision tree’s choice of a concrete
class can be explained”? Is something similar possible in the case of other
classifiers?

• Under what circumstances can a decision tree be unable to determine an
example’s class? How would you handle the situation as a programmer?

5.2 Induction of Decision Trees

Let us first suggest a very crude induction algorithm. Applying it to a training set,
we will realize that a great variety of alternative decision trees can thus be obtained.
A brief discussion will then convince us that, among these, the smaller ones are
better. This observation will motivate an improved version of the technique.

Divide and Conquer Let us try to create a decision tree manually. Suppose we
decide that the root node should test the value of shape. In the training set, three

5.2 Induction of Decision Trees 95

different outcomes are found: circle, triangle, and square. For each, the
classifier will need a separate edge leading from the root. The first, defined by
shape=circle, will be followed by examples TC = {e1, e2, e8}; the second,
defined by shape=triangle, will be followed by TT = {e4}; and the last,
defined by shape=square, will be followed by TS = {e3, e5, e6, e7}. Each of
the three edges will lead from the root to another node, either an attribute test or a
leaf.

Seeing that all examples in TC are positive, we will let this edge end in a leaf
labeled with pos. Similarly, the edge followed by the examples from TT will end in
a leaf labeled with neg. Similar decision, however, is impossible in the case of the
last edge because TS contains both classes. To be able to reach a class-containing
leaf, we need to place at the end of this edge another test, say, filling-size.
This attribute can acquire two values, small and big, dividing TS into two subsets.
Of these, TS−S = {e3, e6} is characterized by filling-size=small; the
other, TS−B = {e5, e7}, is characterized by filling-size=big. Seeing that all
examples in TS−S are positive, and all examples in TS−B are negative, we let both
edges end in leafs, the former labeled with pos, the latter with neg. At this stage,
the tree-building process can stop because each training example is guaranteed to
reach a leaf.

The reader will remember that each tree node is associated with a set of examples
that pass through it or end in it. Starting with the root, each test divides the training
set into disjoint subsets which are then divided into further subsets, and so on, until
each subset is “pure” in the sense that all its examples belong to the same class. The
approach is known as the divide-and-conquer technique.

Alternative Trees In the process just described, the arbitrary choice of shape and
filling-size as attribute tests results in the decision tree in Fig. 5.1b. To get
used to the mechanism, the student is encouraged to experiment with alternative
choices such as placing at the root the tests on crust-size or filling-size,
and considering different options for the tests at the lower level(s). Quite a few other
decision trees will thus be created, some of them shown in Fig. 5.1.

That so many solutions can be obtained even in this very simple domain is a
reason for concern. Is there a way to decide which trees to prefer? If so, we can
hope that an improved version of the divide-and-conquer technique will create a
“good” tree by design, and not by mere chance.

Tree Size The smallest of the data structures in Fig. 5.1 contains two attribute
tests; the largest, five. We will see that differences may have a strong impact on
the classifier’s behavior. Before proceeding to the various aspects of this statement,
however, let us emphasize that the number of nodes in the tree is not the only way
to measure its size; just as important is the number of tests that have to be carried
out when classifying an average example.

Thus in a domain where shape is almost always either circle or triangle
(and only very rarely square), the average number of tests prescribed by the
tree from Fig. 5.1b will only slightly exceed 1 because both shape=circle and
shape=triangle immediately lead to leafs with concrete class labels. But if

96 5 Decision Trees

the prevailing shape is square, the average number of tests approaches 2. Quite
often, then, a bigger tree may result in fewer tests than a smaller three. The engineer
needs to have a clear mind as to what matters: minimum number of tests applied to
an average example, or minimum number of nodes found in the decision tree.

Small Trees Versus Big Trees There are several reasons why small decision trees
(those with few tests) are preferred. One of them is interpretability. Human expert
find it easy to analyze, explain, and perhaps even correct, a decision tree that consists
of no more than a few tests. The larger the tree, the more difficult this is.

Another advantage of small decision trees is their tendency to dispose of
irrelevant and redundant information. Whereas the relatively large tree from
Fig. 5.1a employs all three attributes, the smaller one from Fig. 5.1b is just as
good at classifying the training set—without ever considering crust-size. Such
economy will come handy in domains where certain attribute values are expensive
or time-consuming to obtain.

Finally, larger trees are prone to overfit the training set. This is because the divide-
and-conquer method keeps splitting the training set into smaller and smaller subsets,
the number of these splits being the number of attribute tests in the tree. Ultimately,
the resulting training subsets can become so small that the classes may get separated
by an attribute that only by chance—or noise—has a different value among the
remaining positive and negative examples.

Induction of Small Decision Trees When illustrating the behavior of the divide-
and-conquer technique with manual tree-building, we picked the attributes at
random, and then observed that some choices resulted in smaller trees. Apparently,
attributes differ in the amount of information they convey. For instance, shape is
capable of immediately labeling some examples as positive (if the value is circle)
or negative (if the value is triangle); but crust-size cannot do so unless
assisted by another attribute.

Assuming that there is a way to measure the amount of information offered by
each attribute (one such mechanism will be explained in Sect. 5.3), we are ready
to formalize the technique for induction of decision trees by a pseudo-code—see
Table 5.2.

Table 5.2 Recursive procedure to induce a decision tree

Let T be the training set.

grow(T):

(1) Find the attribute, at, that contributes the maximum information about the class labels.
(2) Divide T into subsets, Ti , each characterized by a different value of at.
(3) For each Ti :

If all examples in Ti belong to the same class, create a leaf labeled with this class; otherwise,
apply the same procedure recursively to each training subset: grow(Ti).

5.3 How Much Information in an Attribute? 97

5.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the principle of the divide-and-conquer technique for induction of
decision trees.

• What are the advantages of small decision trees as compared to large ones?
• What determines the size of the decision tree obtained by the divide-and-conquer

technique?

5.3 How Much Information in an Attribute?

To create a compact decision tree, the divide-and-conquer technique relies on one
critical component: the ability to decide how much information about the class
labels is conveyed by the individual attributes. This section introduces a mechanism
to calculate this quantity.

Information Contents of a Message Suppose the training examples are labeled as
pos or neg, the relative frequencies of these two classes in the training set being
ppos and pneg.3 Let us select a random training example. How much information
is conveyed by the message, “this example’s class is pos”?

The answer depends on ppos. In the extreme case, where all examples are known
to be positive, ppos = 1, the message does not tell us anything new. We know the
example is positive without being told so; the amount of information in this message
is zero. The situation is different when both classes are equally represented, ppos =
pneg = 0.5. Here, our guess is no better than flipping a coin, and a message about
the class label does provide some information. And if a great majority of examples
are known to be negative so that, say, ppos = 0.01, we are all but certain that the
selected example is negative. The message that this is not the case is unexpected,
which means that its information contents are high. We see that the lower the value
of ppos, the more information the message conveys.

When quantifying the information contents of a message of this kind, the
following formula has been found convenient:

Ipos = − log2 ppos (5.1)

The negative sign compensates for the fact that the logarithm of ppos ∈ (0, 1) is
always negative. Table 5.3 shows the information contents for some typical values
of ppos. Note that the unit for the amount of information is 1 bit. Another comment:

3Recall that relative frequency of pos is the percentage of examples labeled with pos. We use it
to estimate the probability that a randomly picked example will be positive.

98 5 Decision Trees

Table 5.3 Some values of
the information contents of
the message, “this randomly
drawn example is positive.”
Note that the message is
impossible for ppos = 0

ppos − log2 ppos

1.00 0 bits

0.50 1 bit

0.25 2 bits

0.125 3 bits

the base of the logarithm being always 2, it common to write logppos instead of the
more rigorous log2 ppos.

Entropy: Average Information Contents So much for the information contents
of a single message. Suppose, now, that someone picks one training example at a
time, always telling us what its class label is, until all training examples have been
checked. Both messages will occur, “the example is positive” and “the example
is negative,” the first with probability ppos, the second with probability pneg. To
calculate the average information contents, we weigh the information contents of
each of the two messages by their probabilities (or relative frequencies) in the
training set, T :

H(T) = −ppos log2 ppos − pneg log2 pneg (5.2)

There seems to be a problem, here: the logarithm of zero is not defined, and
Eq. 5.2 thus appears meaningless if ppos = 0 or pneg = 0. Fortunately, a simple
analysis (using limits and the l’Hopital rule) will reveal that, for p converging to
zero, the expression p logp converges to zero, too, and we conclude that 0 · log 0 =
0.

H(T) is called entropy of T . Its value reaches its maximum, H(T) = 1, when
ppos = pneg = 0.5 (because 0.5 · log 0.5 + 0.5 · log 0.5 = 1); and it drops to its
minimum, H(T) = 0, when either ppos = 1 or pneg = 1 (because 0 · log 0 + 1 ·
log 1 = 0).

The case with ppos = 1 or pneg = 1, which results in H(T) = 0, is regarded
as perfect regularity because all examples in the set belong to the same class.
Conversely, the case with ppos = pneg = 0.5, which results in H(T) = 1, is seen
as a total lack of any regularity. This is why entropy is sometimes said to quantify
the amount of “chaos” in the data.

Amount of Information Contributed by an Attribute The concept of entropy
(lack of regularity) will help us confront an important question: how much does the
knowledge of a discrete attribute’s value tell us about an example’s class?

Let us remind ourselves that the attribute, at, divides the training set, T , into
subsets, Ti , each characterized by a different value of at. Quite naturally, each subset
will be marked by its own probabilities (relative frequencies) of the two classes,
pipos and pineg . Using these values and Eq. 5.2, we get the entropy, H(Ti), of each
subset.

5.3 How Much Information in an Attribute? 99

Let |Ti | be the number of examples in Ti , and let |T | be the number of examples
in the whole training set, T . The probability that a randomly drawn training example
belongs to Ti is estimated as follows:

Pi = |Ti |
|T | (5.3)

With this, we are ready to calculate the weighted average of all the entropies:

H(T, at) = �iPi · H(Ti) (5.4)

The result, H(T, at), is the entropy of a system where not only the class label but
also the value of attribute at are known for each training example. The amount of
information contributed by at is the difference between the system’s entropy without
at being considered and the system’s entropy with this attribute being considered:

I (T , at) = H(T) − H(T, at) (5.5)

It would be easy to prove that this difference cannot be negative; information
can only be gained, never lost, by considering at. In certain rare cases, however,
I (T , at) = 0, which means that at does not contribute any information about the
training examples’ class labels.

Applying Eq. 5.5 separately to each attribute, we can establish which of them
provides the maximum amount of information, and as such is the best choice for the
“root” test in the first step of the algorithm from Table 5.2.

The best-attribute-choosing procedure is summarized by the pseudo-code in
Table 5.4. The process starts by the calculation of the entropy of the system where
only class percentages are known. Next, the algorithm calculates the information
gain offered by each attribute. The attribute that leads to the highest information
gain is best.

Table 5.4 The algorithm to find the most informational attribute

1. Calculate the entropy of the training set, T , using the percentages, ppos and pneg, of the
positive and negative examples:

H(T) = −ppos log2 ppos − pneg log2 pneg

2. For each attribute, at, that divides T into subsets, Ti , with relative sizes Pi , do the following:

(i) for each subset, Ti , calculate its entropy and denote it by H(Ti);
(ii) calculate the system’s average entropy: H(T , at) = �iPi · H(Ti);
(iii) calculate information gain: I (T , at) = H(T) − H(T , at)

3. Choose the attribute with the highest information gain.

100 5 Decision Trees

Numeric Example Table 5.5 shows how to select the most informative attribute in
the domain from Table 5.1. At the beginning, the entropy, H(T), of the system with-
out attributes is established. Next, we observe that shape divides the training set
into three subsets. The average of their entropies, H(T,shape), is calculated, and
the difference between H(T) and H(T,shape) gives the information conveyed
by this attribute. Repeating the procedure for crust-size and filling-size

Table 5.5 Illustration of the search for the attribute with maximum information

Example crust shape filling Class

size size

e1 big circle small pos
e2 small circle small pos
e3 big square small neg
e4 big triangle small neg
e5 big square big pos
e6 small square small neg
e7 small square big pos
e8 big circle big pos

Here is the entropy of the training set where only class labels are known:

H(T) = −ppos log2 ppos − pneg log2 pneg

= −(5/8) log(5/8) − (3/8) log(3/8) = 0.954

Next, we calculate the entropies of the subsets defined by the values of shape:

H(shape = square) = −(2/4) · log(2/4) − (2/4) · log(2/4) = 1

H(shape = circle) = −(3/3) · log(3/3) − (0/3) · log(0/3) = 0

H(shape = triangle) = −(0/1) · log(0/1) − (1/1) · log(1/1) = 0

Now we obtain average entropy of a system with known class labels and shape:

H(T ,shape) = (4/8) · 1 + (3/8) · 0 + (1/8) · 0 = 0.5

Repeating the same procedure for the other two attributes, we get the following:

H(T ,crustsize) = 0.951

H(T ,crustsize) = 0.607

The values below give the information gains for all attributes:

I (T ,shape) = H(T) − H(T ,shape) = 0.954 − 0.5 = 0.454

I (T ,crustsize) = H(T) − H(T ,crustsize) = 0.954 − 0.951 = 0.003

I (T ,fillingsize) = H(T) − H(T ,fillingsize) = 0.954 − 0.607 = 0.347

Maximum information is contributed by shape.

5.4 Binary Split of a Numeric Attribute 101

and comparing the results, we realize that shape contributes more information than
the other attributes. We thus choose shape for the root test.

This, by the way, is how the decision tree from Fig. 5.1b was obtained.

AComment on Logarithms The information-contents formulas from the previous
paragraphs operate with logarithms base 2. The reader will recall how they are
calculated from natural logarithms:

log2 x = ln x

ln 2

Since the difference is only the constant coefficient ln 2, the same best attribute
is identified whether log2 x or ln x is used. The only difference is that, when natural
logarithms are used, the amount information is no longer given in bits.

5.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What do we mean when we talk about the “amount of information conveyed by
a message”? How is this amount determined, and what units are used?

• What is entropy and how does it relate to the frequency of the positive and
negative examples in the training set?

• How do we use entropy when assessing the amount of information contributed
by a given attribute?

5.4 Binary Split of a Numeric Attribute

The entropy-based mechanism from the previous section expected all attributes to
be discrete. With a small modification, however, the same approach can be applied
also to continuous attributes. All we need is to convert them to Boolean attributes.

Converting a Continuous Attribute to a Boolean Attribute Let us denote the
continuous attribute by x. The idea is to choose a threshold, θ , and then decide that
a newly created Boolean attribute will be true if x < θ means and false if x ≥ θ (or
the other way round).

How to establish the best possible value of θ? Here is one possibility. Suppose
that x has a different value in each of the N training examples. Let us sort these
values in ascending order, denoting by x1 the smallest, and by xN the highest. Any
pair of neighboring values, xi and xi+1, then defines a threshold, placed right in the
middle between them: θi = (xi + xi+1)/2. For instance, a four-example training
set where x has values 3, 4, 6, and 9 leads us to consider θ1 = 3.5, θ2 = 5.0,

102 5 Decision Trees

and θ3 = 7.5. For each of these N − 1 thresholds, we will calculate the amount
of information offered by the Boolean attribute thus defined and then choose the
threshold where this information gain is maximized.

Candidate Thresholds The approach just described incurs high computational
costs. Indeed, in a domain with one hundred thousand examples described by one
hundred attributes (which is nothing extraordinary), the information contents of
105 × 102 = 107 different thresholds has to be calculated. This seems unrealistic;
fortunately, mathematicians have proved that a great majority of these thresholds
can be ignored so that the costs are reduced to a mere fraction.

Table 5.6 shows the principle of this reduction. In the upper part, thirteen values
of x are ordered from left to right, each labeled with the class (positive or negative)
of the training example in which the value was found. Here is the rule: the best
threshold is never found between values with the same class label. Put another way,

Table 5.6 Illustration of the search for the best threshold

The values of attribute x are sorted from the smallest to the highest. The candidate thresholds are
those located between values labeled with opposite class labels.

Here is the entropy of the training set, ignoring attribute values:

H(T) = −p+ logp+ − p− logp−
= −(7/13) log(7/13) − (6/13) log(6/13) = 0.9957

Here are the entropies of the training subsets defined by the 3 candidate thresholds:

H(x < θ1) = −(5/5) log(5/5) − (0/5) log(0/5) = 0

H(x > θ1) = −(2/8) log(2/8) − (6/8) log(6/8) = 0.8113

H(x < θ2) = −(5/10) log(5/10) − (5/10) log(5/10) = 1

H(x > θ2) = −(2/3) log(2/3) − (1/3) log(1/3) = 0.9183

H(x < θ3) = −(7/12) log(7/12) − (5/12) log(5/12) = 0.9799

H(x > θ3) = −(0/1) log(0/1) − (1/1) log(1/1) = 0

Average entropies associated with the individual thresholds:

H(T , θ1) = (5/13).0 + (8/13).0.8113 = 0.4993

H(T , θ2) = (10/13).1 + (3/13).0.9183 = 0.9811

H(T , θ3) = (12/13).0.9799 + (1/13).0 = 0.9045

Information gains entailed by the individual candidate thresholds:

I (T , θ1) = H(T) − H(T , θ1) = 0.9957 − 0.4993 = 0.4964

I (T , θ2) = H(T) − H(T , θ2) = 0.9957 − 0.9811 = 0.0146

I (T , θ3) = H(T) − H(T , θ3) = 0.9957 − 0.9045 = 0.0912

Threshold θ1 gives the highest information gain.

5.5 Pruning 103

Table 5.7 Algorithm to find the best numeric-attribute test

1. For each attribute ati :

(i) Sort the training examples by the values of ati ;
(ii) Determine the candidate thresholds, θij , as those lying between examples with opposite

labels;
(iii) For each θij , determine the amount of information contributed by the Boolean attribute

thus created.

2. Choose the pair [ati , θij] with the highest information gain.

it is enough to calculate the information gain only for locations between neighboring
examples with different classes. In the specific case shown in Table 5.6, only three
candidate thresholds, θ1, θ2, and θ3, need to be investigated (among the three, θ1 is
shown to be best).

The Root of a Numeric Decision Tree The algorithm summarized by the pseudo-
code in Table 5.7 determines the best attribute test for the root of a decision tree in a
domain where all attributes are continuous. Note that the test consists of a pair, [ati ,
θij], where ati is the selected attribute and θij is the best threshold found for this
attribute. If an example’s value of the i-th attribute is below the threshold, ati < θij ,
the left branch of the decision tree is followed; otherwise, the right branch is chosen.

5.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the idea behind the intention to divide the domain of a continuous
attribute into two parts.

• What mathematical finding helps us reduce the apparently prohibitive computa-
tional costs?

5.5 Pruning

Section 5.2 mentioned some virtues of small decision trees: interpretability, removal
of irrelevant and redundant attributes, lower danger of overfitting. These were the
arguments that motivated the use of information gain in decision tree induction; they
also motivate the step that usually follows: pruning.

104 5 Decision Trees

Fig. 5.2 A simple approach to pruning will replace a subtree with a leaf. In the case depicted here,
two such subtrees were replaced

The Essence Figure 5.2 illustrates the principle. On the left is the original decision
tree with six tests: t1, . . . t6. On the right is its pruned version. Closer inspection
reveals that the subtree rooted in test t3 in the original tree has in the pruned tree
been replaced with a leaf labeled with the negative class; and the subtree rooted
in test t6 has been replaced with a leaf labeled with the positive class. Here is the
point: pruning replaces one or more subtrees with leafs, each labeled with the class
most common among the training examples that in the original classifier reach the
removed subtree.

The idea may sound counter-intuitive: induction sought a tree with zero errors
on the training examples, but this perfection may be lost in the pruned tree! There
is no need to be alarmed, though. The ultimate goal is not to classify the training
examples (their classes are known anyway). We want to label future examples, and
pruning tends to improve the tree’s performance on those future examples.

Error Estimate Pruning is typically carried out in a sequence of steps. Replace
with a leaf one subtree, then another, and so on, as long as the replacements appear
to be beneficial by a reasonable criterion. The term “beneficial” is meant to warn
us that we do not want to pay for the smaller-tree advantages with compromised
classification performance.

The last consideration brings us to the issue of error estimate. Let us return to
Fig. 5.2. Let m be the number of training examples that reach test t3 in the decision
tree on the left. If we replace the subtree rooted in t3 by a leaf (as in the tree
on the right), some of these m examples may become misclassified. Denoting the
number of these misclassified examples by e, we can estimate the probability of
an example’s misclassification (at this leaf) by relative frequency: e/m. However,
knowing that small values of m will render such estimate unreliable, we prefer the
following formula where N is the total number of training examples:

Eestimate = e + 1

N + m
(5.6)

5.5 Pruning 105

The reader should recall (or re-read) what Sect. 2.3 had to say about the m-
estimate of the probabilities of rare events.

Error Estimates for the Whole Tree Let us again return to Fig. 5.2. The tree on
the left has two main subtrees, one rooted at t2, the other at t5. Let m2 and m5 be the
numbers of the training examples reaching t2 and t5, respectively; and let E2 and
E5 be the error estimates (obtained by Eq. 5.6) of the two subtrees. For the total of
N = m2 + m5 training examples, the error rate of the whole subtree is estimated as
the weighted average of the two subtrees:

ER = m2

N
E2 + m5

N
E5 (5.7)

Of course, in a situation with more than just two subtrees, the weighted average
has to be taken over all of them. This should present no major difficulties.

As for the values of E2 and E5, these are obtained from the error rates of the
specific subtrees, and these again from the error rates of their sub-subtrees, and so
on, all the way down to the lowest-level tests. The error-estimating procedure is thus
recursive in principle.

Suppose that the subtree to be pruned is the one rooted at t3, which happens to be
one of the two children of t2. The error estimate for t2 is calculated as the weighted
average of E3 and the error estimate for the other child of t2 (the leaf labeled with
the positive class). The resulting estimate would then be combined withE5 as shown
above.

Post-Pruning The term post-pruning refers to the scenario where the decision tree
was supposed to be pruned after it has been fully induced (an alternative will be
discussed in the next subsection). The essence is to replace a subtree with a leaf
labeled with the class most frequent among the training examples reaching that
leaf. Since there are usually several (or many) subtrees that can thus be replaced,
a choice has to be made; and the existence of a choice calls for a criterion to guide
the decision.

Here is one possibility. We know that pruning is likely to affect the classifier’s
performance. One way of predicting how much the performance is going to change
is to compare the error estimate of the decision tree after the pruning with that of
the tree before the pruning:

D = Eaf ter − Ebef ore (5.8)

From the available pruning alternatives, we choose the one where this difference
is the smallest, Dmin; but we carry out the pruning only if Dmin < c, where c

is a user-set threshold for how much performance degradation can be tolerated in
exchange for the tree’s compactness. The mechanism is repeated, with the decision
tree becoming smaller and smaller, the stopping criterion being imposed by the
constant c. Thus in Fig. 5.2, the first pruning step might have removed the subtree
rooted at t3; and the second might have removed the subtree rooted at t6. At this

106 5 Decision Trees

Table 5.8 Algorithm for decision tree post-pruning

c . . . a user-set constant

(1) Estimate the error rate of the original decision tree. Denote its value by Ebef ore.
(2) Estimate the error rates of the trees obtained by alternative ways of pruning the original tree.
(3) Choose the pruning after which the estimated error rate experiences minimum increase,

Dmin = Ebef ore − Eaf ter , but only if Dmin < c.
(4) Repeat steps (2) and (3) as long as Ebef ore − Eaf ter < c.

moment, the procedure was stopped because any further attempt at pruning resulted
in a tree whose error estimate increased too much: the difference between the
estimated error of the final pruned tree and that of the original tree on the left of
Fig. 5.2 exceeded the user’s threshold: D > c.

The principle is summarized by the pseudo-code in Table 5.8.

On-Line Pruning In the divide-and-conquer approach to tree-building, the sub-
sequent tests divide the data into smaller and smaller subsets. Inevitably, the
evidence supporting the choice of the tests at the lower tree-levels become weak—
the reader will recall what Chap. 2 had to say about probabilities estimated based
on insufficient data. In an extreme, if a tree node is reached by only two training
examples, one positive and one negative, the two classes may by mere coincidence
appear to be distinguished by some totally irrelevant attribute. Adding this test to
the decision tree only increases the danger of training-set overfitting.

The motivation behind on-line pruning is to make sure this does not happen. Here
is the rule: if the training subset is smaller than a user-specified minimum, m, stop
further expansion of the tree.

Limits of Pruning In decision tree software, the extent of pruning is usually
controlled by two parameters. For the needs of post-pruning, the constant c

determines howmuch growth in the estimated error the user is willing to tolerate; for
on-line pruning, the constant m determines the point where further training subset
splitting should be prevented.

The main reason why pruning is recommended is that the removal of low-level
tests (with poor statistical support) may reduce the danger of overfitting. This,
however, will be the case only up to a certain point. In the extreme, strong pruning
can result in a decision tree that has degenerated to a single leaf labeled with the
majority class. Such classifier is of course useless.

Performance Consequences of Pruning Figure 5.3 illustrates the effect that
pruning typically has on classification performance. The horizontal axis represents
the extent of pruning as controlled by c or m or both. The vertical axis represents
the error rate measured on the training set as well as the error rate measured on
some future testing set (the latter consisting of examples that have not been used for
learning, but whose class labels are known).

5.5 Pruning 107

Fig. 5.3 With the growing
extent of pruning (smaller
trees), error rate on the testing
set often drops, then starts
growing again. Error rate on
the training set usually
increases monotonically

On the training set, error rate is minimized when there is no pruning at all—which
is not surprising. More interesting is the testing-set curve whose shape indicates
that an unpruned tree usually does poorly on testing data because of its tendency to
overfit the training set, something that pruning is likely to reduce. Excessive pruning,
however, removes attribute tests that do carry useful information, and the removal
hurts future performance.

Some Observations Plotting these two curves in a concrete application domain
may tell us a lot about the nature of the available data. In a noise-free domain and a
relatively small training set, even very modest pruning will impair testing-set error
rate. Conversely, a noisy domain is marked by a situation where pruning leads to
improved classification on testing set.

Big distance between the two curves indicates that what has been learned from
the training set is not going to be very useful in the future, perhaps because the
training set did not contain the information necessary for the classification.

Finally, notice that the error rate on the testing set is almost always greater than
the error rate on the training set.

5.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What are the potential benefits of decision tree pruning?
• How can we estimate the tree’s error rate on future data? Write down the formula

and explain how it is used.
• Explain the difference between post-pruning and on-line pruning.
• What parameters control the extent of pruning? How do they affect error rate on

the training set, and error rate on the testing set?

108 5 Decision Trees

5.6 Decision Tree Can Be Converted to Rules

One of the advantages of decision trees is that their behavior can be interpreted. Any
sequence of tests along the path from the root to a leaf represents an if-then rule that
explains why the classifier chose this or that concrete class label.

Rules Generated by a Decision Tree The reader will find it easy to convert a
decision tree to a set of rules. It is enough to notice that a leaf is reached through a
series of edges whose specific choice is determined by the results of the attribute
tests encountered along the way. Each leaf is thus associated with a concrete
conjunction of test results.

For illustration, let us write down the complete set of rules for the pos class as
obtained from the decision tree in Fig. 5.1a.

if crust-size=big AND filling-size=big then pos

if crust-size=big AND filling-size=small AND shape=circle
then pos

if crust-size=small AND shape=circle then pos

if crust-size=small AND shape=(square OR triangle)
AND filling-size=big then pos

else neg

Note the default class, neg, in the last line. An example is labeled with the
default class if all rules fail, if the value of the if -part of each rule is false. In this two-
class domain, it sufficed to write down the rules for the pos class, the other class
being the default option. We could have done it the other way round, considering
only the rules for the neg label, in which case pos will be the default class. The
nature of the tree in Fig. 5.1a actually makes this other choice more economical:
only two leaves are here labeled with neg, and this means only two rules. The
reader may want to write down these two rules as a simple exercise.

The lesson is clear: in a domain with K classes, only the rules for K − 1 classes
are needed, the last class being the default.

Pruning the Rules The tree post-pruning mechanism described earlier replaced
a subtree with a leaf. This means that lower-level tests were the first to go, the
technique being unable to remove a higher-level node before those below it. In on-
line pruning, the situation is similar.

Once the tree has been converted to rules, however, pruning gains in flexibility:
any test in the if -part of any rule is a potential candidate for removal; and entire
rules can be deleted, too. This is done by the rule-pruning algorithm summarized by
the pseudo-code in Table 5.9 and illustrated by the example in Table 5.10. Here, the
initial set of rules was obtained from the tree in the left part of Fig. 5.2. The first

5.6 Decision Tree Can Be Converted to Rules 109

Table 5.9 Algorithm for rule-pruning

Re-write the decision tree as a set of rules.

Let c be a user-set constant controlling the extent of pruning

(1) In each rule, calculate how much the error estimate would increase after the removal of the
individual tests.

(2) In each rule, choose the removal with the smallest error increase, Dmin. If Dmin < c, remove
the test; otherwise, do not remove it.

(3) In the set of rules, search for the weakest rules to be removed, the term “weak” meaning that
only a few training examples make the rule’s left-hand side true.

(4) Choose the default class.
(5) Order the rules according to their strengths (how many training examples make the left-hand

side true.).

Table 5.10 Illustration of the algorithm for rule-pruning

The decision on the left in Fig. 5.2 is converted into the following set of rules, neg being the
default.

t1 ∧ t2 → pos

t1 ∧ ¬t2 ∧ t3 ∧ t4 → pos

¬t1 ∧ t5 ∧ t6 → pos

else neg

Suppose the evaluation of the tests in the rules indicates that t3 in the second rule and t5 in the
third rule can be removed without major increase in the error estimate. The two removals result in
the following set of rules.

t1 ∧ t2 → pos

t1 ∧ ¬t2 ∧ t4 → pos

¬t1 ∧ t6 → pos

else neg

The next step can reveal that the second (already modified) rule can be removed without a major
increase in the error estimate because the rule is rarely employed. After its removal, the set of
rules will look as follows.

t1 ∧ t2 → pos

¬t1 ∧ t6 → pos

else neg

This completes the pruning.

pruning step removes those tests that do not appear to contribute much to the overall
classification performance; the next step deletes the rules that are rarely used.

We haste to admit that the price for this added flexibility is a significant increase
in computational costs.

110 5 Decision Trees

5.6.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the mechanism that converts a decision tree to a set of rules. How many
rules are thus obtained? What is the motivation behind such conversion?

• What is a default class? Which class would you choose for default when
converting a decision tree to a set of rules?

• Discuss the possibilities of rule-pruning. In what sense can we claim that rule-
pruning offers more flexibility than the original decision tree pruning? What is
the price for this increased flexibility?

5.7 Why Decision Trees?

Decision trees are nowadays less popular than they used to be, overshadowed as
they are by other approaches that have gained popularity thanks to demonstrated
classification performance. However, a conscientious engineer resists the dictates of
fashion, focusing instead on the concrete benefits offered by this paradigm. Here are
some ideas to consider.

Availability of Attribute Values First and foremost, the decision tree asks for one
attribute value at a time. This is a great advantage in applications where the attribute
values are not immediately available, and obtaining their values is difficult and/or
expensive. Thus in medical diagnosis, laboratory tests are requested only as they are
needed; to expect an exhaustive attribute vector containing all such tests right from
the beginning would be absurd.

Domains of this kind virtually disqualify approaches such as k-NN or linear
classifiers; they even render impractical the famous deep-leaning paradigm from
Chap. 16. Under the circumstances, the engineer will gladly resort to good old
decision trees.

Attribute Selection The spectrum of application possibilities of the mechanism
that chooses the most informational attribute (see Sect. 5.3) goes well beyond the
paradigm of decision trees. For instance, one of the sections in Chap. 11 discusses
the need to identify attributes with the maximum contribution to the classification
task at hand. The filter-based approach to address this task often relies on the
information-theoretical formulas that are employed in the context of decision trees.

Creating Higher-Level Features Section 3.8 used the example of the concept of
kangaroo to point out the limitations inherent in vectors of low-level attributes
that lack the information necessary for classification. The conclusion was that
machine learning perhaps needs some mechanisms to create higher-level features
in the form of functions of the available attributes. As we will see in some of the

5.7 Why Decision Trees? 111

Fig. 5.4 The tests in the numeric decision tree on the left define the decision surface on the right.
This decision surface consists of a set of axis-parallel line segments

upcoming chapters, the power of contemporary machine learning is often explained
by implicit abilities to create those higher-level features.

One possibility is to interpret each branch of the induced decision tree as a new
feature, defined by a conjunction of attribute-value tests.

Information-Based Loss in Neural Networks Section 5.3 introduced a formula
to quantify the amount information contained in a message about an example’s
class. This formula is sometimes employed by algorithms to train artificial neural
networks. For more about this, see Chap. 6.

Decision Tree Defines a Decision Surface The defining aspect of the linear and
polynomial classifiers from Chap. 4 was their ability to induce a decision surface
that separated examples from the positive class from those belonging to the negative
class. A quick glance at Fig. 5.4 will convince us that decision tree, too, define
decision surfaces of a different nature.

5.7.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the main benefit of decision trees in comparison to many other machine-
learning paradigms?

• How can the knowledge of induction of decision trees help us in such tasks as
attribute selection of higher-level feature creation?

• Explain the difference between the decision surface defined by a linear classifier
and the decision surface defined by a decision tree.

112 5 Decision Trees

5.8 Summary and Historical Remarks

• In decision trees, attributes are tested one at a time, the result of each test pointing
to what should happen next: either another attribute test, or a class label if a leaf
has been reached. One can say that a decision tree consists of a set of partially
ordered tests, each sequence of tests defining one branch in the tree ending in a
leaf.

• From the same training set, many alternative decision trees can usually be
created. As a rule, smaller trees are to be preferred, their main advantages
being interpretability, removal of irrelevant and redundant attributes, and reduced
danger of overfitting noisy training data.

• The most common procedure for induction of decision trees from data proceeds
in a recursive manner, always seeking to identify the attribute that conveys max-
imum information about the class label. Which attribute is “best” is determined
by formulas borrowed from information theory. This approach tends to make the
induced decision trees smaller.

• An important aspect of decision tree induction is pruning. The motivation is to
make sure that all tests are supported by sufficient evidence. Pruning reduces the
tree size which has obvious advantages (see above). Two types of pruning exist.
(1) In post-pruning, the tree is first fully developed, and then pruned. (2) In on-
line pruning (which may be a misnomer), the development of the tree is stopped
once the training subsets used to determine the next test become too small. In
both cases, the extent of pruning is controlled by user-set parameters (denoted c

and m, respectively).
• A decision tree can be converted to a set of rules that can further be pruned,

too. In a domain with K classes, it is enough to specify the rules for K − 1
classes, the remaining class being treated as the default class. The rules are
usually easier to interpret than the original tree. Rule-pruning may lead to more
compact classifiers, though at significantly increased computational costs.

• Perhaps the main advantage of decision trees is that, for classification, they do
not require the availability of the entire attribute vector. This is beneficial in
domains where the attribute values are not immediately available, and are difficult
or expensive to obtain.

• Some of the techniques and formulas from this chapter will be found useful in
the context of some tasks discussed in the upcoming chapters: neural-network
training, attribute selection, and the creation of higher-level features.

Historical Remarks The idea underlying decision trees was first put forward by
Hoveland and Hunt in the late 1950s. The work was later summarized in a book
form by Hunt et al. (1966) who reported experience with several implementations
of their Concept Learning System (CLS). Friedman et al. (1977) developed a
similar approach independently. An early high point of the research was reached
by Breiman et al. (1984) who developed the famous system CART. Their ideas
were then imported to the machine-learning world by Quinlan (1979, 1986). For
many years, the most popular implementation was C4.5 from Quinlan (1993). This
chapter is based on a simplified version of C4.5.

5.9 Solidify Your Knowledge 113

5.9 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

5.9.1 Exercises

1. In Fig. 5.5, eight training examples are described by two attributes, size and
color, the class being the material: wood or plastic.

• What is the entropy of the training set when only the class labels are
considered (ignoring attribute values)?

• Using information gain (see Sect. 5.3), decide which of the two attributes is
better at predicting the class

2. Take the decision tree from Fig. 5.1a and remove from it the bottom-right test
on filling-size. Based on the training set from Table 5.1, what will be the
error rate estimate before and after this “pruning”?

3. Choose one of the decision trees in Fig. 5.1 and convert it to a set of rules. Pick
one of these rules and decide which of its tests can be removed with the minimum
increase in the estimated error.

4. Consider a set of ten training examples with the following values of a certain
continuous attribute: 3.6, 3.2, 1.2, 4.0, 0.8, 1.2, 2.8, 2.4, 2, 2, 1.0. Suppose that
the first five of these examples, and also the last one, are positive, the remaining
examples being all negative. What will be the best binary split of the domain of
this attribute’s values?

Fig. 5.5 A training set of
circles described by two
attributes: size and color.
The class label is either wood
or plastic

114 5 Decision Trees

5.9.2 Give It Some Thought

1. The baseline performance criteria used for the evaluation of decision trees
are error rate and tree size. (number of nodes). These, however, may not be
appropriate in certain domains. Suggest applications where either the size of the
decision tree or its error rate may be less important. Hint: consider the costs of
erroneous decisions and the costs of obtaining attribute values.

2. What do you thing are the characteristics of a domain where a decision tree
clearly outperforms the baseline 1-NN classifier? Hint: consider such charac-
teristics as noise, irrelevant attributes, or the size of the training set; and then
make your own judgement as to what impact each of them is likely to have on
the classifier’s behavior.

3. In what kind of data will a linear classifier outperform a decision tree? Suggest at
least two features characterizing such data. Rely on the same hint as the previous
question.

4. Having answered the previous two questions, you should be able to draw
the logical conclusion: applying to the given data both decision trees and
linear classification, what will their respective performances betray about the
characteristics of the available data?

5. The decision tree approach described in this chapter gives only “crisp” yes-or-no
classifications (one can argue that Bayesian classifiers are more flexible). Seeking
to mitigate this limitation, how would you modify the decision trees framework
so as to give, for each example, not only the class label, but also the classifier’s
confidence in this class label?

5.9.3 Computer Assignments

1. Implement the baseline algorithm for induction of decision trees and test its
behavior on a few selected domains from the UCI repository.4 Compare the
results with those achieved by the k-NN classifier.

2. Implement the simple pruning mechanism described in this chapter. Choose a
domain from the UCI repository. Run several experiments and observe how
different extent of pruning affects the error rate on the training and testing sets.

3. Choose a sufficiently large domain from the UCI repository. Put aside 30% of
the examples for testing. For training, use 10%, 20%, . . . 70% of the remaining
examples, respectively. Plot a graph where the horizontal axis gives the number
of examples used for learning, and the vertical axis gives the computational time
spent on the induction. Plot another graph where the vertical axis will give the
error rate on the testing set. Discuss the results.

4www.ics.uci.edu/~mlearn/MLRepository.html.

www.ics.uci.edu/~mlearn/MLRepository.html

5.9 Solidify Your Knowledge 115

4. Create your own synthetic data where examples are described by two numeric
attributes with values from the unit interval, [0,1]. In the square [0, 1] ×
[0, 1], define a certain geometric figure (square, circle, ring, or something more
complicated); all examples inside this figure are positive, those outside are
negative. Induce a decision tree, then visualize its classification behavior using
the following method. Create a testing set as a grid with all combinations of the
two attributes (with increments 0.01); each of these points is then submitted to
the decision tree. Display the results: the points labeled by the tree as positive are
black and points labeled as negative are white. This is how the “positive” region
is visualized. Show how the contours of these regions are for different domains
affected by different amounts of pruning.

Chapter 6
Artificial Neural Networks

In artificial neural networks, many simple units, called neurons, are interconnected
into larger structures. The network’s classification behavior is determined by the
weights of the links that interconnect the neurons. The task for machine learning
is to provide algorithms capable of finding weights that result in good classification
behavior. This search is accomplished by a process commonly referred to as a neural
network’s training.

Theory and practice of neural networks is too broad to be exhausted in by the
twenty or thirty pages this book can afford to devote to them; it is necessary to nar-
row the focus. For this reason, only two types are discussed here as representatives
of the whole field: multilayer perceptrons and radial-basis function networks. The
latter are easy to implement and are known for high classification performance. The
former have become highly topical thanks to their relation to the now-so-popular
deep-learning paradigm.1

The chapter describes how to use these tools for classification and explains
simple methods of their training. In the case of multilayer perceptrons, care is taken
to lay grounds for the deep learning treated in a later chapter.

6.1 Multilayer Perceptrons

Let us simplify our job by assuming, for the time being, that all attributes are
continuous and that they have been normalized into the interval [−1, 1]. Strictly
speaking, normalization is not necessary, but it is certainly practical.

Neurons and sigmoid Function The function of a neuron, the basic unit of a
multilayer perceptron, is simple: a weighted sum of the signals arriving at the input

1See Chap. 16.

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_6

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_6

118 6 Artificial Neural Networks

Fig. 6.1 Popular transfer
function or early days of
neural networks: sigmoid

is submitted to a transfer function (also known as activation function) that provides
the neuron’s output. Several different transfer functions can be used. To begin with,
we will rely on the so-called sigmoid that is defined by the following formula, where
� is the weighted sum of inputs:

f (�) = 1

1 + e−�
(6.1)

Figure 6.1 shows what sigmoid looks like. Note that f (�) grows monotonically
with the increasing value of � but never leaves the open interval (0, 1) because
f (−∞) = 0 and f (∞) = 1. The vertical axis is intersected at f(0)=0.5. Common
practice uses the same transfer function for all neurons in the network.

First Derivative of sigmoid Perhaps the main reason why sigmoid is in the field of
neural networks so popular is that its first derivative can be expressed as a “function
of the original function.” It would be easy to prove the following:

f ′(�) = f (�)[1 − f (�)] (6.2)

What makes this formula so convenient will become clear once we proceed to
the popular learning algorithm, Sect. 6.3.

First Derivative of sigmoid One of the reasons why sigmoid is so popular in neural
networks is that it has a very convenient first derivative. Indeed, it would be easy to
prove the following equality:

f ′(�) = f (�)[1 − f (�)] (6.3)

The convenience will become obvious once we proceed to the popular learning
algorithm for neural networks (see Sect. 6.3).

Multilayer Perceptron (MLP) The neural network in Fig. 6.2 is known as
multilayer perceptron. The neurons, represented by ovals, are arranged in two tiers:

6.1 Multilayer Perceptrons 119

Fig. 6.2 A multilayer
perceptron with two
interconnected layers. The
lower one is hidden layer, and
the upper one is output layer

the output layer and the hidden layer.2 For simplicity, we will now consider only
networks with a single hidden layer while remembering that it is quite common
to employ two such layers, even three, though rarely more than that. Note that the
neurons (like the linear classifiers from Chap. 4) use also the zeroth weights to
provide the neurons’ trainable bias.

While there is no communication between neurons of the same layer, adjacent
layers are fully interconnected. Importantly, each neuron-to-neuron link is associ-
ated with a weight. The weight of the link from the j -th hidden neuron to the i-th
output neuron is denoted as w

(1)
j i and the weight of the link from the k-th attribute

to the j -th hidden neuron as w
(2)
kj . Note that the first index indicates where the link

begins and the second tells us where it ends. The superscript, (1) or (2), indicates
the layer.

Forward Propagation Suppose that the network’s input has been presented with
an example, x = (x1, . . . , xn). The attribute values are passed along the neural links
that multiply each xk by the weights associated with the corresponding links. For
instance, the j -th hidden neuron receives as input the weighted sum,

∑
k w

(2)
kj xk ,

and this sum is then subjected to the sigmoid activation function, f (
∑

k w
(2)
kj xk).

The i-th output neuron then receives the weighted sum of the values arriving from
the hidden neurons and, again, subjects the sum to the sigmoid activation function.
This is how the network’s i-th output is obtained. The process of propagating in this
manner the attribute values from the network’s input to its output is called forward
propagation.

When using multilayer perceptrons for classification, we assign to each class one
output neuron, and the value returned by the i-th output neuron is interpreted as
evidence in support of the i-th class. For instance, if the values obtained at three

2When we view the network from above, the hidden layer is obscured by the output layer.

120 6 Artificial Neural Networks

output neurons are y = (0.2, 0.6, 0.1), the classifier will label the given example
with the second class because 0.6 is greater than 0.2 and 0.1.

In essence, the two-layer MLP represents the following Formula, where f is the
sigmoid transfer function from Eq. 6.1, w

(2)
kj and w

(1)
j i are the weights of the links

leading to the hidden and output layers, respectively, and xk’s denote the attribute
values of the example presented to the network.

yi = f (
∑

j

w
(1)
j i f (

∑

k

w
(2)
kj xk)) (6.4)

Numeric Example The principle is illustrated in Table 6.1. An example x is
presented to the network’s input. Before reaching hidden neurons, all attribute
values are multiplied by the corresponding weights, and the weighted sums are
subjected to activation functions. The results (h1 = 0.32 and h2 = 0.54) are then
multiplied by the next layer of weights and forwarded to the output neurons where
they are again subjected to the sigmoid function. This is how the two output values,
y1 = 0.66 and y2 = 0.45, have been obtained. We see that the evidence supporting
the class of the output neuron on the left is stronger than the evidence supporting
the class of the output neuron on the right. The classifier therefore chooses the left
neuron’s class.

MLP Is a Universal Classifier Mathematicians have been able to prove that with
the right choice of weights and with the right size of the hidden layer, Eq. 6.4 can
approximate any realistic function with arbitrary accuracy. The consequence of this
universality theorem is that the multilayer perceptron can in principle be used to
address just about any classification task.

What the theorem does not tell us, however, is how many hidden neurons are
needed and what the values of the individual weights should be. In other words, we
know that the solution exists, but there is no guarantee we will ever find it.

6.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain how an example described by a vector of continuous attributes is
forward-propagated through the multilayer perceptron. How is the network’s
output interpreted when choosing the class label for the example?

• What is transfer function (also known as activation function)? Write down the
formula defining the sigmoid transfer function and comment on its shape.

• What is the universality theorem? What does it inform us about, and what does
it fail to tell us?

6.2 Neural Network’s Error 121

Table 6.1 Example of forward propagation in multilayer perceptrons

Task. Forward-propagate x = (x1, x2) = (0.8, 0.1) through the network below. To reduce the
necessary calculations, the bias attribute, x0, is ignored.

Solution.
Inputs of hidden-layer neurons:

z
(2)
1 = 0.8 × (−1.0) + 0.1 × 0.5 = −0.75

z
(2)
2 = 0.8 × 0.1 + 0.1 × 0.7 = 0.15

Outputs of hidden-layer neurons:

h1 = f (z
(2)
1) = 1

1+e−(−0.75) = 0.32

h2 = f (z
(2)
2) = 1

1+e−0.15 = 0.54

Inputs of output-layer neurons:

z
(1)
1 = 0.32 × 0.9 + 0.54 × 0.5 = 0.56

z
(1)
2 = 0.32 × (−0.3) + 0.54 × (−0.1) = −0.15

Outputs of output-layer neurons:

y1 = f (z
(1)
1) = 1

1+e−0.56 = 0.66

y2 = f (z
(1)
2) = 1

1+e−(−0.15) = 0.45

6.2 Neural Network’s Error

Before introducing the technique for MLP’s training, we need to take a closer look
at how to quantify the accuracy of its classification decisions.

Error Rate and Its Limitation Let us begin by presenting to the multilayer
perceptron an example, x, whose known class is c(x). Forward propagation results in
labeling x with h(x). If h(x) �= c(x), the classification is incorrect. This may happen
also to other examples, and the engineer wants to know how often this happens:
he/she wants to know the error rate.

122 6 Artificial Neural Networks

Error rate is calculated by dividing the number of errors by the number of
examples that have been classified. For instance, if the classifier misclassifies 30
out of 200 examples, the error rate is 30/200 = 0.15.

Error rate, however, paints but a crude picture of classification behavior. What it
fails to reflect is the sigmoid’s ability to measure the size of each error.

Numeric Example Suppose we are comparing two different neural networks, each
with three output neurons that correspond to three classes, C1, C2, and C3. Let us
assume that, for a given example x, one network outputs y1(x) = (0.5, 0.2, 0.9) and
the other y2(x) = (0.6, 0.6, 0.7). Consequently, x will in either case be labeled with
the third class, h1(x) = h2(x) = C3.

If the correct answer is c(x) = C2, both networks got it wrong. However, the
seriousness of the error is not the same. The reader will have noticed that the first
network appears “very sure” about the class: 0.9 is clearly greater than the other two
outputs, 0.5 and 0.2. By contrast, the second network seems rather undecided, the
differences of the outputs (0.6, 0.6, and 0.7) being so small as to make the choice of
C3 appear almost arbitrary. In view of its weaker commitment to the incorrect class,
the second network thus appears less mistaken than the first.

Situations of this kind are reflected in another performance criterion, the mean
squared error (MSE). The next paragraphs will explain its principle.

Target Vector Before being able to define mean squared error, we have to
introduce yet another important concept, the target vector. Let us denote by t(x)
the target vector of example, x. In a domain with m classes, the target vector,
t(x) = [t1(x), . . . , tm(x)], consists of m binary numbers. If the example belongs
to the i-th class, then ti (x) = 1 and all other elements in this vector are tj (x) = 0
(where j �= i).

Suppose that a given domain knows three classes, C1, C2, and C3, and suppose
that x belongs to C2. The second neuron should output 1, and the other two neurons
should output 0.3 The target is therefore t(x) = (t1, t2, t3) = (0, 1, 0).

Mean Squared Error The idea is to quantify the differences between the output
vector and the target vector:

MSE = 1

m

m∑

i=1

(ti − yi)
2 (6.5)

To obtain the network’s MSE, we need to establish for each output neuron the
difference between its output and the corresponding element of the target vector.
Note that the terms in the parentheses, (ti − yi), are squared to make sure that
negative differences are not subtracted from positive ones.

3More precisely, the outputs will only approach 1 and 0 because the sigmoid function is bounded
by the open interval (0, 1).

6.3 Backpropagation of Error 123

Returning to the example of the two networks mentioned above, if the target
vector is t(x) = (0, 1, 0), then the mean squared errors have the following values:

MSE1 = 1
3 [(0 − 0.5)2 + (1 − 0.2)2 + (0 − 0.9)2)] = 0.57

MSE2 = 1
3 [(0 − 0.6)2 + (1 − 0.6)2 + (0 − 0.7)2] = 0.34

The reader can see thatMSE2 <MSE1, which is in line with the intuition that the
second network should be deemed “less wrong” on x than the first.

6.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• In what sense does error rate fail to provide adequate information about a neural
network’s classification performance?

• Explain the difference between a neural network’s output, the example’s class,
and the target vector.

• Write down the formulas defining the error rate and the mean squared error.

6.3 Backpropagation of Error

In multilayer perceptrons, the network’s behavior is determined by the sets of
trainable weights, w

(1)
j i and w

(2)
kj . The task for machine learning is to find weights

that optimize classification performance. This is achieved by training.

General Scenario The procedure is analogous to the one employed by linear
classifiers. At the beginning, the weights are initialized to small random numbers,
typically from the interval [−0.1, 0.1], perhaps even smaller. Training examples are
then presented one by one, and each of them is forward-propagated to the output
layer. The discrepancy between the network’s output and the example’s target vector
determines how much to modify the weights (see below).

After weight modification, the next example is presented. When the last training
example has been reached, one epoch has been completed. In multilayer percep-
trons, the number of epochs needed for successful training is much greater than
what it was in linear classifiers: it can be thousands, tens of thousands, even more.

Local Minima and Global Minima Figure 6.3 helps us grasp the problem’s
nature. The vertical axis represents the mean squared error, a function of the
network’s weights plotted along the horizontal axes. For convenience, we pretend
that there are only two weights—which is unrealistic, but we cannot use more than
two because we are unable to visualize multidimensional spaces.

124 6 Artificial Neural Networks

Fig. 6.3 For a given
example, each set of weights
results in a certain mean
squared error. Training should
reduce this error as quickly as
possible, the steepest slope

The point is that the error function can be imagined as a kind of a “landscape”
whose “valleys” represent the function’s local minima. The deepest is the global
minimum, and this is what the training procedure ideally should reach; more
accurately, training wants to find the set of weights corresponding to the global
minimum.

Gradient Descent A quick glance at Fig. 6.3 tells us that any pair of weights
defines for the given training example a concrete location, typically somewhere on
one of the slopes. Any weight change will result in different coordinates along the
horizontal axes and thus a different value of the error function. Where exactly this
new location is, whether “up” or “down” the slope, will depend on how much, and
in what direction, each of the weights has changed. For instance, it may happen
that increasing both w1 and w2 by 0.1 will lead only to a minor reduction of the
mean squared error, whereas increasing w1 by 0.3 and w2 by 0.1 will reduce it
considerably.

The technique described below seeks weight changes that lead to the steepest
descent down the error function. In the language of mathematics, this is called
gradient descent.

Backpropagation of Error The weight-adjusting formulas can be derived from
Eq. 6.4 by finding the function’s gradient. This book is meant for practitioners
and not for mathematicians, so let us skip the derivation and focus instead on the
procedure’s behavior.

Intuitively, individual neurons differ in their contributions to the overall MSE:
some of them spoil the game more than others. If this is the case, then the links
leading to “bad” neurons should undergo more significant weight adaptations than
the links leading to less offensive ones; neurons that do not do much harm do not
need much change.

6.3 Backpropagation of Error 125

Each neuron’s responsibility for the overall error is established quite easily. The
concrete formulas depend on what transfer function has been used. If it is the
sigmoid defined by Eq. 6.1, then the responsibility is calculated as follows:

Output-layer neurons : δ
(1)
i = yi(1 − yi)(ti − yi)

Note that (ti − yi) is the difference between the network’s i-th output and the
corresponding target value. This difference is multiplied by yi(1 − yi).

The latter term is actually the sigmoid’s first derivative (recall Eq. 6.2), and its
minimum is reached when y1 = 0 or yi = 1—a “strong opinion” about whether
x should or should not be labeled with the i-th class. The term is maximized when
yi = 0.5, in which case the “opinion” is deemed neutral. Note that the sign of δ

(1)
i

depends only on (ti − yi) because yi(1 − yi) is always positive.

Hidden-layer neurons : δ
(2)
j = hj (1 − hj)

∑

i

δ
(1)
i w

(1)
j i

Responsibilities of hidden neurons are calculated by backpropagating the output
neurons’ responsibilities , δ(1)

i wji , obtained in the previous step. This is the role of

the term
∑

i δ
(1)
i wji . Note that each δ

(1)
i (the responsibility of the i-th output neuron)

is multiplied by the weight of the link connecting the i-th output neuron and the j -th
hidden neuron. The weighted sum is multiplied by, hj (1−hj), essentially the same
term as the one used in the previous step, except that the place of yi has been taken
by hj .

Weight Updates Now that we know the responsibilities of the individual neurons,
we are ready to update the weights of the links that lead to them. Similarly as in the
case of perceptron learning, an additive rule is used:

output-layer neurons: w(1)
j i := w

(1)
j i + ηδ

(1)
i hj

hidden-layer neurons: w(2)
kj := w

(2)
kj + ηδ

(2)
j xk

The size of weight correction is determined by ηδ
(1)
i hj or ηδ

(2)
j xk . Two observa-

tions can be made. First, the neurons’ responsibilities, δ
(1)
i and δ

(2)
j , are multiplied

by η, the learning rate which, theoretically speaking, is from the unit interval,
η ∈ (0, 1), but usually much smaller values are used, typically less than 0.1.
Second, the results are multiplied by hj ∈ (0, 1) and xk ∈ [−1, 1], respectively.
The correction is therefore small. Its real effect is relative. If the added term’s value
is, say, 0.02, then smaller weights, such as w

(1)
ij = 0.01, will be affected more

significantly than greater weights such as w
(1)
ij = 1.8.

The whole training procedure is summarized by the pseudo-code in Table 6.2.
The reader will benefit from taking a closer look at the numeric example in
Table 6.3, which provides all the necessary details of how the weights are updated
in response to a single training example.

126 6 Artificial Neural Networks

Table 6.2 Backpropagation of error in an MLP with one hidden layer

1. Present example x at the network’s input and forward-propagate it.
2. Let y = (y1, . . . ym) be the output vector, and let t(x) = (t1, . . . tm) be the target vector.
3. For each output neuron, calculate its responsibility, δ(1)

i , for the network’s error:

δ
(1)
i = yi(1 − yi)(ti − yi)

4. For each hidden neuron, calculate its responsibility, δ(2)
j , for the network’s error. While doing

so, use the responsibilities, δ(1)
i , of the output neurons as obtained in the previous step.

δ
(2)
j = hj (1 − hj)

∑
i δ

(1)
i w

(1)
j i

5. Update the weights using the following formulas, where η is learning rate:

output layer: w(1)
j i := w

(1)
j i + ηδ

(1)
i hj ; hj : the output of the j -th hidden neuron

hidden layer: w(2)
kj := w

(2)
kj + ηδ

(2)
j xk ; xk : the value of the k-th attribute

6. Unless a termination criterion has been satisfied, return to step 1.

Table 6.3 Illustration of backpropagation of error

Task. In the neural network below, let the transfer function be f (�) = 1
1+e−� . Using

backpropagation of error (with η = 0.1), show how the weights are modified after the presentation
of the following example: [x, t(x)] = [(1,−1), (1, 0)]. To reduce the necessary calculations, the
bias attribute, x0, is ignored.

Forward propagation.
The picture shows the state after forward propagation when the signals leaving the hidden and the
output neurons have been calculated as follows:

• h1 = 1
1+e−(−2) = 0.12

h2 = 1
1+e0

= 0.5

y1 = 1
1+e−(0.12+0.5) = 0.65

y2 = 1
1+e−(−0.12+0.5) = 0.59

(the solution continues on the next page)

6.4 Practical Aspects of MLP’s 127

Backpropagation of error (cont. from the previous page)

The target vector being t(x) = (1, 0) and the output vector y = (0.65, 0.59), the next step
establishes each neuron’s responsibility for the overall error. Here are the calculations for the
output neurons:

• δ
(1)
1 = y1(1 − y1)(t1 − y1) = 0.65(1 − 0.65)(1 − 0.65) = 0.0796

δ
(1)
2 = y2(1 − y2)(t2 − y2) = 0.59(1 − 0.59)(0 − 0.59) = −0.1427

Using these values, we calculate the responsibilities of the hidden neurons. Note that we will
first calculate (and denote by
1 and
2) the backpropagated weighted sums,

∑
i δ

(1)
i w

(1)
ij ,

for each of the two hidden neurons.

•
1 = δ
(1)
1 w

(1)
11 + δ

(1)
2 w

(1)
12 = 0.0796 × 1 + (−0.1427) × (−1) = 0.2223

2 = δ
(1)
1 w

(1)
21 + δ

(1)
2 w

(1)
22 = 0.0796 × 1 + (−0.1427) × 1 = −0.0631

δ
(2)
1 = h1(1 − h1)
1 = 0.12(1 − 0.12) × 0.2223 = 0.0235

δ
(2)
2 = h2(1 − h2)
2 = 0.5(1 − 0.5) × (−0.0631) = −0.0158

Once the responsibilities are known, weight modifications are straightforward:

• w
(1)
11 = w

(1)
11 + ηδ

(1)
1 h1 = 1 + 0.1 × 0.0796 × 0.12 = 1.00096

w
(1)
21 = w

(1)
21 + ηδ

(1)
1 h2 = 1 + 0.1 × 0.0796 × 0.5 = 1.00398

w
(1)
12 = w

(1)
12 + ηδ

(1)
2 h1 = −1 + 0.1 × (−0.1427) × 0.12 = −1.0017

w
(1)
22 = w

(1)
22 + ηδ

(1)
2 h2 = 1 + 0.1 × (−0.1427) × 0.5 = 0.9929

• w
(2)
11 = w

(2)
11 + ηδ

(2)
1 x1 = −1 + 0.1 × 0.0235 × 1 = −0.9977

w
(2)
21 = w

(2)
21 + ηδ

(2)
1 x2 = 1 + 0.1 × 0.0235 × (−1) = 0.9977

w
(2)
12 = w

(2)
12 + ηδ

(2)
2 x1 = 1 + 0.1 × (−0.0158) × 1 = 0.9984

w
(2)
22 = w

(2)
22 + ηδ

(2)
2 x2 = 1 + 0.1 × (−0.0158) × (−1) = 1.0016

After these weight updates, the network is ready for the next training example.

6.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Why is the training technique called “backpropagation of error”? Why do we
need to establish the neurons’ responsibilities?

• Discuss the behaviors of the formulas that calculate the responsibilities of the
neurons in different layers.

• Explain the behaviors of the weight-updating formulas.

6.4 Practical Aspects of MLP’s

To train multilayer perceptrons is more art than science. The engineer relies on
experience and on deep understanding of MLP’s various aspects. Let us briefly
survey some of the more important features that need to be kept in mind.

128 6 Artificial Neural Networks

Computational Costs Backpropagation of error is computationally expensive.
Upon the presentation of an example, the responsibility of each individual neuron
has to be calculated, and the weights modified accordingly. This is repeated for each
training example, usually for many epochs. To get an idea of the real costs of all
this, consider a network that is to classify examples described by 1000 attributes.
If there are 100 hidden neurons, then the number of weights in this lower layer
is 1000 × 100 = 105. This is how many weights have to be changed after each
training example. Note that the upper-layer weights can be neglected as long as the
number of classes is small. For instance, in a domain with three classes, the number
of upper-layer weights is 100 × 3 = 300, which is much less than the 105 weights
at the lower layer.

Suppose the training set consists of 104 examples, and suppose that the training
will run for 104 epochs. The number of weight updates is then 105 × 104 × 104 =
1013. This is a whole lot, but nothing out of the ordinary; many applications are
much more demanding. Methods of more efficient training have been developed,
but their detailed study is beyond the scope of an introductory text.

One-Hot Representation of Discrete Attributes Multilayer perceptrons expect
continuous-valued attributes, a limitation that is easy to overcome. The values of
Boolean attributes can be replaced with 1 for true and 0 for false. In the case
of multi-valued discrete attributes, the so-called one-hot representation is quite
popular. The idea is to replace the n-valued attribute with n binary attributes, of
which one and only one is set to 1 (“hot”), and all the others are set to 0.

For illustration, season has four values: spring, summer, fall, and
winter. One-hot representation replaces this attribute with four binary attributes,
one for each season. In this 4-tuple, for instance, spring is represented as
(1, 0, 0, 0) and fall is represented as (0, 0, 1, 0).

Batch Processing The weight adjustments do not have to be made after each
training-example presentation. An alternative method sums the weight modifica-
tions as they are recommended at each example presentation but carries out the
actual weight change only after the presentation of m training examples (where
m is a user-set parameter) by adding to each trainable parameter the sum of the
accumulated recommendations.

This batch training is not only computationally cheaper but also easier to imple-
ment because modern programming languages often support matrix operations.

Target Values Revisited For simplicity, we have so far assumed that each target
value is either 1 or 0. This may not be the best choice. For one thing, these values can
never be reached by a neuron’s output, yi because the range of the sigmoid function
is the open interval (0, 1). Moreover, the weight changes in the vicinity of these two
extremes are minuscule because the calculation of the output neuron’s responsibility,
δ
(1)
i = yi(1−yi)(ti −yi), returns a value very close to zero whenever yi approaches
0 or 1. Finally, we know that the classifier chooses the class whose output neuron
has returned the highest value. The individual neuron’s output precision therefore
is not so important; what matters is the comparison with the other outputs. If the

6.4 Practical Aspects of MLP’s 129

forward propagation results in y = (0.9, 0.1, 0.2), then the example is bound to be
labeled with the first class (the one supported by yi = 0.9), and this decision will
not be affected by minor weight changes.

In view of these arguments, more appropriate values for the target are recom-
mended: for instance, ti (x) = 0.8 if the example belongs to the i-th class, and
ti (x) = 0.2 if it does not. Suppose there are three classes, C1, C2, and C3, and
suppose that c(x) = C1. In this case, the target vector will be t(x) = (0.8, 0.2, 0.2).
Both 0.8 and 0.2 find themselves in regions of relatively high sensitivity of the
sigmoid function (in the curve’s “knee”) and as such will mitigate most of the
concerns raised in the previous paragraph.

Local Minima Figure 6.3 illustrates the main drawback of the gradient-descent
approach to MLP training. The weights are changed in a way that follows the
steepest slope, but once the bottom of a local minimum has been reached, there
is nowhere else to go—which is awkward: after all, the ultimate goal is to reach
the global minimum. Two things are needed: first, a mechanism to tell a local
minimum from a global one; second, a method to recover from having fallen into
local minimum.

One way to identify local minima in the course of training is to keep track of the
mean squared error (MSE) and to sum it up over the entire training set at the end of
each epoch. Under normal circumstances, this sum tends get smaller as the training
proceeds from one epoch to another. When it reaches a plateau where hardly any
error reduction is observed, the learning process is suspected of being trapped in a
local minimum.

Techniques to overcome this difficulty usually rely on adaptive learning rates (see
the next paragraph) and on adding new hidden neurons (see Sect. 6.5). Generally
speaking, the problem is less critical in networks with many hidden neurons. Also,
local minima tend to be shallower, and less frequent, if all weights are very small,
say, from the interval (−0.01, 0.01).

Time-Dependent Learning Rate When describing backpropagation of error, we
assumed a constant learning rate, η. In realistic applications, this is rarely the case.
Quite often, the training starts with a higher value of η, which is then gradually
decreased in time. Here is the motivation. At the beginning, the greater weight
changes reduce the number of epochs, and they may even help the MLP to “jump
over” some local minima. Later on, however, this large η might cause overshooting
the global minimum, and this is why its value should be decreased.

If we express the learning rate as a function of time, η(t), where t tells us how
many training epochs have been completed, then the following negative-exponential
formula will gradually reduce the learning rate (α is the slope of the negative
exponential, and η(0) is the learning rate’s initial value):

η(t) = η(0)e−αt (6.6)

Adaptive Learning Rate It should perhaps be noted that some advanced weight-
changing formulas are capable of reflecting “current tendencies.” For instance, one
popular solution consists in trying to implement a “momentum”: if the last two

130 6 Artificial Neural Networks

weight changes were in the same direction (both positive or both negative), it makes
sense to increase the weight-changing step; conversely, if a positive change was
followed by a negative change (of vice versa), the weight-changing step should be
reduced so as to prevent overshooting.

Overtraining Sufficiently large multilayer perceptrons are capable of modeling
any decision surface, and this makes them prone to overfitting the training set if the
training ran too long. The reader will recall that overfitting typically means perfect
classification of noisy training examples with disappointing performance on testing
examples. The phenomenon is often referred to as the network’s overtraining.

The problem is not so painful in the case of small MLPs that do not have so
many trainable parameters. But as the number of hidden neurons increases, the
network gains in flexibility, and overtraining/overfitting can be a reason for concern.
However, as we will learn in the next section, this does not mean that we should
always prefer small networks. Small networks have problems of their own.

Validation Set There is a simple method to detect overtraining. If the training set
is big enough, we can afford to leave aside some 10–20% examples for a so-called
validation set. The validation set is never used for backpropagation of error; it is
here to help us observe how the performance on independent data is evolving.

After each epoch, the training is interrupted, and the current version of the MLP
is tested on the validation set, At the beginning, the sum of mean squared errors on
the validation data tends to go down, but only up to a certain moment; then, it starts
growing again, alerting the engineer that the training now tends to overfit the data.

Another Activation Function: tanh For the sake of completeness, we have to
mention that, instead of sigmoid, another activation function is sometimes used,
in classical neural networks: the hyperbolic tangent, tanh. Let S be the sigmoid
function. tanh is then defined as follows:

tanh = 2S − 1 (6.7)

If the neural activation function is tanh, however, different formulas for the
backpropagation of error have to be used. Not to complicate things, this book has
focused on sigmoid and not on tanh.

6.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What can you say about the computational costs of the technique of backpropa-
gation of error?

• Explain why this section recommended the values of the target vector to be
chosen from {0.8, 0.2} instead of from {1,0}.

6.5 Big Networks or Small? 131

• Discuss the problem of local minima. Why do they pose a problem for training?
How can we reduce the danger of getting trapped in one?

• What are the benefits of an adaptive learning rate? What formula has been
recommended for it?

• What do you know about the danger that the training might result in overfitting
the training data? What countermeasure would you recommend?

6.5 Big Networks or Small?

How many hidden neurons to use? If there are only one or two, the network will
lack flexibility: it will be unable to develop a complicated decision surface, and its
training will be hampered by local minima. At the other extreme, using thousands
of hidden neurons means very high computational costs because of the need to train
so many neurons. Besides, very large networks are excessively flexible and as such
prone to overfit the training set. The two extremes being harmful, a compromise is
needed.

Performance Versus Size Suppose you run the following experiment. The avail-
able set of pre-classified examples is divided into two parts, one for training, and
the other for testing. Training is carried out by several neural networks, each with a
different number of hidden neurons. The networks are trained until no reduction of
the training-set error rate is observed. After this, the error rate on the testing data is
measured.

Optimum Number of Neurons The results of the experiment from the previous
paragraph will typically look something like those shown in Fig. 6.4. Here, the
horizontal axis represents the number of hidden neurons, and the vertical axis
represents the error rate measured on an independent testing set. Typically, the error

Fig. 6.4 Error rates on a testing set depend on the size of the hidden layer

132 6 Artificial Neural Networks

rate will be high in the case of very small networks because small networks lack
adequate flexibility and also suffer from the dangers posed by local minima. These
weaknesses are mitigated if we increase the number of hidden neurons. As shown
in the graph, these larger networks exhibit lower error rates. However, very large
networks tend to overtrain and thus overfit the data. From a certain point, the testing-
set error starts growing again (see the right tail of the graph).

The precise shape of this error curve depends on the complexity of the training
data. In simple domains, the error rate is minimized when the network contains no
more than 3–5 hidden neurons. In difficult domains, the minimum is reached only
when hundreds of hidden neurons are employed. Also worth mentioning is the case
where the training examples are completely noise-free. In this event, overfitting is
less of an issue, and the curve’s right tail may grow only moderately.

Search for Appropriate Size The scenario described above is for practical
applications too expensive. After all, we have no idea whether we will need just
a few neurons, or dozens of them, or hundreds, and we may have to rerun the
computationally intensive training a great many times before establishing the size. It
would thus be good to know some technique capable of finding the right size more
efficiently.

One such technique is summarized by the pseudo-code in Table 6.4. The idea is
to start with a very small network that only has a few hidden neurons. After each
epoch, the learning algorithm checks the sum of the mean squared errors observed
on the training set. The sum of errors is likely to decrease with the growing number
of epochs—but only up to a certain point. When this is reached, the network’s
performance no longer improves, either because of its insufficient flexibility or
because it got stuck in a local minimum. When this is observed, a few more neurons
with randomly initialized weights are added, and the training is resumed.

Usually, the added neurons lead to further error reduction. In the illustration from
Fig. 6.5, MSE levels off on two occasions; in both, adding new hidden neurons
provided the necessary new flexibility.

Networks with More Than One Hidden Layer Up till now, only a single hidden
layer has been considered. Practical experience shows, however, that, as far as
computational costs and classification performance are concerned, better results

Table 6.4 Gradual search for appropriate size of the hidden layer

1. At the beginning, use only a few hidden neurons.
2. Train the network until the mean squared error no longer seems to improve.
3. At this moment, add a few neurons to the hidden layer, each with randomly initialized weights,

and resume training.
4. Repeat the previous two steps until a termination criterion has been satisfied; for instance,

when the new addition does not result in a significant error reduction, or when the hidden layer
exceeds a user-set maximum size.

6.5 Big Networks or Small? 133

Fig. 6.5 When the training-set MSE does not seem to decrease, improvement may be possible by
adding new hidden neurons. In this case, this happened twice

Fig. 6.6 Multilayer perceptron with three hidden layers

are sometimes achieved in neural networks with two or more hidden layers—the
one in Fig. 6.6 has three hidden layers. The principles of forward and backward
propagation remain virtually unaltered.

Let us introduce the formalism to be used in the training formulas. The reader will
recall that previous sections referred to MLP’s layers by superscripts. For instance,
this convention denoted by δ

(1)
i the error responsibility of the i-th output neuron and

by w
(2)
kj the weight connecting the k-th attribute to the j -th hidden neuron.

In the case of networks with multiple hidden layers, we will refer to the output
layer by superscript (1), the highest hidden layer by superscript (2), the next layer

134 6 Artificial Neural Networks

by superscript (3), and so on. Following this formalism, we will denote by δ
(k)
i the

error responsibility of the i-th neuron in the k-th layer; the weights leading to this
neuron will be denoted by w

(k)
ij , and the output of this i-th neuron will be denoted

by h
(k)
i . Note that, with these denotations, the network’s output is yi = h

(1)
i .

Learning withMultiple Hidden Layers First of all, we use the output-layer errors
to establish the error responsibilities of the output neurons in exactly the same way
as in the case of the networks with a single hidden layer presented in Sect. 6.3.

The responsibilities thus obtained are then backpropagated all the way down to
the input layer using the following generalization of the formula from Sect. 6.3:

δ
(k)
j = �iδ

(k−1)
i w

(k−1)
j i

Once all neural responsibilities are known, they are used in the following weight
modifications (as before, η is the learning rate, usually much smaller than in
perceptrons):

w
(k)
ji = w

(k)
ji + ηδ

(k)
i h

(k+1)
j

Vanishing Gradient In the case of MLP’s with sigmoid transfer function, expe-
rience has shown using more than two or three layers hardly ever adds to the
networks’ utility. The reason is known as the problem of vanishing gradient. Here
is what it means.

In sigmoid transfer function, the output error values, (ti − yi), can be very small,
and the same happens at the lower layers. Moreover, the multiplier, h(k)

j (1−h
(k)
j), is

small, as well. By consequence, the weight modification terms,
w
(k)
ji , can become

very small, almost imperceptible, as the value of the superscript k increases. When
more than, say, three hidden layers are used, the learning process thus becomes
computationally inefficient.

Concluding Comments on Multiple Hidden Layers The advantage of additional
hidden layers is in the extra flexibility they offer. The disadvantage is the inefficiency
of the learning process caused by the phenomenon of the vanishing gradient.
Moreover, the additional layers usually increase the number of trainable parameters,
and Chap. 7 will explain that the more trainable parameters we have, the more
training examples are needed to reduce the danger of overtraining.

In the case of deep learning (see Chap. 16), many hidden layers are sometimes
used. This is made possible not only by the much higher power of today’s computers
but also by the idea of using more appropriate transfer functions.

6.6 Modern Approaches to MLP’s 135

6.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Discuss the shape of the curve from Fig. 6.4. What are the shortcomings of very
small and very large networks?

• Explain the algorithm that searches for a reasonable size of the hidden layer.
What difficulties does it face?

• What are the advantages and disadvantages of using two or more hidden layers
instead of just one? Explain the problem known as vanishing gradient.

6.6 Modern Approaches to MLP’s

Over the last decade or so, the field of artificial neural networks has undergone
dramatic evolution, culminating in the technology known as deep learning. Let us
summarize some of the most important changes so as to prepare soil for Chap. 16.

Currently Popular Activation Functions One of the basic tenets of artificial
neural networks is that the neural transfer functions have to be non-linear. During the
first generations, hardly anybody doubted that the shape sigmoid is particularly
useful, here. It was only recently that the scientific community realized that the
non-linearities in much simpler piece-wise linear functions are just as good while
offering some other advantages.

Figure 6.7 shows two currently popular activation functions. On the left is ReLU,
which is an acronym for Rectified Linear Unit, and on the right is the LReLU,
which is an acronym for Leaky Rectified Linear Unit. Both functions contain non-
linearities, and both are differentiable, even if only piece-wise. Importantly, unlike
sigmoid, none of them is upper-bounded.

Fig. 6.7 Instead of sigmoids, modern neural networks prefer other activation functions, most
typically ReLU (on the left) and LReLU (on the right)

136 6 Artificial Neural Networks

Advantages of ReLU and LReLU Piece-wise linear functions are easy to dif-
ferentiate. The first derivative at any interval of the input domain is a constant,
sometimes even zero. The reader will agree that such derivatives are computation-
ally cheaper and easier to backpropagate.

The fact that ReLU and LReLU do not suffer from the sigmoid’s being
imprisoned by the open interval (0, 1) not only allows the network to output values
exceeding 1 but also virtually eliminates the problem of vanishing gradient. This
means that networks with these activation functions can have many hidden layers
without suffering from the main limitations of classical sigmoid-based MLP’s.

Soft-Max: Turning Outputs to Probabilities Another recent innovation is certain
post-processing of the network’s output signals. This is motivated by the desire to
interpret the outputs as probabilities that sum to 1.

Let (y1, . . . , yN) be the vector of the N outputs of the given neural network.
The so-called softmax function recalculates the individual outputs by the following
equation:

pi = eyi

�j e
yj

(6.8)

It would be easy to verify that �ipi = 1.

Numeric Example Suppose that an MLP with three output neurons outputs the
following vector: y1 = 0.3, y2 = 0.8, and y3 = 0.2. Substituting these outputs in
Eq. 6.8, we obtain the following values: p1 = 0.28, p2 = 0.46, and p3 = 0.26. We
can see that, indeed, 0.28 + 0.46 + 0.26 = 1.0.

Information Loss Instead ofMSE The fact that the outputs can now be interpreted
as probabilities offers an interesting alternative to the way the network’s error on
a given example is measured. Instead of the mean squared error, a so-called loss
function is often used. Here is the principle.

Suppose that an example belonging to class Ci has been presented at the input
of an MLP and that this example’s attribute values have been forward-propagated
to the network’s output. Suppose that after softmax, the i-the output (the one
corresponding to class Ci) is pi . Recalling what Chap. 5 had to say about how to
measure information, the reader will agree that the amount of information conveyed
by the message “the example belongs to the i-th class” can be calculated as follows:

L = − log2 pi (6.9)

In the language of machine learning, we say that the loss of the MLP upon the
presentation of the given example is the L calculated by Eq. 6.9.

6.7 Radial Basis Function Networks 137

6.6.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Write the equations defining the ReLU and LReLU activation functions. What
are their main advantages in comparison with the classical sigmoid?

• How is the softmax function defined?What are its advantages in comparison with
the classical mean squared error?

• Define the neural network’s loss function, and comment on its relation to
information measurement.

6.7 Radial Basis Function Networks

Another popular class of neural networks is called radial basis function (RBF)
network. Let us take a closer look.

Neurons Transform the Original Feature Space The behavior of an output
neuron in a multilayer perceptron is similar to that of a linear classifier. This means
that it may fare poorly in domains with classes that are not linearly separable. In the
context of neural networks, however, this limitation is not necessarily harmful: the
original examples have been transformed by the sigmoid functions in the hidden
layer. Consequently, the neurons in the output layer deal with new “attributes,”
those obtained by this transformation. In the process of training, these transformed
examples (the outputs of the hidden neurons) may become linearly separable so that
the output-layer neurons can easily separate the classes.

Another Kind of Transformation There is another way of transforming the
attribute values: by employing for the transfer function at hidden neurons the so-
called radial-basis function (RBF). This is the case of the network depicted in
Fig. 6.8. An example presented to the input is passed through a set of neurons that
each return a value denoted here as ϕj .

Fig. 6.8 Radial-basis
function network

138 6 Artificial Neural Networks

Radial-Basis Function (RBF) This is essentially the function used to model
Gaussian distribution that we encountered in Chap. 2. Suppose that the attributes
describing the examples all fall into some reasonably sized interval, say, [−1, 1].
For a given variance, σ 2, the following equation defines the n-dimensional Gaussian
surface centered at μj = [μj1, . . . μjn] (the symbol “exp(x)” means “e to the power
of x,” where e is the base of natural logarithm):

ϕj (x) = exp{−�n
i=1(xi − μji)

2

2σ 2
} (6.10)

RBF Networks In a sense, ϕj (x) measures the similarity between the example
vector, x, and the Gaussian center, μj : the greater the distance between the two,
the smaller the value of ϕj (x). When vector x is to be classified, the network
first transforms it to ϕ(x) = [ϕ1(x), . . . , ϕm(x)], where each ϕj (x) measures the
similarity of x to another center, μj .

The output signal of the i-th output neuron is yi = ∑m
j=0 wjiϕj (x), where wji

is the weight of the link from the j -th hidden neuron to the i-th output neuron (the
weights w0i are connected to a fixed ϕ0 = 1). This output signal being interpreted
as the amount of evidence supporting the i-th class, the example is labeled with the
i-th class if yi = maxk(yk).

One difference between the Bayesian classification and RBF networks is during
the first reading often overlooked. The Naive Bayes classifier assumes all attributes
to be mutually independent, and it can therefore work with the exponential functions
of the scalar attributes. In RBF networks, however, the Gaussian centers are vectors,
μj = [μj1, . . . μjn].
Output-Layer Weights It is easy to establish the output-layer weights, wij . Since
there is only one layer of weights to be trained, we can use the perceptron learning
algorithm from Chap. 4, applying it to examples whose descriptions have been
transformed by the RBF functions of the hidden-layer neurons.

Gaussian Centers Common practice identifies the Gaussian centers, μj , with the
individual training examples (again, note the relation to Bayesian classifiers). If the
training set is small, we can simply use one hidden neuron per training example.

In many realistic applications, though, the training sets are large, and this can
mean thousands of hidden neurons, even more. Realizing that impractically large
networks can be unwieldy, many engineers prefer to select for the centers only a
small subset of the training examples. Often, the choice is made at random. Another
possibility is to find groups of similar vectors and then use for each RBF neuron
the center of one group. Groups of similar vectors are discovered by the so-called
cluster analysis that will be discussed in Chap. 15.

RBF-Based Support Vector Machines The RBF neurons transform the original
example into a new vector of the transformed values, φ1, . . . φm. Most of the time,
this transformation increases the chances that the newly described examples will be
linearly separable. They can therefore be input to a linear classifier whose weights
are trained by perceptron learning.

6.8 Summary and Historical Remarks 139

Let us mention here that it is quite popular to apply to the transformed examples
the support vector machine introduced in Sect. 4.7. The maximized margins then
optimize classification behavior on future examples. The resulting machine-learning
tool is usually referred to as RBF-based SVM. Especially in domains where the
inter-class boundaries are highly non-linear, this classifier is more powerful than the
plain linear SVM.

Computational Costs RBF-network training consists of two steps. First, the
centers of the radial-basis functions (Gaussian functions) are selected. Second, the
output neurons’ weights are obtained by perceptron training or by SVM. Since there
is only one layer to train, the process is computationally less intensive than the
training of multilayer perceptrons.

Relation to Nearest-Neighbor Classifiers Each Gaussian function represents a
certain region in the instance space, and the output of this function quantifies a
given example’s distance from the center of this region. Suppose that each Gaussian
is defined by one training example. In that event, the hidden layer transforms the
original attributes into a feature vector that consists of the example’s similarities
to the individual training examples. The output neurons receive linear functions of
these similarities.

In this sense, the RBF network can be seen as just another version of the
nearest-neighbor approach. Many aspects of k-NN classifiers are equally relevant
in RBF networks and as such have to kept in mind. Among these, perhaps the most
important are irrelevant and redundant attributes, harmful and redundant examples,
noise, and scaling (with the need to normalize attributes).

6.7.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the principle of the radial-basis function network. In what aspects does
it differ from the multilayer perceptron?

• How many weights need to be trained in an RBF network? What training
approach would you use?

• What are the possibilities for the creation of the Gaussian functions in the hidden
layer?

6.8 Summary and Historical Remarks

• The basic unit of multilayer perceptrons (MLP) is a neuron. The neuron receives
a weighted sum of inputs and subjects this sum to a transfer function (also known
as activation function). Several alternative transfer functions have been used.

140 6 Artificial Neural Networks

Classical is the sigmoid defined by the following equation, where � is the
weighted sum of inputs:

f (�) = 1

1 + e−�

Usually, all neurons use the same transfer function.
• The simplest version of an MLP consists of one output layer and one hidden

layer of neurons. Neurons in adjacent layers are fully interconnected. There are
no connections between neurons in the same layer. An example presented at the
network’s input is forward-propagated to its output, implementing, in principle,
the following function:

yi = f (
∑

j

w
(1)
j i f (

∑

k

w
(2)
kj xk))

Here, w
(1)
j i and w

(2)
kj are the weights of the output neurons and the hidden

neurons, respectively, and f is the activation function.
• MLP training is accomplished by backpropagation of error. For each training

example, the technique first establishes each neuron’s responsibility for the
network’s overall error and then updates the weights according to these respon-
sibilities.

Here is how the responsibilities are calculated:

output neurons: δ(1)
i = yi(1 − yi)(ti − yi)

hidden neurons: δ(2)
j = hj (1 − hj)

∑
i δ

(1)
i wij

Here is how the weights are updated:

output layer: w(1)
j i := w

(1)
j i + ηδ

(1)
i hj

hidden layer: w(2)
kj := w

(2)
kj + ηδ

(2)
j xk

• Among the practical aspects of MLP training that the engineer has to consider,
the most serious are excessive computational costs, existence of local minima,
the need for adaptive learning rate, the danger of overfitting, and the size of the
hidden layer.

• When more than one hidden layer is used, essentially the same learning formulas
are used. The MLP is then more flexible but suffers from its own shortcomings
such as excessive computational costs and vanishing gradient (the lower the
hidden layer, the weaker the learning signal).

• Modern approaches to MLP differ from classical ones in three main aspects.
First, activation functions ReLU and LReLU are used instead of sigmoid.
Second, the output is subjected to the softmax function that makes it possible
to interpret the network’s outputs as probabilities. Third, the network’s error is
measured by an information-based loss function instead of the mean squared
error.

6.9 Solidify Your Knowledge 141

• An alternative to MLP is the radial-basis function (RBF) network. For the
transfer function at the hidden-layer neurons, the Gaussian function is used. The
output-layer neurons often use the step function (in principle, a linear classifier)
or simply a linear function of the inputs.

• In RBF networks, each Gaussian center is identified with one training example.
If there are too many training examples, a random choice is sometimes made.
Alternatively, cluster analysis can be used, and each neuron is then associated
with one of the discovered clusters. If the domains of the original attributes have
been normalized to [−1, 1], the Gaussian variances are usually set to σ 2 = 1.

• The output-layer neurons in RBF networks can be trained by perceptron learning.
Only one layer of weights needs to be trained, and this makes RBF networks
computationally more affordable than MLPs.

• Sometimes, support vector machines (SVMs) are applied to the outputs of the
hidden neurons. The resulting tool is known as RBF-based SVM, and it tends to
give better results than when perceptron training is used—though at the price of
higher computational costs.

• The hidden layers in MLP’s and the Gaussian functions in RBF networks can
be seen as useful methods of creating meaningful higher-level features from
the original attributes. In the case of RBF networks, the new features are linear
functions of the example’s similarities to the individual training examples.

Historical Remarks Research of neural networks was famously delayed by the
skeptical views expressed by Minsky and Papert (1969). The pessimism voiced by
these famous scholars was probably the main reason why an early version of neural-
network training by Bryson and Ho (1969) was largely overlooked, a fate soon
to be shared by an independent successful effort by Werbos (1974). It was only
after the publication of the groundbreaking volumes by Rumelhart and McClelland
(1986), where the algorithm was independently reinvented, that the field of artificial
neural networks became a respectable scientific discipline. More specifically, they
popularized the rediscovery by Rumelhart et al. (1986).4 The gradual growth of
the multilayer perceptron was proposed by Ash (1989). The idea of radial-basis
functions was first cast in the neural-network setting by Broomhead and Lowe
(1988).

6.9 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

4The authors honestly acknowledge that this was a rediscovery.

142 6 Artificial Neural Networks

6.9.1 Exercises

1. Return to the illustration of backpropagation of error in Table 6.3. Using only
a pen, a paper, and a calculator, repeat the calculations for a slightly different
training example: x = (−1,−1), t (x) = (0, 1).

2. Hand-simulating backpropagation of error as in the previous example, repeat the
calculation for the following weight initializations:

high output-layer weights: w(1)
11 = 3.0, w(1)

12 = −3.0, w(1)
21 = 3.0, w(1)

22 = 3.0

small output-layer weights: w(1)
11 = 0.3, w(1)

12 = −0.3, w(1)
21 = 0.3, w(1)

22 = 0.3
Observe the relative changes in the weights in each case.

3. Consider a training set containing of 105 examples described by 1000 attributes.
What will be the computational costs of training a multilayer perceptron with
1000 hidden neurons and 10 output neurons for 105 epochs?

6.9.2 Give It Some Thought

1. Suggest a generalization of backpropagation of error for a multilayer perceptron
with more than one hidden layer.

2. Section 6.1 suggested that all attributes should be normalized here to the interval
[−1.0, 1.0]. How will the network’s classification and training be affected if the
attributes are not normalized in this way? (Hint: this has something to do with
the sigmoid function.)

3. Discuss the similarities and differences of the classification procedures used in
radial-basis functions and those used in multilayer perceptrons.

4. Compare the advantages and disadvantages of radial-basis function networks
when compared to multilayer perceptrons.

6.9.3 Computer Assignments

1. Write a program that implements backpropagation of error for a predefined
number of output neurons and hidden neurons. Use a fixed learning rate, η.
Apply this program to selected benchmark domains from the UCI repository.5

Experiment with different values of η, and see how they affect the speed of
convergence.

2. For a given data set, experiment with different numbers of hidden neurons in the
multilayer perceptron, and observe how they affect the network’s ability to learn.

5www.ics.uci.edu/~mlearn/MLRepository.html.

www.ics.uci.edu/~mlearn/MLRepository.html

6.9 Solidify Your Knowledge 143

3. Again, experiment with different numbers of hidden neurons. This time, focus
on computational costs. How many epochs will the network need to converge?
Observe also how error rate changes with time.

4. Write a program that for a given training set creates a radial-basis function
network. For large training sets, select at random the examples to define the
Gaussian centers. Apply the program to selected benchmark domains from the
UCI repository.

5. Create an artificial two-dimensional domain with two attributes, both from the
unit interval, [0, 1]. In this unit square, define a certain region such as a circle,
rectangle, or perhaps something more complex. Label all examples inside this
region as positive and all examples outside this region as negative. Then train
an MLP on these training data. Then create an “exhaustivw” testing set where
for each combination of the two values (minimum step 0.01) the points labeled
by the induced network as positive are black and points labeled as negative are
white. This will help visualize the shape of the region of positive examples. Show
this region evolves in time (say, after each 100 training epochs). Experiment with
different sizes of the hidden layer.

Chapter 7
Computational Learning Theory

As they say, nothing is more practical than a good theory. And indeed, mathematical
models of learnability have helped improve our understanding of what it takes
to induce a useful classifier from data, and, conversely, why the outcome of a
machine-learning undertaking often disappoints the user. And so, even though this
textbook does not want to be mathematical, it cannot help discussing at least the
basic concepts of the computational learning theory.

At the core of this theory is the idea of PAC-learning, a paradigm that makes
it possible to quantify learnability. Restricting itself to domains with noise-free
discrete attributes, the first section of this chapter derives a simple expression that
captures the mutual relation between the training-set size and the induced classifier’s
error rate. Practical consequences of this formula are briefly discussed in the two
sections that follow. For domains with continuous attributes, the idea of the VC-
dimension is then introduced.

7.1 PAC Learning

Perhaps the most useful idea behind the computational learning theory is the one of
“probably approximate learning,” sometimes abbreviated as PAC learning. Let us
explain the underlying principles and then derive a formula that will provide some
useful guidance.

Assumptions and Definitions The analysis will be easier if we build it around
a few simplifying assumptions. First, the training examples—and also all future
examples—are completely noise-free. Second, all attributes are discrete (none of
them is continuous-valued). Third, the classifier acquires the form of a logical
expression of attribute values; the expression is true for positive examples and false

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_7

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_7

146 7 Computational Learning Theory

for negative examples. Finally, there exists at least one expression that correctly
classifies all training examples.1

Each of the logical expressions can then be regarded as one hypothesis about
what the classifier should look like. Together, the hypotheses form a hypothesis
space whose size (the number of distinct hypotheses) is |H |. Under the assumptions
listed above, |H | is a finite number.

Inaccurate Classifier May Still Succeed on the Training Set Available training
data rarely exhaust all subtleties of the underlying class. A classifier that labels
correctly all training examples may still perform poorly in the future. The frequency
of these mistakes may drop if we add more training examples because these
additions may reflect aspects that were not represented in the original data. Here
is the rule of thumb: the more training examples we have, the better the classifier
induced from them.

How many training examples will give us a decent chance of future success?
To find the answer, we will first consider a hypothetical classifier whose error rate
on the entire instance space is greater than some predefined ε. Put another way,
the probability that this classifier will label correctly a randomly picked example
is less than 1 − ε. Taking this reasoning one step further, the probability, P , that
this imperfect classifier will label correctly m random examples is bounded by the
following expression:

P ≤ (1 − ε)m (7.1)

Here is what it means: with probability P ≤ (1 − ε)m, an entire training set
consisting of m examples will be correctly classified by a classifier whose error
rate actually exceeds ε. Of course, this probability is for a realistic m very low.
For instance, if ε = 0.1 and m = 20 (which is a small set indeed), we will have
P < 0.12. If we increase the training-set size to m = 100 (while keeping the error
rate bounded by ε = 0.1), then P drops to less than 10−4. True, this is a very small
number; but low probability is not impossibility.

Eliminating Poor Classifiers Suppose that an error rate greater than ε is deemed
unacceptable. What are the chances that a classifier with performance as poor as that
will be induced from the given training set (in other words, that it classifies correctly
all training examples)?

The hypothesis space consists of |H | classifiers. Let us consider the theoretical
possibility that we evaluate all these classifiers on the m training examples and
then retain only those classifiers that have never made a mistake. Among these
“survivors,” some will disappoint in the sense that, while being error-free on the
training set, their error rates on the entire instance space actually exceed our
tolerance, ε. Let there be k such offending classifiers.

1The attentive reader has noticed that all these requirements were satisfied by the “pies” domain
from Chap. 1.

7.1 PAC Learning 147

The concrete value of k cannot be established without evaluating each single
classifier on the entire instance space. This being in the real world impossible, all
we can say is that k ≤ |H |, which is better because |H | is known in many realistic
cases, or at least can be calculated.2

Let us rewrite the upper bound on the probability that at least one of the k

offending classifiers will be error-free on the m training examples.

P ≤ k(1 − ε)m ≤ |H |(1 − ε)m (7.2)

This last expression establishes an upper bound on the probability that m training
examples will succeed in eliminating all classifiers whose error rate on the entire
instance space exceeds ε.

To become useful, the last expression has to be modified. We know from
mathematics that 1 − ε < e−ε , which means that (1 − ε)m < e−mε . With this
in mind, we will express the upper bound in exponential form:

P ≤ |H | · e−mε (7.3)

Suppose we want this probability to be lower than some user-set δ:

|H | · e−mε ≤ δ (7.4)

Taking the logarithm of both sides, and rearranging the terms, we obtain the
formula that we will work with in the next few pages:

m >
1

ε
(ln |H | + ln

1

δ
) (7.5)

Probably Approximately Correct (PAC) Learning The reason why we took the
trouble of going through this derivation is that the reader thus gets a better grasp
of the meanings and interpretations of the variables that may otherwise be a bit
confusing. For quick reference, these variables are summarized in Table 7.1.

We are now able to define some important concepts. A classifier with error
rate under ε is deemed approximately correct, and δ is the probability that this

Table 7.1 Variables involved
in the analysis of
PAC-learnability

m . . . The number of training examples

|H | . . . The size of the hypothesis space

ε . . . The classifier’s maximum permitted error rate

δ . . . The probability that a classifier with error rate

greater than ε is error-free on the training set

2Recall that in the “pies” domain from Chap. 1, the size of the hypothesis space was |H | = 2108.
Of these hypotheses, 296 classified correctly the entire training set.

148 7 Computational Learning Theory

approximately correct classifier will be induced from m training examples (m being
a finite number). Hence the name of the whole paradigm: probably approximately
correct learning, or simply PAC learning. For the needs of this chapter, we will say
that a concept is not PAC-learnable if the number of examples needed to satisfy
the given (ε, δ)-requirements is so high that we cannot expect a training set of this
size ever to be available—or, if it is available, that the learning software will need
impractically long time (say, thousands of years) to induce from it the classifier.

Interpretation Inequality 7.5 specifies howmany training examples,m, are needed
if, with probability at least δ, a classifier with error rate below ε is to be induced.
Note that this result does not depend on the concrete machine-learning technique. It
depends only on the size, |H |, of the hypothesis space defined by the given type of
classifier.

An important circumstance to remember is that m grows linearly in 1/ε. For
instance, if we strengthen the limit on the error rate from ε = 0.2 to ε = 0.1,
we will need (at least in theory) twice as many training examples to have the same
chance, δ, of success. At the same time, the reader will also notice that m is less
sensitive to changes in δ, growing only with the logarithm of 1/δ.

This said, we must not forget that our derivation was something like a worst-case
analysis. As a result, the bound it has given us is less tight than a perfectionist might
desire. For instance, the derivation allowed the possibility that k = |H |, which is
clearly too pessimistic. Inequality 7.5 should thus never be interpreted as telling us
how many training examples to use. It only provides a guidance that allows us to
compare the learnability of alternative classifier types. We will pursue this idea in
the next section.

7.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What are the meanings of the four variables (m, |H |, ε, and δ) used in Inequal-
ity 7.5?

• What does the term PAC learning refer to? Under what circumstances do we say
that a class is not PAC-learnable?

• Derive Inequality 7.5. Discuss the meaning and practical consequences, and
explain why it should only be regarded as a worst-case analysis.

7.2 Examples of PAC-Learnability

Inequality 7.5 tells us how learnability, defined by the (ε, δ)-requirements, depends
on the size of the hypothesis space. Let us illustrate its use on two concrete
classifiers.

7.2 Examples of PAC-Learnability 149

Conjunctions of Boolean Attributes: The Size of the Hypothesis Space Suppose
that all attributes are Boolean, that all data are noise-free, and that an example’s
class is known to be determined by a logical conjunction of attribute values: if true,
then the example is positive, otherwise it is negative. For instance, the labels of the
training examples may be determined by the following expression:

att1 = true AND att3 = false

This expression will label an example as positive if the value of the first attribute
is true and the value of the third attribute is false, regardless of any other attribute
(the other attributes are irrelevant for the classification). An example that fails to
satisfy these two conditions will be labeled as negative.

Note that only conjunctions (ANDs) are permitted here, and that this constraint
means that there are no ORs and no parentheses. The task for machine learning is
to find an expression that satisfies this constraint and correctly labels all training
examples. The set of all conjunctions permitted by the given language forms the
hypothesis space, |H |. What is the size of this space?

In a logical conjunction of the kind specified above, each attribute is either true
or false or irrelevant. This gives us three possibilities for the first attribute, times
three possibilities for the second, and so on, times three possibilities for the last,
n-th, attribute. The size of the hypothesis space is therefore |H | = 3n.

Conjunctions of Boolean Attributes: PAC-Learnability Suppose that a noise-
free training set is presented to machine-learning software capable of inducing
classifiers of the just-defined form. To satisfy the last of the assumptions from the
beginning of Sect. 7.1, we assume that at least one logical conjunction classifies
correctly all training examples.

Since ln |H | = ln 3n = n ln 3, we rewrite Inequality 7.5 as follows:

m >
1

ε
(n ln 3 + ln

1

δ
) (7.6)

We have obtained a conservative lower bound on the number of training examples
that are needed if our (ε, δ)-requirements are to be satisfied: with probability δ, the
induced classifier (error-free on the training set) will exhibit error rate less than ε on
the entire instance space.

Note that the value of this expression grows linearly in the number of attributes,
n. Theoretically speaking, then, if n is doubled, then twice as many training
examples will be needed if, with probability limited by δ, classifiers with error rates
above the predefined ε are to be weeded out.

Any Boolean Function: The Size of the Hypothesis Space Let us now investigate
a broader class of classifiers, namely those defined by any Boolean function,
allowing for all three basic logical operators (AND, OR, and NOT) as well as any
number of parentheses. As before, we will assume that the examples are described
by n Boolean attributes, and that they are noise-free.

What is the size of this hypothesis space?

150 7 Computational Learning Theory

From n Boolean attributes, 2n different examples can be created. This defines
the size of the instance space. For any subset of these 2n examples, there exists at
least one logical function that is true for all examples from this subset (labeling
them as positive) and false for all examples from outside this subset (labeling them
as negative). Two logical functions are regarded as identical from the classification
point of view if both of them label any example with the same class; that is, if they
never differ in their “opinion” about any example’s class. The number of logical
functions mutually distinct in their classification behavior is the same as the number
of the subsets of the instance space.

A set consisting of X elements is known to have 2X subsets. Since our specific
instance space consists of 2n examples, the number of its subsets is 22

n
—and this is

the size of our hypothesis space:

|H | = 22
n

(7.7)

Any Boolean Function: PAC-Learnability Since ln |H | = ln 22
n = 2n ln 2,

Inequality 7.5 acquires the following form:

m >
1

ε
(2n ln 2 + ln

1

δ
) (7.8)

We conclude that the lower bound on the number of the training examples that
are needed if the (ε, δ)-requirements are to be satisfied grows here exponentially in
the number of attributes, n.

Such growth is prohibitive for any realistic value of n. For instance, even if we
add only a single attribute, so that we now have n + 1 attributes, the value of ln |H |
will double because ln |H | = 2n+1 ln 2 which is twice as much as 2n ln 2. And if
we add ten attributes, n + 10, then the value of ln |H | increases a thousand times
because ln |H | = 2n+10 ln 2 = 210 · 2n ln 2 = 1, 024 · 2n · ln 2. In other words, we
would need a thousand times larger training set.

This observation is enough to convince us that a classifier in this general form is
not PAC-learnable.

Word of Caution We must be careful not to jump to conclusions. As pointed out
earlier, the derivation of Inequality 7.5—a worst-case analysis of sorts—relied on
simplifying assumptions that render the obtained bounds rather conservative. In
reality, the number of the training examples needed for the induction of a reliable
classifier is much smaller than what our “magic formula” suggested. This said, the
formula does offer evidence that an attempt to induce the “any Boolean function”
will be extremely sensitive to the presence of irrelevant attributes, whereas the
“conjunctions-only” classifier is less demanding.

For the engineer seeking to choose an appropriate learning technique, Inequal-
ity 7.5 thus offers a way of comparing PAC-learnability of classifiers constrained by
different “languages.” In our case, we saw that a conjunction of attribute values can

7.3 Practical and Theoretical Consequences 151

be learned from a reasonably-sized training set, whereas a general concept defined
by any Boolean function usually cannot.

Some other corollaries will be discussed in Sect. 7.3.

7.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the size of a hypothesis space consisting of conjunctions of attribute
values? Substitute this size to Inequality 7.5 and discuss the result.

• Can you find the value of |H | for some other class of classifiers?
• Explain, in plain English, why a Boolean function in its general form is not PAC-

learnable.

7.3 Practical and Theoretical Consequences

The analysis in this chapter’s first section offers a broader perspective of the learning
task; a closer look at its results discovers practical clues whose benefits range from
purely intellectual satisfaction of the theoretician to practical guidelines appreciated
by the down-to-earth engineer. Let us take a quick look.

Bias and Learnability Section 7.2 explored PAC-learnability of classes whose
descriptions are limited to conjunctions of attribute values. Such constraint repre-
sents a bias toward a specific type of classifier.

Allowing for some attributes to be ignored as irrelevant, we calculated the size
of the corresponding hypothesis space as |H | = 3n. If we strengthen the bias by
insisting that every single attribute must be involved, we will reduce the size of the
hypothesis space to |H | = 2n. This is because every attribute in the class-describing
expression is either true or false, whereas in the previous case, a third possibility
(“ignored”) was permitted.

Many other biases can be considered, some limiting the number of terms in the
conjunction, others preferring a disjunction or some pre-specified combination of
conjunctions and disjunctions, or imposing yet another constraint. What matters, in
our context, is that each bias is likely to result in a different size of the hypothesis
space. And, as we now know, this size affects learnability.

No Learning Without Bias! In the absence of any bias, allowing for any Boolean
function, ln |H | grows exponentially in the number of attributes, ln |H | = 2n ln 2,
which means that this most general form of a classifier is not PAC-learnable. The
explanation is simple. The unconstrained hypothesis space is so vast as to give rise
to the danger that one of the classifiers will only accidentally label correctly the

152 7 Computational Learning Theory

entire training set, while performing poorly in the instance space as a whole. The
induced classifier then cannot be trusted. It is in this sense that we say, with a grain
of salt, that “there is no learning without a bias.”

The thing to remember is that any machine-learning undertaking can only
succeed if the engineer constrains the hypothesis space by some meaningful bias. It
stands to reason, however, that this bias should not be misleading. The reader will
recall that our analysis assumed that the hypothesis space does contain the solution,
and that the examples are noise-free.3

Preference for Simplicity Often, we can to choose from two or more biases. For
instance, suppose the concept to be learned is described by a conjunction of attribute
values in which each attribute has to be included. A weaker bias that permits the
absence of some attributes from the conjunctions includes also the case where no
such absence occurs (zero attributes are absent). The correct classifier therefore
exists in both of these hypothesis spaces. In the former, we have ln |H | = n ln 2;
and in the latter, ln |H | = n ln 3, which is bigger. We thus have two correct biases,
each implying a hypothesis space of a different size. Which of them to prefer?

The reader already knows the answer. In Inequality 7.5, the number of training
examples needed for successful learning depends on ln |H |. A lower value of this
term indicates that fewer examples are needed, and the engineer therefore chooses
the bias whose hypothesis space is smaller. Again, this assumes that both hypothesis
spaces contain the solution.

Occam’s Razor Scientists have relied on this maxim for centuries: in a situation
where two hypotheses appear to explain a phenomenon, the simpler one stands a
higher chance of being correct. The fact that this principle,Occam’s Razor, has been
named after a scholastic theologian testifies that the rule pre-dates modern science
by centuries. The word razor reminds us that, when formulating a hypothesis, we
better slice away what is redundant.

That mathematicians have now been able to prove that this principle is valid
at least in machine learning, and that they even quantified it, is a remarkable
achievement.

Irrelevant and Redundant Attributes In the types of classes investigated in
Sect. 7.2, the lower bound on the necessary number of examples, m, depended on
the number of attributes, n. For instance, in the case of conjunctions of attribute
values, we now know that ln |H | = n ln 3; and the number of examples needed to
satisfy given (ε, δ)-requirements grows linearly in n.

The same result instructs us about learnability in the presence of irrelevant or
redundant attributes. Including such attributes in the example description increases
n, which means larger hypothesis space; and the larger the hypothesis space, the
greater the size of the training set needed to satisfy the (ε, δ)-requirements. The

3Analysis of a situation where these requirements are not satisfied is mathematically more
complicated and is outside the scope of this book.

7.4 VC-Dimension and Learnability 153

lesson is clear: whenever we have a chance to identify (and remove) the less-then-
useful attributes, we better do so.

These considerations also explain why it is so difficult to induce a good
classifier in domains where only a tiny percentage of attributes carry the relevant
information—as, for example, in automated text categorization.

7.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How do you interpret the statement, “there is no learning without a bias”?
Conversely, under what circumstances will the bias tend to hurt the learning
algorithm’s chances of success?

• Explain the meaning of the termOccam’s Razor. In what way did mathematicians
put solid grounds under this philosophical principle?

• What does Inequality 7.5 tell us about the impact of irrelevant and redundant
attributes?

7.4 VC-Dimension and Learnability

So far, we have focused on domains where the number of hypotheses is finite, which
happens when all attributes are discrete. When at least one attribute is continuous-
valued, the size of the hypothesis space is infinite. If we then need to compare
learnability of two classes of classifiers, the formulas from the previous sections
will be useless because the infinite |H | will in both cases lead to infinite m.

This said, the reader will agree that some classes of classifiers (say, polynomial)
are more flexible than others (say, linear), and that this flexibility should somehow
affect learnability. This, indeed, is the case.

Shattered Training Set Consider the three points in the two-dimensional space
depicted in the left part of Fig. 7.1. No matter how we distribute the positive and
negative labels among them, there always exists a linear classifier that separates
the two classes (some classifiers are shown in the same picture). We say that this
particular set of examples is shattered by linear classifiers.

The case of the three points on the right of the same picture is different. These
points find themselves all on the same line. If we label the one in the middle as
positive and the other two as negative, no linear classifier will ever succeed in
separating the two classes. We say that this particular set of examples is not shattered
by the linear classifier.

Different classes of classifiers will differ in their ability to shatter given examples.
For instance, a parabola (a special case of a polynomial function) will shatter the
three aligned points on the right of Fig. 7.1; it will even shatter four points that do

154 7 Computational Learning Theory

Fig. 7.1 The set of the three points on the left is shattered by a linear classifier. The set of the
three points on the fight is not shattered by a linear classifier because no straight line can separate
the point in the middle from the remaining two

not lie on the same line. Other classes of classifiers, such as high-order polynomials,
will shatter any realistically sized set of examples.

Vapnik-Chervonenkis Dimension Each type of classifiers has its own Vapnik-
Chervonenkis dimension (VC-dimension). This dimension is defined as the size of
the largest set of examples shattered by the given classifier class.

We have seen that, in a two-dimensional space, a linear classifier fails to shatter
three points that all lie on the same line, but that the linear classifier does shatter
them if they do not lie on the same line. At the same time, four points, no matter
how we arrange them in a plane, can always be labeled in a way that makes it
impossible to find a separating linear function. Since the definition says, “the largest
set of examples shattered by this class,” we conclude that the VC-dimension of a
linear classifier in the two-dimensional space is V CL = 3.

The point to remember is that the value of the VC-dimension reflects the
geometrical properties of the given type of classifier in a given instance space.

Learnability in Continuous Domains The concept of VC-dimension makes it
possible to address learnability in continuous domains. Let us give here a slightly
modified version of a famous theorem, omitting certain technicalities that are for
our specific needs irrelevant:

Suppose that a certain classifier class, H has a finite VC-dimension, d. Then,
error rate lower than ε can be achieved with confidence 1 − δ if the target class is
identical with some hypothesis h ∈ H , and if the number of the training examples,
m, satisfies the following inequality:

m ≥ max(
4

ε
log

2

δ
,
8d

ε
log

13

ε
) (7.9)

The lower bound onm is thus either (4
ε
log 2

δ
) or (8d

ε
log 13

ε
), whichever is greater.

7.4 VC-Dimension and Learnability 155

Table 7.2 VC-dimensions
for some classifier classes in
Rn

Hypothesis class VC-dimension

Hyperplane n + 1

Hypersphere n + 2

Quadratic (n+1)(n+2)
2

r-order polynomial

(
n + r

r

)

In the worst-case analysis, the engineer can trust any classifier that correctly
classifies the entire training set of m examples, regardless of the algorithm that has
induced the classifier.

Note that the number of examples necessary for PAC learning grows linearly in
the VC-dimension. This, however, is no reason to rejoice; the next paragraph will
argue that VC-dimensions of many realistic classifiers have a way of growing very
fast with the number of attributes.

Some Example VC-Dimensions Table 7.2 lists the VC-dimensions of some linear
and polynomial classifiers. Note the trade-off: more complex classes of classifiers
are more likely to contain the correct solution, but the number of training examples
needed for success increases so dramatically that a classifier from such classes are
not learnable in domains with realistic numbers of attributes.

Indeed, in the case of higher-order polynomials, the demands on the training-
set size are all but prohibitive. For instance, the VC-dimension of a second-order
polynomial in 100 dimensions is as follows:

d = 102 · 101
2 · 1 = 5, 050

This is much greater than the VC-dimension of a linear classifier, but perhaps
still acceptable (note that this value is sufficiently high to make the first term in
Inequality 7.9 small enough to be ignored). But if we increase the polynomial’s
order to r = 4, the VC-dimension will become all but prohibitive:

d = 104 · 103 · 102 · 101
4 · 3 · 2 · 1 = 4, 598, 126

Polynomials of higher order thus should be avoided.

VC-Dimensions of Other Classifiers The high values of VC-dimension are the
main reason why polynomial classifiers are almost never used; other classification
paradigms are from this perspective much better. Mathematicians have been able to
find the solutions for many different types of decision trees and neural networks.
This chapter wants to avoid excessive mathematics. One illustration will be enough
for the reader to develop an educated opinion.

Consider a multilayer perceptron whose neurons use the ReLU transfer function.
Let L be the number of the network’s layers, and let W be the number of trainable

156 7 Computational Learning Theory

weights. Finally, let there be a constant, C, such that W > CL > C2. Then the
VC-dimension of the MLP is estimated by the following formula:

d = CWL logW (7.10)

This is smaller than the VC-dimension of higher-order polynomial classifiers.

General Rule of Thumb Mathematical analysis of the neural networks that are
now used in the popular deep learning approaches (see Chap. 16) is not simple, but
the message conveyed by the formula from the previous paragraph is loud enough:

Whatever the classifier’s architecture, whatever its sophistication, the number of the training
examples should always exceed the number of trainable parameters, perhaps even by an
order of magnitude.

Word of Caution Just as in the discrete-world Inequality 7.5, the solution reached
in the continuous domains (Inequality 7.9) is the result of a worst-case analysis
that relied on serious simplifying assumptions. The formula therefore should not be
interpreted as telling us how many examples are needed in any concrete application.
Its primary motivation is to help us compare alternative machine-learning paradigms
such as polynomial classifiers versus neural networks.

Let us not forget that in realistic applications, examples are not labeled arbitrarily.
Since the examples of the same class are somehow similar to each other, they tend
to be clustered together.

7.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How does the number of examples that are necessary to satisfy the (ε, δ)-
requirements grow with the increasing VC-dimension, d?

• What is the VC-dimension of a linear classifier in a continuous two-dimensional
space?

• What is VC-dimension of an n-dimensional polynomial of the r-th order? What
does its high value tell us about the utility of polynomial classifiers in realistic
applications?

7.5 Summary and Historical Remarks

• Computational Learning Theory has established limits on the number of the
training examples needed for successful classifier induction. These limits depend
on two fundamental parameters: the classifier’s requested error rate, ε, and the

7.5 Summary and Historical Remarks 157

upper bound, δ, on the probability that m training examples will succeed in
eliminating all classifiers with error rate greater than ε.

• If all attributes are discrete, the minimum number of examples needed to satisfy
the (ε, δ)-requirements is determined by the size, |H |, of the given hypothesis
space. Here is the classical formula:

m >
1

ε
(ln |H | + ln

1

δ
)

• In a domain where some attributes are continuous, the minimum number of
examples needed to satisfy given (ε, δ)-requirements is determined by the
so-called VC-dimension of the given type of classifier. Specifically, if this VC-
dimension is d, then the minimum number of examples is as follows:

m ≥ max(
4

ε
log

2

δ
,
8d

ε
log

13

ε
)

• The two inequalities have been found by worst-case analysis. In practical
circumstances, much smaller training sets are usually sufficient for the induction
of high-quality classifiers. The main benefit of these formulas is that they help us
compare learnability in different machine-learning paradigms.

• VC-dimension of r-th order polynomials in n-dimensional spaces is

d =
(
n + r

r

)

• VC-dimension of MLP’s with L layers ad W trainable weights is

d = CWL logW

where C satisfies W > CL > C2.
• Whatever the classifier, the number of training examples should exceed the

number of the classifier’s trainable parameters.

Historical Remarks The principles underlying the idea of PAC learning were
proposed by Valiant (1984). The classical paper on what later came to be known
as VC-dimension is Vapnik and Chervonenkis (1971); somewhat more elaborate
version was later developed by Vapnik (1992). The idea to apply VC-dimension
to learnability, and to the investigation of Occcam’s Razor is due to Blumer et al.
(1989). Tighter bounds were later found, for instance, by Shawe-Taylor et al.
(1993). VC-dimensions of linear and polynomial classifiers can be derived from
the results published by Cover (1965). Readers interested in learning more about
the Computational Learning Theory will greatly benefit from the excellent (even if
somewhat older) book by Kearns and Vazirani (1994). That book, however, does
not have much to say about learnability of neural networks—Formula 7.10 is from
Bartlett et al. (2019).

158 7 Computational Learning Theory

7.6 Exercises and Thought Experiments

The exercises are to solidify the acquired knowledge. The ambition of the suggested
thought experiments is to let the reader see this chapter’s ideas in a different light
and, somewhat immodestly, to provoke his or her independent thinking.

7.6.1 Exercises

1. Suppose that the instance space is defined by the attributes used in the “pies”
domain from Chap. 1. Determine the size of the hypothesis space if the classifier
is to be a conjunction of attribute values. Consider both cases: the one that
assumes that some attributes might be ignored as irrelevant (or redundant), and
the one that insists that all attributes must take part in the conjunction.

2. Return to the case of conjunctions of Boolean attributes from Sect. 7.2. How
many more examples will have to be used (in the worst-case analysis) if we
change the required error rate from ε = 0.2 to ε = 0.05? Conversely, how will
the size of the necessary training set be affected if we change the value of δ?

3. Again, consider the case where all attributes are Boolean, and the classifier has
the form of a conjunction of attribute values. What is the size of the hypothesis
space if the conjunction is required to involve exactly three attributes? For
instance, here is one conjunction from this class:

att1 = true AND attr2 = false AND att3 = false
4. Consider a domain with n = 20 continuous-valued attributes. Calculate the VC-

dimension of a classifier that has the form of a quadratic function; compare this
result with that for a third-order polynomial.
Next, suppose that the engineer has realized that half of the attributes are
irrelevant. Their removal will result in smaller dimensionality, n = 10. How
will this reduction affect the VC-dimensions of the two classifiers?

5. Compare the PAC-learnability of the Boolean function involving 8 attributes
with the PAC-learnability of a quadratic classifier in a domain with 4 numeric
attributes

7.6.2 Give It Some Thought

1. A certain role in Inequality 7.5 is played by δ, a term that quantifies the
probability that a successful classifier will be induced from the given training
set. Under what conditions can the impact of δ be neglected?

2. From the perspective of PAC-learnability, is there a difference between irrelevant
and redundant attributes?

7.6 Exercises and Thought Experiments 159

3. We have seen that a classifier is often not PAC-learnable in the absence of bias.
The right bias, however, many not be known. Suggest a learning procedure that
would induce a classifier in the form of a Boolean expression in this case. (Hint:
consider two or more alternative biases and suggest a strategy to evaluate them
experimentally.)

4. In the past, some machine-learning scientists studied the possibilities of convert-
ing continuous attributes into discrete ones by the so-called discretization. By
this they meant dividing an attribute’s domain into intervals, and then treating
each interval as a Boolean attribute that is true if the numeric value falls into
interval and false otherwise.

Suppose you are considering two ways of dividing the interval [0, 100]. The
first consists of two sub-intervals, [0, 50], [51, 100], and the second consists of
ten equally sized sub-intervals: [0, 10], . . . [91, 100]. Discuss the advantages and
disadvantages of the two options from the perspective of PAC-learnability.

Chapter 8
Experience from Historical Applications

You will not become a machine-learning expert by just mastering a handful of
algorithms—far from it. The world lurking behind the classroom toy domains has a
way of complicating things, frustrating the engineer with unexpected hurdles, and
challenging everybody’s notion of what exactly the induced classifier is supposed
to do and why. Just as everywhere in the world of technology, a healthy dose of
creativity is indispensable.

Practical experience helps, too, and it does not have to be your own. You
can just as well benefit from the positive and negative experience of those who
experimented before you. This is the primary goal of this chapter. Building on a few
old applications, it brings to light issues encountered in realistic applications, points
out practical ways of dealing with them, and shows that the ambitious on machine
learning cannot be reduced to low error rates. The reader may appreciate getting
some sense of the questions that this discipline struggled with in its infancy.

8.1 Medical Diagnosis

A physician seeking to figure out the cause of her patient’s complaints reminds us of
a classifier: based on the available attributes (the patient’s symptoms and laboratory
tests), she suggests a diagnosis, the class label. At the dawn of machine learning, in
the 1980s, many pioneers saw medical diagnosis as a natural target.

Machine-Learning Set Against Physicians The optimism was fed by early
studies such as the one whose results are summarized in Table 8.1. Here, the testing-
set accuracies achieved by Bayesian classifiers and decision trees are compared to
those of physicians working with the same data. Each example represented a patient
described by an attribute vector. The four domains differ in the number of classes as
well as in the difficulty of the task at hand (e.g., noise in the data and reliability of
the available information).

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_8

161

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_8

162 8 Experience from Historical Applications

Table 8.1 Classification
accuracy of two classifiers is
compared to the performance
of physicians in four medical
domains

Bayesian Decision General

classifier tree practitioner

Primary tumor 0.49 0.44 0.42

Breast cancer 0.78 0.77 0.64

Thyroid 0.70 0.73 0.64

Rheumatology 0.67 0.61 0.56

The table suggests that it may indeed be possible to induce classifiers capable of
competing with humans. Indeed, machine learning seems even to outperform them.
In the multi-class primary tumor domain, the margin is unimpressive, but in
the other domains, the classifiers seem to be clear winners. It is only a pity that we
are not given more details such as standard deviations. Chapters 12 and 13 will have
more to say about the methods to assess classification performance and its statistical
reliability. In the 1980s, the “proof of concept” was far more important than sound
scientific evaluations that become the norm much later.

Are the Results Encouraging? The numbers seem convincing, but let us not get
overexcited. The first question to ask is whether the comparison was fair. Since
the examples were described by attributes, the data available to machine learning
could hardly be the same as those used by the physician who probably relied also on
subjective information not available to the machine. The fact that the human enjoyed
this advantage makes the machine’s accomplishment all the more impressive.

On the other hand, the authors of the study admitted that the participating
physicians were not specialists; machine learning thus only outperformed general
practitioners. Let us also remind ourselves that the study was conducted almost
two generations ago when laboratory tests were then far less sophisticated than
now. Today, the data would be different and so would be the results of analogous
comparison. Who would benefit more from modern diagnostic tools: the human or
the machine? Hard to know.

Still, the results were encouraging and the hopes they inspired were justified.

Need for Explanations Diagnosis is not enough. A patient will hardly agree with a
major surgery if the only argument in its support is, “this is what the machine says.”
The corroboration that “the machine’s accuracy is on average 3% above that of a
physician” is still unconvincing.

A reasonable person will ask why the surgery is preferable to conservative
treatment. In the domains from Table 8.1, the doctor understands the evidence
behind the diagnosis and has a good idea of alternative treatments. By contrast,
Bayesian classifiers are virtually incapable of explanations. The tests in the decision
tree do offer some clues, but these tend to be less than clear without expert
interpretation.

Need to Quantify Confidence There is another problem to consider. A decision
tree only decides that, “the example belongs to class 7.” The physician and the

8.2 Character Recognition 163

patient want more. Is the recommended class guaranteed or is it just a bit more
likely than some other class? If so, which are the competing classes?

Many application domains expect the computer to quantify its certainty about the
returned class. For instance, it would be good to learn that, “the example belongs
to C1 with probability 0.8, and to C5 with probability 0.7.” Such quantification is
provided by Bayesian classifiers, and similar information can be obtained also from
neural networks. Both of these approaches, however, are bad at explaining.

Cultural Barriers One of the reasons these results failed to inspire more followers
was poor strategy. Early enthusiasts just did not realize that medical doctors would
hardly appreciate the prospect of being replaced by computers. They were less
than excited about research that bragged about hoping to take away their jobs and
prestige.

And yet it was all a misunderstanding. Later experience taught us that, in domains
of this kind, machine learning is only to offer advice, the final decision remaining
the responsibility of the physician, even in legal terms. And the advice can be
more than useful. Machine-learning software can alert the doctor to previously
unsuspected problems beyond the immediate diagnosis, and it can recommend
additional laboratory tests.

8.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• In view of what you read in this section, why do you think it was impossible to
say that the classifiers outperformed human experts?

• Apart from classification accuracy, what else does medical diagnosis need?
• Discuss the general limitations of machine-based diagnosis. Suggest a reasonable

application of machine learning in medical domains.

8.2 Character Recognition

Another famous application area from early days of machine learning was correct
identification of characters, hand-written or printed. Application possibilities are
legion: automated pre-processing of forms, software for converting a text scribbled
on a notepad into a file for a text editor, book scanning, and newspaper digitization,
to mention but a few. Not so long ago, this was judged so ambitious as to be almost
unrealistic; today, it is commonplace. Let us take a look at some of the lessons
learned from this task.

164 8 Experience from Historical Applications

Goal To describe a hand-written character in a way that allows its recognition by
a computer is not easy. Just try to explain, in plain English, how to distinguish digit
“5” from “6,” or what constitutes the difference between hand-written “t” and “l.”
The difficulty will surprise you. And even if you succeed, converting the plain-
English explanation to a computer program is harder still.

This is where machine learning can help. If we prepare a collection of pre-
classified training examples and describe them by well-chosen attributes, then surely
some of the techniques from the previous chapters will induce the classifier. The
idea is so simple as to appear almost trivial—and in a sense this is indeed quite easy,
provided that you have a good grasp of certain trade-offs.

Attribute Vectors Before starting the project, the engineer has to choose the
attributes to describe the examples. Figure 8.1 illustrates one popular approach.
Once the rectangular region with the digit has been identified, the next step divides it
into, say, 6 × 4 = 64 equally sized fields, each represented by a continuous-valued
attribute specifying the field’s mean intensity of reflected light (the more ink, the
less light). Typically, 0 will stand for white and 255 will stand for black (it can be
the other way round), with the numbers between the two extremes grading the shade
of gray. Nowadays, it is possible to download benchmark domains with hundreds of
thousands of hand-written characters. Most of these test-beds describe the examples
in the manner just explained.

Less relevant from the machine-learning perspective is the need to identify the
rectangle that fits the character. This is done by computer-vision software. Let
us also mention that the classifier usually has to recognize not just one isolated
character but rather “read” a text consisting of many such characters. This, however,
is not much of a complication. As long as the individual characters can be isolated,
the same way of describing them by attribute vectors can be employed.

Choosing the Level of Detail There is no reason why the grid should consist of the
64 attributes from Fig. 8.1. One can argue that this representation is so crude as to
lose critical aspects of the character’s shape. We may decide to divide the rectangle

Fig. 8.1 A simple way of
converting an image of a
hand-written character into a
vector of 64 continuous
attributes, each specifying the
mean intensity of one field

8.2 Character Recognition 165

into smaller fields, say, 40×60. The attribute vectors will then provide more detail—
but then, computational learning theory is telling us that, with attribute vectors this
long, many more training examples are needed. If we go the other way, dividing
the grid to, say, 2 × 3, thus reducing the danger of overfitting, so much information
is lost that nothing much can be learned. The engineer has to find the ideal middle
ground.

Choosing the Classifier Now that we know how the training examples are going
to be described, we can proceed to the next important questions: which machine-
learning paradigm to choose, what induction technique to employ, and which aspects
of the given task should be considered?

In the example description from Fig. 8.1, only a small percentage of attributes
are likely to be irrelevant or redundant; this is therefore not an issue to worry
about (unless the number of attributes is increased beyond those shown in Fig. 8.1).
Also important is the fact that we do not know whether the classes are linearly
separable—they may be separable if the number of attributes is high; in that event,
however, the training set will have to be very large, perhaps much larger than the one
at our disposal. Finally, the classifiers need not offer explanations. If the intention is
to read, and pass to a text editor, a long text, the user will hardly care to know the
exact reason why a concrete character was a “P” and not a “D.”

Based on these observations, the simple and easy-to-implement k-NN classifier
seems a good choice.1 The engineer may be worried by the computational costs
incurred in a domain with hundreds of thousands of examples, but these may be
acceptable if the number of attributes is reasonable. Actually, computational costs
will still be dominated by the need to isolate the individual characters and to express
them by attribute vectors. As long as these costs exceed those of classification (and
they usually do), the classifier is affordable.

Until recently, the nearest-neighbor paradigm was indeed a common choice,
often exhibiting error rates below 2%. In some really illegible hand-writings, the
error rate is higher. But then, even humans may find them difficult to read.

Many Classes In a domain where all characters are capitalized, the induced
classifier has to discern 10 digits and 26 letters, which means 36 classes. If both
lowercase and uppercase letters are allowed, the total increases to 10+ 2× 26 = 62
classes, and to these we may have to add special characters such as “?,” “!,” or “$.”
Having to learn so many classes is not without consequences.

The most immediate concern is how to assess the practical benefits of the induced
product. Error rate alone is not enough. Thus the performance of a classifier that
correctly identifies 98% characters may appear acceptable; what this fails to tell us,
though, is how the errors are distributed. Typically, some characters will be correctly
identified most of the time, while others will be difficult. For instance, certain pairs
of similar characters tend to be mutually confused. The practically minded engineer

1In Chap. 16, we will learn that the modern approach of deep learning may be better.

166 8 Experience from Historical Applications

wants to know which pairs to focus on, perhaps to mitigate the problem by providing
additional training examples of the harder classes.

Moreover, some letters are less common than others. Experience shows that these
rarer classes tend to get “overlooked” by machine-learning algorithms unless special
precautions have been taken. We will return to this issue in Sect. 11.2.

Rejecting An Example Certain hand-written characters are plainly ambiguous,
and yet the k-NN classifier always finds a nearest neighbor and then simply returns
its class, no matter how arbitrary it is.

In many domains, getting the wrong class can be more expensive than not
knowing the class at all. Thus in an automated reader of postal codes, an incorrectly
read digit can send the packet to a wrong destination, causing great delays. If the
classifier does not give any answer, a human employee can do the reading, and the
costs of manual processing may be lower than those caused wrong address.

The classifier should thus be implemented in a way that allows it to refuse to
classify if the evidence behind the winning class is weak. The simplest way of
doing so in the k-NN classifier is to set a minimum margin for the number of votes
supporting the winner. For instance, if the winning class in a 7-NN classifier receives
4 votes, and the losing class 3 votes, the evidence in favor of the winner may be
deemed insufficient and the classifier may be instructed to reject the example.

Something similar can be done also in other paradigms such as the Bayesian
classifiers or neural networks. The classifier simply compares the probabilities
(or output signals) of the two most likely classes and rejects the example if the
difference fails to exceed a predefined threshold.

Error Rate Versus Rejection Rate A classifier that rejects ambiguous examples
will exhibit low error rate. On the other hand, excessive reluctance to classify
is impractical. What if all examples are rejected? The error rate is zero, but the
classifier is useless.

The engineer has to consider the trade-off between rejection rate and error rate.
Increasing the former is likely to reduce the latter; but care has to be taken not to
overdo it.

8.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How can hand-written characters be described by attribute vectors?
• What aspects are considered (and why) when looking for the most appropriate

machine-learning tool to be used?
• What is the consequence of the relatively high number of classes in this domain?

Why does error rate fail to give the full picture?

8.3 Oil-Spill Recognition 167

• Why should the classifier refuse to classify certain examples? Discuss the trade-
off between error rate and rejection rate. Comment on the interplay between
performance and practical utility.

8.3 Oil-Spill Recognition

Figure 8.2 shows a radar image of the sea surface, taken by a satellite-born device.
Against the grayish background, the reader can see several dark regions of the most
varied characteristics: small or large, sharp or blurred, and of diverse shapes. The
sharp elongated object close to the upper-right corner is oil illegally dumped by a
tanker that chose to empty the residues of the bilges in the open sea rather than
disposing of them at a terminal. This is against the law, and such oil spills are
therefore of great interest to the Coast Guard and environmentalists alike.

Detecting the Violators In the mid-1990s, this inspired a project built around the
following scenario. In certain areas of the sea surface (e.g., in the vicinity of major
ports), satellites would take radar “snapshots” and forward them to ground stations.
Experts would pore over the images, searching for illegal oil spills. Whenever they
suspected one, an aircraft would be dispatched to the given location and verify the
suspicion by an on-board spectrometer (unavailable to the satellite). The point was
to collect evidence, perhaps even to identify the perpetrator.

Unfortunately, human experts are expensive—and not always available. They
may be on holidays, on sick leave, or absent for some other reasons. Besides,
the high number of images makes the work tedious and thus prone to mistakes.
Someone suggested that a computer might automate the process. But how?

The picture from Fig. 8.2 has been selected out of many for its rare clarity. The
oil spill it contains is so different from the other dark regions that even an untrained
eye will recognize it. Even so, the reader will find it difficult to specify the spill’s
distinguishing features in a manner that can be used by a computer program. In more

Fig. 8.2 A radar image of a
sea surface. The “wiggly”
elongated dark region in the
upper-right corner represents
environmental hazard: an oil
spill

168 8 Experience from Historical Applications

realistic objects, the task will be even harder. To hard-code the oil-spill recognition
ability is indeed a challenge.

Automating the Process These difficulties led to the suggestion that perhaps
machine learning might develop the recognition skills automatically, by induction
from training examples.

(i) collect a set of radar images containing oil spills;
(ii) use image-processing software to find in these images dark regions;
(iii) ask an expert to label the oil spills as positive examples, and the other dark

regions (the so-called “look-alikes”) as negative examples;
(iv) describe all examples by attribute vectors, and let a machine-learning program

induce the requisite classifier.

Attributes and Class Labels State-of-the-art image-processing techniques easily
discover dark regions in an image. For the needs of machine learning, these have
to be described by attributes likely to distinguish spills from look-alikes. The
description should be unaffected by each object’s size and orientation.

The attributes used here include the region’s mean intensity, average edge-
gradient (sharpness of the edges), ratio between the minor axis and major axis,
variance of background intensity, variance of the edge gradient, and others. All
in all, more than forty such attributes were selected in a rather ad hoc manner.
Which of them would really be useful was hard to tell; experts were unable to reach
consensus about the individual attributes’ relevance. The final choice was thus left
to the machine-learning software.

Labeling the training examples with classes was not any easier. The objects in
Fig. 8.2 were easy to categorize; in other images, they were often ambiguous. On
many occasions, the expert could only say that, “yes, this looks like an oil spill” or
“I rather doubt this is what we’re looking for.” The correctness of the selected class
was thus uncertain. In other words, the data were plagued by class-label noise.

Choosing the Classifier The examples were described by more than forty
attributes. Among these, some, perhaps most, were likely to be irrelevant or
redundant. To remove them, the scientists first induced a decision tree and then
removed all attributes that the tree did not test. This made sense: the choice of the
attributes to be included in the tree is guided by information gain, which is low in
the case of irrelevant attributes. Also redundant attributes could thus be to a great
extent eliminated.

When a k-NN classifier was applied to examples described by the surviving
attributes, classification performance was even better than that of the decision trees.

Different Costs of Errors When evaluating the classifier’s performance, one had
to keep in mind that each type of error carried different costs. A false positive would
result in an aircraft being unnecessarily dispatched, which meant wasted resources
as well as “moral” costs—frequent failures could undermine the users’ confidence.
On the other hand, a false negative meant failure to detect an environmental hazard
whose consequences (financial, environmental, and political) could not easily be

8.3 Oil-Spill Recognition 169

expressed numerically. For these reasons, it was all but impossible to compare the
costs of the two types of error: false positives versus false negatives.

Experiments indicated that most of the errors were of the false positive kind (false
alarms), whereas false negatives were relatively rare. Was this good, or did it signal
the need to modify the classifier in a way that might balance these errors?

The question could not be answered in isolation from immediate practical needs.
It turned out that financial constraints might force the user occasionally to accept the
risk of environmental hazard, simply because the budget could no longer tolerate
false alarms. The user thus needed a mechanism to reduce the frequency of false
positives even at the cost of an increased number of undetected oil spills (false
negatives). The situation could change in more prosperous times when the user,
unwilling to miss an oil spill, would accept false positives if this reduced the
occurrence of false negatives.

Leaning Toward a Certain Class To address these trade-offs, the user needed a
mechanism to adjust the classifier’s behavior toward either type of error.

As already mentioned, this project relied on the k-NN classifier where this
requirement is easy to address: the trick is to manipulate the number of votes needed
for the winning class. Suppose the 7-NN classifier is used. The number of false
positives can be reduced if we instruct the classifier to label as positive only those
examples where, say, at least 5 of the nearest neighbors are positive (rather than the
plain majority, which would be 4). Any example that fails to meet this condition
will be deemed negative. Conversely, if we want to lower the frequency of false
negatives, we tell the classifier to return the positive label whenever, say, at least 3
of the nearest neighbors are positive.

8.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How did the engineers identify redundant and irrelevant attributes?
• What can be said about the reliability of the class labels in the training set? What

does it mean for the classifier’s expected performance?
• Discuss the costs of false positive and false negative examples. Can the costs be

assessed by the same quantities? Why does the user need a mechanism to reduce
one type of error even at the price of increasing the other?

• Explain the mechanism that enables the k-NN classifier to increase or reduce
either of the two errors.

170 8 Experience from Historical Applications

8.4 Sleep Classification

Throughout the night, we go through different sleep stages such as deep, shallow,
or rapid-eye movements (REMs) when we dream. To identify these stages in
the subject, advanced instrumentation is used: an electrooculogram to record
eye movements, an electromyogram to record muscle contractions, and contact
electrodes attached to the scalp to record the brain’s neural signals. Based on
the readings of all these instruments, a medical expert determines what stage the
sleeping subject is in at any given moment and can even draw a hypnogram such as
the one shown in Fig. 8.3.

Note that the deepest sleep stage occurs here only three times during the 8-h
sleep and that it usually does not last long. Note also the move stage. This occurs,
for instance, when the subject turns from one side to another.

Why Is It Important? Correct identification of sleep states is important in medical
practice. Consider the so-called sudden infant death syndrome (SIDS) where an
infant dies without any apparent cause. To be able to start resuscitation, the hospital
has to monitor the newborns suspected of being in danger. Uninterrupted monitoring
is expensive; but then, SIDS almost always occurs during the REM stage. It is thus
not necessary to watch the subject all the time, but only during this period of risk. A
device to recognize the onset of REM would alert the nurse.

The hypnogram is a useful diagnostic tool because the distribution of the sleep
stages during the night may indicate specific neural disorders such as epilepsy.

Why Machine Learning? To draw the hypnogram manually is a slow and tedious
process, easily taking three to 5 h of a highly qualified expert’s time. The expert is
not always available and may be expensive, hence the suggestion to write a computer
program to do the job automatically.

For this, the computer needs a description of each sleep stage. However, these
descriptions are not available. Medical experts recognize sleep stages by studying

Fig. 8.3 An example hypnogram that records the sleep stages experienced by a subject during an
8-h sleep

8.4 Sleep Classification 171

EEC signals, relying on pattern-recognition skills gained after long training. The
skills are too subjective to implement in a computer program.

The only solution thus was to induce a classifier from pre-classified data. To
make it possible, scientists divided the 8-h sleep into 30-s periods, each constituting
one training example. All in all, a few hours of sleep provided hundreds of training
examples.

Attributes and Classes Again, the first task was to remove attributes suspected
of being irrelevant or redundant. In the oil-spill domain, this removal increased the
performance of the k-NN classifier. In sleep classification, another reason comes to
the fore: the physician wants to minimize the number of measurement devices. Not
only does their presence make the subject uncomfortable, but also they disturb the
sleep and thus interfere with the results.

Class labels are here even less reliable than in the case of oil spills. The
differences between “neighboring” (similar) sleep stages are so poorly defined that
any two experts rarely agree on more than 70–80% class labels. The training data
thus suffer from a lot of class-label noise, and the induced classifier cannot be
expected to achieve low error rates.

Classifier’s Performance The employed classifier combined decision trees with
a neural network in a manner whose details are unimportant here. The classifier’s
accuracy on independent data indeed achieved those 70–80% observed in human
experts, which means that performance limits have been reached.

Classification accuracy does not give the full picture, though. For one thing, the
classifier correctly recognized some of the seven classes most of the time, while
failing miserably on others. Particularly disappointing was the REM stage. Here,
classification accuracy was in the range of 90–95%, which, on the surface, seemed
impressive. However, closer inspection revealed that less than 10% of all examples
represented REM; this means that comparable accuracy would be achieved by a
classifier claiming that “there are no REM examples”—which of course would be
useless.

Evidently, classical ways of measuring performance by error rates and accuracies
are in domains of this kind misleading. More appropriate performance criteria will
be introduced in Chap. 12.

Improving Performance by Post-processing The hypnogram’s accuracy can
be improved by post-processing. Several rules of thumb can be employed. For
instance, the deepest sleep (stage 3/4) is unlikely to occur right after REM,
and stage 2 does not happen after move. Further on, the hypnogram can be
“smoothed out” by the removal of any stage that lasts only one 30-s period.

The lesson is worth remembering. In domains where the examples are ordered in
time, the classes of some examples may not be independent of those preceding or
following them. Post-processing can then improve the classifier’s performance.

Proper Use of the Classifier The original idea was to induce the classifier from
examples obtained from a few subjects and then to use it to classify all future data.
This proved unrealistic. Experience showed that no “universal classifier” of sleep

172 8 Experience from Historical Applications

could thus be obtained: a classifier induced from one person’s data could not be
used to draw a hypnogram for another person without serious loss in accuracy.2

This does not mean that machine learning is in this domain disqualified. Rather,
the lesson is that users have to modify their expectations: instead of a universal
solution, the users have to be content with a separate classifier for each subject; the
expert’s labors are still significantly reduced. The following scenario is indicated:

(i) The expert determines the class labels of a subset of the available examples
(from a single subject), thus creating a training set.

(ii) From this training set, a classifier is induced.
(iii) The induced classifier is used to classify the remaining examples (of the same

object), thus saving the expert’s time.

8.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Why was it important to minimize the number of attributes? How could the
relevant attributes be identified?

• What circumstances have be considered by an engineer seeking to evaluate the
induced classifier’s performance?

• In the hypnogram, the examples are ordered in time. How can this be exploited
in improving the results?

• In what manner can machine learning reduce the burden imposed on someone
who seeks to classify available data?

8.5 Brain–Computer Interface

The muscle-controlling commands are issued at specific locations of motor cortex,
a relatively well-understood region of the cortex. Even the brain of totally paralyzed
patients can often generate relevant signals, but the information does not reach the
muscles. This observation inspired an ambitious idea: can the brain signals, detected
by electrodes and properly processed, be used to move a cursor on a computer
screen? A positive answer would help the paralyzed communicate with the outside
world, even if the patient is unable to speak and even unable to move his pupils.

The exact nature of the motor commands is too complicated to be reduced to
a mathematical formula. What we can do is record the signals, describe them by

2Perhaps a better set of attributes might help; the case study reported here did not attempt to do so.

8.5 Brain–Computer Interface 173

attributes, and label them with concrete commands. This would create a training set
from which to induce the classifier.

Training Examples The study considered only two classes: left and right.
The training and testing examples were created by the following procedure. A
subject was sitting in front of a computer monitor. On the desk in front of the subject
was a plywood board with two buttons, one to be pressed by the left index finger
and the other by the right index finger, according to the instructions displayed on
the monitor.

The scenario followed the time line shown in Fig. 8.4. The contact electrodes
attached to the scalp (see Fig. 8.5) recorded the intensity of the neural signals during
a certain period of time just before the button was pressed. The signals from each
electrode were represented by five numeric attributes, each giving the power of the
signal over a time interval (a fraction of a second).

As indicated in the picture, only eleven electrodes were actually used. With five
attributes per electrode, this meant 55 attributes. The training set contained a few
hundred examples with both classes equally represented. Since it was always known
which button was pressed, the training set was free of class-label noise. As for the
attributes, many of them were suspected to be irrelevant.

Classifier, Its Performance, and Its Limitations Several machine-learning tech-
niques were tried, including multilayer perceptrons and nearest-neighbor classifiers

Fig. 8.4 After a “ready”
signal (WS) comes the CUE
(“left” vs. “right”). Once RS
appears on the screen, the
subject waits one second and
then presses the button
indicated by the CUE

Fig. 8.5 Arrangement of
electrodes on the subject’s
scalp. Only the highlighted
electrodes were actually used

174 8 Experience from Historical Applications

with attribute-value ranges normalized so as to avoid the scaling problems. Relevant
attributes were selected by a decision tree, similarly as in the previously described
domains.

Typical error rates of the induced classifiers on testing data were in the range
of 25–30%, depending on the concrete subject. It is quite possible that higher
accuracy could never be achieved: the information provided by the given attributes
was probably insufficient.

Just as in the sleep classification domain, the classifier could only be applied
to the subject from whose training data it was induced. All attempts to induce a
“general classifier” (to be used on any future subject) failed: the error rates were so
high as to make the classifications look random.

Evaluating the Classifier’s Utility Just as in the previous domain, the error rate
measured on independent data fails to provide the whole picture. The classifier’s
practical utility depends on the way it is used. The ultimate test is: does the classifier
succeed in sending the cursor to the right place?

This was assessed by the following experiment. The subject was still sitting in
front of a computer monitor, with electrodes attached to his or her scalp, but the
board with the two buttons had been removed. The monitor showed two rectangles
(see Fig. 8.6), one on the left and one on the right. The cursor was in the middle.

When instructed to move the cursor, the subject only imagined he was pushing
the corresponding button. The electrodes recorded the neural signals thus generated
and passed them to the classifier that decided where the cursor was to be sent
(left or right). The cursor’s movement was very slow so as to give the subject
the opportunity to correct a wrong direction. The neural signals were sampled
repeatedly, each sample becoming one example to be forwarded to the classifier.

Suppose the subject’s intention was to move the cursor to the right. It could
happen that the first sample was misclassified as left, sending the cursor in the
wrong direction; but if the following samples were correctly classified as right,
the cursor did, after all, land in the correct rectangle, even if only after what looked
like the machine’s hesitation.

Fig. 8.6 The task is to move
the cursor into either the left
box or the right box,
according to the subject’s
“thoughts”

8.6 Text Classification 175

Do We Need Minimum Error Rate? Under the scenario just described, an error
rate of 25–30% is quite acceptable. Even when the cursor occasionally did start in
the wrong direction (on account of some examples being misclassified), the mistake
was corrected by later examples, and the cursor did reach the intended destination.

As a matter of fact, the cursor almost always landed where it was asked to go,
even though it sometimes did so later than it should have. An impartial observer,
uninformed about how the classifier was actually employed, rarely noticed any
problem. The occasional back-and-forth movements of the classifier were perceived
as a sign of indecisiveness on the part of the subject and not of the classifier’s
imperfection.

Only when the classifier’s error rate dropped well below those 30% did the
cursor miss its target convincingly enough to cause disappointment. Perhaps a better
measure of the classifier’s performance would in this case be the average time
needed to reach the correct box.

An Honest Remark The classifier’s performance differed from one person to
another. In many subjects, the error rate was almost prohibitively high. Also the
fact that the classifier had to be trained on the same subject on which it was to be
used was perceived as a shortcoming. Further on, two classes are not enough. At
the very least, also up and down would be needed. On these, experimental results
were less convincing. In the end, other methods of communication with paralyzed
patients came to be preferred. Though successful as a machine-learning exercise,
the project did not meet the expectations of the medical sciences.

8.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Discuss the experience made in this application: a classifier induced from the
data of one subject cannot be used to classify examples in another subject.

• Explain why the error rate of 30% was in this domain still deemed acceptable.
What other methods of measuring performance, in this application, would you
recommend?

8.6 Text Classification

Consider a large repository of perhaps a million on-line text documents. When
presented with a query specifying a concrete topic, the system is to return all relevant
documents. For this to be possible, the documents need to be annotated: labeled with
the topics they represent. Since the annotation of millions of documents cannot be
accomplished manually, machine learning has been used to automate the process.

176 8 Experience from Historical Applications

Here is the idea. A group of experts select a small but representative subset of the
documents, read them, and then label each document with the class specifying its
topic. In this way they create a training set from which a classifier is induced. This
classifier is then used to label the rest of the repository. If only a few thousands of
examples are used for training, a lot of time-consuming work can be saved.

Attributes A common way to describe a text document is by the the words it
contains. Each attribute represents one word, and its value gives the frequency of
the word in the text. For instance, if in a document consisting of 983 words, the
term railroad appears five times, its frequency is 5/983 = 0.005.

General vocabulary being quite rich, an attribute vector of this kind will be very
long. Since only a small percentage of the words will be found in a given document,
the vast majority of the frequencies will be zero. Simple applications therefore prefer
to work with much shorter vectors of, say, 1000 most common words.

Class Labels Labeling text documents is subjective. Consider the term computer
science. A scientific paper dealing with algorithm analysis is surely a positive
example; a paper that only mentions in passing that neural-network training is
computationally expensive is less typical, and a brief article from a popular
magazine may be totally irrelevant from the perspective of a scientifically minded
reader—though fairly relevant for general readership.

One way to handle this situation is to “grade” the class labels. Previously, we
considered for the given class only 1 or 0. Instead, we may use 2 if the document is
definitely relevant, 1 if it is only somewhat relevant, and 0 if it is totally irrelevant.
The users can then decide what level of relevance they request. They may interpret
as positive all examples where the value is 2 or all examples that are relevant at least
at the level of 1.

Observations The very long attribute vectors make induction expensive. Thus in
the case of decision trees, where the program has to calculate information gain
separately for each attribute, tens of thousands of attributes need to be investigated
for each tree node, and these calculations will be costly if the training set is large.

True, in the case of k-NN or linear classifiers, induction is cheaper. Here,
however, another difficulty comes to the fore: for any class, the vast majority of
the attributes will be irrelevant; this, we already know, complicates learnability.

Multi-Label Examples In the previous sections, each example was labeled with
one and only one class. Text classification is different in that each document
typically belongs to two or more (sometimes many) classes at the same time.

The most common solution is to induce a separate classifier for each class.
Whenever a future document’s class is needed, its attribute vector is submitted to
all classifiers in parallel; some of them will return “1” and others will return “0.”
This adds to computational expenses because of the need to induce hundreds of
classifiers instead of just one.

Induction from multi-label examples causes some other problems, and it turns
out that discussing all of them calls for the entire Chap. 14.

8.7 Summary and Historical Remarks 177

8.6.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How will you describe examples in a text-classification domain? Why are the
attribute vectors so long? What difficulties are posed by these vectors?

• What did this section mean by “graded class labels”?
• What makes induction of text classifiers expensive?

8.7 Summary and Historical Remarks

• The number of examples to be used for learning varies. In some domains,
examples are abundant, for instance, if they are automatically extracted from a
database. In others, they are rare and expensive as in the oil-spill domain.

• Often, we have no idea which attributes really matter. In the oil-spill domain,
the shape and other characteristics could be described by an almost unlimited
number of attributes obtained by image-processing techniques. Many, perhaps
most of these attributes are bound to be irrelevant or redundant.

• In some domains, critically important attributes are either not known or cannot be
obtained at reasonable costs. Inevitably, machine learning has to work with those
attributes that are available, even if the performance of the induced classifier is
then limited.

• In the brain–computer interface, it was okay that the majority of the decisions
were correct, just to make the cursor land in the correct rectangle in reasonable
time. Hundred percent classification accuracy was not needed.

• In domains with more than two classes, error rate does not give the full picture
of the classifier’s behavior. Quite often, some classes are almost always perfectly
recognized, while others pose problems. It is thus important to know not only the
average performance but also the performance for each individual class.

• In medical diagnosis, low error rate is not enough. The user wants the decision
to be explained and argued for.

• The costs of false positives can differ from the costs of false negatives. In the
oil-spill domain, the respective costs could not easily be expressed in monetary
terms, and it was all but impossible to compare them.

• In the oil-spill domain, the user needed some parameter that would tilt the
classifications in ways that trade false positives for false negatives and the other
way round.

• In the text-categorization domain, the attribute vectors can be very long, and
most of the attribute values are zero. Besides, a typical example in this domain
will belong to several classes at the same time.

178 8 Experience from Historical Applications

Historical Remarks The results from Table 8.1 are from Kononenko et al. (1998)
who discuss there an older project of theirs. The oil-spill project was reported
by Kubat et al. (1998). The sleep classification task is addressed by Kubat et al.
(1994), and the experience with using machine learning in brain–computer interface
was published by Kubat et al. (1998). The character-recognition problem has
been addressed for decades by the field of Computer Vision; the first major text
systematically addressing the issue from the machine-learning perspective seems to
be Mori et al. (1992). The text-classification task was first studied by Lewis and
Gale (1994).

An explanatory remark is in place, here. The reader may have noticed that, of
these applications, the author of this book participated in three. His motivation for
including them was not to impress the reader with his incredible scholarship—
far from it. The truth is, if you work on a project for some time, you become
not only personally attached to it but also develop certain deeper understanding
and appreciation of the problems you have encountered. This makes such project
much more appropriate for instruction than projects that you have read about in the
literature.

8.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The ambition of the suggested
thought experiments is to let the reader see this chapter’s ideas in a different light
and, somewhat immodestly, to provoke his or her independent thinking.

8.8.1 Give It Some Thought

1. Suppose you are not certain about the correctness of some class labels in
your training set. Would you recommend that these “unreliable” examples be
removed? Under what circumstances? Do not forget that some of the pre-
classified examples have to be set aside as testing examples to evaluate the
induced classifier’s performance.

2. Discuss the reasons why application-domain users may be reluctant to accept the
machine-learning tools and results. Suggest ways to address their suspicions and
concerns.

3. Section 8.3 mentioned a simple mechanism that enables the k-NN classifier to
manipulate the two kinds of error (false negatives versus false positives). Suggest
a similar mechanism for Bayesian classifiers and neural networks. How would
you go about implementing such mechanism in a linear classifier?

4. In some of the domains from this chapter, it was necessary to identify irrelevant
and/or redundant attributes. In these particular projects, decision trees were used.

8.8 Solidify Your Knowledge 179

Fig. 8.7 In tic-tac-toe, the
goal is to achieve three
crosses (or circles) in a row or
a column or on a diagonal

Suggest possibilities based on what you learned in earlier chapters. Discuss their
advantages and disadvantages.

5. Suppose you want to implement a program to decide whether a given position
in the tic-tac-toe game (see Fig. 8.7) is winning. What attributes would you use?
How would you collect the training examples? What can you say about expected
noise in the data thus collected? What classifier would you use? What difficulties
are to be expected?

8.8.2 Computer Assignments

1. Some realistic data sets for machine-learning experimentation can be found on
the website of the National Institute of Standards and Technology (NIST). Find
this website, and then experiment with some of these domains.

2. Find a website dealing with the demography of the 50 states of the U.S. Identify
an output variable that will be positive if the state exceeds the U.S. average
and negative otherwise. Each state thus constitutes an example. Based on the
information provided by the website, identify the attributes to describe them.
From the data thus obtained, induce a classifier to predict the output variable’s
value.

Chapter 9
Voting Assemblies and Boosting

A popular way of dealing with difficult problems is to organize a brainstorming
session in which experts from different fields share their knowledge, exchanging
diverse points of view that complement each other in ways likely to inspire
unexpected solutions. Something similar can be done in machine learning, as well.
A group of classifiers is created, each of them somewhat different. When they
vote about a class label, their “collective wisdom” often compensates for each
individual’s imperfections. This results in higher classification performance.

This chapter deals with mechanisms for the induction of sets of classifiers. The
reasons behind the high performance of these classifier assemblies are explained
on the simplest approach known as bagging. Building on this foundation, the text
then proceeds to the more sophisticated boosting algorithms and their variations,
including random forests and stacking.

9.1 Bagging

For simplicity, let us constrain ourselves to two-class domains where each example
is either positive or negative. As always, the classifier is to be induced from a set of
pre-classified training examples.

Underlying Principle The approach known as bagging1 induces a group of
classifiers, each from a different subset of the training data. When presented with an
example to be classified, the classifiers are all applied in parallel, each offering an
opinion about the example’s class. A master classifier then decides which label got
more votes.

1The name is an acronym: booststrap aggregation.

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_9

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_9

182 9 Voting Assemblies and Boosting

Table 9.1 Pseudo-code of bagging

Input: training set, T , and the user’s choice of the baseline induction technique

1. Using random sampling with replacement, create from T several training subsets,
T1, T2, . . . Tn. Each subset consists of the same number of examples.

2. From each Ti , induce classifier Ci .
3. An example to be classified is submitted to all Ci ’s in parallel, each of them suggesting the

example’s class.
4. A master classifier decides which of the two classes received more votes.

Assuming that each of the participating classifiers represents a somewhat
different aspect of the recognition task, the group of classifiers (also known as a
“voting assembly”) is likely to outperform any individual.

Induction of the Voting Assembly The principle of bagging is summarized in
Table 9.1. The idea is to take the original training set, T , and create from it a certain
number of random training subsets, T1, . . . Tn, each of the same size.

Once the subsets Ti have been created, a machine-learning algorithm induces
from each of them a classifier, Ci . For this induction, any of the techniques from the
previous chapters can be used. However, the baseline version of bagging assumes
that the same technique (say, induction of decision trees with the same user-set
parameters) is used on each Ti .

Bootstrapping Let us now explain how to create the training subsets, Ti . Each
example from T has the same chance of being picked. Once it has been picked, it
is copied to Ti , but still left in T so that it can later be selected again, with the same
probability. This is what statisticians call “random selection with replacement.” In
their thought experiments, once a ball has been selected from an urn, it is put back
(replaced) so that it can be chosen again. For a training set, T , consisting of N

examples, the selection is repeated n times, thus generating n subsets. The process
is known as bootstrapping.

An example can appear in Ti more than once and, conversely, some examples
will not appear in Ti at all. Each Ti consists of N examples (where N is the size of
the original training set, T), but different in each training subsets. Mathematicians
have been able to show that, in this manner, about two-thirds of the examples in T

will find their way to Ti .
Since no two training subsets are the same, each of the induced classifiers is

focused on different aspects of the given problem, and each of them exhibits a
somewhat different classification behavior.

Why It Works Figure 9.1 helps explain why the method helps reduce error rate.
Three classifiers are considered. Each of them classifies correctly many examples
but fails on others. If the errors are rare, there is a good chance that each of the
three classifiers will err on different examples, which means that each example will

9.1 Bagging 183

Fig. 9.1 Each of the three classifiers classifies the same 17 examples. Each classifier errs on three
examples—different for each classifier. The picture shows how these errors are corrected by voting

be misclassified at most once. The class labels of the other two classifiers being
correct, an individual’s occasional mistake is corrected by the other classifiers.

Of course, this is only an ideal situation. Often, some examples will be
misclassified by two out of the three classifiers, in which case the voting results
in the wrong class. One can assume, however, that these errors will become less
frequent if we increase the number of classifiers.

The point to remember is that bagging succeeds if each classifier tends to err on
different examples.

Observations Experience shows that bagging improves classification performance
if the error rates of the individual classifiers are low.With a sufficiently large number
of classifiers, chances are high that some individuals’ errors will be corrected by the
other classifiers in a way indicated in Fig. 9.1.

This may not be the case when the error rates of the classifiers are high. In that
event, the wrong class may be suggested by the majority, and voting will not help.
The situation improves if a great many classifiers are used because then, by the law
of large numbers, each aspect of the underlying recognition problem is likely to be
represented. For training sets of realistic sizes, however, the number of classifiers
used in bagging rarely exceeds 100.

Too Much Randomness The principle shown in Fig. 9.1 suggests that the classi-
fiers perhaps should not be created at random; rather, they should be induced in
a way that makes each of them err on different examples so that the classifiers
complement each other as much as possible. Mechanisms built around this advice
are the subject of the following sections.

184 9 Voting Assemblies and Boosting

9.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What makes us believe that a group of voting classifiers will outperform a single
classifier? When will the scheme fail?

• How are the individual classifiers induced in the bagging approach?
• Explain the principle of bootstrapping.

9.2 Schapire’s Boosting

Although bagging often leads to impressive results, it suffers from a serious
shortcoming: the voting classifiers have all been induced independently of one
another. A smarter approach will rely on a mechanism that makes the classifiers
complement each other in the spirit of Fig. 9.1. For instance, the classifiers should
be induced one at a time, each focusing on those training examples that have proved
to be difficult for the previous classifiers. Schapire’s boosting was invented with this
idea in mind.

Three Mutually Complementing Classifiers Suppose that a random subset, T1 ∈
T , of m training examples has been created. From this, the first classifier, C1,
is induced. Testing this classifier on the entire training set, T , will reveal that it
misclassifies a certain number of examples.

Let us now create a second subset, T2 ∈ T , consisting of m examples selected
in a manner that ensures that the previously induced C1 classifies correctly 50% of
them, failing on the remaining 50%. Put another way, T2 is so difficult for C1 that
the classifier will not outperform a flipped coin. From T2, the second classifier, C2,
is induced.

Having been each induced from different examples, C1 and C2 will differ in the
way they label some examples. To obtain a tie-breaker, a third training subset, T3,
is created exclusively from examples on which C1 and C2 disagree (again, there
should be m of them). From T3, the third classifier, C3, is induced.

The whole procedure is summarized by the pseudo-code in Table 9.2. Ideally,
each of the training sets, Ti , has the same size, m, so that each of the induced
classifiers has the same authority. When an example is presented, a master classifier
decides which class received more votes.

Recursive Implementation The principle can be implemented recursively; Fig-
ure 9.2 shows how. The triplet of classifiers obtained by the algorithm in Table 9.2
(in the dotted rectangle) is treated as a single classifier. In the next step, a new
training subset, T4, is created in a manner that ensures that the triplet’s error rate
on T4 is 50%. From these, classifier C4 is induced. Finally, training subset T5 is

9.2 Schapire’s Boosting 185

Table 9.2 Pseudo-code of Schapire’s boosting

Input: training set, T , and the user’s choice of the baseline induction technique

1. Create a random training subset, T1, and induce from it classifier C1.
2. Create a training subset T2 in a manner that makes sure that C1 scores 50% on it. From T2,

induce classifier C2.
3. Create a training subset T3 from examples on which C1 and C2 disagree. From T3, induce

classifier C3.
4. For classification, let C1, C2, and C3 vote.

Fig. 9.2 Recursive application of Schapire’s boosting. Master classifier A combines the votes of
classifiers 1–3, and master classifier B combines the votes of master classifier A with those of
classifiers 4 and 5

created from examples on which the triplet and C4 differ; from these, classifier C5
is induced. Figure 9.2 also shows the hierarchical organization of the voting.

Note the mechanism of the voting procedure. If classifiers 1 through 3 all return 0,
master classifier A returns class 0, as well; however, this result can still be outvoted
if both classifier 4 and classifier 5 return class 1. The whole structure thus may return
1 even if three out of the five participating classifiers return 0.

The total number of classifiers induced using this single level of recursion is
3 + 2 = 5. The principle can be repeated, resulting in 5 + 2 = 7 classifiers, and so
on. Assuming NR levels of recursion, the total number of participating classifiers is
2NR + 3.

Performance Considerations Suppose that each of the induced classifiers has
error rate below a certain ε. It has been proved that the voting triplet’s error
rate is then less than 3ε2 − 2ε3, which is always smaller than ε. For instance, if
ε = 0.2, then 3ε2 − 2ε3 = 2 · 0.04 − 2 · 0.008 = 0.104. And if ε = 0.1, then
3ε2 − 2ε3 = 0.03 − 0.002 = 0.028.

Put another way, Schapire’s boosting seems to guarantee an improvement over
the performance of the individual classifiers. However, if the first voting triplet
achieves 3ε2 − 2ε3 = 0.104, it may be difficult to achieve an equally low error rate,

186 9 Voting Assemblies and Boosting

Fig. 9.3 Another possibility of recursive application of Schapire’s boosting

0.104, with classifiers 4 and 5. One way to overcome this difficulty is to conceive
each of them (classifier 4 and classifier 5) as a triplet in its own right, as in Fig. 9.3.
The number of classifiers participating in NR levels of recursion will be 3NR .

The thing to remember is that, at least in theory, each added level of recursion
reduces the error rate. This seems to promise the possibility of reducing the error
rate almost to zero. Practice, however, is different—for reasons explained in the next
paragraph.

Limitations The main difficulty is to find the right examples to be included in
each of the subsequent training subsets. These, we already know, have to satisfy
certain criteria: to induce the second classifier, C2, we need a training subset, T2,
that makes the previous classifier, C1, classify correctly only 50% examples; and the
third classifier is induced exclusively from examples on which C1 and C2 disagree.

This is easier said than done. If the entire training set consists of 100 examples,
and the first classifier’s error rate is 10%, then we have only 10 misclassified
examples, to which 10 correctly classified examples are added to create T2; this
means that the size of T2 will not exceed 20. Likewise, we may find it impossible to
find m examples on which C1 and C2 give the opposite class labels.

Even if we do succeed in creating equally sized three training subsets satisfying
our criteria, we may not be able to apply the principle recursively. For this, we would
need an almost inexhaustible (and certainly not affordable) source of examples—a
luxury hardly ever available.

9.3 Adaboost: Practical Version of Boosting 187

9.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How does Schapire’s boosting create the training subsets from which the
individual classifiers are to be induced?

• Explain the two ways of implementing the principle recursively. How many
classifiers are induced in each case if NR levels of recursion are used? Discuss
the voting mechanism.

• When compared to the error rate of the individual classifiers, what is the error
rate of the final classification?

• Discuss the practical limitations of Schapire’s boosting: the problem with finding
enough examples.

9.3 Adaboost: Practical Version of Boosting

The main weakness of bagging is its randomness: the classifiers are induced from
random data, independently of each other. In Schapire’s boosting, the randomness
is minimized, but there was another problem: in a realistic setting, it is often
impossible to find the training examples that satisfy the stringent conditions.

These observations motivated Adaboost where the training subsets are chosen
using a probabilistic distribution. This distribution is systematically modified in a
way that helps focus on the gradually more difficult aspects of the given class.

General Idea Similarly to Schapire’s approach, Adaboost creates the classifiers
one by one, each from a different training subset whose composition depends on
the behavior of the previous classifiers. There is a difference, though. Whereas
Schapire’s boosting selects the examples according to precisely defined conditions,
Adaboost chooses them probabilistically. Each example has a certain chance of
being drawn, the probabilities of all examples summing to 1. Examples that were
repeatedly misclassified by previous classifiers get a higher chance of being included
in the training subset for the next classifier.

Another difference is the number of classifiers. Unlike Schapire’s triplets,
Adaboost typically relies on a great number of classifiers. Further on, the final
decision is not achieved by the plain voting used in bagging but rather by weighted
majority voting.

Probabilistic Selections As mentioned, the training subsets, Ti , are created from
the original set, T , using probabilities. Here is a simple way of doing so. Suppose
the i-th example’s chances of being drawn are specified as p(xi) = 0.1. A random-
number generator is asked for a number between 0.0 and 1.0. If the returned number
is from interval [0.0, 0.1], the example is selected; otherwise, it is not.

188 9 Voting Assemblies and Boosting

Table 9.3 Pseudo-code of Adaboost

Input: training set, T , of m examples; the user’s choice of the induction technique

1. Let i = 1. For each xj ∈ T , set p1(xj) = 1/m.
2. Create subset Ti consisting of m examples randomly selected according to the given probabil-

ities. From Ti , induce Ci .
3. Evaluate Ci on each example, xj ∈ T .

Let ei(xj) = 1 if Ci misclassified xj and ei(xj) = 0 otherwise.

(i) Calculate εi = ∑m
j=1 pi(xj)ei (xj);

(ii) Calculate βi = εi/(1 − εi).

4. Modify the probabilities of correctly classified examples by pi+1(xj) = pi(xj) · βi

5. Normalize the probabilities to ensure that
∑m

j=1 pi+1(xj) = 1.
6. Unless a termination criterion has been met, set i = i + 1 and go to 2.

At the beginning, when the first training set, T1, is being created, each example
has the same chance: if T consists of m examples, then the probability of each
example is p = 1/m. For each of the next subsets, Ti , the probabilities are modified
according to the observed behavior of the previous classifier, Ci−1. The idea is to
make sure that examples misclassified by the previous classifiers should get a higher
chance of being included in Ti than those that were correctly classified. This will
focus Ci on those aspects that the previous classifiers found difficult.

Modifying the Probabilities The first training subset, T1, is created from examples
that all had the same probability of being included in it: p = 1/m. After this, the
probability of examples correctly classified by C1 is reduced, and the probability of
examples misclassified by C1 is increased.

The way the probabilities are modified is shown in Table 9.3. First, Adaboost
calculates the i-th classifier’s overall error, εi , as the weighted sum of errors on the
whole original training set: this is obtained simply by summing the probabilities of
the misclassified examples. Once the weighted sum has been obtained, it is used to
reduce the probability of those examples that have been correctly classified by Ci :
each such probability is multiplied by the term, βi = εi/(1 − εi).

Normalizing the Probabilities Whenever the probabilities change, they have to
be normalized so that their values again sum to 1 as required by the theory of
probability. The easiest way to do so is by dividing each probability by the sum
of all probabilities. For instance, suppose that the following probabilities have been
obtained:

p1 = 0.4, p2 = 0.2, p3 = 0.2

The sum of these values is 0.4 + 0.2 + 0.2 = 0.8. Dividing each of the three
probabilities by 0.8 will give the following normalized values:

p1 = 0.4

0.8
= 0.5, p2 = 0.2

0.8
= 0.25, p3 = 0.2

0.8
= 0.25

9.3 Adaboost: Practical Version of Boosting 189

It is easy to verify that the new probabilities now sum to 1:

p1 + p2 + p3 = 0.5 + 0.25 + 0.25 = 1.0

Numeric Example Table 9.4 shows how Adaboost modifies the probabilities of
the individual examples. At the beginning, each example has the same chance of
being selected for the first training set. Once the first classifier has been induced, it
is applied to each example from the original set, T .

The probabilities of those examples that were correctly classified by C1 (exam-
ples x1 through x7) are reduced according to pi+1(xj) = pi(xj) · βi , where
βi = εi/(1 − εi) and εi = ∑m

j=1 pi(xj)ei(xj). The resulting probabilities are then
normalized to make sure they sum to 1.

Next, the second training set, T2, is created and classifier C2 induced from it.
Based on the observed behavior of C2 on the entire T , we calculate the values of ε2
and β2; these are then used for the modification of the probabilities of the correctly
classified examples, p(x1) . . . p(x10). The process continues until a termination
criterion is reached, for instance, a predefined number of classifiers having been
reached, or the classification accuracy of the whole “assembly” having achieved a
certain threshold.

Table 9.4 Example of Adaboost modifying the probabilities of examples

Suppose the training set, T , consists of ten examples, x1 . . . x10. The number of examples being
m = 10, all initial probabilities are set to p1(xi) = 1/m = 0.1:

p1(x1) p1(x2) p1(x3) p1(x4) p1(x5) p1(x6) p1(x7) p1(x8) p1(x9) p1(x10)

0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

According to this probability distribution, the examples for inclusion in T1 are selected. From T1,
classifier C1 is induced.

Suppose that, when applied to T , classifier C1 classified correctly examples x1 . . . x7 (for these,
e1(xj) = 0) and misclassified examples x8 . . . x10 (for these, e1(xj) = 1).

The weighted error is then obtained as follows:

ε1 = �10
j=1 p1(xj) · e1(xj) = 0.3

From here, the multiplicative term is calculated:

β1 = ε1/(1 − ε1) = 0.43

The probabilities are modified by p(xj) = p(xj) · β1

Here are the new (not yet normalized) values:

p2(x1) p2(x2) p2(x3) p2(x4) p2(x5) p2(x6) p2(x7) p2(x8) p2(x9) p2(x10)

0.043 0.043 0.043 0.043 0.043 0.043 0.043 0.1 0.1 0.1

Normalization results in the following values:

p2(x1) p2(x2) p2(x3) p2(x4) p2(x5) p2(x6) p2(x7) p2(x8) p2(x9) p2(x10)

0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.17 0.17 0.17

Note that these ten probabilities sum up to 1.0. The next classifier, C2, is then induced from a
training set T2 whose examples have been selected from T according to these last probabilities.

190 9 Voting Assemblies and Boosting

Weighted Majority Voting Once the classifiers have been induced, the example
to be classified is presented to them all in parallel, and the final classification
decision is reached by weighted majority voting whereby each classifier is given
a weight according to its classification record (see below). The voting mechanism in
Adaboost is less than democratic in that it weighs the individual classifiers’ strengths
with coefficients denoted by wi .

When presented with an example, each classifier returns a class label. The final
decision is obtained by comparing the sum, Wpos, of the weights of the classifiers
voting for the positive class with the sum, Wneg, of the weights of the classifiers
voting for the negative class.

For instance, suppose there are seven classifiers with the following weights:
[0.2, 0.1, 0.3, 0.7, 0.2, 0.9, 0.8]. Suppose, further, that the first four return pos, and
the last three return neg. Plain voting would return the pos label because this
class is supported by the greater number of votes. By contrast, weighted majority
voting will separately sum the weights supporting the positive class, obtaining
Wpos = 0.2 + 0.1 + 0.3 + 0.7 = 1.3 and then sum the weights supporting the
negative class: Wneg = 0.2 + 0.9 + 0.8 = 1.9. The master classifier labels the
example as negative because Wneg > Wpos.

Defining the Weights of Individual Classifiers Each classifier is assigned a
weight according to its performance: the higher the classifier’s reliability, the higher
its weight. The weight can in principle even be negative—if it is believed that the
classifier more often fails than succeeds. It is important to know how to find the
concrete weights.

Many possibilities exist. The inventors of Adaboost suggested formulas that
facilitated their mathematical analysis of the technique’s behavior. Practically
speaking, though, one can just as well use the perceptron-learning algorithm from
Chap. 4. The idea is to begin with equal weights for all classifiers and then present
the system, one by one, with the training examples. Each time the master classifier
makes an error, we increase or decrease the weights of the individual classifiers
according to the relation between the master classifier’s hypothesis, h(x), and the
training example’s class, c(x).

One can also use WINNOW because it is good at weeding out classifiers that do
not contribute much to the overall system’s performance (as if these classifiers were
irrelevant attributes describing an example).

9.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Describe the mechanism that Adaboost uses when selecting the training examples
to be included in the training set, Ti (from which the i-th classifier is to be
induced).

9.4 Variations on the Boosting Theme 191

• Explain how, after the induction of the i-th classifier, Adaboost modifies for each
example its probability of being chosen for inclusion in Ti+1.

• Explain the principle of the weighted majority voting that Adaboost uses when
deciding about a concrete example’s class label.

• How are the weights of the individual classifiers obtained?

9.4 Variations on the Boosting Theme

Boosting combines several imperfect classifiers that tend to complement one
another. Schapire was the first to suggest a concrete way of inducing such classifiers,
bagging and Adaboost being the most popular alternatives. The variations on this
theme are virtually inexhaustible. Let us mention some of the most important ones.

Randomizing Attributes Rather than inducing each classifier from a different
training subset, one may use the same training examples, but each time described
by a different subset of attributes.

The input is the set, T , of the training examples and the set, A, of the attributes
that describe them. Instead of the random subsets of examples (as in bagging), we
choose N random subsets of attributes, Ai ⊂ A. The i-th classifier (i ∈ [1, N]) is
induced from all examples from T , described by attributes from Ai . As before, the
classifiers participate in weighted majority voting, the weights being obtained, say,
by perceptron learning.

The technique is useful in domains with many attributes of which most are
suspected of being either irrelevant or redundant. Classifiers induced from examples
described by imperfect attributes will exhibit poor classification performance and
thus receive low (or even negative) weights.

Random Forests Suppose that, for the baseline induction techniques, we choose
induction of decision trees. A popular approach known as random forests combines
bagging with randomized attributes. Not only is each of the voting classifiers
induced from a different set of examples but also describes them by a different set
of attributes. The names come from the fact that many decision trees are voting.

Non-homogeneous Boosting The boosting techniques presented so far have all
assumed that the individual classifiers are induced from somewhat different data, but
always with the same baseline learning technique. Generally speaking, however, this
does not have to be the case. Non-homogeneous boosting does the exact opposite:
each classifier is induced from the same data, but with a different machine-learning
technique. The classifiers then, again, participate in weighted majority voting.

The main advantage of this approach is the way it reduces error. Chapter 11
will explain that the errors committed by any classifier fall into two categories. The
first is due to the variance in the data: a different training set results in a different
classifier that errs on different examples. The second source is the bias inherent
in the classifier; for instance, a linear classifier will misclassify some examples if
the two classes are not linearly separable. Non-homogeneous boosting is known to

192 9 Voting Assemblies and Boosting

Table 9.5 The class labels
suggested by the six
base-level classifiers are used
as attributes to redescribe the
examples. Each column
represents a training example
to be used for the induction of
the master classifier

x1 x2 x3 . . . xm
Classifier 1 1 1 0 . . . 0

Classifier 2 0 0 1 . . . 1

Classifier 3 1 1 0 . . . 1

Classifier 4 1 1 0 . . . 1

Classifier 5 0 1 0 . . . 1

Classifier 6 0 0 0 . . . 1

Real class 1 1 0 . . . 1

reduce both kinds of error: variance-related errors, which are reduced in all boosting
algorithms, and bias-related errors—an advantage specific to non-homogeneous
boosting.

Stacking The non-homogeneous boosting from the previous paragraph takes the
outputs of the individual classifiers and then reaches the final decision by weighted
majority voting. Two layers are involved: at the lower are the base-level classifiers,
and at the upper is a master classifier that combines their outputs. Note that the
master classifier itself has to be induced from data, perhaps by perceptron learning
because the weighted voting essentially represents a linear classifier.

In the stacking approach, the principle is generalized. While the lower layer, as
before, employs a set of diverse classifiers, the master classifier can essentially use
any machine-learning paradigm: Bayesian, nearest-neighbor based, a decision tree,
or a neural network. The linear classifier from non-homogeneous boosting is just
one out of many possibilities.

The base-level classifiers may each rely on a different paradigm. Very often,
however, they differ only in their choice of parameter settings. For instance, there
can be a few decision trees, each with a different extent of pruning, and to these may
be added a few k-NN classifiers, each with a different k. What matters is that each
such classifier should differ in its classification behavior.

The method is illustrated in Table 9.5. The rows represent the base classifiers:
six of them were induced, each by a different technique. The columns represent the
training examples. The field in the i-th row and j -th column contains 1 if the i-th
classifier labels the j -th example as positive; otherwise, it contains 0. Each column
can be interpreted as a binary vector that redescribes the given example by the labels
assigned to it by these classifiers. This new training set is then presented to another
machine-learning program that induces the master classifier.

9.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the principle of randomized attribute sets. What is its main advantage?
How can it be combined with classical bagging?

9.5 Cost-Saving Benefits of Boosting 193

• What is the essence of random forests?
• Explain the principle of non-homogeneous boosting. What is its main advantage

from the perspective of the errors committed by the resulting classifier?
• Explain the two-layered principle of “stacking.” In what sense can stacking be

seen as a generalization of non-homogeneous boosting?

9.5 Cost-Saving Benefits of Boosting

In some machine-learning algorithms, computational costs grow very fast with the
growing size of the training set. An experimenter may observe that induction from
half of the examples takes only a small fraction of the time that would be needed
if all training examples were used. Likewise, the induction technique’s costs may
grow very fast with the growing number of attributes.

Illustration The situation is visualized in Fig. 9.4. Here, the time needed by a
hypothetical machine-learning technique to induce a classifier from N examples
is T . However, the time needed to induce a classifier from just half of the examples
is only one-fifth of the time, 0.2T . It follows that to induce two classifiers, one from
the first half of the training set and the other from the second half, we will need only
2 × 0.2T = 0.4T of the time that would have been needed for the induction of the
classifier from the whole set, T . The computational savings thus amount to 60% of
the original costs.

Generalization to K Classifiers Following the same logic, we may consider
induction of K classifiers, each from a different subset, Ti , and each consisting of
m examples such that m is much smaller than the size of the whole training set. The
classifiers induced from these subsets will then vote, just as they do in bagging. In

Fig. 9.4 In some techniques,
computational costs grow
quickly with the growing size
of the training set. Quite
often, induction from half of
the examples incurs only a
small fraction of the costs
incurred by induction from all
examples

194 9 Voting Assemblies and Boosting

many cases, the induction of the individual classifiers will take only a tiny fraction
of the original time—and yet the classification performance of the whole group
may compare favorably with that of a classifier induced, at great computation costs,
from the entire training set. Similar observations can be made also in the case of
Schapire’s boosting and Adaboost.

We see that boosting not only improves classification performance but may also
leads to savings in computational costs. These savings may be critical in domains
marked by a great many training examples described by many attributes. Induction
can then be very expensive, and any idea that helps reduce the costs is welcome.

Comments on Practical Implementation In bagging, the number of examples to
be included in Ti is the same as in the original training set. No computational savings
in the sense of Fig. 9.4 will thus be observed. However, we must not forget that the
assumption about the sizes of Ti was needed only to facilitate the presentation of
bagging as a bootstrapping technique. In practical applications, this is unnecessary:
the size, m, of the sets Ti can be just another user-set constant.

The reader will recall that Schapire’s Boosting, non-homogeneous boosting, and
stacking assumed that the sizes of Ti , were chosen by the user.

Costs of Example Selection When considering these cost savings, we must not
forget that we pay for them with extra overhead. More specifically, additional
computational time is needed to select the examples to be included in the next Ti .

In the case of bagging, these costs are so small as to be easily neglected. They
are higher in Adaboost, but even here they are usually affordable. The situation
is different in Schapire’s boosting. Here, the search for examples that satisfy the
conditions for inclusion in T2 and T3 can be quite expensive, especially when a great
number of training examples are available from which only a small percentage of
them satisfy the conditions.

9.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Elaborate on the statement that “computational costs of induction can be greatly
reduced by exploiting the idea of the voting assemblies.”

• Discuss the circumstances under which one can expect boosting to reduce
computational costs.

• How expensive (computationally) is it to create the training subsets, Ti , in each
of the boosting techniques?

9.7 Solidify Your Knowledge 195

9.6 Summary and Historical Remarks

• A popular machine-learning approach induces a set of classifiers, each from a
different subset of the training examples. When presented with an example, each
classifier offers a class, the final decision being delegated to a master classifier.

• The simplest application of this idea is bagging. Here, the subsets used for the
induction of the individual classifiers are obtained from the original training set,
T , by bootstrapping. Suppose that T contains m examples. Then, when creating
Ti , we choose m examples “with replacement.” Some examples may then appear
in Ti more than once, while others will not appear there at all.

• Schapire’s boosting induces three classifiers, C1, C2, and C3, making sure that
they complement one another as much as possible. This complementarity is the
result of the mechanism that creates the training subsets: the composition of T1
is random, the composition of T2 is such that C1 experiences 50% error rate on
this set, and T3 consists of examples on which C1 and C2 disagree. Each of the
three subsets has the same number of examples.

• Adaboost chooses the training subsets probabilistically in a way that makes each
Ti consist primarily of examples on which the previous classifiers failed. Another
difference is that the final class label is obtained by weighted majority voting.

• Other variations exist. One of them, randomizing attributes, induces the clas-
sifiers always from the same training examples which, however, are each time
described by a different subset of the attributes. Another, non-homogeneous
boosting, uses always the same training set and the same attributes but induces
each classifier by a different induction technique. Both of these techniques decide
about the final class by weighted majority voting. Finally, stacking resembles
non-homogeneous boosting, but the output is decided by a master classifier that
is more general than just linear classifier. This master classifier is trained on the
outputs of the base-level classifiers.

Historical Remarks The idea of boosting was invented by Schapire (1990) who
pointed out that, in this way, even the performance of very weak induction
paradigms can be “boosted”—hence the name. The more practical idea underlying
Adaboost was published by Freund and Schapire (1996), whereas the bagging
approach was explored by Breiman (1996); its application to decision trees, known
as random forests, was published by Breiman (2001). The principle of stacking
(under the name Stacking Generalization) was introduced by Wolpert (1992).

9.7 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

196 9 Voting Assemblies and Boosting

Table 9.6 The probabilities of ten training examples

p(x1) p(x2) p(x3) p(x4) p(x5) p(x6) p(x7) p(x8) p(x9) p(x10)

0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.17 0.17 0.17

9.7.1 Exercises

1. Suppose the probabilities of the training examples to be used by Adaboost are
those listed in Table 9.6. From these, a training subset, Ti , has been created, and
from Ti , classifier Ci is induced. Suppose that Ci then misclassifies examples x2
and x9. Show how the probabilities of all training examples are recalculated and
then normalize these probabilities.

2. Suppose that eight classifiers have labeled an example. Let the weights of the
classifiers returning the pos label be [0.1, 0.8, 0.2], and let the weights of the
classifiers returning the neg label be [−0.1, 0.3, 0.3, 0.4, 0.9]. What label is
going to be returned by a master classifier that uses weighted majority voting?

3. Return to Table 9.5 that summarizes the class labels returned for some of the m

examples by six different classifiers. Suppose a 3-NN-based master classifier is
asked to label an example and that the three nearest neighbors (the columns in
Table 9.5) are x1, x2, and x3. What final label is returned?

9.7.2 Give it Some Thought

1. Recall how Schapire’s boosting chooses the examples for inclusion in the training
sets T2, and T3. Discuss possible situations under which it is impossible to find
enough examples for these subsets. When will it happen that enough examples
can be found, but the search for them is impractically expensive? Conversely,
under what circumstances will it be affordable to identify all the necessary
examples even when recursion is used?

2. Give some thought to the stacking approach. Think of a situation under which
it is bound to disappoint. Conversely, suggest a situation where stacking will
outperform the less general non-homogeneous boosting.

9.7.3 Computer Assignments

1. Implement the basic algorithm of Adaboost. The number of voting classifiers is
determined by a user-set constant. Another user-set constant specifies the number
of examples in each training set, Ti . The weights of the individual classifiers are
obtained with perceptron learning.

9.7 Solidify Your Knowledge 197

2. Apply the program implemented in the previous task to some of the benchmark
domains from the UCI repository.2 Study this program’s performance on differ-
ent data. For each domain, plot a graph showing how the overall accuracy of
the resulting classifier depends on the number of voting subclassifiers. Observe
how the error rate on the training set and the error rate on the testing set tend to
converge with the growing number of classifiers.

3. Implement the stacking algorithm for different base-level learning algorithms and
for different types of the master classifier. Apply the implemented program to a
few benchmark domains, and observe its behavior.

2www.ics.uci.edu/~mlearn/MLRepository.html.

www.ics.uci.edu/~mlearn/MLRepository.html

Chapter 10
Classifiers in the Form of Rule-Sets

Some classifiers are best expressed in the form of if-then rules: if the conditions in
the if -part are satisfied, the example is labeled with the class specified by the then-
part. The advantage is that the rule captures the logic underlying the given class,
and thus facilitates an explanation of why an example is to be labeled in this or
that concrete way. Typically, a classifier of this kind is represented not by a single
rule, but by a set of rules, a rule-set. Induction of rule-sets is capable of discovering
recursive definitions, something that other machine-learning paradigms cannot do.

When discussing the techniques that induce rules or rule-sets from training data,
we will rely on ideas borrowed from Inductive Logic Programming, a discipline that
studies methods for automated development and improvement of Prolog programs.
Here, however, we will limit ourselves only to classifier induction.

10.1 Class Described by Rules

To prepare the ground for simple rule-induction algorithms, let us take a look at
the nature of the rules that interest us. After this, we will introduce the relevant
terminology and define the specific machine-learning task.

Essence of Rules Table 10.1 contains the training set of the “pies” domain from
Chap. 1. The following expression is one possible description of the positive class:

[(shape=circle) AND (filling-shade=dark)] OR
[NOT(shape=circle) AND (crust-shade=dark)]

When classifying example, x, the classifier compares the example’s attribute val-
ues with those in the expression. Thus if x is circular and its filling-shade
is dark, the expression is true, and the classifier labels x as positive. If the

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_10

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_10

200 10 Classifiers in the Form of Rule-Sets

Table 10.1 Twelve training examples from the “pies” domain

Crust Filling

Example Shape Size Shade Size Shade Class

Ex1 Circle Thick Gray Thick Dark pos

Ex2 Circle Thick White Thick Dark pos

Ex3 Triangle Thick Dark Thick Gray pos

Ex4 Circle Thin White Thin Dark pos

Ex5 Square Thick Dark Thin White pos

Ex6 Circle Thick White Thin Dark pos

Ex7 Circle Thick Gray Thick White neg

Ex8 Square Thick White Thick Gray neg

Ex9 Triangle Thin Gray Thin Dark neg

Ex10 Circle Thick Dark Thick White neg

Ex11 Square Thick White Thick Dark neg

Ex12 Triangle Thick White Thick Gray neg

expression is false, the classifier labels the example as negative. Importantly, the
expression can be converted into the following two rules:

R1: if [(shape=circle) AND (filling-shade=dark)] then pos.
R2: if [NOT(shape=circle) AND (crust-shade=dark)] then pos.

else neg.

In the terminology of machine learning, each rule consists of an antecedent (the
if -part), which in this context is a conjunction of attribute values, and a consequent
(the then-part), which points to the concrete class label.

Note that the then-part of both rules indicates the positive class. An example is
labeled as positive only if the antecedent of at least one rule is satisfied; otherwise,
the classifier labels the example with the default class which, in this case, is neg. We
will remember that when working with rule-sets in domains of this kind, we must
not forget to specify the default class.

Simplifying Assumptions Throughout this chapter, we will rely on the following
simplifying assumptions:

1. All training examples are described by discrete-valued attributes.
2. The training set is noise-free.
3. The training set is consistent: examples described by the same attribute vectors

must belong to the same class.

Machine-Learning Task Our goal is an algorithm for the induction of rule-sets
from data that satisfy the above simplifying assumptions. We will focus on rules
whose consequents point to the positive class, the default always being the negative
class.

Since the training set is supposed to be consistent and noise-free, we will be
interested in classifiers that correctly classify all training examples. This means that

10.1 Class Described by Rules 201

for each positive example, the antecedent of at least one rule has to be true. For any
negative example, no rule’s antecedent is true, which is why the example is labeled
with the default (negative) class.

Rule “covers” an Example Let us introduce the notion of an example being
covered by a rule. To see the point, consider the following rule:

R: if (shape=circle) then pos.

If we apply this rule to the examples in Table 10.1, we will observe that
the antecedent’s condition, shape=circle, is satisfied by the following set of
examples: {ex1, ex2, ex4, ex6, ex7, ex0}. We say that R covers these six examples.
Generally speaking, a rule covers an example if the expression in the rule’s
antecedent is true for this example. Note that four of the examples covered by this
particular rule are positive and two are negative.

Rule Specialization Suppose we modify the above rule by adding to its antecedent
another condition, filling-shade=dark, obtaining the following:

R1: if (shape=circle) AND (filling-shade=dark) then pos

Checking R1 against the training set, we realize that it covers the following
examples: {ex1, ex2, ex4, ex6}. We see that this is a subset of the six examples
originally covered by R. Conveniently, only positive (and no negative) examples
are now covered.

This leads us to the definition of another useful term. If a modification of a
rule’s antecedent reduces the set of covered examples, we say that the modification
has specialized the rule. In other words, specialization narrows the set of covered
examples to a proper subset. A typical way of specializing a rule is by adding a new
condition to the rule’s antecedent.

Rule Generalization Conversely, a rule is generalized if its modification enlarges
the set of covered examples to a superset—if the new version covers all examples
that were covered by the previous version, plus some additional ones. The easiest
way to generalize a rule is by removing a condition from its antecedent. For instance,
this happens when we drop from R1 the condition (filling-shade=dark).

Specialization and Generalization of Rule-Sets We are interested in induction of
rule-sets that label an example with the positive class if the antecedent of at least
one rule is true for the example. This is the case of the rule-set consisting of the
rules R1 and R2 above.

If we remove one rule from a rule-set, the rule-set may no longer cover some
of the previously covered examples. This, we already know, means specialization.
Conversely, adding a new rule to the rule-set will generalize the rule-set because the
new rule will add to the set of covered examples.

202 10 Classifiers in the Form of Rule-Sets

10.1.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Explain the nature of rule-based classifiers. What do we mean when we say
that a rule covers an example? Using this term (cover), specify how the induced
classifier should behave on a consistent and noise-free training set.

• Define the terms generalization and specialization. How will you specialize or
generalize a rule? How will you specialize or generalize a rule-set?

• List the simplifying assumptions we said we would use throughout this chapter.

10.2 Inducing Rule-Sets by Sequential Covering

Let us introduce a simple technique to induce rule-sets from training data that satisfy
the simplifying assumptions from the previous section.

Principle The goal is to find a rule-set such that each of its rules covers some
positive examples, but no negative examples. Together, the rules should cover all
positive examples and no negative ones. The procedure creates one rule at a time,
always starting with a very general initial version (which covers also negative
examples) that is then gradually specialized until all negative examples are excluded.
The circumstance that the rules are created sequentially and that each is supposed to
cover those positive examples that were missed by previous rules gives the technique
its name: sequential covering.

Baseline Version of Sequential Covering Table 10.2 contains the pseudo-code of
a simple technique to induce the rule-sets. Sequential covering constitutes the main

Table 10.2 Pseudo-code of sequential covering

Input: training set T .

Sequential covering.
Create an empty rule-set.

While at least one positive example remains in T ,

1. Create a rule using the algorithm below.
2. Remove from T all examples that satisfy the rule’s antecedent.
3. Add the rule to the rule-set.

Create a single rule
Create an initial “empty” version of the rule, R: if (), then pos

1. If R does not cover any negative example, stop.
2. Add to R’s antecedent a condition, ai = vj , and return to the previous step.

10.2 Inducing Rule-Sets by Sequential Covering 203

part. Each rule covers some positive examples, but no negative examples. Once the
rule has been created, the examples covered by it are removed from the training
set. If no positive examples remain, the algorithm stops; otherwise, the algorithm is
applied to the reduced training set.

The lower part of the table describes induction of a single rule. The algorithm
starts with the most general version of the antecedent: it says, “all examples are
positive.” Assuming that the training set contains at least one negative example,
this statement is obviously incorrect. The algorithm seeks to rectify the situation by
specialization, trying to exclude from coverage some negative examples, hopefully
without losing the coverage of the positive examples. The specialization operator
adds to the rule another conjunct in the form, ai = vj (read: the value of attribute ai

is vj).

Illustration Let us hand-simulate the sequential-covering algorithm using the data
from Table 10.1. The first rule, the one with the empty antecedent, covers all
training examples. Adding to the empty antecedent, the condition shape=circle
results in a rule that covers four positive and two negative examples. Adding one
more condition, filling-shade=dark, specializes the rule so that, while still
covering the four positive examples, it no longer covers any negative example. We
have obtained a rule that covers examples {ex1, ex2, ex4, ex6}. This is the rule R1
from the previous section.

If we remove these four examples from the training set, we are left with only
two positive examples, ex3 and ex5. The development of another rule again starts
from the most general version (empty antecedent). Suppose that we then choose
shape=triangle as the initial condition. This covers one positive and two
negative examples. Adding to the antecedent the term filling-shade=dark
excludes the negative examples while retaining the coverage of the positive example
ex3, which can now be removed from the training set. Once this second rule has
been created, we are left with one positive example ex5.

We therefore have to create yet another rule whose task will be to cover ex5
without covering any negative example. Once we find such rule, ex5 is removed
from the training set. Since there are no positive examples left, the procedure is
terminated. We have created a rule-set consisting of three rules that cover all positive
examples and no negative example.

How to Identify the Best Attribute-Value Pair In our example, when specializing
a rule, we chose the condition to be added to the rule’s antecedent more or less
at random. But since we usually can select the added condition from a set of
alternatives, we need a mechanism to inform us about the quality of each choice.
One natural criterion is based on information theory, a principle we already know
from Chap. 5 where it was used to select the most informational attribute.

Let N+
old be the number of positive examples covered by the rule’s original

version, and let N−
old be the number of negative examples covered by the rule’s

original version. Likewise, the numbers of positive and negative examples covered
by the rule’s new version will be denoted by N+

new and N−
new, respectively.

204 10 Classifiers in the Form of Rule-Sets

Since the rule covers only positive examples, the information content of the
message that the rule labels a randomly picked example as positive is calculated
as follows (for the old version and for the new version):

Iold = − log(
N+

old

N+
old + N−

old

)

Inew = − log(
N+

new

N+
new + N−

new

)

The difference between the two quantifies the information gained by the rule
modification. Machine-learning professionals usually weigh the information gain by
the number of covered examples, NC , so as to give preference to rule modifications
that optimize the number of covered examples. The quality of the rule improvement
is then calculated as follows:

Q = NC × |Inew − Iold | (10.1)

When comparing alternative ways of modifying a rule, we choose the one with
the highest value of Q.

10.2.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Summarize the principle of the sequential covering algorithm.
• Explain the mechanism of gradual rule specialization. What do we want to

accomplish by this specialization?
• How will you exploit information gain when looking for the most promising way

of specializing a rule?

10.3 Predicates and Recursion

The sequential covering algorithm has a much broader scope of applications than
the previous section indicated. Importantly, the technique is capable of inducing
concepts expressed in predicate calculus.

Predicates: Greater Expressive Power Than Attributes A serious limitation
of attribute-value logic is that it is not flexible enough to capture certain relations
among data. For instance, the fact that y is located between x and z can be stated

10.3 Predicates and Recursion 205

by the predicate between(x,y,z).1 To express the same relation by means of
attributes and their values would be difficult.

An attribute is a special case of a one-argument predicate. For instance, the
fact that, for a given example, x, the shape is circular can be written as
circular(x). But the analogy is no longer obvious when it comes to predicates
with two or more arguments.

Induction of Rules in Predicate Calculus Here is an example of a rule that says
that if x is a parent of y, and at the same time x is a woman, then this parent is y’s
mother:

if parent(x,y) AND female(x) then mother(x,y)

We can see that this rule has the same structure as the rules R1 and R2 we
have seen before: a list of conditions in the antecedent is followed by a consequent.
And indeed, the same sequential covering algorithm can be employed for induction.
There is one difference, though. When choosing among the candidate predicates to
be added to the antecedent, we must not forget that the meaning of the predicate
changes if we change the arguments. For instance, the previous rule’s meaning will
change if we replace parent(x,y) with parent(x,z) because, in this case,
the fact that x is a parent of z surely does not guarantee that x is mother of some
other subject, y.

Rule-Sets Facilitate Recursive Definitions The rules can be more interesting than
those in the toy domain from Table 10.1 might have led us to believe. For one
thing, they can be recursive—as in the case of the following two rules that define an
ancestor.

if parent(x,y) then ancestor(x,y)

if parent(x,z) AND ancestor(z,y) then ancestor(x,y)

The meaning is easy to see. Ancestor is a parent or at least a parent’s ancestor.
For instance, a grandparent is the parent of a parent—and therefore an ancestor.

Example of Induction Let us illustrate induction of rule-sets using the problem
from Table 10.3. Here, two concepts, parent and ancestor, are characterized
by a list of positive examples under the assumption that any example that is not in
this list should be regarded as a negative example. Our goal is to induce the definition
of ancestor, using the predicate parent.

We begin with the most general rule, if () then ancestor(x,y). In the next
step, we want to add a condition to the antecedent. We may consider various
possibilities, but the simplest appears to be parent(x,y)—which will also be
recommended by the information-gain criterion. We have obtained the following
rule:

1More accurately, the predicate is the term “between,” whereas (x,y,z) is a list of arguments.

206 10 Classifiers in the Form of Rule-Sets

Table 10.3 Illustration of induction from examples described in predicate logic

Consider the knowledge base consisting of the following positive examples of classes parent and
ancestor, defined as Prolog-like facts (any example absent from this list is deemed negative).

parent(eve,ted) ancestor(eve,ted) ancestor(eve,ivy)
parent(tom,ted) ancestor(tom,ted) ancestor(eve,ann)
parent(tom,liz) ancestor(tom,ted) ancestor(eve,jim)
parent(ted,ivy) ancestor(tom,ted) ancestor(tim,ivy)
parent(ted,ann) ancestor(tom,ted) ancestor(eve,ann)
parent(ann,jim) ancestor(tom,ted) ancestor(eve,jim)

ancestor(ted,jim)

From these examples, the algorithm creates the following first version of the rule. Note that this
rule does not cover any negative examples.

R3: if parent(x,y) then ancestor(x,y)

After the removal of all positive examples covered by this rule, the following positive examples of
ancestor(x,y) remain:

ancestor(eve,ivy)
ancestor(eve,ann)
ancestor(eve,jim)
ancestor(tim,ivy)
ancestor(eve,ann)
ancestor(eve,jim)

To cover these, another rule is created:

if parent(x,z) then ancestor(x,y)

After specialization, this second rule is turned into the following:

R4: if parent(x,z) AND ancestor(z,y) then ancestor(x,y)

The two rules R3 and R4 now cover all positive examples and no negative examples.

R3: if parent(x,y) then ancestor(x,y)

Observing that the rule covers only positive examples and no negative examples,
we realize there is no need to specialize it.

However, the rule covers only the ancestor examples from the middle column
and no examples from the right column, which means that we need at least one more
rule. When considering the conditions to be added to the empty antecedent of the
next rule, we may consider the following (note that this is the same predicate, but
each time with a different set of arguments):

parent(x,z)
parent(z,y)

Suppose that the first of the two provides higher information gain. Seeing that
the rule still covers some negative examples, we will specialize it by adding another

10.4 More Advanced Search Operators 207

condition to its antecedent. Since the parent predicate does not lead us anywhere,
we try ancestor, again with diverse lists of arguments. Evaluating the informa-
tion gain of all alternatives, we learn that the best option is ancestor(z,y). Here
is the obtained second rule:

R4: if parent(x,z) AND ancestor(z,y) then ancestor(x,y).

10.3.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• How can a concept be expressed in predicate logic? In what sense are predicates
richer than attributes?

• Give an example of a recursively defined concept. Can you think of something
else than ancestor?

10.4 More Advanced Search Operators

The technique described in the previous sections followed a simple strategy: seeking
to find a good rule-set, the algorithm sought to modify the rule(s) by specialization
and generalization, evaluating alternative options by the information-gain criterion.

Operators for Rule-Set Modification In reality, the search can be more flexible
than the one discussed in the previous section. Other rule-set-modifying operators
have been suggested. These, as we will see, do not necessarily represent specializa-
tion or generalization, but if we take a look at them, we realize that they make sense.
Let us mention in passing that these operators have been derived with the help of a
well-known principle from logic, the so-called inverse resolution. For our specific
needs, however, the method of their derivation is unimportant.

In the following, we will simplify the formalism by writing a comma instead of
AND and using an arrow instead of the if-then construct. In all of the four cases, the
operator converts the rule-set on the left into the rule-set on the right. The leftmost
column gives the traditional names of these operators.

− identification:

{
b, x → a

b, c, d → a

}
⇒

{
b, x → a

c, d → x

}

− absorption:

{
c, d → x

b, c, d → a

}
⇒

{
c, d → x

b, x → a

}

208 10 Classifiers in the Form of Rule-Sets

− inter-construction:

{
v, b, c → a

w, b, c → a

}
⇒

⎧
⎨

⎩

u, b, c → a

v → u

w → u

⎫
⎬

⎭

− intra-construction:

{
v, b, c → a

w, b, c → a

}
⇒

⎧
⎨

⎩

v, u → a

w, u → a

b, c → u

⎫
⎬

⎭

Note that these replacements are not deductive: the rules on the right are never
perfectly equivalent to those on the left. And yet, they do appear to make sense
intuitively.

How to Improve Existing Rule-Sets? The operators from the previous paragraph
can be used to improve rule-sets that have been induced by the sequential covering
algorithm. We can even consider a situation where several different rule-sets have
been induced.

These rule-sets can then be improved by the operators listed above. The eval-
uation function may give preference to more compact rules that classify correctly
some auxiliary set of training examples meant to represent a concrete application
domain.

10.4.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• List the rule-set-modifying operators from this section. Which field of logic has
helped derive them?

• Suggest a way of using these operators when trying to improve a rule-set.

10.5 Summary and Historical Remarks

• Classifiers can be expressed in terms of rules. A rule consists of an antecedent (a
list representing a conjunction of conditions) and a consequent (a class label). If,
for the given example, the rule’s antecedent is true, then the example is labeled
with the label indicated by the consequent.

• If a rule’s antecedent is true, for an example, we say that the rule covers the
example.

• In rule induction, we often rely on specialization. This reduces the set of covered
examples to a subset. A rule is specialized if we add a condition to its antecedent.
Conversely, generalization enlarges the set of covered examples.

10.6 Solidify Your Knowledge 209

• Usually, we induce a set of rules, a rule-set. The classifier labels an example, x,
as positive if the antecedent of at least one of the rules is true for x. Adding a rule
to a rule-set results in generalization. Removing a rule from a rule-set results in
specialization.

• The chapter introduced a simple algorithm for induction of rule-sets from noise-
free and consistent training data described by discrete attributes. The algorithm
can to some degree be optimized using a criterion from information theory.

• The same algorithm can be used for induction of rules in domains where the
examples are described in predicate calculus. Even recursive rules can thus be
discovered.

• Certain other operators have been developed by the logical mechanism called
inverse resolution. They do not necessarily represent specialization or deduction.

Historical Remarks Induction of rules is one of the oldest tasks of machine
learning; its origins can be traced back to the days when the discipline’s primary
ambition was to create the knowledge bases for artificial-intelligence systems. The
sequential-covering algorithm is a simplified version of a technique proposed by
Clark and Niblett (1989). Its use for induction of predicate-based rule was inspired
by the FOIL algorithm developed by Quinlan (1990). The additional operators from
Sect. 10.4 are based on those introduced by Muggleton and Buntine (1988) in the
framework of their work on inverse resolution.

10.6 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

10.6.1 Exercises

1. Hand-simulate the algorithm of sequential covering for the data from Table 10.1.
Ignoring information gain, indicate how the first rule is created if we start from
crust-shade=gray.

2. Show that, when we choose different ways of specializing a rule (adding different
attribute-value pairs), we obtain a different rule-set that may even have a different
size.

210 10 Classifiers in the Form of Rule-Sets

10.6.2 Give it Some Thought

1. Think of some other concepts (different from those discussed in this chapter) that
will with advantage be defined recursively.

2. Give some thought to the fact that some concepts are naturally recursive. Try to
figure out whether they could be addressed by attribute-value logic. In this way,
demonstrate the superior power of the predicate calculus.

3. Suggest a learning procedure for “knowledge refinement.” In this task, we
assume that certain concepts have already been defined in predicate calculus.
When presented with another set of examples, the knowledge-refinement tech-
nique seeks to optimize the existing rules, either by making them more compact
or by making them more robust in the presence of noise.

10.6.3 Computer Assignments

1. Write a computer program that implements the sequential covering algorithm.
Use some simple criterion (not necessarily information gain) to choose which
condition to add to a rule’s antecedent.

2. In the UCI repository, find a domain satisfying the criteria specified in Sect. 10.1.
Apply to it the program developed in the previous step.

3. How would you represent two-argument or three-argument predicates if you
wanted to implement your machine-learning program in C++, Java, or some
other general-purpose language?

4. Write a program that applies the sequential covering algorithm to examples
described in predicate calculus.

Chapter 11
Practical Issues to Know About

To facilitate the presentation of machine-learning techniques, this book has so far
neglected certain practical issues that are non-essential for beginners, but cannot be
neglected in realistic applications. Now that the elementary principles have been
explained, time has come to venture beyond the basics.

The first thing to consider is the bias that helps reduce the number of possible
solutions. Next comes the observation that a larger training set may hurt the learner’s
chances if most of the examples belong to just one class. Another important question
is how to deal with classes whose meanings vary with context or time. Finally, the
chapter will address some more mundane aspects such as unknown attribute values,
the need to select useful attributes or create higher-level features, as well as some
other issues.

11.1 Learner’s Bias

Chapter 7 concluded that “there is no learning without bias.” The reasons were
mathematical: an unconstrained (and hence very large) hypothesis space is bound
to contain hypotheses that by mere chance may correctly classify the entire training
set while erring miserably on future examples. Here is a practical view: to be able
to find something, you need to know where to look; and the smaller the place where
that something is hidden, the higher the chances of succeeding.

Illustration Suppose we are to identify the property shared by the following set of
integers: {2, 3, 10, 12, 20, 21, 22, 28}. These are positive examples, besides which
we are also provided with some negative examples where the property is absent:
{1, 4, 5, 11}.

When trying to solve this problem, most people will start by various ideas
related to numbers, such as primes, odd numbers, integers exceeding certain
thresholds, results of arithmetic operations, and so on. With moderate effort, some

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_11

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_11

212 11 Practical Issues to Know About

property satisfying the training examples is found. Usually, though, this solution is
complicated, awkward—and unconvincing.

Here is the correct answer: all positive examples begin with t: two, three, . . ., all
the way up to twenty-eight. Negative examples begin with different letters.

The reason most people fail to solve this puzzle is that they are looking in the
wrong place. Put in the language of machine learning, they choose a wrong bias.
Once they are shown the correct answer, their mindset will take it into account, and
if they are later presented with a similar task, they will subconsciously think not
only about arithmetic operations but also about language. In other words, they will
incorporate this new bias into their thinking.

Representational Bias Versus Procedural Bias As far as machine learning is
concerned, biases come in different forms. A representational bias is determined
by the language in which we want the classifier to be formulated. Thus in domains
with continuous-valued attributes, one possible representational bias is the choice
of a linear classifier, another the preference for polynomials, and yet another the
preference for neural networks. If all attributes are discrete-valued, the engineer
may prefer conjunctions of attribute values, or perhaps decision trees. All of these
biases have their advantages as well as shortcomings.

Apart from this, there is also a procedural bias: preference for a certain method
of solution. For instance, one such bias relies on the assumption that pruning will
improve the classification performance of a decision tree on future data. Another is
the choice of the parameters in a neural-network training. And yet another, in the
case of linear classifiers, is the engineer’s decision to use perceptron learning rather
than WINNOW.

Strength of a Bias Versus Its Correctness Suppose the engineer is to choose
between a linear classifier and a neural network. If the positive and negative
examples are linearly separable, then the linear classifier is better: while both
paradigms contain the solution, the neural network may overfit the training set, thus
poorly generalizing to future data. Conversely, if the boundary separating the two
classes is highly non-linear, the linear classifier will lack flexibility, and the neural
network should be chosen.

The reader has noticed two critical aspects: strength and correctness. A bias is
strong if it implies a narrow class of classifiers. For instance, the bias of linear
classifiers is stronger than that of neural networks: the former are constrained to
linear decision surfaces, whereas the latter can model virtually any decision surface.

A bias is correct if it allows the solution: the linear classifier’s bias is correct in
domains where the positive examples are linearly separable from the negative. A
conjunction of Boolean attributes is correct only if the underlying class indeed can
be described by such a conjunction.

Rule of Thumb: Occam’s Razor The engineer wants to use a correct bias
(representational or procedural). Given the choice between two correct biases, the
stronger one is preferred—a principle we know from Chap. 7 as Occam’s Razor.

11.1 Learner’s Bias 213

Unfortunately, we rarely know in advance which of the available biases are
correct and which are incorrect; an educated guess is our only chance. In some
paradigms, say, high-order polynomials, the bias is so weak that a classifier from this
class has a high chance of zero error rate on the training set, and yet its performance
on future data is poor. Strengthening the bias (say, by reducing a polynomial’s order)
will reduce the VC-dimension, thus increasing the chances on future data—but only
if the bias remains correct. At a certain point, strengthening the bias further will do
more harm than good because the bias becomes incorrect perhaps very much so.

We need to understand the trade-off: a mildly incorrect but strong bias can be
better than a correct but weak one. However, what constitutes “a mildly incorrect
bias,” in a concrete application can usually be decided only by the engineer’s
experience or by experimentation (see Chap. 12).

Lifelong Learning We may face the necessity to learn a whole series of concepts
that are all expected to require the same bias. This, for instance, was the case of
the puzzle that opened this section. In applications of this kind, it makes sense
to organize the learning procedure in two tiers. At the lower, the primary task
is to identify the most appropriate bias, and at the higher, the software induces
the classifier within the discovered bias. The term used for this strategy, lifelong
learning, reminds us of our own human experience: the need to “learn how to learn”
in a given field.

Two Sources of Error: Variance The classifier’s error comes from two principal
sources. The first is the variance in the training examples. The thing is that the data
used for the induction of the classifier almost never capture all aspects of what we
want to learn. In some applications, the training examples are selected at random. In
others, one can use only those available at the moment, which involves a great deal
of randomness, as well. In yet others, the training set has been put together by an
expert whose choice was informed but subjective.

Be it as it may, one can imagine the existence of different training sets for the
same domain. And here is the point. From a different training set, a somewhat
different classifier is induced, and this different classifier will lead to different errors
on future data. Variance in the training data is thus one important source of errors.
Its negative effect is lower if we have really very large training sets.

The second source of error is bias-related. If the two classes, positive and
negative, are not linearly separable, then any linear classifier is bound to misclassify
some examples. Bias-related errors cannot be reduced below a certain limit that is
determined by the nature of the given type of classifier.

Trading Bias for Variance? It is instructive to consider the trade-off between the
two sources. The bias-related error can be reduced by choosing a machine-learning
paradigm with a weaker bias; this, however, increases variance, the other source of
error. Conversely, variance can be reduced by strengthening the bias, which means
higher frequency of bias-related errors.

214 11 Practical Issues to Know About

11.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the difference between the representational and procedural biases.
Illustrate each type by examples.

• Explain the difference between the strong and weak biases. Explain the difference
between the correct and incorrect biases. Discuss the interrelation of the two
dichotomies.

• What did this section say about the two typical causes of a classifier’s poor
performance on future data?

11.2 Imbalanced Training Sets

When discussing the oil-spill domain, Sect. 8.3 pointed out that well-documented
images of oil spills were rare. Indeed, the project could only rely on a few dozen
positive examples, whereas negative examples were abundant. Such imbalanced
representation of the two classes is not without serious consequences.

Simple Experiment Suppose we have at our disposal a very small training set,
consisting of only 50 positive examples and 50 negative examples. Let us subject the
data to fivefold cross-validation:1 we divide the set of 100 training examples into five
equally sized parts, each containing 20 examples; then, in five different experiments,
we always remove one part, induce a classifier from the union of the remaining four
(i.e., the union contains 80 examples), and test the classifier on the removed part. In
this way, we will minimize variance-related errors. Once finished, we average the
results: classification accuracy on the positive examples, classification accuracy on
the negative examples, and the geometric mean of the two.

Suppose we are later provided with additional negative examples. Wishing to see
how helpful they may be, we add to the previous training set these 50 negative
examples (the positive examples remaining the same), repeat the experimental
procedure from the previous paragraph, and then note the new results. The story then
continues: we keep adding to the training set one batch of fifty negative examples
after another while keeping the same original fifty positive examples.

Observation When we plot the results of these experiments in a graph, we obtain
curves that look something like those in Fig. 11.1, where the 1-NN classifier was
employed. The reader can see that with the growing number of the majority-
class examples, the induced classifiers become biased toward this class, gradually
converging to a situation where the classification accuracy on the majority class

1An evaluation methodology discussed in Sect. 12.5.

11.2 Imbalanced Training Sets 215

Fig. 11.1 Dotted: classification accuracy on the majority class; dashed: classification accuracy on
the minority class; and solid: geometric means of the two

approaches 100%, while the classification accuracy on the minority class drops
below 20%. The geometric mean of the two values keeps going down, as well.

The observation may seem counter-intuitive. Surely the induced classifier should
benefit from the opportunity to learn from more examples, even if all those newly
added examples are from the same class? Surprisingly, the unexpected behavior
is typical of many machine-learning techniques. Experts call this the problem of
imbalanced class representation.

Why Does It Happen in Bayesian Classifiers? To see the reason why Bayesian
classifiers suffer in imbalanced domain, the reader should recall that they label
example x with class ci that maximizes the following product:

P(ci) · P(x|ci)

In a heavily imbalanced training set where most examples are labeled with class
ci , this class’s prior probability, P(ci), is high, which means that also the above
product is high. This is why most examples will be labeled with ci .

Why Does It Happen in k-NN Classifiers? Consider a training set where the
vast majority of the examples are negative, and suppose the data suffer from high-
level class-label noise. In this event, class-label noise makes the nearest neighbor of
almost every positive example negative (because so many positive examples have
been given wrong labels when the training set was being created). Consequently,

216 11 Practical Issues to Know About

the 1-NN classifier misclassifies many positive examples. This results in numerous
false negatives and few, if any, false positives. When more nearest neighbors are
used, k > 1, the problem is mitigated, but only up to a certain degree.

What About Decision Trees and Neural Nets? In decision trees, the problem is in
principle the same as in nearest-neighbor classifiers. Once the decision tree has been
induced, most of the instance space tends to be covered by decision tree branches
that define the majority class. As a result, the examples to be classified in the future
only rarely satisfy the conditions (in the tree tests) for the minority class.

In neural networks, the situation is similar to the one experienced in Bayesian
classifiers. The problem is caused by the circumstance that algorithms for MLP
training seek to minimize the mean squared error (MSE). If most examples belong
to one class, then MSE is minimized by a classifier that rarely, if ever, classifies an
example with the minority class.

Imbalanced Classes are Common The previous paragraphs convinced us that
adding to the training set only examples from the majority class may do more
harm than good. This is a serious shortcoming because imbalanced training sets are
common than the reader may suspect. In the oil-spill domain, the minority class
was the oil spills, the primary target of the project; as already explained, these
are rare. In medical diagnosis, any disease is likely to be a minority class. Also
fraudulent credit card payments are relatively infrequent in the available data. In
all these fields, the training set will thus be heavily imbalanced, the minority class
being underrepresented.

Most of the time, it is the minority class that matters, but its examples cannot
be provided in sufficient quantity. This happens either because the event in question
is indeed rare (for instance, data related to kidney transplants) or because positive
examples are so expensive that the user cannot afford purchasing enough of them.
In the case of the oil-spill domain, both problems conspired: images of proved oil
spills were rare—as well as expensive.

11.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What does the term imbalanced training set refer to?
• What are the causes of poor performance of classical techniques in domains with

imbalanced classes?
• Provide examples of domains where the class representation are inevitably

imbalanced. What can be the reasons behind rare positive examples?

11.3 Dealing with Imbalanced Classes 217

11.3 Dealing with Imbalanced Classes

Many techniques for dealing with imbalanced class representation have been devel-
oped. In principle, they fall into three major categories: modification of the induction
techniques, majority-class undersampling, and minority-class oversampling.

Modifying Classical Approaches In linear classifiers, the problem can to a great
degree be mitigated by shifting the threshold, θ (or the bias, w0 = −θ) toward the
region occupied by the majority-class examples. The same is sometimes done in the
case of support vector machines (SVMs).

In nearest-neighbor approaches, one can consider modifying the classification
rule. For instance, the plain 7-NN classifier labels example x as positive if at least
4 out of the 3 nearest neighbors of x in the training set are positive. If the positive
class is the majority class, however, the engineer may request that x be labeled with
the negative class even if, say, only 2 of the nearest neighbors are negative.

In the case of Bayesian classifiers and neural networks, the classifier can be
instructed to issue the minority-class label even if the minority class loses—
provided that it loses by a small margin. For instance, if the output of the
positive-class neuron is 0.7 and the output of the negative-class neuron is 0.6, the
classifier still issues the negative class.

Majority-Class Undersampling: Mechanical Approach Suppose we have at our
disposal a heavily imbalanced training set where, say, nine out of ten examples
are negative. In this event, the experience from Sect. 11.2 suggests that we should
somehow reduce their number.

The simplest way to do so is to rely on purely random choice. For instance, each
negative example may face a 50% chance of being deleted. As noticed above, the
classifier induced from this reduced training set is likely to outperform a classifier
induced from the original data. However, the mechanical approach will hardly
satisfy an engineer who wants to understand why the data-removing trick worked—
or, conversely, why adding more majority-class examples would hurt the classifier.

Better Solution: One-Sided Selection The nature of the trouble suggests a
remedy. Seeing there are so many suspicious negative examples in the positive
region, we realize we should perhaps remove primarily these examples (rather than
resorting to the random selection of the mechanical approach).

Chapter 3 presented a technique that can identify suspicious examples: Tomek
Links. For two examples, (x, y), to participate in a Tomek Link, three conditions
have to be met: (1) each of the two examples has a different class label, (2) the
nearest neighbor of x is y, and (3) the nearest neighbor of y is x. In the left part of
Fig. 11.2, many of the noisy examples indeed do participate in Tomek Links. The
classifier’s behavior may thus improve by the deletion from the training set of the
negative participants of each Tomek Link pair.

The principle is known as one-sided selection because only one side of the Tomek
Link is allowed to remain in the training set. Applying the technique to the situation

218 11 Practical Issues to Know About

Fig. 11.2 In noisy domains where negative examples heavily outnumber positive examples,
the removal of negative examples that participate in Tomek Links may improve classification
performance

on the left of Fig. 11.2, we obtain the smaller training set shown on the right. The
reader will agree that the false negatives are now less frequent.

One-sided selection usually outperforms the mechanical approach from above.

Minority-Class Oversampling In some domains, the training set is so small that
any further reduction of its size by undersampling would be counterproductive. In
a situation where even the majority-class examples are sparse, deleting any single
one may remove some critical aspect of the learning task, thus negatively affecting
the performance of the induced classifier.

Under these circumstances, the opposite approach is recommended. Instead of
removing majority-class examples, we may prefer to add examples of the minority
class. Not having at our disposal real examples to be added, we create them
artificially. This can be done in two ways:

1. For each minority-class example, create one or more copies and add these copies
to the training set.

2. For each minority-class example, create its slightly modified version and add
it into the training set. The modification is caused by small random changes
(noise) in continuous-valued attributes. Much less useful, though still possible,
are changes in discrete attribute values.

Another look at Fig. 11.2 helps explain why this works. In the neighborhood of
some positive examples whose nearest neighbors are negative only because of noise,
minority-class oversampling will insert additional positive examples. As a result, the
k-NN classifier is no longer misled. The approach can improve the behavior of other
types of classifiers, as well.

11.4 Context-Dependent Domains 219

11.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How can classical machine-learning techniques be modified to be able to deal
with domains with imbalanced class representation?

• What is the essence of majority-class undersampling? Explain the mechanical
approach, and then proceed to the one-sided selection based on Tomek Links.

• Explain the principle of minority-class oversampling. Describe and discuss the
two alternative ways of creating new examples to be added to the training set.

11.4 Context-Dependent Domains

Up till now, we tacitly assumed that the underlying meaning of a given class is fixed
and immutable, and that the classifier, once induced, will under all circumstances
exhibit the same (or at least similar) behavior. This, however, is not always the case.

Context-Dependent Classes The meanings of some classes can be modified by
changed circumstances. This is the case in our daily life, too. “Fashionable dress”
depends on time and geography. “State-of-the-art technology” does not look the
same today as it did a 100 years ago. Even the understanding of such commonly used
terms as “democracy” or “justice” depends on political and historical background.
For more technical case, consider speech-recognition systems that are known to be
affected by the different pronunciations, say, in the U.K. and in the U.S.

Context-Dependent Features For our needs, context will be a “feature that, when
considered in isolation, has no bearing on the class, while affecting the class when
combined with other features.”

Suppose you want to induce a classifier for medical diagnosis. Here, attribute
gender does not mean causal relation; the patient being male is no proof of his
suffering from prostate-cancer, but gender=female is a clear indication
that the class is not prostate-cancer. This, of course, is somewhat extreme. In
other diseases, the impact of gender will usually only affect the interpretation of
certain laboratory tests, such as p = 0.5 being a critical threshold for male patients
and p = 0.7 for female patients. Alternatively, prior probabilities will be modified;
for Instance, breast-cancer is more typical of females, although it does occur
in men, too. Still, the impact of context is in many domains indisputable.

Induction in Context-Dependent Domains Suppose you want to induce a speech-
recognition system based on training examples both from British and from Amer-
ican speakers. Suppose the attribute vector describing each example contains also
the context, the speaker’s origin. The other attributes capture the necessary phonetic
features of the concrete digital signal. Each class label represents a phoneme.

220 11 Practical Issues to Know About

For the induction of a classifier that for each attribute vector returns the phoneme
it represents, machine learning can follow two alternative strategies. The first takes
advantage of the contextual attribute and divides the training examples into two
subsets, one for British speakers and one for American speakers; then, it induces a
separate classifier from each of these training subsets. The other strategy mixes all
examples in one big training set and induces a single “universal” classifier.

Practical experience shows that, in applications of this kind, the first strategy usu-
ally performs better, assuming that the real-time system employing the contextual
classifiers always knows which of them to use.

Meta-Learning In some domains, it is possible to identify for each training
example its context, but this information is not available in the case of future
examples that we will want to classify. The training-set information about context
can then be treated as a class, and some machine-learning technique can induce a
classifier capable of identifying the context. When classifying a future example, the
software then first decides the example’s context and then employs the classifier
corresponding to this context.

This scenario is sometimes called meta-learning.

Concept Drift Sometimes, the context changes in time. “Fashionable dress”
belongs to this category, and so do various political terms. In this event, machine-
learning specialists talk about concept drift. What they have in mind here is that, in
the course of time, the meaning of a class drifts from one context to another.

The drift has many aspects. One of them is the extent to which the meaning of the
class has changed. In some rare domains, this change is so serious that the induced
classifier becomes all but useless, and a new one has to be induced. Much more
typical, however, is a less severe change that results only in a minor degradation of
the classifier’s performance. The old classifier can then still be used, perhaps after
minor fine-tuning.

A critical aspect worth consideration is the “speed” of the drift. At one extreme
is an abrupt change: at a given moment, one context is totally replaced by another.
More typically, though, the change is gradual in the sense that there is a certain
transition period during which one context is, step by step, replaced by another. In
this event, the engineer may ask how fast the transition is and whether (and when)
the concept drift necessitates a concrete action.

Induction in Time-Varying Domains Perhaps the simplest scenario is the one
shown in Fig. 11.3. Here, a classifier is faced with a stream of examples that arrive
one at a time, either in regular or in irregular intervals. Each time an example
arrives, the classifier labels it with a class. A feedback loop may then tell the system
(immediately or after some delay) whether the classification was correct and if not
what the correct class was.

If there is a reason to suspect occasional concept drift, it may be a good idea to
use a sliding window as shown in the picture. The classifier is then induced only
from the examples “seen through the window.” Each time a new example arrives,
it is added to the window. Whenever necessary, older examples are removed, either

11.4 Context-Dependent Domains 221

Fig. 11.3 A window passes
over a stream of examples;
“current classifier” is
periodically updated to reflect
changes in the underlying
class. Occasionally, the
system can retrieve some of
the previous classifiers if the
underlying context recurs

one at a time or in groups, such as “delete the oldest 25% examples.” The motivation
is simple: we need the window to contain only recent examples because older ones
may be obsolete and thus unreliable.

As already mentioned, the classifier is supposed to represent only the examples
in the window. In the simplest implementation, the classifier is re-induced each time
the contents of the window change. Alternatively, the change in the window contents
may only trigger a modification/adaptation of the classifier.

Figure 11.3 shows yet another aspect of this scenario: an older context may
reappear (e.g., due to certain “seasonality”). It may then be a good idea to store
previously induced versions of the classifier, just in case they may prove useful in
the future.

Engineering Issues in the Sliding-Window Scenario The engineer has to con-
sider certain important issues. The first is the window size. A small window may
not contain enough examples for successful learning. A big window may contain
misleading examples from outdated contexts. Ideally, therefore, the window should
grow (no old examples deleted) as long as it can be assumed that the context has not
changed. When a change is suspected, a certain number of the oldest examples are
deleted.

This leads us to the next question: how do we recognize that a context has
changed? A simple solution relies on the feedback from the classifier’s behavior:
the change of context is betrayed by reduced classification performance.

Finally, there is the question of how many of the oldest examples to delete. This
depends on the speed of the context change and also on the extent of this change. At
one extreme, an abrupt and serious change calls for the deletion of all examples. At
the other, a very slow transition between two very similar contexts will necessitate
the deletion of only a few of the oldest examples.

222 11 Practical Issues to Know About

11.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Suggest examples of domains where the meaning of a given class varies in
time and/or geographical location. Suggest examples of domains where previous
meanings recur in time.

• Describe the scenario that relies on a stream of time-ordered examples. Explain
the principle of the sliding window.

• Discuss the basic engineering issues to be considered in the sliding-window
approach.

11.5 Unknown Attribute Values

In many realistic applications, the values of certain attributes are not known. A
patient refused to give his age, a measurement device failed, and some information
got lost—or is unavailable for other reasons. The consequence is an imperfect
training set such as the one shown in Table 11.1, where some values have been
replaced with question marks. The learning task becomes complicated if the
question marks represent a considerable percentage of all attribute-value fields. The
engineer needs to know what kind of damage the unknown values may cause and
what solutions to adopt.

Table 11.1 Training examples with missing attribute values

Crust Filling

Example Shape Size Shade Size Shade Weight Class

Ex1 Circle Thick Gray Thick Dark 7 pos

Ex2 Circle Thick White Thick Dark 2 pos

Ex3 Triangle Thick Dark Thick Gray 2 pos

Ex4 Circle Thin White ? Dark 3 pos

Ex5 Square Thick Dark ? White 4 pos

Ex6 Circle Thick White Thin Dark ? pos

Ex7 Circle Thick Gray Thick White 6 neg

Ex8 Square Thick ? Thick Gray 5 neg

Ex9 Triangle Thin Gray Thin Dark 5 neg

Ex10 Circle Thick Dark Thick ? ? neg

Ex11 Square Thick White Thick Dark 9 neg

Ex12 Triangle Thick White Thick Gray 8 neg

11.5 Unknown Attribute Values 223

Negative Effects of Unknown Values In the k-NN classifier, the distance between
two vectors can only be calculated if all values are known. True, one can modify
the distance metric in a way that quantifies the distance between, say, red and
unknown, but distances calculated in this manner tend to be rather ad hoc.

Linear and polynomial classifiers face similar difficulties. Without the knowledge
of all attribute values, it is impossible to calculate the weighted sum, �wixi , whose
sign tells the classifier which class to choose. Unknown attribute values complicate
also the use of Bayesian classifiers and neural networks.

Decision trees are more flexible. In the course of concrete classification, it may
happen that the attribute whose value is not known will not find itself on the path
from the root node to the terminal node and can thus be ignored.

Trivial Ways to Fill In the Missing Values In the case of a large training set with
only a few question marks, no harm is done if the examples with unknown values
are simply removed. However, this is impractical in domains where the question
marks are ubiquitous.

In domains of this kind, we may have to replace the question marks with at least
some values, even if incorrect or imprecise ones. In the case of a discrete attribute,
the question mark can be replaced with the attribute’s most common value. Thus in
example ex8 in Table 11.1, the unknown crust-shade will be deemed white
because this is this attribute’s most frequent value in the given training set. In the
case of a continuous-valued attribute, the average value can be used. In ex6 and
ex10, the value of weight is unknown. Among the 10 examples where it is known,
the average is weight=5.1, and this is what we will use in ex6 and ex10.

Of course, replacing the question marks with the most frequent or average
values renders the examples’ description somewhat dubious. When many values
are missing, more sophisticated methods are needed.

Learning to Guess the Missing Values The most common values and average
values can be misleading. A better method to replace the question marks relies
on the fact that attributes are rarely independent from each other. For instance,
the taller the man, the greater his body-weight. If the weight of someone with
height=6.5 feet is unknown, it would be foolish to use the average weight from
the entire population; the tall guy is likely to be heavier than that. We will do better
calculating the average weight among those with, say, height > 6.

The last argument considered a pair of mutually dependent attributes. Quite
often, however, the interrelations will involve three or more attributes. The engineer
may then want to employ a mechanism to predict the unknown values with the help
of machine learning. A pseudo-code of a simple possibility is given in Table 11.2.

Here is the principle. Suppose that at is an attribute that, in the original training
set, T , has many question marks which we want to replace with concrete values. We
convert the original training set, T , to a new training set, T ′, where the original class
(e.g., pos or neg) is treated as just another attribute, whereas at now becomes the
class. Next, we remove all examples whose values of at are unknown. From the rest,
we induce a classifier (e.g., a decision tree) and then use this classifier to supply the
missing values.

224 11 Practical Issues to Know About

Table 11.2 Algorithm to replace question marks with concrete attribute values

Let T be the original training set

Let at be the attribute with unknown values

1. Create a new training set, T ′, in which at becomes the class label; the examples are described
by all the remaining attributes, the former class label (e.g., pos versus neg) being treated like
just another attribute.

2. Remove from T ′ all examples in which the value of at is unknown. This results in yet another
training set, T ′′.

3. From T ′′, induce a classifier.
4. Using classifier C, determine the values of at in those examples in T where its values are

unknown

11.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What are the main difficulties caused by unknown attribute values? What are the
consequences in different machine-learning paradigms?

• Describe the trivial methods of dealing with unknown attribute values. Discuss
their shortcomings.

• Explain how to use machine learning when seeking to supply the unknown
attribute values.

11.6 Attribute Selection

In some domains, such as text categorization from Sect. 8.6, examples are described
by a great many attributes: tens of thousands or even more. Learning from data
sources of this kind can be prohibitively expensive, and the class may not be PAC-
learnable anyway, given the huge size of the instance space. Fortunately, many of
these attributes are unnecessary and can be removed.

Irrelevant and Redundant Attributes Not all attributes are created equal. Some
are irrelevant in the sense that their values do not have any effect on an exam-
ple’s class. Others are redundant because their values can be derived from other
attributes in the way that age can be obtained from current-date and
date-of-birth. Irrelevant and redundant attributes tend to mislead machine
learning, for instance, by distorting the vector-to-vector distances used in k-NN
classifiers. Other paradigms, such as decision trees, are less vulnerable, but they
may suffer from unacceptable computational costs.

Extremely Long Attribute Vectors Text categorization relies on tens of thousands
of attributes, which imposes an obvious limit on learnability. The induced classifiers

11.6 Attribute Selection 225

are prone to overfit the training data and disappoint on future examples. Also the
computational costs may grow too high; for instance, each additional attribute
increases the number of weights to be trained in a multilayer perceptron. Finally,
examples described by extremely long vectors are sparse, which may negatively
affect, say, k-NN classifiers. For all these reasons, the removal of unnecessary
attributes is more than desirable.

Trial and Error in Attribute Selection Suppose we have induced a classifier, say,
a multilayer perceptron. The importance of the individual attributes can be assessed
in the following manner.

Remove one input signal (attribute), including all the links leading from it
to the hidden layer, and observe the average mean squared error (MSE) on the
training set. Repeat this for each of the remaining attributes, and decide which of
these removals has resulted in the smallest increase of the MSE. If this increase
appears acceptable, remove the attribute and repeat the procedure recursively with
the remaining attributes.

Something similar can be implemented in other paradigms such as the k-NN
approach, Bayesian classifiers, linear classifiers, and RBF networks. In each of
them, less important attributes can thus be identified; unfortunately, this is done
only after the classifier has been induced.

Filtering by Information Gain A simple method of attribute selection prior to
classifier induction is filtering. The idea is to decide how useful the individual
attributes are likely to be for the machine-learning task at hand and then keep only
the best. How many to keep and how many to discard are decided by trial and error.

In the case of discrete attributes, the information gain from Sect. 5.3 can be used,
and the binarization technique from Sect. 5.4 makes information gain applicable
even for continuous-valued attributes.

Typical Observation Figure 11.4 shows a typical observation. If we order the
attributes from left to right according to their information gains, we will notice
that some attributes (perhaps just small percentage) are marked by high information

Fig. 11.4 One simple approach to attribute filters. Vertical axis represents information gain.
Horizontal axis represents attributes, in descending order of their attribute gain

226 11 Practical Issues to Know About

gain, but others are irrelevant, which is reflected by the sudden drop in the curve in
the graph.

Graphical representation of this kind makes it easy to decide where to draw the
line between the attributes to be kept and those to be discarded. One can also write
a little program to identify the location of the drop.

Criticism of the Filtering Approach Filtering ignores relations between
attributes. Also, it is not good at discovering redundancy. Suppose that some
attributeA can be derived from attributeB, perhaps by a function such asA = 3×B.
In that event, both attributes provide the same information gain. As such, they will be
sitting next to each other in the graph from Fig. 11.4, but it will not be immediately
obvious that one of them is redundant.

WINNOW and Decision Trees For the needs of filtering, we can take advantage
of some of the techniques we know from the previous chapters. For instance, the
reader will recall that the algorithm WINNOW from Sect. 4.3 significantly reduced
the weights of irrelevant attributes, and indeed this approach is to be recommended,
especially in view of its low computational costs. However, WINNOW suffers
from the weakness that the previous paragraph complained about: it fails to detect
redundancy.

Another possibility is to induce a decision tree and then use only those attributes
that appear in the tests in the induced tree’s internal nodes. The reader will recall that
this approach was used in some of the simple applications discussed in Chap. 8. The
advantage is that decision trees are good at eliminating not only irrelevant attributes
but also redundant attributes.

Wrapper Approach More powerful, though computationally more expensive, is
the wrapper approach. Here is the principle. Suppose we want to compare the utility
of two attribute sets, A1 and A2. From the original training set, T , we create two
training sets, T1 and T2. Both contain the same examples as T , but T1 describes
the examples with attributes from A1, whereas T2 uses attributes from A2. From
the two newly created training subsets, two classifiers are induced and evaluated on
some independent data, TE . The attribute set that results in the higher classification
performance is then preferred.

The quality of a given attribute set is therefore assessed by the success of a
classifier induced using these attributes. This seems reasonable—but only until we
realize that it may be impractical to experiment with every single subset of attributes.

Sequential Attribute Selection The pseudo-code in Table 11.3 represents a
technique that is computationally more acceptable than the plain wrapper approach.
The input is the training set, T , and a set of attributes, A. The output is a subset,
S ∈ A, of attributes that can be regarded as useful.

At the beginning, S is empty. At each step, the technique chooses the best
attribute from A and adds it to S. The meaning of “best” is here determined by the
classification performance (on an independent testing set) of the classifier induced
from examples described by the attributes from S. The algorithm stops if no addition

11.6 Attribute Selection 227

Table 11.3 Sequential attribute selection by the wrapper approach

Divide the available set of pre-classified examples into two parts, Ttrain and Ttest . Let A be the
set of all attributes, and let S be an empty set

1. For every attribute, ati ∈ A:

(i) add ati to S; describe all examples in Ttrain and Ttest by attributes from S;
(ii) induce a classifier from Ttrain, and then evaluate its performance on Ttest ; denote this

performance by pi ;
(iii) remove ati from S.

2. Identify the attribute that resulted in the highest value of pi . Remove this attribute from A, and
add it to S.

3. If A = ∅, stop; if the latest attribute addition did not improve performance, remove this last
attribute from S and stop, too. In either case, S is the final set of attributes.

4. If the previous step did not stop the program, return to step 1.

to S leads to an improvement of the classification performance or if there are no
more attributes to be added to S.

Wrappers or Filters? Each of the two approaches is its strengths and weaknesses,
and there is no golden rule to tell us which of them to prefer. Generally speaking,
wrappers are capable of identifying very good attribute subsets, but often at almost
prohibitive computational costs (especially in domains with a great many attributes).

Filters are computationally more efficient but often fail to identify redundant
attributes. Moreover, they tend to ignore the fact that some attributes are meaningful
only in combination with other attributes. Of course, there is always the possibility
to combine the two approached. In the first step, a filter is used to eliminate attributes
that are clearly useless; in the second, the wrapper approach is applied to this much
smaller set of attributes.

11.6.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• In what sense do we say that some attributes are less useful than others? Why is
the engineer often incapable of choosing the best attributes beforehand?

• How can irrelevant or redundant attributes be identified based on the classifica-
tion behavior of the induced classifier?

• Explain the principles of the filter-based approaches discussed in this section.
What are their strengths and weaknesses?

• Describe the principle of the wrapper technique, and explain its use in sequential
attribute selection. What are its strengths and weaknesses?

228 11 Practical Issues to Know About

11.7 Miscellaneous

Certain practical issues encountered in machine learning do not merit a separate
section, and yet they should not be ignored. Let us take a look at some of them.

Synthesis of Higher-Level Features Earlier chapters of this book repeatedly
complained that the attributes describing the examples often of a very low level.
More than once did the text suggest that perhaps some techniques should be
employed to create higher-level features as functions of the original ones.

Upon reflection, we realize that this is accomplished by multilayer perceptrons
where the new features are defined as the outputs of hidden-layer neurons. The same
can be said about the Gaussian outputs of RBF networks. Also, each branch of a
decision tree defines a feature that is a conjunction of attribute tests. Chapter 15 will
present the technique of auto-encoding where the creation of new features is one of
the main objects. The ability to transform the example description into something
meaningful is perhaps the main secret behind the successes of deep learning (see
Chap. 16).

Linearly Ordered Classes In some domains, each example is labeled with one
out of several (perhaps many) classes that can be ordered. For instance, suppose
that the output class is month, with values january through december. When
measuring the performance of the induced classifier, it can be misleading to assume
that confusing june for may is an error of the same magnitude as misclassifying
june for december.2

Not only during performance evaluation but also in the course of the induction
process, attention should therefore be paid to the way the classes are ordered. One
possibility is to begin by grouping neighboring class labels, say, into spring,
summer, fall, and winter. After the induction of a classifier for each group,
the next step may proceed to the recognition of each month within its season.

Regression Instead of Classification In some applications, the expected output
is not a discrete-valued class, but rather a number from a continuous range. For
instance, this can be the case when the software is to predict a value of a stock-
market index. These kinds of problems are called regression. In this book, we do
not address them. The simplest way to deal with regression within the framework of
machine learning is to replace the continuum with sub-intervals and then treat each
sub-interval as a separate class. Note that the task would then belong to the category
of “classes that can be linearly ordered” mentioned in the previous paragraph.

Some of the paradigms from the previous chapters can deal with regression
directly. For instance, this is the case of the k-NN approach. Instead of being labeled
with a class, each training example is provided with the value of the output variable.

2The attentive reader will recall that something similar is the case in the sleep classification domain
from Sect. 8.4.

11.7 Miscellaneous 229

Once the k nearest neighbors have been identified, the average value of their output
variables is calculated and returned to the user.

Multilayer perceptrons are very good at the regression task because the outputs
of the output-layer neurons are values from continuous domains. If the sigmoid
activation is used, the outputs are constrained to the (90, 1) interval, and it is thus
better to use for the activation function either ReLU or LReLU. Also RBF networks
can be adapted for regression without major difficulties.

Ranking Examples of a Given Class This book has ignored one specific version
of the class recognition task. In the traditional problem statement, one possible
scenario assumes that the user presents a class label, and the classifier returns all
examples belonging to this class. Besides this, however, a stronger requirement can
be suggested: the classifier may be asked to rank the returned examples according
to their relevance to the class.

The reader will find it easy to modify some of the classical techniques in a way
that helps them fulfill this goal. For instance, the Bayesian classifier returns for
each example the probability that it belongs to the given class; this probability then
defines the ranking. The same can be done in the case of a multilayer perceptron
whose outputs have been subjected to the soft-max function. On the other hand,
decision trees of the baseline version from Chap. 5 are not good at this kind of
ranking.

Lack of Information in Training Data Suppose you are asked to induce a
classifier from a training set that was created by a random-number generator:
all attribute values are random, and so are the class labels. Obviously, there is
no regularity in such data—and yet machine-learning techniques may induce a
classifier with zero error rate on the training set. Of course, this perfect behavior
will not translate into similar performance on future examples.

The observation suggests a simple mechanism to decide whether the available
data provide the information needed of learning. Divide the data into two subsets,
training and testing; the classifier is induced from the former and then applied to
both of them. In data that do not contain the information, we will observe small
error rate on the training set and high error rate on the testing set. Conversely, the
more useful the data, the smaller the difference between the classifiers’ performance
on the training set and the testing set.

11.7.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain how to use machine learning when measuring the utility of the given
data. Suggest examples of domains where this utility is low.

• Suggest a simple approach to deal with domains where the classes can be ordered.
• What is regression and how can machine learning address this task?

230 11 Practical Issues to Know About

11.8 Summary and Historical Remarks

• Chapter 7 explained the mathematical arguments behind the slogan, “there is no
learning without bias.” Practical considerations have now convinced us that bias
is in machine learning really important.

• Sometimes, the meaning of the underlying class depends on a context. The
context can change in time, in which case we deal with time-varying classes
and concept drift.

• Classical machine-learning techniques assume that all classes are equally repre-
sented in the training set. Quite often, however, this requirement is not satisfied,
and the engineer has to deal with the difficulties caused by the problem of
imbalanced training sets.

• There are three fundamental approaches to the problem of imbalanced training
sets: modification of the induced classifiers, majority-class undersampling, and
minority-class oversampling.

• In many training sets, some attribute values are unknown, and this is an obstacle
for certain induction techniques. One possible solution is to use (in place of the
unknown values) the most frequent or the average values of the given attributes.
More sophisticated solutions employ mechanisms that learn how to fill in the
missing values.

• Quite often, the engineer is faced with the necessity to select the most appropriate
subset of attributes. Two fundamental approaches can be used: the filtering and
the wrapper techniques.

• Apart from attribute selection, equally important is another task: synthesis of
higher-level features as functions of the original attributes.

• In domains with more than two classes, the individual classes can sometimes
be ordered. This circumstance can affect performance evaluation. For instance,
if the task is to recognize a concrete month, then it is not the same thing if the
classifier’s output missed the target by 1 month or by five. Even the learning
procedure should then perhaps be modified accordingly.

• Sometimes, the output is not a discrete-valued class, but rather a value from a
continuous range. This type of problem is called regression. This book does not
address regression explicitly.

Historical Remarks The idea to distinguish different biases in machine learning
was pioneered by Gordon and desJardin (1995). The principle of lifelong learning
was pioneered by Thrun andMitchell (1995). The early influential papers addressing
the issue of context were published by Turney (1993) and Katz et al. (1990). An
early approach to induction of time-varying concepts was introduced by Kubat
(1989), and some early algorithms were described by Widmer and Kubat (1996).
The meta-learning approach to context recognition was first suggested by Widmer
(1997). TheWrapper approach to attribute selection is introduced by Kohavi (1997).

11.9 Solidify Your Knowledge 231

11.9 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

11.9.1 Exercises

1. Consider the training set in Table 11.4. How will you replace the missing values
(question marks) with the most frequent values? How will you use a decision tree
to this end?

2. Once you have replaced the question marks in Table 11.4 with concrete values,
identify the two attributes that offer the highest information gain.

11.9.2 Give It Some Thought

1. The text emphasized the difference between two basic sources of error: those
caused by the wrong bias (representational or procedural), and those caused
by variance in the training data. Suggest an experimental procedure that would
give the engineer an idea about how much of the overall error rate in the given
application is due to either of these two sources.

Table 11.4 Simple exercise in “unknown values”

Crust Filling

Example Shape Size Shade Size Shade Class

ex1 Circle Thick Gray Thick Dark pos

ex2 Circle Thick White Thick Dark pos

ex3 Triangle Thick Dark ? Gray pos

ex4 Circle Thin White Thin ? pos

ex5 Square Thick Dark Thin White pos

ex6 Circle Thick White Thin Dark pos

ex7 Circle Thick Gray Thick White neg

ex8 Square Thick White Thick Gray neg

ex9 Triangle Thin Gray Thin Dark neg

ex10 Circle Thick Dark Thick White neg

ex11 Square Thick White Thick Dark neg

ex12 Triangle ? White Thick Gray neg

232 11 Practical Issues to Know About

2. Boosting algorithms are known to be quite robust in the face of variance-
based errors. Explain why it is so. Further on, non-homogeneous boosting from
Sect. 9.4 is known to reduce bias-related errors. Again, explain why.

3. Suppose you are going to work with a two-class domain where examples from
one class heavily outnumber those from the other class. Will Bayesian classifier
be as sensitive to this situation as the nearest-neighbor approach? Support your
answer by concrete arguments and suggest experimental verification.

4. This chapter explored the problem of imbalanced training sets within the
framework of two-class domains. How does the issue generalize to domains
that have more than two classes? Suggest concrete situations where imbalanced
classes in multi-class domains can pose a problem.

5. Consider the case of linearly ordered classes mentioned in Sect. 11.7. Using the
hint provided in the text, suggest a machine-learning scenario addressing this
issue.

11.9.3 Computer Assignments

1. Write a computer program that accepts as input a training set with missing
attribute values and outputs an improved training set where the missing values
have been replaced with most frequent or average values. Write a computer
program that will experimentally ascertain whether this replacement helps or
harms the performance of a decision tree induced from such data.

2. Choose some public-domain data, for instance, from the UCI repository.3 Make
sure that this domain has at least one binary attribute. The exercise suggested
here will assume that this binary attribute represents a context. Divide the training
data into two subsets, each for a different context (a different value of the binary
attribute). Then induce from each subset the corresponding context-dependent
classifier. Assuming that it is at each time clear which of the two classifiers to
use, how much will the average performance of these two classifiers be better
than that of a “universal” classifier that has been induced from the entire original
training set?

3www.ics.uci.edu/~mlearn/MLRepository.html.

www.ics.uci.edu/~{}mlearn/MLRepository.html

Chapter 12
Performance Evaluation

The strategy for performance evaluation in the previous chapters was simple:
providing the induced classifier with a set of testing examples with known class
labels and then calculating the classifier’s error rate on these examples. In reality,
however, error rate rarely paints the whole picture, and there are situations in which
it is outright misleading. The reader needs to be acquainted with performance
criteria that offer a more plastic view of the classifier’s behavior.

The experimenter also has to follow proper methodology. Dividing the set of
pre-classified examples into two random subsets, one for induction and the other
for testing, is impractical if the training set is small because the subsets may not
be sufficiently representative. For more reliable results, the experiments need to be
repeated in an organized manner: for instance, by stratified sub-sampling or N-fold
cross-validation.

This chapter presents criteria for performance evaluation and explains useful
experimental strategies. It also discusses other aspects of performance such as learn-
ing curves and computational costs. One section warns against typical experimental
blunders. Methods of statistical evaluation will be treated in the next chapter.

12.1 Basic Performance Criteria

Let us begin by a formal definition of error rate and classification accuracy. After
this, we will discuss the consequences of the rejection of examples for which the
evidence supporting the winning class is inadequate.

Correct and Incorrect Classification in Two-Class Domains When testing a
classifier on an example whose real class is known, the following outcomes are
possible: (1) the example is positive and the classifier correctly recognizes it as such
(true positive), (2) the example is negative and the classifier correctly recognizes
it as such (true negative), (3) the example is positive, but the classifier labels it as

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_12

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_12

234 12 Performance Evaluation

Table 12.1 Basic quantities for performance evaluation. For instance, NFP is the number of
false positives: negative examples misclassified as positive

Labels returned by the classifier

pos neg

True labels: pos NT P NFN

neg NFP NT N

negative (false negative), and (4) the example is negative, but the classifier labels it
as positive (false positive).

When applying the classifier to a set of examples whose real classes are known,
each of these four outcomes will occur a different number of times—and these
numbers are then employed in the performance criteria defined below. The symbols
for the four outcomes are summarized in Table 12.1. Specifically, NT P is the
number of true positives, NT N is the number of true negatives, NFP is the number
of false positives, and NFN is the number of false negatives. In the set T of
examples, only these four categories are possible; therefore, the size of the set, |T |,
is |T | = NFP + NFN + NT P + NT N .

Correct classifications are either true positives or true negatives; the number of
correct classification is thus NT P + NT N . On the other hand, errors are either false
positives or false negatives; the number of errors is thus NFP + NFN .

Error Rate and Classification Accuracy A classifier’s error rate, E, is the
frequency of errors made in a set of examples. It is calculated by dividing the number
of errors,NFP +NFN , by the total number of examples, NT P +NT N +NFP +NFN :

E = NFP + NFN

NFP + NFN + NT P + NT N

(12.1)

Sometimes, the engineer prefers the complementary quantity, classification accu-
racy,Acc: the frequency of correct classifications in a set of examples. Classification
accuracy is calculated by dividing the number of correct classifications,NT P +NT N ,
by the total number of examples. Note that Acc = 1 − E.

Acc = NT P + NT N

NFP + NFN + NT P + NT N

(12.2)

Rejecting an Example may be Better than Misclassifying it In the context of
character recognition, Sect. 8.2 suggested that the classifier should be allowed not
to classify an example if the evidence supporting the winning class is not strong
enough. The motivation is simple: in some domains, the penalty for misclassification
is much higher than the penalty for not making any classification at all.

An illustration is easy to find. The consequence of a classifier’s refusal to return
the value of the postal code is that the packet’s destination has to be determined by
a human operator. To be sure, manual processing is more expensive than automatic
processing, but perhaps not prohibitively so—whereas the classifier’s error results
in the packet being sent to a wrong place, causing a serious delay in delivery, and

12.1 Basic Performance Criteria 235

this can be much more costly. Similarly, an incorrect medical diagnosis can be more
expensive than no diagnosis at all. Lack of knowledge can be remedied by additional
tests, but the wrong diagnosis may result in a harmful treatment.

How to Decide when to Reject The classifier should therefore be allowed to refuse
to classify an example if the evidence is insufficient. In some machine-learning
paradigms, the term insufficient evidence is easy to define. Suppose that, in a 7-NN
classifier, four neighbors favor the positive class, and the remaining three favor the
negative class. The final count being four versus three, the case is “too close to call.”
More generally, the engineer may define a threshold for the minimum difference
between the number of votes favoring the winning class and those favoring the
runner-up.

In Bayesian classifiers, this is easily implemented, as well. If the difference
between the probabilities of the two most strongly supported classes falls short of
a user-specified minimum (say, 0.55 for pos versus 0.45 for neg), the example
is rejected as ambiguous. Something similar is possible also in neural networks:
compare the signals returned by the corresponding output neurons, and refuse to
classify if there is no clear-cut winner.

In other paradigms, such as decision trees, the rejection mechanism cannot be
implemented without certain “additional tricks.”

Advantages and Disadvantages of Example Rejection The classifier that occa-
sionally refuses to make a decision is of course less likely to go wrong. Its error
rate will thus be lower, and the more examples are rejected, the lower the error rate.
There are some limits, though. It may seem a good thing to see the error rate go
down almost to zero, but not if it means that most of the examples are rejected. A
classifier that never classifies is not very useful. Which of these two aspects (low
error rate versus frequent rejections) is more important depends on the concrete
circumstances of the given application.

Figure 12.1 illustrates the trade-offs involved in these decisions. The horizontal
axis represents a parameter capable of adjusting the rejection rate. As we move
from left to right, the rejection rate increases, whereas the error rate goes down
until, at the extreme, all examples are rejected. At this point, the zero error rate is
a poor consolation for having a classifier that never classifies. Here is the verdict:
occasional rejection of unclear examples makes a lot of sense, but the rejection rate
should be kept within reasonable bounds.

12.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Define the terms false negative, false positive, true negative, and true positive.
• Write down the formulas for classification accuracy and error rate. How are the

two criteria interrelated?

236 12 Performance Evaluation

Fig. 12.1 Error rate can be reduced by allowing the classifier to refuse to classify an example if
available evidence is weak. Error rate drops to E = 0 when all examples are rejected—but this is
not what we want

• When should a classifier refuse to classify an example? How would you
implement this feature in concrete classifiers?

• How does rejection rate relate to error rate? What is the trade-off between the
two? Under what circumstances is it good that the classifier refuses to classify,
and under what circumstances is it harmful?

12.2 Precision and Recall

In imbalanced domains, examples of one class outnumber examples of the other
class. In this event, error rate can be misleading. Consider the case where only 2%
of all examples are positive, and all the remaining 98% are negative. A classifier
that returns the negative class for every one of these examples will be correct 98%
of the time, which means error rate of only 2%. This looks like an impressive feat,
but the user will hardly be happy about a classifier that never recognizes a positive
example.

Imbalanced Classes Revisited This observation is worth remembering because
domains with imbalanced classes are quite common. We encountered some of them
in Chaps. 8 and 11, and many others can be found. Thus in automated information
retrieval, the user may want a scientific document dealing with, say, “performance
evaluation of classifiers.” No matter how attractive the topic may appear to this
person, relevant papers represent only a tiny fraction of the millions of available
documents. Likewise, patients suffering from a specific disease tend to be rare in the
population, and the same goes for the occurrence of defaults on mortgage payments
or fraudulent uses of credit cards. The author is tempted to claim that most realistic
applications are in some degree marked by imbalanced classes.

12.2 Precision and Recall 237

In domains of this kind, error rate and classification accuracy do not tell us much
about the classifier’s practical utility. Rather than averaging the performance over
both (or all) classes, we need criteria that focus on a class which, while important,
is represented by only a few examples. Let us take a look at some of them.

Precision By this we mean the percentage of true positives, NT P , among all
examples that the classifier has labeled as positive: NT P + NFP . The value is
obtained by the following formula:

Pr = NT P

NT P + NFP

(12.3)

Put another way, precision is the probability that the classifier is right when labeling
an example as positive.

Recall By this we mean the probability that a positive example will be correctly
recognized by the classifier. The value is obtained by dividing the number of true
positives, NT P , by the number of positives in the given set: NT P + NFN :

Re = NT P

NT P + NFN

(12.4)

Note that the last two formulas differ only in the denominator. This makes sense.
Whereas precision is the frequency of true positives among all examples deemed
positive by the classifier, recall is the frequency of true positives among all positive
examples in the set.

Illustration of the Two Criteria Table 12.2 illustrates the behavior of the two
criteria in a simple domain with an imbalanced representation of two classes,
positive and negative. The induced classifier, while exhibiting an impressive clas-
sification accuracy, suffers from poor precision and recall. Specifically, precision of
Pr = 0.40 means that of the fifty examples labeled as positive by the classifier, only
twenty are indeed positive, the remaining thirty being false positives. With recall,
things are even worse: out of the seventy positive examples in the testing set, only
twenty were correctly identified as such by the classifier.

Suppose that the engineer decides to improve the situation by tweaking some
of the classifier’s internal parameters, and suppose that this results in an increased
number of true positives (from NT P = 20 to NT P = 30) and a drop in the number
of false positives (from NFP = 30 to NFP = 20). As a result, the number of false
negatives has dropped fromNFN = 50 toNFN = 40. The calculations in Table 12.2
indicate that both precision and recall improved considerably from Pr = 0.40 to
Pr = 0.60 and from Re = 0.29 to Re = 0.43, whereas classification accuracy
remained virtually unchanged.

When High PrecisionMatters In some domains, precision is more important than
recall. For instance, when you make a purchase at a web-based company, their
recommender system often informs you that, “Customers purchasing X buy also
Y.” The intention is to cajole you into buying Y as well.

238 12 Performance Evaluation

Table 12.2 Illustration of the two criteria: precision and recall

Suppose a classifier has been induced. Evaluation on a testing set resulted in the numbers
summarized in the following table:

Labels returned by the classifier

pos neg

True labels pos 20 50

neg 30 900

From these, the values of precision, recall, and accuracy are obtained:

precision = 20

50
= 0.40; recall = 20

70
= 0.29; accuracy = 920

1000
= 0.92

Suppose the classifier’s parameters were modified with the intention to improve its behavior on
positive examples. After the modification, evaluation on a testing set resulted in the following
numbers.

Labels returned by the classifier

pos neg

True labels pos 30 40

neg 20 910

From these, the values of precision, recall, and accuracy are obtained:

precision = 30

50
= 0.60; recall = 30

70
= 0.43; accuracy = 940

1000
= 0.94

The reader can see that both precision and recall have improved considerably, whereas classifica-
tion accuracy has improved only marginally.

Recommender systems are often created by machine learning applied to the com-
pany’s historical records.1 When evaluating their performance, the engineer wants
to achieve high precision: the customers better be happy about the recommended
merchandise or else they will ignore the recommendations in the future.

On the other hand, recall is here unimportant. The list of the recommended items
has to be short, and so it does not matter much that the system identifies only a small
percentage of the items that the customers may like.

When High Recall Matters In other domains, recall can be much more important.
This is often the case in medical diagnosis. A patient suffering from X, and properly
diagnosed as such, represents a true positive. A patient suffering from X but not
diagnosed as such represents a false negative, something the doctor wants to avoid—
which means that NFN should be small. In the definition of recall, Re = NT P

NT P +NFN
,

1The concrete techniques employed to this end are more advanced than those discussed in this
textbook and therefore are not treated here.

12.2 Precision and Recall 239

the number of false negatives appears in the denominator. Consequently, a small
value of NFN implies a high value of recall.

Trading the Two Types of Error In many classifiers, tweaking certain parameters
can modify the values of NFP and NFN , thus affecting the classifier’s behavior, for
instance, by improving recall at the cost of worsened precision or vice versa. This
can be useful in domains where the user knows which of these two quantities is
more important.

In the k-NN classifier, the engineer may insist that an example be labeled as
negative unless the evidence for the positive class is really strong. For instance,
if four out of the seven nearest neighbors are positive, the classifier may still be
instructed to return the negative label (in spite of the small majority in favor of the
positive class). This preference for the negative class is likely to reduce the number
of false positives, though usually at the price of more frequent false negatives. Even
stronger reduction in NFP (at the cost of increased NFN) may be achieved by
requesting that any example be deemed negative unless at least five of the seven
nearest neighbors are positive.

Something similar can be accomplished also in other machine-learning
paradigms such as Bayesian classifiers or neural networks. The idea is to label the
example with the preferred class unless really strong evidence suggests otherwise.

ROC Curves The behavior of the classifier under different parameter settings
can be visualized by the so-called ROC curve, a graph where the horizontal axis
represents error rate on negative examples (the number of false positives among
all negative examples) and the vertical axis represents classification accuracy on
positive examples (the number of true positives among all positive examples).
Figure 12.2 shows the ROC curves of two classifiers, c1 and c2. Ideally, we would

Fig. 12.2 Two ROC curves, c1 and c2. The numbers of false positives and false negatives are
modified by different settings of certain parameters of the classifiers

240 12 Performance Evaluation

like to reach the upper-left corner that represents zero error rate on the negatives and
100% accuracy on the positives. This, of course, is rarely possible.

The question to ask is which of the two, c1 or c2, is better. The answer is possible
only if we understand the specific needs of the application at hand. All we can say by
just looking at the graph is that c1 outperforms c2 on the positives in the region with
low error rate on the negatives. As the error rate on negative examples increases,
c2 outperforms c1 on the positive examples. Again, whether this is good or bad can
only be decided by the user who knows the penalties for different kinds of error—
see the earlier discussion of when to prefer precision and when recall.

12.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• In what kind of data would we rather measure the classifier’s performance by
precision and recall instead of by error rate?

• What formulas calculate the values of these criteria? What is the main difference
between the two formulas?

• Under what circumstances do we prefer high precision, and under what circum-
stances do we place more emphasis on high recall?

• Explain the nature of the ROC curve. What extra information does the curve
convey about the classifier’s behavior? How does the ROC curve help the user in
choosing the classifier?

12.3 Other Ways to Measure Performance

Apart from error rate, classification accuracy, precision, and recall, other criteria
are sometimes used, each reflecting a somewhat different aspect of the classifier’s
behavior. Let us take a quick look at some of the most common ones.

Combining Precision andRecall in Fβ Working with two different criteria may be
inconvenient; it is in the human nature to want to quantify performance by a single
number. In the case of precision and recall, attempts have been made to combine
the two. The best-known solution, Fβ , is defined by the following formula:

Fβ = (β2 + 1) × Pr × Re

β2 × Pr + Re
(12.5)

The parameter, β ∈ [0,∞), enables the user to weigh the relative importance of
the two criteria. If β > 1, more weight is given to recall. If β < 1, more weight is
apportioned to precision. It would be easy to show that Fβ converges to recall when
β → ∞ and to precision when β = 0.

12.3 Other Ways to Measure Performance 241

Quite often, the engineer cannot really say which of the two, precision or recall,
is more important and how much more important it is. In that event, he or she
chooses to work with the neutral value, β = 1:

F1 = 2 × Pr × Re

P r + Re
(12.6)

Numeric Example Suppose that the evaluation of a classifier on a testing set
resulted in the values summarized in the upper part of Table 12.2. For these, the
table provided the values of precision and recall, respectively, as Pr = 0.40 and
Re = 0.29. Using these numbers, let us calculate Fβ for the following values of the
parameter: β = 0.2, β = 1, and β = 5.

F0.2 = (0.22 + 1) × 0.4 × 0.29

0.22 × 0.4 + 0.29
= 0.121

0.306
= 0.39

F1 = (12 + 1) × 0.4 × 0.29

0.4 + 0.29
= 0.232

0.330
= 0.70

F5 = (52 + 1) × 0.4 × 0.29

52 × 0.4 + 0.29
= 3.02

10.29
= 0.29

Sensitivity and Specificity The choice of the performance criterion is often
dictated by the application field—with its specific needs and traditions that cannot
be ignored. Thus the medical domain is accustomed to assessing performance of
their “classifiers” (not necessarily developed by machine learning) by sensitivity
and specificity. In essence, these are nothing but recallmeasured on the positive and
negative examples, respectively. Let us be concrete:

Sensitivity is recall measured on positive examples:

Se = NT P

NT P + NFN

(12.7)

Note that sensitivity decreases with the growing number of false negatives, NFN , in
the formula’s denominator. The fewer the false negatives, the higher the sensitivity.
Specificity is recall measured on negative examples:

Sp = NT N

NT N + NFP

(12.8)

Note that specificity decreases with the growing number of false positives, NFP , in
the formula’s denominator. The fewer the false positives, the higher the specificity.

Medical Example Suppose there is a disease X. A test meant to detect X has been
applied to a certain population.

242 12 Performance Evaluation

Among people suffering from X (the denominator of Eq. 12.7), sensitivity gives
the percentage of those for whom the disease was confirmed by the positive result
of the test. Among healthy people (the denominator of Eq. 12.8), specificity gives
the percentage of those for whom the negative test result confirmed that they indeed
do not suffer from X.

Legal Example Modern justice follows the maxim, “It is better to set a guilty one
free than to condemn an innocent person.” How is this principle interpreted in the
terms of the quantities from Table 12.1 and in terms of sensitivity and specificity?

In the long run, the number of condemned innocents is NFP , and the number of
guilty ones set free is NFN . Modern judge wants low NFP , even if NFN becomes
high. This means high specificity (recall on negative examples), regardless of the
possibly low sensitivity.

By contrast, a resolute dictator may say, “I want all guilty ones punished, even if
it means sentencing some innocents.” He thus wants low NFN , even if it comes at
the price of high NFP . In other words, he wants high sensitivity (recall on positive
examples), regardless of possibly low specificity.

Gmean When inducing a classifier in a domain with imbalanced class represen-
tation, the engineer sometimes wants to see similar performance on both classes,
positive and negative. In this event, the geometric mean, gmean, of the two
accuracies (on the positive examples and on the negative examples) is used:

gmean = √
accpos × accneg =

√
NT P

NT P + NFN

× NT N

NT N + NFP

(12.9)

Note that gmean is the square root of the product of two numbers: recall on
positive examples and recall on negative examples—in other words, the product of
sensitivity and specificity.

Gmean Reflects the Balance Between the Two Values Perhaps the most impor-
tant aspect of gmean is that it depends not only on the concrete values of the two
terms under the square root symbol, accpos and accneg, but also on how close the
two values are to each other. A simple numeric example will convince us that this is
indeed the case.

Thus the arithmetic average of 0.75 and 0.75 is (0.75 + 0.75)/2 = 0/75; also
the arithmetic average of 0.55 and 0.95 is (0.55 + 0.95)/2 = 0.75. However, the
geometric mean of the first pair is

√
0.75 × 0.75 = 0.75, whereas the geometric

mean of the second pair is
√
0.55 × 0.95 = 0.72, a smaller number. We can see

that gmean is indeed smaller when the two numbers are different; the more different
they are, the lower the value of gmean.

12.3 Other Ways to Measure Performance 243

Numeric Example Suppose the evaluation of a classifier on a testing set resulted
in the values summarized in the upper part of Table 12.2. The values of sensitivity,
specificity, and gmean are calculated as follows:

Se = 20

50 + 20
= 0.29

Sp = 900

900 + 30
= 0.97

gmean =
√

20

50 + 20
× 900

900 + 30
= √

0.29 × 0.97 = 0.53

Cost Functions We already know that, in realistic applications, not all errors carry
the same penalty: false positives may be more costly than false negatives or the other
way round. Worse still, the costs associated with the two types of error may not even
be measurable in the same—or at least comparable—units.

Recall the oil-spill-recognition domain discussed in Chap. 8. A false positive
here means that a “look-alike” is incorrectly taken for an oil spill (false positive).
When this happens, an aircraft is unnecessarily dispatched to verify the case. The
costs incurred by this error are those associated with the flight. By contrast, a false
negative means that potential environmental hazard has gone undetected, something
difficult to cast in monetary terms.

Under such circumstances, the engineer has to be very careful about how to
measure the success or failure of the induced classifier. Mathematical formulas can
be misleading.

12.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain how Fβ combines precision and recall. Write down the formula, and
discuss how different values of β give more weight either to precision or to recall.
Which value of β gives equal weight to both?

• Write down the formulas for sensitivity and specificity. Explain their nature, and
point out their relation to recall. When are the two criteria used?

• Write down the formula for gmean. Explain the nature of this quantity, and show
its relation to recall. When is this criterion used?

• Under what circumstances can the costs associated with false positives be
different from the costs associated with false negatives? Suggest a situation where
mathematical comparison of the costs is almost impossible.

244 12 Performance Evaluation

12.4 Learning Curves and Computational Costs

So far, we have focused on how to evaluate the performance of classification
behavior. Somewhat different story is how to evaluate the learning algorithms
themselves. Facing a concrete application domain, the engineer asks: How efficient
is the selected learning technique computationally? How good are the classifiers it
produces? Will better results be achieved by resorting to alternative approaches?

This section discusses the costs of learning, measured either (1) by the number of
examples needed for good results or (2) by the computation time consumed. Another
aspect, namely how to compare the ability to induce a high-performance classifier
in two competing approaches, will be the subject of the next section.

Learning Curve When evaluating a human subject’s ability to learn to solve a
problem, psychologists sometimes rely on a learning curve, a notion that machine
learning has borrowed.

In our context, the learning curve will plot the classification performance of
the induced classifier against the size of the training set used for the induction.
Two such curves are shown in Fig. 12.3. The horizontal axis gives the number of
training examples, and the vertical represents classification accuracy of the induced
classifiers. Usually, though not always, the classification accuracy is evaluated on
independent testing examples.

Larger training sets usually promise higher classification performance—unless
we have reached a point beyond which no further improvement is possible no matter
how many examples we use. Ideally, we want to achieve maximum performance
with the smallest possible training set. This is dictated by practical considerations.
Training examples can be expensive, and their source can be limited anyway.
Besides, the more examples we use, the higher the computational costs.

Fig. 12.3 The two learning curves, l1 and l2, show how the performances of classifiers induced by
competing approaches may depend on the number of training examples

12.4 Learning Curves and Computational Costs 245

Comparing Learners with Different Learning Curves Figure 12.3 shows the
learning curves of two machine-learning programs, l1 and l2. The reader can see that
the learning curve of the former, l1, rises very quickly, only to level off at a point
beyond which virtually no improvement occurs—perhaps because of the choice of
an inappropriate bias (see Sect. 11.1). By contrast, the learning curve of the second
program, l2, does not grow so fast, but in the end it clearly outperforms l1.

Which of the two curves is preferable depends on the circumstances of the
given application. When the source of the training examples is limited, the first
learner is clearly to be preferred. If the examples are abundant, the other learner will
be deemed more attractive—assuming, of course, that the attendant computational
costs are acceptable.

Computational Costs In machine learning, computational costs have two aspects.
First, we are concerned about the time consumed by the classifier’s induction.
Second, we want to make sure that the classifier does not take too long to label
a possibly very large set of examples.

The techniques described in this book span a broad spectrum. As for induction
costs, the cheapest is the basic version of the k-NN classifier, the only “computation”
involved being the necessity to store the training examples.2 On the other hand, the
k-NN classifier has high classification costs. If we have a million training examples,
each described by ten thousand attributes, then 1010 arithmetic operations will be
needed to classify a single example. If we need to classify millions of examples, the
costs can run high.

The situation is different in the case of decision trees. These are cheap when
used to classify examples: usually only a moderate number of single-attribute tests
are needed. However, induction of decision trees can take a lot of time if the training
is big and if there are a great many attributes.

Induction and classification costs of other classifiers vary. The engineer needs
to understand their nature when choosing the most appropriate approach for the
application at hand.

12.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What are the two main aspects of the computational costs considered in machine
learning?

• What does the learning curve tell us about an induction algorithm’s behavior?
What shape of the learning curve represents the ideal? What should we expect in
reality?

2Some computation will be necessary if we decide to remove noisy or redundant examples or
otherwise to pre-process the data.

246 12 Performance Evaluation

• Under what circumstances does a steeper learning curve with lower maximum
indicate a more favorable situation than a curve that grows more slowly but
reaches a higher maximum?

12.5 Methodologies of Experimental Evaluation

The reader understands that different domains favor different paradigms of machine
learning. Usually, the choice is not difficult, being guided by the nature of the
training data. For instance, if many attributes are suspected to be irrelevant, then
a decision tree may be more appropriate than k-NN.

The success of a technique also depends on the settings of its various parameters.
True, certain time-tested rules of thumb can often help here; however, the best
parameter setting is usually found by experimentation.

Baseline Approach and its Limitations The basic experimental scenario is
simple. The set of pre-classified examples is divided into two subsets, one for
training and one for testing. The training–testing session is repeated for different
parameter settings, and the values that lead to the best performance on the testing
set are chosen.

This, however, is realistic only when a great many pre-classified examples are
available. In domains where examples are scarce or expensive to obtain, a random
division into the training and testing sets will lack objectivity. Either of the two sets
can, by mere chance, fail to represent the given domain adequately. Statisticians
know that both the training set and the testing set should have more or less the same
distribution of examples. In small sets, of course, this requirement is hard to satisfy.

Random Sub-sampling When the store of pre-classified examples is small, the
engineer prefers to repeat the procedure several times. In each run, the set of
examples is divided into a different pair of training and testing sets. The measured
performances are recorded and then averaged. Of course, one has to make sure that
the individual data splits are mutually independent.

Once the procedure has been repeated N times (typically, N = 5 or N = 10), the
results are reported in terms of the average classification accuracy and its standard
deviation, say, 84.2 ± 0.6. For the calculation of averages and standard deviations,
the formulas from Chap. 2 are used: the average, μ, is obtained by Eq. 2.12, and the
standard deviation, σ , is the square root of variance, σ 2, which is calculated using
Eq. 2.13.

N -Fold Cross-Validation For advanced statistical evaluations, experienced exper-
imenters often prefer the N -fold cross-validation. Figure 12.4 illustrates the princi-
ple. To begin with, the set of pre-classified examples is divided into N equally sized
(or almost equally sized) subsets, which in the machine-learning jargon are known
as “folds.”

12.5 Methodologies of Experimental Evaluation 247

Fig. 12.4 N -fold cross-validation divides the training set into N equally sized subsets. In each
of the N experimental runs, a different subset is withheld for testing, and the classifier is induced
from the union of the remaining N − 1 subsets

N -fold cross-validation then runs N experiments. In each, one of the N subsets
is removed so as to be used only for testing (this guarantees a different testing set
for each run). Training is then run on the union of the remaining N − 1 subsets. The
results are averaged, and the standard deviation is calculated.

The advantage of N -fold cross-validation as compared to random sub-sampling
is that the testing sets are disjoint (non-overlapping), which is deemed advantageous
for certain types of statistical analysis of the classifiers’ reliability (see Chap. 13).

Stratified Approaches Consider a domain with 60 positive and 940 negative
examples. If we rely on N -fold cross-validation with N = 10, then each of the
folds will consist of 100 examples, with probably a very different proportion of
positive examples. On average, there will be six positives in each fold, but the
concrete numbers will vary; it can even happen that some folds will not contain
any single positive example.

This is why the experimenter prefers a so-called stratified approach. The idea is
to make sure that each of the N folds has approximately the same representation of
both classes. For instance, when using the 5-fold cross-validation in a domain with
60 positive and 940 and negative examples, respectively, each fold should contain
200 examples of which 12 are positive.

The same principle is often followed in random sub-sampling (which, admittedly,
is in its stratified version no longer totally random). Again, the point is to make sure
that each training set, and each testing set, has about the same representation of each
class.

5x2 Cross-Validation (5x2CV) There is yet another approach to experimental
evaluation of machine-learning techniques, the so-called 5x2 cross-validation,

248 12 Performance Evaluation

Table 12.3 Pseudo-code for 5x2 cross-validation (5x2CV)

Let T be the original set of pre-classified examples.

(1) Divide T randomly into two equally sized subsets. Repeat the division five times, obtaining
five pairs of subsets denoted as Ti1 and Ti2 (for i = 1, . . . , 5).

(2) For each of these pairs, use Ti1 for training and Ti2 for testing, and then the other way round.
(3) For the ten training–testing sessions thus completed, calculate the mean value and the

standard deviation of the selected performance criterion.

sometimes abbreviated as 5x2CV. The principle is built around a combination of
random sub-sampling and 2-fold cross-validation.

To be specific, 5x2CV divides the set of pre-classified examples into two equally
sized parts, T1 and T2. Next, it uses T1 for training and T2 for testing, and then the
other way around: T2 for training and T1 for testing. The procedure is repeated 5
times, each time with a different random division into the two subsets. All in all, ten
training–testing sessions are thus conducted and the results averaged. The principle
is summarized by the pseudo-code in Table 12.3.

Again, many experimenters prefer to work with the stratified version of this
methodology, making sure that the representation of each class is about the same
in each of the ten parts used in the experiments.

No-Free-Lunch Theorem It would be foolish to expect some machine-learning
technique to be a holy grail, a tool to be preferred under all circumstances. Nothing
like this exists. The reader by now understands that each paradigm has its advantages
that make it succeed in some domains—and shortcomings that make it fail in
others. Only personal experience supported by systematic experimentation tells the
engineer which type of classifier and which induction algorithm to choose for the
task at hand. The truth is that no machine-learning approach will outperform all
other approaches under all circumstances.

Mathematicians have been able to demonstrate the validity of this statement by a
rigorous proof. The result is known under the somewhat fancy name, no-free-lunch
theorem.

12.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the difference between N -fold cross-validation and random sub-
sampling? Why do we prefer to employ their stratified versions?

• Explain the principle of the 5x2 cross-validation (5x2CV), including its stratified
version.

• What is the no-free-lunch theorem telling us?

12.6 Experimental Blunders to Avoid 249

12.6 Experimental Blunders to Avoid

In their first machine-learning projects, beginners often repeat blunders that can
easily be avoided. Let us mention some of the most typical ones.

Treating Synthetic Examples Properly One of the techniques suggested in the
context of imbalanced training sets in Sect. 11.3 was minority-class oversampling.
The idea was to synthesize additional training examples either as exact copies of
existing ones or as their slightly distorted (noisy) variants. The intention was to
enrich the training set.

Here is the blunder to avoid. The engineer takes example x and creates its exact
copy, x1. When the random division into the training and testing sets is made, x

falls into the training set and x1 into the testing set. This means that an example
used for training is used also for testing—which of course is not a sound method of
performance evaluation.

The lesson is clear. First, the division into the training and testing sets should be
made, and only after that, the examples within the training set can be multiplied.

IID Requirement Mathematicians figured out long time ago that the independent
data on which we want to evaluate the classifier should have the same properties
as the training data—and as any data to which the classifier is to be applied in the
future. This is known as the iid requirement, the acronym standing for independent
but identically distributed. The previous paragraph presented a situation where the
first requirement was violated: independence. A well-known historical anecdote will
show how the second one was violated: the need for identical distribution.

The first time an opinion poll was conducted during the U.S. presidential elec-
tions was in 1932. The results predicted the victory of the republican candidate—but
it was the democrat, F.D. Roosevelt, who in the end won. Soon afterward, the cause
of the confusion was discovered: the poll was conducted by phone calls; at that time,
only well-to-do people had telephones, and well-to-do people tended to favor the
republican party. Put in machine-learning terms, the distribution of the two classes,
republican and democrat, was different in the training set and in the testing set, the
latter being here the entire voting population.

The attentive reader will recall that Sect. 11.4 warned against data originating
from different contexts such as when software for spoken-language understanding is
trained on London speakers and then applied in New York. This, too, would violate
the iid requirement.

Failing to Permutate Pre-classified Experimental Data When testing their
machine-learning programs, students often rely on publicly available benchmark
domains. Such experimentation, however, has to be done with caution. In some
of these test-beds, the examples are ordered by classes. For instance, the first 100
examples are from class C1, the next 100 examples are from class C2, and the last
100 examples are from class C3.

250 12 Performance Evaluation

Using the first two-thirds for training and the last third for testing means that the
training data contain only examples from classes C1 and C2, whereas the testing
data contain only examples from class C3. This, of course, is just another blatant
violation of the iid requirement from the previous paragraph. No wonder that the
experimental results are then dismal.

Overfitting the Testing Set Everybody knows that spectacular classification per-
formance on the training set does not guarantee an equally favorable result on
independent testing data. The induced classifier may simply overfit the (possibly
noisy) training set. What is less commonly appreciated is that one can just as well
overfit the testing data.

Here is an example of how it can happen. A long series of experiments has
been conducted, each with different values of the learner’s parameters. At the end,
the solution that appears best on the testing set is chosen. However, the good
result on the testing set may still be nothing but a coincidence. Among the many
alternatives, the experimenter has chosen the one that only happened to be good on
the relatively small testing set; the classifier overfitted the testing set. This blunder
is more common than the reader may suspect.

The tell-tale sign that something of this sort is happening is a situation where
the performance on the testing set is better than the performance on the training
set. Surprisingly, this sometimes happens even when the engineer employs sound
experimental strategies such as stratified N -fold cross-validation.

It thus makes sense to keep some portion of the available pre-classified data
aside, using them neither for training nor for testing. Only at the very end will
the apparently best classifier be double-checked on this “ultimate testing set.” This
reduces the problem without eliminating it. There is still the danger, even if now
smaller, of overfitting the “ultimate testing set.”

12.6.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the principle of the iid requirement. Why is it important? Discuss typical
examples of the violation of independence and examples of identical distribution.

• What is meant by “overfitting the testing test”? How can you avoid it in practical
experimentation?

12.7 Summary and Historical Remarks

• The basic criterion for classification performance is error rate, E, defined as the
percentage of misclassified examples in the given set. Complementary to it is
classification accuracy, Acc = 1 − E.

12.7 Summary and Historical Remarks 251

• When the evidence for any class is weak, the classifier may refuse to classify an
example in order to avoid costly errors. Rejection rate then becomes yet another
aspect of performance evaluation. Higher rejection rate leads to lower error rate;
however, the classifier’s utility may be questionable if too many examples are
rejected.

• Criteria for classification performance can be defined by the counts of true
positives, true negatives, false positives, and false negatives. These are denoted
by NT P ,NT N,NFP , and NFN , respectively.

• In domains with imbalanced class representation, error rate can be misleading.
Better picture is provided by precision (Pr = NT P

NT P +NFP
) and recall (Re =

NT P

NT P +NFN
).

• Sometimes, precision and recall are combined into a single criterion, Fβ , defined
by the following formula:

Fβ = (β2 + 1) × Pr × Re

β2 × Pr + Re

The value of β determines the relative importance of precision (β < 1) or recall
(β > 1). If the two are equally important, we use β = 1, obtaining the following:

F1 = 2 × Pr × Re

P r + Re

• Among other criteria for classification performance, sensitivity (Se = NT P

NT P +NFN
)

and specificity (Sp = NT N

NT N+NFP
) are popular. Sometimes, the geometric means,

gmean of accuracy on the positive examples and accuracy on the negative
examples are used.

• Another important aspect to consider is how many training examples are needed
for a certain classification performance. Concrete circumstances are visualized
by a learning curve.

• Also worth the engineer’s attention are the computational costs associated with
induction and with classification.

• When comparing alternative machine-learning techniques in domains with lim-
ited numbers of pre-classified examples, engineers rely on random sub-sampling,
N -fold cross-validation, and the 5x2 cross-validation. Stratified versions of these
techniques ensure that each training (and testing) set has the same proportion of
examples from each class.

• An important experimental maxim is known as the iid requirement: the testing
data have to be independent of the training data, but identically distributed.

• Besides the danger of training-set overfitting, the engineering has to be careful
not to overfit the testing data.

Historical Remarks The performance criteria discussed in this chapter are well
established in statistical literature and have been used for such a long time that it is

252 12 Performance Evaluation

difficult to trace their origin. The exception is the relatively recent gmean that was
proposed to this end by Kubat et al. (1997).

The idea to reject an example if the k-NN classifier cannot rely on a clear majority
was put forward by Hellman (1970) and later analyzed by Louizou and Maybank
(1987). The principle of 5x2 cross-validation was suggested and experimentally
explored by Dietterich (1998). The no-free-lunch theorem was published byWolpert
(1996).

12.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

12.8.1 Exercises

1. Suppose that an evaluation of a classifier resulted in the counts listed in the
following table:

Labels Returned by the classifier

pos neg

True labels pos 50 50

neg 40 850

Calculate the values of precision, recall, sensitivity, specificity, and gmean.
2. Using the data from the previous question, calculate Fβ for different values of

the parameter: β = 0.5, β = 1, and β = 2.
3. Suppose that an evaluation of a machine-learning technique using five-fold cross-

validation resulted in the following testing-set error rates:
E11 = 0.14, E12 = 0.16, E13 = 0.10, E14 = 0.15, E15 = 0.18
E21 = 0.17, E22 = 0.15, E23 = 0.12, E24 = 0.13, E25 = 0.20
Calculate the mean value of the error rate and its standard deviation, σ , using
the formulas from Chap. 2 (recall that standard deviation is the square root of
variance, σ 2).

12.8 Solidify Your Knowledge 253

12.8.2 Give it Some Thought

1. Suggest a domain where precision is much more important than recall. Con-
versely, suggest a domain where recall is more important than precision. Suggest
different illustrations from those mentioned in this chapter.

2. What aspects of the induced classifier’s behavior are reflected in sensitivity and
specificity? Suggest circumstances under which these two give a better picture of
the classifier’s utility than precision and recall.

3. Suppose you have induced two classifiers: one with very high precision and
the other with high recall. What can be gained from the combination of the
two classifiers? How would you implement this combination? Under what
circumstances will the idea fail?

4. What may be the advantages and shortcomings of random sub-sampling in
comparison with N -fold cross-validation?

5. How will you organize your experiments so as to avoid, or at least mitigate, the
danger of testing-set overfitting?

12.8.3 Computer Assignments

1. Assume that a machine-learning experiment resulted in a table where each row
represents a testing example. The first column contains the examples’ class labels
(“1” or “0” for the positive and the negative examples, respectively), and the
second column contains the labels suggested by the induced classifier.
Write a program that calculates precision, recall, and Fβ for a user-specified β.
Write a program that calculates the values of the other performance criteria.

2. Suppose that a training set has the form of a matrix where each row represents an
example, each column represents an attribute, and the rightmost column contains
the class labels.
Write a program that divides this set randomly into five pairs of equally sized
subsets as required by the 5x2 cross-validation technique. Then write another
program that creates the subsets in the stratified manner where each subset has
approximately the same representation of each class.

3. Write a computer program that accepts as input a training set and outputs N

subsets to be used in N -fold cross-validation. Make sure that the approach is
stratified. How will your program have to be modified if you later decide to use
the 5x2 cross-validation instead of the plain N -fold cross-validation?

Chapter 13
Statistical Significance

Suppose you have evaluated a classifier’s performance on an independent testing set.
To what extent can the results be trusted? When a flipped coin comes up heads eight
times out of ten, any sensible person will say this is nothing but a fluke, easily refuted
by new trials. Similar caution is in place when evaluating a classifier in machine
learning. To measure its performance on a testing set is not enough; just as important
is an estimate of the chances that the obtained value is a reliable estimate. This
information can be provided by an informed application of mathematical statistics.

To acquaint the student with the requisite techniques and procedures, this chapter
introduces such fundamental concepts as standard error, confidence intervals, and
hypothesis testing, explaining and discussing them from the perspective of the needs
of machine learning.

13.1 Sampling a Population

If we test a classifier on several different testing sets, the error rate on each of them
will be different—but not quite arbitrary: the distribution of the measured values
cannot escape the laws of statistics. A good understanding of these laws can help us
decide how representative the results of our measurements are.

Observation Table 13.1 contains one hundred zeros and ones obtained from a
random-number generator whose parameters have been set to make it return a
zero twenty percentage of the time and a one eighty percent of the time. The real
percentages in the returned data are of course slightly different than what the setting
required. In this particular case, the table contains 82 ones and 18 zeros.

The numbers on the side and at the bottom of the table tell us how many ones are
found in each row and column. Based on these, we can say that the proportions of
ones in the first two rows are 0.6 and 0.9, respectively, because each row contains

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_13

255

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_13

256 13 Statistical Significance

Table 13.1 A set of binary
values returned by a
random-number generator
adjusted to return a one 80%
of the time. In reality, there
are 82 ones and 18 zeros. At
the ends of the rows and
columns are the
corresponding sums

0 0 1 0 1 1 1 0 1 1 6

1 1 0 1 1 1 1 1 1 1 9

1 1 1 0 1 1 1 1 1 1 9

1 1 1 1 1 1 0 0 1 1 8

1 1 1 0 1 0 1 0 1 1 7

1 1 1 1 1 1 1 1 1 1 10

1 1 1 1 1 1 1 1 0 1 9

1 1 1 0 1 1 1 0 1 1 8

1 1 1 0 1 0 1 1 1 1 8

1 0 1 1 1 1 1 0 1 1 8

9 8 9 5 10 8 9 5 9 10 82

10 numbers. Likewise, the proportions of ones in the first two columns are 0.9 and
0.8. The average of these four proportions is (0.6+ 0.9+ 0.9+ 0.8)/4 = 0.80, and
the standard deviation is 0.08.1

For a statistician, each row or column represents a sample of a population. All
these samples have the same size: n = 10. Suppose we increase the size to, say,
n = 30. How will the proportions be distributed then?

Returning to the table, we can see that the first three rows combined contain
6 + 9 + 9 = 24 ones, the next three rows contain 8 + 7 + 10 = 25 of them,
the first three columns contain 9 + 8 + 9 = 26, and the next three columns contain
5+10+8 = 23. Dividing each of these numbers by n = 30, we obtain the following
proportions: 24

30 = 0.80, 25
30 = 0.83, 26

30 = 0.87, and 23
30 = 0.77. Calculating the

average and the standard deviation of these four values, we get 0.82 ± 0.02.
If we compare the results observed in the case of n = 10 with those for n = 30,

we notice two things. First, there is a minor difference between the average in the
bigger samples (0.82) and the average in the smaller samples (0.80). Second, the
bigger samples exhibit a much smaller standard deviation: 0.02 for n = 30 versus
0.08 for n = 10. Are these observations mere coincidence, or do they follow from
some deeper law?

Estimates Based on Random Samples The answer is provided by a theorem
that says that estimates based on samples become more accurate with the growing
sample size, n. Further on, the larger the samples, the smaller the variation of the
estimates from one sample to another.

Another theorem, the central limit theorem, states that the individual estimates
follow the Gaussian normal distribution, which we know from Chap. 2—the reader
will recall its signature bell-like shape. However, this approximation is reasonably

1Recall that standard deviation is the square root of variation, which is calculated by Eq. 2.13 from
Chap. 2.

13.1 Sampling a Population 257

accurate only if the proportion of ones, p, and the sample size, n, satisfy two
fundamental conditions:

np ≥ 10 (13.1)

n(1 − p) ≥ 10 (13.2)

If the two conditions are not satisfied (if at least one of the products is less than
10), the distribution of estimates obtained from the samples cannot be approximated
by the normal distribution without compromised accuracy.

Sections 13.2 and 13.3 will elaborate on how the normal-distribution approxi-
mation can help us establish our confidence in the measured performance of the
induced classifiers.

Numeric Example Let us check how these conditions are satisfied in the case
of the samples in Table 13.1. We know that the proportion of ones in the
original population was determined by a user-set parameter of the random-number
generator: p = 0.8. Let us begin with samples of size n = 10. It turns out that
none of the two conditions is satisfied because np = 10 · 0.8 = 8 < 10 and
n(1 − p) = 10 · 0.2 = 2 < 10. This means that the distribution of the proportions
observed in these small samples cannot be approximated by the normal distribution.

In the second attempt, the sample size was increased to n = 30. As a result, we
obtain np = 30 · 0.8 = 24 > 10, which means that Condition 13.1 is satisfied.
However, Condition 13.2 is not satisfied because n(1 − p) = 30 · 0.2 = 6 < 10.
Even here, therefore, the normal distribution does not offer sufficiently accurate
approximation.

The situation will change if we increase the sample size to n = 60. Doing the
math, we realize that np = 60 · 0.8 = 48 ≥ 10 and also n(1−p) = 60 · 0.2 = 12 ≥
10. We conclude that the distribution of the proportions of ones in samples of size
n = 60 can be approximated with the normal distribution without perceptible loss
in accuracy.

Impact of p Note how the applicability of normal distribution is affected by p,
the proportion of ones in the population. It is easy to see that, for different values
of p, different sample sizes are called for if the two conditions are to be satisfied.
Relatively small size is sufficient if p = 0.5; but the more the proportion differs
from p = 0.5, the bigger the samples we need.

To get a better idea, recall that we found the sample size of n = 60 to be sufficient
in a situation where p = 0.8. What if, however, we decide to base our estimates on
samples of the same size, n = 60, but in a domain where the proportion is higher,
say, p = 0.95? In this event, we realize that n(1 − p) = 60 · 0.05 = 3 < 10, which
means that Condition 13.2 is not met, and the proportions in samples of this size
cannot be approximated by normal distribution. For this condition to be satisfied in
this domain, we would need a sample size of at least n = 200. Since 200·0.05 = 10,
we have just barely made it.

258 13 Statistical Significance

By the way, note that, on account of the symmetry of the two conditions, 13.1
and 13.2, the same minimum size, n = 200, will be called for in a domain where
p = 0.05 instead of p = 0.95.

Parameters of the Distribution Let us return to the original task: estimating the
proportion of ones based on experience made in samples. We now know that if the
samples are large enough, the distribution of these proportions in different samples
can be approximated by the normal distribution whose mean equals the (theoretical)
proportion of ones in the entire population.

The other parameter of a distribution is the standard deviation. In our context,
statisticians prefer the term standard error, a terminological subtlety to emphasize
the following: whereas “standard deviation” refers to a distribution of any variable
(such as weight, age, or temperature), the term “standard error” applies
when we refer to variations in estimates from one sample to another. And this is
what interests us in the case of our proportions.

Let the standard error be sE . Mathematicians have established that its value can
be calculated from the sample size, n, and the theoretical proportion, p:

sE =
√

p(1 − p)

n
(13.3)

For instance, if n = 50 and p = 0.80, then the standard error is as follows:

sE =
√
0.80 · 0.20

50
= 0.06

Some engineers prefer to say that the standard error is 6%.

Impact of n: Diminishing Returns Note how the standard error goes the other
way than the sample size, n: the larger the samples, the lower the standard error and
vice versa. Thus in the case of n = 50 and p = 0.80, we obtained sE = 0.06. If we

use larger samples, say, n = 100, the standard error drops to sE =
√

0.8·0.2
100 = 0.04.

The curve defined by the normal distribution becomes narrower, and the proportions
in different samples will be closer to p.

This said, we understand that increasing the sample size brings diminishing
returns. A simple example will illustrate the point. The calculations from the
previous paragraph convinced us that, when proceeding from n = 50 to n = 100
(doubling the sample size), we managed to reduce sE by 2% points, from 6 to 4%.
If, however, we do the same calculation for n = 1, 000, we get sE = 0.013, whereas
n = 2000 results in sE = 0.009. In other words, doubling the sample size from 1000
to 2000 only succeeded in reducing the standard error from 1.3 to 0.9%: the only
reward for doubling the sample size was the paltry 0.4%.

This last observation is worth remembering. In many domains, pre-classified
examples are difficult or expensive to obtain as, for instance, in the oil-spill domain

13.2 Benefiting from the Normal Distribution 259

from Sect. 8.3. If acceptable estimates can be made using a small testing set, the
engineer will not want to go into the trouble of procuring additional examples; the
puny benefits this may bring will not justify excessive costs.

13.1.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Write down the formulas defining the conditions to be satisfied if the distribution
of the proportions obtained from random samples should follow normal distribu-
tion.

• Explain how the entire-population proportion affects the sample size necessary
for the proportions measured on samples to follow normal distribution.

• Samples have been used to estimate a classifier’s error. What do their different
sizes tell us about the error? Also, write down the formula that calculates the
standard error.

• Elaborate on the statement that “increasing the sample size brings diminishing
returns.”

13.2 Benefiting from the Normal Distribution

The previous section investigated the proportions of ones in samples. The sample
size was n, and the theoretical proportion of ones in the whole population was p.
This theoretical value we do not know; we only estimate it based on a sample. Fur-
ther on, we learned that, while the proportion in each individual sample is different,
the distribution of these values can be approximated by the normal distribution—the
approximation being reasonably accurate if Conditions 13.1 and 13.2 are satisfied.

Normal distribution can help us decide how much to trust the classification
accuracy (or any other performance criterion) measured on a concrete testing set.
Let us take a look at how to calculate confidence values.

Reformulation in Terms of Classification Performance Suppose the ones and
zeros in Table 13.1 represent correct and incorrect classifications, respectively, made
by a classifier on a testing set of one hundred examples (one hundred being the
number of entries in the table). In this event, the proportion of ones is the classifier’s
accuracy, whereas the proportion of zeros is its error rate.

Evaluation of the classifier on a different testing set will result in different clas-
sification accuracy. But when measured on great many testing sets, the individual
accuracies will be distributed in a manner that roughly follows normal distribution.

260 13 Statistical Significance

Fig. 13.1 Gaussian (normal)
distribution whose mean
value is μ

Properties of the Normal Distribution Figure 13.1 shows the fundamental shape
of the normal distribution. The vertical axis represents the probability density
function as we know it from Chap. 2. The horizontal axis represents classification
accuracy. The mean value, denoted here as μ, is the theoretical classification
accuracy which we would obtain when evaluating the classifier on all possible
examples from the given domain. This theoretical value is of course unknown; our
intention is to estimate it on the basis of a concrete sample, the testing set.

The bell shape of the density function reminds us that most testing sets will yield
classification accuracy close to the mean, μ. The greater the distance from μ, the
smaller the chance that this particular performance will be measured on a random
testing set. Note that the graph highlights certain specific distances from μ along
the horizontal axis: the multiples of σ , the distribution’s standard deviation—or, if
we deal with sample-based estimates, the standard error of these estimates.

The formula defining normal distribution was introduced in Sect. 2.5 as the
Gaussian bell function. Knowing the formula, we can establish the percentage of
values found within a specific interval, [a, b]. The size of the area under the entire
curve (from minus infinity to plus infinity) is 1. Therefore, if the area under the
curve within the range of [a, b] is 0.80, we can say that 80% of the performance
estimates are found in this interval.

Intervals of Interest Not all intervals are equally important. For the needs of
classifier evaluation, we are interested only in those that are centered at the mean,
μ. Thus the engineer may want to know what percentage of values will be found
in the interval [μ − σ, μ + σ]. Conversely, she may want to know the size of the
interval (centered at μ) that contains 95% of all values.

Strictly speaking, questions of this kind are answered with the help of math-
ematical analysis. Fortunately, we do not need to do the math ourselves; others
have done it for us, and we can take advantage of their findings. Some of the most
useful results are shown in Table 13.2 where the left column lists percentages called
confidence levels, and for each of these, the right column specifies the interval that
comprises the stated percentage of values. Note that the length of the interval is

13.2 Benefiting from the Normal Distribution 261

Table 13.2 For normal
distribution, with mean p and
standard deviation σ , the left
column gives the percentage
of values found in the interval
[μ − z∗σ, μ + z∗σ]

Confidence Coefficient

level z∗

68% 1.00

90% 1.65

95% 1.96

98% 2.33

99% 2.58

characterized by z∗, the number of standard deviations to either side of μ. More
formally, therefore, the interval is [μ − z∗σ, μ + z∗σ].

Here is how the table is used. Suppose we want to know the size of the interval
that contains 95% of all results. This percentage, 95%, is found in the third row. The
right column in this row contains 1.96, which is interpreted as telling us that 95%
of all values find themselves in the interval [μ − 1.96 · σ, μ + 1.96 · σ]. Similarly,
68% of the values are in the interval [μ − σ, μ + σ]—this is what follows from the
first row in the table.

Standard Error of Sample-Based Estimates How shall we employ these intervals
when evaluating classification accuracies? Suppose that the testing sets are all of
the same size, n, and suppose that this size satisfies Conditions 13.1 and 13.1
that allow us to assume normal distribution. We already know that the average of
the classification accuracies measured on great many independent testing sets will
converge to theoretical accuracy, the one that would have been obtained by testing
the classifier on all possible examples.

The standard error2 is calculated by Eq. 13.3. For instance, if the theoretical
classification accuracy is p = 0.70, and the size of each testing set is n = 100,
then the standard error of the classification accuracies obtained from many different
testing sets is calculated as follows:

sacc =
√

p(1 − p)

n
=

√
0.7(1 − 0.7)

100
= 0.046 (13.4)

After rounding, we say that the classification accuracy is 70% plus or minus 5%.
Note, again, that this standard error will be smaller if we use a larger testing set.
This makes sense: the larger the testing set, the more thorough the evaluation, and
thus the higher our confidence in the obtained result.

Let us now ask what value we are going to obtain if we evaluate the classifier
on another testing sets of the same size. Again, we answer the question using
Table 13.2. First, we find the row with 95%. In this row, the right column gives
coefficient z∗ = 1.96, which means that 95% of all results will be in the interval

2As explained in Sect. 13.1, in our context we prefer the term standard error to the more general
standard deviation.

262 13 Statistical Significance

[μ − 1.96 · sacc, μ + 1.96 · sacc] = [0.80 − 1.96 · 0.46, 0.80 + 1.96 · 0.46] =
[0.61, 0.79].

Do not forget, however, that this will only be the case if the testing set has the
same size, n = 100. For a different n, Eq. 13.4 will give us a different standard error,
sacc, and thus a different interval.

Reminder Let us remind ourselves why we need the assumption about normal
distribution: if the distribution is normal, we can use Table 13.2 from which we
learn the size of the interval (centered at μ) that contains the given percentage of
values.

On the other hand, the formula for standard error (Eq. 13.3) is valid generally,
even if the distribution is not normal. For the calculation of standard error, the two
conditions, 13.1 and 13.2, do not have to be satisfied.

13.2.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• How do the considerations from the previous section apply to the evaluation of
an induced classifier’s performance?

• What kind of information can we glean from Table 13.2? How can this table be
used when quantifying the confidence in the classification accuracy measured on
a testing set of size n?

• How will you calculate the standard error of estimates based on a given testing
set? How does this standard error depend on the size of the testing set?

13.3 Confidence Intervals

The information from the previous sections helps us quantify the experimenter’s
confidence in the induced classifier’s performance.

Confidence Interval: An Example Now that we understand how the classification
accuracies obtained from different testing sets are distributed, we are ready to draw
conclusions about how confident we can be in the value measured on one concrete
testing set.

Suppose the size of the testing set is n = 100, and let the classification accuracy
measured on this testing set be acc = 0.85. For the training set of this size, the
standard error is calculated as follows:

sacc =
√
0.85 · 0.15

100
= 0.036 (13.5)

13.3 Confidence Intervals 263

Checking the normal-distribution conditions, we realize that they are both
satisfied because 100·0.85 = 85 ≥ 10 and 100·0.15 = 15 ≥ 10. This means that we
can take advantage of the z∗-values from Table 13.2. Specifically, we establish that
95% of all values are in the interval [acc−1.96 · sacc, acc+1.96 · sacc]. For acc =
0.85 and sacc = 0.036, the interval is [0.85 − 0.07, 0.85 + 0.07] = [0.78, 0.92].

Based on the evaluation on the given testing set, we can therefore conclude that,
with 95% confidence, the real classification accuracy finds itself in the confidence
interval [0.78, 0.92].
Confidence Level and Margin of Error Confidence intervals reflect concrete
confidence levels—those defined by the percentages listed in the left column of
Table 13.2. In the previous paragraph, the confidence level was 95%.

Each confidence level leads to a different confidence interval, which is defined
as μ ± M , where μ is the mean and M is the margin of error. For instance, in the
case of the interval [0.78, 0.92], the mean was μ = 0.85 and the margin of error
was M = z∗sacc = 1.96 · 0.036 = 0.07.

Impact of Confidence Level In the previous example, confidence level was 95%,
a fairly common choice. If we choose another value, say, 99%, Table 13.2 will give
z∗ = 2.8, which leads to confidence interval [0.85−2.58 ·sacc, 0.85+2.58 ·sacc] =
[0.76, 0.94]. Note that this interval is broader than the one for 95%. This is logical:
the chance that the real classification accuracy finds itself in a longer interval is
greater. Conversely, it is less likely that the theoretical value will fall into a narrower
interval. Thus for the confidence level of 68% (and the standard error rounded to
sacc = 0.04), the confidence interval is [0.85− 0.04, 0.85+ 0.04] = [0.81; 0.89].

Let us not forget that, even in the case of confidence level of 99%, one cannot
be absolutely sure that the theoretical value will fall into the corresponding interval.
There is still that 1% probability that the measured value will be outside this interval.

Another Parameter: Sample Size The reader now understands that the length of
the confidence interval depends on the standard error and that the standard error, in
turn, depends on the size, n, of the testing set (Eq. 13.3). Essentially, the larger the
testing set, the stronger the evidence in favor of the measured value, and thus the
narrower the confidence interval. We say that the margin of error and the training-
set size are in inverse relation: as the size of the training set increases, the margin of
error decreases.

Earlier, we mentioned that a higher confidence level results in a longer confidence
interval. If we think this interval is too big, we can make it shorter by using a bigger
testing set and thus a higher value of n (which decreases the standard error).

There is a way to decide how large the testing set should be if we want to limit
the margin of error to a certain maximum. Here is the formula for calculating the
margin of error:

M = z∗sacc = z∗
√

p(1 − p)

n
(13.6)

264 13 Statistical Significance

Solving this equation for n (for specific values of M , p, and z∗) will give us the
required testing-set size.

Concluding Remark The method of establishing the confidence interval for a
given confidence level was explained using the simplest performance criterion,
classification accuracy. Yet the scope of the method’s applicability is much broader:
the uncertainty of any variable that represents a proportion can thus be quantified.
In the context of machine learning, we can use the same approach to establish our
confidence in any of the performance criteria from Chap. 12, be it precision, recall,
or some other quantity.

However, we have to do it right. For one thing, we must not forget that the
distribution of the values can only be approximated by normal distribution if
Conditions 13.1 and 13.2 are satisfied. Second, we have to understand the meaning
of n when calculating the standard error by Eq. 13.3. For instance, the reader
remembers that precision is calculated with the formula, NT P

NT P +NFP
: the percentage

of true positives among all examples labeled by the classifier as positive. This means
that we are dealing with a proportion of true positives in a sample whose size is
n = NT P + NFP . Similar considerations apply in the case of recall, sensitivity, and
other performance criteria.

13.3.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Explain the meaning of confidence interval. What is margin of error?
• How does the size of the confidence interval (and the margin of error) depend on

the user-specified value of confidence level? How does it depend on the size of
the testing set?

• Discuss the calculations of confidence intervals for some other performance
criteria such as precision and recall.

13.4 Statistical Evaluation of a Classifier

A claim about a classifier’s performance can be confirmed or refuted experimentally,
by testing the classifier on a set of pre-classified examples. One way to statistically
evaluate the results is by the algorithm in Table 13.3. Let us illustrate the procedure
on a simple example.

Numeric Example Suppose a machine-learning specialist tells you that a concrete
classifier has classification accuracy acc = 0.78. Faithful to the dictum, “trust
but verify,” you decide to find out whether this statement is correct. To this end,

13.4 Statistical Evaluation of a Classifier 265

Table 13.3 The algorithm for statistical evaluation of a classifier’s performance

(1) For the given size, n, of the testing set and for the claimed classification accuracy, acc, check
whether the conditions for normal distribution are satisfied:
n · acc ≥ 10 and n · (1 − acc) ≥ 10

(2) Calculate the standard error by the following formula:

sacc =
√

acc(1−acc)
n

(3) Assuming that the normal-distribution assumption is correct, find in Table 13.2 the z∗-value
for the requested level of confidence. The corresponding confidence interval is [acc − z∗ ·
sacc, acc + z∗ · sacc].

(4) If the value measured on the testing set falls outside this interval, reject the claim that the
accuracy is acc. If the value falls inside the interval, the evidence for rejection is insufficient.

you prepare n = 100 examples whose class labels are known and then set about
measuring the classifier’s performance on this testing set.

Let the experiment result in a classification accuracy of 0.75. This is less than
the promised 0.78, but then: is the difference within reasonable bounds? Is there
a chance that the specialist’s claim was correct and that the lower performance
measured on the testing set can be explained by the variations due to the random
nature of the testing data? After all, a different testing set is likely to result in
different classification accuracy!

Checking the Conditions for Normal Distribution The first question to ask is
whether the distribution of the performances thus obtained can be approximated by
normal distribution. A positive answer will allow us to base our statistical evaluation
on the values in Table 13.2.

Conditions 13.1 and 13.2 are easily verified. Seeing that np = 100 ·0.75 = 75 ≥
10 and that n(1 − p) = 100 · 0.25) = 25 ≥ 10, we realize that the conditions are
satisfied, and the normal-distribution assumption is justified.

Confidence Interval for the 95% Confidence Level Suppose you are prepared to
accept the specialist’s claim (acc = 0.78) if there is at least 95% chance that the
observed classification accuracy (on a random testing set) is acc = 0.75. Does the
value, 0.75, find itself within the confidence interval that is centered at 0.78? Let us
find out.

The corresponding row in the table informs us that z∗ = 1.96. This means that
95% of the results obtained on random testing sets will fall in the interval [acc −
1.96 · sacc, acc + 1.96 · sacc], where acc = 0.78 is the original claim, and sacc is
the standard error to be statistically expected for testing sets of size n.

The size of our testing set is n = 100. The standard error is calculated as follows:

sacc =
√

acc(1 − acc)

n
=

√
0.75 · 0.25

100
= 0.043 (13.7)

266 13 Statistical Significance

We conclude that the confidence interval is [0.78 − 1.96 · 0.043, 0.78 + 1.96 ·
0.043], which, after evaluation and rounding, is [0.70, 0.86].
Conclusion Regarding the Specialist’s Claim Evaluation on our own testing set
resulted in classification accuracy acc = 0.75, a value that finds itself within the
confidence interval corresponding to confidence level of 95%.

This is encouraging. For the claim, acc = 0.78, there is a 95% probability
that evaluation on a random testing set will result in classification accuracy within
interval [0.70, 0.86]. This is what happened in this particular case. Although our
result, acc = 0.75, is somewhat lower than the specialist’s claim, we have to admit
that our experimental evaluation failed to provide convincing evidence to refute the
claim. In the absence of this evidence, we accept the claim as valid.

Type-I Error in Statistical Evaluation: False Alarm Here is the principle.
Someone makes a claim about performance. Based on the size of our testing set
(and assuming normal distribution), we calculate the size of the interval that is
supposed to contain the given percentage of experimental results. If, for instance,
the percentage is 95%, and if the claim is correct, then there is a 5% chance that
a testing result will fall outside this interval. We reject the original claim if the
testing result landed in the less-than-5% region outside the interval, believing that it
is unlikely that such difference would be observed if the claim were correct.

This said, we must not forget that there is a 5% probability that such difference
will be observed: there is a danger that the classifiers’ evaluation on the testing set
will result in a value outside the given confidence interval. In this case, rejecting the
specialist’s claim is unfair. Statisticians call this the type-I error: the false rejection
of an otherwise correct claim, a rejection due to non-typical results.

If we are concerned about the risk of committing type-I error, we can reduce it
by increasing the required confidence level. If we choose 99% instead of the 95%,
false alarms will be less frequent. But this reduction does not come for free—as will
be explained in the next paragraph.

Type-II Error in Statistical Evaluation: Failing to Detect Incorrect Claim Also
the opposite case is possible; to wit, the initial claim is false, and yet the value
measured on the testing set falls inside the confidence interval. The experiment
failed to provide sufficient evidence against the claim which thus has to be accepted.

This is what sometimes happens: a false claim fails to be refuted. Statisticians
call this the type-II error. It is typical of applications that call for high confidence
levels: so wide is the resulting confidence interval that the results of testing will
almost never land outside it, which means that an experiment rarely leads to the
claim’s rejection.

The thing to remember is the trade-off between the two types of error. By
increasing the confidence level, we reduce the risk of the type-I error, but only at
the cost of increasing the danger of the type-II error and vice versa.

13.5 Another Use of Statistical Evaluation 267

13.4.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Explain the principles of the statistical approach to evaluating the engineer’s
confidence in experimental results.

• What is meant by type-I error (false alarm)? What can be done to reduce the
danger of making this error?

• What is meant by type-II error (fail to detect)? What can be done to reduce the
danger of making this error?

13.5 Another Use of Statistical Evaluation

The reader now understands the principles of statistical processing of experimental
results and knows how to employ them when evaluating the performance of a
classifier. However, statistics can do much more.

Do Two Testing Sets Represent Different Contexts? Chapter 11 explained that
sometimes a different classifier should perhaps be induced for a different context—
such as British accent versus American accent. Here is how statistics can help us
identify such situations in the data.

Suppose we have tested a classifier on two different testing sets. The classifi-
cation accuracy in the first test is p̂1 and the classification accuracy in the second
test is p̂2 (the letter “p” alluding to proportion of correct answers). The sizes of the
two sets are denoted by n1 and n2. Finally, let the average proportion of correctly
classified examples in the two sets combined be denoted by p̂.

The statistics of interest is defined by the following formula:

z = p̂1 − p̂2√
p̂(1 − p̂)(1

n1
+ 1

n2
)

(13.8)

The result is compared to the critical value for the given confidence level—the
value found in Table 13.2.

Numeric Example Suppose the classifier was evaluated on two testing sets whose
sizes are n1 = 100 and n2 = 200. Let the classification accuracies measured on the
two sets be p̂1 = 0.82 and p̂2 = 0.74, respectively, so that the average classification
accuracy on the two sets combined is p̂ = 0.77. The reader will easily verify that
the conditions for the use of normal distribution are satisfied.

268 13 Statistical Significance

Plugging these values into Eq. 13.8, we obtain the following:

z = 0.82 − 0.74√
0.77(1 − 0.77)(1

100 + 1
200)

= 1.6. (13.9)

Since this value is lower than the one given for the 95% confidence level in
Table 13.2, we conclude that the result is within the given confidence interval and
therefore accept that the two results are statistically indistinguishable.

13.5.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Why should we be concerned that a classifier is being applied to a wrong kind of
data?

• What is the formula used here? How do you carry out the evaluation?

13.6 Comparing Machine-Learning Techniques

Sometimes we need to decide which of two alternative machine-learning techniques
is more appropriate for the problem at hand. The methodology relies on principles
similar to those adopted in the previous sections, and yet there is a small difference.
Let us illustrate the approach on simple example.

Experimental Methodology As discussed in Chap. 12, one way to compare,
experimentally, two machine-learning algorithms is to rely on 5x2 cross-validation.
In this method, the set of available pre-classified data is divided into two equally
sized subsets, T11 and T12. First, the two machine-learning techniques induce their
classifiers from T11, and the induced classifiers are then tested on T12; in the next
step, the two classifiers are induced from T12 and tested on T11. The process is
repeated five times, each time for a different random division of the set of data into
two subsets, Ti1 and Ti2.

This results in ten pairs of testing-set classification accuracies (or error rates, pre-
cisions, recalls, or any other performance criterion of choice). Here is the question:
“Are the differences between the ten pairs of results statistically significant?”

Experimental Results: Paired Comparisons Let us denote the i-th pair of sets
by Ti1 and Ti2, respectively. Suppose we are comparing two machine-learning
algorithms, ML1 and ML2, evaluating them in the ten experimental runs from the

13.6 Comparing Machine-Learning Techniques 269

Table 13.4 Example experimental results of a comparison of two alternative machine-learning
techniques, ML1 and ML2. The numbers in the first two rows give classification accuracies
(percentages), and the last row gives the differences, d

T11 T12 T21 T22 T31 T32 T41 T42 T51 T52

ML1 78 82 99 85 80 95 87 57 69 73

ML2 72 79 95 80 80 88 90 50 73 78

d 6 3 4 5 0 7 −3 7 −4 -5

previous paragraph, and suppose the results are those listed in Table 13.4. Here,
each column is headed with the name of the test set used in the given experimental
run. The fields in the table give the classification accuracies achieved on the test sets
by classifiers induced by the two alternative techniques. The last row specifies the
differences between the two classification accuracies. Note that the differences can
be positive as well as negative.

Evaluating these results, we realize that the average difference is d = 2.0 and
that the standard deviation of these differences is sd = 4.63.

Statistical Evaluation of Paired Differences Observing the mean value of differ-
ences, d (with standard deviation, sd), we have to ask: is this difference statistically
significant? In other words, is this difference outside what we previously called a
confidence interval for the given confidence level, say, 95%? Note that the midpoint
of this confidence interval is d̂ = 0.

Let us point out two major differences between what we need here and what we
needed in the previous sections. First, we now work with mean values, d, instead
of proportions. Second, we can no longer rely on normal distribution because the
number of experiments is small, and the standard deviation has only been estimated
on the basis of the given 10 observations (the standard deviation is not known for
the entire population).

In this case, we resort to another statistical model, the t-distribution, which
is similar to normal distribution in its bell shape but is flatter. Its “flatness” or
“steepness” depends on what is called the number of degrees of freedom. In the
case of 10 testing sets, there are 10 − 1 = 9 degrees of freedom. Some typical t

values for nine degrees of freedom are shown in Table 13.5.3

3With more degrees of freedom, the curve would get closer to normal distribution, becoming almost
indistinguishable from it for 30 or more degrees of freedom.

270 13 Statistical Significance

Table 13.5 Some
probabilities of the t-values
for nine degrees of freedom

Confidence level

Degrees of freedom 0.10% 0.05% 0.02% 0.01%

9 1.83 2.26 2.81 3.35

Calculating t-Values in Paired Tests Statistical evaluation with t-tests is essen-
tially the same as in the case of normal distribution. For the mean difference, d , and
the standard deviation, sd , the t9-value (the subscript specifies the number of degrees
of freedom) is calculated by the following formula, where n is the number of tests:

t9 = d − 0

sd/
√

n
(13.10)

The result is then compared with the thresholds associated with concrete levels
of confidence listed in Table 13.5. Specifically, in the case of the results from
Table 13.4, we obtain the following:

t9 = 2 − 0

4.63/
√
10

= 1.35 (13.11)

Seeing that this is less than the 2.26 listed in the table for the 95% confidence
level, we conclude that the experiment has failed to refute (for the chosen confidence
level) the hypothesis that the two techniques lead to comparable classification
accuracies. We therefore accept the claim.

Word of Caution One thing is easily overlooked. It is not enough that one
machine-learning software leads to better results than another, and it not suffi-
cient to show this improvement to be statistically significant. Significantly better
(statistically) is not the same as much better. 0.5% improvement in classification
performance, even if trusted with 95% confidence, may be meaningless if the
minuscule improvement can only be obtained with exorbitant programming and
experimentation costs and if it presents difficulties with scaling to larger or different
data. Beyond the realm of statistics, the conscientious engineer reflects the practical
needs of the material world.

13.6.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Explain the principle of the 5x2 cross-validation Technique, which leads to the
set of 10 paired results.

13.7 Summary and Historical Remarks 271

• Why cannot we use normal distribution as we did in the previous sections? What
other distribution is used here?

• Write down the formula for calculating the t-value. Explain how the value for
each individual variable in this formula is obtained.

13.7 Summary and Historical Remarks

• The essence of statistical evaluation is to draw conclusions about the behavior of
an entire population from observations made on a relatively small sample.

• Different samples will yield different results; however, the distribution of these
results has to satisfy the laws of statistics. Knowledge of these laws helps the
engineer to calculate the confidence in the classification performance obtained
on a concrete testing set.

• The most typical distribution of “sampling results” is the Gaussian normal
distribution. It can be used only if two conditions are satisfied. For training-set
size n and the mean value p, the conditions are np ≥ 10 and n(1 − p) ≥ 10.

• Regardless of the distribution being normal or not, the standard error of the
accuracies, acc, measured on different testing sets is calculated as follows:

sacc =
√

acc(1 − acc)

n
=

√
0.75 · 0.25

100
= 0.043

• For each confidence level, the normal-distribution assumption leads to a specific
z∗ value (see Table 13.2), Having calculated the standard error and having chosen
a confidence level, we establish the confidence interval by the following formula:

[acc − z∗sacc, acc + z∗sacc]

The term z∗sacc is called margin of error. For other performance metrics (e.g.,
sensitivity, similar formulas are used.

• Suppose we are testing the claim that classification accuracy is acc. If the
experimental result falls into the confidence interval for the chosen confidence
level, we do not have enough evidence against the claim regarding the value of
acc. If the result is outside the value, the evidence is sufficient and we reject the
claim.

• When comparing two machine-learning techniques, we often employ 5x2 cross-
validation with t-test that uses t-distribution instead of normal distribution. The
t-distribution has a slightly different shape for different numbers of degrees of
freedom.

Historical Remarks The statistical methods discussed in this chapter are so old
and well established that textbooks of statistics no longer care to give credit to
those who developed them. From the perspective of machine learning, however, it

272 13 Statistical Significance

is important to note that the idea of applying t-tests to experimental results obtained
from 5x2 cross-validation was advocated by Dietterich (1998).

13.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

13.8.1 Exercises

1. Suppose we want to evaluate the claim that a classifier’s accuracy is p = 0.80.
What size, n, of the testing set will allow us to rely on normal distribution?

2. Suppose a classifier’s accuracy has been specified as p = 0.9. What is the value
of the standard error, sE , if the classifier is evaluated on a testing set of size
n = 400? Determine the size of the confidence interval for the 95% confidence
level. Do not forget to check the validity of Conditions 13.1 and 13.2.

3. Your company considers a classifier with stated accuracy p = 0.85. This
accuracy was evaluated on a testing set of 200 examples, the measured value
being 0.81, which of course is less than what was promised. Is there at least 95%
chance that the original claim was correct? What about 99%?

13.8.2 Give it Some Thought

1. Suppose you test a classifier’s performance, using the 95% confidence interval.
What if you change your mind and decide to use the 99% confidence instead?
You will increase tolerance, but what is the price for this?

2. Write an essay summarizing the trade-offs between narrower confidence intervals
on the one hand and the need to purchase possibly expensive testing examples.

13.8.3 Computer Assignments

1. Write a program that receives the following input: stated performance, perfor-
mance measured on a testing set, the size of this testing set, and the user-specified
level of confidence. The program outputs a Boolean variable that is true if the
stated value can be accepted and false if it cannot be accepted.

13.8 Solidify Your Knowledge 273

2. This assignment assumes that the reader has already implemented a program
dividing the data into the five “folds” needed for the 5x2 CV methodology.
Another assumption is that the reader has implemented at least two class-
induction programs.
Write a program that compares the two induction techniques using the 5x2 CV
methodology, evaluating the results using t-tests.

Chapter 14
Induction in Multi-label Domains

Up till now, we have always assumed that each example is labeled with one and
only one class. In realistic applications, however, this is not always the case. Quite
often, an example is known to belong to two or more classes at the same time,
sometimes to many classes. This situation presents certain new problems whose
nature the engineer needs to understand.

After a brief discussion of how to handle multi-label domains within the frame-
work of classical paradigms, this chapter focuses on the currently most popular
approach: binary relevance. The idea is to induce a binary classifier separately for
each class and then to use all these classifiers in parallel. More advanced versions
of this technique seek to improve classification performance by exploiting mutual
interrelations between classes, and yet another alternative employs the mechanism
of class aggregation. Attention is paid also to the specific aspects of performance
evaluation in multi-label domains.

14.1 Classical Paradigms and Multi-label Data

Let us begin with an informal definition of the multi-label domain and then take a
look at how to address such data within the classical paradigms that the reader has
already mastered.

What Is a Multi-label Domain? In many applications, the traditional requirement
that an example be labeled with one and only one class is hard to satisfy. Thus
a text document may represent nutrition, diet, athletics, popular
science, and perhaps quite a few other categories. Alternatively, a visual image
may at the same time represent summer, cloudy weather, beach, sea,
seagulls, and so on. Something similar is observed in many other domains.

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_14

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_14

276 14 Induction in Multi-label Domains

The number of classes of an average example differs from one application to
another. In some, almost every example has a great many labels selected from
perhaps thousands of different classes. At the other extreme are domains where only
some examples belong to more than one class, the majority having only one label.

Whatever the characteristics of concrete data, the goal is to induce a classifier
(or a set of classifiers) satisfying two basic requirements. First, the tool should for a
given example return as many of its true classes as possible; missing any one of them
constitutes a false negative. Second, the classifier should not label the example with
a class to which the example does not belong; each such wrong class constitutes a
false positive.

Neural Networks Chapter 6 explained the essence of multilayer perceptrons
(MLP), a popular architecture of artificial neural networks. The reader will recall
that the output layer consists of one neuron for each class, the number of inputs
being equal to the number of attributes. The ideal size of the hidden layer then
reflects the complexity of the classification task at hand.

On the face of it, using an MLP in multi-label domains should not pose any major
problems. For instance, suppose the network has been presented with a training
example that is labeled with classes C3, C6, and C7. In this event, the target values
for training will be set to, say, ti = 0.8, in the case of output neurons with indices
i ∈ {3, 6, 7} and to ti = 0.2 for all the other output neurons.1 The backpropagation-
of-error technique can then be used in the same way as in single-label domains.

Word of Caution Multilayer perceptrons may not necessarily be the best choice
here. Indeed, neural-network literature has devoted to multi-label domains much
less attention than to other tasks, and not without reason. For one thing, the training
of plain MLPs is known to be vulnerable to local minima, and there is always the
architecture-related conundrum: how many hidden neurons will strike a sensible
compromise between overfitting the data if the network is too large and lacking
sufficient flexibility if the network is too small?

Also the notoriously high computational costs are a reason for concern. The fact
that each training example can belong to more than one class complicates things.
Sensing the difficulty, the engineer is tempted to increase the number of hidden
neurons—which not only adds to the already high computational costs but also
increases the danger of overfitting.

Particularly unclear is the question how exactly to go about classifications.
Suppose the forward-propagation step in a six-output MLP resulted in the following
output vector: (0.7, 0.3, 0.8, 0, 5, 0.4, 0.2). Does this mean that the example belongs
to classes C1 and C3? What about C3? Where exactly should we draw the line?

Do not forget that training neural networks is more art than science. While a lot
can be achieved with ingenuity and experience, beginners are often disappointed.

1The reader will recall that the target values 0.8 and 0.2 are more appropriate for backpropagation-
of-error with sigmoids than 1 and 0; see Chap. 6.

14.1 Classical Paradigms and Multi-label Data 277

In the case of failure, the engineer has to resort to some alternative less dangerous
technique.

Nearest-Neighbor Classifiers Another possibility is the nearest-neighbor classi-
fier from Chap. 3. When example x is presented, the k-NN classifier first identifies
the example’s k nearest neighbors. Each of these may be labeled with a set of classes,
and the simplest classification attempt will label x with the union of these sets. For
instance, suppose that k = 3, and let that the sets of class labels encountered in the
three nearest neighbors be {C1, C2}, {C2}, and {C1, C3}, respectively. In this event,
the classifier will classify x as belonging to C1, C2, and C3.

Word of Caution This approach is practical only in domains where the average
number of classes per example is moderate, say, less than three. Also the number
of voting neighbors, k, should be small. If these two requirements are violated,
too many class labels may be returned for x, and this can cause many false
positives, which means poor precision and specificity. At the same time, however,
the multitude of returned labels tends to reduce the number of false negatives, which
improves recall and sensitivity. In some domains, this is what we want; in others,
precision and specificity are critical. The users need to know what they want.

As so often in this paradigm, the engineer must resist the temptation to increase
the number of the nearest neighbors in the hope that spreading the vote over more
participants will give a chance to less frequent classes. The thing is, some of
these “nearest neighbors” may be too distant from x and thus inappropriate for
classification.

Other Approaches Machine-learning scientists have developed quite a few other
ways of modifying traditional machine-learning paradigms to make them applicable
to multi-label domains. Among these, very interesting are attempts to induce multi-
label decision trees. But since they are somewhat too advanced for an introductory
text, we will not present them here. After all, comparable classification performance
can be achieved by simpler means. These will be the subject of the rest of this
chapter.

14.1.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Suggest an example of a multi-label domain. What is the essence of the
underlying machine-learning task? In what way will one multi-label domain
differ from another?

• Explain the simple method of multi-label training in multilayer perceptrons.
What practical difficulties will discourage you from using this paradigm?

• Describe the simple way of addressing a multi-label domain by a k-NN classifier.
Discuss its potential pitfalls.

278 14 Induction in Multi-label Domains

14.2 Principle of Binary Relevance

Let us now proceed to the currently most popular approach, the technique of binary
relevance. We will begin by explaining the principle and then identify some of
shortcomings and limitations that will then be addressed by the following sections.

Binary Relevance The most common approach to multi-label domains induces a
separate binary classifier for each class: in a domain withN classes,N classifiers are
induced. When classifying a future example, all these classifiers are used in parallel,
and the example receives all classes whose classifiers returned the positive label.

For the induction of these classifiers, the training data have to be modified
accordingly. Here is how. For the i-th class (i ∈ [1, N]), we create a training set, Ti ,
that consists of the same examples as the original training set, T , the only difference
being in labeling: in Ti , an example’s class label is 1 if the list of class labels for this
example in T contains Ci ; otherwise, the label in Ti is 0.

Once the new training sets have been created, we apply to each of them a baseline
learner that is responsible for the induction of the individual classifiers. Common
practice applies the same baseline learner to each Ti . Typically, we use to this end
some of the previously discussed machine-learning techniques such as perceptron
learning, decision tree induction, and so on.

Illustration Table 14.1 illustrates the mechanism that creates the new training data.
In the original training set, T , five different class labels can be found: C1, . . . , C5.
The binary relevance technique creates the five new training sets, T1, . . . , T5, shown
in the five tables below the original one. Thus in the very first, T1, examples ex1

Table 14.1 The original multi-label training set is converted into five new training sets, one for
each class

Classes

ex1 C1, C2

ex2 C2

ex3 C1, C3, C5

ex4 C2, C3

ex5 C2, C4

T1

ex1 1

ex2 0

ex3 1

ex4 0

ex5 0

T1

ex1 1

ex2 1

ex3 0

ex4 1

ex5 1

T1

ex1 0

ex2 0

ex3 1

ex4 1

ex5 0

T1

ex1 0

ex2 0

ex3 0

ex4 0

ex5 1

T1

ex1 0

ex2 0

ex3 1

ex4 0

ex5 0

14.2 Principle of Binary Relevance 279

and ex3 are labeled with 1 because these (and only these) two examples contain the
label C1 in the original T . The remaining examples are labeled with 0.

The baseline learner is applied separately to each of the five new sets, inducing
from each Ti the corresponding classifier Ci .

Easy-to-Overlook Detail In each of the training sets thus obtained, every example
is labeled as a positive or negative representative of the given class. When the
induced binary classifiers are used in parallel (to classify some x), it may happen
that none of them returns 1. This means that no label for x has been identified. When
writing the machine-learning software, we must not forget to instruct the classifier
what to do in this event. Usually, the programmer chooses from the following two
alternatives: (1) return a default class, perhaps the one most frequently encountered
in T or (2) reject the example as too ambiguous to be classified.

Discussion The thing to remember is that binary relevance transforms the multi-
label problem into a set of single-label tasks that are then addressed by classical
techniques. To avoid disappointment, however, the engineer needs to be aware of
certain difficulties which, unless properly addressed, may compromise performance.
Let us briefly address them.

Problem 1: Imbalanced Classes Some of the new training sets, Ti , are likely to
suffer from the problem of imbalanced class representation , which was discussed in
Sect. 11.2. In Table 14.1, this happens to sets T4 and T5. In each, only one example
out of five (20%) is labeled as positive, all others being negative. We already know
that, in situations of this kind, machine-learning techniques are biased toward the
majority class—in this case, the class labeled as 0.

The most straightforward approaches to address this issue are classifier modifi-
cation, majority-class undersampling, and minority-class oversampling. Which of
them to choose will depend on the domain’s circumstances. As a rule of thumb,
one can base the decision on the size of the training set. In very big domains,
majority-class undersampling is preferred. When the examples are scarce, the
engineer cannot afford to “squander” them and prefers minority-class oversampling.
Classifier modification is somewhere between the two.

Problem 2: Computational Costs Some multi-label domains are very large.
Thus the training set in a text categorization domain may consist of hundreds of
thousands of examples, each described by tens of thousands of attributes and labeled
with a subset of thousands of different classes. It stands to reason that to induce
thousands of decision trees from a training set of this size will be expensive, perhaps
prohibitively so. This means that, when considering candidates for the baseline
learner, we have to pay attention to computational costs.

Another possibility is the technique that Sect. 9.5 discussed in the context of
boosting: for each class, create multiple subsets of the training examples, some of
them perhaps described by different subsets of attributes. The idea is to induce for

280 14 Induction in Multi-label Domains

each class a group of sub-classifiers that will vote. If learning from 50% of the
examples takes only 5% of the time, considerable savings can be achieved.

Problem 3: Performance Evaluation Another question is how to measure the
success or failure of the induced group of classifiers. Usually, each of them will
exhibit different performance, some better than average, others worse, and yet others
dismal. To get an idea of the big picture, some averaging of the results is needed.
We will return to this issue in Sect. 14.7.

Problem 4: Mutual Interdependence of Classes The basic version of binary
relevance treats all classes as if they were independent of one another. Quite often,
this assumption is justified. In other domains, the classes are interdependent, but not
much harm is done by ignoring this fact. In some applications, however, the overall
performance of the induced classifiers considerably improves if we find a way to
exploit the class interdependence. Techniques for doing so will be discussed in the
next three sections.

14.2.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Describe the principle of binary relevance. How does it organize the learning
process, and how are the induced classifiers used for the classification?

• What aspect can render the computational costs of binary relevance prohibitively
high? What can the engineer do to make them acceptable?

• Why does binary relevance often lead to the problem of imbalanced classes?
What remedies would you recommend?

14.3 Classifier Chains

The information that a text document has been labeled as nutrition is sure to
increase the chances of its belonging also to diet—and decrease the likelihood that
it has anything to do with quantum mechanics. In the context of binary rele-
vance, this means that exploiting class interdependence may improve classification
performance. One possibility is known as classifier chain.

Classifier Chain The idea is to induce a chain of classifiers such as the one in
Fig. 14.1. The leftmost classifier is induced from the original examples that are
labeled as positive or negative instances of class C1 (recall the training set T1 from
Table 14.1). The second classifier is then induced from examples labeled as positive
or negative instances of class C2. To describe these latter examples, however, one
extra attribute is added to the original attribute vector: the output of C1. The same

14.3 Classifier Chains 281

Fig. 14.1 With the exception of C1, the input of each classifier consists of the original attribute
vector plus the labels returned by the previous classifiers

principle is then repeated in the induction of the remaining classifiers: for each, the
training examples are described by the original attribute vector plus the class label
returned by the previous classifier.

When using the classifier chain for the classification of a future example x, the
same pattern is followed. The leftmost classifier receives x that is described by the
original attributes. To all other classifiers, the system presents x that is described
by the original attribute vector plus the labels delivered by the previous classifiers.
Ultimately, x is labeled with those classes whose classifiers returned 1.

Important Assumption (Rarely Satisfied) In the classifier-chain technique, the
ordering of the classes from left to right is the engineer’s responsibility. In some
applications, this is easily done because the classes form a logical sequence. Thus
in document classification, science subsumes physics, which in turn subsumes
quantum mechanics, and so on. If a document does not belong to science, it
is unlikely to belong to physics, either; it thus makes sense to choose science
as the leftmost node in the graph in Fig. 14.1 and to place physics next to it.

In other applications, class subsumption is not so obvious, but the sequence
can still be used without impairing the overall performance. Even when the
subsumptions are only intuitive, the engineer may always resort to a sequence
backed by experiments: he or she can suggest a few alternative versions, test them,
and then choose the one which offers the best results. Another possibility is to create
the classifier chain only for some of the classes (where the interrelations are known)
and apply to the others plain binary relevance.

Hierarchically Ordered Classes Class interrelation does not have to be linear. It
can acquire forms that can only be reflected by a more sophisticated data structure,
perhaps a graph. In that case, we will need more advanced techniques such as the
one described in Sect. 14.5.

One Shortcoming of the Classifier-Chain Approach More often than not, the
engineer lacks any a priori knowledge about class interrelations. If classifier chains
are still to be employed, the best that the engineer can do is to create the classifier
sequence randomly. Of course, such ad hoc method cannot be guaranteed to work;
a poorly designed classifier sequence may be so harmful that the performance of the
induced system may be well below that of plain binary relevance.

Sometimes, however, there is a way out. If the number of classes is manageable
(say, five), the engineer may choose to experiment with several alternative sequences

282 14 Induction in Multi-label Domains

and then choose the best. If the number of classes is greater, though, the attempt to
try many alternatives will be impractical.

Error Propagation The fact that the classifiers are forced into a linear sequence
makes them vulnerable to error propagation. Here is what it means. When a
classifier misclassifies an example, the incorrect class label is passed on to the next
classifier that uses this label as an additional attribute. An incorrect value of this
additional attribute may then sway the next classifier to a wrong decision, which,
too, is then passed on down the chain. In other words, an error of a single class
may cause errors of subsequent classifiers. In this event, the classifier chain will
underperform. The thing to remember is that the overall error rate depends on the
quality of the classifiers higher-up in the sequence.

One Last Comment The error-propagation phenomenon is less damaging if the
classifiers do not strictly return either 0 or 1. Thus a Bayesian classifier calculates
for each class its probability, a number from the interval [0, 1]. Propagating this
probability through the chain is less harmful than propagating strictly 1 or 0. Similar
considerations apply to some other classifiers such as neural networks: multilayer
perceptrons and radial basis function networks.

14.3.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Discuss the impact of class interdependence on the performance of binary
relevance.

• Explain the principle of classifier chain. What can you say about the need to find
a proper sequence of classifiers?

• Explain the problem of error propagation in classifier chains. Is there anything
else to criticize in this approach?

14.4 Another Possibility: Stacking

In the light of the weaknesses of classifier chains, some alternatives are needed. One
of them is stacking.

Architecture and Induction in Stacking The essence is illustrated in Fig. 14.2.
The classifiers are arranged in two layers. The upper one represents plain binary
relevance—an independently induced binary classifier for each class. More inter-
esting is the bottom layer. Here, the classifiers are induced from the training sets
where the original attribute vectors are extended by the list of the class labels
returned by the upper-layer classifiers. In the concrete case depicted in Fig. 14.2,

14.4 Another Possibility: Stacking 283

Fig. 14.2 Stacking. The
upper-layer classifiers use as
input the original attribute
vector. For the lower-layer
classifiers, this vector is
extended by the class labels
returned by the upper layer

each attribute vector is preceded by four additional binary attributes (because there
are four classes): the i-th of these new attributes has value 1 if the i-th classifier in
the upper layer has labeled the example with class i; otherwise, this attribute’s value
is 0.

Classification When the class labels of some future example x are needed, x is
presented first to the upper-layer classifiers. In the next step, the obtained class labels
are added at the front of x’s original attribute vector as N new binary attributes (if
there are N classes), and the newly described example is presented in parallel to
all lower-layer classifiers. Finally, x is labeled with the classes whose lower-layer
classifiers have returned 1.

The underlying philosophy rests on the intuition that the performance of classifier
Ci may improve if this classifier is informed about the “opinions” of the other
classifiers—about the other classes to which x belongs.

Numeric Example Consider an example described by a vector of four attributes
with the following values: x = {a, f, r, z}. Suppose the upper-layer classifiers
return the following labels: C1 = 1, C2 = 0, C3 = 1, c4 = 0. In this event,
the lower-layer classifiers are all presented with the following example description:
x = {1, 0, 1, 0, a, f, r, z}.

The classification decisions of the lower-level classifiers can differ from those in
the upper layer. For example, if the lower-layer classifiers return 1, 1, 1, 0, the over-
all system will label x with C1, C2, and C3, ignoring the original recommendations
of the upper layer.

Comments This approach is more flexible than classifier chains because stacking
makes it possible for any class to affect the identification of the other classes. The
engineer does not provide any a priori information about class interdependence,

284 14 Induction in Multi-label Domains

assuming that this interdependence (or the lack thereof) will be discovered in the
course of learning.

When employed dogmatically, however, the principle can do more harm than
good. The fact that x belongs to Ci often has nothing to do with x belonging to Cj .
If this is the case, insisting on the dependence link between the two (as in Fig. 14.2)
can be counterproductive. If most classes are mutually independent, the upper layer
may actually exhibit better classification performance than the lower because the
newly added attributes (the classes obtained from the upper layer) are irrelevant—
and as such will hurt induction.

Proper understanding of this issue will instruct our choice of the baseline learner.
Some approaches, such as decision trees or WINNOW, are capable of eliminating
irrelevant attributes, thus mitigating the problem.

14.4.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• How are interdependent classes addressed by stacking? Discuss the induction
phase as well as the classification phase.

• When will stacking outperform binary relevance and/or a classifier chain?
• Under what circumstances will you prefer binary relevance to stacking?

14.5 Note on Hierarchically Ordered Classes

In some domains, the class interdependence is more complicated than in the cases
considered so far. Our induction techniques then have to be modified accordingly.

Example Figure 14.3 shows a small part of a class hierarchy that could have been
suggested by a specialist preparing the data for machine learning. Each node in the
graph represents one class.

The topic is classification of text documents. The hierarchy is interpreted in a
way reminiscent of decision trees. To begin, some documents may belong to the
class machine learning. A solid line emanating from the corresponding node
represents “yes,” and the dashed line represents “no.” Among those documents that
do belong to machine learning, some deal with decision trees, others
with k-NN classifiers, and so on (for simplicity, most sub-classes are omitted
here).

In the picture, the relations are represented by arrows leading from parent nodes
to child nodes. A node can have more than one parent, but a well-defined hierarchy
should avoid loops. The data structure of this kind is called a directed acyclic graph.
In some applications, each node (except the root node) has one and only one parent.
This more constrained structure is known as a generalization tree.

14.5 Note on Hierarchically Ordered Classes 285

Fig. 14.3 The classes are sometimes hierarchically organized in a way known to the engineer in
advance

Induction in “Hierarchical” Domains Induction of hierarchically ordered classes
is organized in a way reminiscent of the strategy used in the context of binary
relevance. For each node, the corresponding training set is constructed, and from
this training set, the baseline learner induces a classifier. The most common
approach proceeds in a top-down manner; the output of the parent class instructs
the choice of the examples for the induction of a child class.

Here is how to do this in a domain where the classes are organized by a
generalization tree. First, the entire original training set is used for the induction
of the class located at the root of the tree. Next, the training set is divided into two
parts, one containing training examples that belong to the root class and the other
containing training examples that do not belong to this class. The lower-level classes
are then induced only from the relevant training sets.

Example In the problem from Fig. 14.3, the first step is to induce a classifier for
the class machine learning. Suppose that the original training set consists of
the seven examples shown in Table 14.2. The labels of those examples are then
used to decide which examples to include in the training sets for the induction
of the child classes. For instance, note that only positive examples of machine
learning are included in the training sets for decision trees and k-NN
classifiers. Conversely, only negative examples of machine learning
are included in the training set for the induction of programming.

Two Difficulties The induction process is not as simple as it appears. The first
problem is, again, error propagation. Suppose an example represents a text docu-
ment dealing with circuit analysis. If this example is mistakenly classified
as machine learning, the classifier, hereby misled, will pass this incorrect
information on to the next classifiers, thus propagating the error down to lower
levels.2

2The reader has noticed that the issue is similar to the one we encountered in the section dealing
with classifier chains.

286 14 Induction in Multi-label Domains

Table 14.2 Hierarchically ordered classes. Some of the lower-level training sets contain only
examples for which the parent classifier returned the positive class; in others, only those for which
the parent classifier returned the negative class

machine learning

ex1 pos
ex2 pos
ex3 pos
ex4 pos
ex5 neg
ex6 neg
ex7 neg

decision trees

ex1 1

ex2 1

ex3 0

ex4 0

k-NN

ex1 0

ex2 0

ex3 1

ex4 1

programming

ex5 1

ex6 0

ex7 0

Another complication is that the training sets associated with the individual nodes
in the hierarchy are almost always heavily imbalanced; appropriate measures have
to be taken such as undersampling or oversampling.

Where Does the Class Hierarchy Come From? In some rare applications, the
complete class hierarchy is available right from the start, having been created
manually by the customer who has the requisite background knowledge about
the concrete domain. This is sometimes the case applications related to text
categorization.

Caution is called for, though. Customers are not infallible, and the hierarchies
they develop often miss important details. They may too subjective—with con-
sequences similar to those explained in the context of classifier chains. In some
domains, only parts of the hierarchy are known. The engineer then has to find a way
of incorporating this partial knowledge in the binary relevance framework discussed
earlier.

14.5.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Give an example of a domain with hierarchically ordered classes.

14.6 Aggregating the Classes 287

• Explain the training-set dividing principle used for induction of hierarchically
ordered classifiers.

• What are the most commonly encountered difficulties in the induction of
hierarchically ordered classes?

14.6 Aggregating the Classes

This approach makes sense only if there are only a few classes. For instance, the
number of all class-label combinations in a domain with three classes cannot exceed
seven, assuming that each example is labeled with at least one class.

Creating New Training Sets In a domain with only a few classes, a sufficiently
large training set is likely to contain a sufficient number of representatives for each
class combination, which makes it possible to treat each such combination as a
separate class. The approach is similar to those we have already seen: from the
original training set, T , new training sets, Ti , are created, and from each, a classifier
is induced by the baseline learner. In class aggregation, each Ti represents one
combination of class labels, say, C2 AND C4.

When, in the future, some example x is to be classified, it is presented to all of
these classifiers in parallel.

Illustration The principle is shown in Table 14.3. Here, the total number of classes
in the original training set, T , is three. Theoretically, the total number of class

Table 14.3 In a domain with a manageable number of class-label combinations, it is often
possible to treat each combination as a separate class

classes

ex1 C1, C2

ex2 C2

ex3 C1, C3

ex4 C2, C3

ex5 C1

C1 C2 C1 AND C2 C1 AND C3 C2 AND C3

ex1 0 ex1 0 ex1 1 ex1 0 ex1 0

ex2 0 ex2 1 ex2 0 ex2 0 ex2 0

ex3 0 ex3 0 ex3 0 ex3 1 ex3 0

ex4 0 ex4 0 ex4 0 ex4 0 ex4 1

ex5 1 ex5 0 ex5 0 ex5 0 ex5 0

288 14 Induction in Multi-label Domains

combinations should be seven. In reality, only five of these are encountered in
T because no example is labeled with C3 alone, and no example is labeled with
all three classes simultaneously. We therefore create five tables, each defining the
training set for one class combination. Note that this approach deals only with those
combinations that have occurred in the original training set. For instance, no future
example will be labeled with C3 alone. This surely is a limitation, and the engineer
has to consider how to address this issue in a concrete application.

Classification The programmer must also specify what to do in a situation where
two or more of these “aggregated” classifiers return 1. In some paradigms, say, in a
Bayesian classifier, this is easy because the classifiers quantify their confidence in
the outcome they recommend. If two or more classifiers return 1, a master classifier
chooses the one with the highest confidence.

The choice is more complicated in the case of classifiers that only return 1 or 0,
without offering any information about their confidence in the decision. In principle,
one may consider merging the sets of classes. For example, suppose that, for some
x, two classifiers return 1 and that one of the classifiers is associated with classes
C1, C3, and C4 and the other with classes C3 and C5. In this event, x will be labeled
with C1, C3, C4, and C5.

Note, however, that this may result in x being labeled with “too many” classes.
The reader already knows that this is likely to give rise to many false positives, the
consequence being, for instance, low precision.

Alternative Ways of Aggregation In the approach illustrated in Table 14.3, the
leftmost table (headed by C1) contains only one positive label (“1”) because only
one training example in T is labeled solely with this class. If we want to avoid
training sets that are as extremely imbalanced as this, we need a “trick” to improve
the class representations in Ti’s.

Here is one possibility. In Ti , we will label with 1 each example whose set of
class labels in the original T contains C1. When doing so, we must not forget that
ex1 will thus be labeled as positive also in the table headed with (C1 AND C2).

Similarly, we may label with 1 all subsets of the classes found in a given training
set. For instance, if x is labeled with C1, C3, and C4, we will label this example
with 1 in all training sets that represent nonempty subsets of {C1, C3, C4}. This,
of course, improves training only for those combinations that involve one or two
classes (rarely more). For larger combinations, the problem persists.

A solution of the last resort will aggregate the classes only if the given
combination is found in a sufficient percentage of the training examples. If the
combination is rare, the corresponding Ti is not created. True, this means that the
induced classifiers will not recognize a certain combination. However, this loss can
be tolerated if the affected combination is rarely seen.

Criticism Class aggregation is likely to disappoint in domains where the number
of class combinations is high, and the training set is limited. When this happens,
some (or many) of the newly created sets, Ti , will contain no more than just a few

14.7 Criteria for Performance Evaluation 289

positive examples and as such will be ill-suited for machine learning: the training
sets will be so imbalanced that all attempts to improve the situation by minority-
class oversampling or majority-class undersampling will fail. For instance, this will
be the case when a class combination is represented by a single example.

As a rule of thumb, in domains with a great number of different class labels,
where many combinations occur only rarely and some do not occur at all, the
engineer will prefer plain binary relevance or some of its variations (chaining or
stacking). Class aggregation is then to be avoided.

14.6.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Describe the principle of class aggregation. Explain separately the induction
process and the way the induced classifiers are used to classify future examples.

• What possible variations on the class-aggregation theme do you know?
• What main shortcoming can render this approach impractical in realistic appli-

cations?

14.7 Criteria for Performance Evaluation

Performance evaluation in multi-label domains needs to average the results across
the individual classes. Let us briefly discuss typical ways of doing so. For simplicity,
we will constrain ourselves to precision, recall, and F1. Averaging the other criteria
such as sensitivity, specificity, and gmeans is analogous.

Macro-Averaging The simplest approach,macro-averaging, finds the values of the
given criterion for each class separately and then calculates their arithmetic average.
Let L be the total number of classes. Here are the formulas that calculate macro-
precision, macro-recall, and macro-F1 from the values of these quantities for the
individual classes:

PrM = 1

L

L∑

i=1

pri

ReM = 1

L

L∑

i=1

rei (14.1)

290 14 Induction in Multi-label Domains

FM
1 = 1

L

L∑

i=1

F1i

Macro-averaging is suitable in domains where each class has approximately
the same number of representatives. In some applications, this requirement is not
satisfied, but the engineer may still prefer macro-averaging if he or she considers
each class to be equally important, regardless of its representation in the training
set.

Micro-Averaging In the other approach, micro-averaging, each class is weighted
by its frequency in the given set of examples. In other words, the performance is
averaged over all examples. Let L be the total number of classes. Here are the
formulas for micro-precision, micro-recall, and micro-F1:

Prμ =
∑L

i=1 NT Pi∑L
i=1(NT Pi

+ NFPi)

Reμ =
∑L

i=1 NT Pi∑L
i=1(NT Pi

+ NFNi
)

(14.2)

F
μ
1 = 2 × Prμ × Reμ

P rμ + Reμ

Note that F
μ
1 is calculated from micro-precision and micro-recall and not from

the observed classifications of the individual examples.
Micro-averaging is preferred in applications where the individual classes cannot

be treated equally. For instance, the engineer may decide that high performance on
dominant classes is more important than failure on classes that are too rare to be of
major consequence.

Numeric Example Table 14.4 illustrates these formulas. There are five examples.
For each, the middle column lists the correct class labels, and the rightmost column
gives the labels returned by the classifier. The reader can see minor discrepancies.
For one thing, the classifier has missed some classes, as in the case of class C3 being
missed in example ex3. On the other hand, the classifier labels some examples with
incorrect class labels, such as when example ex1 is labeled with C3.

These discrepancies are reflected in the numbers of true positives, false positives,
and false negatives and in the calculations of precisions and recalls. After this, the
table shows the calculations of the macro- and micro-averages of these two criteria.

Averaging the Performance Over Examples So far, the true and false positive
and negative examples were counted across the classes. However, in domains where
an average example belongs to a great many classes, it makes sense to average over
the examples.

14.7 Criteria for Performance Evaluation 291

Table 14.4 Illustration of performance evaluation in multi-label domains

The following table gives, for five testing examples, the known class labels versus the class labels
returned by the classifier.

true classifier’s

classes classes

ex1 C1, C2 C1, C2, C3,

ex2 C2 C2, C4,

ex3 C1, C3, C5 C1, C5,

ex4 C2, C3 C2, C3,

ex5 C2, C4 C2, C5,

Separately for each class, here are the values of true positives, false positives, and false negatives.
Next to them are the corresponding values for precision and recall, again separately for each class.

NT P1 = 2 NFP1 = 0 NFN1 = 0 Pr1 = 2
2+0 = 1 Re1 = 2

2+0 = 1
NT P2 = 4 NFP2 = 0 NFN2 = 0 Pr2 = 4

4+0 = 1 Re2 = 4
4+0 = 1

NT P3 = 1 NFP3 = 1 NFN3 = 1 Pr3 = 1
1+1 = 0.5 Re3 = 1

1+1 = 0.5
NT P4 = 0 NFP4 = 1 NFN4 = 1 Pr4 = 0

0+1 = 0 Re4 = 0
0+1 = 0

NT P5 = 1 NFP5 = 1 NFN5 = 0 Pr5 = 1
1+1 = 0.5 Re5 = 1

1+0 = 1

This is how the macro-averages are calculated:

PrM = 1+1+0.5+0+0.5
5 = 0.6

ReM = 1+1+0.5+0+1
5 = 0.7

Here is how the micro-averages are calculated:

Prμ = 2+4+1+0+1
(2+0)+(4+0)+(1+1)+(0+1)+(1+1) = 0.73

Reμ = 2+4+1+0+1
(2+0)+(4+0)+(1+1)+(0+1)+(1+0) = 0.8

The principle of the procedure is the same as before. When comparing the true
class labels with those returned for each example by the classifier, we obtain the
numbers of true positives, false positives, and false negatives. From these, we easily
obtain the macro-averages and micro-averages. We only have to keep in mind that
the average is not taken over classes, but over examples—thus in macro-averages,
we divide the sum by the number of examples, not by the number of classes.

292 14 Induction in Multi-label Domains

14.7.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Write down the formulas for macro-averaging of precision, recall, and F1.
• Write down the formulas for micro-averaging of precision, recall, and F1.

Discuss the difference between macro-averaging and micro-averaging.
• What is meant by “averaging the performance over examples”?

14.8 Summary and Historical Remarks

• In such domains as text categorization or computer vision, each example can be
labeled with two or more classes at the same time. These are so-calledmulti-label
domains.

• In multi-label domains, traditional paradigms can sometimes be used, but the
results may be discouraging unless special precautions have been made. For
some approaches, multi-label versions exist, but these are too advanced for
an introductory text, especially when good results can be achieved by simpler
means.

• The most common approach to multi-label domains induces a binary classifier
for each class separately and then submits examples to all these classifiers in
parallel. This is called binary relevance.

• The basic version of binary relevance seems to neglect the fact that the classes
may not be independent of each other. The fact that an example has been
identified as a representative of class CA may strengthen or weaken its chances
of belonging also to class CB .

• The simplest mechanism for dealing with class interdependence in multi-label
domains is the classifier chain. Here, the output of one binary classifier is used
as an additional attribute describing the example for the next classifier in line.

• One weakness of classifier chains is that the user is expected to specify the
sequence of classes (perhaps following class subsumption). If the sequence is
poorly designed, results disappoint.

• Another shortcoming is known as error propagation: an incorrect label given
to an example by one classifier is passed on to the next classifier in the chain,
potentially misleading the rest of the entire sequence.

• Much safer is two-layered stacking. Upper-layer classifiers are induced from
examples described by the original attributes, and lower-layer classifiers are
induced from examples described by attribute vectors to which the class labels
obtained from the upper layer have been added. When classifying an example,
the outcomes of the lower-layer classifiers are used.

• Sometimes it is possible to take advantage of known hierarchical order among
the classes. Here, too, induction relies on specially designed training sets. Again,
the user has to be aware of the dangers of error propagation.

14.9 Solidify Your Knowledge 293

• Yet another possibility is class aggregation where each combination of classes is
treated as a separate higher-level class. A special auxiliary training set is created
for each of these higher-level classes.

• The engineer has to pay attention to ways of measuring the quality of the induced
classifiers. Observing that each class may experience different classification
performances, we need mechanisms for averaging over the classes (or examples).
Two of them are popular: micro-averaging and macro-averaging.

Historical Remarks The problem of multi-label classification is relatively new.
The first time it was encountered was in the field of text categorization—see
McCallum (1999). The simplest approach, the binary relevance principle, was
employed by Boutell et al. (2004). A successful application of classifier chains
was reported by Read et al. (2011), whereas Godbole and Sarawagi (2004) are
credited with having developed the stacking approach. Apart from the approaches
related to binary relevance, some authors have studied ways of modifying classical
single-label paradigms. The ideas on nearest-neighbor classifiers in multi-label
domains are borrowed from Zhang and Zhou (2007) (their technique, however,
is much more sophisticated than the one described in this chapter). Induction of
hierarchically ordered classes was first addressed by Koller and Sahami (1997).
Multi-label decision trees were developed by Clare and King (2001).

14.9 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

Table 14.5 An example of a
multi-label domain

True Classifier’s

classes classes

ex1 C1 C1, C2

ex2 C1, C2 C1, C2

ex3 C1, C3 C1

ex4 C2, C3 C2, C3

ex5 C2 C2

ex6 C1 C1, C2

294 14 Induction in Multi-label Domains

14.9.1 Exercises

1. Consider the multi-label training set in the left part of Table 14.5. Show how the
auxiliary training sets will be created when the principle of binary relevance is
to be used.

2. For the same training set, create the auxiliary training sets for class aggregation.
How many such sets will we need?

3. Draw a schema showing how the problem from Table 14.5 would be addressed
by stacking. Suppose the examples in the original training set are described by
ten attributes. How many attributes will the lower-level classifiers use?

4. Suggest the classifier-chain schema for a domain with the following four
classes: decision trees, machine learning, classification,
and pruning.

5. Returning to the set of examples from Table 14.5, suppose that a classifier has
labeled them as indicated in the rightmost column. Calculate the macro- and
micro-averages of precision and recall.

14.9.2 Give it Some Thought

1. Suggest a multi-label application where the classifier chain is a reasonable
strategy to follow. What would be the main aspect for such a domain?

2. Consider a domain where most training examples are labeled each with only a
single class, while a small subset of the examples (say, 5%) is labeled with more
than one class. Suggest a machine-learning approach to induce reliable classifiers
from such data.

3. Suppose you have a reason to assume that a few classes are marked by strong
interdependence, while most of the remaining classes are mutually independent.
You are considering stacking. What problem may compromise the performance
of the induced classifiers? Can you suggest a way to overcome this pitfall?

4. Suppose you are asked to develop machine-learning software for induction from
multi-label examples. This chapter has described at least four approaches to
choose from. Write down the main thoughts that would guide your choice.

5. Suggest a mechanism that would mitigate the problem of error propagation
during multi-label induction in a domain with hierarchically ordered classes.
Hint: after a testing run, consider “enriching” the training sets by “problematic”
examples.

14.9 Solidify Your Knowledge 295

14.9.3 Computer Assignments

1. Write a program that accepts as input a training set of multi-label examples and
returns as output the set of auxiliary training sets needed for the binary relevance
approach.

2. Write a program that converts the training set from the previous question into
auxiliary training sets, following the principle of class aggregation.

3. Search the web for benchmark domains with multi-label examples. Convert them
using the data-processing program from the previous question, and then induce
the classifiers using the binary relevance approach.

4. Write a program that induces the classifiers using binary relevance as in the
previous question. In the next step, the program redescribes the training examples
by adding to their attribute vectors the class labels required by the lower layer in
classifier stacking.

5. What data structures would you consider for the input and output data when
implementing the classifier stacking technique?

6. Write a program that takes as input the values of NT P ,NT N,NFP , and NFN for
each class and returns micro- and macro-averaged precision, recall, and F1.

Chapter 15
Unsupervised Learning

Unsupervised learning seeks to obtain information from training sets in which the
examples are not labeled with classes. This contrasts with the more traditional
supervised learning that induces classifiers from pre-classified data.

Perhaps the most popular unsupervised-learning paradigm looks for groups
(clusters) of similar examples. The centroids of the clusters can then serve as
Gaussian centers for Bayesian classifiers or to define the neurons in RBF networks.
There is a lot to learn, from the clusters. For instance, each can be marked by
a different set of relevant attributes, and the knowledge of these attributes can
help predict unknown attribute values. Clusters can even be used for classification
purposes.

Other unsupervised-learning techniques, Kohonen networks and auto-encoding,
can visualize the data, compress the data, create higher-level attributes from existing
ones, fill-in missing information, and even generate artificially created training
examples that help increase the chances of supervised learning.

The chapter describes important unsupervised-learning techniques, explains the
relevant algorithms, discusses their behaviors, and shows how to benefit from them
in practical circumstances.

15.1 Cluster Analysis

The first task in unsupervised learning is cluster analysis. The input is a set of
examples, each described by a vector of attribute values—but no class labels. The
output is a set of two or more clusters formed by the examples.

Groups of Similar Examples Figure 15.1 shows a few examples described by two
attributes, x1 and x2. An observer will notice that the examples form three or four
groups, depending on the subjective “level of resolution.”

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_15

297

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_15

298 15 Unsupervised Learning

Fig. 15.1 A two-dimensional
domain with clusters of
examples

To discover such groups in a two-dimensional space by just looking at the
examples’ graphical representation is easy. The difficulty begins with four or more
dimensions where humans can neither visualize the data nor detect the clusters. This
is where an algorithm-based analysis can help.

Representing Clusters by Centroids To begin, we need to know how to describe
the clusters. A few alternatives exist: it is possible to specify the clusters’ locations,
their sizes, shapes, and some other aspects. The simplest approach, however, relies
on centroids.1 If all attributes are numeric, the centroid is often identified with
the averages of the attributes. For instance, suppose that a two-dimensional cluster
consists of the following examples: (2, 5), (1, 4), (3, 6). In this case, the centroid is
defined by vector (2, 5) because the first attribute’s average is 2+1+3

3 = 2 and the
second attribute’s average is 5+4+6

3 = 5.

The averages can be calculated even when the attributes are discrete. provided
that we know how to turn them into numeric ones. Here is a simple possibility. If the
attribute can acquire three or more different values, we can replace each attribute-
value pair with one Boolean attribute (say, season=fall, season=winter,
etc.). The values of these individual Boolean attributes are then represented by 0 or
1 instead of false and true.

For instance, fall can then be described as (0, 0, 1, 0). The attentive reader will
recall, in that Chap. 6, this was called one-hot representation.

What Should the Clusters be Like? Clusters should not overlap each other: each
example must belong to one and only one cluster. Within the same cluster, the
examples should be relatively close to each other, and they should be distant from
the examples belonging to the other clusters.

An important question is how many clusters the available data form. In Fig. 15.1,
we noticed that the human observer will discern either three or four clusters.

1Machine learning professionals avoid the term “center” which might imply mathematical
properties that are irrelevant for the specific needs of cluster analysis.

15.1 Cluster Analysis 299

However, we are not limited to just these two possibilities. At one extreme, the
entire training set can be thought of as forming one big cluster; at the other extreme,
each example can be seen as representing its own single-example cluster.

Practical implementations often side-step the problem by asking the user to
supply the number of clusters by way of an input parameter. Sometimes, however,
machine learning is expected to determine the number automatically.

Measuring Distances Algorithms for cluster analysis need a mechanism to eval-
uate the distance between an example and a cluster. If the cluster is described by
its centroid, the Euclidean distance between the two vectors (the example and the
centroid) offers a good way of doing so. The reader will recall, however, what
Chap. 13 said about situation where Euclidean distance can be misleading.

There is no harm in a little revision. Euclidean distance may be inconvenient in
the case of discrete attributes, but we know how to deal with the problem. Also
concrete scaling plays a role: distances will change considerably if we switch from
feet to miles. For this, some attribute normalization is needed. Much more serious,
however, is a situation where each attribute represents a different quantity, which
renders geometric somewhat meaningless: a four-year difference in age is hard to
compare with a 4-foot difference in height.

In the context of cluster analysis, distance-related issues tend to be less serious
than they were in k-NN classifiers. Most of the time, we can get around the
difficulties by normalizing all attribute values to the unit interval, xi ∈ [0, 1]. We
will return to normalization in Sect. 15.2.

General Formula for Distances When the examples are described by a mixture of
numeric and discrete attributes, we often rely on the sum of the squared distances
along corresponding attributes. More specifically, the following expression is
recommended (here, n is the number of attributes):

dM(x, y) =
√

�n
i=1d(xi, yi) (15.1)

In this formula, we use d(xi, yi) = (xi − yi)
2 for continuous attributes. For

discrete attributes (including Boolean attributes), we put d(xi, yi) = 0 if xi = yi

and d(xi, yi) = 1 if xi �= yi .

Which Cluster Should an Example Belong to? Suppose that each example is
described by vector x, and that each cluster is defined by its centroid—which, too,
is an attribute vector.

Suppose there are N clusters with centroids denoted by ci , where i ∈ (1, N).
The example x has a certain distance d(x, ci), from each centroid. If d(x, cP) is the
smallest of these distances, we expect that x will find itself in cluster cP .

For instance, suppose that we use the Euclidean distance, and that there are three
clusters. If the centroids are c1 = (3, 4), c2 = (4, 6) and c3 = (5, 7), and if the
example is x = (4, 4), then the Euclidean distances are d(x, c1) = 1, d(x, c2) = 2,

300 15 Unsupervised Learning

and d(x, c3) = √
10. Since d(x, c1) is the smallest of the three values, we conclude

that x should belong to c1.

Benefit 1: Estimating Missing Values The knowledge of the clusters can help
us estimate missing attribute values. Returning to Fig. 15.1, we notice that if the
value of x1 is very low, the example probably belongs to the bottom-left cluster.
In this case, also x2 is likely to be low because such is the case in all examples in
this cluster. This aspect tends to be even more strongly pronounced in realistic data
described by multiple attributes,

In example description, some attribute values may not be known. Section 11.5
proposed to replace a missing value by the average or by the value most frequent in
the training set. An estimate by the average or by the most frequent value of the the
example’s cluster is more reliable than that because it averages over relevant data,
rather than over all data.

Benefit 2: Reducing the Size of RBF Networks and Bayesian Classifiers Cluster
analysis can assist Bayesian learners and radial-basis-function networks. The reader
will recall that these paradigms operate with centers.2 In the simplest implementa-
tion, the centers are identified with the attribute vectors of the individual examples.
In domains with millions of examples, however, this leads to impractically big
classifiers. The engineer then prefers to divide the training set into N clusters, and
to identify the Gaussian centers with the centroids of these clusters.

Benefit 3: Clusters as Classifiers Clusters may be useful in classification, too. In
many domains, all or almost all examples in a cluster belong to the same class. In
this event, it is a good idea to identify each cluster with its dominant class. When a
future example, x, is to be classified, it is enough to find the nearest cluster, and then
to label x with this cluster’s class.

15.1.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• What is the defining difference between unsupervised learning and supervised
learning?

• What is a cluster? Define a way to describe clusters. How can we measure the
distance between an example and a cluster? What possible flaws in these distance
do have to be aware of?

• Discuss the three main benefits that the knowledge of clusters can bring.

2The section on RBF networks denoted these centers by μi ’s.

15.2 Simple Clustering Algorithm: k-Means 301

15.2 Simple Clustering Algorithm: k-Means

Perhaps the simplest algorithm to detect clusters of examples in the training set is
known as k-means. The k in its name refers to the requested number of clusters—a
parameter whose value is supplied by the user.

K-Means Algorithm In the pseudo-code in Table 15.1, the first step creates k

initial clusters such that each example finds itself in one and only one cluster (we
will have more to say about initialization presently). After this, the coordinates of
all centroids are calculated as arithmetic averages of the attributes of the examples
within the cluster.

In the next step, k-means investigates one example at a time, calculating its
distances from all centroids. The nearest centroid then defines the cluster to which
the example should belong. If the example already is that cluster, nothing needs to be
done; otherwise, the example is transferred from the current (wrong) cluster to the
new (correct) one. After the relocation, the centroids of the two affected clusters (the
one that lost the example, and the one that gained it) are recalculated. The procedure
is illustrated by the single-attribute domain from Fig. 15.2. Here, two examples find
themselves in the wrong clusters and are therefore relocated. After each example
transfer, the vertical bars separating the clusters change their locations, and so do
the centroids,

Termination The good thing about the algorithm from Table 15.1 is that the
process is guaranteed to reach the state where each example finds itself in the nearest
cluster. From this moment on, no further transfers are needed. The clusters do not
overlap. Since the goal is usually achieved in a manageable number of steps, the
process simply stops when no example has been relocated in the whole epoch.

Numeric Example In Table 15.2, a set of nine two-dimensional examples has
been randomly divided into three groups (because the user specified k = 3), each

Table 15.1 Pseudo-code of k-means clustering

Input: a set of examples without class labels
user-set constant k

1. Create k initial clusters. For each, calculate the coordinates of its centroid, Ci , as the numeric
averages of the attribute values in the examples in the cluster.

2. Choose an example, x, and find its distances from all centroids. Let j be the index of the
nearest centroid.

3. If x already finds itself in the j -th cluster, do nothing. Otherwise, move x from its current
cluster to the j -th cluster and recalculate the affected two centroids.

4. Unless a stopping criterion has been met, repeat the last two steps for another example.

Stopping criterion: each training example already finds itself in the nearest cluster.

302 15 Unsupervised Learning

Fig. 15.2 The k-means procedure in a domain with a single numeric attribute.

containing the same number of examples. The table also provides the centroids
for each group. K-means goes through these examples systematically, one by one.
Suppose it is now considering group-2. For each example, its distance from each
centroid is calculated. It turns out that the first example from group-2 already finds
itself in the right cluster. However, the second example is closer to group-1 than to
group-2 and therefore has to be transferred from its original cluster to group-1. After
this, the affected centroids are recalculated.

Normalizing Attributes to Unit Intervals The reader will recall that, when
discussing k-NN classifiers, Chap. 3 argued that inappropriate attribute scaling will
distort distances between attribute vectors. The same problem has to be considered
in cluster analysis. It is a good idea to normalize the vectors so that all numeric
attributes have values from the same unit interval, [0, 1].

15.2 Simple Clustering Algorithm: k-Means 303

Table 15.2 Illustration of the k-means procedure in a domain with two attributes

The table below contains three imperfect initial groups of vectors. The task is to find better clusters
by the 3-means procedure.

Group-1 Group-2 Group-3

(2, 5) (4, 3) (1, 5)

(1, 4) (3, 7) (3, 1)

(3, 6) (2, 2) (2, 3)

Centroids: (2, 5) (3, 4) (2, 3)

Let us pick the first example in group-2. The Euclidean distances between this example, (4, 3), and
the centroids of the three groups are

√
8,

√
2, and

√
4, respectively. This means that the centroid

of group-2 is the one nearest to the example. Since this is where the example already is, k-means
does not do anything.

Let us now proceed to the second example in group-2, (3, 7). In this case, the distances are√
5,

√
9, and

√
17, respectively. Since the centroid of group-1 has the smallest distance from

(3, 7), the example is moved from group-2 to group-1. After this, the averages of the two affected
groups have to be recalculated.

Here are the new clusters with the new centroids:

Group-1 Group-2 Group-3

(2, 5) (4, 3) (1, 5)

(1, 4) (2, 2) (3, 1)

(3, 6) (2, 3)

(3, 7)

Centroids: (2.25, 5.25) (3, 2.5) (2, 3)

The process continues as long as any example transfers are needed.

Note: for simplicity, normalization was ignored here.

The simplest way of doing so is to determine for the each attribute its maximum
(MAX) and minimum (MIN) value in the training set. Then, each value of this
attribute is recalculated by the following formula:

x = x − MIN

MAX − MIN
(15.2)

As for Boolean attributes, their values can simply be replaced with 1 and 0
for true and false, respectively. Finally, an attribute that acquires n discrete values
(such as season, which has four different values) can be replaced with n Boolean
attributes, one for each value—and, again, for the values of these Boolean attributes,
1 or 0 are used as in the case of the one-hot representation that we already know from
Sect. 6.4,

Computational Consequences of Initialization To reach its goal, k-means has to
make a certain number of transfers of examples from wrong clusters to the right
ones. How many such transfers are needed depends on the contents of the initial
clusters. Theoretically speaking, we can imagine a situation where the randomly
generated initial clusters are already perfect, and not a single example needs to be

304 15 Unsupervised Learning

moved. Of course, this is an extreme, but the message is clear: if the initialization is
“lucky,” fewer transfers are needed than in the case of an “unlucky” initialization. A
better starting point means that the solution is found sooner.

How to Initialize In some domains, we can take advantage of some background
knowledge about the problem at hand. For instance, seeking to create initial clusters
in a database of a company’s employees, the data analyst may speculate that it makes
sense to group them by their age, salary, or some other intuitive criterion, and that
the groups thus obtained will make good initial clusters.

In other applications, however, no such guidelines exist. The simplest procedure
then picks k random training examples and regards them as code vectors to define
initial centroids. The initial clusters are then created by associating each of the
examples with its nearest code vector.

Another Problem with Initialization There is another issue, and quite serious.
The thing is, the composition of the resulting clusters (once k-means has completed
its work) may depend on initialization. Choose a different set of initial code vectors,
and the technique may generate a different set of clusters.

The point is illustrated in Fig. 15.3. Suppose the user wants two clusters (k =
2). If he chooses as code vectors the examples denoted by x and y then the initial
clusters created with the help of these two examples are already perfect.

The situation changes when we choose for the code vectors examples x and z.
In this event, the two initial clusters will have a very different composition, and k-
means is likely to generate a different set of clusters. The phenomenon will be more
pronounced if there are “outliers,” examples that do not apparently belong to any of
the two clusters.

Summary of the Shortcomings The good thing about k-means is that it is easy
to explain and easy to implement. This simplicity comes at a price, though. The
technique is sensitive to initialization; the user is expected to provide the number of
clusters (which he may not be able to do without just guessing); and, as we will see,

Fig. 15.3 Suppose k = 2. If
the code vectors are [x,y], the
initial clusters for k-means
will be different then when
the code vectors are [x,z]

15.3 Advanced Versions of k-Means 305

some clusters can never be discovered, in this manner. The next sections will take a
look at some techniques to overcome these shortcomings.

15.2.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Describe the principle of the k-means algorithm. What can you say about the
termination criterion?

• What are the consequence if we do not normalize the training set? Write down
the simple normalization formula.

• Describe some methods for the initialization of k-means. What are the main
consequences of good or bad initialization?

15.3 Advanced Versions of k-Means

The previous section described the baseline version of k-means and pointed out its
main weaknesses: sensitivity to initialization, and the fact that the user has to submit
the requested number of clusters. Let us take a look at some improvements meant to
address these shortcomings. First of all, however, we need a performance criterion.

Quality of a Set of Clusters If we want to compare the quality of alternative results
of a clustering algorithm, we need objective criteria. One such criterion is built
around the original intention to minimize the average distance between examples
and the centroids of their clusters.

Let us denote by d(x, c) the distance between example x and the centroid, c, of
the cluster to which x belongs. If all attributes are numeric, and if they all have been
normalized to unit intervals, then d(x, c) can be either the Euclidean distance or
the more general Eq. 15.1. The following formula (in which SD stands for summed
distances) sums the distances of all examples from their clusters’ centroids. Here,
x(j)
i denotes the i-th example in the j -th cluster, K is the number of clusters, nj is
the number of examples in the j -th cluster, and cj is the j -th cluster’s centroid.

SD =
K∑

j=1

nj∑

i=1

d(x(j)
i , cj) (15.3)

A good set of clusters should minimize SD. This said, we must not forget that
the value obtained by Eq. 15.3 will decrease with the growing number of clusters
(in which case, their average size will be smaller), reaching SD = 0 in the extreme
case when each cluster is identified with one and only one training example. The

306 15 Unsupervised Learning

criterion is thus realistic only if we compare solutions with the same (or at least
comparable) numbers of clusters.

Alternative Initializations We already know that the composition of the resulting
clusters depends on initialization: different initial code vectors are likely to result
in different clusters. It thus makes sense to define two or more sets of initial code
vectors, and then apply k-means separately to each of them. After this, the quality of
all the alternative solutions is evaluated by the criterion specified by Eq. 15.3. The
best solution is the one for which the formula results in the lowest value.

Experimenting with Different Values of k One weakness of k-means is the
requirement that the user should provide the value of k. This is easier said than
done because, more often than not, the engineer has no idea how many clusters
the data form. Unless more sophisticated techniques are used,3 the only way out
is to try a few alternative values of k, and then pick the one that best satisfies an
appropriate criterion (such as the one defined by Eq. 15.3). As already mentioned,
the shortcoming of this criterion is that it tends to give preference to small clusters.
For this reason, data analysts often normalize the value of SD by k, the number of
clusters.

Post-processing: Merging and Splitting Clusters The quality of the set of
clusters created by k-means can often be improved by post-processing techniques
that either increase the number of clusters by their splitting or decrease their number
by merging some neighbors.

To be more specific, two neighboring clusters can be merged if their mutual
distance is small. To decide whether a given distance merits merging, we simply
calculate the distance between a pair of centroids, and then compare it with the
average cluster-to-cluster distance calculated by the following sum, where ci and cj

are centroids:

S =
∑

i �=j

d(ci , cj) (15.4)

Conversely, splitting makes sense when the average example-to-example dis-
tance within some cluster is high. Concrete solution is not easy to formalize because
once we have specified that cluster C is to be split into C1 and C2, we need to decide
which of C’s examples will go to the first cluster and which to the second. Very
often, however, it is perfectly acceptable to identify in C two examples with the
greatest mutual distance, and then treat them as the code vectors of newly created
C1 and C2, respectively.

Hierarchical Application of k-Means Another modification relies on recursive
calls. The technique begins with running k-means for k = 2, obtaining two clusters.

3One possibility is to visualize the data by the self-organizing feature map. See Sect. 15.5 where
the mechanism of visualization is explained and illustrated by an example.

15.4 Hierarchical Aggregation 307

Table 15.3 Pseudo-code of hierarchical k-means clustering

Input: set T of examples without class labels
user-specified minimum size of the clusters

Hierarchical-k-means(T)

1. If the size of the cluster is less than the user-specified parameter, stop.
2. Run the k-means for k = 2, obtaining clusters C1 and C2.

3. Run Hierarchical-k-means(C1) and Hierarchical-k-means(C2)

Stopping criteria: size of clusters dropped to user-specified minimum.

After this, k-means is applied to each of these two clusters separately, again with
k = 2. This continues until an appropriate termination criterion has been satisfied—
for instance, the maximum number of clusters specified by the user, or the minimum
distance between neighboring clusters or the minimum size of the resulting clusters.
Table 15.3.

This hierarchical version side-steps the necessity to provide the required number
of clusters because this is here established automatically. The approach is partic-
ularly beneficial when the goal is to identify the Gaussian centers in Bayesian
classifiers or in RBF networks.

15.3.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Discuss some shortcomings of the k-means algorithm, and describe the simple
techniques that seek to overcome them.

• Suggest an algorithm to implement the cluster-splitting and cluster-merging
techniques described in this section.

• Explain the principle of hierarchically applied k-means.

15.4 Hierarchical Aggregation

Just like any other machine-learning technique, k-means has its advantages, but also
shortcomings. This is why we need an alternative, an approach to turn to in situations
where k-means fails.

308 15 Unsupervised Learning

Fig. 15.4 The leftmost
example in the bottom cluster
is closer to the upper cluster’s
centroid than to its own.
Therefore, k-means will not
find the best solution

Serious Limitation of k-Means By minimizing the distance between examples
and the centroids of the clusters to which these examples belong, k-means primarily
creates clusters of convex shape. Most of the time, this is what we want—for
instance, in the context of Bayesian classifiers and the RBF networks where the
clusters help us reduce the number of Gaussian centers.

K-means, however, will do a poor job if the clusters are not convex. Take a look
at Fig. 15.4. Here, the leftmost example, x, of the bottom cluster is closer to the
centroid of the upper cluster, and k-means would relocate it accordingly, and yet it
is clear that this would not do justice to the nature of the two groups.

To deal with data of this kind, we need another technique.

Alternative Way of Measuring Inter-Cluster Distances Previously, the distance
between two clusters was measured by the Euclidean distance between their
centroids. In the approach described below, we will do it differently: we will
evaluate the distances between all pairs of examples, [x,y], such that x comes from
the first cluster and y from the second. The smallest value among all these example-
to-example distances then defines the distance between the two clusters.

A glance at Fig. 15.4 will convince us that, along this new metric, example x is
closer to the bottom cluster than to the upper cluster, which is what we wanted. What
has worsened, though, is computational costs: if NA is the number of examples in
the first cluster, and NB the number of examples in the second, then NA × NB

example-to-example distances have to be evaluated. Most of the time, however, the
clusters are not big, and the costs can be tolerated.

Numeric Example For illustration, consider the following two clusters, A and B.

A B

x1 = (1, 0) y1 = (3, 3)

x2 = (2, 2) y2 = (4, 4)

15.4 Hierarchical Aggregation 309

We calculate the Euclidean example-to-example distances as follows:
d(x1, y1) = √

13,
d(x1, y2) = √

25,
d(x2, y1) = √

2,
d(x2, y2) = √

8.
Observing that the smallest among these values is d(x2, y1) = √

2, we conclude
that the distance between the two clusters is d(A,B) = √

2.

Hierarchical Aggregation Table 15.4 shows the pseudo-code of the clustering
technique known as hierarchical aggregation.

In the first step, each example defines its own cluster. This means that in a domain
with N examples, we will have N initial clusters. In a series of the subsequent
steps, hierarchical aggregation always finds a pair of clusters with the smallest
mutual distance along the metric from the previous paragraphs. These clusters are
then merged. At an early stage, this typically means to merge pairs of neighboring
examples. Later, this results either in adding an example to its nearest cluster or
in merging neighboring clusters. Figure 15.5 gives us an idea of how hierarchical
aggregation handles the data from Fig. 15.4.

The process continues until an appropriate termination criterion is satisfied. One
possibility is to stop when the number of clusters drops below a user-specified

Table 15.4 Pseudo-code of hierarchical aggregation

Input: a set of examples without class labels

1. Let each example form one cluster. For N examples, this means N clusters, each containing a
single example.

2. Find a pair of clusters with the smallest cluster-to-cluster distance. Merge the two clusters into
one, thus reducing the total number of clusters to N − 1.

3. Unless a termination criterion is satisfied, repeat the previous step.

Fig. 15.5 Hierarchical aggregation after the first two steps (left) and after the first nine steps
(right). Observe how the clusters are gradually developed

310 15 Unsupervised Learning

threshold. Alternatively, the program can be asked to finish when the smallest among
the cluster-to-cluster exceeds a certain value.

15.4.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• What kind of clusters cannot be detected by the k-means algorithm?
• What distance metric is used in hierarchical aggregation? What are the advan-

tages and disadvantages of this metric?
• Summarize the algorithm of hierarchical aggregation. For what kind of clusters

is it particularly suited?

15.5 Self-Organizing Feature Maps: Introduction

Let us now introduce another approach to unsupervised learning, this time borrow-
ing from the field of neural networks. The technique is known as a self-organizing
feature map, SOFM.4 Another name commonly used in this context is Kohonen
networks, to honor its inventor.

Basic Idea Perhaps the best way to explain the nature of SOFM is to use the
metaphor of physical attraction. A code vector, initially generated by a random-
number generator, is subjected to the influences of a series of examples (attribute
vectors), each “pulling” the vector in a different direction. In the long run, the code
vector settles in a location that is a compromise of all these conflicting forces.

The network consists of a set of neurons arranged in a two-dimensional matrix
such as the one shown in Fig. 15.6. Each neuron represents a code vector. All code
vectors have the same length that is equal to the number of the attributes describing
the training examples. At the bottom of the picture is an input attribute vector that
is connected to all neurons in parallel. The idea is to achieve by training a situation
where neighboring neurons (in the matrix) respond similarly to similar input vectors.

How to Model Attraction Each neuron is represented by a weight vector, w =
(w1, . . . , wn) where n is the number of attributes. If x = (x1 . . . , xn) is an example,
and if η ∈ (0, 1) is a user-specified learning rate, then the individual weights are
modified using the following formula:

wi = wi + η(xi − wi) (15.5)

4In statistics, and in neural networks, scientists often use the term feature instead of attribute.

15.5 Self-Organizing Feature Maps: Introduction 311

Fig. 15.6 General schema of
the Kohonen network. The
input vector is presented
simultaneously to all neurons
in a single the matrix

Note that the i-th weight is increased if xi > wi because the term in the
parentheses is then positive (and η is always positive). Conversely, the weight is
decreased if xi < wi because then the term is negative. It is in this sense that we say
that w is attracted to x. The strength of this attraction is determined by the learning
rate.

Numeric Example Suppose that an example x = (0.2, 0.8) has been presented,
and suppose that the winning neuron has weights w = (0.3, 0.7). If the learning
rate is η = 0.1, then the weights change in the following way:

w1 = w1 + η(x1 − w1) = 0.3 + 0.1(0.2 − 0.3) = 0.3 − 0.01 = 0.29
w2 = w2 + η(x2 − w2) = 0.7 + 0.1(0.8 − 0.7) = 0.7 + 0.01 = 0.71

Note that the first weight originally had a greater value than the first attribute. The
force of the attribute’s attraction thus reduced this weight. Conversely, the second
weight was originally smaller than the corresponding attribute, but the attribute’s
“pull” has increased it.

WhichWeight Vectors AreModified? The presentation of an example, x, initiates
a two-step process. The first step, competition, identifies in the matrix the neuron
whose weight vector is most similar to x. To this end, the Euclidean distance is
used, and smaller distance indicates greater similarity. Once the winner has been
established, the second step updates the weights of this winning neuron—and also
the weights of all neurons in the winner’s physical neighborhood in the matrix.

Note on Neighborhood Figure 15.7 illustrates the idea of the neighborhood of
the winning code vector cwinner . Informally, the neighborhood consists of a set of
neurons within a specific physical distance from cwinner . The intention is to make
sure that the weights of neurons that are physically close to each other are updated
in a like manner.

Usually, the size of the neighborhood is not fixed; it is a common practice to
reduce it over time as indicated in the right portions of Fig. 15.7. Ultimately, the

312 15 Unsupervised Learning

Fig. 15.7 The idea of neighborhood in the Kohonen network. After a certain number of epochs,
the size of neighborhood is decreased, then again, until it contains only the winning neuron

neighborhood will degenerate to the single neuron that has won the competition.
The idea is to start with a coarse approximation that is gradually fine-tuned.

Why Does it Work? The idea is to make sure that neurons physically close to
each other in the matrix respond to similar examples. This is why the same weight-
updating formula is applied to all neurons in the winner’s neighborhood.

15.5.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Describe the general architecture of self-organizing feature maps. Relate the
notion of code vector to that of a neuron in the matrix.

• Explain the two steps of the self-organizing algorithm: competition, and weight
adjustment. Comment also on the role of the learning rate, η.

• What is meant by the neighborhood of the winning code vector? Is its size always
constant?

15.6 Some Details of SOFM

Having outlined the principle, we are ready take a look at some details that are
necessary for SOFM’s proper functioning.

Normalization For the technique to work, all vectors have to be normalized to
unit length (i.e., length equal to 1). This applies both to the vectors describing the
examples, and to the weight vectors of the neurons. Fortunately, normalization to
unit length is easy. Suppose an example is described by the following attribute

15.6 Some Details of SOFM 313

vector: x = (x1, . . . , xn) To obtain unit length, we divide each attribute’s value
by the length of the original attribute vector, x:

xi := xi√
�jx

2
j

(15.6)

Numeric Example Suppose we want to normalize the two-dimensional vector x =
(5, 5). The length of this vector is l(x) =

√
x2
1 + x2

2 = √
25 + 25 = √

50. Dividing
the value of each attribute by this length results in the following normalized version
of the vector:

x′ = (
5√
50

,
5√
50

) = (

√
25

50
,

√
25

50
) = (

1√
2
,

1√
2
)

That the length of x′ equals 1 is easy to verify: using the Pythagorean Theorem,

we calculate it as
√

x2
1 + x2

2 =
√

1
2 + 1

2 = 1. We can see that the new attribute
vector indeed has unit length.

Initialization The first step in SOFM initializes the neurons’ weights. Usually, this
is done by a random-number generator that chooses the values from an interval that
spans equally the positive and negative domains, say, [−1, 1]. After this, the weight
vector is normalized to unit length as explained above.

For the learning rate, η, small numbers are used, say, η = 0.1. Sometimes it
makes sense to start with a higher value (e.g., η = 0.9) that then gradually decreases.
The point is to modify the weights more strongly at the beginning, to achieve some
early approximation. Later, smaller values are used for fine-tuning.

Self-Organizing Algorithm The general principle of self-organizing feature maps
is summarized by the pseudo-code in Table 15.5. At the beginning, all examples are
normalized to unit lengths. Initial code vectors, too, are created by a random-number
generator and then normalized. In the algorithm’s main body, training examples
are presented one by one. After the presentation of example x, SOFM identifies a
neuron whose weight vector, cwinner , has the smallest Euclidean distance from x.
Then, the weights of cwinner as well as the weights of all neurons in its physical
neighborhood are modified by Eq. 15.5, and then re-normalized. The algorithm is
run for a predefined number of epochs.5

In the course of this procedure, the value of the learning rate is gradually
decreased. Occasionally, the size of the neighborhood is reduced: as the training
process advances, fewer neurons are affected by the presented examples.

5Recall that one epoch means that all training examples have been presented once.

314 15 Unsupervised Learning

Table 15.5 Pseudo-code of self-organizing feature map (SOFM)

Input: set of examples without class labels
learning rate, η.
matrix of neurons, their weights randomly initialized and normalized.

1. Normalize all training examples to unit length.
2. Present example x, and find the neuron, cwinner whose weight vector has the smallest distance

from x.
3. Modify the weights of cwinner and the weights of the neurons in cwinner ’s physical neighbor-

hood. Re-normalize the weight vectors.
4. Unless a stopping criterion is met, present another training example, identify cwinner , and

repeat the previous step.

Comments:

1. η usually begins with a relatively high value from (0, 1), then gradually decreases.
2. Every now and then, the size of the neighborhood is reduced.

15.6.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• What is the goal of normalization in the context of this section? Write down the
normalization formula. Which vectors have to be normalized?

• How is Kohonen’s network initialized? What values are used?
• Summarize the algorithm of self-organizing feature maps. Comment on the

values for the learning rate and explain the reason for the gradually diminishing
neighborhood.

15.7 Why Feature Maps?

Let us take a look at the practical benefits of self-organizing feature maps.

Reducing Dimensionality The technique essentially maps the N -dimensional
space of the original attribute vectors to the two-dimensional space of the neural
matrix. Each example has its winning neuron, and the winner is defined by its
two coordinates in the matrix. These coordinates can be regarded as a new pair
of attributes that re-describe the original example.

15.7 Why Feature Maps? 315

Creating Higher-Level Features Reducing the number of attributes is critical in
domains where the number of attributes is prohibitively high, especially if most of
these attributes are either irrelevant or redundant. For instance, this is the case in
computer vision where each image (i.e., an example) can be described by hundreds
of thousands of pixels.

The reader knows that a direct application of, say, perceptron learning to attribute
vectors of extreme length is unlikely to succeed: in a domain of this kind, a
classifier that does well on a training set tends to fail on testing data. This is
because the countless attributes make the VC-dimension so high as to impair
learnability—unless the training set is unrealistically large. Advanced machine-
learning applications therefore seek to reduce the dimensionality either by attribute
selection or by way of mapping the multi-dimensional problem to a smaller space—
typically by creating new, higher-level features as functions of the original features.

Algorithm for Feature Reduction Wemay take this idea one step further. Suppose
the training examples are described by 100 attributes, and suppose we have a
reason to suspect that some attributes are mutually interdependent, whereas quite
a few others are either irrelevant or redundant. The dimensionality thus seems to be
unnecessarily high, and any attempt to reduce it is welcome.

One way to do so is by dividing the attribute set into, say, five non-overlapping
subsets (20 attributes in each), and then creating five new training sets, each char-
acterizing the examples by a different attribute subset. Each of these training sets is
then subjected to SOFM that maps its 20-dimensional space to two dimensions. As
a result, we have 5 × 2 = 10 new attributes.

Visualization Human brain easily visualizes two- or three-dimensional data, and
the mind’s eye can “see” the distribution of the examples, the groups they form, and
so on. This is impossible when there are more than three attributes.

This is where SOFM can help. By mapping each example onto a two-dimensional
matrix, we may visualize at least some of the aspects. For instance, similar attribute
vectors are likely to be mapped to the same neuron, or to neurons that are physically
close to each other. In this sense, the feature maps serve as visualization tool.

The visualization algorithm is summarized in Table 15.6. Once the SOFM has
been trained, each neuron is assigned a counter that is initialized to zero. Then, all
training examples are presented to the network, one at a time. After each example
presentation, the counter of the winning neuron is incremented.

When this is finished, the network is displayed on the computer screen as in
a way indicated by Fig. 15.8: each neuron’s shade of grade is determined by the
value of the corresponding counter—the more examples for which the neuron was
the winner (we say that the winning neuron is fired by the example), the darker
the shade. In this particular example, the network suggests that the data form two
clusters, the black opposing corners of the network.

Initializing the k-Means Algorithm Each of the weight vectors in the neural
matrix can be regarded as a code vector. The mechanism of SOFMmakes it possible

316 15 Unsupervised Learning

Table 15.6 Data visualization with self-organizing feature map (SOFM)

Input: set of examples without class labels
matrix of neurons

1. Normalize all example vectors to unit lengths.
2. Initialize all neural weights (random values, unit vector lengths).
3. Train the SOFM network.
4. Assign to each vector a counter initialized to 0.
5. Present an example and observe which neuron is the winner. Increment this neuron’s counter.

Repeat for all training examples.
6. At the end, show the network, with each neuron’s shade of gray determined by its counters

final value (the higher the value, the darker the neuron).

Fig. 15.8 The darker the
neuron, the higher the number
of examples that have fired it.
This picture suggests two
clusters and some noise

to find reasonably good values of these vectors—and these can then be used to
initialize cluster analysis techniques such as k-means. Whether this is practical
is another question; SOFM is computationally expensive. Besides, it is not quite
obvious whether each neuron should define a cluster, or whether to consider only
those clusters that are fired by many training examples (the very dark neurons in
Fig. 15.8).

Using SOFM for Classification Purposes Experience with traditional machine-
learning paradigms (say, k-NN classifiers) has taught us that examples of the same
class tend to occupy specific regions in this original feature space. Since SOFT is
capable of identifying these regions, it can serve classification purposes.

The classification algorithm is shown in Table 15.7. First, we train the SOFM
on examples from which the class labels have been removed. Once this has been
completed, we present to the network the training set with the class labels. For each
neuron, we keep a tally of the classes of the examples for which it was the winner.
The neuron is then labeled with the class most common among these examples.

When using the network to classify example x, we first decide which of the
SOFM neurons is fired by it (which example wins the competition by having the
smallest Euclidean distance), and then label x by the class associated with this
neuron.

15.8 Auto-Encoding 317

Table 15.7 Pseudo-code for using SOFM for classification purposes

Learning stage:

1. Train the SOFM using non-classified training examples.
2. Submit all training examples to the induced SOFM. For each neuron, keep a tally of the classes

of the examples which fired it (for which it was the winner).
3. Label each neuron with the class prevailing among the examples that fired it.

Classification stage:

Submit to SOFM an example, x, and decide which neuron it fires. Label xwith the class associated
with this neuron.

Follow-up Exercise Once the SOFM has been developed, consider the following
experiment. Take the same data that have been used for SOFM training, and label
each example with the winning neuron. The resulting training set can then be
used by any of the supervised learning from the previous chapters. Induce from
the decision tree. Analysis of this decision tree will tell you which attributes are
important for different regions of the instance space.

To see the point, recall that each neuron in the Kohonen network represents a
cluster, a meaningful region in the instance space. Thanks for the induced decision
tree, we now know which attributes matter. For instance, a Kohonen network
implemented as a five-by-five matrix consists of 25 neurons. Each of them will
appear in at least one leaf node of the tree. The tests along the branches from the root
to the leaves labeled with the given neuron inform us about the attributes relevant
for the region represented by the neuron. These attributes and the results of their
tests may even help us fill-in missing attribute values in future data.

15.7.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• In what way can SOFM help us visualize available data?
• Explain how SOFM can be used to replace the original attributes with new,

higher-level features.

15.8 Auto-Encoding

Earlier chapters pointed out that learning from examples described by detailed low-
level features is impractical, and they repeatedly called for mechanisms to create
meaningful higher-level features. Section 15.7 explained how to use to this end
Kohonen networks. Another possibility is auto-encoding, AE.

318 15 Unsupervised Learning

Fig. 15.9 Auto-encoding
(AE). Class labels are
ignored. At each step, a
training example is presented
at the input and the output.
The goal is to achieve 1-to-1
mapping. The outputs of the
hidden layer can serve as
higher-level features

Essence of Auto-Encoding Figure 15.9 shows the most common architecture of
an auto-encoding network, implemented as a multilayer perceptron. The number of
inputs, N , is the same as the number of outputs; importantly, the number of hidden
neurons, K , is smaller, K < N .

At each step of the training, the same attribute vector is presented at the input
and at the output where it serves as the target vector, t. Class labels are ignored.
The input example is propagated to the output layer, generating an output vector,
y, that is then compared with t. The difference between y and t, in the form of the
mean squared error, MSE, is then backpropagated through the network, and used for
weight modification in the same way as in Chap. 6. The goal is to achieve a 1-to-1
mapping from the input to the output.

Perfect mapping with zero MSE is almost impossible to achieve, but this does
not matter much. The main idea is to get as close to perfection as permitted by the
given domain and by the network’s dimensions.

AE Creates Higher-Level Features Once the training by backpropagation has
been completed, the outputs of the hidden layer can serve as the higher-level
features. Thanks to the requirement that K < N , there are fewer of these features
than was the number of the original attributes. In this sense, AE causes data
compression.

Let the k-th original attribute be denoted by xk , let the weight of the lower-layer
link leading from the k-th input to the j -hidden neuron be denoted by w

(2)
kj , and let

f (
∑

) represent the activation function (e.g., sigmoid). The j -th new feature is
then defined by the following formula:

hj = f (
∑

j

w
(2)
kj xk)

From the new features, the original ones can be again recovered by multiplying
hj ’s with the known weights w

(1)
jk .

15.8 Auto-Encoding 319

Benefits of the New Features By re-describing the training examples in terms of
the new features, hj ’s, we reduce the dimensionality of the instance space (because
K < N). This means smaller VC-dimension, and therefore improved learnability
(recall the conclusions of computational learning theory from Chap. 7).

The circumstance that the danger of overfitting is now lower can be verified by
a simple experiment: induce two decision trees, one using the original attributes,
and the other using the features obtained from the hidden layer of the AE-network.
Chances are high that the second decision tree will give better results on independent
testing data.

Size of the Hidden Layer As everywhere, in machine learning, the decision about
the number, K , of hidden neurons hinges on a trade-off. Let N be the number of
the original attributes. If K is close to N , the reduction of the instance space is
insignificant, and the entire AE adventure is hardly worth the trouble. If, conversely,
K is too small, then the network will lack flexibility, and its training will fail to
achieve even crude approximation of the coveted 1-to-1 mapping.

The ideal size can be established experimentally: we want to find the minimum
K that still permits reasonably accurate 1-to-1 mapping. In some domains, the
redundancy in the attributes is so high that considerable reduction is possible; in
others, the existing attributes are all important, and the higher-level features may
destroy some critical information. When preparing the experiments, however, do
not forget that they can be computationally expensive: for each value of K , yet
another MLP has to be trained.

Frequently Overlooked Detail If the transfer function of the output neurons is
sigmoid, the output is constrained to the open interval (0, 1). This means that we
can never even approximate the 1-to-1 mapping if the original attributes acquire
values outside this interval. This is easily avoided if we normalize the original
attributes into the unit interval, (0, 1). This is achieved by the mechanism we know
from Chap. 3. If MIN and MAX are the minimum and maximum values of a given
attribute in the training set, the attribute is normalized by recalculating each of its
values with the following formula:

x = x − MIN

MAX − MIN

Multilayer Version of AE The reader will recall that MLPs sometimes do not
allow good mapping unless the hidden layer is large, perhaps much larger than the
length of the original attribute vectors (Chap. 6). This, of course, beats the purpose
of auto-encoding. A possible solution relies on using more layers, as shown in
Fig. 15.10, with the hidden layers becoming progressively shorter. The new features
are those observed at the outputs of the smallest layer. This reduces the size of the
feature space in a step-wise manner.

The engineer should not become carried away by the seemingly unlimited
opportunities offered by multilayer AE. The costs of having to train many alternative
architectures may easily outweigh the desired benefits.

320 15 Unsupervised Learning

Fig. 15.10 Auto-encoding
can involve more than just
two layers. The new features
are those that are output by
the hidden layers.
Experiments may reveal
which set of new features is
best

15.8.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• Explain the principle of auto-encoding. What is the main motivation behind it
and what is the main benefit? Why should the input data be normalized?

• Discuss the trade-offs involved in the various sizes of the hidden layer.
• Comment on the possibilities offered by multilayer auto-encoding.

15.9 Why Auto-Encoding?

Now that we understand the principles of auto-encoding, let us take a closer look at
how to benefit from it when pursuing diverse machine-learning goals.

Higher-Level Features Some domains are marked by very high numbers of low-
level features that inflate the problem’s VC-dimensions in exchange for unnecessary
detail. These features thus necessitate impractically large training sets. Auto-

15.9 Why Auto-Encoding? 321

encoding gives the engineer an opportunity to create a smaller number of more
meaningful higher-level features.

Creating Artificial Data In previous chapters, we encountered the need to synthe-
size artificial examples to be added to the training set needed for supervised learning.
This was the case in domains with heavily imbalanced class representation where
one of the techniques for dealing with the problemwasminority-class oversampling.
In its simplest version, this approach simply assumed that some examples from the
less frequent class should be copied. In a more sophisticated version, the copies
were modified by added noise. Auto-encoding offers yet another way of creating
these new examples.

The idea is inspired by the observation that the “1-to-1 mapping” can only be
imperfect: when we present the trained AE-network with a training example and
forward-propagate it, the output is somewhat different from the original example.
If we want to create synthetic examples similar to the existing ones, we can train
the network with the original training set until the mapping is reasonable (though
not perfect); after this, we present each training example at the input, forward-
propagate, and thus obtain its imperfect replica.

In this way, we double the number of the training examples. The procedure can
then be applied recursively: the new training set (twice the size of the original one)
is used to re-train the AE-network, and the result is used to create for each of the
new training examples its corrupted copy.

Correcting Imperfect Examples In some domains, the 1-to-1 mapping obtained
after the AE-training is almost perfect. In that case, the resulting network can be
used to fill-in the likely values for missing attributes.

The principle is similar to the one from the previous paragraph. Once the training
has been completed, present at the networks’ input an incomplete example where
the missing values are replaced either with zeros or with the average values observed
in the training set. After forward propagation, the output suggests the likely correct
values.

The same approach can perhaps be used to reduce noise.

Combining Supervised and Unsupervised Learning Some domains are marked
by a great many examples, only a small proportion of which have been classified.
Classical supervised machine learning use for classifier induction only examples
that have been labeled, ignoring the others. This, however, may squander potentially
useful information. At the very least, the unclassified example can be used for
extraction of useful patters—or features.

Consider a domain with 106 examples, of which only 104 have class labels. If the
examples are described by many attributes, we can apply auto-encoding to the many
non-classified examples, and obtain in this manner a much smaller feature set.

We then apply some supervised machine-learning technique to the 104 classified
examples that have been re-described by the new features. Given that the number
of these new features is smaller, and that they have been created based on the

322 15 Unsupervised Learning

analysis of a million non-classified examples, we can expect better results than those
obtained using the original attributes.

15.9.1 What Have You Learned?

To make sure you understand the topic, try to answer the following questions. If
needed, return to the appropriate place in the text.

• How can auto-encoding create artificial examples from existing ones?
• How can auto-encoding address the problem of missing attribute values?
• How can auto-encoding be used in large domains where only a small proportion

of the examples have been labeled?

15.10 Summary and Historical Remarks

• Unsupervised learning seeks to induce useful knowledge from examples that do
not have class labels.

• The simplest unsupervised-learning task is cluster analysis. The goal is to find a
way to naturally divide the training set into groups of similar examples.

• A popular approach to cluster analysis is k-means. The technique accepts one
example at a time, and evaluates its distances from centroids of all clusters. If
the example finds itself in a wrong cluster, it is transferred to a better one. The
technique converges in a finite number of steps.

• The quality of the clusters discovered by k-means is sensitive to initialization and
to the user-specified value of k. Methods to improve this quality by subsequent
merging and splitting, and by alternative initializations are sometimes employed.
Another possibility is hierarchical k-means.

• In some domains, the shapes of the data clusters make it impossible for k-
means to a good job. In this event, we may prefer some other technique such as
hierarchical aggregation that creates the clusters in a bottom-up manner, always
merging the clusters with the smallest mutual distance.

• In hierarchical aggregation, it is impractical to measure the distance between
clusters by the distance between their centroids. Instead, we use the minimum
distance between [x,y] where x belongs to one cluster and y to the other.

• The technique k-means is sensitive to the initial code vectors—not only to their
locations, but especially to their number, k. One way to address this issue is to
use self-organizing feature maps that are capable of visualizing the data.

• As an added bonus, self-organizing feature maps are capable of converting a
high-dimensional feature space onto only two attributes. They can thus be used
for feature-reduction purposes. They can even be easily converted to classifiers.

15.11 Solidify Your Knowledge 323

• Another beneficial technique in unsupervised learning is auto-encoding. Its
primary motivation used to be data compression: reduction of the size of the
instance space by creating meaningful higher-level features.

• Auto-encoding can be used for the synthesis of artificial training examples, for
preparing better features in domains where a great percentage of examples are
not labeled with classes, and (sometimes) even for noise suppression.

• Another possible application of auto-encoding is in domains with very large
source of examples of which only a small proportion have been labeled with
classes.

Historical Remarks The problems of cluster analysis have been studied since the
1960s. The k-means algorithm was described by McQueen (1967) and hierarchical
aggregation byMurty and Krishna (1980). The idea of merging and splitting clusters
(not necessarily those obtained by k-means) was studied by Ball and Hall (1965).
The technique of SOFM, self-organizing feature maps, was developed by Kohonen
(1982). In this book, however, only its very simple version was presented. The oldest
scientific paper dealing with auto-encoding seems to be Hinton and Zemel (1994).
Some say that the idea was first proposed by the French PhD dissertation by LeCun
(1987).

15.11 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

15.11.1 Exercises

1. Look at the three initial clusters of 2-dimensional vectors in Table 15.8. Calculate
the coordinates of their centroids.

2. Using the Euclidean distance, decide whether all examples from group 1 are
where they belong. You will realize that one of them is not. Move it to a more
appropriate group and recalculate the centroids.

3. Normalize the examples in Table 15.8 using Eq. 15.2.

Table 15.8 Initial set of
three clusters

Group 1 Group 2 Group 3

(1, 4) (4, 3) (4, 5)

(3, 6) (6, 7) (3, 1)

(3, 5) (2, 2) (2, 3)

324 15 Unsupervised Learning

4. Suppose the only information you have is the set of the nine training examples
from Table 15.8, and suppose that you want to run the k-means algorithm for
k = 3 clusters. What will be the composition of the three initial clusters if your
code vectors are (1, 4), (3, 6), and (3, 5)?

5. Consider the three clusters from Table 15.8.Which pair of clusters will be merged
by the hierarchical aggregation technique?

6. An example to be presented to a self-organizing feature map, SOFM, is described
by the following attribute vector: s = (3, 4, 2). Normalize this example to unit
length.

7. Explain the difference between normalizing an attribute vector to unit length and
normalizing the individual attributes to the unit interval [0, 1].

15.11.2 Give it Some Thought

1. At the beginning of this chapter, we listed some benefits of cluster analysis.
Among these was the possibility to identify neurons in RBF networks with
clusters instead of with examples. In the case of k-means, this is straightforward:
each Gaussian center becomes one cluster’s centroid. Can RBF networks benefit
also from clusters obtained by hierarchical aggregation?

2. Develop a machine-learning approach that first pre-processes the training exam-
ples using a cluster analysis technique, and then uses them for classification
purposes.

3. Explain how self-organizing feature maps can be used to define the code vectors
to initialize k-means. Will it make sense to consider the opposite approach
(initialize SOFM) by kmeans)?

4. The idea of using auto-encoding for noise removal is somewhat controversial.
Under what circumstances do you think it will succeed and when do you think it
will fail?

15.11.3 Computer Assignments

1. Write a program that accepts as input a training set of unlabeled examples,
chooses among them k random code vectors, and creates the clusters using k-
means.

2. Write a program that decides whether a pair of clusters (obtained by k-means)
should be merged. The easiest way of doing so is to compare the distance
between the two clusters with the average cluster-to-cluster distance in the given
set of clusters.

3. Write a program that creates the clusters using the hierarchical aggregation
technique described in Sect. 15.4. Do not forget that the distance between clusters
is evaluated differently from the mechanism used by k-means.

15.11 Solidify Your Knowledge 325

4. Write a program that accepts a set of unlabeled examples and subjects them to
the training of a self-organizing feature map (SOFM).

5. Write a program that uses a SOFM (trained in the previous assignment) for data
visualization.

6. Implement a single-hidden-layer MLP and use it as an auto-encoding network
for feature-reduction purposes. Then run a decision tree generator separately on
the original training set, and then on the same examples re-described by the new
features. Does the second decision tree outperform the first?

7. Take a training set without class labels. Remove 10% of the examples. Train an
auto-encoding network on the remaining 90% examples until an almost perfect
1-to-1 mapping is achieved. In the examples that have been removed from the
training set, hide some of the attribute values (or replace these values with zeros).
Present these examples to the trained AE-network and see if the network outputs
reasonably accurate estimates of the hidden values. Experiment with different
percentages of the hidden values and decide how many attributes must be present
for the AE-network to fill-in the rest.

Chapter 16
Deep Learning

Traditional machine learning has its limitations. For one thing, the nature of the class
we want to learn can be so complicated that simple techniques fail. For another, the
excessive detail of available attributes may obscure vital information about the data.
To cope with these complications, more advanced techniques are needed. This is
why deep learning was born.

Deep learning relies on neural networks that are now implemented in ways
that make the good old MLP seem obsolete. Different activation functions and
different ways of quantifying error are used. The number of hidden layers has grown
significantly. And advanced data-transformation operators, borrowed from the field
of computer vision, are in common use.

The chapter describes all these novelties and explains how they help us overcome
earlier obstacles. The text then proceeds to computational costs, the need to create
synthetic data, and transfer learning. Importantly, deep learning is presented as
just another approach to machine learning, an approach that is subject to the same
theoretical constraints and practical challenges that the previous chapters discussed
in such detail.

16.1 Digital Image: Many Low-Level Attributes

Perhaps the first major beneficiary of deep learning is the field of computer vision;
and while this is not its only application domain, it is instructive enough to serve as
a useful framework for the explanation of certain basic principles.

Digital Image and Pixels Digital images consist of picture elements called pixels.
A pixel is the smallest discernible unit, essentially a point that, in a black-and-
white picture, is represented by an integer from the one-byte interval, [0, 255]. The
concrete value quantifies the pixel’s shade of gray, where 0 means totally white and

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_16

327

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_16

328 16 Deep Learning

Fig. 16.1 A small segment
of a black-and-white digital
image: a matrix of integers,
each representing one degree
of gray

255 totally black or the other way round. The entire image is a very large matrix
(easily 1000 × 1000) of these integers. Figure 16.1 shows a small segment.

Leaving the realm of black-and-white images, each color is a composition of
red, blue, and green. The color image is thus described by three times as many
pixels. This causes two principal problems: attribute vectors are impractically long,
and the level of detail they provide is such as to render individual attributes almost
meaningless.

Edges and Objects The discipline of computer vision has developed countless
algorithms to make sense of the raw data. Some of these algorithms detect edges.
A closer look at the picture detects areas marked by small values (light gray), and
areas with higher values (dark gray). An edge is the boundary between the light area
and the dark area. Thus in the first line in Fig. 16.1, an edge is between 94 and 180.

Computer vision knows how to combine edges into lines, then squares, circles,
cubes, all the way up to such objects as, say, a family house. The idea is to start with
lower-level features, to process them (e.g., by removing noise), and to build from
them simple objects, then more advanced objects, finally obtaining something that
makes sense of the picture’s contents.

From Texture to Segmentation There is more to an image than just edges. A
human observer easily distinguishes metal from leather by their textures; image-
processing techniques do something similar. Quite a few techniques can be used
here. Some are straightforward, such as the statistical features that quantify average
light intensity or its variations. Others, such as the so-called Gabor wavelets, are
fairly sophisticated. From our perspective, statistical features and wavelets play the
role of example-describing attributes.

The contents of a given region in an image are marked by specific values of the
texture features. These change from one region to another, which can be important in
medical applications: one area of an MR image can represent healthy brain tissue;
another, a tumor. Each has its own texture, and computer vision discovers these
regions by a process called segmentation. The result can be the information about
the tumor’s size and shape.

16.1 Digital Image: Many Low-Level Attributes 329

Machine Learning and Vision: Traditional Approach Historically, the oldest
attempts to apply machine learning to computer vision assumed that visual objects
would first be redescribed by attributes such as edges, objects, or textures. From
classified examples thus described, machine-learning software would induce the
requisite classifiers.

The results were often unconvincing, either because the attributes failed to
characterize the images adequately, or perhaps because there were too many of
them. Many computer-vision specialists became skeptical.

Deep Learning’s Approach The situation changed when scientists realized that
too much work had been left to computer vision. After all, machine learning can do
more than just induce classifiers. It can select the best attributes, it can even create
useful higher-level features. For instance, this is accomplished by the hidden layers
of multilayer perceptrons and RBF networks.

Figure 16.2 depicts the change in the mindset that has led to deep learning. In
classical machine learning, the attributes are chosen by the engineer. By contrast,
deep learning creates useful features automatically from such low-level attributes as
pixels in digital images.

Attributes and Features A terminological comment is in place, here. Some
fields—such as computer vision, neural networks, and statistics—prefer the term
feature instead of attribute. For the sake of continuity with earlier work in
these disciplines, this section will therefore use the terms attributes and features
interchangeably.

Fig. 16.2 Deep learning not only learns to classify but also discovers useful higher-level features
with which to describe the examples

330 16 Deep Learning

16.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain how the digital image consists of pixels. How does the field of computer
vision identify edges and objects? What is texture and how is it used in
segmentation?

• Briefly characterize the oldest attempts to apply machine learning to images
characterized by edges, objects, and textures.

• What is the main “trick” employed by deep learning? Why does deep learning so
soften outperform classical machine learning?

16.2 Convolution

Let us acquaint ourselves with the operations at the core of the deep learning
paradigm. First of them, convolution, has lent the name to the most popular
approach: convolution neural networks.

Kernel, also Known as Filter On the left-hand side of Fig. 16.3 is the same excerpt
from a pixel matrix that we met in the previous section. On the right-hand side is a
3-by3 matrix that we will interchangeably call kernel or filter. The kernel represents
a specific pattern, in this case is a vertical line slightly turned to the left at the top.
Convolution is to determine whether the pattern represented by the kernel can be

Fig. 16.3 The matrix on the left is an excerpt from an image. The matrix on the right is a kernel
(also called filter)

16.2 Convolution 331

detected in the image, and if so, where exactly it is located and how strongly it is
pronounced.

Suppose the elements in the pixel matrix are denoted by mi,j and the elements in
the kernel are denoted by ki,j . The degree of fit is defined by the following formula.

Fx,y =
∑

i,j

mx+i,y+j · ki,j (16.1)

The area in the pixel matrix must have the same dimensions as the kernel.

Numeric Example Consider the upper-left corner of the pixel matrix in Fig. 16.3.
We take the kernel shown on the right and place it over the this 3-by-3 segment of
the pixel matrix. The degree of fit is calculated as follows (there are only three terms
because all other fields in the kernel are 0):

F0,0 = 94 · 1 + 200 · 1 + 240 · 1 = 534

Let us now shift the same kernel over the pixel matrix one pixel to the right. Here
is the new degree of fit:

F0,1 = 180 · 1 + 234 · 1 + 190 · 1 = 604

We observe that the degree of fit is here somewhat higher than in the previous
case. This means that, as we moved to the right, the kernel’s pattern strengthened.

Some Comments The kernel’s degree of fit tells us how strongly (or weakly) the
kernel’s pattern is pronounced in different locations in the image. Of course, the
kernel from Fig. 16.3 was very simple: it only contained zeros and ones to make the
calculations easy. In reality, any numbers can be used, not just integers, and they can
be positive as well as negative. As a result, virtually any curve or specific shape or
pattern can be represented by some kernel.

Different kernel sizes are often used, such as 2× 2 or 5× 5, though rarely larger
than that. Most common are square kernels, but rectangles are sometimes used, too.

Where do the Kernels Come from? While it is possible to create the kernels
manually, they are usually induced from data. The induction principles are rem-
iniscent of the backpropagation of error known from multilayer perceptrons, but
certain aspects make convolution neural nets somewhat different from the classical
approach.

The entire Sect. 16.4 will be devoted to the question of kernel induction. Before
we reach that stage, however, we need to get acquainted with some details that,
while not immediately obvious, have to be understood before we can start writing
the computer program.

SlidingWindow To discover the presence of the given pattern, the kernel is applied
systematically by a sliding window. The principle is illustrated by Fig. 16.4 where

332 16 Deep Learning

Fig. 16.4 Sliding the kernel along the pixel matrix on the left results in the (somewhat smaller)
matrix on the right

the pixel matrix on the left has been transformed by the given kernel into the matrix
on the right.

Here is how the transformation is accomplished. At the beginning, the window
containing the kernel is applied to the upper-left corner of the image matrix,
obtaining the value 534 which is then entered in the field in the upper-left corner
of the matrix on the right. After this, the kernel is shifted by one pixel to the right
(x = x + 1), and the degree of fit calculated, which results in 604 being entered to
the next field in the resulting matrix.

The shifting is then repeated, one pixel at a time, until the limit of the image
has been reached. After this, the window returns to the left but is shifted down by
one pixel (y = y + 1), which means that its upper-left corner now corresponds to
the square containing 32. The degree of fit is here 601, which is the number at the
coordinates [1, 0] of the resulting matrix. The process is repeated in this manner
until the window reaches the bottom-right corner of the image.

Two Tasks The task for the sliding-window mechanism is to calculate the kernel’s
degree of fit for all possible locations in the image. The higher the degree of fit, the
stronger the kernel’s pattern’s presence.

The second task is data reduction. Whereas the original pixel matrix was 6×7, the
resulting matrix is 4 × 5. This reduction can be repeated by subjecting the resulting
matrix to another kernel (in a neural network’s next layer), and then to another and
another, each time reducing the data size.

Stride The window does not have to shifted by just one pixel. Actually, the size of
the sliding step is an important parameter, called stride. The stride can be different
along the horizontal axis and along the vertical axis. For instance, suppose the
engineer has chosen sx = 2 and sy = 3. The window is then always shifted by 2
pixels when moved to the right (x = x +2), and by 3 pixels when moved downward
(y = y + 3).

Figure 16.5 illustrates the case where sx = 2 and sy = 2.

16.2 Convolution 333

Fig. 16.5 In this picture the window is sliding with strides sx = 2 and sy = 2

With greater stride, the data reduction is more significant. Besides, higher values
of sx and sy mean smaller computational costs because fewer degrees of fit then
have to be calculated. The price to be paid for these savings is a certain loss of
detail, which sometimes is affordable—and sometimes not.

Valid Padding and Same Padding When describing the principle of the kernel’s
sliding window, the previous paragraph neglected one important detail: what to do
at the end of the row and at the end of the column? Should the sliding be stopped
before the kernel reaches outside the image’s borders? This would seem natural
because how can we calculate the degree of fit,

∑
mi,j · ki,j , if the values of mi,j

outside the matrix do not exist?
Two alternative approaches exist. The first, valid padding, does indeed stop the

sliding if the next x = x + sx or y = y + sy causes the window to reach beyond the
image. In the case of larger kernels and higher values of sx or sy , this may result in
a situation where the last columns or rows of bits are ignored.

The second approach, same padding, continues the sliding even beyond the
image’s border, using for all “pixels” outside the image mi,j = 0 (see Fig. 16.6). In
this way, no columns and rows are ignored. However, the zeros can be regarded as
somewhat artificial.

Whether valid padding or same padding is to be preferred depends on the
concrete application and the engineer’s experience and personal preferences.

Not Just One Kernel In reality, there is not just one kernel. Typically, one
layer in the convolution neural network will use several of them in parallel, each
representing a different pattern.

334 16 Deep Learning

Fig. 16.6 Suppose the kernel’s size is 5 × 5 and the horizontal stride is sx = 3. At the end of the
horizontal sliding, the kernel can reach beyond the end of the image. The “missing values” can be
filled by padding

16.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the kernel (filter) and how do we calculate its degree of fit with a given
portion of the image?

• Explain the principle of the sliding window, and define the following terms:
stride, valid padding, and same padding.

• How do different values of strides affect data reduction and computational costs?
What is the impact of kernel size?

16.3 Pooling, ReLU, and Soft-Max

Now that we understand the principles of convolution, we are ready to take a look
at other aspects of convolution neural networks, CNNs.

Max-Pooling Pooling is used to further reduce the unnecessarily detailed data. The
principle is shown in Fig. 16.7 where each 2-by-2 square is replaced by the highest
number it contains. For instance, the square in the upper-left corner contains 534,
604, 601, and 508. The highest among them is 604, and this is therefore the number
entered at the location [0, 0] of the matrix on the right.

It is important to understand why max-pooling is used. The convolution step
calculated the strength with which the kernel’s pattern is represented at each
location. However, we usually do not need to express the location with the precision

16.3 Pooling, ReLU, and Soft-Max 335

Fig. 16.7 Max-pooling replaces each 2×2 square with the greatest of the four numbers it contains.
Ave-pooling would replace them with their averages

of a single pixel. The maximum number in the 2-by-2 square gives the maximum
expression of the pattern of in this square. The 2-by-2 resolution is more than
sufficient for many practical purposes.

The ability of max-pooling to reduce the size of the data is obvious. Of course,
instead of a square, a rectangle (of any size) can be used. The concrete extent of
pooling is determined by the engineer. Here are the trade-offs. The smaller the data,
the fewer the system’s parameters, and the lower the computational cost. On the
other hand, excessive reduction may destroy important details.

Ave-Pooling Instead of the max-pooling from the previous paragraph, ave-pooling
is sometimes used. The only difference is that instead of using the maximum in the
given square, we calculate the average. Thus for the upper-left square in Fig. 16.7,
this average is (after rounding to integers) (534+ 604+ 601+ 508)/4 = 562. Note
that this value does not depend just on the single maximum but is affected by all
numbers in the square.

Activation Function Chapter 6 explained that in multilayer perceptrons, the neu-
rons should have non-linear activation functions. For a long time, it was generally
accepted that the sigmoid and similar functions are the only reasonable choice,
made attractive by the elegant first derivative (which led to simple backpropagation
formulas).

Later, however, experience revealed that a much simpler non-linearity can be
used without any detriment to classification and learning. Particularly popular are
currently the two alternatives shown in Fig. 16.8. We have already met them toward
the end of Chap. 6. Their advantages are obvious. First, the output values are no
longer limited to a fixed interval such as (0, 1). Second, the first derivatives are even
more easily obtained. For the constant segment in ReLU, the first derivative is 0;

336 16 Deep Learning

Fig. 16.8 Two activation functions commonly used in CNN: Rectified linear unit (ReLU), shown
on the left, and the leaky ReLU (LReLU) shown on the right

and for the linearly growing segment it is 1. The derivatives of LReLU are just as
simple. This will come handy in the backpropagation of error for training.

Probabilities Obtained by Soft-Max For the activation function,1 the neurons in
the classical MLPs typically relied on sigmoid and tanh functions. The former
limited the output to the interval (0, 1); the latter, to (−1, 1). Convolution neural
networks prefer to subject the output to the soft-max function (Chap. 6) which we
know converts the output values to probabilities by making the numbers in the vector
sum to 1. The reader will recall the formula where yi denotes the original output and
pi the corresponding probability:

pi = eyi

�j e
yj

(16.2)

Normalization In the digitized image, all pixel values come from the interval
[0, 255]. For the needs of machine learning, however, it is usually recommended
that they be normalized either to [0, 1] or to [−1, 1]. In that case, application of
the kernel will not so easily lead to ever-growing numbers. For normalization into
[0, 1], it is enough to divide all values by 255. For normalization into [−1, 1], we
do the same and then multiply by 2 and subtract 1.

There is another motivation for normalization. One of the consequences of
abandoning sigmoid in favor of the simpler ReLU is that the output, yi (which
in sigmoid was constrained to [0, 1]) can now be a very big number, so big that
calculation of eyi may cause overflow.

Numeric Example Suppose that our neural network has three outputs whose
values for a given example are 0.3, 0.8, and 0.2, respectively. The corresponding
soft-max values are given in the following table.

1Recall that this is sometimes called transfer function.

16.3 Pooling, ReLU, and Soft-Max 337

Neural output, yi 0.3 0.8 0.2

Soft-max output, pi 0.28 0.46 0.26

Note that the values resulting from soft-max sum to 1 so that their interpretation
as probabilities does not violate the postulates of the theory of probability.

Network’s Architecture Figure 16.9 gives us an idea of a typical architecture of
a convolutional neural network. The basic building block is the convolution layer
(typically consisting of a set of different kernels) followed by pooling. The task for
convolution is to discover specific patterns; pooling reduces the data size. Recall
that the size of the data is also reduced by convolution if the strides are greater than
1.

At the top of the network the engineer often adds a multilayer perceptron, usually
with the ReLU or LReLU activation functions instead of the traditional sigmoid.
MLP’s output is then subjected to soft-max, and the output of soft-max is used to
calculate the network’s loss for the given example as explained in Sect. 6.6.

A little revision will do no harm. Suppose the correct class for the given example
is Ci and let the i-th output (after soft-max) be pi . CNN’s loss is then calculated as
follows:

L = − log2 pi (16.3)

CNNs are Deep The reader will recall that various reasons prevented classical
MLPs from using more than two or three hidden layers. To begin with, vanishing
gradients render additional layers ineffective; besides, too many layers mean too

Fig. 16.9 A simple CNN architecture: layers of kernels are followed by pooling; after several
repetitions, the resulting values are fed into a MLP-network, whose outputs are then subjected to
the soft-max function

338 16 Deep Learning

many trainable parameters, and these can render training by backpropagation
prohibitively expensive computationally.

When the neural activation functions are ReLU or LReLU, the problem of
vanishing gradients all but disappears (because neural outputs are not bounded
by the sigmoid’s (0, 1)-interval). As for the computational costs, these are
often deemed acceptable in view of the power of today’s computers, especially if
they are equipped with graphical processing units, GPUs, that facilitate massive
parallelization of the training algorithm.2

The designer of a CNN is thus much less constrained than in the past, and the
number of layers can be quite high. The pair convolution/pooling is usually repeated
several times, sometimes many times, so that the network can easily consist of
dozens of layers. In this sense, the networks are deep, a circumstance from which
this paradigm derives its name: deep neural networks or deep learning.

Boundless Freedom What makes CNNs particularly attractive is their unparalleled
flexibility. A cursory glance at Fig. 16.9 will help you develop an idea. To begin
with, the kernels’ dimensions do not have to be 3 × 3 as in the picture; the kernels
can be small or large, square or rectangular (or even of other shapes, though those
are rare). Various values for horizontal and vertical strides can be employed. Then
there is the choice between valid padding and same padding. And instead of the
2 × 2 squares for max-pooling, larger ones can be used. Alternatively, max-pooling
can be replaced with ave-pooling.

The engineer also has to decide how many convolution/pooling pairs are to be
used. If the task is easy, one pair may be sufficient. If the pattern recognition problem
is extremely hard, a great many layers may be necessary. Each layer can have a
different type of kernels and a different number of kernels. Sometimes, the pooling
step is skipped, and two or more convolution layers immediately follow each other.

The last source of flexibility is provided by the multilayer perceptron placed
at the network’s top. It can have one or two or three hidden layers, each with its
own size, the engineer can consider diverse activation functions, and so on. And of
course, the engineer may decide not to use MLP at all.

Deep Learning: More Art Than Science So many parameters, so many degrees
of freedom, so many opportunities for changes, modifications, adjustments. CNN
does not know ready-made recipes, at least not many of them. More than any other
machine-learning paradigm, CNN is more art than science. Most of the time, the
engineer depends on his or her own experience, creativity, and imagination. Rather
than on handbooks and manuals, success depends on systematic experimentation,
statistical evaluation of alternatives, and common-sense considerations.

2Today’s PCs with GPU’s are easily by five orders of magnitude faster than the workstations
available to the pioneers of neural networks in the late 1980s. Calculations that now take one
second then took a whole day . . . and the computer froze at least once a week, sometimes several
times a day.

16.4 Induction of CNNs 339

16.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the principle of mmax-padding and ave-padding, and discuss their role
in a convolution neural network.

• Explain the principle of the soft-max output. Why do we use it?
• What are the two most popular transfer (activation) functions used in CNN’s

neurons? Why could the more sophisticated sigmoid be abandoned?
• What are the most important aspects of a concrete CNN’s architecture? What

constitutes its remarkable flexibility?

16.4 Induction of CNNs

Let us now turn to the main question: how can a convolution neural network be
induced from data? The principle is the same as in the multilayer perceptrons from
Chap. 6: backpropagation of error. This said, there are few differences that we need
to discuss.

Linear Classifiers Return to Fig. 16.4 and recall how the values in the matrix on
the right were calculated: they were obtained by element-by-element multiplication
of the image matrix by the kernel matrix. More specifically, the following formula
was used:

Fx,y =
∑

i,j

mx+i,y+j · ki,j (16.4)

Note that each field in the resulting matrix is a linear function of the correspond-
ing window in the pixel matrix. The weights are the kernel’s elements! Practically
this means that each kernel can be treated as a neuron of sorts. For its transfer
function, either ReLU or LReLU is typically used. The reader will recall that
perceptron learning, as well as the neurons in a MLP, benefited from a bias, an
additional, “zeroth” weight that serves as a coefficient of an artificial input whose
value is always 1.

Trainable Parameters The weights to be trained in CNN are therefore the values
of the kernels to which possibly the zeroth weights (serving as biases) are added.
Each location of the sliding window then represents a training example. By contrast,
pooling does not involve training.

In those CNN architectures that are topped by an MLP (Fig. 16.9), we also have
to train its hidden-layer weights with the backpropagation of error we already know
from Chap. 6. The only difference is in the transfer function: sigmod or tanh are
rarely employed, here.

340 16 Deep Learning

Loss Function Let us revise how to calculate the error to be backpropagated.
Suppose the network’s outputs have been subjected to soft-max, resulting in
probabilities, and suppose that a training example x belonging to the i-th class
has been presented. Once the example has been forward-propagated through the
network, the observed probability returned by the network for this i-th class is pi .
The error for this example is then quantified by the loss calculated as follows:

L = − log2 pi (16.5)

The higher the value of pi (the probability assigned by the network to x’s known
class), the more correct the network is. Conversely, small values of pi indicate that
something is wrong, and weights-modification is called for. This is indeed what
Formula 16.5 reflects. For instance, if pi = 0.9, then L = 0.15, and if p1 = 0.3,
then L = 1.74 . We can see that the smaller the probability, the greater the loss to
be backpropagated. This is similar to what we got used to in multilayer perceptrons
where greater error meant stronger weight adjustment. The only difference is that,
in CNN, the role of the mean squared error, MSE, has been taken over by the loss
function, L.

Loss Function Is Related to Information Theory The reader will recall this
formula’s relation to the information contents of the message, “x belongs to the
i-th class” (see Chap. 5). Information theory calculates the information contents
by base-2 logarithm, but one can just as well use natural logarithm, ln(), because
log2 x = ln x

ln 2 : this means that the two logarithms differ only by the factor ln 2,
which is a constant.

Backpropagation Just as in the case of MLPs, the output of a convolution neural
network is simply a function of its inputs. This function depends on a great many
parameters, and the task for backpropagation learning is to modify the values of
these parameters in a way that minimizes the network’s error—which in the case of
CNN is measured by loss, L = lnpi , where pi is the probability assigned by the
network to the known class of the training example:

pi = eyi

�j e
yj

Here, yi is the network’s i-th output, which is a function of the inputs and of
the weights (kernels and biases). If we want to find the most beneficial change in
a certain weight, w, calculus recommends to find the gradient which, following the
chain rule of differentiation, leads to the following:

pi = ∂L

∂w
= ∂L

∂pi

∂pi

∂w
= ∂L

∂pi

∂pi

∂yi

∂yi

∂w
. . . (16.6)

16.4 Induction of CNNs 341

The procedure is repeated for every single trainable parameter. Even if laborious,
the calculation is straightforward. First derivative of ln x is known to be 1/x.
Somewhat more challenging is the first derivative of the exponential function for
pi , but the others are easy. We just have to keep in mind that ReLU has to be
differentiated piece-wise, separately for the positive part (where the first derivative is
a constant) and the negative part (where the first derivative is zero). The piece-wise
first derivative of LReLU is also simple.

Initialization Before the parameters (weights) can be trained, they have to be
initialized. In principle, they should start with small values—but how small is small?
In multilayer perceptrons, the idea was to make sure that the sum,

∑
i wixi , is

somewhere in the linear region of the sigmoid function. In CNN, different transfer
functions are used, but the same mechanism for weight initialization is widely used:
Xavier initialization.

Suppose that a given neuron has Nin inputs and Nout outputs. Weights are
initialized by a random-number generator that chooses the values from a Gaussian
(normal) distribution whose mean is zero, and standard deviation set by to the
following formula:

σ =
√

2

Nin + Nout

(16.7)

No Need to do All the Programming Fortunately, the programmer does not
have to worry about the numerous details of backpropagation because today’s
programming languages can do the differentiation automatically. This is the case
of Matlab, Python, or various higher-level packages such as Google’s Tensorflow or
PyTorch. The programmer only has to specify the kernels, activation functions, and
the other parameters that characterize the given CNN.

Engineer’s Decisions Instead of risking a bug in the programming of backpropa-
gation, the engineer can focus on the many practical decisions to be made, each of
them having the potential to improve (or worsen) the CNN’s chances of success:
padding, strides, number of layers, dimensions of kernels, the size of the MLP on
CNN’s top, the choice of transfer functions (ReLU and LReLU), and some specific
details required by the concrete software.

Besides, there are many decisions related to the organization of the training and
testing experiments, such as whether the examples should be presented one at a
time or in batches, whether random sub-sampling of N -cross-validation is to be
used, how to go about statistical evaluations of the results, and so on.

342 16 Deep Learning

16.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the loss function and how is its value calculated? How does it relate to
the soft-max output?

• What is Xavier weight initialization? What is its purpose?
• Explain the principle of the backpropagation training in CNN. In which aspects

is it different from the training of MLPs?
• Which CNN parameters are trained by the backpropagation mechanism?

16.5 Advanced Issues

Now that we understand the fundamentals, we are ready to proceed to certain
advanced concepts characteristic of modern practice of CNNs.

Examples of More Than Two Dimensions For simplicity, we have up till now
considered only black-and-white images where each pixel is represented by a single
integer. In color images, however, each pixel is described by a vector of three
channels—integers that quantify the light intensity of red, blue, and green (RBG).
Each image is thus described by three dimensions. The engineer has to decide
whether to use the same kernel for each channel.

Moreover, it is a common practice to present the training examples not one at a
time, but in batches that consist of Nbatch examples. In this event, the input to the
CNN-training program has four dimensions (in the case of color images).

Beyond Images In video applications, each example is a series of images, and this
adds yet another dimension. A single training example then has four dimensions,
three of them specifying light intensities in the individual channels for a single
frame, and the last for the sequence of frames. If these examples are presented in
batches, the input data have five dimensions, something rather rare in programming
outside the realm of machine learning.

By contrast, audio can be represented by a sequence of numbers, and an example
can then be represented by a vector. The kernels are then one-dimensional, too.

Tensors Previous paragraphs convinced us that we need CNNs to be capable of
working with diverse numbers of dimensions. For domains of this kind, mathemati-
cians have developed a generalized data structure known as tensor. A tensor can
have any number of dimensions, and the dimensionality is defined by shape. For
instance, a vector of length 4 is a tensor of shape [4], a 3-by-4 matrix is a tensor of
shape [3, 4], a 3-by-5-by-4 matrix is a tensor of shape [3, 5, 4]. A scalar is a tensor
whose shape is null.

16.5 Advanced Issues 343

Fig. 16.10 Looking for a
concrete object, say a nose,
a sliding window is passed
along the image. The sliding
window represents a CNN
capable of recognizing the
presence of the given object

The reason we are mentioning tensors, in this context, is that advanced pro-
gramming tools, such as TensorFlow, have built-in functions capable of operating
over tensors instead of over classical arrays. All CNN-related programming is
thus greatly simplified. For instance, if the engineer decides to work with three
dimensions instead of two, essentially the same code can still be used with only
minor modifications.

Recognition of Simple Objects One typical task can be illustrated by the ques-
tions, “is there a soccer ball, in this image?” and “how many birds are there?” In
other words, the software is to look for relatively simple objects. In this case, it is
not necessary to train the network on entire images; it is enough if the input field is
something like, say, 100-by-100 pixels, which significantly reduces the number of
trainable parameters.

Once the CNN has been trained, it is applied to future images by way of a “sliding
window.” Figure 16.4 illustrates the principle. A network that has been trained to
recognize, say, a nose is applied first to the upper-left corner of the image and is
then moved, step by step, a few pixels to the right or (after the completion of the
horizontal) a few pixels down. At each step, the CNN returns a 1 if the 100-by-100
window contains a nose, and 0 otherwise.

Usually some post-processing is then needed. Once the classifier has identified
the object, it is more than likely that the same object will still be in the window after
the shift of a few pixels. Some master algorithms have to decide whether this is still
the same nose or another nose in its close neighborhood (Fig. 16.10).

Many Trainable Parameters: Large Training Set Is Needed Machine learning
knows that the more trainable parameter there are, the more training examples are
needed. This, after all, follows from the computational learning theory introduced in
Chap. 7. In the case of CNN, this means that the number of examples should exceed
the number of weights. This can become a serious problem in many applications.
For very difficult recognition patterns, many neural layers are necessary, and the
network can easily end up with millions of weights.

In computer vision, a training set consisting of millions of examples can
sometimes be obtained. For a start, Google search can often find a large initial
pool. Additional training examples can then be created from those in the initial pool
by adding noise, cropping, rotating, zooming in and zooming out, and other such
techniques.

344 16 Deep Learning

In other fields, however, training examples may be expensive, or simply not
available at all. Thus in a medical domain, a training example may consist of the data
describing a concrete surgery. The number of surgeries being limited, the training
set can never be very large.

Computational Costs Even if we do have a sufficiently large training set, the
computational costs of CNN training may render the whole process impractical.

Suppose our CNN has 105 trainable weights. To prevent overfitting, at least
106 examples are needed. This means that, in a single epoch, 105 × 106 = 1011

weights have to be modified. If the task is really hard, a fairly modest expectation
will suggest that the training will not converge before, say, 104 epochs. This
means the total of 1011 × 104 = 1015 weight updates. Even if the computer is
capable of accomplishing 109 updates in a second, the learning process will take
10(15−9) = 106 s, which can be something like 2 weeks.

If we increase the number of weights ten times, and the number of epochs also
ten times, the training will take years.

Transfer Learning A popular way of dealing with unrealistic computing costs is
known as transfer learning. The idea is to take advantage of an existing CNN that
has been trained on a similar domain, and to modify it to our specific needs.

Suppose that someone has induced a CNN—let us denote it by C0—that has
proved successful on a specific computer-vision task. Facing the need to induce
another CNN for a similar task, the programmer does not have to start from scratch,
from randomly initialized weights. Rather, she may prefer to start with C0 to whose
top she just adds a single-hidden-layer MLP. The new training set is then employed
only for the training of the weights of this added MLP, while the weights in the
original C0 are left unchanged (we say, they are “frozen”).

The reader understands why this works. The training of the original network
C0 has created meaningful higher-level features that may come handy even in the
new task; in other words, they can be transferred to this new task. Since only the
highest-level weights are trained, the number of trainable parameters is reasonable.
Consequently, smaller training set will suffice, and also the computational costs will
be manageable.

16.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the usual number of dimensions of the training data? What are tensors?
Why are they so popular, in deep learning?

• What are the consequences of the very high number of trainable parameters in
deep learning?

• Explain the principle of transfer learning. Under what circumstance do we use it
and under what circumstances is it likely to succeed?

16.6 CNN Is Just Another ML Paradigm 345

16.6 CNN Is Just Another ML Paradigm

Amazed at CNN’s power, some experts tend to neglect lessons and experiences of
classical machine learning. This is not reasonable. Deep learning is just another
machine-learning paradigm. True, it has been spectacularly successful. But at the
end of the day, it has to be evaluated by the same performance criteria, using the
same statistical techniques, and following the same learning-curve considerations.

Importantly, CNN is prone to suffer from pretty much the same pitfalls as its
predecessors. Let us remind ourselves of some of the most critical.

Imbalanced Classes Similarly as the classical approaches, deep learning is sen-
sitive to the problem of imbalanced classes: the induced classifier tends to favor
those classes that dominate the training set. Fortunately, we already know the
mechanisms reducing the negative effects of this tendency. To be more specific,
Chap. 11 discussed minority-class oversampling, majority-class undersampling, and
classifier modification. All of these techniques are just as relevant in convolutional
neural networks.

Performance Criteria Let us not forget that error rate may be a poor indicator
of performance. Quite often, the cost of a false negative is different from the cost
of a false positive; they may not even be meaningfully comparable. The engineer
should consult with the end-users the question of which performance aspect they
believe to be important. It can be precision, recall, sensitivity, specificity, or various
combinations thereof (Chap. 12). Specific circumstances may even force the users
to switch from one criterion for another, just as it happened in the oil-spill domain
from Sect. 8.3.

Context and Time-Varying Classes In many applications, the classes we want to
learn change their nature with a changed context, just as English phonemes sound
a bit different in the UK than in North America. Practical experience has taught us
that it is a good strategy to induce a separate classifier for each context, and then use
the one that appears to perform better on the given data.

Also, do not forget that the context may change (or evolve) with time. For
instance, the nature of certain objects in visual images may be affected by season.
Context dependency, as well as the time-varying aspects of some classes, was
discussed in Chap. 11.

Multi-Label and Hierarchical Classification In computer vision, it is common
that the same example is labeled with two or more classes at the time. For instance,
a holiday snapshot can be classified as a beach, blue sky, summer, crowd, flock of
birds, and many other things. Sometimes, only some of these classes are important;
in other applications, we want to identify as many of them as possible. Besides,
the classes may form a sophisticated hierarchy. The engineer has to decide whether
plain binary relevance is sufficient, or whether something more advanced is needed
(Chap. 14).

346 16 Deep Learning

Insufficiently Large Training Sets Computational learning theory (Chap. 7)
teaches us that the more trainable parameters the classifier has, the larger training set
is needed. In many domains, however, the examples are expensive, and sometimes
they are not available at all. For instance, when planning to apply machine learning
to heart transplantation data, the engineer surely cannot expect to have more than
hundreds of examples. In this event, deep learning, fashionable though it is, may be
a poor choice.

Computational Costs Last paragraph reminded us that high numbers of trainable
parameters necessitate very large training sets. This is not without computational
consequences. It is not rare that a million weights have to be updated after the
presentation of a single training example. If there are a million of these examples,
and if a great many epochs are needed, then the training may not be computationally
feasible.

Computational costs indeed represent a major obstacle to more widespread use
of deep learning. The engineer has to decide whether the just-a-little-bit-higher
classification performance merits the weeks of calculations on a supercomputer.

Opportunities Offered by Boosting One way to reduce the computational costs
is offered by the boosting algorithms from Chap. 9. The idea is to induce a large
number of simple classifiers from relatively small subsets of training examples.

16.6.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How would you deal with the problem of imbalanced classes when implementing
deep learning software? How would you handle the problem of multi-label
learning?

• Discuss the various consequences of the large numbers of trainable parameters in
convolutional neural networks: computational costs, the need for large training
sets, the chances of boosting algorithms.

16.7 Word of Caution

In modern world, popularity is a double-edged sword. Once a few spectacular
success stories have been reported, the concerned technology acquires the reputation
of a cure-all that overshadows everything that existed previously. This is unsound.
This section offers a few arguments against such rash attitudes.

Seek the Most Appropriate Tool Any tool’s power has to be commensurate
with the difficulty of the task at hand; the engineer should always seek the most

16.7 Word of Caution 347

Fig. 16.11 Which tool will remove the weed more efficiently?

appropriate tool. Before reaching for a fashionable new paradigm, we must be sure
it indeed offers the best way to handle the job. Popularity is not a technological
category; even demonstrated power is not enough.

Figure 16.11 conveys the message by an easy-to-remember metaphor. No matter
how powerful the bulldozer is reported to be, the spade will still be the gardener’s
tool of choice: it does not leave so much mess and is generally handier for the job,
even faster (you do not have to wait for the big machine to arrive).

Experience with Hand-Written Characters If you google the term “MNIST”
you will reach a website with data files that are now very popular as test-bed in
CNN experiments: hand-written digits.3 The same website provides a table that
summarizes the performances scored on these data by diverse machine-learning
approaches. Looking at the table, you will realize that the error rate achieved by
a linear classifier was 12% whereas the error rates of simple versions of CNN were
around 1%, while a really sophisticated implementations of CNN with all sorts of
high-level gimmicks did even better, the record being 0.23% (as of Spring 2021).
However, the same table also informs us that some k-NN classifiers were not much
worse than 1%.

Does this mean that k-NN is about as powerful as CNN? Far from it! What
the experience really teaches us is that the domain of hand-written digits is not
difficult enough to require the bulldozer from the previous paragraph. Sometimes,
reducing the error rate below 1% is critically important. Very often, however, a tiny
improvement does not make much of a difference, and the error rate can perhaps be
achieved by some simple post-processing.

3http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/

348 16 Deep Learning

Of course, we can imagine something much more difficult than character
recognition, a task where classical machine learning will fail miserably. This is
when deep learning will show its power—provided that we have a sufficiently large
training set that adequately represents the given problem.

Programmer Loses Contact with Details The first generation of neural-networks
engineers had to implement every possible detail of the learning algorithm in
a general-purpose programming language. Those days are over. Nowadays, such
languages and open-source packages as Python, Tensorflow, PyTorch, or even
Matlab come with rich libraries of built-in functions that make it possible to
implement a CNN in a matter of hours.

The consequence is not only higher productivity but also significantly reduced
danger of stupid errors. The downside is that the programmer loses contact with the
many details of the code. His or her understanding of the behavior of the concrete
neural network may thus be negatively impacted.

16.7.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Do we always have to choose the most powerful paradigm? What is the lesson
from the handwritten-digits domain?

• In what sense can the availability of powerful programming tools be counterpro-
ductive?

16.8 Summary and Historical Remarks

• In such domains as computer vision, the extremely high numbers of low-level
attributes render classical machine-learning almost useless. However, sensible
information can be induced from higher-level features. One way to create these
high-level features is by convolution.

• Convolution systematically slides pattern-carrying kernels over the matrix of
image pixels. Kernels, also known as filters, usually take the form of small
squares or rectangles. For each location of the kernel over the pixel matrix, the
degree of fit is calculated.

• Suppose the elements in the pixel matrix are denoted by mij and the elements in
the kernel are denoted by kij . For the location defined by (x, y), the degree of fit
is calculated as follows:

Fx,y =
∑

i,j

mx+i,y+j · ki,j

16.8 Summary and Historical Remarks 349

• Two parameters, known as strides (horizontal and vertical), determine the size of
the steps by the kernel slides along the matrix of image pixels. The greater the
values of strides, the greater the data reduction.

• Another parameter, padding, determines what happens when the sliding kernel
reaches the end of the image. Two commonly used alternatives are valid padding
and same padding,

• Another method of data reduction is pooling. Most common is max-pooling, but
the engineer can also consider ave-pooling.

• Trainable parameters include the values in the kernels and the weights of the
MLP that is sometimes attached at the top of the CNN. Pooling operators do not
need training.

• Instead of the sigmoid or tanh that were used as activation functions in
classical neural networks, CNN prefers the simpler ReLU and LReLU functions.

• The topmost layer of a CNN applies the soft-max function whose task is to turn
the network’s outputs to probabilities.

• Instead of the mean squared error, MSE, that is backpropagated in multilayer
perceptrons, CNNs backpropagate the value of the loss function borrowed from
information theory: L = − log2 pi where pi is the probability assigned by the
neural network to the correct class label of the training example, x.

• One typical trait of CNNs is that they can work with data of different dimension-
ality. Whereas the training examples in classical machine learning are usually
described by attribute vectors (1-dimensional data), here they are often 3-
dimensional (color images) or 4-dimensional (videos). One extra dimension is
added if the examples are presented in batches, rather than one by one.

• The flexibility necessary for working with data of diverse dimensionality is
provided by tensors—generalized matrices. Their use in modern programming
languages greatly simplifies the programmer’s job.

• The large number of trainable parameters in CNNs has two consequences. First,
the training set has to be very large because the number of training examples has
to be greater than the number of trainable parameters. Second, the computational
costs of the training can be extreme.

• Computational costs are significantly reduced if the CNN focuses only on a small
part of the image, say a 100-by-100 pixel matrix. The induced neural network is
then applied to future images by the mechanism of “sliding window.”

• Another way to reduce computational costs is by transfer learning: a network that
has been trained on a different, though similar, application is used as a starting
point from which the new training begins. Usually, only the top layers are thus re-
trained. Transfer learning usually allows much faster convergence than training
the entire CNN, starting with random weights.

• CNN is just another machine-learning paradigm. The engineer has to be prepared
to deal with multi-label examples, with context-dependent and time-dependent
classes, with the difficulties posed by imbalanced training sets, and so on. Special
attention has to be paid to the question of appropriate performance criteria.

• Deep learning offers much more flexibility than traditional machine learning
paradigms. The reader already knows, however, that this higher flexibility can

350 16 Deep Learning

easily be counterproductive. The danger of overfitting has to be mitigated by
extremely large training sets. Not only is the training computationally intensive,
but the large training set may not even exist.

Historical Remarks In the field of computer vision, kernels and convolution were
used as early as in the 1990s, having been introduced by LeCun et al. (1989). The
idea of exploiting kernels and convolution in machine learning was first proposed by
Krizhevsky et al. (2012) who implemented it in the now-legendary Alexnet, perhaps
the first known CNN program. In the following years, they kept improving this
program until it reached a level that could be shown to outperform human subjects,
a real landmark. Xavier initialization was introduced by Glorot and Bengio (2010).

This author learned a lot from the textbook by Charniak (2018) which also
contains a lot of information about how to implement in TensorFlow other machine-
learning paradigms, including reinforcement learning.

16.9 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

16.9.1 Exercises

1. Suppose the input image is described by a matrix of 28-by-28 pixels. Suppose
these 784 features are fed to a single layer of eight 5-by-5 kernels applied with
strides Sx = 2 and sy = 2 if valid padding. What is number of outputs of this
layer?

2. Figure 16.7 illustrated the application ofmax-pooling. Using the same data, show
what happens if ave-pooling is applied.

3. Suppose that, for a given example, x, the CNN’s given the following three
outputs: (2, 5, 3). These are then converted by soft-max to probabilities. Suppose
that you know that x belongs to class C2, the one for which the network’s original
output was 3. What is the value of the loss to be backpropagated?

16.9.2 Give It Some Thought

1. Consider the conflicting aspects of convolutional neural networks with many
layers: high flexibility versus the danger of overfitting. Suppose you are presented

16.9 Solidify Your Knowledge 351

with a training set with a certain size. How will this size affect your decision
about the CNN’s architecture?

2. In what respect are the convolutional and pooling layers better at creating higher-
level features than classical neural networks?

3. Whereas classical approaches to machine learning assume that an example has
the form of an attribute vector, deep learning typically describes by a matrix. The
chapter has even mentioned in passing that examples can be presented as three-
dimensional, or even four-dimensional arrays. How does this multi-dimensional
view affect the programmer?

16.9.3 Computer Assignments

1. Without resorting to modern software packages, write a program that implements
convolution—the way as set of kernels is moved along the original pixel matrix,
which expressed the original data using higher-level features. The motivation
is to force yourself into thinking through all necessary details of convolution’s
working.

2. Without resorting to modern software packages, write a program that implements
pooling (both max-pooling and ave-pooling). Add this program to the one
from the previous question, and do in a way that is flexible enough to enable
experimentation with the most diverse architectures.

3. Modern programming language make implementation of deep learning much
easier than older tools. Among the currently most popular, Python definitely
has to be mentioned, alongside with its superstructures such as PyTorch or
TensorFlow. Go to your browser and find more information.

4. If you implement a working version of CNN, apply it to the MNIST data
available from the web.4

4http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/

Chapter 17
Reinforcement Learning: N -Armed
Bandits and Episodes

The field of reinforcement learning studies techniques that allow a computer
program to respond to signals about an environment’s states and to react adequately.
This is very practical. In this way, the computer can learn how to navigate a
complicated maze, how to balance a broom-stick, and even how to drive a car or
how to play complicated games such as chess or Go. The principle is to “learn from
experience.” Facing diverse situations, the agent experiments, acts, and receives for
its actions rewards or punishments. Based on these, it optimizes its behavior so as
to maximize the anticipated rewards.

Scientists have developed a broad family of useful algorithms, from simple
manipulation of lookup tables all the way up to Deep-Q-learning and other
advanced approaches. So rich is the material that two full chapters are needed to
cover it. The current one introduces the problem and acquaints the reader with the
entry-level episodic formulation, explaining how to apply it to simple tasks. More
advanced techniques are relegated to the next chapter.

17.1 Addressing the N -Armed Bandit Problem

Let us begin with a highly simplified version of the task. We will get used to the
terminology and to the principles forming this paradigm’s foundations.

N-Armed Bandit Figure 17.1 shows five slot machines. Whenever a coin is
inserted into any of them, and the lever is pulled down, a certain sum, different
at each trial (and very often just zero), is returned. Suppose that each machine is
known to be different; some give higher returns, others smaller, but nobody knows
what their individual averages are. It is up to the gambler to find out.

The slot machine’s tendency to rob you of your hard-earned money is the reason
behind its unflattering nick-name, one-armed bandit. In the case just described,
there are N of them, and this is why we will refer to them as the N-armed

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_17

353

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_17

354 17 Reinforcement Learning: N -Armed Bandits and Episodes

Fig. 17.1 N -armed bandit: which machine offers the highest average return?

bandit. Introductory texts on reinforcement learning are fond of this domain whose
conceptual simplicity makes the basic issues easy to explain.

Terminology Instead of “gambler,” we will use the neutral term, agent; and the
choice of a concrete slot machine is an action. In Fig. 17.1, the number of actions
equals the number of machines. If we label the machines with integers, 1, 2, 3, 4,
and 5, then the symbol ai will indicate the i-th action, the one that places the bet on
the i-th machine.

The same action may receive a different reward each time it is selected. The
best action is the one that promises the highest average return in the long run.
Generally speaking, some returns can be negative, in which case they are sometimes
called “punishments”; the sign, however, does not affect the essence of the machine-
learning techniques.

Greedy Strategy A statistician’s first instinct is simple: let the agent try each action
a great many times, keep a tally of the individual returns, and then calculate the
averages. Once these are known, the agent should forever stay with the machine
with the highest average return.

On the face of it, this appears to make sense. However, we must not forget that
each action takes time and costs a quarter. In a domain with one thousand slot
machines instead of just five, systematic experimentation is bound to be so costly
and time-consuming as to be not only impractical, but downright silly.

Flexible ε-Greedy Strategy A more pragmatic approach will start with limited
experience, perhaps based on just a few tests for each action. The agent will stick
with the action that these tests have shown to be best—but not always! Admitting
that the choice rests on imperfect knowledge, the agent will occasionally experiment
with the other actions, too. This experimentation may show some other machine to
be best.

Put more technically, the agent will combine exploitation of the apparently best
action with exploration of the alternatives. Exploitation dominates, exploration is
rare, its frequency being controlled by a user-specified parameter, ε. For instance,
ε = 0.1 means that the best action is chosen 90% of the time, and in the remaining
10% cases, a randomly selected non-best action is preferred.

Note the difference. Whereas the greedy strategy always chooses the best action,
the ε-greedy strategy interleaves exploitation with exploration.

17.1 Addressing the N -Armed Bandit Problem 355

Table 17.1 Choosing the action by the ε-greedy strategy

Input: User-specified parameter, ε (usually a small number such as 0.05)

1. Generate a random number, p ∈ (0, 1), from the uniform distribution.
2. If p ≥ ε, take the best action (exploitation).
3. If p < ε, take an action chosen randomly from the remaining, non-best actions (exploration).

Implementing the ε-Greedy Strategy The principle is summarized in Table 17.1.
The user provides the value of ε ∈ (0, 1). Each time an action is to be chosen, a
random number, x ∈ [0, 1], is generated from the uniform distribution. If x > ε,
the best action is taken (exploitation). If x ≤ ε, some other action is preferred
(exploration). In exploration, any “non-best” action has the same chance of being
selected.

Role of ε The concrete behavior of the ε-greedy strategy depends on the choice of
ε. A relatively high value, say, ε = 0.1, implies frequent exploration (10%, in this
specific case). In the case of a mistaken assumption about which action is best, this
frequent exploration will soon bring about an improvement. This is good. On the
other hand, if the current opinion is correct, then the consequence of ε = 0.1 is that
the agent is forced to pick a sub-optimal machine in 10% of all trials—and this is
not what we want.

In practical implementations, it often makes sense to start with relatively frequent
exploration, so long as the “currently best” action is rather arbitrary. Later, when the
experimentation has provided convincing evidence, ε can be reduced.

Non-stationary Domains In some applications, the system’s properties can vary
in time.1 For a certain period, action ai is best, but then the situation changes in the
sense that some aj (i �= j) starts giving higher returns than ai . In non-stationary
domains of this kind, higher values of ε have to be considered to allow the agent
quickly to adapt to the changed circumstances.

In some domain, it is quite obvious whether or not the system is stationary. In
others, it is up to the machine-learning program to figure it out automatically.

Keeping a Tally of the Rewards In the course of the experiments, the agent keeps
a tally of the received returns for each of the available actions (do not forget that
these returns are stochastic: the same action can incur a different reward each time
the action is taken). From these returns, averages are calculated. Suppose that action
ai has been taken three times, with the following returns: r1 = 0, r2 = 9, and
r3 = 3. The average return is then Q(ai) = (r1 + r2 + r3)/3 = (0 + 9 + 3)/3 = 4.
Here, the symbol Q(ai) stands for the quality of ai .

1The reader will recall that this possibility was discussed in the context of classifier-learning
techniques in Sect. 11.4.

356 17 Reinforcement Learning: N -Armed Bandits and Episodes

The simplest implementation will rely on a lookup table whose i-th row contains
the list of the rewards returned so far by the i-th action. Each time the action is
taken, the reward is entered in the corresponding row of the table, and the average
is recalculated. This, of course, is not very efficient. The next section will present a
better way of doing it.

17.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Describe the N -armed bandit problem. Explain what is meant by an action and
its reward. What is the agent’s goal?

• Describe the greedy strategy and the ε-greedy strategy. What is exploitation and
what is exploration? How would you implement these strategies?

17.2 Additional Information

To set the stage for the rest of this chapter, the previous section constrained
itself to basic principles. For practical purposes, though, certain improvements are
necessary.

No Need to Store All Older Returns The programmer can take advantage of the
following formula where Qk(a) is action a’s quality, defined as the average return
over k experiments, and rk+1 is the reward at the (k + 1)st decision to take this
action.

Qk+1(a) = Qk(a) + 1

k + 1
[rk+1 − Qk(a)] (17.1)

The reader can easily verify the correctness of this last equation by substituting
to it the following two definitions:

Qk(a) = 1

k

k∑

i=1

ri Qk+1(a) = 1

k + 1

k+1∑

i=1

ri

Equation (17.1) makes it possible to update the information about the action’s
quality based only on the newly received reward, rk+1, and the value of k. This
means that it is enough to store only k and Qk(a); the older rewards are not needed.

Lookup Table One way to implement the lookup table is to provide one row for
each possible action. Each row contains the information about the number of times,

17.2 Additional Information 357

Table 17.2 The lookup table for a simple implementation of reinforcement learning

Suppose that only five different actions are possible, a, b, c, d, and e. The lookup table contains
for each action the number of times it has been taken, and the current estimate of the average
return.

Action # trials Quality

a ka = · · · Qka (a)

b kb = · · · Qkb
(b)

c kc = · · · Qkc (c)

d kd = · · · Qkd
(d)

e ke = · · · Qke (e)

Each time an action is taken, the k and Q in the corresponding row are updated; k is incremented
by one, and Q is recalculated using Eq. (17.1).

k, the corresponding action has been taken, and the current value of the average
reward, Qk(a). This is illustrated by Table 17.2 for the simple case of the five slot
machines from the previous section. One may add also the information about the
action that currently appears to be best.

General Format of the Learning Formula Let us simplify Eq. (17.1) by replacing
the coefficient 1/(k + 1) with αk+1:

Qk+1(a) = Qk(a) + αk+1[rk+1 − Qk(a)] (17.2)

With a grain of salt, we can say that the entire theory of reinforcement learning
is nothing but a study of diverse variations on this theme. It is thus important to
understand how it works.

The reader already knows that action a’s quality, Qk(a), is the estimate of its
average reward, based on the evidence provided by the first k instances when a

was taken. If the reward at the (k + 1)th step is higher than the current estimate,
rk+1 > Qk(a), then Eq. (17.2) will increase the estimate. In the opposite case,
rk+1 < Qk(a), the value of the estimate is reduced.

Diminishing Returns: Good or Bad? With the growing number of times an action
has been taken, the value of the coefficient α = 1/(k + 1) becomes smaller. For
instance, if k = 9, then α = 1/(9 + 1) = 0.1, and Eq. (17.2) becomes Qk+1(a) =
Qk(a) + 0.1[rk+1 − Qk(a)]. But when k = 99, we will have α = 0.01, which
means the term that modifies the estimate will be so small as to make the change in
Qk+1(a) almost imperceptible. Put another way, α keeps giving smaller and smaller
weights to later rewards.

On the face of it, these diminishing returns make sense: the more experience has
gone into the average return’s estimate, the higher our confidence in its correctness,
and the lower our willingness to modify it after some scant additional evidence.

The situation is different in non-stationary domainswhere an action’s desirability
is subject to changes in time. Small values of α then make the agent excessively

358 17 Reinforcement Learning: N -Armed Bandits and Episodes

conservative, preventing any reaction to the changed situation. This is why engineers
often do not want α to become too small; instead, they prefer to set it to some
constant value, say, α = 0.2.

Optimistic Initialization Equation (17.1) updates Qk+1(a) based on its previous
value, Qk(a). To be able to begin somewhere, we need for each action its initial
value, Q0(ai), from which the learning process will start. This initial value can be
suggested by early experimentation that has tried each action a limited number of
times.

However, a more elegant solution exists, known as optimistic initialization:
before any learning begins, we set all estimates to a value known to exceed any
single return (this is why it is called “optimistic”). For instance, if all returns are
expected to fall between 0 and 10, then this approach may begin with all actions
having Q0(ai) = 50.

At an exploitation step, the learner chooses the action with the highest Q,
breaking ties randomly. Since all actions have the same initial value, they have the
same chance of being taken. Suppose that ai is picked. Since the received reward is
smaller than the initial value, Eq. (17.1) will reduce this action’s value. In the next
exploitation step, some other action will be selected, and its value reduced, too, and
the process will continue until all actions have been tried.

Numeric Example Table 17.3 illustrates this technique’s the behavior. In this
particular example, the lookup table represents each action by one column. At the
beginning, all actions have k = 0 because none of them has been tried, yet; the
estimates of average rewards are all set to Q0(ai) = 50 which is believed to be
more than any possible reward that any action may draw.

The first step chooses at random action a3 and receives reward r = 4.
Equation (17.1) reduces the value estimate to Q1(a3) = 50 + 1

0+1 (4 − 50) = 4
which is less than the value of any other action. As a result, the next step will use a
different action. Suppose it is a5 and suppose the reward is r = 2. Equation (17.1)
reduces the value estimate to Q1(a3) = 50 + 1

0+1 (2 − 50) = 2. This means that
two actions have already been tried. The reader can see that optimistic initialization
forces the system to try, at the beginning, all actions more or less systematically, as
long as exploitation is being used.

If, at some later stage, action a3 is taken again, with reward, say, r = 6, the
quality is updated with k = 1 so that Q2(a3) = 4 + 1

1+1 (6 − 4) = 5. We can see
that now the change is smaller than at the previous step.

Soft-Max ε-greedy strategy has an alternative known as soft-max. Chapter 6
presented a mechanism capable of making neural-network’s outputs sum to 1 so that
they can be interpreted as probabilities. Here is how the same “trick” is employed
in the context of reinforcement learning.

17.2 Additional Information 359

Table 17.3 Optimistic initialization of the rewards in the N -armed bandit game

Consider a system permitting five different actions. Suppose that the maximum possible reward
for each of them is r = 10. Initialize the estimates of all actions to Q0(ai) = 50, a value that
exceeds the maximum possible reward:

a1 a2 a3 a4 a5

Q0(ai) 50,k=0 50,k=0 50,k=0 50,k=0 50,k=0

All actions having the same value, the first action is chosen randomly. Suppose that a3 is taken,
and that the reward is r = 4. In the third column, k is incremented and the quality updated using
Eq. (17.1): Q1(a3) = 50 + 1

0+1 (4 − 50) = 4. The other columns are left unchanged.

a1 a2 a3 a4 a5

Q0(ai) 50,k=0 50,k=0 50,k=0 50,k=0 50,k=0

Q1(ai) 50,k=0 50,k=0 4,k=1 50,k=0 50,k=0

For the next action, a3 cannot be selected because all other actions have higher value, 50. Suppose
that a5 is taken, with reward r = 2. In the fifth column, k is incremented and the quality updated
using Eq. (17.1): Q1(a5) = 50 + 1

0+1 (2 − 50) = 2.

Here is the table’s new version:

a1 a2 a3 a4 a5

Q0(ai) 50,k=0 50,k=0 50,k=0 50,k=0 50,k=0

Q1(ai) 50,k=0 50,k=0 4,k=1 50,k=0 50,k=0

Q2(ai) 50,k=0 50,k=0 4,k=1 50,k=0 2,k=1

Again, the next action is selected from those that have not yet been tried and still have the initial
high values.

The reader can see that the optimistic initialization indeed leads to systematic exploration of all
actions at the beginning.

Suppose that, for action ai , the lookup table gives the average-reward estimate
Q(ai), and suppose that z is a parameter whose value has been set by the user. The
probability with which action ai will be selected is calculated as follows:

P(ai) = zQ(ai)

∑
j zQ(aj)

(17.3)

It would be easy to show that, as in Chap. 6, the sum of these probabilities over all
actions is 1. Note that reinforcement learning is used to somewhat higher flexibility,
in the formula. Whereas neural networks typically assumed z = e = 2.72 (a number
known from natural logarithms), here it is the user who decides what the base of the
exponential function should be.

Numeric Example Suppose there are three different actions to choose from, and
let their Q-values be Q(a1) = 5, Q(a1) = 8, and Q(a1) = 3. The following
table summarizes the individual actions’ probabilities calculated by Eq. (17.3) for
different values of z.

360 17 Reinforcement Learning: N -Armed Bandits and Episodes

a1 a2 a3

z = 2 0.11 0.86 0.03

z = 5 0.0086 0.9911 0.0003

z = 0.5 0.194 0.025 0.781

Note that higher values of z tend to concentrate all the probability at the best
action. The probabilities in the case of z = e would be somewhere between those
in the rows for z = 2 and z = 5. Note also that for z < 1, the behavior is exactly
opposite from what we need: the best action is given the smallest probability.

It is thus always necessary to choose z > 1!

Selecting the Next Action with Soft-Max To select the action, the values in the
first row of the previous table are used in the following manner. Divide the interval
[0, 1] into three sub-intervals whose lengths are 0.11, 0.86, and 0.03, respectively.
Each sub-interval represents one of the three actions. Generate a random number
(uniform distribution) from the interval [0, 1]. Choose the action into whose sub-
interval the number falls.

In the case of n actions, n sub-intervals are used, but the principle is the same.

Reinforcement Learning Algorithm Table 17.4 shows how to apply reinforce-
ment learning to the N -armed bandit. After optimistic initialization, the actions are
selected by a user-specified strategy, ε-greedy of softmax. Whichever strategy is
used, the user has to specify the parameters: ε or the z (the latter in the case of soft-
max). Both parameters can vary in time. Each action results in a reward which is
then used to update the selected action’s Q-value (average-reward estimate).

The algorithm is written as an endless loop. In reality, it is usually run a
predefined number of times.

Table 17.4 Reinforcement learning and the N -armed bandit

Input: a set of actions, ai ;
user-specified strategy (ε-greedy or softmax) to choose the next action.

1. Carry out optimistic initialization and set ki = 0 for ∀i.
2. Choose an action and denote it by ai .
3. Carry out ai and receive reward ri .
4. Recalculate the average-reward estimate for this action:

Qki+1(ai) = Qki
(ai) + 1

ki + 1
[ri − Qki

(ai)]

5. Set ki = ki + 1 and return to step 2.

17.3 Learning to Navigate a Maze 361

17.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What information is stored in the lookup table? Write down the formula for
updating theQ-value.What else has to be updated after an action has been carried
out?

• Explain the motivation behind optimistic initialization. How does it work?
• What is meant by diminishing returns? Under what circumstances are they

beneficial, and under what circumstances do we prefer the returns not to
diminish?

• Explain how soft-max is used to select the next action. What is the impact of its
parameter z? What values for z would you recommend and why?

17.3 Learning to Navigate a Maze

The N -armed bandit problem has helped us explain some elementary principles
underlying reinforcement learning. Now that the reader has developed their basic
understanding, we can move on to a more realistic setting.

Maze Figure 17.2 shows a very simple version of a popular puzzle: a maze. The
task is to enter the maze at location denoted by S, and, moving one square at a time,
to find the shortest path to G. Obviously, the trick is to discover that, after the first
few steps to the right, one has to turn down and not up.

Fig. 17.2 The agent starts at S; it wants to find the shortest path to G

362 17 Reinforcement Learning: N -Armed Bandits and Episodes

States and Actions Let us now formulate the problem in the terminology of
reinforcement learning. Each square in the maze is a state. At each state, the agent
has to choose a concrete action. In principle, four actions are possible: up, down,
left, and right. In some states, however, some of these actions are illegal (those that
would “hit the wall”). The result of an action is that the agent has moved to another
square, which means that its state has changed.

Importantly, each state represents oneN -armed bandit from the previous sections
in the sense that we want the agent to identify for each state the best action: the one
to be taken if the agent is to follow the shortest path.

Lookup Table for theMaze As before, the agent will rely on a lookup table which,
however, is bigger than the one employed in the plain N -armed bandit. This is
because we need to list all states; and for each state, all actions legal in this state.
Besides, the table has to store the information about which state is reached as a
result of a given action. For instance, after action right in the very first square in
Fig. 17.2, the agent reaches the square to the right of the current one.

An example of such a table, still somewhat simplified, is shown in Table 17.5.
The number of rows is much higher than in the basic N -armed problem but, if the
maze is simple, this is manageable. Chapter 18, however, will introduce domains
where the table is so large (billions of rows or more) that it cannot reasonably be
used.

Rewards In the maze problem, filling out the values in Table 17.5 is quite
straightforward—with one exception. To update an action’s quality, we need the
reward. In N -armed bandit, the reward followed the action immediately. In the case

Table 17.5 An example lookup table for the maze

For each state, all actions are listed. For each state and each action, the table gives the current
estimate of the average reward (quality, Q), the number of times, k the action has been taken
in this state, and the new state that results from the application of this action. For each state, all
actions are listed. For each state and each action, the table gives the current estimate of the average
reward (quality, Q), the number of times, k the action has been taken in this state, and the new
state that results from the application of this action.

State Action Quality k New state

s1 a1,1 Q(a1,1) 3 s2

a1,2 Q(a1,2) 4 s3

s2 a2,1 Q(a2,1) 1 s3

a2,2 Q(a2,2) 1 s4

a2,3 Q(a2,3) 3 s5
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

sN aN,1 Q(aN,1) 4 s9

aN,2 Q(aN,2) 1 s4

aN,3 Q(aN,3) 2 s7

17.3 Learning to Navigate a Maze 363

of the maze, this is not so simple. Most of the time, to establish an action’s reward
before the goal has been reached is impossible, or at least speculative.

Episode In the earliest stages, before any learning has begun, the agent’s walk
through the maze is blind and random, especially if optimistic initialization assigned
to all actions the same initial values. But even randomwalk will sooner or later reach
the end: an agent that has started at square S will land in the goal denoted in Fig. 17.2
as G. Each such journey from S to G will be called an episode.

Episode’s Reward In the course of the episode, some actions are lucky in the sense
that, by mere chance, a good choice was made—one that reaches the goal quickly.
Thus after the first step, the agent may choose to move to the right instead to the left.
This is good because moving to the left would only bring the agent back to the start,
S, which would hardly be regarded as an efficient path. If most actions are lucky,
the goal is reached faster than in the case of less fortunate choices. The reader will
agree that the quality of the selected actions is reflected in the number of steps that
had to be taken before arriving at G.

If the agent has completed the walk from S to G in N steps, the overall reward
for the given episode can therefore be established as follows:

R = −N (17.4)

The greater the number of steps, the “more negative” the reward (the greater the
punishment). This means that the reward is maximized when the number of steps is
minimized.

Episodic Formulation of Reinforcement Learning A simple way to implement
reinforcement learning in the maze problem maintains the list of all actions,
Lactions , that were taken in the course of the episode. Once the agent has reached G,
one can calculate the episode’s reward, R, which is then used to update the Q-values
of every single action listed in Lactions .

The algorithm to carry out one episode is summarized in Table 17.6. Repeating
the procedure for many episodes gradually improves the Q-values. This leads to
better choices of the actions, and to shorter walks of the agent. In other words, the
technique thus described is likely to find a short path through the maze.

Numeric Example Let us illustrate the technique’s behavior on the same maze as
before. In Fig. 17.3, the state at the “intersection” is marked by a star. When at this
state, the agent can choose from three actions: left, up, and down. Suppose that all
of them were initialized equally, with Q0(ai) = 0.2

All actions having the same Q-value, the first time the agent finds itself in this
state, the choice is random. Suppose the agent selects up. This being an unfortunate

2Since all rewards are known to be negative, Q0(ai) is clearly greater than any episode’s reward.

364 17 Reinforcement Learning: N -Armed Bandits and Episodes

Table 17.6 One episode in the maze

Input: The maze and its lookup table;
The strategy (ε-greedy or softmax) to choose the next action.
An empty list of actions, Lactions .

1. Let t = 0. Let S be the first state, s0.
2. When in state st , choose an action, at , and add it to Lactions .
3. Apply at , reaching state st+1 that is given in the lookup table.
4. If st+1 �= G, set t = t + 1 and return to step 2.
5. If st+1 = G, calculate the episode’s reward, R, and use it to update the Q-values of all actions

listed in Lactions .

Fig. 17.3 At the state marked by a star, the agent can choose from three different actions: left, up,
and down

turn to take, the entire walk will take quite a few steps, say, 40, which means R =
−40. Using this in Eq. (17.2), we get the following Q-update:

Qup = 0 + 1

0 + 1
(−40 − 0) = −40

In the next episode, suppose that the agent, when finding itself in the same
location, chooses down, and suppose that the entire walk then takes 20 steps, which
means R = −20. Updating Qdown with Eq. (17.2) then results in the following
Q-update:

Qdown = 0 + 1

0 + 1
(−20 − 0) = −20

17.4 Variations on the Episodic Theme 365

In these two episodes, the one with down was shorter than the one with up, and
this resulted in Qdown > Qup. In the future, ε-greedy strategy of soft-max is likely
to go down instead of up.

17.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What information has to be stored in the lookup table if we want to solve the
maze?

• Explain what is an episode in the maze application. Give an example of how to
establish the episode’s reward.

• How do we calculate the rewards of the individual actions in the episodic
formulation of reinforcement learning? Write down the formula.

17.4 Variations on the Episodic Theme

Now that the reader understands what the episodic formulation of reinforcement
learning is all about, we can take a closer look at it.

Some Criticism The main advantage of the episodic formulation is its simplicity.
On the other hand, we must not overlook a serious shortcoming: all actions in
Lactions receive the same reward, which clearly is not right because not all of them
have contributed equally. Some were ideal, for the given state, some less so, and
some were perhaps outright bad—and yet they all are rewarded with the same R!

In the course of a great many episodes, these “injustices” get averaged out. The
reason why some episodes are very long is that most of the actions are bad and are
thus punished severely. This is unfair to the good actions, but these are compensated
by the statistical expectation they will occur in much shorter walks in which the bad
actions do not participate.

Still, one cannot help suspecting that this way of handling the maze problem
is less than optimal. Chapter 18 will investigate alternative solutions that tend to
outperform the episodic approach significantly.

Immediate Rewards? The criticism just mentioned would disappear if we knew
how to determine the reward immediately after each action. This is indeed some-
times possible; and even in domain where this is not possible, one can often at
least make an estimate. In that event, the learning process will be improved in the
sense that each action’s Q-value be updated “according to the action’s own deserts,”
instead of all actions receiving the same episodic reward. This, too, will get more
attention in Chap. 18.

366 17 Reinforcement Learning: N -Armed Bandits and Episodes

Discounted Returns The reward-calculating Formula (17.4) followed a simple
principle: the longer it takes to complete the walk through the maze, the smaller
the reward should be (higher value of N lead to a smaller R = −N). The same
effect can be achieved by the so-called discounted returns.

In this case, the ultimate reward for completing the walk is R = 1. The reward
assigned to any concrete action from Lactions then depends on the number of steps
between this action and the goal, G. If there are k steps remaining, the value of the
given action is updated using the following formula were γ ∈ (0, 1) is a user-set
discounting constant:

rk = γ kR (17.5)

Note how the growing value of k decreases the coefficient of R. If the goal is
reached in 10 steps, then the discounted reward for γ = 0.9 is R = 0.910 ·1 = 0.35.
The engineer has to be aware of the possibility of “underflow” of rk if k is extremely
high. On the other hand, rk is always positive, whereas the formula from the previous
section always leads to negative rewards.

Concrete Implementation of Discounted Returns Previous paragraph suggested
that the k in the discounted return formula should be the number of steps taken
between S and G. The same end-of-episode return is applied (R = 1), but when
the Q-values of the actions from Lactions are modified, the reward is discounted by
Eq. (17.5) (for Q-updates, rk is used instead of R).

A more flexible alternative will use for k an even more appropriate value: the
number of steps between the current state and G. This information is easily obtained
from the contents if Lactions : it is simply the number of entries between the current
state and the end of the list.

There is one important detail to consider. In the course of the learning process,
the same location in the maze can be visited more than once, and the same action
may be taken. If this is the case, the user has to decide whether to use for k the
number of steps (from the given state to G) after the first visit to this state or from
the last visit to this state.

Numeric Example Table 17.7 shows how the rewards may be assigned in the case
of the first-visit variation. The table contains only an excerpt from the history of a
single episode. We assume that before these entries in the table, none of the three
mentioned state–actions, x, y, and z, has been taken (Fig. 17.3 shows which actions
these are).

The second row shows the values of the discounted reward for the state–actions.
Thus the first occurrence of x in the table receives r = 0.48 because it took the agent
another k−7 steps before it reached G. Using γ = 0.9, the reward for x is therefore
calculated as r = 0.97 = 0.48. In the course of the random walk, x is later revisited,
but this has no impact on the action’s reward if it follows the first-visit principle.

If the last-visit principle is used, we realize that to reach G from the last
occurrence of x, only five steps are needed. This means that the reward for x would
then be r = γ 5 = 0.59.

17.4 Variations on the Episodic Theme 367

Table 17.7 End of one episode in the maze. The discounted rewards are assigned on the first-visit
principle

The first row of the table shows the actions taken by the agent at the last few steps of the random
walk, G being the goal. Note that some of the state–actions are visited more than once. However,
let us assume that none of the three (x, y, and z) has been visited before the beginning of this
section of the table.

state . . . x y x y z y z G

rk . . . 0.48 0.53 – – 0.73 – – –

The second row shows the values of the discounted rewards for the actions, using γ = 0.9, and
assuming the episode’s overall reward being R = 1.

For instance, from the first occurrence of x at the beginning of the table k = 7 more steps were
taken before G was reached. Therefore, the reward is rk = γ kR = 0.97 = 0.48 (after rounding).

Fig. 17.4 More advanced
versions of the “maze”
problem may include
potholes, monsters, and
caches. These may affect the
reward

More Sophisticated Maze Figure 17.4 shows a more challenging maze than that
of the one we have been working with so far. For one thing, it is larger, and thus more
difficult to solve. For another, certain extra functions have been added. Some squares
represent “potholes” that slow down the agent’s walk (increasing the overall time
needed to reach G). Others contain “caches” where the agent can collect monetary
rewards. Yet others are occupied by “monsters” that either have to be bribed or
perhaps even can destroy the agent. The point is, the rules of the game can be much
more complicated than in the toy domain above.

Importantly, all of these added functions may affect the way the final reward
for the episode is calculated. For instance, this reward may depend not only on
the number of steps before G has been reached but also on the amount of money
gained or lost during the episode. The programmer will then have to design a special
formula to calculate R. The rules of the game may have to be modified, too. For
instance, hitting the square occupied by a monster may cause a “stop with failure”;
the agent never reaches G and may be penalized with a large negative reward.

368 17 Reinforcement Learning: N -Armed Bandits and Episodes

Perhaps even the ultimate goal may be modified. Instead of finding a short path,
one may require the agent to collect maximum amount of cash, but only if the entire
walk does not exceed 100 steps.

17.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Discuss the advantages and shortcomings of the episodic formulation of rein-
forcement learning.

• What is the motivation behind the idea of discounted returns? Give the precise
formula, and discuss the impact of γ and k.

• Discuss the alternative possibilities of adjusting k for discounting rewards in the
maze problem.

17.5 Car Races and Beyond

It is one thing is to grasp the basic principles; it is another to apply them creatively
to a realistic problem. To gain more experience, let us take a look at some other
tasks that can benefit from reinforcement learning.

Car Races: Problem Definition Figure 17.5 shows a small segment of a track for
car races. The agent is driving. At each moment, its car finds itself on one of the
squares of the track and is moving with a specific speed in a specific direction. The
agent can turn the steering wheel, accelerate, and decelerate. Of course, how exactly

Fig. 17.5 In the “racing car”
problem, the agent wants to
find the ideal speed and
direction when making the
curve

17.5 Car Races and Beyond 369

it does cannot be arbitrary. If the car goes too fast, it is unable to make the turn and
is bound to crash in the wall. If it goes too slowly, it will lose the race.

The goal for reinforcement learning is to find an ideal way of operating the car
so that it makes the track as fast as possible without crashing.

States and Actions A state is here defined by the car’s location and velocity. The
location is defined by a pair of integers, [x, y], where x is the horizontal coordinate
and y is the vertical coordinate. Velocity is a pair of integers, [vx, vy], again one for
each coordinate.

One step in the agent’s driving is defined as a change in the location according to
the following formulas where t = 1 represents one time unit:

x = x + vxt = x + vx

y = y + vyt = y + vy

An action means to change velocity. For instance, the agent can change vx or vy

or both by 1 or −1 or 0 under the constraint that the velocity along either coordinate
is not allowed to be greater than 6 or smaller than −6.

There are a great many ways of designing the lookup table. What they have in all
in common is that the table will be very large if it is meant to contain all states, and
all actions that are possible in these states. A more economic alternative—updating
only states, not actions—is discussed in the next section.

Rewards As in the maze domain, the learning program in car races can simply
count the number of steps that the agent has needed to reach the end of the track
(or track segment) from the location of the start. If the car hits the wall, a very high
punishment (negative reward) can be issued.

Many other mechanisms can be used, though. The agent may get extra pun-
ishment for getting too close to the wall. Another possibility is to abandon the
principle of plain counting of the number of steps (recall the formulas, R = −N

and r = γ NR) and instead assign different weights to steps in which the velocity
is increased than to steps in which the velocity is decreased—this will encourage
“aggressive driving.” The engineer has to be creative; an ingenious way of defining
the rewards can strongly impact the efficiency of the learning process, and the
agent’s performance in general.

Look-Ahead Strategy The race-track segment from Fig. 17.5 is a simplification
meant for instructional purposes. A more realistic problem statement will want the
car to optimize its driving along the entire closed loop track. This, of course, is
much more challenging computationally because of the great number of states and
actions.

The computational costs can be reduced by a look-ahead strategy. Rather than
storing all states and actions in a huge lookup table, the agent focuses only on a
segment such as the one in Fig. 17.5. Before starting, it first attempts “in its head” N

tentative episodes (with N being an adjustable parameter, a reasonable value being
a few hundred), gradually learning from them. Then it completes this segment, puts

370 17 Reinforcement Learning: N -Armed Bandits and Episodes

this lookup table aside, and starts a new one for the next segment, and on, until the
entire track is finished.

Alternative Goals What do we actually want to achieve? Of course, the primary
task is to learn how to complete the track without crashing. However, some other
goals can be considered. We may want the agent to complete the track in a minimum
number of steps (as fast as possible), we may want to find the shortest path, and
so on. The experimenter may want to observe how these goals are affected by the
number of tentative episodes (N), by the length of the “look-ahead,” and by the
creative use of rewards.

Stochastic Nature of Reinforcement Learning For the sake of simplicity, the
formulations of the two test-beds, maze and car-race, were intentionally simplified:
calculation of the rewards was straightforward and deterministic; and each action
resulted in a concrete next state. Such simplification was necessary for an easy-to-
understand presentation of the basic principles.

In reality, many applications are much more challenging. In many domains, the
result of any action (the next state) cannot be determined in advance. For instance,
in game playing, the next state that the agent is going to face after it has made a
move depends also on the response chosen by the opponent.

The rewards themselves are often stochastic in a way reminiscent of theN -armed
bandit from the beginning of this chapter.

Stochastic Behaviors in Classroom Projects In the maze problem, the rewards
of certain situations can be generated by a random-number generator. This can be
the case of delays caused by hitting potholes, monetary rewards provided by the
discovered caches, or the consequences of encountering monsters.

In the car-races domain, the next state (location) can be affected by “wind” or
“spilled oil.” For instance, a practical implementation may request that, with 20%
probability, the agent’s next location is shifted one square to the left.

What Constitutes a Good Application for Reinforcement Learning? The reader
has by now developed an initial idea of the characteristics that mark a domain well-
suited for this machine-learning paradigm. Of course, the first requirement is that it
should be possible to specify the requisite set of states and actions, and the way of
establishing the rewards. Further on, reinforcement learning is often resorted to in
domains where analytic solution is unknown; or, if it is known, it is so complicated
or computational expensive that it is better to resort to experimentation. Analysis
can also be impossible if the system we want to control suffers from a great degree
of randomness.

This said, one must not forget that any engineering problem can be addressed in
alternative ways; the engineer thus needs to be sure that reinforcement learning is
indeed more appropriate for the given task than competing approaches.

All these characteristics are typical of many popular games such as Go,
Backgammon, or chess. For these, however, the episodic approach in the simple
version presented by this chapter is somewhat inflexible; more sophisticated
techniques, such as those from Chap. 18), are called for.

17.6 Practical Ideas 371

Where do the Rewards Come from? In the toy domains typically addressed by
classroom projects, the rewards are easy to determine by a predefined formula or
algorithm. In a real-world application, the situation is rarely so straightforward.

True, in many domains, the reward or punishment is provided by the concrete
environment. Thus in the case of a chemical reactor, it may be easy to measure the
time a certain chemical reaction has taken, or the weight of the final product that has
thus been created. On the other hand, if a certain action leads to an explosion, using
this action for machine-learning purposes would hardly be desirable. Likewise,
training a self-driving car will rarely exploit many crashes.

In situations of this kind, the training will preferably rely on a computer model
that can crash any number of times without sinister consequences. However, such
models are often only crude approximations of the underlying systems. Very often,
therefore, the model is used only to obtain the first approximation to be later fine-
tuned in the real world.

17.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How would you implement the car races problem? What will be the states,
actions, and rewards? How would you make this domain stochastic?

• What constitutes an appropriate application for reinforcement learning?
• Where do the rewards come from in a realistic situation? Discuss the possibility

of receiving the rewards from an existing system versus from the system’s
computer model.

17.6 Practical Ideas

Now that the reader has an idea of how to implement the baseline version of the
episodic task, it is time to consider a few additional “tricks” that make the learning
process more efficient.

Maintaining States, Not Actions In the car races, as in many other domains,
keeping a tally of the Q-values of all actions in all states may prove impractical.
In similar situations, engineers therefore work with lookup tables that maintain only
the values of states and not actions. Each row represents one state, and contains this
state’s value: the estimate of the average returns achieved by the agent’s passing
through this state. To prevent confusion, the state values are habitually denoted by
V (whereas Q is reserved for action values).

The number of states being smaller than the number of actions, the lookup table
thus becomes more manageable. On the negative side, the engineer may not be
prepared to tolerate that the consequences of concrete actions are lost.

372 17 Reinforcement Learning: N -Armed Bandits and Episodes

Episodes and State Value Updates During the episode, a list, Lstates , of all states
that the agent has passed through in a given episode is maintained. Once the end of
the episode has been reached, and the reward R received, the values of all states in
Lstates are updated using the following formula.

V (st+1) = V (st) + α[R − V (st)] (17.6)

Note that this is essentially the same formula as Eq. (17.2). The only difference
is that here we are estimating the average rewards of states, and not of actions. As
before, parameter α either is α = 1/(k + 1) or is fixed at some reasonable value,
say, α ∈ [0.05, 0.15].
Simplified Lookup Table In a reinforcement learning system that updates state
values, V (si), instead of the state–action values, Q(ai,j), the lookup table slightly
changes from the one shown in Table 17.5. Each row, representing one state, will
typically contain the value of this state, the number of times, k, the state has been
visited, and the list of actions possible in this state, together with the states reached
by these actions.

Choosing the Next State Suppose that at time t , the agent finds itself in a state
denoted by st . The greedy strategy will scan the list of actions possible in st and
learns about the states reached by these actions. Then, it would apply the action that
leads to such next state that has the maximum value, maxV(st+1).

In reality, of course, we prefer to rely either on the ε-greedy strategy or on the
soft-max strategy so as to give a chance to previously underestimated states.

Running One Episode Table 17.8 summarizes the learning algorithm that relies on
the state-updating principles from the previous paragraphs. The agent starts at state
s0 = S. At each state throughout the episode, the system selects the next action
using either ε-greedy or soft-max strategy, most of the time preferring the action
that leads to a state will the maximum value.

Table 17.8 One episode in a program that updates state (not action) values

Input: The lookup table;
The strategy (ε-greedy or softmax) to choose the next state;
An empty list of visited states, Lstates .

1. Let t = 0. Let S be the first state, s0.
2. From the list of actions available at st , select one action according to the given strategy.
3. Apply the chosen action, which leads to a new state, st+1. Add st to Lstates .
4. If st+1 �= G, set t = t + 1 and return to step 2.
5. If st+1 = G, calculate the episode’s reward, R, and use it to update the V -values of all states

from Lstates .

17.6 Practical Ideas 373

At any moment, the system maintains a list, Lstates , of all states that have been
visited during the episode. Once the final state, G, has been reached, the episode’s
reward is received, and this reward is used to update all states in Lstates . These
updates can be the same of all these states, but they can also be carried out on
the first-visit or last-visit principles. After the updates, the list is emptied, and thus
prepared for the next episode.

The reader can see that the algorithm is similar to the one employed previously,
when the actions’ Q-values, rather than the states’ V -values, were updated.

Is the Exploration Sufficiently Exhaustive? The probabilistic natures of the ε-
greedy or soft-max strategies are supposed to make each new episode different from
the previous ones. Nevertheless, practical experience teaches us that in a large maze
or race-track, large portions of the search space remain unexplored unless special
precautions have been made. The thing is that once some “reasonably good” initial
paths have been found, both strategies will tend to make the agent wander in the
vicinity of this path, and rarely stray too far from it. Consequently, some states are
rarely visited, and some are never visited.

For this reason, the learning process greatly improves if the engineer employs
mechanisms capable of forcing the agent to explore the less-known regions in the
search space.

Intensified Exploration: Alternative Starts One way to force the learner into
more intensive exploration is to start the episode not from the “official” start, S,
but from another location, preferably one that has so far been rarely visited.

The reader will recall that for each state (or for each action, if the Q-values are to
be updated), the lookup table contains the number of visits (denoted in the previous
sections by k). The idea of intensified exploration is occasionally to start the episode
from one of the states with small values of k.

Flexible Uses of ε and z After optimistic initialization (Sect. 17.2), it is good
to set ε to a high value that forces the ε-greedy strategy to frequent explorations.
This value should then gradually be reduced once the whole search space has been
sufficiently well explored. Again, whether the space has been sufficiently explored
can be indicated on the values of k in the lookup table.

If the soft-max strategy is used, the intensity of exploration can be controlled by
the value of z in Eq. (17.3). Values that only slightly exceed 1, say, z = 1.1, will
allow frequent exploration.

Creative Use of Rewards, Actions, and States Engineers who want to employ
reinforcement learning in realistic applications should always keep in mind that
the success and failure of their efforts will often depend on how the rewards are
determined.

As for the states and actions, these may appear to be straightforward—but only
because the domains we have seen so far (maze and car races) were for instructional
purposes made simple. In more realistic applications, the decision about what
constitutes a state may be open to many alternative decisions; the concrete choice
will then severely affect the system’s ability to learn.

374 17 Reinforcement Learning: N -Armed Bandits and Episodes

17.6.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the reinforcement learning algorithm that relies on the V -values of states,
instead of on the Q-values of actions. Why is the approach sometimes preferred?

• What is meant by the observation that reinforcement learning in the domains
similar to those from this section may fail to explore the search space adequately?
Why does it happen?

• Summarize the techniques that can be used to solve the problem of inadequate
exploration.

17.7 Summary and Historical Remarks

• Unlike the classifier induction systems from the previous chapters, reinforcement
learning agents do not learn to classify, but to act in specific situations. They learn
from direct experimentation with a system they seek to control.

• In the simple model called N -armed bandit, the agent identifies the action with
the highest average return. Then it favors this best action and occasionally
experiments with lower-valued action. This is carried out by ε-greedy and
softmax strategies.

• More realistic implementations assume the existence of a set of states. Each state,
modeled as an N -armed bandit, allows the agent to choose from a set of actions,
each with different rewards. One of the states is denoted as the start, S, another
as the goal, G.

• The problem and its reinforcement learning solution are illustrated by two toy
domains: maze and car races. These test-beds can serve as representative models
of many realistic tasks.

• The machine-learning goal is to find a series of actions that maximizes the overall
reward. In the episodic formulation, the reward is known only when the goal, G,
has been reached. This reward is then used to update the values of all states and/or
actions from the episode.

• In the learning process, the system seeks to improve, for each state s and action
a, the estimate of the average return observed when a is taken in state s. This
estimate is denoted by Q(s, a), which is why it is often called the Q-value.

• Alternatively, the system can focus on V -value. More specifically, V (s) is an
estimate of the average return expected when state s has been reached.

• The efficiency of the learning process can be improved by many little “tricks”
and technique such as optimistic initialization, modified starting states, S, time-
varying ε-values, creative rewards, etc.

17.8 Solidify Your Knowledge 375

Historical Remarks One of the first systematic treatments of the “bandit” problem
was offered by Bellman (1956) who, in turn, was building on some still earlier work.
Importantly, the same author later developed the principle of dynamic programming
that can be seen as a direct precursor to reinforcement learning (Bellman, 1957). The
basic principles of reinforcement learning probably owe most for their development
to Sutton (1984). Very influential was an early summary of reinforcement learning
techniques in the book by Sutton and Barto (1998).

17.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

17.8.1 Exercises

1. At the end of Section 17.3, a numeric example illustrated the outcomes of two
actions, up, and down, for some example rewards. Calculate the next weight
update for action left, assuming that the walk then takes N = 60 steps.

2. After discounting, the reward rk = 1 is reduced by the formula R = γ krk that
employs the number of steps, k, taken from the action to the goal. Assuming
γ = 0.8, how many steps, k, would be needed for the R to drop below 0.01?

3. Return to the example in Table 17.7. Suppose that the reward at the end of the
episode is R = 2. What is the discounted reward of y if it is calculated on the
first-visit principle?

17.8.2 Give It Some Thought

1. This chapter is built around the idea of using the ε-greedy and softmax policies.
What do you think are the limitations of these policies? Can you suggest a way
to overcome these limitations?

2. The principles of reinforcement learning have been explained using simple toy
domains. Can you think of an interesting real-world application? How will you
formulate it so that reinforcement learning can be used?

3. In the car-races domain, a lot depends on the way the engineer defines the
rewards. One important aspect that did not get enough attention, in this chapter,
is that these rewards should reflect the driver’s intentions. For instance, the driver
prefers actions that steer the car toward the nearest curve (rather than just in

376 17 Reinforcement Learning: N -Armed Bandits and Episodes

any direction). Think of ways to include these intentions in your solution. Try to
suggest some other ways of making the rewards speed-up the learning process.

4. Discounted rewards can lead to value underflow in a realistic application in a
domain where the number of steps, k, to the goal is very high. How would you
prevent this from happening?

5. How would you address a domain with two or more conflicting goals? For
instance, we may want to minimize the length of the maze walk, but at the
same time maximize the monetary rewards provided by “caches” and stolen by
“monsters.” Alternatively, a rocket can minimize not only the time of a flight but
also fuel consumption.

17.8.3 Computer Assignments

1. Write a program the solves the N -armed bandit. User-specified inputs should
include N , the distributions of the returns provided by the individual machines
(average values and standard deviations), and ε.

2. Design a maze that is more difficult than the one from Sect. 17.3. Write a
reinforcement learning program that will address it by the episodic approach. See
how the agent’s “skills” gradually improve over the successive episodes. Explore
how this learning ability depends on the way the rewards are assigned.

3. Design a much more complicated maze than in the previous problem. Add
special features, such as monsters, potholes, caches, and so on, that cause delays,
may even kill the agent, or offer gold (cashes). Write a reinforcement learning
program that will address the problem by the episodic approach. The goal may
not necessarily be the number of steps, but also the amount of gold accumulated
during the walk.

4. Create a simple race track, perhaps just an oval. Implement a reinforcement
learning program for the task introduced in Sect. 17.5. The goal is to find a way
for the agent to complete the entire track without crashing. At a higher level, the
goal can be to finish the track in minimum time. Explore the impact of different
ways to calculate the reward, and the impact of diverse parameter settings.

Chapter 18
Reinforcement Learning: From TD(0)
to Deep-Q-Learning

The last chapter introduces the basic principles of reinforcement learning in its
episodic formulation. Episodes, however, are of limited value in many realistic
domains; in others, they cannot be used at all. This is why we often prefer the much
more flexible approach built around the idea of temporal difference and immediate
rewards.

The chapter explains the principles of two basic temporal-difference techniques,
SARSA and Q-learning, presenting them within the simple framework of lookup
tables, paying attention to several critical details. However, in domains with many
states and actions and in domains with continuous-valued variables, these simple
versions are often inadequate. Engineers then rely on advanced temporal-difference
techniques (such as the popular deep-Q-learning) that harness the power of neural
networks.

Having explained all these techniques, the chapter then offers introductory
information about how they help in programs that play such games as Backgammon
and Go. The reader will appreciate the rich possibilities of this modern paradigm.

18.1 Immediate Rewards: Temporal Difference

An improvement over the episodic task is possible if the agent receives the reward
right after each action, and not just at the episode’s end. When this is possible, the
more efficient temporal-difference learning is often preferred.

Immediate Rewards The reader will recall one serious complaint concerning the
episodic task: the Q-values of all actions taken during the episode are updated with
the same reward that is calculated at the episode’s end. This does not seem right.
Especially in the early stages of the learning process, some of these actions are
beneficial whereas others are downright harmful—and yet all of them are treated in
like manner. Would it not be better to give more reward to good actions and less to

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_18

377

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_18

378 18 Reinforcement Learning: From TD(0) to Deep-Q-Learning

bad ones? The same argument applies to the scenario where the states’ V -values are
updated, rather than the actions’ Q-values.

This indeed can be done, provided that the agent receives its reward right after
each action. In that case, the action can be rewarded as it deserves, overcoming the
principal weakness of the episodic task.

One has to be careful, though. In many applications, these immediate rewards are
nothing but crude estimates that can do more harm than good if used dogmatically.
In that event, the good old episodic formulation may still have to be preferred.

Examples of Immediate Rewards Let us return to the two toy domains from the
previous chapter. Can they be restated in terms of immediate rewards? Yes, they
can. In the case of the maze, the engineer may decide to reward with r = 1 only
those actions that reach G in a single step, all other actions receiving r = 0. In
the variation with potholes, caches, and monsters, specific additional rewards can
be provided, say, r = −2 for a pothole, r = −20 for a monster, and r = 5 for
a cache. These rewards can even be probabilistic, drawn from distributions with
user-specified parameters.

In the car-races domain, each step along the track can be rewarded with r = −1,
any step that reaches the goal with r = 10, and any action that results in hitting the
wall can be punished by r = −10. The choice of the concrete values is in the hands
of the programmer who knows that different conception of rewards is likely to result
in different learning behavior.

Immediate Rewards and V -Values Let us begin with the simpler scenario that
focuses on states, rather than on actions. Suppose that each state, s, has a value,
V (s), which is an estimate of the average reward received by the agent between this
state and the goal. Suppose that, at time t , the agent is in state st and chooses an
action that results in state st+1, receiving immediate reward rt .

The anticipated reward associated with the state that has been reached at time t is
then rt plus the value of the next state, st+1. More formally, this estimated reward is
R = rt + V (st+1). Discounting V (st+1) by some coefficient γ ∈ (0, 1), we obtain
the following:

R = rt + γV (st+1) (18.1)

Updating V -Values Again, suppose that an action taken at st resulted in state st+1,
receiving reward rt . How shall we update the V -value of st based on the reasoning
from the previous paragraph? Let us recall the formula recommended for updating
V -values in Sect. 17.6:

V (st) = V (st) + α[R − V (st)] (18.2)

This increases the estimate V (st) if it is smaller than R and decreases it if is
greater than R; coefficient α then controls the amount of this change. If we use for

18.2 SARSA and Q-Learning 379

R the value obtained from Eq. (18.1), which is R = rt + γV (st+1), we arrive at the
following V -updating formula:

V (st) = V (st) + α[rt + γV (st+1) − V (st)] (18.3)

After some minor rearrangement, this can be reformulated as follows:

V (st) = (1 − α)V (st) + α[rt + γV (st+1)] (18.4)

The last formula is easy to interpret in plain English. The updated value, V (st),
of state st is the weighted average of two terms; the first is the current V -value of
the state, and the second is the discounted estimate of the reward received after the
given action has been taken and state st+1 reached.

Typical values of the two parameters are γ ∈ (0.8, 1) and α ∈ (0.05, 0.15).

Temporal Difference: TD(0) Those approaches to reinforcement learning that use
immediate rewards form a whole family usually referred to by the term, temporal
difference—essentially the difference between states st and st+1 (where t and t + 1
are subsequent time instances).

Temporal-difference learning where the modification of the state value is based
only the immediate reward, rt , is sometimes referred to by the acronym T D(0). In
Sect. 18.4, we will learn that this is a special case of T D(λ) for the extreme case of
λ = 0.

18.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the main weakness of the episodic approach to reinforcement learning?
Do immediate rewards always correct this weakness?

• How would you specify the immediate rewards in the simple domains used in
this textbook?

• Derive the formula that updates the V -value of a given state after an action has
been taken. Discuss the impact of its two parameters.

18.2 SARSA and Q-Learning

Having introduced the simple mechanism that updates V -values, let us now proceed
to a formula to be used to update Q-values. After this, we will be ready to take a
look at the baseline techniques underlying temporal difference.

380 18 Reinforcement Learning: From TD(0) to Deep-Q-Learning

Updating Q-Values Instead of V -Values Suppose that the engineer wants to
update the Q-values of actions and not the V -values of states. Recall that Q(st , at)

is the system’s estimate of the average total reward (between st and the goal) to be
accrued if action at is applied to state st .

The reasoning behind the following formula is essentially the same as the
reasoning that led to the derivation of Eq. (18.3) that updated V -values. There is
thus no need to repeat the derivation. Suffice it to say that, once the action has been
taken and the immediate reward, rt , received, the estimate of the action’s value is
updated as follows:

Q(st , at) = Q(st , at) + α[rt + γQ(st+1, at+1) − Q(st , at)] (18.5)

Note that the new value depends not only on the immediate reward but also on
the estimated quality of the next state. Further on, let us remind ourselves that α is
a user-set constant and γ is a discounting factor.

SARSA Let us assume that the Q-values of all actions have been initialized and
that the agent begins at the starting state, s0 = S. At any given state, the agent
chooses the next action following the ε-greedy or soft-max strategy. Having chosen
the action, it executes it, receiving reward rt , and observing the next state, st+1. The
quality, Q(st , at), of action ai in state st is then updated by Eq. (18.5) from the
previous paragraph.

Note that the formula used to update the action’s Q-values depends on the
quintuple (st , at , rt , st+1, at+1). The letters have given the technique its name:
SARSA.

Q-learning The SARSA approach was presented here mainly for its instructional
value. Much more popular is its slightly modified version, known as Q-learning.
Practically the only difference is the assumption that in the new state st+1, the next
action is selected with the greedy strategy (which always picks the highest-valued
action) rather than ε-greedy or soft-max strategies.

This means that, instead of Eq. (18.5), the following one is used to update the
concrete Q-values:

Q(st , at) = Q(st , at) + α[rt + γ max
a

Q(st+1, a) − Q(st , at)] (18.6)

Both are summarized by the pseudo-code in Table 18.1.

Domains with Deterministic Rewards The attentive reader will recall that
Chap. 17 said that reinforcement learning is meant primarily for stochastic domains
where the rewards and/or the next states are determined probabilistically. In the
simple versions of our toy domains, however, both the rewards and next states could
be established deterministically. And indeed, such deterministic domains are often
encountered in realistic applications.

18.3 Temporal Difference in Action 381

Table 18.1 Pseudo-code of SARSA and Q-learning

Input: strategy for choosing the action: ε-greedy or soft-tmax,
parameters α and γ , and parameters ε or z of the employed strategy
for all state–action pairs, initialized values, Q0(si , aj), and counts, kij = 0.

1. Set t = 0, and determine the initial state, s0 = S.
2. Apply to st action at , selected by the user-specified strategy.
3. Observe the new state, st+1, and the reward, rt .
4. In the case of SARSA, assume that in the new state, st+1, action at+1 is chosen using the user-

specified strategy. In the case of Q-learning, assume that the best action is to be chosen. The
values are updated as follows:
SARSA: Q(st , at) = Q(st , at) + α[rt + γQ(st+1, at+1) − Q(st , at)]
Q-learning: Q(st , at) = Q(st , at) + α[rt + γ maxa Q(st+1, a) − Q(st , at)]

5. If s = G, start a new episode by going to 1; otherwise, set t = t + 1 and go to 2.

If this is the case, the fact that we do not need to estimate average returns leads
to a simpler formula for Q-learning:

Q(st , at) = rt + γ max
a

Q(st+1, a) (18.7)

18.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Write down the formula that updates Q-values. Discuss its behavior and param-
eters.

• Describe the principle of the SARSA approach to reinforcement learning. Where
did this name come from?

• What constitutes the difference between SARSA and Q-learning?
• Elaborate on the difference between domains with deterministic rewards and

domains with non-deterministic rewards. Write down the formulas for both of
them, and point out the difference.

18.3 Temporal Difference in Action

It is one thing to master the general principles; it is another to make them work
in concrete circumstances. Also, the successful engineer needs to have a good idea
about what kind of domains will primarily benefit from the given paradigm.

382 18 Reinforcement Learning: From TD(0) to Deep-Q-Learning

Main Steps in Implementing the Car Race A simple method of implementing
the car-race problem begins with choosing a grid covering the track and its
surroundings. Then a matrix is created whose each field represents one square of
the grid and contains the immediate reward received by an agent landing on this
square. In a simple implementation, the reward can be r = −1 for all squares that
find themselves on the track and r = −10 for those on the wall and outside the
track. The squares on the goal line can be assigned, say, r = 10.

In the next step, a lookup table for the states and their actions is created and its
Q-values (or V -values) initialized, perhaps by the optimistic initialization the reader
knows from Chap. 17. The user is then asked to provide the values of the various
parameters such as ε, α, γ , etc.

Then the program implementing SARSA or Q-learning can be started.

Impact of Rewards The way the rewards are assigned to the actions strongly
influences the learning process. Creative rewards will result in fast learning; poor
ones can render any learning impossible. The engineer’s success will to a great
degree depend on the way he or she conveys (by way of rewards) to the program
the idea of what should be done and what should be avoided. The flexibility of all
available possibilities is much higher than a beginner suspects.

In the car races, the rewards should reflect the imaginary driver’s goals. In the
highly simplified implementation from Sect. 18.1, the immediate rewards depended
only on “being on-track” (r = −1), “hitting a wall” (r = −10), or “reaching the
goal” (r = 10). Not knowing which direction to choose, the agent that learns from
these rewards wanders around aimlessly for quite some time.

Many improvements can be considered. For instance, the agent may receive
rewards that are higher if the car moves in the direction of the next curve. Also,
the rewards can be reduced if the car comes dangerously close to a barrier, and if it
hits the wall, the punishment can be made proportional to the angle of crash. Many
other such aspects can be formulated by an engineer knowledgeable of the given
application—and most of them will help speed up the learning process.

Another Popular Test-Bed: TSP Consider the traveling salesman problem (TSP)
from Fig. 18.1. The input is a set of N cities (usually N is much greater than
the six shown in the picture) and a table with the distances between all pairs

Fig. 18.1 The input of the
traveling salesman problem
consists of a set of cities with
known distances for all pairs.
The task is to find the shortest
path connecting all cities

18.3 Temporal Difference in Action 383

of cities. The task is to find the shortest path that connects all cities. Obviously,
brute-force number-crunching would have to investigate N ! alternative routes,
which is impossible for large N . Since many engineering problems can be easily
formulated within this framework, the TSP problem is a test-bed of choice for
innumerable algorithms such as high-level optimization, search techniques, and
swarm intelligence.

Stochastic TSP The traveling salesman, though popular by textbook writers, is
still only a simplification of reality. To begin with, the typical goal in textbooks is to
minimize the overall distance. In reality, the salesman may want to minimize time, a
quantity that is determined by distance only up to a certain degree. Other influences,
such as weather, road quality, and traffic, surely cannot be ignored. The costs of
moving from X to Y is then a random number; worse still, the value of this number
may change in time, such as when the traffic is heavy during peak hours and much
lighter at night.

There are no limits on the agent’s goals and intentions. The agent may also want
to minimize fuel, it may decide that it is enough to visit only 90% of the cities, and
so on. The number of variations is virtually unlimited.

All these circumstances make the task more attractive for reinforcement learning
than for many classical approaches, especially for those that rely on deterministic
analysis. The state is here the agent’s location (a city), plus perhaps some informa-
tion about which cities remain to be visited. The action is the decision about where
to go next. Finally, the reward is the time it takes to reach the next city.

The reader will find it a good exercise to figure out how to implement the
stochastic TSP task in terms of the episodic formulation and in terms of temporal-
difference learning.

What Constitutes a Good Application for This Paradigm? Car races, mazes,
and traveling salesmen have found their way into this text thanks to their instruc-
tional values. The world outside introductory instruction is different—though
perhaps less so than the pessimistic reader may fear. The engineer’s job often
consists in finding a way to map the problem at hand onto a problem he or she knows
how to handle. While it is unlikely that the readers will ever be asked to implement
the traveling salesman for their firm, many concrete problems can be reformulated
in terms of the goals and obstacles that the traveling salesman involves.

For a problem to be addressed by reinforcement learning, we need to know how
to cast it in terms of states and actions and how to allocate the rewards; the rest is
creativity. So far, we have been limited by the requirement that all states and actions
be discrete and that the lookup table has to be manageable. Later, we will realize
that even these limitations can be overcome.

384 18 Reinforcement Learning: From TD(0) to Deep-Q-Learning

18.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How would you implement the solutions to the classical problem of mazes and
car races? How will the learning efficiency be affected by the way the rewards
are assigned?

• Summarize the principle of the stochastic traveling salesman problem. How
would you address it by reinforcement learning?

• What are the typical characteristics of engineering problems that are suitable for
reinforcement learning?

18.4 Eligibility Traces: TD(λ)

Beyond the baseline versions of SARSA and Q-learning, more sophisticated
techniques are frequently used. Although eligibility traces fall rather under the
“advanced” rubric, let us acquaint the reader at the least with its basic underlying
ideas.

One-Step Temporal Difference The first section of this chapter suggested that
V -values be updated by V (st) = V (st) + α[R − V (st)]. The reward, R, was then
estimated by adding the immediate reward, rt , to the estimated average reward of the
follow-up state, V (st+1). Mathematically, this is expressed by R = rt + γV (st+1).
The reader will recall that the following formula was recommended:

V (st) = V (st) + α[rt + γV (st+1) − V (st)]

Let us denote the reward calculated in this manner by R(1) = rt +γV (st+1). The
superscript, “(1),” points out that apart from the immediate reward rt , one additional
term is involved: the value of the next state, st .

n-Step Temporal Difference The reader already knows that V (st+1) is just an
estimate of the average reward received in state st+1. This estimate can be more
accurately expressed as rt+1 + γ 2V (st+2), which is the immediate reward at state
st+1 plus the estimate of the average reward in the state that follows, V (st+2).
Substituting this into R(1), we receive the following:

R(2) = rt + γ rt+1 + γ 2V (st+2)

There is no reason to stop at this stage. We can just as well continue, applying
the principle recursively as long as we wish. In the end, we arrive at the following
formula:

R(n) = rt + γ rt+1 + γ 2rt+2 + . . . + γ nV (st+n) (18.8)

18.4 Eligibility Traces: TD(λ) 385

Instead of updating with the original R(1), we may update the V -value with R(n):

V (st) = V (st) + α[R(n) − V (st)] (18.9)

Averaging Out the Rewards R(n) We see that there are many ways to estimate
R, each for a different value of the superscript, (n). As every so often, in machine
learning, serious trade-offs are involved. The larger number of terms involved in the
calculation of R(n) seems to promise higher accuracy; but then, this may be nothing
but precise calculations with more numerous crude estimates, hardly a guarantee
of success. Not knowing how many terms to use, we may just as well calculate all
possibilities and then take the average.

R = R(1) + . . . R(n)

n
(18.10)

Discounted Averaging Upon reflection, the longer sequences (higher values of n)
will be deemed less reliable than shorter ones. It is, therefore, a common practice to
average the values with discounts. For this, yet another parameter is used, λ ∈ [0, 1].

Rλ
t = R

(1)
t + λR

(2)
t + λ2R

(3)
t + . . . + λn−1R

(n)
t (18.11)

Let us now make a few minor improvements. First, we will allow n to grow
beyond all limits (t ∞). Second, we will express the formula more succinctly with
the symbol for summation, �. Third, we will normalize all terms by (1 − λ) so as
to make the values to sum to 1. Putting all of this together, we obtain the following:

Rλ
t = (1 − λ)

∞∑

n=1

λn−1R
(n)
t (18.12)

In reality, of course, the number of steps in the episode is finite, and it makes
sense to replace in Eq. (18.12) all terms beyond the final step with λn−1Rt , where
Rt is the episode’s final reward. This leads to the following formula (T is the length
of the episode):

Rλ
t = (1 − λ)

T −t−1∑

n=1

λn−1Rt (18.13)

This, then, is the reward estimate to be used instead ofR in Eq. (18.2) that updates
the V -values in this more sophisticated approach.

Eligibility Traces Admittedly, Formula (18.13) is somewhat impractical for a
computer implementation. Realistic applications prefer to employ the principle in
the form of so-called eligibility traces. The idea is to maintain, at each time step t

386 18 Reinforcement Learning: From TD(0) to Deep-Q-Learning

and each state, s, its eligibility trace et (s), which indicates how eligible the given
state is for a value update.

At each step made by the agent in state s, the eligibility decays, which means that
it is reduced by a factor determined not only by the λ we have already encountered
but also by a user-specified γ ∈ (0, 1]:

et (s) = γ λet−1(s) (18.14)

A state that has not been visited for a long time has very small eligibility.
However, if the state is visited, during the agent’s random walk, its eligibility is
immediately increased by an increment of 1:

et (s) = et−1(s) + 1 (18.15)

Value Updates Made Dependent on Eligibility Traces Let us introduce the
concept of a TD error that for each state measures how much mistaken its current
value-estimate appears to be. In accordance with what this section has said about
state rewards, we will define it by the following equation:

δt = rt+1 + γVt (st+1) − Vt (st) (18.16)

The state’s value is then updated by an amount made proportional to the state’s
TD error and by the “strength” of its eligibility trace. More specifically, the state’s
value is changed by adding to it the following term:

Vt = αδtet (s) (18.17)

Here, another parameter, α, has been introduced, fulfilling essentially the role of
learning rate. Its concrete choice gives the engineer another level of flexibility in
controlling the learning process. Typical values will be from interval [0.05, 0.2].
TD(λ) Direct implementation of the eligibility-traces algorithm is somewhat com-
plicated, and common practice therefore relies on the much more practical algorithm
TD(λ) whose one episode is summarized in Table 18.2. TD(λ) has been proved to
be fully equivalent to the approach described in the previous paragraphs.

Detailed discussion of the whole approach would exceed the scope of an
introductory textbook. Suffice it to say that approaches based on eligibility traces
often result in faster convergence of the learning process.

TD(λ) has Alternatives: SARSA(λ) and Q(λ) The TD(λ) approach described
above carries out gradual updates of V -values; that is, it seeks to estimate average
rewards experienced at individual states.

Without going into detail, let us only briefly comment that the approach based
on eligibility traces can be applied also to mechanisms to update the Q-values of
actions. The names of these techniques are SARSA(λ) and Q(λ), and they can be

18.5 Neural Network Replaces the Lookup Table 387

Table 18.2 One episode of TD(λ)

Initialize t = 0 and s0 = S.

Before the first episode, the eligibilities of all states are e0(s) = 0.

1. At state st , choose action a by the ε-greedy or soft-tmax strategy.
2. Take action a, receive reward rt , and observe the new state, st+1.
3. Increment the state st ’s eligibility: et (st) = et (st) + 1.
4. Calculate TD error: δt = rt+1 + γVt (st+1) − Vt (st).
5. For all states, make the following updates:

Vt = Vt + αδt et (s)

et (s) = γ λet−1(s)

6. If the goal, G, has not been reached, set st = st+1 and go to 1.

cast as fairly straightforward extensions of TD(λ). Again, both are advanced, and as
such beyond the scope of this book.

18.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the term, n-step temporal difference. How do we average a set of
temporal differences for different values of n?

• Describe the mechanism that applies n-step temporal difference to updates v-
values. What is the basic principle of eligibility traces?

• Comment briefly on the advanced techniques known by the acronyms, TD(λ),
SARSA(λ), and Q(λ).

18.5 Neural Network Replaces the Lookup Table

Up till now, we have assumed that all states, even all actions, can be stored in a
lookup table. This is often unrealistic. To begin with, the number of states and
actions can be so big (billions or more) that it is impossible to store them all in
memory, let alone explore each of them experimentally. Moreover, the states or
actions can be drawn from continuous domains, which of course makes it impossible
to provide their complete list.

Tic-Tac-Toe Figure 18.2 illustrates the 3-by-3 version of the game. Two players
are taking turns, each placing one cross (the first player) or one circle (the second
player) on the board. The goal is to achieve a line of three crosses or circles—in
a column or in a row or diagonally. Whoever succeeds first wins. Suppose that in

388 18 Reinforcement Learning: From TD(0) to Deep-Q-Learning

Fig. 18.2 In tic-tac-toe, two players take turns at placing their crosses and circles. The winner is
the one who obtains a triplet in a line (vertical, horizontal, or diagonal)

the situation depicted on the left, it is the turn of the “crosses” player; the win is
achieved by putting the cross at the bottom left corner. If it was the opponent’s turn,
he or she would prevent this by placing there her circle.

Even in the very simple 3-by-3 version of the game, the lookup table is going
to be very large: each board position represents a state, and the number of states
and actions is here dictated by the implacable laws of combinatorics. To wit, the
player who begins has nine squares to choose where to place the cross; the opponent
can then place the circle at any of the remaining eight squares. In line with this
reasoning, we observe that the total number of different actions is upper-bounded
by 9 factorial.

While a lookup table of this size can still perhaps be considered, the situation
becomes unmanageable as we proceed to, say, a 50-by-50 board. Then we are clearly
beyond all reasonable limits, and an alternative solution has to be sought.

Pole Balancing Figure 18.3 illustrates what is known as the pole balancing
problem. A cart carries a hinge to which is attached a pole. The task is to prevent
the pole from falling by shifting the cart in either of the two directions. Each state
of the game is described by the following four variables: the cart’s location and
velocity, the pole’s angle, and the velocity of the angle’s change. As for actions,
there are only two: (1) apply force in the left–right direction and (2) apply force in
the right–left direction. The simplest version assumes that the actions are taken at
regular intervals, say, 0.2 s and that the magnitude of the applied force is always the
same. The goal is to prevent the pole from falling as long as possible; the reward is
proportional to the time before the fall.

The main problem with pole balancing is that the variables it relies on are
essentially continuous-valued. True, we can discretize each of them by dividing its
domain into small intervals, similarly as we did it in Sect. 2.4. This, however, would
result in loosing certain amount of available information, which would lower the
chances of reaching a good solution.

18.5 Neural Network Replaces the Lookup Table 389

Fig. 18.3 The task is to prevent the pole from falling by sending impulses from left to right or
from right to left as needed

States and Actions Rarely Visited The problem with the lookup table’s enormous
size is not just the difficulties of storing it in the computer memory. If the number of
states and actions is extremely high, then even a great number of episodes will fail to
visit then all; and many states perhaps have been visited, but only so rarely that their
V -values and/or Q-values are estimated based on clearly insufficient experience.
Put another way, the greater the number of states or actions, the greater the number
of experiments needed for reliable estimates of average rewards. Running all these
experiments in realistic time may be impossible.

Approximating the Lookup Table by a Neural Network In domains with
continuous variables and in domains with too many different states and actions,
common practice approximates the task by a neural network.

Quite a few possibilities can be considered. For instance, in some domains, each
state permits essentially the same set of actions—as in the maze problem where
only four actions were possible: up, down, left, and right. In this event one may
consider a scenario where the input of the network represents a state (described by
a vector of binary attributes), and the output represents actions. To be more specific,
each output neuron represents one action, and the action whose neuron outputs the
highest signal is then taken. For neural activation functions, either ReLU or LReLU
is typically used (rather than sigmoid).

Another implementation possibility assumes that the (binary) input vector has
two parts: one to represent the state and the other for the action. The output of
the network then gives the value of the action in the given state. In this case, the
backpropagated error is usually based on the loss function. For instance, one can
backpropagate log2 pi , where pi is the output of the i-th neuron when i-th action is
the correct one.1

1For activation functions and the backpropagated loss function, see Chap. 6.

390 18 Reinforcement Learning: From TD(0) to Deep-Q-Learning

18.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Provide an example of an application domain where the number of states and
actions prevents us from using a lookup table.

• How can the situation be handled by a neural network? What will be the
network’s input and what is its output?

18.6 Reinforcement Learning in Game Playing

Let us illustrate the use of a neural network in reinforcement learning using a famous
application that, in the 1990s, helped draw the attention of the scientific community
to the vast potential of these techniques.

Why Backgammon? The reader is sure to have heard of the game of Backgammon
whose one possible state is shown in Fig. 18.4. The reason the game is important
here is that it represents a really challenging test-bed. The number of states is very
high, in each state the player has the choice of several different moves, the next
state depends on the selected move only to a limited extent, and at each moment
a lot depends on the outcome of the rolled dice. For a long time, the game was
considered to be almost unsolvable for classical artificial intelligence. Even the idea
of reinforcement learning based on a lookup table appeared hopeless.

Then, in the late 1990s, the astonished world was informed that a machine-
learning program did beat the world champion, after all. The secret was to replace
the lookup table with a neural network.

Fig. 18.4 Backgammon: an
application where
reinforcement learning needs
to be helped by neural
networks

18.6 Reinforcement Learning in Game Playing 391

Backgammon’s Rules (Heavily Simplified) Let us briefly outline the essence of
the game’s rules. The board has 24 locations called points. Two players are taking
turns. One has 15 white pieces playing counterclockwise, starting from bottom left;
the other has 15 black pieces playing clockwise, starting from upper left. Each
player seeks to get all his or her pieces around the whole board: the white wants
them to end up in the upper-left corner, and the black them in the bottom left corner.

Rolling two dice, each player learns how far his or her pieces can be moved. For
instance, one piece can be moved by two points and the other by four. Usually, quite
a few alternative possibilities exist as to which pieces to move and how much. The
concrete choice is limited by the constraint that one is not allowed to land a piece
of a point that is already occupied by two of the opponent’s pieces. Experienced
players are adept at “speeding up” the movements of their pieces while impeding
those of the opponent.

The rules are more complicated than this, but further details are unimportant, for
the rest of the section.

Main Difficulty: Too Many States Obviously, the number of states in this game is
very high, dictated by what mathematicians sometimes call combinatorial explosion.
Moreover, in each state the player is to choose from quite a few actions. The
situation of anyone who wants a computer to learn to play this game is further
complicated by the randomness implied by the rolled dice.

Neural Network for Backgammon The simple network in Fig. 18.5 was used by a
famous reinforcement learning program that proved capable of learning to play the
game at the master level and beyond. Let us take a closer look.

Fig. 18.5 Backgammon: a neural network that plays the role of the lookup table is trained by the
TD error

392 18 Reinforcement Learning: From TD(0) to Deep-Q-Learning

The input is a feature vector that describes the state of the game. As mentioned
earlier, the board has 24 points, each of which is either empty or occupied by a
certain number of white and/or black pieces. In the game’s early implementation,
the one-hot representation was used, describing each point by eight bits, four for
white and four for black. If the point is occupied by no piece, all bits are set to zero.
If it contains, say, three white pieces and no black pieces, then the third “white” bit
is set to one, and all other bits are set to zero. Apart from these 24 × 8 = 192 bits,
the network has additional six inputs that represent certain special aspects that the
above summary of the rules did not mention. All in all, the 198 inputs are capable
of capturing any state of the game.

There is only one output neuron that for each state presented at the input layer
returns its V -value (for more about this, see the next paragraph). The network has
only one hidden layer containing a few dozen neurons.

State-Value Updates and TD Errors The attentive reader knows that, in the
simplest implementation, the V -values are updated by the following formula:

Vt+1(st) = Vt (st) + α[rt + γVt (st+1) − Vt (st)] (18.18)

The difference between the value at time t and the updated value at time (t +
1) is the TD error; it serves as the network’s error to be backpropagated after the
presentation of state, st , and after the calculation of its V -value update.

ET D(st) = Vt+1(st) − Vt (st) (18.19)

Eligible Traces Were Used Even the simple network described above was capable
of achieving surprising playing strength. To make it beat the strongest human
masters, however, additional “tricks” were needed. Among these, we can mention
the somewhat more advanced training approach based on the eligibility traceswhose
principle was outlined in Sect. 18.4.

18.6.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Summarize the main difficulties faced by an engineer seeking to implement a
Backgammon-learning program.

• Explain how the individual states can be described by a feature vector.
• Explain the principle of the TD error that was used during this network’s training.

18.7 Deep-Q-Learning 393

18.7 Deep-Q-Learning

In many games, each state can be represented by a two-dimensional matrix. The
winning chances of either player may then be indicated by tell-tale patterns that can
be discovered by neural networks, especially when deep learning has been used for
their training (see Chap. 16).

Another Test-Bed: GO Many readers will be acquainted with the game known as
GO whose one possible state is shown in Fig. 18.6. For our needs, the detailed rules
are unimportant. Suffice it to say that two players take turns, one with white stones
and the other with black; they try to place their stones on the board in a manner
that satisfies specific goals such as surrounding (and thus destroying) the opponent’s
pieces. The game is known to be so difficult that the field of artificial intelligence for
many years failed to develop a computer program that might compete with strong
amateur players, let alone masters.

TooMany States and Actions On the 19-by-19 board, the first player places his or
her stone on one out of the 19 × 19 = 361 fields. Then the opponent places a stone
on one of the remaining 360 fields, and so on. The numbers of states and actions are
here so enormous that a lookup table cannot even be considered.

Deep-Q-Learning to Discover Meaningful Patterns After long practice and deep
studies, strong human players become adept at seeing on the board specific patterns
that indicate which next move to consider. A glance at Fig. 18.6 will convince us
that these patterns are non-trivial and probably difficult to discover. Can they be
learned by a neural network?

Advanced visual patterns are typical of many other games, notably Atari-games
where perhaps the oldest attempts to employ deep learning were made. One way
to address the situation is to treat each 2-dimensional game-state as one computer-

Fig. 18.6 Each state in GO
can be understood in terms of
visual patterns. This
observation leads to the idea
to train a GO-playing neural
network by deep learning

394 18 Reinforcement Learning: From TD(0) to Deep-Q-Learning

vision image to be input into a convolutional neural network such as those we met
in Chap. 16.

Backpropagated Error in Deep-Q-Learning Suppose that an action at is taken
in state st , which results in state st+1 and immediate reward R(at , st). The reader
already knows that the quality of an action taken in a given state is the estimate of
its average reward, Q(at , st).

Let the highest-reward action at state st1 be at+1. Here is the estimated reward
of at in st as employed in Q-learning (note that the quality of the next state is
discounted by γ):

R(at , st) + γ max
at+1

Q(at+1, st+1)

This means that the mean squared error to be backpropagated through the
network is given by the following formula:

MSE = Q(at , st) − [R(at , st) + γ max
at+1

Q(at+1, st+1)] (18.20)

Network’s Architecture As always in neural networks, the engineer’s decision
about the concrete size and architecture can significantly affect the software’s
performance. The network’s complexity has to reflect the difficulty of the problem
at hand: neither too simple nor too big, that is the golden rule. We must not forget
that the more trainable parameters are involved, the larger training set is needed.

A lot of alternative solutions exist, offering a broad scope for creativity. For
example, one can represent the problem with a single matrix, but one can also
consider two cooperating matrices, one for white pieces and the other for black.
Convolution neural networks known from Chap. 16 are commonly employed here.

Famous Success Story It was something of a sensation when, in 2016, a program
called AlphaGo succeeded in beating the human world champion. The software used
two neural networks, one to choose the move and the other to predict the winner. All
in all, millions of synaptic weights had to be trained. In an early stage, the program
learned from numerous amateur games, later continuing the training by playing
against multiple versions of itself. Reinforcement learning helped it gradually to
improve until it reached the level of the strongest human players.

The very next year, 2017, an even stronger program was introduced under the
name of AlphaGo Zero. This was reported to have learned exclusively from playing
against itself. When doing so, it started with a totally random behavior and gradually
improved. After just a few days’ training, the program was strong enough to beat
even the previous program, AlphaGo. It clearly outperformed many centuries of
human experience, sometimes even discovering previously unknown strategies.

Later, the same learning principle was applied with similar success to other
games such as shogi or chess, easily reaching a world-championship level in all
of them. A genuine general-purpose learning system was born.

18.8 Summary and Historical Remarks 395

Optimistic Conclusion Until recently, many a domain was seen as an inviolable
domain of humans, totally beyond the reach of machine intelligence, which largely
relies on number-crunching power. From this perspective, the existence of programs
that beat human champions in Backgammon and GO is encouraging.

There is no doubt that reinforcement learning, coupled with deep learning, can
enhance human ingenuity well beyond yesterday’s dreams.

18.7.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Under what circumstance do we resort to deep-Q-learning?
• Comment on the architecture of the networks used in deep-Q-learning. What

error value is here typically backpropagated?
• Summarize the lessons from AlphaGo Zero.

18.8 Summary and Historical Remarks

• In many applications, the episodic approach from the previous chapter appears
somewhat cumbersome, which is why the more efficient temporal difference is
often preferred. The point is not to wait till the end of an episode, but rather learn
from immediate rewards.

• The most popular algorithms in temporal difference are SARSA and Q-learning.
Both focus on updating the Q-values of the actions. In domains with too many
actions, one can consider updating only the states’ V -values.

• When updating the V -values, the baseline temporal difference looks only one
step ahead. The more sophisticated approach of TD(λ) looks deeper, relying on
the so-called eligibility traces. Analogous approach is employed by SARSA(λ)
and Q(λ) that update the Q-values.

• The simplest versions of the techniques rely on lookup tables. Their practical
application was here illustrated on such test-beds as labyrinths, car races, and the
stochastic traveling salesman.

• In some domains, lookup tables are impractical. For one thing, the number of
different states and/or actions can be prohibitively high; for another, the states
and actions are described by continuous-valued variables which cannot easily be
represented by the rows in the lookup table. In these domains, the lookup table is
often approximated by a trainable neural network.

• The potential of reinforcement learning to master even very difficult tasks
was demonstrated by computer programs that learned to play such games as
Backgammon and Go at the level of the strongest human players.

396 18 Reinforcement Learning: From TD(0) to Deep-Q-Learning

• In some applications, the states can be described by two-dimensional matrices.
This is the case of such games as Atari or Go. In this event, the deep learning
techniques from Chap. 16 can be used to train the agent. One such approach is
called deep-Q-learning.

Historical Remarks The principle of TD(0) was introduced by Sutton (1988). The
slightly more sophisticated SARSAwas invented by Rummery and Niranjan (1994),
although the name itself came into use a few years later. The first journal publication
of Q-learning (including eligibility traces and Q(λ)) was by Watkins and Dayan
(1992), but the origin of these ideas seems to be from Watkins’s PhD dissertation in
1989. The advent of deep learning soon led to investigation of the possibilities it can
offer to reinforcement learning. Here, Mnih et al. (2015) deserve to be mentioned.
AlphaGo was developed in the same year by the company DeepMind.

18.9 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

18.9.1 Exercises

1. Calculate the number of state–action pairs in the tic-tac-toe example in Fig. 18.2.
How many states exist in the case of a 4-by-4 board?

2. Consider the simple maze from Fig. 17.2. Suppose that the values of all states
were initialized to V (si) = 0. Suppose, further, that the immediate reward is 1 for
the goal state and 0 for any other state. How will the V -values of the individual
state be updated during the agent’s first random walk? For value updates, use the
formulas from Sect. 18.1.

3. Repeat the previous exercise using SARSA and Q-learning. For value updates,
use the formulas from Sect. 18.2.

18.9.2 Give It Some Thought

1. Howmany episodes might be needed to solve the simple version of the tic-tac-toe
game shown in Fig. 8.7?

18.9 Solidify Your Knowledge 397

2. Suggest a few alternative ways of generating rewards of the car-racing domain
when addressed by temporal difference. How will each of them affect learnabil-
ity? What way of assigning rewards will make the learning faster?

3. Consider a difficult game of your own choice, perhaps chess or Go. How would
you represent the individual states of this game? What data structures would you
use?

4. There is a small difference in the formulas used for Q-value updates in SARSA
and Q-learning. Under what circumstance will the first be more appropriate than
the second, and under what circumstances will the second be more appropriate
than the first?

5. Section 18.4 introduced the idea of eligibility traces. What do you think about
the practical merits of this approach? Under what circumstances will it improve
learning, and under what circumstances will it do more harm than good?

18.9.3 Computer Assignments

1. Write a computer program that implements the principle of temporal difference.
Use this program to solve either the labyrinth or the car-racing problem from this
chapter.

2. Design an experiment that will compare the learning performance of temporal-
difference learning with that of episodic learning: choose an appropriate test-bed,
and experiment with different values of various parameters.

3. Consider the map of a big city. Starting at some point X, you need to reach point
Y . Typically, many different routes can be taken, each consisting of segments
of different lengths, traffic densities, and all sorts of obstacles including traffic
lights, potholes, and traffic accidents. You want to find the route that minimizes
time and fuel consumption.
How would you address this problem by the techniques from this chapter?
Design appropriate data structures, write the program (similar to the one from
the previous task), decide about the best way of assigning rewards, and then run
the learning algorithm.

Chapter 19
Temporal Learning

In classical concept learning, each training example is a vector of attribute values.
At a more advanced level, however, each example can be a series of such vectors.
For instance, one such series can represent the sine function and another may
represent an exponential function, and we want the computer to tell them apart.
Alternatively, the computer may be asked to alert the user that a pulse from source A
was immediately followed by a small growth in signal from source B. In both cases,
the goal is to recognize specific temporal patterns. This is why we need techniques
to enable temporal learning.

The two fundamental goals can be illustrated by the music metaphor where a
tune is understood as a series of signals. One possible task is to recognize a concrete
song; the other is to complete the tune upon hearing the first few bars.

The chapter first describes early attempts to address these goals by shift registers
and multilayer perceptrons. Then it proceeds to the later conception of recurrent
neural networks. Finally, the basic principles underlying the currently popular
mechanism of long short-term memory are introduced.

19.1 Temporal Signals and Shift Registers

Let us explain the two fundamental goals of temporal learning. Once this is
understood, we can proceed to some simple ways of dealing with them by traditional
machine learning.

Two Tasks Figure 19.1 illustrates the task of temporal learning. In the picture on
the left, each note is an example, but what interests us is their time-ordered series
because a tune is a sequence of notes. Domains of this kind present machine learning
with two basic tasks. The first is to train a classifier so that it recognizes what tune
this is. The second is to make sure that the classifier is able to complete the rest of
the tune as far as it “remembers” it. Here are the two goals:

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_19

399

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_19

400 19 Temporal Learning

Fig. 19.1 Left: the two fundamental tasks can be characterized as recognize the tune and complete
the tune. Right: the pattern is “pulse B follows pulse A”

Fig. 19.2 Each input of the neural network represents one time sample

1. Task 1: recognize the tune.
2. Task 2: complete the tune.

The right-hand part of Fig. 19.1 shows a more technical application where “pulse
B follows pulse A.” In domains of this kind, too, we either want to recognize a
pattern or complete the pattern.

Shift Registers A simple solution relies on what is somewhat inaccurately known
as shift registers. The principle is shown in Fig. 19.2 for the case of a single time-
ordered signal whose samples are presented at the input of a multilayer perceptron.
Here, the symbol ti refers to the i-th time instance. The reader has noticed that the
oldest sample (t1) is presented on the left, and the latest sample (tn) is presented on
the right.

Usually, the sequence of input signals is longer (perhaps much longer) than the
number of the MLP’s inputs. Of this sequence, only the first n signals are presented
at the beginning of the training session. For these n signals, the target value is
presented at the network’s output as indicated in Fig. 19.2.

19.1 Temporal Signals and Shift Registers 401

Once the network’s output has been compared with the target, and the error
backpropagated to the input, the sample of the input sequence is shifted to the right,
a new target value presented, and the error backpropagated. This is repeated until
the entire sequence has been presented.

Example Application: Reading English Text Pronunciation of a letter in an
English text depends on its context: on what precedes it and what follows. This
is why the input of the MLP in Fig. 19.3 consists of a 5-letter excerpt (note that a
space, too, is treated as a letter). Each output neuron represents one of the dozens
of English phonemes. The target vector consists of many 0s, and a singe 11 whose
location tells us which phoneme corresponds to the letter in the middle of the input
(in this case, this is letter “s.”).

A training example is represented by the presentation of one 5-letter sample,
together with the correct phoneme at the output. Next, the text is shifted by one
letter to the right so that “I” disappears from the network’s input on the left, and
instead a space appears on the right. The letter to be pronounced will now be “e.” In
this manner, the entire text is presented, one shift at a time, completing one epoch.
As usual, many presentations of the same text (many epochs) will be needed.

Figure 19.3 is only a simplification. In reality, more than one input will be needed
for each letter—for instance, its 16-bit definition in the ASCII code: in this case, the
five letters will require an 80-bit input. Proceeding to the next letter then means
shifting the input by 16 bits.

How Long Is the Context? As always, success will depend on a number of
parameters: the size of the hidden layer(s), the learning rate, and the choice of the
activation function. However, more important from the perspective of this section
are parameters related to the temporal context. Thus in the English-pronouncing
domain, the user has to specify the number of letters presented at the input—the five
in the above example may not be the best choice.

Fig. 19.3 Learning English
pronunciation. Each input is a
letter, each output a phoneme.
The text shifts from right to
left, one letter at a time

1This is what previous chapters called one-hot representation.

402 19 Temporal Learning

Fig. 19.4 One difficulty with the shift-registers approach is that the engineer may not be able to
specify the ideal length of the sampling interval

If the input is an analog signal, then the engineer has to specify the sampling
frequency. For one possible complication, see Fig. 19.4. Here, the task is to
recognize an electrical signal of a specific shape, and the network is presented with
discrete-time samples of this signal. Here is the problem: if samples are rare, they
may not capture the signal’s essence; if they are dense, then the substance can be
lost in excessive details.

Another Shortcoming Presenting the subsequent signals at the MLP’s input can
confuse the absolute position and the relative position. The following four-bit inputs
represent a specific pattern (a pulse surrounded by zeros), each time shifted by one
bit:

• 1st input: 0001
• 2nd input: 0010
• 3rd input: 0100
• 4th input: 1000

Although the pattern is always the same, only shifted by one bit at a time, the
network’s input is different after each shift.

19.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the principle of shift registers using the “pronunciation” domain. What
are the inputs and what are the outputs? What is actually being shifted?

• What parameter values does the user have to specify? What are the limitations of
this approach?

19.2 Recurrent Neural Networks 403

19.2 Recurrent Neural Networks

Much more flexible than the shift registers are recurrent networks where the input
receives some of the previous output or internal signals. Two baseline architectures
are shown in Fig. 19.5.

Bringing Back the Previous Output The intention behind recurrent neural net-
works is to offer a mechanism for implicit representation of time. In the upper part
of Fig. 19.5, this is accomplished by adding to the input also the network’s output
from the previous time step. Consequently, the network reacts not only to the current
feature vector but also to its own previous output. Practical experience shows that
this architecture is good if we focus on the complete the tune task defined in the
previous section.

Here is why it works. The input obtains information about the current input as
well as about the network’s response to the previous input. That one, in turn, also
contained, implicitly, the network’s reaction to even older inputs, and so on. At least
in theory, then, the memory might be very long.

Fig. 19.5 Two basic
implementations of recurrent
network. In the first, the
output signal is brought back
to the input, in the second, it
is the hidden-layer signal that
is brought back to the input

404 19 Temporal Learning

The recurrent links can have weights that can be trained just as in the classical
MLP; however, this is not necessary, and the network can still do a good job if all
the recurrent weights are permanently fixed to some small number such as 0.1.

Bringing Back the Previous Internal State Sometimes it is more reasonable not
to add to the input the previous outputs, but rather the network’s previous internal
state; this means to bring back the outputs of the hidden layer(s) as indicated in the
bottom part of Fig. 19.5, Again, the recurrent links may or may not have trainable
weights.

Practical experience shows that this architecture is good if our goal is to recognize
the tune as defined in the previous section. Again, the thinking is that the network
can remember even a very distant memory.

Being Flexible The two architectures from Fig. 19.5 can be combined: the net-
work’s input then consists of three groups of signals: (1) the current example’s
attributes, (2) the network’s previous output, and (3) the network’s hidden-layer’s
previous output.

This arrangement combines the advantage of both approaches, and practical
experience confirms that it can be used for both basic goals of reinforcement
learning. After all, to be able to complete the tune, we must first recognize it.
However, the number of inputs and the number of trainable weights can then become
impractically high.

Criticism When they first appeared, recurrent networks were greeted with a lot of
optimism. However, practical experience soon revealed that MLPs with recurrent
links could learn only short and simple patterns; long and complicated patterns
resisted. Of course, there was always the expectation that difficulties would be
overcome by an increased number of hidden neurons, and by using more hidden
layers, but this was only in theory. Practically speaking, a larger network means
more trainable weights, which, in turn necessitates larger training sets and many
more epochs—and, in the end, prohibitive computational costs. To conclude,
recurrent neural networks turned out to be capable of handling only relatively simple
tasks.

Today’s computers are much faster, but our ambitions have grown, too. A task
that was deemed advanced a generation ago, is from today’s perspective regarded
as quite simple. These techniques are no longer viewed as panacea capable of
addressing any major problem in temporal domains.

Perhaps the heaviest blow was the advent of deep learning, and of the long short-
term memory that will be introduced in the next section.

19.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

19.3 Long Short-Term Memory 405

• Draw the pictures of the two recurrent neural networks introduced in this section,
and explain how they are used.

• Discuss the strengths and shortcomings of the two architectures of recurrent
neural networks from this section.

19.3 Long Short-Term Memory

When they were first introduced, the techniques from the previous sections were
greeted with applause and anticipation. Soon, practical experience dampened the
enthusiasm; results were often disappointing. All theoretical arguments notwith-
standing, recurrent neural networks’ ability to remember a longer past was limited.

Fortunately, a more powerful technology was soon introduced: the long short-
term memory, LSTM. Its success is probably to be attributed to the ingenious way in
which it combines the two older approaches: shift registers, and recurrent network.

Recurrent Neuron The basic idea is something we already know: a neuron whose
output is carried back to its input. This can be implemented in many different ways.
Either the neuron’s own single output is presented at the input, all it is joined by the
outputs of some or all of the other neurons in the same layer—as was the case of
the network in the bottom part of Fig. 19.5. But whatever the variation, the principle
remains the same: the recurrent neuron.

Activation Function Perhaps the most common activation function in LSTMs
is the same sigmoid that was so popular in the first-generation multilayer
perceptrons.

Essence of LSTM Figure 19.6 shows the LSTM’s basic principle. Similarly as in
the case of shift registers, the different time samples are presented at the input layer
side by side. The reader will recall the example from Fig. 19.3 where the text “I see”
was presented so that “I” was on the left, and the last “e” was on the right.

Fig. 19.6 LSTM combines
recurrent neurons with shift
registers

406 19 Temporal Learning

These inputs are then passed on to the hidden layers of recurrent neurons in the
same manner that we saw in in Chap. 6. The picture shows two hidden layers; in
reality, there can be only one, but there can also be three or more, the number of
these layers being a user-specified parameter.

Note the links emanating from the hidden-layer neurons. The reader can see that
the neuron’s output is not only passed on to the next layer but also brought back
to the neurons’ inputs just like in classical recurrent networks. What is different,
though, are the ‘horizontal” arrows that indicate that the output is sent also to the
nearest neighbor to the right. This is perhaps the main difference between LSTMs
and MLPs.

The backpropagation-of-error training than follows the opposite direction than
the one indicated by the arrows. Note that this means that also the weights of the
“horizontal” links are trained.

Why It Works Previous paragraphs, as well as Fig. 19.6, make it clear that the
memory of older states is here preserved in a more systematic way than in the case
of plain recurrent networks.

Variations The number of variations on this theme is almost inexhaustible. As
always, in neural networks, the engineer can consider different numbers of hidden
layers and their different sizes. There can be many input signals or just a few,
meaning that instead of the five letters in the “I see” example, a longer excerpt can
be used. In the case of continuous input signals (recall Fig. 19.4), diverse sampling
frequencies can be used. The recurrent weights can be trainable or fixed.

19.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the principle of the recurrent neuron.
• Draw a picture of the generic architecture employed by the long short-term

memory. Explain how the signals are propagated through the network.
• Briefly discuss possible variations on this theme.

19.4 Summary and Historical Remarks

• One task that the previous chapters largely ignored is the need to identify a series
of input signals. The two generic tasks can be characterized as “recognize the
tune” and “complete the tune. Other possibilities include the requirement that a
difference between two input signals be correctly identified.

• The oldest approach to temporal learning was inspired by the shift registers
known from electrical engineering. The idea was to present samples of either

19.5 Solidify Your Knowledge 407

the entire signal or of its portion at the MLP’s input so that the oldest sample is
on the left and the newest sample is in the right.

• Another solution is known as the recurrent neural network. Two approaches
were presented here. One of them brings back to the MLP’s input the network’s
previous output. The other brings back the previous state of the hidden layer. The
two alternatives can be combined in a single network.

• Perhaps the most popular approach to induction of temporal patterns is the
principle of long short-term memory, LSTM, that can be seen as a combination
of the idea of recurrent networks with the idea of shift registers. The basic unit
of LSTM is the recurrent neuron.

• The principle of LSTM allows almost inexhaustible range of variations. In this
introductory text, only the basic ideas could be presented.

Historical Remarks The first attempts to address temporal learning by neural
networks with shift registers goes back all the way to the legendary book by
Rumelhart and McClelland (1986). Recurrent networks were studied just a bit later,
the oldest paper seems to be Elman (1990). The principle of long short term memory
was introduced by Hochreiter and Schmidhuber (1997).

19.5 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

19.5.1 Exercises

1. Chapter 6 once mentioned that artificial neural networks can be seen as visual-
izations of specific mathematical formulas. More specifically, Eq. 6.4 expressed
the network’s output as a function of its inputs. Can you write a similar formula
for the recurrent neuron?

2. Consider a recurrent neuron that has only one input signal (plus the recurrent
output value). Let the activation function be the classical sigmoid. What will
be the sequence of this neuron’s outputs if the input is the following sequence:
(0.1, 0.9, 0.1)?

19.5.2 Give It Some Thought

1. Figure 19.5 showed two competing versions of the recurrent neural network; one
of them bringing back the output signals of the previous example, the other the

408 19 Temporal Learning

hidden-neurons’ outputs. What difference in behavior does this apparently small
difference result in?

2. What exactly is the source of the added flexibility of the long short-term memory
networks? Why do they outperform classical recurrent neural networks?

3. How would you combine LSTMwith deep learning? Can you imagine a possible
application domain where such combination would be needed?

19.5.3 Computer Assignments

1. Implement the two versions of recurrent neural network from Fig. 19.5. Make
sure your program has an input parameter that tells it which of the two versions
it should implement, and perhaps even allowing the combination of the two.

2. Implement a simple version of the long short-term memory. User-specified
parameters include the number of inputs, and the number of (recurrent) hidden
neurons. Create a simple training set serving as a test-best on which to evaluate
your program.

3. As a potential test-bed, create a series of values representing concrete functions.
A good candidate is sin (ax) for different values of coefficient a. Can any of
the programs you implemented in the previous two questions be trained to
distinguish between sin (x) and sin (2x)?

Chapter 20
Hidden Markov Models

Some temporal patterns are difficult to detect, and to learn, because they are hidden:
only indirect clues are telling us what is going on under the surface. Problems of
this kind fall under the rubric of Hidden Markov Models, HMM.

Such a model is defined by a set of states and a set of observations. The agent
does not have direct knowledge of the system’s state, but it can guess it from the
known probabilities of the state-to-state transitions, and from the probabilities of
specific observations being made in individual states. Using the right probabilistic
formulas, the agent can calculate the likelihoods of concrete sequences of states
and/or observations under diverse circumstances. The task for machine learning is
to estimate all these useful probabilities from available training data.

The chapter begins with the much simpler Markov processes and uses them
to develop some initial understanding of how to handle the requisite calculations.
Building on these preliminaries, the remaining text explains the principles of the real
Hidden Markov Models. The three fundamental problems of HMM are presented,
together with their solutions, and some typical applications are described.

20.1 Markov Processes

Let us take a look at the so-calledMarkov processes that represent highly simplified
version of what this chapter is all about. Once we get used to the mechanism of
the calculations involved in this much simpler paradigm, the transition to Hidden
Markov Models will be quite natural.

Informal Definition Consider a series of time instances, t1, t2, . . . , ti , . . ., and
suppose that a system always finds itself at one out of two states: hot and cool.
Between any two times, ti and tt+1, the system can stay in its current state, or
transfers to the other state. The probabilities of these transitions are known. For

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_20

409

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_20

410 20 Hidden Markov Models

instance, we may be told that between ti and tt+1, the state will change from hot to
cold with 30% probability and that it stays hot with probability 70%.

Such a series of transitions is called a Markov process if the probability of the
system’s concrete state at time tt+1 depends only on the system’s state at the time
immediately preceding, ti , and not on any older history.

Numeric Example Suppose the system knows only two states, hot and cold,
and let the probabilities of state transitions be specified by the following table:

hot cold

hot 0.7 0.3

cold 0.2 0.8

The entries provide conditional probabilities. For instance, the probability of the
state becoming cold after having been hot is P(cold|hot) = 0.3. In each row,
the probabilities have to sum to 1 because the system either stays in its previous
state or changes into the new state; there is no other possibility. In this particular
example, only two states are considered, but the numbers in each row sum up to one
even in systems with more than just two states.

Matrix of Transitions, A Let us follow the formalism preferred by the field
of Hidden Markov Models, even though we are still dealing only with Markov
processes (where nothing is “hidden”). The previous table is captured by a matrix
A where rows represent the states at ti and columns represent the states at ti+1:

A =
[
0.7 0.3
0.2 0.8

]

Again, this means that the probability that the hot state (first row) will change
into the cold state (second column) is 0.3, which means 30%. Note that the first
row and the first column represent hot; and that the second row and the second
column represent cold.

Vector of Initial States, π History has to begin somewhere, at some initial state at
time t0. In our example, the initial state is either hot or cold, each with its own
probability. The vector of these probabilities is denoted by π . For instance,

π = [0.4 0.6]

This particular vector is telling us that the probability of the initial state being
hot is 40% and the probability of the initial state being cold is 60%.

20.2 Revision: Probabilistic Calculations 411

20.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• How is a Markov process defined?
• What do we understand under the term, transition probabilities and in what way

are these probabilities presented?
• What do we mean by the probabilities of initial states?

20.2 Revision: Probabilistic Calculations

Throughout the rest of this chapter, certain types of calculations will keep returning.
They are based on probabilistic notions that are rather elementary, but there is no
harm in revising them here.

Mutually Exclusive Events A die has been rolled. What is the probability that
it gives less than three points? This is easy to establish. The requirement of
less-than-3 is satisfied by two different outcomes: 1-point and 2-points,
each of them with probability of 1/6. Therefore, the probability of less-than-3
is 1/6 + 1/6 = 1/3.

The example illustrates an important concept from the theory of probability. The
outcomes 1-point and 2-points are mutually exclusive because they can never
occur at the same time. As we saw, the probability of either of them occurring is the
sum of their individual probabilities.1

Independent Events Suppose the die is rolled again. The outcome of this second
trial clearly does not depend on the previous trial. In this sense, the two events are
independent: the outcome of one does not depend on the outcome of the other.

The probabilities of independent events are obtained by multiplication. In the
specific case of rolling a die, the probability of both trials resulting in 1-point is
(1/6) · (1/6) = 1/36.

Example Revisited Previous section relied on an example system that can at each
moment be only in one out of two states, hot and cold. To generalize a bit, let us
denote the two states by X and Y .

The reader will recall that matrix A specified the probabilities of state transitions,
and that vector π specified the probabilities of initial states.

A =
[
0.7 0.3
0.2 0.8

]
π = [0.4, 0.6]

1By contrast, here is an example of two events that are not mutually exclusive: odd and
less-than-4. For instance, 3 is both odd and smaller than 4.

412 20 Hidden Markov Models

In the matrix, the first row and the first column represent X; the second row and
the column represent Y . In π , the first element is the initial probability of X; the
second element is the initial probability of Y .

Probability of s0 = X and s1 = Y Let the initial state (at time t0) be denoted by
s0; and let the state at time t1 be denoted by s1. Suppose that s0 = X, which then
changes to s1 = Y .

The two events, P(s0 = X) and P(s1 = Y |s0 = X), are mutually independent.
The probability of these two occurring at the same time is therefore obtained by
multiplication:

P(s0 = X) · P(s1 = Y |s0 = X)

Probability of a Concrete State at Time t1 In the previous paragraph, we knew
that the initial state was s0 = X. Suppose, however, that we do not know what the
initial state was. What can we say about the probability of state s1 = Y in this
situation? Put more formally, we want to know the probability P(s1 = x) that is not
conditioned on any previous state.

State X at time t1 can result from two mutually exclusive situations. The first is
that the initial state is X and the system stays in X; the second is that the initial state
is Y and the system changes to X. These two cases being mutually exclusive, the
resulting probability is calculated as the sum of the two contributing probabilities:

P(s1 = X) = P(X|X) · P(X) + P(X|Y) · P(Y)

= 0.7 · 0.4 + 0.2 · 0.6 = 0.28 + 0.12 = 0.4.

This means there is a 40% chance that the system’s state at time t1 is X. The
probability of the state Y at time t1 is calculated analogously:

P(s1 = Y) = P(Y |X) · P(X) + P(Y |Y) · P(Y)

= 0.3 · 0.4 + 0.8 · 0.6 = 0.12 + 0.48 = 0.6.

Note that P(s1 = X) + P(s1 = Y) = 1.

Matrix A Simplifies Notation So far, the calculations were expressed by condi-
tional probabilities. These probabilities are contained in the transition matrix, A,
and the probabilities of the initial states are contained in vector π . This simplifies
the notation. More specifically, the probability that the state at time t1 is s1 = X is
expressed as follows:

P(s1 = X) = a1,0π1 + a0,0π0

20.2 Revision: Probabilistic Calculations 413

Here, π0 is the probability that the initial state is X and a0,1 is the probability of
the transition from X to Y . Likewise, the probability of state Y at t1 is expressed as
follows:

P(s1 = Y) = a0,1π0 + a1,1π1

Probability of a Concrete State at Time t2 Let s2 be the state at time t2. State
s2 = X can result from s1 = X with no subsequent change; or from s1 = Y with
subsequent change from Y to x. Using, as before, the interplay between independent
events and mutually exclusive events the probability P(s2 = X) is calculated as
follows.

P(s2 = X) = P(s1 = X) · a0,0 + P(s1 = Y) · a1,0

Substituting for P(s1 = X) and P(s1 = Y) the results from the previous
paragraph, we obtain the following:

P(s2 = X) = [a1,0π1 + a0,0π0] · a0,0 + [a0,1π0 + a1,1π1] · a1,0

By way of a simple exercise, the reader may want to express P(s2 = X).

Probability of a Concrete State at Any Time ti The recursive nature of the
calculations is now obvious. In the general case of a state at time ti (for any i),
the two probabilities are calculated from those known for the previous time, ti−1:

P(si = X) = P(si−1 = X) · a0,0 + P(si−1 = Y) · a1,0

P(si = Y) = P(si−1 = X) · a0,1 + P(si−1 = Y) · a1,1

We will remember that the probabilities for each time are obtained from those for
the previous time. If we are asked to calculate, say, P(s4 = X), we simply start with
the probabilities of X and Y at time t0, then use them to calculate the probabilities
at time t1, and so on until we reach t4.

Once we get used to thinking in terms of this recursive pattern, we will find it
easier to establish the probabilities in the Hidden Markov Model, HMM.

20.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What does the theory of probability understand under mutually exclusive events?
What is understood under independent event?

414 20 Hidden Markov Models

• Derive the recursive formulas that calculate the probability of a concrete state at
times t0 and t1.

• Explain the recursive nature of the mechanism to calculate the probability of a
concrete state at any time, ti .

20.3 HMM: Indirectly Observed States

Now that are comfortable with the probabilistic calculations involved in Markov
processes, let us proceed to the full-fledged Hidden Markov Models, HMM. In this
model, we do not have any certainty about the system’s current state. The best we
can do is to develop some judgment based on indirect observations.

Matrix of Observations For simplicity, suppose the system can be in only two
different states,X and Y . We do not have direct access to them, but we make indirect
observations that we know are to some degree dependent on these states. Suppose
there are only two different observations, denoted as O0 and O1. The paradigm of
the HMM rests on the assumption that we know the probability of any of the given
observation in any state.

For instance, if the state is X, there may be a 20% chance of seeing O0 and a
80% chance of seeing O1; and if the state is Y , there may be a 90% chance of seeing
O0 and a 10% chance of seeing O1. These probabilities are stored in the observation
matrix, B:

B =
[
0.2 0.8
0.9 0.1

]

Here, states X and Y are represented by rows 0 and 1, respectively. Observations
O0 and O1 are represented by columns 0, and 1, respectively. We will denote by
bi(Oj) the probability of seeing Oj in the i-th state. For instance, b0(O1) = 0.8
(where the 0-th state is X).

Under the assumption that only the available observations can be made at any
given state (that no other observations are possible), the values in each row of matrix
B sum to 1.

Formal Definition of a HMM A hidden Markov model is defined by the initial-
states vector, π , the transition matrix A, and the observations matrix, B. This is
expressed by the following formula where λ is the HMM.

λ = (A,B, π) (20.1)

The theory of HMM focuses on a few basic tasks. In the simplest of them, the
values of the entries in A,B, and π are known, perhaps having been obtained by
experimentation. At a more ambitious level, the entries are obtained by machine
learning. The concrete procedure to estimate all these values is the ultimate goal of
this chapter.

20.3 HMM: Indirectly Observed States 415

Table 20.1 Basic quantities of hidden Markov models. Note that all indices start from 0. For
instance, if there are T time steps, the index of the last is T − 1

1. Time steps, t0, t1, . . . , tT −1. At time ti , the system finds itself in state si .
2. The model’s states, qi with i = 0, 1, . . . N − 1. At each time step, tj , there is some i such

that the system finds itself in state sj = qi .
3. Available observations, Vi , with i = 0, 1, . . . M − 1.
4. A concrete sequence of observations, O = O0, . . . , OT −1. For each observation, Oi ,

there is some j such that Oi = Vj .
5. State transition probabilities in matrix A.
6. Observation probabilities in matrix B.
7. Probabilities of initial states in vector π .

Quantities to Characterize a Given HMM Anybody’s first encounter with HMM
is discouraging because the number of the quantities employed in the analyses of a
concrete HMM is so high. It is impossible not to be confused. Once the readers get
used to all these symbols, however, the rest is easier than it seems.

For a quick reference, Table 20.1 summarizes the most important variables used
in the sections to come. The table is no dogma. Whenever possible (when there is
no danger of confusion), even simpler notation will be used.

Example of a HMM To get used to the meanings of some of these characteristics,
consider the following example. Johnny plays in the local chess club. He plays either
against strong players (S) or against weak players (W). These are the states of the
HMM. For instance, the programmer can decide that q0 = S and q1 = W . After a
game with a strong player, Johnny chooses with certain probability a week player, or
prefers another strong player; and likewise after a game with a weak player. These
probabilities are stored in the transition matrix, A.

The opponent’s strength affects the probability of each of the game’s possible
outcomes: V0=win, V1=loose, and V3=draw. These outcomes are the HMM’s
observations. The probabilities of the concrete observations for strong and weak
opponents are stored in the observation matrix, B.

Johnny plays one game a day. When he comes home, he tells his wife the result of
the game, not the strength of the opponent. In other words, she gets the observation,
Oi ; for instance, on Monday she may learn that O0=win. From a series of such
observations,O, made in the course of a week, and from the known π,A and B, she
can calculate the probability that, say, the first three players were strong and the last
three were weak.

Another Example of a HMM2 Suppose that systematic measurements of average
temperatures in a certain locality have been taken, and suppose these measurements

2This is borrowed from Mark Stamp’s Introduction to Machine Learning with Applications in
Information Security. CRC Press, Taylor & Francis Group, 2018.

416 20 Hidden Markov Models

indicate that some years are hot and others cold. Hot and cold represent the
system’s two states, q0 and q1. A hot year can be followed by another hot year,
or by a cold year; likewise, a cold year can be followed by another cold year or by a
hot year The probabilities of these changes are captured by the transition matrix A.
The values in this matrix have been established by systematic observations recorded
over the last century.

Research has established a probabilistic relation between temperatures and tree
rings. The tree rings will be our observations: V0=small, V1=medium, and
V2=large. In hot years, they tend to be larger than in cold year, but such relations
can only be probabilistic because the size of the tree rings may depend on other
circumstances, not just average temperature. The observation matrix, B, has two
rows, one for hot and one for cold, and it has three columns: for small,
medium, and large tree rings. For instance, the entry in the first row and first
column gives the probability of observing small tree rings in a hot year.

For distant past, the temperatures are not known, but tree rings are. If the
system is modeled as an HMM, we can draw probabilistic conclusions about the
temperatures in, say, the fifteenth century. True, we do not know the temperatures;
but we do know the sizes of the tree rings, and all the requisite probabilities.

Why do We Need HMM? Once we know all the probabilities defining the given
λ, we should be able to take the available sequences of observations, and use them
to answer simple questions such as “What is the probability of a certain state at t7?”
or “What is the probability of a certain sequence of states, such as XYX?” or “Given
a sequence of observations, what is the most likely series of the underlying states?”
or “What are the probabilities of observation sequences?”

From the machine-learning perspective, the most interesting question will ask
how to create the HMM-defining triplet, λ = (A,B, π). More specifically, for the
given training sequence of observations, what should the matrices A and B look
like? This is addressed by an algorithm known as Expectation Maximization, EM.
This algorithm is this chapter’s ultimate goal.

Real-World Applications of HMM The field of application domains is remark-
ably rich. Thus in finance, one may want to be able to guess a sequence of events
from observed changes in stock prices. In computer security, malware is known
to consist of a series of states that are reflected in specific observed behavior of
the affected computer. In bioinformatics, specific segments of a RNA are marked
by series of created proteins, and thus the properties of the resulting tissues. And
in computer video, one may want to reconstruct the original event based on an
observed sequence.

Rich field of applications is provided by speech processing. Here is an example.
In English, a word (e.g., “approximate”) is pronounced differently depending on
whether it is in the given context a verb or an adjective. The former is exemplified by
“the approximate value of x is 5,” and the latter is exemplified by “let us approximate
the resulting value.” For the English-speaking program to be able to decide which
of the two pronunciations to choose, the whole text first needs to be tagged: each
word has to be labeled as being noun, adjective, and so on. Of course, the

20.4 Useful Probabilities: α, β, and γ 417

tags do not follow each other at random; their time order follows certain patterns.
These can then be captured in a HMM where the tags are states and the words are
observations.

The reader has noticed one important thing: for the sake of simple explanation,
textbook examples involve only two or three states and two or three observations.
In realistic applications, these numbers are much higher.

20.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is matrix of transitions, and what is matrix of observations? How do we
define a concrete HMM?

• Suggest an example of a HMM, different from the two mentioned in this section.
What are its states and what are its observations?

• What typical questions will we want to answer using an HMM?

20.4 Useful Probabilities: α, β, and γ

This chapter began with some simple calculations related to plainMarkov processes,
just to make the reader accustomed to their recursive nature. This recursive nature
is typical also of the field of HMM where, however, the math is more complicated.

Joint Probability of O0 and qi at t = 0 Within a given HMM, what is the
probability that, at time t0, the system is in the i-th state, qi , and the observation
O0 is made?3 More formally, what is the joint probability P(O0, s0 = qi)?

Joint probability of X and Y is calculated as P(X, Y) = P(Y |X)P (X). In our
specific case, X is s0 = qi and Y is O0. The probability of the initial states is
provided by the π -vector; for the i-state, it is πi . Knowing that P(O0|s0 = qi) is
available in the B-matrix as bi(O0), we arrive at the following answer:

P(O0, s0 = qi) = α0(i) = πi · bi(O0) (20.2)

Note that the quantity is denoted here by α0(i) where index 0 refers to the initial
time step, t0, and the argument i refers to the i-th state, qi .

Probability of O0 We have established the joint probability of O0 and s0 = qi .
The same observation could be made at any state. The system’s different states are

3Following Table 20.1, we should say, “. . . probability that at t0, the j -th observation is made,
O0 = Vj .” The author believes he can simplify here the formalism without becoming ambiguous.

418 20 Hidden Markov Models

mutually exclusive events, which means that the overall probability of O0 is the sum
of the α-values for all individual states:

P(O0) =
N−1∑

i=0

α0(i) (20.3)

Joint Probability P(O0,O1, s1 = qi) Let us consider the next time step, t1. The
observations at times t = 0 and t = 1 are O0 and O1, respectively. We want to know
the joint probability of these observations and s1 = qi . In the spirit of the previous
paragraph, the result will be denoted by α1(i).

Again, the probability of O1 being made in state qi is available in the B-matrix
as bi(O1). State s1 = qi can result from a set of mutually exclusive events: any
initial state, s0 = qj , followed by the transition from qj to qi . The probability of
this transition is provided in the A-matrix as aj,i .

Recall that α0(j) is the probability of O0 and s0 = qj . Given that the initial
observation was O0, the probability of s1 = qi is obtained by multiplying the values
of α0(j) (for each s0 = qj) by the probability, aj,i , of the transition from qj to qi .

P(O0, s1 = qi) =
N−1∑

j=0

α0(j) aj,i (20.4)

The B-matrix informs us that for any state qi , the probability of O1 is bi(O1).
Combined with the last equation, we can establish the joint probability of O0,O1
and s1 = qi as follows:

α1(i) = [
N−1∑

j=0

α0(j) aj,i] · bi(O1) (20.5)

Calculating Alpha: Joint Probability P(O0,O1, . . . , Ot , st = qi) The reasoning
from the previous paragraphs is easily generalized to all the subsequent time steps.
It can be easily proved that the value of αt (i) can be calculated from αt−1(i), which
is the value calculated for the previous time step, t − 1:

αt (i) = [
N−1∑

j=0

αt−1(j) aj,i] · bi(Ot) (20.6)

Probability of a Given Series of Observations We are ready for one of the major
results. To wit, for the given HMM defined by some λ, we are able to establish the
probability of any sequence of observations, O = (O0,O1, . . . , Ot). For this, we

20.4 Useful Probabilities: α, β, and γ 419

only need to sum, at the final time step T − 1, the alphas for all the individual states
(they are mutually exclusive events):

P(O|λ) =
N−1∑

i=0

αT −1(i) (20.7)

Defining Beta Whereas α involves the sequence of observations from the initial
state to some t = T , quantity β deals with the sequence of observations from some
time step t to the end of the sequence. Let to define this more formally.

Suppose that, at time step t , the system’s state is st = qi . What is the
probability that this state will be followed by the sequence of observations,
Ot+1,Ot+2, . . . , OT −1? We want to know the value of the following conditional
probability:

βt (i) = P(Ot+1,Ot+2, . . . , OT −1|st = qi) (20.8)

Calculating Beta Suppose that, at time t , the system is in state st = qi . In the
next step, this state is converted to any other state, qj , with probability αi,j known
from the A-matrix. In any of these new states, the probability of observation Ot+1
being made in the new state is bj (Ot+1). These new states being mutually exclusive
events, the probability of the given observation Ot+1 is obtained by the following
sum:

P(Ot+1|st = qi) = �N−1
j=0 ai,j bj (Ot+1) (20.9)

Multiplying this by βt+1(j), which is the probability of all the remaining
observations,Ot+2, . . . , OT −1 for the next state, st+1 = qj , we obtain the following
recursive formula for the calculation of β:

βt (i) = �N−1
j=0 ai,j bj (Ot+1)βt+1(j) (20.10)

Defining and CalculatingGamma Again, suppose that in a HMM specified as λ =
(A,B, π), the following series of observation was made: O = (O0,O1, . . . , Ot).
What is the probability that, at time t , the system’s state is st = qi? The answer
follows from the previous definitions of αt (i) and βt (i). The former gives the
probability of the given observations until time t , the latter gives the probability
of the remaining observations after time t . These being independent of each other,
the resulting probability is the product of the two probabilities.

As we want to establish the probability of st = qi only within the given series of
observations, O, we must not forget to divide the result by the probability that this
series of observations is made, under the given HMM. This probability is written as
P(O|λ):

γi(i) = αt (i) · βt (i)

P (O|λ)
(20.11)

420 20 Hidden Markov Models

The attentive reader will recall that Eq. (20.7) established that the probability in
the denominator is obtained as the sum of all the alphas at the final time step, T −1:

P(O|λ) =
N−1∑

i=0

αT −1(i)

20.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• In plain English, explain the meaning of the probabilities established here by the
calculations of α and β.

• Derive the recursive formulas for the calculations of α and β.
• What is the meaning of γ ? Write down the formula calculating its value and

explain why it looks like this.

20.5 First Problem and Second Problem of HMM

The probabilities denoted by α and β provide the foundations that help us solve
what is known as the first problem of HMM and the second problem of HMM. Let
us explain the concrete algorithms.

First Problem of HMM Given a hidden Markov model λ = (A,B, π), what is
the probability that the series of observations O = (O0, . . . , OT −1) will be made?

Mathematically speaking, the solution is provided by Eq. (20.7). However, the
value of αT −1(i) is not immediately known, and can only be established recursively.
This is the task for the algorithm whose pseudo-code is in Table 20.2. The procedure
is known as the forward pass, a term that reminds us of the way the α-probabilities
are propagated from the initial time step, t0, to the final time step, tT −1.

At the beginning, we use Eq. (20.2) to establish α-values at the initial time step
for all states, qi . From these, the α-values for time t = 1 can be obtained by
Eq. (20.6), and so on until the final time step, T − 1, is reached. Once all values
of αT −1(i), are known, the probability of the given series of observations, O, is
obtained by Eq. (20.7).

Backward Algorithm to Find Beta Before proceeding to the second HMM-
problem, we need an algorithm to calculate all β-values. The pseudo-code is in
Table 20.3.

20.5 First Problem and Second Problem of HMM 421

Table 20.2 Solution to the first problem of HMM by the forward algorithm

Problem 1.
For a given λ = (A,B, π), what is the probability of observing O = (O0, . . . , OT −1)?
Solution.

1. For all states qi , calculate the α0(i) at the initial time step:

α0(i) = πi · bi(O0)

2. For all the remaining time steps, t = 1, . . . , T − 1, and for all states qi , calculate αt (i)

recursively by the following formula:

αt (i) = [
N−1∑

j=0

αt−1(j) aj,i] · bi(Ot)

3. Calculate P(O|λ) = ∑N−1
i=0 αT −1(i)

Table 20.3 Backward algorithm to calculate β-values

Solution.
βt (i) is the probability of that the sequence of observations, O = (Ot+1, . . . , OT −1), will
be made if, at time t , the system is in state st = qi .

1. βT −1(i) = 1;
2. βT −2(i) = �N−1

j=0 ai,j bj (OT −1) βT −1(j)

.

.

.

3. βt (i) = �N−1
j=0 ai,j bj (Ot+1) βt+1(j)

We know that, for any given state qi , the value of βt (i), can only be established
recursively because, for each value, we first need to know the value in the next time
step, βt+1(i). This was established in Eq. (20.10).

At the same time, it is obvious that, in the last time step, T − 1, this probability
has to be 100%. The algorithm to find all β-values therefore starts by initialing
βT −1(i) = 1 for all states, qi . These values are then backpropagated to time T − 2,
then T − 3, all the way down to βt (i) at time t .

Second Problem of HMM Given a hidden Markov model λ = (A,B, π), and a
series of observations, O = (O0, . . . , OT −1) what is the probability that the system
has gone through the series of states, q0, . . . , qT −1?

One of the useful quantities introduced in the previous section is γi(i), the
probability that, at time t , the system is in state st = qi (for the given HMM
and the given series of observations). Equation 20.11 shows how to calculate this
probability from the known α-values and β-values. In view of this, the solution of
HMM’s second problem does not present any difficulties.

422 20 Hidden Markov Models

Table 20.4 Solution to the second problem of HMM

Problem 2.
For a given λ = (A,B, π), and a series of observations, O = (O0, . . . , OT −1), what is the
probability of a given series of states, q0, . . . , qT −1?
Solution.

1. For each st in the series, calculate the values of αt (i) and βt (i).
2. Calculate the probability of the given observation, P(O|λ).
3. Calculate, γt (i) = P(st = qi |O, λ): the probability that the system is at time t in state qi :

γt (i) = αt (i)βt (i)

P (O|λ)

4. The probability of the given sequence of states is the product of the γ -values of the
individual states in this sequence.

As indicated in the pseudo-code in Table 20.4, it is enough to calculate α-values
and β-values for each state in the given sequence and then use them to calculate the
corresponding γ -value for each state. Given that the states in different time steps
are independent events, the probability of the entire sequence is the product of the
probabilities of the individual states.

Most Likely State at Time t The knowledge of γ -values can be used in the search
for the most likely sequence of states underlying a given series of observations. To
find the answer, we simply calculate for each time step t , the most likely state:

X
(best)
t = max

i
γt (i) (20.12)

The most likely sequence of states is the sequence of Xbest
t ’s for all time steps t .

The term, “most likely” in this context means the minimum number of differences
between the true states at times t , and the states established asX

(best)
t by the previous

equation.

20.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the definition of the first problem of HMM? Summarize the forward
algorithm capable of solving it.

• Summarize the backward algorithm that establishes the β-values for a given st =
qi and for a given series of observations.

• What is the definition of the second problem of HMM? Summarize the algorithm
capable of solving it.

• How would you find the most likely sequence of states underlying the given
series of observations?

20.6 Third Problem of HMM 423

20.6 Third Problem of HMM

Up till now, this chapter always assumed that the probabilities in A,B and π

are known. This, however, is not necessarily the case. Fortunately, they can be
estimated. The concepts developed in the previous sections will help us address
the HMM’s ultimate challenge: how to use observational data in creating the model.

Third Problem of HMM For a given series of observations,O = (O0, . . . , OT −1),
find the model, λ = (A,B, π).

The reader can see the difference between this problem and the previous two.
Whereas the previous two focused on practical applications of a known HMM, this
one seeks to use available observations to create the underlying HMM by estimating
the values in the A-matrix, B-matrix, and π -vector. Strictly speaking, only the third
problem (and not the first two) is a machine-learning task.

Defining Di-gamma The presentation of the solution will be easier if we introduce
yet another “Greek probability”: di-gamma, which is something similar to the γ -
value from the previous section, but with two arguments instead of just one.

For a given λ = (A,B, π) and a series of observations, O = (O0, . . . , OT −1),
we define γ (i, j) as the probability that a system will at time step t be in state
st = qi , and at time step t + 1 in state st+1 = qj . The reader by now experienced
enough to establish the formula to calculate this quantity:

γt (i, j) = at (i) ai,j bj (Ot+1) βt (j)

P (O|λ)
(20.13)

The relation between γt (i) and γt (i, j) is obvious:

γt (i) = �N−1
j=0 γt (i, j) (20.14)

Expectation Maximization To begin with, λ = (A,B, π) is initialized—in the
simplest case, to random values. After this, the solution to HMM’s third problem is
obtained in the course of a series of alternations between two steps: expectation and
maximization.

In the first step, expectation, existing values of A and B are used to calculate
the probabilities αt (i), βt (i), γt (i), and γt (i, j) that were introduced in the previous
sections. In the second, these values are used to predict the most likely observations;
these being different from the real observations, some corrections of λ are necessary.
These corrections are made by the second step, maximization (Table 20.5).

Re-calculating A-Matrix Let us remind ourselves of what the A-matrix repre-
sents: the entry ai,j gives the probability of transition from state qi to state qj . Based
on the current version of the HMM, and based on the given series of observations,

424 20 Hidden Markov Models

Table 20.5 Expectation maximization for the solution of the third problem of HMM

Problem 3.
For a given series of observations, O, find the model, λ = (A,B, π).
Solution.

1. Initialize λ = (A,B, π). In the simplest implementation, random values are used.
2. Compute the probabilities αt (i), βt (i), γt (i), and γt (i, j) for all time steps t , and for all

states qi and qj .
3. Re-estimate λ = (A,B, π) based on the observations.
4. If P(O|λ) has increased, return to step-2. Otherwise, stop.

Note. Step-2 represents expectation and step-3 represents maximization.

this is recalculated as the number of observed transitions from state qi to state qj ,
divided by the number of times the system was in state qi :

ai,j = �T −2
t=0 γt (i, j)

�T −2
t=0 γt (i)

(20.15)

Note that the summations have to stop at t = T − 2 which is the second-to-last
time instant because there is no transition from the last state, sT −1.

Re-calculating B-Matrix Let us remind ourselves of what the B-matrix repre-
sents: the entry bi(Oj) is the probability of seeing Oj in state i. Based on the
current version of the HMM, and based on the given series of observations, these
probabilities are estimated as follows:

bj (k) = �Ot=k; γt (j)

�T −2
t=0 γt (j)

(20.16)

Note that the denominator sums all γ ’s, whereas the numerator sums the γ ’s only
for times in which observation Ok was made. Put another way, the fraction divides
the number of “correct” observations by the number of all observations.

20.6.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is known as the the third problem of HMM? In what way is it different from
the previous two?

• Explain the principle of the Expectation Maximization approach as employed in
this context. Which of its steps is expectation and which is maximization?

• What is di-gamma? Write down the formula that calculates its value.
• How exactly are the values in the A-matrix and B-matrix updated? Write down

the formulas.

20.8 Solidify Your Knowledge 425

20.7 Summary and Historical Remarks

• Markov process is a system that, in discrete time intervals, proceeds from one
state to another, but each state depends only on the previous state, and on older
history.

• Hidden Markov Models, HMM, generalize Markov processes in the sense that
we now do not have direct access to the systems’ states, but only to observations
from which the probabilities of the individual states can be inferred.

• HMM is defined as the triplet λ = (A,B, π) where A is the matrix of transitions,
B is the matrix of observations, and vector π gives the probabilities of the initial
states.

• The three fundamental problems of HMM include (1) the probabilities of
observation sequences, (2) the probabilities of state sequences, and (3) the
question how to establish the entries in the A-matrix and B-matrix.

• To help answer the fundamental problems, mathematicians have identified some
critical probabilities, known as α. β, γ , and di-γ .

• For the solution of HMM’s first problem, the forward algorithm finds the α-
values or all states at the final time step. The sum of these α-values then gives the
probability of the given observation sequence.

• For the solution of HMM’s second problem, the backward algorithm finds the
β-values for all states and times. Together with α-values, these are then used in
a formula that calculates γt (i) which is the probability of qi at time step t . The
probability of a given sequence of states is the product of these γt (i)’s found in
the individual time steps.

• The third problem of HMM is addressed by the expectation maximization
algorithm. Based on observational data, expectation calculates all values of α.
β, γ , and di-γ . Once this is done, maximization seeks to improve the values in
the A-matrix and B-matrix.

Historical Remarks The paradigm of Hidden Markov Models predates modern
machine learning. The basic theoretical model was first studied by Baum and Petrie
(1966), but the major impetus came with its application to speech recognition by
Baker (1975). The author has learned a lot from the book by Stamp (2018).

20.8 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

426 20 Hidden Markov Models

20.8.1 Exercises

1. Suppose that a Markov process is defined by the following probabilities of state
transitions and initial states:

A =
[
0.7 0.3
0.2 0.8

]
π = [0.4, 0.6]

The state corresponding to index 0 is x and the state corresponding to index 1
is y. What is the probability that the system’s state at t = 1 will be y?

2. Add to the A-matrix and π -vector from the previous exercise also the following
B-matrix:

B =
[
0.2 0.8
0.9 0.1

]

For instance, the probability of seeing O1 in state q0 is 80%.
What is the probability that the first two observations in the series are O1 and

again O1, and that the state at t = 1 is s1 = q0?

20.8.2 Give It Some Thought

1. Suggest an example (different from those mentioned in this chapter) of a system
that can be analyzed using the formalism of HMM. What are its states and
observations? What sequences of states and observations can the system learn
from?

2. In the maximization step of the solution of HMM’s third problem, the values
in the A and B matrices are updated using Eqs. (20.15) and (20.16). Give a
verbal explanation of why these formulas indeed tend to improve the contents of
these two matrices. Of course, your explanation should go deeper than the text in
Sect. 20.6.

3. Suggest a stopping criterion for the algorithm that solves the third problem of
HMM in Sect. 20.6 (not just the pre-specified number of iterations).

20.8.3 Computer Assignments

1. Write a Markov-process program that, using the A-matrix and the π -vector, will
calculate the probability of any state at any time step.

2. Consider a HMM described by some λ = (A,B, π). Write a program that for a
given series of observations calculates all α-values and β-values.

20.8 Solidify Your Knowledge 427

3. Write a program that uses the α-values and β-values obtained in the previous
step to solve the first and second problems of HMM.

4. Write a program implementing the solution to the third problem of HMM. Pay
attention to the program’s input parameters: series of observations, initial values
of λ = (A,B, π), and perhaps the number of iterations to serve as the stopping
criterion.

Chapter 21
Genetic Algorithm

Machine learning, in all its methods and applications, essentially searches for a best
solution to a given task. The goal can be a classifier, a technique to optimize an
automated agent’s behavior, or even some knowledge gleaned from unlabeled data.
In the past, many of these problems were addressed by search techniques borrowed
from the field of Artificial Intelligence.

This chapter presents a powerful alternative: the genetic algorithm, inspired by
the principles of Darwinian evolution. While the principle is easy to understand, the
paradigm is flexible enough to be applied to a broad range of problems. Once the
baseline version has been explained, and its behavior understood, the chapter shows
how to employ it in a typical machine-learning application.

21.1 Baseline Genetic Algorithm

Let us first briefly describe the general principle, relegating the details of its
implementation to the next section.

Underlying Philosophy This section assumes that an engineering problem can be
represented by a chromosome, typically a string of bits that are sometimes referred to
as “genes.” The genetic algorithm operates with a population of chromosomes, each
describing one individual which can be a classifier or an agent capable of responding
adequately to changes in its environment or any other machine-learning application.

Fitness function assigns to each individual a value that quantifies the chro-
mosome’s performance. Different fields are accustomed to different terminology.
Instead of “fitness function,” some literature prefers the terms “survival function” or
“evaluation function.”

Genetic Algorithm’s Endless Loop The principle is shown in Fig. 21.1. At each
moment, there is a population of individuals, each with a survival value calculated

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4_21

429

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-81935-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-81935-4_21

430 21 Genetic Algorithm

Fig. 21.1 Genetic
algorithm’s endless loop.
Each individual has a certain
chance of survival. Survivors
find mating partners and
generate new individuals by
recombining their genetic
information. Chromosomes
can be corrupted by mutation

by the fitness function; this value determines the size of the segment assigned to
the individual in a “wheel of fortune.” Fate throws darts at the wheel, each throw
choosing for survival one individual. It is important to appreciate the probabilistic
nature of the process. While the chances of an individual with a large segment are
high, the game is non-deterministic. Just like in the real world, a specimen with
excellent genes may perish in a silly accident, while a weakling can make it just
by good luck. It is only in the long run, and in a large population, that the laws of
probability succeed in favoring the genes that promise high fitness.

The surviving specimens then choose “mating partners.” In the process of mating,
the chromosomes of the participating individuals are recombined, and this gives
rise to a pair of new chromosomes. These new chromosomes may subsequently be
subjected to mutation, which adds noise to the strings of genes.

The whole principle is summarized by the pseudo-code in Table 21.1.

How the Endless Loop Works Once a new population has been created, the
process enters a new cycle in which the individuals are subjected to the same wheel
of fortune, followed by mating, recombination, and mutation. The story goes on and
on until stopped by an appropriate termination criterion.

Again, note the probabilistic nature of process. A low-quality chromosome may
survive the wheel of fortune by a fluke; but if a child’s fitness remains low, the
genes will perish in subsequent generations. Alternatively, however, some of an

21.2 Implementing the Individual Functions 431

Table 21.1 Pseudo-code of the genetic algorithm

initial state: a population of chromosomes (“individuals”)

1. The fitness of each individual is evaluated. The fitness values then decide (probabilistically)
about each individual’s survival.

2. Survivors find mating partners.
3. New individuals (“children”) are created by the recombination of the chromosomes of the

mating partners.
4. Chromosomes are corrupted by random mutation.
5. Unless a termination criterion is satisfied, the algorithm returns to step 1.

unpromising individual’s genes may prove to be useful when embedded in the
context of different chromosomes resulting from recombination. By giving them
an occasional second chance, the process enjoys remarkable flexibility.

21.1.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the principle of the genetic algorithm. How are individuals described?
What is meant by the term, “survival chance”?

• Summarize the basic loop of the genetic algorithm.
• What is the advantage of the probabilistic nature of the survival as compared to

its hypothetical deterministic implementation?

21.2 Implementing the Individual Functions

How to implement the genetic algorithm in a computer program that consists of the
survival game, mating process, chromosome recombination, and mutation? Let us
discuss here only some simple solutions, relegating more advanced techniques to
later sections.

To begin, we will consider chromosomes in the form of binary strings, such as
[1 1 0 1 1 0 0 1], where each bit represents a property that is either present,
in which case the value is 1, or absent, in which case it is 0. Thus in a simplified
version of the “pies” problem, the first bit may indicate whether or not crust is
thick, the second bit may indicate whether or not filling is black, and so on.

Initial Population The most common way of creating the initial population
employs a random-number generator. Sometimes, the engineer can rely on some
knowledge that may help her create initial chromosomes known to be more
representative than randomly generated strings. In the “pies” domain, this role can

432 21 Genetic Algorithm

be played by the descriptions of the positive examples. However, what we need is
an initial population that is sufficiently large and has sufficient diversity.

Fitness Function Genetic algorithms assume that there is a way to estimate for
each specimen its survival chances. In some applications, these chances can be
obtained by experimentation such as in game playing where the the individuals can
“fight it out.” In other domains, survival fitness is calculated by a user-specified
function whose output depends on the chromosome’s contents. For instance, if the
chromosome represents a classifier, the fitness function may return the percentage
of the training examples that the classifiers labels correctly.

Implementing the Wheel of Fortune An individual’s survival is determined
probabilistically. Here is how to implement the “wheel of fortune.” Let Fi denote the
i-th individual’s fitness so that F = �iFi is the sum of all individual’s fitness values.
These are then arranged along the interval (0, F]. A random-number generator is
asked to return some r ∈ (0, F]: the sequential number of the sub-interval “hit” by
r then points to the winner.

The method is illustrated by Fig. 21.2 for a population of four specimens and
a random number landing in the third interval: individual 3 is thus selected. If we
want 20 specimens to survive, we generate 20 random numbers whose locations in
(0, F] decide which individuals to copy in the “pool of survivors.”

Whereas specimens with small fitness are thus likely to get eliminated, those
with higher fitness can appear in the pool of survivors more than once. In biology, an
individual can survive only once, but the pragmatic world of computer programmers
easily accepts the possibility that the same individual “survives” twice, three
times—or many times.

Mating Operator The survival game is followed by mating. In nature, an animal
chooses its partner by such criteria as strength, speed, or sharp teeth. Something
similar is accomplished in a computer implementation with the help of the fitness
function. There is a difference, though: the notion of gender is usually ignored—any
chromosome can mate with any other chromosome.

Fig. 21.2 The axis represents a population of four individuals whose fitness values are 8, 5, 9, and
3, respectively. Since the randomly generated number, 15, falls into the third sub-interval, the third
individual is selected

21.2 Implementing the Individual Functions 433

An almost trivial mating strategy will pair the individuals arbitrarily by gener-
ating random pairs of integers from interval [1, Ns] where Ns is the size of the
population. This fails to do justice to the requirement that specimens with high
fitness should perhaps be deemed more attractive. A simple way to reflect this in a
computer program is to order the individuals in the descending order of their fitness,
and then to pair the neighbors in this list.

Yet another strategy proceeds probabilistically. It takes the highest-ranking
individual, then chooses its partner using the mechanism employed in the survival
game—see Fig. 21.2. The same is done for the second highest-ranking individual,
then for the third, and so on, until the new population has reached the required
size. Higher-valued individuals are thus likely (though not guaranteed) to mate with
other high-valued individuals. Sometimes, the partner will have a low quality (due
to the probabilistic selection), but this gives rise to diversity that allows the system
to preserve valuable chromosome chunks even if they have the bad luck of currently
sitting in low-quality specimens.

Chromosome Recombination: One-Point Crossover The simplest way to imple-
ment chromosome recombination is by the one-point crossover operator that swaps
parts of the parent chromosomes. Suppose that each chromosome consists of n bits
and that a random-number generator has returned integer i ∈ [1, n]. Then, the
last i bits in the first chromosome (its i-bit tail) are replaced with the last i bits
in the second chromosome and vice versa. A concrete implementation can permit
the situation where i = n, in which case the two children are just replications of
their parents. In the example below, the random integer is i = 4, which means that
4-bit tails are exchanged (the crossover point is indicated by a space).

1101 1001
0010 0111

⇒ 1101 0111
0010 1001

The operator is meant to ensure that the children are similar to their parents. This
is the case especially when the exchanged tails are short.

In some applications, the recombination operator is applied only to a certain
percentage of individuals. For instance, if 50 pairs have been selected for mating,
and if the probability of recombination has been set by the user as 80%, then only
40 pairs will be subject to recombination, and the remaining 10 will just be copied
into the next generation.

Mutation Operator The task for mutation is to corrupt the inherited genetic
information. Practically speaking, this is done by “flip-flopping” a small percentage
of the bits in the sense that 0 is changed to 1 and the other way round. The concrete
frequency of these mutations is set by the user. Suppose that this parameter requires
that p = 0.001 of the bits should on average be mutated. The corresponding
program module will then for each bit generate a random integer from the interval
[1, 1000]. If this integer equals 1, then the bit’s value is changed, otherwise it is left
alone.

434 21 Genetic Algorithm

Consequence ofMutation What frequency of mutations we need? At one extreme,
very rare mutations will hardly have any effect. At the other, high mutation
frequency may disrupt the genetic search by damaging too many chromosomes.
If the frequency is 100%, then mutation only creates a mirror image of the current
population. Mutation probability of 50% essentially causes the genetic algorithm to
degenerate to a random-number generator.

Mutation serves a different purpose from that of recombination. In the one-point
crossover, no new information is created, only existing sub-strings are swapped.
Mutation introduces some new twist that may result in something previously absent
in the population.

Long-Living and Immortal Individuals One shortcoming of the above procedure
is that very good individuals may be replaced by lower-valued children, which
means that a good solution may get lost, even if only temporarily. To prevent this
from happening, we sometimes instruct to program to copy the best specimens
into the pool of survivors alongside their children. For instance, the program
may directly insert in the new generation 20% best individuals, and then create
the remaining 80% by applying the recombination and mutation operators to the
remaining individuals. One may also consider the possibility of ignoring, say, the
bottom 5%. In this way, not only will the best specimens live longer (they may
even become “immortal”), but the program may be forced to get rid of very weak
specimens that have survived by mere chance.

21.2.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the main task of the survival game and how would you implement it in a
computer program?

• Describe a simple mechanism to implement the selection of the mating partners.
Describe the recombination operator, and the mutation operator.

21.3 Why It Works

Let us now offer an intuitive explanation of why the genetic algorithm so often
succeeds in finding good solutions to engineering problems.

Function Maximization The goal of the simple problem in Table 21.2 is to
find the value of x for which the function f (x) = x2 − x is maximized. Each
chromosome in the second column of the upper table is interpreted as a binary-
encoded integer whose decimal value is given in the third column. The fourth

21.3 Why It Works 435

Table 21.2 One generation in the genetic algorithm

Suppose we want to find the maximum of f (x) = x2 − x. Let x be an integer represented
by a binary string. The initial population consists of the four strings below. For each string, the
table gives its integer value, x, the value of function f (x), the survival chances (proportional to
f (x)), and the number of times each exemplar was selected (by the survival game) for the next
generation.

Initial Survival Actual
No. population x x2 − x chance count

1 0 1 1 00 12 132 0.14 1

2 1 1 0 0 1 25 600 0.50 2

3 0 1 0 0 0 8 56 0.05 0

4 1 0 0 1 1 19 342 0.31 1

Average 282

Maximum 600

Suppose the neighboring specimens mated, exchanging 1-bit tails and 3-bit tails, respectively,
as dictated by the randomly generated tail lengths (the crossover sites are indicated by spaces).
No mutation was used here. The last two columns give the values of x and f (x) for the new
generation.

After Mate Tail New
reproduction with length population x x2 − x

0 1 1 0 0 2 1 0 1 1 0 1 13 156

1 1 0 0 1 1 1 1 1 0 0 0 24 552

1 1 0 0 1 4 3 1 1 0 1 1 27 702

1 0 0 1 1 3 3 1 0 0 0 1 17 289

Average 425

Maximum 702

The reader can see that the value of the best specimen and the average value in the entire
population have increased.

column gives the corresponding f (x) whose relative value, shown in the fifth
column, then determines for each individual its survival chances. For example, the
first specimen has f (x) = 122 − 12 = 132 and the relative chances of survival
(in this population) are 14% because 132/(132 + 600 + 56 + 342) = 0.14. The
rightmost column tells us how many times each individual has been selected (by the
wheel-of-fortune survival game) for inclusion in the next generation.

In the next step, the survivors choose their mating partners. Let us simply pair the
neighboring specimens: the first with the second, and the third with the fourth. Then,
the random selection of the crossover point decides that 1-bit tails be exchanged in
the first pair and 3-bit tails in the second. No mutation is applied. The result is shown
in the bottom table where the last three columns show, respectively, the new binary
strings, their decimal values, and the values of f (x). Note that both the average and
the maximum value of the fitness function have increased.

Do Children Always Outperform Their Parents? Let us ask what caused this
improvement. An intuitive answer is provided by Fig. 21.3 that shows the location

436 21 Genetic Algorithm

Fig. 21.3 After exchanging 4-bit tails, two parent chromosomes (upper strings) give rise to two
children (lower strings). There is a chance that at least one child will “outperform” both parents

of two parents and the values of the survival function, f (x), for each of them (dashed
vertical lines). When the two chromosomes swap their 4-bit tails, two children are
created, each relatively close to one of the parents. The fact that the children have
higher f (x) than the parents begs the question: is this always the case?

Far from that. All depends on the length of the exchanged tails and on the shape
of the fitness function. Imagine that in the next generation the same two children
get paired with each other and that the randomly generated crossover point is at the
same location. Then, these children’s children will be identical to the two original
strings (their “grandparents”). This means that the survival chances decreased back
to the original values. Sometimes, both children outperform their parents; in other
cases, they are weaker than their parents; and quite often, we get a mixed bag. What
matters is that in a sufficiently large population, the better specimens are more likely
to survive; the selection process favors individuals with higher fitness, f (x). Unfit
specimens will occasionally make it, but they lose in the long run.

Are Children Similar to Parents? If the exchanged tails are short, the children’s
decimal values are close to those of their parent chromosomes; long tails cause
the children to be much less similar to parents. As for mutation, its impact on the
distance between the child and its parent depends on which bit is mutated. If it is
the leftmost bit, the mutation causes a big jump along the horizontal axis. If it is the
rightmost bit, the jump is short. Either way, mutation complements recombination.
Whereas the latter tends to explore the space in the vicinity of parent chromosomes,
the former may look elsewhere.

Shape of the Fitness Function Figure 21.4 illustrates two pitfalls related to the
fitness function. The function on the left is almost flat. The fact that different
individuals have virtually the same survival chances then defeats the purpose of the

21.4 Premature Degeneration 437

Fig. 21.4 Examples of two fitness functions that are poor guides for the genetic search. The one
on the left is too flat, and the one on the right contains isolated narrow peaks

survival game. When the survivors are selected from a near-uniform distribution, the
qualities of the winners will not give them perceptible advantage. This drawback can
be mitigated by making f (x) less flat. There are many ways to do so, one possibility
being to replace f (x) with, say, f (x) = f 2(x).

The function in the right-hand part of Fig. 21.4 is marked by isolated narrow
peaks. If the parent lies just at a hill’s foot, the child may find itself on the opposite
side of the peak which, in this case, will go unnoticed. We see that we need some
gradual ascent toward the function’s maximum. This second pitfall is more difficult
to prevent than the previous one.

21.3.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain how the location of the crossover point determines how much the
children differ from their parents.

• Explain how the mutual interplay between recombination and mutation may
affect the survival chances. Show, also, how they depend on the concrete shape
of the survival function and on the location of the parents.

21.4 Premature Degeneration

Suppose the genetic algorithm has reached a value that does not seem to improve
over a series of generations. Does this mean that the ultimate solution has been
found? Not really. The plateau may be explained by other circumstances.

438 21 Genetic Algorithm

Premature Degeneration Simple implementations stop the algorithm after a
predefined number of generations. A more sophisticated version will keep track
of the highest fitness achieved so far, and then terminate the search if this value no
longer improves.

There is a catch, though. The fact that the fitness value has reached a plateau may
not guarantee that a solution has been found. Rather, the plateau may be indicative
of the so-called premature degeneration. Suppose that the search from Table 21.2
resulted in the following population:

0 1 0 0 0
0 1 0 0 1
0 1 0 0 0
0 1 0 0 0

What are the chances of further improvement? Recombination will not get us
anywhere. If the (identical) last two chromosomes mate, their children will only
copy their parents. If the first two are paired, then 1-point crossover will only swap
the rightmost bit, an operation that does not create a new chromosome, either. The
only chance of progress is offered by mutation which, if it affects appropriate bits,
can reignite the process. For instance, this may happen after the mutation of the third
bit in the first chromosome and the fourth bit (from the left) of the last chromosome.
Unfortunately, mutations are rare, and to wait for the useful ones to happen may
prove impractical.

Preventing Premature Degeneration Premature degeneration has a lot to do with
the population’s diversity. The worst situation is the one in which all chromosomes
have exactly the same bit strings, something the engineer wants to avoid. Any
computer implementation will therefore benefit from a module that monitors the
population and takes action whenever its diversity drops below a certain level.
A simple way to do so is to calculate the average similarity between pairs of
chromosomes, perhaps by counting the bits with the same value in both strings.
For instance, the similarity between [0 0 1 0 0] and 0 1 1 0 0] is 4 (four
bits are equal) and the similarity between [0 1 0 1 0] and [1 0 1 0 1] is
0.

Reduced diversity is not yet a reason for alarm. Thus a function-maximization
process may have reached a stage where most specimens are already close to the
maximum. This kind of “degeneration” is certainly not “premature.” The situation
is different if the best chromosome still represents a far-from-perfect solution. In
this event, we suspect premature degeneration, which forces us to increase diversity.

Increasing Diversity Several strategies can be followed. The simplest just inserts
in the current population some newly created random individuals. A more sophisti-
cated approach will run the genetic algorithm on two or more populations in parallel,
in isolation from each other. Then, either at random intervals or whenever premature
degeneration is suspected, a specimen from one population will be permitted to
choose its mating partner in a different population—the programmer then must
not forget to implement a mechanism that decides in which of the two parent

21.5 Other Genetic Operators 439

populations to place the children. Yet another solution will temporarily increase
(significantly) the mutation rate.

Impact of Population Size The size of the population should reflect the needs
of the concrete application. As a rule of thumb, small populations need many
generations to reach good solutions, and they may prematurely degenerate. Very
large populations are robust against degeneration, but they may incur impractical
computational costs.

The number of chromosomes is kept constant throughout the algorithm’s run, but
this is no dogma. We have already seen that, when degeneration is suspected, one
possible solution is to enrich the population by additional chromosomes.

21.4.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• In what way does the success of the genetic algorithm depend on the concrete
choice of the fitness function? What are the two main pitfalls? How would you
handle them?

• What criteria to terminate the run of the genetic algorithm would you recom-
mend? What are their advantages and disadvantages?

• What is premature degeneration? How can it be detected and how can the
situation be rectified? What is the impact of the population’s diversity?

• Discuss the impact of the population size.

21.5 Other Genetic Operators

So far we have considered only the baseline version of the genetic algorithm and its
operators. Now that the reader understands the principle, we can take a look at some
more sophisticated possibilities.

Two-Point Crossover The one-point crossover from the previous section is a
special case of the much more common two-point crossover. Here, the random-
number generator is asked to return two integers that define two locations in the
binary strings. The parents then swap the sub-strings between these two locations as
illustrated below (the locations of the crossover points are indicated by spaces).

110 110 01
001 001 11

⇒ 110 001 01
001 110 11

440 21 Genetic Algorithm

The crossover points can be different for each chromosome. In this event, each
parent will “trade” a different sub-string of its chromosome as indicated below.

1 101 1001
001 001 11

⇒ 1 001 1001
001 101 11

Random Bit Exchange Yet another variation on the recombination theme is
random bit exchange. Here, the random-number generator selects a user-specified
number of locations, and the genetic algorithm swaps the bits at these locations:

1 1 0 1 1 0 0 1
0 0 1 0 0 1 1 1

⇒ 1 0 0 1 1 1 0 1
0 1 1 0 0 0 1 1

The reader has noticed that the second and sixth bits (counting from the left) were
swapped. Note that nothing will happen if the leftmost bit is exchanged because it
has the same value in both chromosomes. The number of exchanged bits can vary
but most applications prefer this to be much less than the chromosome’s length.

Common practice combines two or more recombination operators. For instance,
the selected pair of parents will with 50% probability be subjected to a 2-
point chromosome, with 30% probability to random bit exchange, and with 20%
probability there will be no recombination at all.

Inversion While the recombination operators act on pairs of chromosomes, other
operators act on individuals. One such operator is mutation; another is inversion.
In a typical implementation, the random-number generator returns two integers that
define two locations in the binary string (as in the 2-point crossover). Then, the
sub-string between the two locations is inverted as shown below.

110 110 01 ⇒ 110 011 01

Note that the order of the zeros and ones in the sub-string between the third and
the seventh bit (counting from the left) was reversed. The location of the two points
determines how much inversion the chromosome is impacted. If the two integers are
close to each other, say, 4 and 7, only a small part of the chromosome is affected.

Inversion is used to supplement mutation. For instance, the probability that a
given bit is mutated can be set to 1% whereas each chromosome may have a 0.5%
chance to see its random sub-string inverted. Similarly as with mutation, inversion
should be used rarely so as not to destroy the positive contribution of recombination.

Inversion and Premature Degeneration When the program gets trapped in
premature degeneration, inversion is better than mutation at extricating it. To see
why, consider the following degenerated population.

0 1 0 0 0
0 1 0 0 1
0 1 0 0 0
0 1 0 0 0

21.6 Advanced Versions 441

Inverting the middle three bits of the first chromosome, and the last three bits of
the second chromosome will result in the following population:

0 0 0 1 0
0 1 1 0 0
0 1 0 0 0
0 1 0 0 0

The reader can see that the population’s diversity has indeed improved. There-
fore, when you suspect premature degeneration, just increase, for a while, the
frequency of inversions, and perhaps also that of mutations.

21.5.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• Explain the differences between one-point crossover, two-point crossover, and
random bit exchange.

• In what specific aspect is recombination different from mutation and inversion?
• How does inversion affect the program’s behavior?

21.6 Advanced Versions

The genetic algorithm is a versatile paradigm that allows almost infinite range of
variations. This section will introduce some of them.

Abandoning Biological Constraints Computer programs do not have to copy
biology. Quite often, the engineer discards some of the living world’s limitations
in the same way that early aviators shrugged off the need for feathered wings. We
have already encountered one such violation when permitting some specimens to
become “immortal” by copying them into the new generation alongside with their
children. Let us take a look at some others.

Lamarck’s Alternative In the baseline version, new chromosomes result only
from the application of such operators as recombination or mutation. Throughout
the individual’s life, its chromosome then remains unchanged. One pre-Darwinian
biologist, Jean-Baptiste Lamarck, proposed something more flexible. In his view,
evolution might be driven by the individuals’ needs: a giraffe that keeps trying to
reach topmost foliage will stretch his neck that will thus become longer; and this
longer neck is then passed on to the offspring. While untenable in the realm of

442 21 Genetic Algorithm

biology, the hypothesis makes sense elsewhere. Thus a researcher that publishes a
scientific paper leaves to posterity the knowledge acquired during her life.

Importantly from our technological perspective, Lamarckian evolution is much
faster than the classical Darwinian process; this is why we sometimes implement
it in the genetic algorithm. The simplest way to incorporate this concept in the
general loop from Fig. 21.1 is to place the “Lamarckian” operator between the
“wheel of fortune” and recombination. The task for the operator is to improve the
chromosome by adaptation. For instance, one can ask what happens if a certain bit
gets flipped-flopped by mutation. Whereas mutation by itself is irreversible, we can
add flexibility by testing, beforehand, what happens when any bit is changed, and
then choose the best option.

Multi-population Search One motivation for multi-population search has to do
with the many parameters that control the genetic algorithm. Most of the time, the
engineer has to rely only on her intuition and experience. Alternatively, she may
subject the same initial population to several parallel runs of the algorithm, each
with its own mutation frequency, with or without inversion, with a different mixture
of recombination operators, or with a modified fitness function. Among the many
alternatives, some will reach the solution faster than the others.

The attentive reader will recall that multi-population search was also mentioned
as a possible solution to the problem of premature degeneration. In that particular
context, the idea was to let two or more populations evolve in an isolation
punctuated by occasional interbreeding. Note that this interbreeding may not be a
straightforward operation if each population represents the individuals by different
chromosomes (e.g., by different attributes). The programmer then has to write a
special program module for the conversion from one population to another.

Strings of Numbers, Strings of Symbols Chromosomes do not have to be
binary strings; they can consist of numbers or symbols just as well. The same
recombination operators as before can then be used, though mutation may call for
some creativity. Perhaps the most common kind of mutation in numeric strings is
to use “noise” superimposed on some (or all) of the chromosome’s “genes.” For
instance, if all locations contain numbers from the interval [0, 100], then the noise
can be modeled as a random number from [−a, a] where a is a user-set parameter
that plays here a role similar to that of mutation frequency in binary strings. Here is
how it can work:

before mutation 10 22 17 42 16

the “noise” −3 1 −2

after mutation 10 19 18 40 16

The situation is slightly different if the chromosomes are strings of symbols.
Here, mutation can replace a randomly selected symbol in the chromosome with

21.6 Advanced Versions 443

Fig. 21.5 Tree-structure representation of a candidate expression from the “pies” domain from
Chap. 1

another symbol chosen by the random-number generator. For instance, when applied
to chromosome [d s r d w k l], the mutation can change from r to s the
third symbol from the left, the resulting chromosome being [d s s d w k l].

Also possible are “mixed” chromosomes where some locations are binary, others
numeric, and yet others symbolic. Here, mutation usually combines the individual
approaches. For instance, the program selects a random location in the chromosome,
determines whether the location is binary, numeric, or symbolic, and then applies
the appropriate type of mutation.

Chromosomes Implemented as Tree Structures In some applications, strings
of bits, numbers, or symbols are inadequate; a tree-structure may prove more
appropriate. This, for instance, is the case of classifiers in the form of logical
expressions—see the example in Fig. 21.5 where the following expression is
represented by a tree-like chromosome.

(shape=circle ∧ crust-size=thick) ∨ ¬ crust-shade=gray

The expression consists of attributes, the values of these attributes, and the logical
operators of conjunction, disjunction, and negation. Note how naturally this is cast
in a tree structure whose internal nodes carry out the logical operations and leaves
contain attributes and their values. Recombination swaps random subtrees. Mutation
can affect the leaves: either attribute names or attribute values or both. Another
possibility for mutation is occasionally to replace ∧ with ∨ or the other way around.

Special attention has to be devoted to the way the initial population is generated.
The programmer should make sure that the population already contains some
promising logical expressions. One possibility is to create a group of random
expressions and to insert in them parts of the descriptions of the positive examples.
The survival function (to be maximized) can be defined as the classification accuracy
on the training set.

444 21 Genetic Algorithm

21.6.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What is the difference between the Darwinian and Lamarckian evolution pro-
cesses? Which of them is faster?

• What weakness is remedied by the multi-population genetic algorithm? In what
way do multiple populations address this weakness?

• Howwould you implement the mutation operator if the chromosome is a “mixed”
string of bits, numbers, and symbols?

• How would you implement the recombination and mutation operators in domains
where chromosomes have the form of tree data structures?

21.7 Choices Made by k-NN Classifiers

Let us discuss a possible application of the genetic algorithm to a concrete machine-
learning problem.

Attribute Selection and Example Selection Recall that the success of the k-NN
classifier depends on the quality of the stored examples (some can be noisy or less
representative) and also on the choice of the attributes to describe these examples
(some can be redundant or irrelevant).

The problem of choosing the right examples and attributes is easily addressed
by the genetic algorithm. To be able to use it, however, we have to decide how to
represent the problem in terms of chromosomes, how to define the fitness function,
and how to implement the recombination and mutation operators. We also have to
be clear about how to interpret (and utilize) the results of the genetic search.

Chromosomes to Encode the Problem A very simple approach will divide the
binary chromosome into two parts: each bit in the first part corresponds to one
training example, and each bit in the second part corresponds to one attribute
(Fig. 21.6). If the value of a certain bit is 0, the corresponding example or
attribute is ignored; if it is 1, the example or attribute is employed. The fitness
function is designed in a way that seeks to maximize classification performance
with the minimum number of 1’s in the chromosomes (i.e., the minimum number of
examples and the minimum number of attributes).

This approach may require impractically long chromosomes in domains where
the training set has many examples and many attributes: if the training set consists of
ten thousand examples, ten thousand bits are needed. A better solution will opt for
the more flexible variable-length scheme where each element in the chromosome
contains an integer that points to a training example or an attribute. The length
of the chromosome equals the number of relevant attributes plus the number of
representative examples. The mechanism is known as value encoding.

21.7 Choices Made by k-NN Classifiers 445

Fig. 21.6 Each individual is described by two chromosomes, one for examples; the other for
attributes. Recombination is applied to each of them separately

Interpreting the Chromosomes We must interpret these pairs of chromosomes
correctly. For instance, the specimen [3,14,39],[2,4] represents a training
subset consisting of the third, fourteenth, and thirty-ninth training examples,
described by the second and fourth attributes. When such specimen is used to define
a classifier, the program selects the examples determined by the first chromosome
and describes them by the attributes pointed to by the second chromosome. The
distances between vectors x = (x1, . . . xn) and y = (y1, . . . , yn) are calculated
using the formula:

D(x, y) =
√

�n
i=1d(xi, yi) (21.1)

where d(xi, yi) is the contribution of the ith attribute (of course only the attributes
found in the chromosome are employed). For numeric attributes, this contribution
is d(xi, yi) = (xi − yi)

2; for Boolean attributes and for discrete attributes, we may
define d(xi, yi) = 0 if xi = yi and d(xi, yi) = 1 if xi �= yi .

Fitness Function The next question is how to determine each individual’s survival
chances. Recall that we want to reduce the number of examples and attributes
without compromising classification accuracy. These requirements may conflict
with each other because, in noise-free domains, the entire training set tends to give
higher classification performance than a reduced set. Likewise, removing attributes
is hardly beneficial if each of them provides relevant information.

The involved trade-offs ought to be reflected in fitness-function parameters that
allow the user to specify his or her preferences—to place emphasis either on
maximizing classification accuracy or on minimizing the number of the retained
training examples and attributes. One way of doing so is by the following formula
where ER is the number of training examples misclassified by the given specimen,
NE is the number of retained examples, and NA is the number of retained attributes:

f = 1

c1 ∗ ER + c2 ∗ NE + c3 ∗ NA

(21.2)

Note that the fitness of a specimen is high if its error rate is low, if the set
of retained examples is small, and if many attributes have been eliminated. The
function is controlled by three parameters, c1, c2, and c3, that reflect the user’s

446 21 Genetic Algorithm

preferences. For instance, if c1 is high, emphasis is placed on classification accuracy.
If c2 or c3 are high, emphasis is placed on minimizing the numbers of retained
examples and attributes.

Genetic Operators Employed in This Application Parents are selected proba-
bilistically. Specifically, the following formula is used to calculate the probability
that the specimen S’ will be chosen:

Prob(S′) = f (S′)∑
S f (S)

(21.3)

Here, f (S) is the fitness of specimen S as calculated by Eq. (21.2). The
denominator sums the fitness values of all specimens in the population so as to
make the probabilities sum to 1.

Once the pair of parents have been chosen, their chromosomes are recombined by
the two-point crossover. Since each specimen is defined by a pair of chromosomes,
each with a different interpretation, we apply the recombination operator to each of
them separately.

Let the length of one parent’s chromosome be denoted by N1 and let the length
of the other parent’s chromosome be denoted by N2. Using uniform distribution, the
algorithm selects one pair of integers from the closed interval [1, N1] and another
pair of integers from the closed interval [1, N2]. Each of these pairs then defines a
sub-string in the respective chromosome (the first and the last locations are included
in the sub-string). The crossover operator then exchanges the sub-strings from one
of the parent chromosomes with the sub-strings of the other parent. Note that, as
each of these sub-strings can have a different size, the children’s lengths are likely
to be different from the parents’ lengths.

Graphical Illustration The principle is illustrated by Fig. 21.7 where the middle
parts of chromosomes A and B have been exchanged. Note how the lengths of A
and B have thus been affected. The engineer has to decide whether to permit the
situation where the exchanged segments have size 0; at the other extreme, a segment
can represent the entire parent.

The mutation operator should prevent premature degeneration and make sure
the population adequately represents the solution space. One possibility it to
select, randomly, a pre-specified percentage of the locations in the chromosomes

Fig. 21.7 Two-point crossover operator creates the children by exchanging randomly selected sub-
strings in the parent chromosomes

21.8 Summary and Historical Remarks 447

of the newly created population and to add to each of them a random integer
generated separately for the location. The result is then taken modulo the number of
examples/attributes. Let the original number of examples/attributes be 100 and let
the location selected for mutation contains be 95. If the randomly generated integer
is 22, then the value after mutation is (95 + 22) mod 100 = 17.

21.7.1 What Have You Learned?

To make sure you understand this topic, try to answer the following questions. If
you have problems, return to the corresponding place in the preceding text.

• What can be accomplished by choosing the best attributes and the most represen-
tative examples in k-NN classifiers?

• What is the motivation behind the suggestion to work with two chromosomes
instead of just one?

• How does the chosen fitness function reflect the competing requirements of small
sets of attributes and examples versus high classification accuracy?

• Why did we use a recombination operator that exchanges sub-strings of different
lengths? How was mutation implemented?

21.8 Summary and Historical Remarks

• The genetic algorithm, inspired by Darwinian evolution, is a useful took for opti-
mization and search for acceptable solutions to difficult engineering problems.
The simplest implementation works with chromosomes in the form of binary
strings.

• The algorithm works with a population of individuals represented by the
chromosomes. A principal assumption is the availability of a function capable
of returning for each chromosome its fitness, understood as ability to survive in
Darwinian competition.

• The population of individuals is subjected to three essential operations: fitness-
based survival, recombination of pairs of chromosomes, and mutation. Also
inversion of a sub-string is sometimes used.

• One frequently encountered problem in practical applications is the population’s
premature degeneration, which can be detected by reduced diversity of the popu-
lation. One solution will add artificially created chromosomes to the population.
Other possibilities include the inversion operator and increased frequency of
mutations.

• Alternative implementations of the genetic algorithm use strings of numbers,
symbols, mixed strings, or even tree structures. Sometimes, the individuals are

448 21 Genetic Algorithm

described by two or more chromosomes. An interesting idea is to use multiple
populations with interbreeding.

• The chapter illustrated the practical use of the genetic algorithm on a simple task
from the field of nearest-neighbor classifiers. In this problem, three competing
performance criteria had to be satisfied.

Historical Remarks The idea to describe biological evolution in terms of com-
puter algorithm is due to Holland (1975), although some other authors suggested
something similar a little earlier. Among these, perhaps Rechenberg (1973) deserves
to be mentioned, while Fogel et al. (1966) should be credited with pioneering the
idea of genetic programming. The concrete way of applying the genetic algorithm
to selections in the k-NN classifier is from Rozsypal and Kubat (2001).

21.9 Solidify Your Knowledge

The exercises are to solidify the acquired knowledge. The suggested thought
experiments will help the reader see this chapter’s ideas in a different light and
provoke independent thinking. Computer assignments will force the readers to pay
attention to seemingly insignificant details they might otherwise overlook.

21.9.1 Exercises

1. Hand-simulate the genetic algorithm with a pencil and paper in a similar way
as in Table 21.2. Use a fitness function of your own choice, a different initial
population, and random locations for the one-point crossover. Repeat the exercise
with the two-point crossover.

21.9.2 Give It Some Thought

1. Explain how different population sizes may affect the number of generations
needed to reach a good solution. Elaborate on the relation of population size to
the problem of premature degeneration. Discuss also the effect of the shape of
the fitness function.

2. Identify concrete engineering problems (other than those in this book) appropri-
ate for the genetic algorithm. Suggest problems where the chromosomes are best
represented by binary or numeric strings, and suggest problems where trees are
more natural.

3. Name some differences between natural evolution and its computer model.
Speculate on whether more inspiration can be derived from nature. Where do

21.9 Solidify Your Knowledge 449

you think are the advantages of the computer programs as compared to biological
evolution?

4. Suggest a mechanism that would use the genetic algorithm in the search for a
good architecture of multilayer perceptrons (consider MLPs with more than one
hidden layer).

21.9.3 Computer Assignments

1. Implement the baseline genetic algorithm that operates on binary-string chromo-
somes. Make sure you have written separate modules for the survival function,
the wheel of fortune, recombination, and mutation. Make sure these modules
allow easy modifications.

2. Create an initial population for the “pies” domain from Chap. 1 and use it as
input to the program developed in the previous task.

3. For a domain of your own choice, implement a few alternative mating strategies.
Run systematic experiments to decide which strategy will be the fastest in finding
the solution. The speed can be measured by the number of chromosomes whose
fitness values have been evaluated before the solution is found.

4. For a domain of your own choice, experiment with alternative “cocktails” of dif-
ferent recombination operators, and with different frequencies of recombination,
mutation, and inversion. Plot graphs that show how the speed of search (measured
as in the previous task) depends of the concrete settings of these parameters.

5. Implement the genetic algorithm working with two or more populations that
occasionally interbreed.

Bibliography

Ash, T. (1989). Dynamic node creation in backpropagation neural networks. Connection Science:
Journal of Neural Computing, Artificial Intelligence, and Cognitive Research, 1, 365–375.

Baker, J. (1975). The DRAGON system–An overview. IEEE Transactions on Acoustics, Speech,
and Signal Processing, 23, 24–29.

Ball, G. H., & Hall, D. J. (1965). ISODATA, A Novel Method of Data Analysis and Classification.
Technical Report of the Stanford University, Stanford, CA.

Bartlett, P. L., Harvey, N., Liaw, C., & Mehrabian, A. (2019). Nearly-tight VC-dimension and
pseudo-dimension bound for piece-wise linear neural networks. Journal of Machine Learning
Research, 20(63), 1–17.

Baum, L. E., & Petrie, T. (1966). Statistical inference for probabilistic functions of finite state
Markov chains. Annals of Mathematical Statistics, 37(6), 1554–1563.

Bellman, R. E. (1956). A problem in the sequential design of experiments. Sankhya, 16, 221–229.
Bellman, R. E. (1957). Dynamic programming. Princeton: Princeton University Press.
Blake, C. L., & Merz, C. J. (1998). Repository of Machine Learning Databases. Department

of Information and Computer Science, University of California at Irvine, www.ics.uci.edu/~
mlearn/MLRepository.html

Blumer, W., Ehrenfeucht, A., Haussler, D., &Warmuth, M. K. (1989). Learnability and the Vapnik-
Chervonenkis dimension. Journals of the ACM, 36, 929–965.

Boutell, M. R., Luo, J., Shen, X., & Brown, C. M. (2004). Learning multi-label scene classification.
Pattern Recognition, 37, 1757–1771.

Bower, G. H., & Hilgard, E. R. (1981). Theories of learning. Englewood Cliffs: Prentice-Hall.
Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123–140.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Breiman, L., Friedman, J., Olshen, R., & Stone, C. J. (1984). Classification and regression trees.

Belmont: Wadsworth International Group.
Broomhead, D. S. & Lowe, D. (1988). Multivariable functional interpolation and adaptive

networks. Complex Systems, 2, 321–355.
Bryson, A. E. & Ho, Y.-C. (1969). Applied optimal control, New York: Blaisdell.
Charniak, E. (2018). Introduction to deep learning. Cambridge: The MIT Press.
Chow, C. K. (1957). An optimum character recognition system using decision functions. IRE

Transactions on Computers, EC-6, 247–254.
Clare, A., & King, R. D. (2001). Knowledge discovery in multi-label phenotype data. In

Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge
Discovery, PKDD’01, Freiburg (pp. 42–53)

Clark, P., & Niblett, R. (1989). The CN2 induction algorithm. Machine Learning, 3, 261–284.

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4

451

www.ics.uci.edu/~mlearn/MLRepository.html
www.ics.uci.edu/~mlearn/MLRepository.html
https://doi.org/10.1007/978-3-030-81935-4

452 Bibliography

Coppin, B. (2004). Artificial intelligence illuminated. Sudbury: Jones and Bartlett.
Cover, T. M. (1965). Geometrical and statistical properties of systems of linear inequalities with

applications in pattern recognition. IEEE Transactions on Electronic Computers, EC-14, 326–
334.

Cover, T.M. (1968). Estimation by the nearest neighbor rule. IEEE Transactions on Information
Theory, IT-14, 50–55.

Cover, T. M., & Hart, P. E. (1967). Nearest neighbor pattern classification. IEEE Transactions on
Information Theory, IT-13, 21–27.

Dasarathy, B. V. (1991). Nearest-neighbor classification techniques. Los Alomitos: IEEE Com-
puter Society Press.

Dietterich, T. (1998). Approximate statistical tests for comparing supervised classification learning
algorithms. Neural Computation, 10, 1895–1923.

Dudani, S. A. (1975). The distance-weighted k-nearest-neighbor rule. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-6, 325–327.

Elman, J. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.
Fayyad, U. M., & Irani, K. B. (1992). On the handling of continuous-valued attributes in decision

tree generation. Machine Learning, 8, 87–102.
Fisher, R. A. (1936). The use of multiple measurement in taxonomic problems. Annals of Eugenics,

7, 111–132.
Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learn-

ing, 2, 139–172.
Fix, E., & Hodges, J. L. (1951). Discriminatory Analysis, Non-parametric Discrimination. USAF

School of Aviation Medicine, Randolph Field, TX, Project 21-49-004, Report 4, Contract
AF41(128)-3.

Fogel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through simulated
evolution. New York: Wiley.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Machine
Learning: Proceedings of the Thirteenth International Conference, Bari (pp. 148–156).

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software, 3(3), 209–226.

Gennari, J. H., Langley, P., & Fisher, D. (1990). Models of incremental concept formation.
Artificial Intelligence, 40, 11–61.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence
and Statistics, Sardinia, May 13–15 (pp. 249–256)

Godbole, S., & Sarawagi, S. (2004). Discriminative methods for multi-label classification. In
H. Dai, R. Srikant, & C. Zhang (Eds.), Lecture Notes in Artificial Intelligence (Vol. 3056,
pp 22–30). Berlin/Heidelberg: Springer.

Good, I. J. (1965). The estimation of probabilities: An essay on modern Bayesian methods.
Cambridge: MIT.

Gordon, D. F., & desJardin, M. (1995). Evaluation and selection of biases in machine learning.
Machine Learning, 20, 5–22.

Hart, P. E. (1968). The condensed nearest neighbor rule. IEEE Transactions on Information Theory,
IT-14, 515–516.

Hellman, M. E. (1970). The nearest neighbor classification rule with the reject option. IEEE
Transactions on Systems Science and Cybernetics, 6, 179–185.

Hinton, G. E., & Zemel, R. S. (1994). Auto-encoders, minimum description length, and Helmholz
free energy. In Advances in neural information processing systems (Vol. 6, pp. 3–10).

Hochreiter, S., & Schmidhuber, J. (1997). Long short term memory. Neural computation, 9 (8),
1735–1780.

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of
Michigan Press.

Holte, R. C. (1993). Very simple classification rules perform well on most commonly used
databases. Machine Learning, 11, 63–90.

Bibliography 453

Hunt, E. B., Marin, J., & Stone, P. J. (1966). Experiments in induction, New York: Academic Press.
Katz, A. J., Gately, M. T., & Collins, D. R. (1990). Robust classifiers without robust features.

Neural Computation, 2, 472–479.
Kearns, M. J., & Vazirani, U. V. (1994). An introduction to computational learning theory.

Cambridge, MA: MIT Press.
Kodratoff, Y. (1988). Introduction to machine learning, London: Pitman.
Kodratoff, Y., & Michalski, R. S. (1990). Machine learning: An artificial intelligence approach

(Vol.3). San Mateo: Morgan Kaufmann.
Kohavi, R. (1997). Wrappers for feature selection. Artificial Intelligence, 97(1–2), 273–324.
Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological

Cybernetics, 43, 59–69.
Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480.
Koller, D., & Sahami, M. (1997). Hierarchically classifying documents using very few words.

In Proceedings of the 14th International Conference on Machine Learning, ICML’07, San
Francisco (pp. 170–178)

Kononenko, I., Bratko, I., & Kukar., M. (1998). Application of machine learning to medical
diagnosis. In: R. Michalski, I. Bratko, & M. Kubat (Eds.), Machine learning and data mining:
Methods and applications. Chichester: Wiley.

Krizhevsky, A., Sutskever, I., & Hinton G. (2012). Imagenet classification with deep convolutional
neural network. In Advances in neural information processing systems (pp. 1097–1105).

Kubat, M. (1989). Floating approximation in time-varying knowledge bases. Pattern Recognition
Letters, 10, 223–227.

Kubat, M., Holte, R., & Matwin, S. (1997). Learning when negatives examples abound. In
Proceedings of the European Conference onMachine Learning (ECML’97), April 1997, Prague
(pp. 146–153).

Kubat, M., Holte, R., & Matwin, S. (1998). Detection of oil-spills in radar images of sea surface.
Machine Learning, 30, 195–215.

Kubat, M., Koprinska, I., & Pfurtscheller, G. (1998). Learning to classify medical signals. In R.
Michalski, I. Bratko, & M. Kubat (Eds), Machine learning and data mining: Methods and
applications. Chichestser: Wiley.

Kubat, M., Pfurtscheller, G., & Flotzinger D. (1994). AI-based approach to automatic sleep
classification. Biological Cybernetics, 79, 443–448.

LeCun, Y. (1987). Modèles Connexionnistes de l’apprentissage. PdD dissertation, University of
Paris.

LeCun,Y., Boser, B. E., Denker, J. S. Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel,
L. D. (1989). Handwritten digit recognition with a backpropagation network. In Advances in
neural information processing systems (pp. 396–404)

Lewis, D. D., & Gale, W. A. (1994). A sequential algorithm for training text classifiers. In
Proceedings of the 17th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR’94), Dublin (pp. 3–12).

Littlestone, N. (1987). Learning quickly when irrelevant attributes abound: A new linear threshold
algorithm.Machine Learning, 2, 285–318.

Louizou, G., & Maybank, S. J. (1987). The nearest neighbor and the bayes error rates. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 9, 254–262.

McCallum, A. (1999). Multi-label text classification with a mixture model trained by EM. In
Proceedings of the workshop on text learning (AAAI’99) (pp. 1–7).

McQueen, J. (1967). Some methods for classification and analysis of multivariate observations.
Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability,
Berkeley (pp. 281–297).

Michalski, R. S. (1969). On the quasi-minimal solution of the general covering problem. In
Proceedings of the 5th International Symposium on Information Processing (FCIP’69), Bled,
Yugoslavia (Vol. A3, pp. 125–128).

Michalski, R., Bratko, I., & Kubat, M. (1998). Machine learning and data mining: Methods and
applications. New York: Wiley.

454 Bibliography

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (1983). Machine learning: An artificial
intelligence approach. Palo Alto: Tioga Publishing Company.

Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (1986). Machine learning: An artificial
intelligence approach (Vol. 2). Palo Alto: Tioga Publishing Company.

Michalski, R. S. & Tecuci, G. (1994). Machine learning: A multistrategy approach Palo Alto:
Morgan Kaufmann.

Mill, J.S. (1865). A system of logic. London: Longmans.
Minsky, M., & Papert, S. (1969). Perceptrons. Cambridge, MA: MIT.
Mitchell, M. (1998). An introduction to genetic algorithm. Cambridge, MA: MIT.
Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18, 203–226.
Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,

Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540), 529–533.

Mori, S, Suen, C. Y., & Yamamoto, K. (1992). Historical overview of OCR research and
development. Proceedings of IEEE, 80, 1029–1058.

Muggleton, S., & Buntine, W. (1988). Machine invention of first-order predicates by inverting
resolution. In Proceedings of the 5th International Machine Learning Conference, Ann Arbor,
Michigan (pp. 339–352).

Murty, M. N., & Krishna, G. (1980). A computationally efficient technique for data clustering.
Pattern Recognition, 12, 153–158.

Neyman, J., & Pearson E. S. (1928). On the use and interpretation of certain test criteria for
purposes of statistical inference. Biometrica, 20A, 175–240.

Ogden, C. K., & Richards, I. A. (1923). The meaning of meaning. New York: Harcourt, Brace, and
World. Eighth edition 1946.

Parzen E. (1962). On estimation of a probability density function and mode. Annals of Mathemat-
ical Statistics, 33, 1065–1076.

Quinlan, J. R. (1979). Discovering rules by induction from large collections of examples. In D.
Michie (Ed.), Expert systems in the micro electronic age. Edinburgh: Edinburgh University
Press.

Quinlan, J. R. (1986). Induction of decision trees.Machine Learning, 1, 81–106.
Quinlan, R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.
Quinlan, J. R. (1993). C4.5: Programms for machine learning. San Mateo: Morgan Kaufmann.
Read, J, Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-label

classification.Machine Learning, 85, 333–359.
Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme nach Principien der

biologischen Evolution. Stuttgart: Frommann-Holzboog.
Rosenblatt, M. (1958). The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65, 386–408.
Rozsypal, A. R., & Kubat, M. (2001). Using the genetic algorithm to reduce the size of a nearest-

neighbor classifier and to select relevant attributes. In Proceedings of the 18th International
Conference on Machine Learning, Williamstown (pp. 449–456).

Rumelhart, D. E., Hinton, G. E., & Williams, R. J., (1986). Learning representations by backprop-
agating errors. Nature, 323, 533–536.

Rumelhart, D. E. & McClelland, J. L. (1986). Parallel distributed processing. Cambridge: MIT
Bradford Press.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning Using Connectionist Systems.
Technical Report CUED/F-INFENG/TR 166, Engineering Department, Cambridge University.

Russell, S., & Norvig, P. (2003). Artificial intelligence, a modern approach (2nd ed.). Englewood
Cliffs: Prentice Hall.

Schapire, R. E. (1990). The strength of weak learnability.Machine Learning, 5, 197–227.
Shawe-Taylor, J., Anthony, M., & Biggs, N. (1993). Bounding sample size with the Vapnik-

Chervonenkis dimension. Discrete Applied Mathematics, 42(1), 65–73.

Bibliography 455

Stamp, M. (2018), Introduction to machine learning with applications in information security.
Boca Raton, FL: CRC Press, Taylor & Francis Group.

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement Learning. PhD Dissertation,
University of Massachusetts, Amherst.

Sutton, R. S. (1988). Learning to predict by the method of temporal differences.Machine Learning,
3, 9–44.

Sutton, R. S., & Barto, A. G. (1998): Reinforcement learning: An introduction. Cambridge: MIT
Press.

Thrun, S. B. &Mitchell, T. M. (1995). Lifelong robot learning. Robotics and Automonous Systems,
15, pp. 24–46.

Tomek, I. (1976). Two modifications of CNN. IEEE Transactions on Systems, Man and Commu-
nications, SMC-6, 769–772.

Turney, P. D. (1993). Robust classification with context-sensitive features. Proceedings of the Sixth
International Conference of Industrial and Engineering Applications of Artificial Intelligence
and Expert Systems, Edinburgh (pp.268–276).

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134–1142.
Vapnik, V. N. (1992). Estimation of dependences based on empirical data. New York: Springer.
Vapnik, V. N. (1995). The nature of statistical learning theory. New York: Springer.
Vapnik, V. N., & Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability and Its Applications, 16, 264–280.
Watkins, C. J. C. H, & Dayan P. (1992). Q-learning. Machine Learning, 8, 279–292.
Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral

Sciences. PhD thesis, Harvard University.
Whewel, W. (1858). History of scientific ideas. London: J.W. Parker.
Widmer, G. (1997). Tracking context changes through meta-learning.Machine Learning, 27, 259–

286.
Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts.

Machine Learning, 23, 69–101.
Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits. In IRE WESCON convention

record, New York (pp. 96–104).
Wolpert, D. (1992). Stacked generalization. Neural Networks, 5, 241–259.
Wolpert, D. (1996). The lack of a priori distinctions between learning algorithms. Neural

Computation, 8, 1341–1390.
Zhang, M.-L., & Zhou, Z.-H. (2007). ML-KNN: A lazy learing approach to multi-label learning.

Pattern Recognition, 40, 2038–2048.

Index

A
Activation function

ReLU and LReLU, 136, 335, 389
sigmoid, 117, 118, 318, 405
tanh, 130

Applications, 161, 163, 167, 170, 172, 175, 390
Attributes

continuous, 28, 36, 43–45, 84, 101, 153
discrete, 21, 42, 145
irrelevant, 7, 47, 75, 96, 152, 168
one-hot representation, 128, 392, 401
redundant, 8, 58, 96, 152, 168
selection, 224, 226, 444
unknown, 222, 223

B
Backpropagation, 126
Bias, 67, 151, 211, 212

C
Clustering

hierarchical aggregation, 307
inter-cluster distance, 299, 308
k-means, 301, 305
normalization, 302
principle, 297
SOFM, 310

Context, 211, 219, 221

D
Decision trees

as classifiers, 91

converted to rules, 108
induction, 94
numeric, 101
pruning, 103

Deep learning
architecture, 337, 338
computer vision, 327
convolution, 330
learning techniques, 339, 340, 343
padding, 333
pooling, 334
stride, 332
transfer learning, 344

Distance, 299

F
Features

high-level, 60, 110, 315, 318, 329, 344
low-level, 60, 320, 328

G
Gaussian function

in RBF networks, 138
in Bayes, 31

I
Imbalanced classes, 78, 214, 236, 247, 279

techniques
modify classifier, 217
one-sided selection, 217
oversampling, 218, 321
undersampling, 217

© Springer Nature Switzerland AG 2021
M. Kubat, An Introduction to Machine Learning,
https://doi.org/10.1007/978-3-030-81935-4

457

https://doi.org/10.1007/978-3-030-81935-4

458 Index

Information theory, 97, 136, 340
Interpretability, 93, 103

L
Learning curve, 244
Linear classifiers

perceptron, 69
in RBF networks, 138
WINNOW, 73

Linearly-ordered classes, 228

M
Multi-label classification

binary relevance, 278
class aggregation, 287
classifier chains, 280
nearest-neighbor classifiers, 277
neural networks, 276
stacking, 282

N
Nearest neighbor

dangerous examples, 55
weighted, 53

Neural networks
backpropagation of error, 123, 124, 126,

127, 340
loss function (L), 136, 337, 340
mean squared error (MSE), 122
MLP architecture, 127
MLP as classifiers, 117
RBF networks, 137
Xavier initialization, 341

Noise
in attributes, 8, 43, 55
in class labels, 9

Normalization, 49, 302, 303, 312, 336

P
Performance criteria

error rate, 13
Fβ , 240
macro-averaging, 289
micro-averaging, 290
precision, 237
recall, 237
sensitivity, 241
specificity, 241

Polynomial classifiers, 79
Predicates

alternative search operators, 207
informal definition, 204
recursive rules, 205

Probability, 17, 411
Pruning

decision tree, 105, 106, 192, 212
rules, 108, 109

R
Regression, 228
Reinforcement learning

eligibility traces, 384
episodic formulation, 363, 364
with neural nets, 387, 389, 391, 393, 394
optimistic initialization, 358
states and actions, 362
temporal difference, 377, 379, 381
toy domains, 361, 367, 368, 382, 387–389

Rule induction
predicates, 204
recursion, 205
rulesets, 108, 200
sequential covering, 202

S
Search

genetic, 429
hill-climbing, 429
operators, 207

Similarity, 41
Soft-max, 136, 336, 358
Statistical evaluation, 264, 265
Statistical significance

margin or error, 263
type I error, 266

Support vector machines
linear, 84
RBF-based, 138

T
Time-varying domains

in class learning, 220, 345
in reinforcement learning, 357

V
Visualization

with Kohonen networks, 315
Voting

plain, 182, 184
weighted majority, 187, 189

	Acknowledgments
	Contents
	Introduction to Third Edition
	1 Ambitions and Goals of Machine Learning
	1.1 Training Sets and Classifiers
	1.1.1 What Have You Learned?

	1.2 Expected Benefits of the Induced Classifier
	1.2.1 What Have You Learned?

	1.3 Problems with Available Data
	1.3.1 What Have You Learned?

	1.4 Many Roads to Concept Learning
	1.5 Other Ambitions of Machine Learning
	1.6 Summary and Historical Remarks
	1.7 Solidify Your Knowledge
	1.7.1 Exercises
	1.7.2 Give It Some Thought
	1.7.3 Computer Assignments

	2 Probabilities: Bayesian Classifiers
	2.1 The Single-Attribute Case
	2.1.1 What Have You Learned?

	2.2 Vectors of Discrete Attributes
	2.2.1 What Have You Learned?

	2.3 Rare Events: An Expert's Intuition
	2.3.1 What Have You Learned?

	2.4 Continuous Attributes: Probability Density Functions
	2.4.1 What Have You Learned?

	2.5 Gaussian ``Bell'' Function: A Standard pdf
	2.5.1 What Have You Learned?

	2.6 Approximating PDFs with Sets of Gaussian Functions
	2.6.1 What Have You Learned?

	2.7 Summary and Historical Remarks
	2.8 Solidify Your Knowledge
	2.8.1 Exercises
	2.8.2 Give It Some Thought
	2.8.3 Computer Assignments

	3 Similarities: Nearest-Neighbor Classifiers
	3.1 The k-Nearest-Neighbor Rule
	3.1.1 What Have You Learned?

	3.2 Measuring Similarity
	3.2.1 What Have You Learned?

	3.3 Irrelevant Attributes and Scaling Problems
	3.3.1 What Have You Learned?

	3.4 Performance Considerations
	3.4.1 What Have You Learned?

	3.5 Weighted Nearest Neighbors
	3.5.1 What Have You Learned?

	3.6 Removing Dangerous Examples
	3.6.1 What Have You Learned?

	3.7 Removing Redundant Examples
	3.7.1 What Have You Learned?

	3.8 Limitations of Attribute-Vector Similarity
	3.8.1 What Have You Learned?

	3.9 Summary and Historical Remarks
	3.10 Solidify Your Knowledge
	3.10.1 Exercises
	3.10.2 Give It Some Thought
	3.10.3 Computer Assignments

	4 Inter-Class Boundaries: Linear and Polynomial Classifiers
	4.1 Essence
	4.1.1 What Have You Learned?

	4.2 Additive Rule: Perceptron Learning
	4.2.1 What Have You Learned?

	4.3 Multiplicative Rule: WINNOW
	4.3.1 What Have You Learned?

	4.4 Domains with More Than Two Classes
	4.4.1 What Have You Learned?

	4.5 Polynomial Classifiers
	4.5.1 What Have You Learned?

	4.6 Specific Aspects of Polynomial Classifiers
	4.6.1 What Have You Learned?

	4.7 Support Vector Machines
	4.7.1 What Have You Learned?

	4.8 Summary and Historical Remarks
	4.9 Solidify Your Knowledge
	4.9.1 Exercises
	4.9.2 Give It Some Thought
	4.9.3 Computer Assignments

	5 Decision Trees
	5.1 Decision Trees as Classifiers
	5.1.1 What Have You Learned?

	5.2 Induction of Decision Trees
	5.2.1 What Have You Learned?

	5.3 How Much Information in an Attribute?
	5.3.1 What Have You Learned?

	5.4 Binary Split of a Numeric Attribute
	5.4.1 What Have You Learned?

	5.5 Pruning
	5.5.1 What Have You Learned?

	5.6 Decision Tree Can Be Converted to Rules
	5.6.1 What Have You Learned?

	5.7 Why Decision Trees?
	5.7.1 What Have You Learned?

	5.8 Summary and Historical Remarks
	5.9 Solidify Your Knowledge
	5.9.1 Exercises
	5.9.2 Give It Some Thought
	5.9.3 Computer Assignments

	6 Artificial Neural Networks
	6.1 Multilayer Perceptrons
	6.1.1 What Have You Learned?

	6.2 Neural Network's Error
	6.2.1 What Have You Learned?

	6.3 Backpropagation of Error
	6.3.1 What Have You Learned?

	6.4 Practical Aspects of MLP's
	6.4.1 What Have You Learned?

	6.5 Big Networks or Small?
	6.5.1 What Have You Learned?

	6.6 Modern Approaches to MLP's
	6.6.1 What Have You Learned?

	6.7 Radial Basis Function Networks
	6.7.1 What Have You Learned?

	6.8 Summary and Historical Remarks
	6.9 Solidify Your Knowledge
	6.9.1 Exercises
	6.9.2 Give It Some Thought
	6.9.3 Computer Assignments

	7 Computational Learning Theory
	7.1 PAC Learning
	7.1.1 What Have You Learned?

	7.2 Examples of PAC-Learnability
	7.2.1 What Have You Learned?

	7.3 Practical and Theoretical Consequences
	7.3.1 What Have You Learned?

	7.4 VC-Dimension and Learnability
	7.4.1 What Have You Learned?

	7.5 Summary and Historical Remarks
	7.6 Exercises and Thought Experiments
	7.6.1 Exercises
	7.6.2 Give It Some Thought

	8 Experience from Historical Applications
	8.1 Medical Diagnosis
	8.1.1 What Have You Learned?

	8.2 Character Recognition
	8.2.1 What Have You Learned?

	8.3 Oil-Spill Recognition
	8.3.1 What Have You Learned?

	8.4 Sleep Classification
	8.4.1 What Have You Learned?

	8.5 Brain–Computer Interface
	8.5.1 What Have You Learned?

	8.6 Text Classification
	8.6.1 What Have You Learned?

	8.7 Summary and Historical Remarks
	8.8 Solidify Your Knowledge
	8.8.1 Give It Some Thought
	8.8.2 Computer Assignments

	9 Voting Assemblies and Boosting
	9.1 Bagging
	9.1.1 What Have You Learned?

	9.2 Schapire's Boosting
	9.2.1 What Have You Learned?

	9.3 Adaboost: Practical Version of Boosting
	9.3.1 What Have You Learned?

	9.4 Variations on the Boosting Theme
	9.4.1 What Have You Learned?

	9.5 Cost-Saving Benefits of Boosting
	9.5.1 What Have You Learned?

	9.6 Summary and Historical Remarks
	9.7 Solidify Your Knowledge
	9.7.1 Exercises
	9.7.2 Give it Some Thought
	9.7.3 Computer Assignments

	10 Classifiers in the Form of Rule-Sets
	10.1 Class Described by Rules
	10.1.1 What Have You Learned?

	10.2 Inducing Rule-Sets by Sequential Covering
	10.2.1 What Have You Learned?

	10.3 Predicates and Recursion
	10.3.1 What Have You Learned?

	10.4 More Advanced Search Operators
	10.4.1 What Have You Learned?

	10.5 Summary and Historical Remarks
	10.6 Solidify Your Knowledge
	10.6.1 Exercises
	10.6.2 Give it Some Thought
	10.6.3 Computer Assignments

	11 Practical Issues to Know About
	11.1 Learner's Bias
	11.1.1 What Have You Learned?

	11.2 Imbalanced Training Sets
	11.2.1 What Have You Learned?

	11.3 Dealing with Imbalanced Classes
	11.3.1 What Have You Learned?

	11.4 Context-Dependent Domains
	11.4.1 What Have You Learned?

	11.5 Unknown Attribute Values
	11.5.1 What Have You Learned?

	11.6 Attribute Selection
	11.6.1 What Have You Learned?

	11.7 Miscellaneous
	11.7.1 What Have You Learned?

	11.8 Summary and Historical Remarks
	11.9 Solidify Your Knowledge
	11.9.1 Exercises
	11.9.2 Give It Some Thought
	11.9.3 Computer Assignments

	12 Performance Evaluation
	12.1 Basic Performance Criteria
	12.1.1 What Have You Learned?

	12.2 Precision and Recall
	12.2.1 What Have You Learned?

	12.3 Other Ways to Measure Performance
	12.3.1 What Have You Learned?

	12.4 Learning Curves and Computational Costs
	12.4.1 What Have You Learned?

	12.5 Methodologies of Experimental Evaluation
	12.5.1 What Have You Learned?

	12.6 Experimental Blunders to Avoid
	12.6.1 What Have You Learned?

	12.7 Summary and Historical Remarks
	12.8 Solidify Your Knowledge
	12.8.1 Exercises
	12.8.2 Give it Some Thought
	12.8.3 Computer Assignments

	13 Statistical Significance
	13.1 Sampling a Population
	13.1.1 What Have You Learned?

	13.2 Benefiting from the Normal Distribution
	13.2.1 What Have You Learned?

	13.3 Confidence Intervals
	13.3.1 What Have You Learned?

	13.4 Statistical Evaluation of a Classifier
	13.4.1 What Have You Learned?

	13.5 Another Use of Statistical Evaluation
	13.5.1 What Have You Learned?

	13.6 Comparing Machine-Learning Techniques
	13.6.1 What Have You Learned?

	13.7 Summary and Historical Remarks
	13.8 Solidify Your Knowledge
	13.8.1 Exercises
	13.8.2 Give it Some Thought
	13.8.3 Computer Assignments

	14 Induction in Multi-label Domains
	14.1 Classical Paradigms and Multi-label Data
	14.1.1 What Have You Learned?

	14.2 Principle of Binary Relevance
	14.2.1 What Have You Learned?

	14.3 Classifier Chains
	14.3.1 What Have You Learned?

	14.4 Another Possibility: Stacking
	14.4.1 What Have You Learned?

	14.5 Note on Hierarchically Ordered Classes
	14.5.1 What Have You Learned?

	14.6 Aggregating the Classes
	14.6.1 What Have You Learned?

	14.7 Criteria for Performance Evaluation
	14.7.1 What Have You Learned?

	14.8 Summary and Historical Remarks
	14.9 Solidify Your Knowledge
	14.9.1 Exercises
	14.9.2 Give it Some Thought
	14.9.3 Computer Assignments

	15 Unsupervised Learning
	15.1 Cluster Analysis
	15.1.1 What Have You Learned?

	15.2 Simple Clustering Algorithm: k-Means
	15.2.1 What Have You Learned?

	15.3 Advanced Versions of k-Means
	15.3.1 What Have You Learned?

	15.4 Hierarchical Aggregation
	15.4.1 What Have You Learned?

	15.5 Self-Organizing Feature Maps: Introduction
	15.5.1 What Have You Learned?

	15.6 Some Details of SOFM
	15.6.1 What Have You Learned?

	15.7 Why Feature Maps?
	15.7.1 What Have You Learned?

	15.8 Auto-Encoding
	15.8.1 What Have You Learned?

	15.9 Why Auto-Encoding?
	15.9.1 What Have You Learned?

	15.10 Summary and Historical Remarks
	15.11 Solidify Your Knowledge
	15.11.1 Exercises
	15.11.2 Give it Some Thought
	15.11.3 Computer Assignments

	16 Deep Learning
	16.1 Digital Image: Many Low-Level Attributes
	16.1.1 What Have You Learned?

	16.2 Convolution
	16.2.1 What Have You Learned?

	16.3 Pooling, ReLU, and Soft-Max
	16.3.1 What Have You Learned?

	16.4 Induction of CNNs
	16.4.1 What Have You Learned?

	16.5 Advanced Issues
	16.5.1 What Have You Learned?

	16.6 CNN Is Just Another ML Paradigm
	16.6.1 What Have You Learned?

	16.7 Word of Caution
	16.7.1 What Have You Learned?

	16.8 Summary and Historical Remarks
	16.9 Solidify Your Knowledge
	16.9.1 Exercises
	16.9.2 Give It Some Thought
	16.9.3 Computer Assignments

	17 Reinforcement Learning: N-Armed Bandits and Episodes
	17.1 Addressing the N-Armed Bandit Problem
	17.1.1 What Have You Learned?

	17.2 Additional Information
	17.2.1 What Have You Learned?

	17.3 Learning to Navigate a Maze
	17.3.1 What Have You Learned?

	17.4 Variations on the Episodic Theme
	17.4.1 What Have You Learned?

	17.5 Car Races and Beyond
	17.5.1 What Have You Learned?

	17.6 Practical Ideas
	17.6.1 What Have You Learned?

	17.7 Summary and Historical Remarks
	17.8 Solidify Your Knowledge
	17.8.1 Exercises
	17.8.2 Give It Some Thought
	17.8.3 Computer Assignments

	18 Reinforcement Learning: From TD(0) to Deep-Q-Learning
	18.1 Immediate Rewards: Temporal Difference
	18.1.1 What Have You Learned?

	18.2 SARSA and Q-Learning
	18.2.1 What Have You Learned?

	18.3 Temporal Difference in Action
	18.3.1 What Have You Learned?

	18.4 Eligibility Traces: TD(λ)
	18.4.1 What Have You Learned?

	18.5 Neural Network Replaces the Lookup Table
	18.5.1 What Have You Learned?

	18.6 Reinforcement Learning in Game Playing
	18.6.1 What Have You Learned?

	18.7 Deep-Q-Learning
	18.7.1 What Have You Learned?

	18.8 Summary and Historical Remarks
	18.9 Solidify Your Knowledge
	18.9.1 Exercises
	18.9.2 Give It Some Thought
	18.9.3 Computer Assignments

	19 Temporal Learning
	19.1 Temporal Signals and Shift Registers
	19.1.1 What Have You Learned?

	19.2 Recurrent Neural Networks
	19.2.1 What Have You Learned?

	19.3 Long Short-Term Memory
	19.3.1 What Have You Learned?

	19.4 Summary and Historical Remarks
	19.5 Solidify Your Knowledge
	19.5.1 Exercises
	19.5.2 Give It Some Thought
	19.5.3 Computer Assignments

	20 Hidden Markov Models
	20.1 Markov Processes
	20.1.1 What Have You Learned?

	20.2 Revision: Probabilistic Calculations
	20.2.1 What Have You Learned?

	20.3 HMM: Indirectly Observed States
	20.3.1 What Have You Learned?

	20.4 Useful Probabilities: α, β, and γ
	20.4.1 What Have You Learned?

	20.5 First Problem and Second Problem of HMM
	20.5.1 What Have You Learned?

	20.6 Third Problem of HMM
	20.6.1 What Have You Learned?

	20.7 Summary and Historical Remarks
	20.8 Solidify Your Knowledge
	20.8.1 Exercises
	20.8.2 Give It Some Thought
	20.8.3 Computer Assignments

	21 Genetic Algorithm
	21.1 Baseline Genetic Algorithm
	21.1.1 What Have You Learned?

	21.2 Implementing the Individual Functions
	21.2.1 What Have You Learned?

	21.3 Why It Works
	21.3.1 What Have You Learned?

	21.4 Premature Degeneration
	21.4.1 What Have You Learned?

	21.5 Other Genetic Operators
	21.5.1 What Have You Learned?

	21.6 Advanced Versions
	21.6.1 What Have You Learned?

	21.7 Choices Made by k-NN Classifiers
	21.7.1 What Have You Learned?

	21.8 Summary and Historical Remarks
	21.9 Solidify Your Knowledge
	21.9.1 Exercises
	21.9.2 Give It Some Thought
	21.9.3 Computer Assignments

	Bibliography
	Index

