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Preface

Optimization is everywhere from routine business transactions
to important decisions of any sort, from engineering design to
industrial manufacturing, and from choosing a career path to
planning our holidays. In all these activities, there are always
some things (objectives) we are trying to optimize and these ob-
jectives could be cost, profit, performance, quality, enjoyment,
customer-rating and others. The formal approach to these op-
timization problems forms the major part of the mathematical
optimization or mathematical programming.

The topics of mathematical optimization are broad and the
related literature is vast. It is often a daunting task for begin-
ners to find a right book and to learn the right (and useful)
algorithms widely used in mathematical programming. Even
for lecturers and educators, it is not trivial to decide what al-
gorithms to teach and to provide a balanced coverage of a wide
range of topics because there are so many algorithms to choose
from. From my own learning experience, I understand that
some algorithms took substantial amount of time and effort in
programming and it was frustrating to realise that it did not
work well for optimization problems at hand in the end. Af-
ter some frustrations, then I realized other algorithms worked
much efficiently for a given problem. The initial cause was of-
ten that the advantages and disadvantages were not explicitly
explained in the literature or I was too eager to do some op-
timization simulations without realizing certain pitfalls of the
related algorithms. Such learning experience is valuable to me
in writing this book so that we can endeavour to provide a
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balanced view of various algorithms and to provide a right cov-
erage of useful and yet efficient algorithms selected from a wide
range of optimization techniques.

Therefore, this book strives to provide a balanced coverage
of efficient algorithms commonly used in solving mathemat-
ical optimization problems. It covers both the convectional
algorithms and modern heuristic and metaheuristic methods.
Topics include gradient-based algorithms (such as the Newton-
Raphson method and steepest descent method), Hooke-Jeeves
pattern search, Lagrange multipliers, linear programming, par-
ticle swarm optimization (PSO), simulated annealing (SA), and
Tabu search. We also briefly introduce the multiobjective opti-
mization including important concepts such as Pareto optimal-
ity and utility method, and provide three Matlab and Octave
programs so as to demonstrate how PSO and SA work. In ad-
dition, we will use an example to demonstrate how to modify
these programs to solve multiobjective optimization problems
using the recursive method.

I would like to thank many of my mentors, friends and
colleagues: Drs A. C. Fowler and S. Tsou at Oxford Univer-
sity, Drs J. M. Lees, T. Love, C. Morley, and G. T. Parks at
Cambridge University. Special thanks to Dr G. T. Parks who
introduced me to the wonderful technique of Tabu Search.

I also thank my publisher, Dr Victor Riecansky, at Cam-
bridge International Science Publishing, for his help and pro-
fessionalism. Last but not least, I thank my wife, Helen, and
son, Young, for their help.

Xin-She Yang

Cambridge, 2008
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Part I

Fundamentals





Chapter 1

Mathematical

Optimization

Optimization is everywhere, from business to engineering de-
sign, from planning your holiday to your daily routine. Busi-
ness organizations have to maximize their profit and minimize
the cost. Engineering design has to maximize the performance
of the designed product while of course minimizing the cost
at the same time. Even when we plan holidays we want to
maximize the enjoyment and minimize the cost. Therefore, the
studies of optimization are of both scientific interest and prac-
tical implications and subsequently the methodology will have
many applications.

1.1 Optimization

Whatever the real world problem is, it is usually possible to
formulate the optimization problem in a generic form. All op-
timization problems with explicit objectives can in general be
expressed as nonlinearly constrained optimization problems in
the following generic form

maximize/minimize
x∈<n f(x), x = (x1, x2, ..., xn)T ∈ <n,

subject to φj(x) = 0, (j = 1, 2, ...,M),

3



4 Chapter 1. Mathematical Optimization

ψk(x) ≥ 0, (k = 1, ..., N), (1.1)

where f(x), φi(x) and ψj(x) are scalar functions of the real col-
umn vector x. Here the components xi of x = (x1, ..., xn)T are
called design variables or more often decision variables, and
they can be either continuous, or discrete or mixed of these
two. The vector x is often called a decision vector which varies
in a n-dimensional space <n. The function f(x) is called the
objective function or cost function. In addition, φi(x) are con-
straints in terms of M equalities, and ψj(x) are constraints
written as N inequalities. So there are M + N constraints in
total. The optimization problem formulated here is a nonlinear
constrained problem.

The space spanned by the decision variables is called the
search space <n, while the space formed by the objective func-
tion values is called the solution space. The optimization prob-
lem essentially maps the <n domain or space of decision vari-
ables into a solution space < (or the real axis in general).

The objective function f(x) can be either linear or non-
linear. If the constraints φi and ψj are all linear, it becomes
a linearly constrained problem. Furthermore, φi, ψj and the
objective function f(x) are all linear, then it becomes a linear
programming problem. If the objective is at most quadratic
with linear constraints, then it is called quadratic program-
ming. If all the values of the decision variables can be integers,
then this type of linear programming is called integer program-
ming or integer linear programming.

Linear programming is very important in applications and
has been well-studied, while there is still no generic method for
solving nonlinear programming in general, though some im-
portant progress has been made in the last few decades. It
is worth pointing out that the term programming here means
planning, it has nothing to do with computer programming and
the wording coincidence is purely incidental.

On the other hand, if no constraints are specified so that
xi can take any values in the real axis (or any integers), the
optimization problem is referred to as the unconstrained opti-
mization problem.
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The simplest optimization without any constraints is prob-
ably the search of the maxima or minima of a function. For
example, finding the maximum of an univariate function f(x)

f(x) = xe−x2

, −∞ < x <∞, (1.2)

is a simple unconstrained problem. While the following prob-
lem is a simple constrained minimization problem

f(x1, x2) = x2
1 + x1x2 + x2

2, (x1, x2) ∈ <2, (1.3)

subject to
x1 ≥ 1, x2 − 2 = 0. (1.4)

Example 1.1: To find the minimum of f(x) = x2e−x2

, we
have the stationary condition f ′(x) = 0 or

f ′(x) = 2x× e−x2

+ x2 × (−2x)e−x2

= 2(x− x3)e−x2

= 0.

As e−x2

> 0, we have

x(1− x2) = 0,

or
x = 0, x = ±1.

The second derivative

f ′′(x) = 2e−x2

(1− 5x2 + 2x4),

which is an even function with respect to x. So at x = ±1,
f ′′(±1) = 2[1 − 5(±1)2 + 2(±1)4]e−(±1)2 = −4e−1 < 0. Thus,
the maximum of fmax = e−1 occur at x∗ = ±1. At x = 0, we
have f ′′(0) = 2 > 0, thus the minimum of f(x) occur at x∗ = 0
with fmin(0) = 0.

It is worth pointing out that the objectives are explicitly
known in all the optimization problems to be discussed in this
book. However, in reality, it is often difficult to quantify what
we want to achieve, but we still try to optimize certain things
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such as the degree of enjoyment or the quality of service on
holiday. In other cases, it might be impossible to write the
objective function in an explicit mathematical form.

Whatever the objectives, we have to evaluate the objectives
many times. In most cases, the evaluations of the objective
functions consume a lot of computational power (which costs
money) and design time. Any efficient algorithm that can re-
duce the number of objective evaluations will save both time
and money. The algorithms presented in this book will still
be applicable to the cases where the objectives are not known
explicitly, though certain modifications are required to suit a
particular application. The basic principle of these search al-
gorithms remain the same.

1.2 Optimality Criteria

In mathematical programming, there are many important con-
cepts that will be introduced in this book. Now we first intro-
duce three related concepts: feasible solutions, the strong local
maximum and the weak local maximum.

A point x which satisfies all the constraints is called a feasi-
ble point and thus is a feasible solution to the problem. The set
of all feasible points is called the feasible region. A point x∗ is
called a strong local maximum of the nonlinearly constrained
optimization problem if f(x) is defined in a δ-neigbourhood
N(x∗, δ) and satisfies f(x∗) > f(u) for ∀u ∈ N(x∗, δ) where
δ > 0 and u 6= x∗. If x∗ is not a strong local maximum,
the inclusion of equality in the condition f(x∗) ≥ f(u) for
∀u ∈ N(x∗, δ) defines the point x∗ as a weak local maximum
(see Fig. 1.1). The local minima can be defined in the similar
manner when > and ≥ are replaced by < and ≤, respectively.

Figure 1.1 shows various local maxima and minima. Point
A is a strong local maximum, while point B is a weak local
maximum because there are many (well, infinite) different val-
ues of x which will lead to the same value of f(x∗). Point D is a
global maximum. However, point C is a strong local minimum,
but it has a discontinuity in f ′(x∗). So the stationary condition
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Figure 1.1: Strong and weak maxima and minima.

for this point f ′(x∗) = 0 is not valid. We will not deal with this
type of minima or maxima in detail. In our present discussion,
we will assume that both f(x) and f ′(x) are always continuous
or f(x) is everywhere twice-continuously differentiable.

Example 1.2: The minimum of f(x) = x2 at x = 0 is a strong
local minimum. The minimum of g(x, y) = (x − y)2 + (x − y)2
at x = y = 0 is a weak local minimum because g(x, y) = 0 along
the line x = y so that g(x, y = x) = 0 = g(0, 0).

1.3 Computational Complexity

The efficiency of an algorithm is often measured by the algo-
rithmic complexity or computational complexity. In literature,
this complexity is also called Kolmogorov complexity. For a
given problem size n, the complexity is denoted using Big-O
notations such as O(n2) or O(n logn).

Loosely speaking, for two functions f(x) and g(x), if

lim
x→x0

f(x)

g(x)
→ K, (1.5)
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where K is a finite, non-zero limit, we write

f = O(g). (1.6)

The big O notation means that f is asymptotically equivalent
to the order of g(x). If the limit is unity or K = 1, we say f(x)
is order of g(x). In this special case, we write

f ∼ g, (1.7)

which is equivalent to f/g → 1 and g/f → 1 as x → x0. Ob-
viously, x0 can be any value, including 0 and ∞. The notation
∼ does not necessarily mean ≈ in general, though they might
give the same results, especially in the case when x → 0 [for
example, sinx ∼ x and sinx ≈ x if x→ 0].

When we say f is order of 100 (or f ∼ 100), this does not
mean f ≈ 100, but it can mean that f is between about 50 to
150. The small o notation is often used if the limit tends to 0.
That is

lim
x→x0

f

g
→ 0, (1.8)

or
f = o(g). (1.9)

If g > 0, f = o(g) is equivalent to f � g. For example, for

∀x ∈ R, we have ex ≈ 1 + x+O(x2) ≈ 1 + x+ x2

2 + o(x).

Example 1.3: A classical example is Stirling’s asymptotic series
for factorials

n! ∼
√

2πn (
n

e
)n(1 +

1

12n
+

1

288n2
− 139

51480n3
− ...). (1.10)

This is a good example of asymptotic series. For standard power
expansions, the error Rk(h

k) → 0, but for an asymptotic series,
the error of the truncated series Rk decreases and gets smaller
compared with the leading term [here

√
2πn(n/e)n]. However,

Rn does not necessarily tend to zero. In fact,

R2 =
1

12n
·
√

2πn(n/e)n,
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is still very large as R2 →∞ if n� 1. For example, for n = 100,
we have n! = 9.3326 × 10157, while the leading approximation is√

2πn(n/e)n = 9.3248×10157. The difference between these two
values is 7.7740 × 10154, which is still very large, though three
orders smaller than the leading approximation.

Let us come back to the computational complexity of an
algorithm. For the sorting algorithm for a given number of
n data entries, sorting these numbers into either ascending or
descending order will take the computational time as a function
of the problem size n. O(n) means a linear complexity, while
O(n2) has a quadratic complexity. That is, if n is doubled, then
the time will double for linear complexity, but it will quadruple
for quadratic complexity.

For example, the bubble sorting algorithm starts at the be-
ginning of the data set by comparing the first two elements.
If the first is smaller than the second, then swap them. This
comparison and swap process continues for each possible pair
of adjacent elements. There are n × n pairs as we need two
loops over the whole data set, then the algorithm complexity
is O(n2). On the other hand, the quicksort algorithm uses a
divide-and-conquer approach via partition. By first choosing a
pivot element, we put all the elements into two sublists with
all the smaller elements before the pivot and all the greater
elements after it. Then, the sublists are recursively sorted in
a similar manner. This algorithm will result in a complexity
of O(n logn). The quicksort is much more efficient than the
bubble algorithm. For n = 1000, the bubble algorithm will
need about O(n2) ≈ O(106) calculations, while the quicksort
only requires O(n logn) ≈ O(3×103) calculations (at least two
orders less).

1.4 NP-Complete Problems

In mathematical programming, an easy or tractable problem is
a problem whose solution can be obtained by computer algo-
rithms with a solution time (or number of steps) as a polyno-
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mial function of problem size n. Algorithms with polynomial-
time are considered efficient. A problem is called the P-problem
or polynomial-time problem if the number of steps needed to
find the solution is bounded by a polynomial in n and it has at
least one algorithm to solve it.

On the other hand, a hard or intractable problem requires
solution time that is an exponential function of n, and thus
exponential-time algorithms are considered inefficient. A prob-
lem is called nondeterministic polynomial (NP) if its solution
can only be guessed and evaluated in polynomial time, and
there is no known rule to make such guess (hence, nondetermin-
istic). Consequently, guessed solutions cannot guarantee to be
optimal or even near optimal. In fact, no known algorithms ex-
ist to solve NP-hard problems, and only approximate solutions
or heuristic solutions are possible. Thus, heuristic and meta-
heuristic methods are very promising in obtaining approximate
solutions or nearly optimal/suboptimal solutions.

A problem is called NP-complete if it is an NP-hard problem
and all other problems in NP are reducible to it via certain re-
duction algorithms. The reduction algorithm has a polynomial
time. An example of NP-hard problem is the Travelling Sales-
man Problem, and its objective is to find the shortest route or
minimum travelling cost to visit all given n cities exactly once
and then return to the starting city.

The solvability of NP-complete problems (whether by poly-
nomial time or not) is still an unsolved problem which the Clay
Mathematical Institute is offering a million dollars reward for a
formal proof. Most real-world problems are NP-hard, and thus
any advance in dealing with NP problems will have potential
impact on many applications.



Chapter 2

Norms and Hessian

Matrices

Before we proceed to study various optimization methods, let
us first review some of the fundamental concepts such as norms
and Hessian matrices that will be used frequently through this
book.

2.1 Vector and Matrix Norms

For a vector v, its p-norm is denoted by ‖v‖p and defined as

‖v‖p = (
n
∑

i=1

|vi|p)1/p, (2.1)

where p is a positive integer. From this definition, it is straight-
forward to show that the p-norm satisfies the following condi-
tions: ‖v‖ ≥ 0 for all v, and ‖v‖ = 0 if and only if v = 0.
This is the non-negativeness condition. In addition, for any
real number α, we have the scaling condition: ‖αv‖ = α‖v‖.

Three most common norms are one-, two- and infinity-
norms when p = 1, 2, and ∞, respectively. For p = 1, the
one-norm is just the simple sum of each component |vi|, while
the two-norm ‖v‖2 for p = 2 is the standard Euclidean norm

11
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because ‖v‖2 is the length of the vector v

‖v‖2 =
√

v · v =
√

v2
1 + v2

2 + ...+ v2
n, (2.2)

where u · v is the inner product of two vectors u and v.
For the special case p = ∞, we denote vmax the maximum

absolute value of all the components vi, or vmax ≡ max |vi| =
max(|v1|, |v2|, ..., |vn|).

‖v‖∞ = lim
p→∞(

n
∑

i=1

|vi|p)1/p = lim
p→∞

(

vp
max

n
∑

i=1

| vi

vmax
|p
)1/p

= lim
p→∞(vp

max)
1

p (
∑

| vi

vmax
|p)

1

p =vmax lim
p→∞(

n
∑

i=1

| vi

vmax
|p)

1

p . (2.3)

Since |vi/vmax| ≤ 1 and for all terms |vi/vmax| < 1, we have
|vi/vmax|p → 0 when p→∞. Thus, the only non-zero term in
the sum is one when |vi/vmax| = 1, which means that

lim
p→∞

n
∑

i=1

|vi/vmax|p = 1. (2.4)

Therefore, we finally have

‖v‖∞ = vmax = max |vi|. (2.5)

For the uniqueness of norms, it is necessary for the norms to
satisfy the triangle inequality

‖u + v‖ ≤ ‖u‖+ ‖v‖. (2.6)

It is straightforward to check that for p = 1, 2, and∞ from their
definitions, they indeed satisfy the triangle inequality. The
equality occurs when u = v. It leaves as an exercise to check
this inequality is true for any p > 0.

Example 2.1: For the vector u =
(

5 2 3 −2
)T

and v =
(

−2 0 1 2
)T

, then the p-norms of u are

‖u‖1 = |5|+ |2|+ |3|+ | − 2| = 12,
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‖u‖2 =
√

52 + 22 + 32 + (−2)2 =
√

42,

and

‖u‖∞ = max(5, 2, 3,−2) = 5.

Similarly, ‖v‖1 = 5, ‖v‖2 = 3 and ‖v‖∞ = 2. We know that

u + v =











5 +−2
2 + 0
3 + 1
−2 + 2











=











3
2
4
0











,

and its corresponding norms are ‖u + v‖1 = 9, ‖u + v‖2 =
√

29
and ‖u + v‖∞ = 4. It is straightforward to check that

‖u + v‖1 = 9 < 12 + 5 = ‖u‖1 + ‖v‖1,

‖u + v‖2 =
√

29 <
√

42 + 3 = ‖u‖2 + ‖v‖2,
and

‖u + v‖∞ = 4 < 5 + 4 = ‖u‖∞ + ‖v‖∞.

Matrices are the extension of vectors, so we can define the
corresponding norms. For an m×n matrix A = [aij ], a simple
way to extend the norms to use the fact that Au is a vector
for any vector ‖u‖ = 1. So the p-norm is defined as

‖A‖p = (
m
∑

i=1

n
∑

j=1

|aij |p)1/p. (2.7)

Alternatively, we can consider that all the elements or en-
tries aij form a vector. A popular norm, called Frobenius form
(also called the Hilbert-Schmidt norm), is defined as

‖A‖F =
(

m
∑

i=1

n
∑

j=1

a2
ij

)1/2
. (2.8)

In fact, Frobenius norm is 2-norm.



14 Chapter 2. Norms and Hessian Matrices

Other popular norms are based on the absolute column sum
or row sum. For example,

‖A‖1 = max
1≤j≤n

(
m
∑

i=1

|aij |), (2.9)

which is the maximum of the absolute column sum, while

‖A‖∞ = max
1≤i≤m

(
n
∑

j=1

|aij |), (2.10)

is the maximum of the absolute row sum. The max norm is
defined as

‖A‖max = max{|aij |}. (2.11)

From the definitions of these norms, we know that they sat-
isfy the non-negativeness condition ‖A‖ ≥ 0, the scaling condi-
tion ‖αA‖ = |α|‖A‖, and the triangle inequality ‖A + B‖ ≤
‖A‖+ ‖B‖.

Example 2.2: For the matrix A =

(

2 3
4 −5

)

, we know that

‖A‖F = ‖A‖2 =
√

22 + 32 + 42 + (−5)2 =
√

54,

‖A‖∞ = max







|2|+ |3|

|4|+ | − 5|






= 9,

and
‖A‖max = 5.

2.2 Eigenvalues and Eigenvectors

The eigenvalues λ of a n × n square matrix A are determined
by

Au = λu, (2.12)
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or
(A− λI)u = 0. (2.13)

where I is a unitary matrix with the same size as A. Any
non-trivial solution requires that

det |A− λI| = 0, (2.14)

or
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 − λ a12 ... a1n

a21 a22 − λ ... a2n
...

. . .

an1 an2 ... ann − λ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (2.15)

which again can be written as a polynomial

λn + αn−1λ
n−1 + ...+ α0 = (λ− λ1)...(λ− λn) = 0, (2.16)

where λi are the eigenvalues which could be complex numbers.
For each eigenvalue λ, there is a corresponding eigenvector u

whose direction can be uniquely determined. However, the
length of the eigenvector is not unique because any non-zero
multiple of u will also satisfy equation (2.12), and thus can be
considered as an eigenvector. For this reason, it is usually nec-
essary to apply an additional condition by setting the length as
unity, and subsequently the eigenvector becomes a unit eigen-
vector.

In general, a real n× n matrix A has n eigenvalues λi(i =
1, 2, ..., n), however, these eigenvalues are not necessarily dis-
tinct. If the real matrix is symmetric, that is to say AT = A,
then the matrix has n distinct eigenvectors, and all the eigen-
values are real numbers. Furthermore, the inverse of a positive
definite matrix is also positive definite. For a linear system
Au = f where f is a known column vector, if A is positive
definite, then the system can be solved more efficiently by the
matrix decomposition method.

Example 2.3: The eigenvalues of the square matrix

A =

(

4 9
2 −3

)

,
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can be obtained by solving
∣

∣

∣

∣

∣

4− λ 9
2 −3− λ

∣

∣

∣

∣

∣

= 0.

We have

(4− λ)(−3− λ)− 18 = (λ− 6)(λ+ 5) = 0.

Thus, the eigenvalues are λ = 6 and λ = −5. Let v = (v1 v2)
T

be the eigenvector, we have for λ = 6

|A− λI| =
(

−2 9
2 −9

)(

v1
v2

)

= 0,

which means that

−2v1 + 9v2 = 0, 2v1 − 9v2 = 0.

These two equations are virtually the same (not linearly indepen-
dent), so the solution is

v1 =
9

2
v2.

Any vector parallel to v is also an eigenvector. In order to get a
unique eigenvector, we have to impose an extra requirement, that
is the length of the vector is unity. We now have

v2
1 + v2

2 = 1,

or

(
9v2
2

)2 + v2
2 = 1,

which gives v2 = ±2/
√

85, and v1 = ±9/
√

85. As these two
vectors are in opposite direction, we can choose any of the two
directions. So the eigenvector for the eigenvalue λ = 6 is

v =







9/
√

85

2/
√

85






.
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Similarly, the corresponding eigenvector for the eigenvalue λ = −5
is v = (−

√
2/2

√
2/2)T .

A square symmetric matrix A is said to be positive definite
if all its eigenvalues are strictly positive (λi > 0 where i =
1, 2, ..., n). By multiplying (2.12) by uT , we have

uT Au = uTλu = λuT u, (2.17)

which leads to

λ =
uTAu

uT u
. (2.18)

This means that

uTAu > 0, if λ > 0. (2.19)

In fact, for any vector v, the following relationship holds

vTAv > 0. (2.20)

For v can be a unit vector, thus all the diagonal elements of
A should be strictly positive as well. If all the eigenvalues are
non-negative or λi ≥ 0, then the matrix is called positive semi-
definite. In general, an indefinite matrix can have both positive
and negative eigenvalues.

Example 2.4: In general, a 2× 2 symmetric matrix A

A =

(

α β
β γ

)

,

is positive definite if

αu2
1 + 2βu1u2 + γu2

2 > 0,

for all u = (u1, u2)
T 6= 0. The inverse of A is

A−1 =
1

αγ − β2

(

γ −β
−β α

)

,

which is also positive definite.
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From the previous example, we know that the eigenvalues of

A =

(

1 2
2 1

)

,

are λ = 3,−1. So the matrix is indefinite. For another matrix

B =

(

4 6
6 20

)

,

we can find its eigenvalues using the similar method as discussed
earlier, and the eigenvalues are λ = 2, 22. So matrix B is positive
definite. The inverse of B

B−1 =
1

44

(

20 −6
−6 4

)

,

is also positive definite because B−1 has two eigenvalues: λ =
1/2, 1/22.

2.3 Spectral Radius of Matrices

Another important concept related to the eigenvalues of matrix
is the spectral radius of a square matrix. If λi(i = 1, 2, ..., n)
are the eigenvalues (either real or complex) of a matrix A, then
the spectral radius ρ(A) is defined as

ρ(A) ≡ max
1≤i≤n

{|λi|}, (2.21)

which is the maximum absolute value of all the eigenvalues.
Geometrically speaking, if we plot all the eigenvalues of the
matrix A on the complex plane, and draw a circle on a complex
plane so that it encloses all the eigenvalues inside, then the
minimum radius of such a circle is the spectral radius.

For any 0 < p ∈ <, the eigenvectors have non-zero norms
‖u‖ 6= 0 and ‖up‖ 6= 0. Using Au = λu and taking the norms,
we have

|λ|p‖up‖ = ‖(λu)p‖ = ‖(Au)p‖ ≤ ‖Ap‖‖up‖. (2.22)
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By dividing both sides of the above equation by ‖up‖ 6= 0, we
reach the following inequality

|λ|p ≤ ‖Ap‖1/p, (2.23)

which is valid for any eigenvalue. Therefore, it should also be
valid for the maximum absolute value or ρ(A). We finally have

ρ(A) ≤ ‖Ap‖1/p, (2.24)

which becomes an equality when p→∞.

The spectral radius is very useful in determining whether
an iteration algorithm is stable or not. Most iteration schemes
can be written as

u(n+1) = Au(n) + b, (2.25)

where b is a known column vector and A is a square matrix with
known coefficients. The iterations start from an initial guess
u(0) (often, set u(0) = 0), and proceed to the approximate
solution u(n+1). For the iteration procedure to be stable, it
requires that ρ(A) ≤ 1. If ρ(A) > 1, then the algorithm will
not be stable and any initial errors will be amplified in each
iteration.

In the case of A is a lower (or upper) matrix

A =













a11 0 ... 0
a21 a22 ... 0
...

. . .

an1 an2 ... ann













, (2.26)

then its eigenvalues are the diagonal entries: a11, a22, ..., ann.
In addition, the determinant of the triangular matrix A is sim-
ply the product of its diagonal entries. That is

det(A) = |A| =
n
∏

i=1

aii = a11a22...ann. (2.27)
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Obviously, a diagonal matrix

D = diag(d1, d2, ..., dn) =













d1 0 ... 0
0 d2 ... 0

. . .

0 0 ... dn













, (2.28)

is just a special case of a triangular matrix. Thus, the proper-
ties for its inverse, eigenvalues and determinant are the same
as the above.

These properties are convenient in determining the stability
of an iteration scheme such as the Jacobi-type and Gauss-Seidel
iteration methods where A may contain triangular matrices.

Example 2.5: Determine if the following iteration is stable or
not







u1

u2

u2







n+1

=







5 2 0
1 −2 2
4 1/2 −2













u1

u2

u3






+







2
−2
5






.

We know the eigenvalues of

A =







5 2 0
1 −2 2
4 1/2 −2






,

are

λ1 = 5.5548, λ2 = −2.277 + 1.0556i, λ3 = −2.277− 1.0556i.

Then the spectral radius is

ρ(A) = max
i∈{1,2,3}

(|λi|) ≈ 5.55 > 1,

therefore, the iteration process will not be convergent.

2.4 Hessian Matrix

The gradient vector of a multivariate function f(x) is defined
as

G1(x) ≡ ∇f(x) ≡
(

∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

)T
, (2.29)
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where x = (x1, x2, ..., xn)T is a vector. As the gradient ∇f(x)
of a linear function f(x) is always a constant vector k, then
any linear function can be written as

f(x) = kT x + b, (2.30)

where b is a constant vector.
The second derivatives of a generic function f(x) form an

n× n matrix, called Hessian matrix, given by

G2(x) ≡ ∇2f(x) ≡











∂f
∂x2

1

... ∂f
∂x1∂xn

...
...

∂f
∂x1∂xn

. . . ∂2f
∂xn

2











, (2.31)

which is symmetric due to the fact that

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
. (2.32)

When the Hessian matrix G2(x) = A is a constant matrix (the
values of its entries are independent of x), the function f(x)
is called a quadratic function, and can subsequently be written
as

f(x) =
1

2
xTAx + kT x + b. (2.33)

The factor 1/2 in the expression is to avoid the appearance
everywhere of a factor 2 in the derivatives, and this choice is
purely out of convenience.

Example 2.6: The gradient of f(x, y, z) = x2 + y2 + yz sin(x)
is

G1 =
(

2x+ yz cos(x) 2y + z sin(x) y sin(x)
)T
.

The Hessian matrix is given by

G2=



















∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂y2

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2



















=















2−yz sin(x) z cos(x) y cos(x)

z cos(x) 2 sin(x)

y cos(x) sin(x) 0















.
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(a) (b)

Figure 2.1: Convexity: (a) non-convex, and (b) convex.
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Figure 2.2: Convexity of a function f(x). Chord AB lies above
the curve segment joining A and B. For any point P , we have
Lα = αL, Lβ = βL and L = |xB − xA|.

2.5 Convexity

Nonlinear programming problems are often classified accord-
ing to the convexity of the defining functions. Geometrically
speaking, an object is convex if for any two points within the
object, every point on the straight line segment joining them
is also within the object. Examples are a solid ball, a cube or
a pyramid. Obviously, a hollow object is not convex. Three
examples are given in Fig. 2.1.

Mathematically speaking, a set S ∈ <n in a real vector
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space is called a convex set if

tx+ (1− t)y ∈ S, ∀(x, y) ∈ S, t ∈ [0, 1]. (2.34)

A function f(x) defined on a convex set Ω is called convex if
and only if it satisfies

f(αx+ βy) ≤ αf(x) + βf(y), ∀x, y ∈ Ω, (2.35)

and
α ≥ 0, β ≥ 0, α+ β = 1. (2.36)

Geometrically speaking, the chord AB lies above the curve seg-
ment APB joining A and B (see Fig. 2.2). For example, for
any point P between A and B, we have xP = αxA + βxB with

α =
Lα

L
=
xB − xP

xB − xA
≥ 0,

β =
Lβ

L
=
xP − xA

xB − xA
≥ 0, (2.37)

which indeed gives α+ β = 1. In addition, we know that

αxA + βxB =
xA(xB − xP )

xB − xA
+
xB(xP − xA)

xB − xA
= xP . (2.38)

The value of the function f(xP ) at P should be less than or
equal to the weighted combination αf(xA) + βf(xB) (or the
value at point Q). That is

f(xP ) = f(αxA + βxB) ≤ αf(xA) + βf(xB). (2.39)

Example 2.7: For example, the convexity of f(x) = x2 − 1
requires

(αx+ βy)2 − 1 ≤ α(x2 − 1) + β(y2 − 1), ∀x, y ∈ <, (2.40)

where α, β ≥ 0 and α+ β = 1. This is equivalent to require

αx2 + βy2 − (αx+ βy)2 ≥ 0, (2.41)
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where we have used α+ β = 1. We now have

αx2 + βy2 − α2x2 − 2αβxy − β2y2

= α(1− α)(x− y)2 = αβ(x− y)2 ≥ 0, (2.42)

which is always true because α, β ≥ 0 and (x−y)2 ≥ 0. Therefore,
f(x) = x2 − 1 is convex for ∀x ∈ <.

A function f(x) on Ω is concave if and only if g(x) = −f(x)
is convex. An interesting property of a convex function f is that
the vanishing of the gradient df/dx|x∗ = 0 guarantees that the
point x∗ is a global minimum of f . If a function is not convex
or concave, then it is much more difficult to find global minima
or maxima.



Chapter 3

Root-Finding

Algorithms

The essence of finding the solution of an optimization problem
is equivalent to finding the critical points and extreme points.
In order to find the critical points, we have to solve the sta-
tionary conditions when the first derivatives are zero, though
it is a different matter for the extreme points at boundaries.
Therefore, root-finding algorithms are important. Close-form
solutions are rare, and in most cases, only approximate solu-
tions are possible. In this chapter, we will introduce the fun-
damentals of the numerical techniques concerning root-finding
algorithms.

3.1 Simple Iterations

The essence of root-finding algorithms is to use iteration proce-
dure to obtain the approximate (well sometimes quite accurate)
solutions, starting from some initial guess solution. For exam-
ple, even ancient Babylonians knew how to find the square root
of 2 using the iterative method. From the numerical technique
we learnt at school, we know that we can numerically compute
the square root of any real number k ( so that x =

√
k) using

25
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the equation

x =
1

2
(x+

k

x
), (3.1)

starting from a random guess, say, x = 1. The reason is that
the above equation can be rearranged to get x =

√
k. In order

to carry out the iteration, we use the notation xn for the value
of x at n-th iteration. Thus, equation (3.1) provides a way of
calculating the estimate of x at n + 1 (denoted as xn+1). We
have

xn+1 =
1

2
(xn +

k

xn
). (3.2)

If we start from an initial value, say, x0 = 1 at n = 0, we can
do the iterations to meet the accuracy we want.

Example 3.1: To find
√

5, we have k = 5 with an initial guess
x0 = 1, and the first five iterations are as follows:

x1 =
1

2
(x0 +

5

x0
) = 3, (3.3)

x2 =
1

2
(x1 +

5

x1
) ≈ 2.333333333, (3.4)

x3 ≈ 2.238095238, x4 ≈ 2.236068895, (3.5)

x5 ≈ 2.236067977. (3.6)

We can see that x5 after 5 iterations is very close to its true
value

√
5 = 2.23606797749979..., which shows that the iteration

method is quite efficient.

The reason that this iterative process works is that the se-
ries x1, x2, ..., xn converges into the true value

√
k due to the

fact that xn+1/xn = 1
2(1 + k/x2

n) → 1 as xn →
√
k. However,

a good choice of the initial value x0 will speed up the conver-
gence. Wrong choice of x0 could make the iteration fail, for
example, we cannot use x0 = 0 as the initial guess, and we
cannot use x0 < 0 either as

√
k > 0 (in this case, the iterations

will approach another root −
√
k).

So a sensible choice should be an educated guess. At the
initial step, if x2

0 < k, x0 is the lower bound and k/x0 is upper
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Figure 3.1: Bisection method for finding the root x∗ of f(x∗) =
0 between two bounds xa and xb in the domain x ∈ [a, b].

bound. If x2
0 > k, then x0 is the upper bound and k/x0 is

the lower bound. For other iterations, the new bounds will be
xn and k/xn. In fact, the value xn+1 is always between these
two bounds xn and k/xn, and the new estimate xn+1 is thus
the mean or average of the two bounds. This guarantees that
the series converges into the true value of

√
k. This method is

similar to the bisection method below.

3.2 Bisection Method

The above-mentioned iteration method to find x =
√
k is in

fact equivalent to find the solution or the root of the function
f(x) = x2 − k = 0. For any function f(x) in the interval [a, b],
the root-finding bisection method works in the following way
as shown in Fig. 3.1.

The iteration procedure starts with two initial guessed bounds
xa (lower bound), and xb (upper bound) so that the true root
x = x∗ lies between these two bounds. This requires that f(xa)
and f(xb) have different signs. In our case shown in Fig. 3.1,
f(xa) > 0 and f(xb) < 0, but f(xa)f(xb) < 0. The obvious
choice is xa = a and xb = b. The next estimate is just the
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midpoint of A and B, and we have

xn =
1

2
(xa + xb). (3.7)

We then have to test the sign of f(xn). If f(xn) < 0 (having
the same sign as f(xb)), we then update the new upper bound
as xb = xn. If f(xn) > 0 (having the same sign as f(xa)),
we update the new lower bound as xa = xn. In a special case
when f(xn) = 0, we have found the true root. The iterations
continue in the same manner until a given accuracy is achieved
or the prescribed number of iterations is reached.

Example 3.2: If we want to find
√
π, we have

f(x) = x2 − π = 0.

We can use xa = 1 and xb = 2 since π < 4 (thus
√
π < 2). The

first bisection point is

x1 =
1

2
(xa + xb) =

1

2
(1 + 2) = 1.5.

Since f(xa) < 0, f(xb) > 0 and f(x1) = −0.8916 < 0, we update
the new lower bound xa = x1 = 1.5. The second bisection point
is

x2 =
1

2
(1.5 + 2) = 1.75,

and f(x2) = −0.0791 < 0, so we update lower bound again
xa = 1.75. The third bisection point is

x3 =
1

2
(1.75 + 2) = 1.875.

Since f(x3) = 0.374 > 0, we now update the new upper bound
xb = 1.875. The fourth bisection point is

x4 =
1

2
(1.75 + 1.875) = 1.8125.

It is within 2.5% from the true value of
√
π ≈ 1.7724538509.

In general, the convergence of the bisection method is very
slow, and Newton’s method is a much better choice in most
cases.
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3.3 Newton’s Method

Newton’s method is a widely-used classic method for finding
the zeros of a nonlinear univariate function of f(x) on the inter-
val [a, b]. It is also referred to as the Newton-Raphson method.
At any given point xn shown in Fig. 3.2, we can approximate
the function by a Taylor series for ∆x = xn+1 = xn about xn,

f(xn+1) = f(xn + ∆x) ≈ f(xn) + f ′(xn)∆x, (3.8)

which leads to

xn+1 − xn = ∆x ≈ f(xn+1)− f(xn)

f ′(xn)
, (3.9)

or

xn+1 ≈ xn +
f(xn+1)− f(xn)

f ′(xn)
. (3.10)

Since we try to find an approximation to f(x) = 0 with f(xn+1),
we can use the approximation f(xn+1) ≈ 0 in the above expres-
sion. Thus we have the standard Newton iterative formula

xn+1 = xn −
f(xn)

f ′(xn)
. (3.11)

The iteration procedure starts from an initial guess x0 and
continues until certain criterion is met. A good initial guess
will use less number of steps, however, if there is no obvious
initial good starting point, you can start at any point on the
interval [a, b]. But if the initial value is too far from the true
zero, the iteration process may fail. So it is a good idea to limit
the number of iterations.

Example 3.3: To find the root of

f(x) = x− e−x = 0,

we use the Newton’s method starting from x0 = 1. We know that

f ′(x) = 1 + e−x,
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Figure 3.2: Newton’s method to approximate the root x∗ by
xn+1 from the pervious value xn.

and thus the iteration formula becomes

xn+1 = xn −
xn − e−xn

1 + e−xn
.

Using x0 = 1, we have

x1 = 1− 1− e−1

1 + e−1
≈ 0.5378828427,

and
x2 ≈ 0.5669869914, x3 ≈ 0.5671432859.

We can see that x3 (only three iterations) is very close to the true
root is x∗ ≈ 0.5671432904.

We have seen that Newton’s method is very efficient and is
thus so widely used. This method can be modified for solving
unconstrained optimization problems because it is equivalent to
find the root of the first derivative f ′(x) = 0 once the objective
function f(x) is given.

3.4 Iteration Methods

Sometimes we have to find roots of functions of multiple vari-
ables, and Newton’s method can be extended to carry out such
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task. For nonlinear multivariate functions

F (x) = [F1(x), F2(x), ..., FN (x)]T , (3.12)

where x = (x, y, ..., z)T = (x1, x2, ..., xp)
T , an iteration method

is usually needed to find the roots

F (x) = 0. (3.13)

The Newton-Raphson iteration procedure is widely used. We
first approximate F (x) by a linear residual function R(x; xn)
in the neighbourhood of an existing approximation xn to x,
and we have

R(x,xn) = F (xn) + J(xn)(x− xn), (3.14)

and

J(x) = ∇F , (3.15)

where J is the Jacobian of F . That is

Jij =
∂Fi

∂xj
. (3.16)

Here we have used the notation xn for the vector x at the n-th
iteration, which should not be confused with the power un of
a vector u. This might be confusing, but such notations are
widely used in the literature of numerical analysis. An alterna-
tive (and better) notation is to denote xn as x(n), which shows
the vector value at n-th iteration using a bracket. However, we
will use both notations if no confusion could arise.

To find the next approximation xn+1 from the current es-
timate xn, we have to try to satisfy R(xn+1,un) = 0, which is
equivalent to solve a linear system with J being the coefficient
matrix

xn+1 = xn − J−1F(xn), (3.17)

under a given termination criterion

‖xn+1 − xn‖ ≤ ε.
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Iterations require an initial starting vector x0, which is often
set to x0 = 0.

Example 3.4: To find the roots of the system

x− e−y = 0, x2 − y = 0,

we first write it as

F (x) =

(

x1 − e−x2

x2
1 − x2

)

, x =

(

x1

x2

)

=

(

x
y

)

.

The Newton-Raphson iteration formula becomes

xn+1 = xn − J−1F (xn),

where the Jacobian J is

J =

(

∂F1

∂x1

∂F1

∂x2

∂F2

∂x1

∂F2

∂x2

)

=

(

1 e−x2

2x1 −1

)

,

whose inverse is

A = J−1 =
1

−1− 2x1e−x2

(

−1 −e−x2

−2x1 1

)

=
1

1 + 2x1e−x2

(

1 e−x2

2x1 −1

)

.

Therefore, the iteration equation becomes

xn+1 = xn − un

where

un = J−1F (xn) =
1

1 + 2x2e−x2

(

1 e−x2

2x1 −1

)(

x1 − e−x2

x2
1 − x2

)

=
1

1 + 2x1e−x2

(

x1 + (x2
1 − 1− x2)e

−x2

x2
1 + x2 − 2x1e

−x2

)

.
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If we start with the initial guess x0 = (0, 0)T , we have the first
estimate x1 as

x1 =

(

0
0

)

−
(

−1
0

)

=

(

1
0

)

,

and the second iteration gives

x2 =

(

1
0

)

−
(

0.33333
−0.33333

)

=

(

0.66667
0.3333

)

.

If we continue this way, the third iteration gives

x3 = x2 −
(

0.01520796
−0.09082847

)

=

(

0.6514462
0.42415551

)

.

Finally, the fourth iteration gives

x4 = x3 −
(

−0.001472389
−0.002145006

)

=

(

0.65291859
0.42630051

)

.

The true roots occur at (0.6529186405, 0.4263027510), and we
can see that even after only four iterations, the estimates are very
close to the true values.

With these fundamentals of mathematics and numerical
techniques, we are now ready to solve optimization problems.
In Part II, we will introduce the conventional methods that are
widely used in mathematical programming.





Chapter 4

System of Linear

Equations

4.1 Linear systems

A linear system of m equations for n unknowns

a11u1 + a12u2 + ...+ a1nun = b1,

a21u1 + a22u2 + ...+ a2nun = b2,

...
...

am1u1 + am2u2 + ...+ amnun = bn, (4.1)

can be written in the compact form as













a11 a12 ... a1n

a21 a22 ... a2n
...

...
am1 am2 ... amn

























u1

u2
...
un













=













b1
b2
...
bn













, (4.2)

or simply

Au = b. (4.3)

If m < n, the system is under-determined as the conditions
are not adequate to guarantee a unique solution. On the other

35
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hand, the system is over-determined if m > n because there
are too many conditions and a solution may not exist at all.
The unique solution is only possible when m = n.

The solution of this matrix equation is important to many
numerical problems, ranging from the solution of a large system
of linear equations to linear mathematical programming, and
from data interpolation to finding solutions to finite element
problems.

The inverse of A is possible only if m = n. If the inverse
A−1 does not exist, then the linear system is under-determined
or there are no unique solutions (or even no solution at all). In
order to find the solutions, we multiply both sides by A−1,

A−1Au = A−1b, (4.4)

and we obtain the solution

u = A−1b. (4.5)

A special case of the above equation is when b = λu, and
this becomes an eigenvalue problem. An eigenvalue λ and cor-
responding eigenvector v of a square matrix A satisfy

Av = λv, (4.6)

or

(A− λI)v = 0. (4.7)

Eigenvalues have the interesting connections with the matrix,

tr(A) =
n
∑

i=1

aii = λ1 + λ2 + ...+ λn, (4.8)

and

det(A) =
n
∏

i=1

λi. (4.9)

For a symmetric square matrix, the two eigenvectors for two
distinct eigenvalues λi and λj are orthogonal vTv = 0.
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Mathematically speaking, a linear system can be solved in
principle using the Cramer’s rule,

ui =
detAi

detA
, i = 1, 2, ..., n, (4.10)

where the matrix Ai is obtained by replacing the i-th column
by the column vector b. For three linear equations with three
unknown u1, u2 and u3,

a11u1 + a12u2 + a13u3 = b1,

a21u1 + a22u2 + a23u3 = b2,

a31u1 + a32u2 + a33u3 = b3, (4.11)

its solution vector is given by the following Cramer’s rule

u1 =
1

∆

∣

∣

∣

∣

∣

∣

∣

b1 a12 a13

b2 a22 a23

b3 a32 a33

∣

∣

∣

∣

∣

∣

∣

, u2 =
1

∆

∣

∣

∣

∣

∣

∣

∣

a11 b1 a13

a21 b2 a23

a31 b3 a33

∣

∣

∣

∣

∣

∣

∣

,

u3 =
1

∆

∣

∣

∣

∣

∣

∣

∣

a11 a12 b1
a21 a22 b2
a31 a32 b3

∣

∣

∣

∣

∣

∣

∣

,

where

∆ =

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

∣

. (4.12)

Though it is straightforward to extend to any dimensions in
theory, in practice this is not an easy task because the calcula-
tion of the determinant of a large matrix is not easy. Though,
the Cramer’s rule is good for theorem-proof, but it is not good
for numerical implementation. A far better method is to use
the inverse matrix.

Finding the inverse A−1 of a square n× n matrix A is not
an easy task either, especially when the size of the matrix is
large and it usually requires the algorithm complexity of O(n3).
In fact, many solution methods intend to avoid the calculations
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of finding the inverse A−1 if possible. There are many ways of
solving the linear equations, but they fall into two categories:
direct algebraic methods and iteration methods. The former
intends to find the solution by elimination, decomposition of
the matrix, and substitutions, while the later involves certain
iterations to find the approximate solutions. The choice of these
methods depends on the characteristics of the matrix A, the
size of the problem, computational time, the type of problem,
and the required solution quality.

4.2 Gauss Elimination

The basic idea of Gauss elimination is to transform the square
matrix into a triangular matrix by elementary row operations,
so that the simplified triangular system can be solved by direct
back substitution. For the linear system













a11 a12 a13 ... a1n

a21 a22 a23 ... a2n
...

an1 an2 an3 ... ann

























u1

u2
...
un













=













b1
b2
...
bn













, (4.13)

the aim in the first step is to try to make all the coefficients
in the first column (a21, ..., an1) become zero except the first
element by elementary row operations. This is based on the
principle that a linear system will remain the same if its rows
are multiplied by some non-zero coefficients or any two rows are
interchanged or any two (or more) rows are combined through
addition and substraction.

To do this, we first divide the first equation by a11 (we can
always assume a11 6= 0, if not, we re-arrange the order of the
equations to achieve this). We now have













1 a12

a11

a13

a11
... a1n

a11

a21 a22 a23 ... a2n
...

an1 an2 an3 ... ann

























u1

u2
...
un













=













b1
a11

b2
...
bn













. (4.14)
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Then multiplying the first row by −a21 and adding it to the
second row, multiplying the first row by −ai1 and adding it to
the i-th row, we finally have













1 a12

a11

a13

a11
... a1n

a11

0 a22 − a21a12

a11
... a2n−a21a1n

a11

...
0 an2−an1a12

a11
... ann−an1a1n

a11

























u1

u2
...
un













=













b1
a11

b2− a21b1
a11

...

bn− an1bn

a11













.

We then repeat the same procedure for the third row to the
n-th row, the final form of the linear system should be in the
following generic form













α11 α12 α13 ... α
1n

0 α22 α23 ... α2n
...

. . .

0 0 0 ... αnn

























u1

u2
...
un













=













β1

β2
...
βn













, (4.15)

where α1j = a1j/a11, α2j = a2j − a1ja21/a11(j = 1, 2, ..., n),
..., β1 = b1/a11, β2 = b2 − a21b1/a11 and others. From the
above form, we see that un = βn/αnn because there is only
one unknown un in the n-th row. We can then use the back
substitution to obtain un−1 and up to u1. Therefore, we have

un =
βn

αnn
,

ui =
1

αii
(βi −

n
∑

j=i+1

αijxj), (4.16)

where i = n − 1, n − 2, ..., 1. Obviously, in our present case,
α11 = ... = αnn = 1. Let us look at an example.

Example 4.1: For the linear system











2 −1 3 4
3 2 −5 6
−2 1 0 5
4 −5 −6 0





















u1

u2

u3

u4











=











21
9
12
−3











,
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we first divide the first row by a11 = 2, we have










1 −1/2 3/2 2
3 2 −5 6
−2 1 0 5
4 −5 −6 0





















u1

u2

u3

u4











=











21/2
9
12
−3











.

Multiplying the first row by 3 and subtracting it from the second
row, and carrying out similar row manipulations for the other rows,
we have











1 −1/2 3/2 2
0 7/2 −19/2 0
0 0 3 9
0 −3 −12 −8





















u1

u2

u3

u4











=











21/2
−45/7

33
−45











.

For the second row, we repeat this procedure again, we have










1 −1/2 3/2 2
0 1 −19/7 0
0 0 3 9
0 0 −141/7 −8





















u1

u2

u3

u4











=











21/2
−45/7

33
−450/7











.

After the same procedure for the third row, we have










1 −1/2 3/2 2
0 1 −19/7 0
0 0 1 3
0 0 0 367/7





















u1

u2

u3

u4











=











21/2
−45/7

11
1101/7











.

The fourth row gives that u4 = 3. Using the back substitution,
we have u3 = 2 from the third row. Similarly, we have u2 = −1
and u1 = 1. So the solution is











u1

u2

u3

u4











=











1
−1
2
3











.

We have seen from the example, there are many float-point
calculations even for the simple system of three linear equa-
tions. In fact, the full Gauss elimination is computationally
extensive with an algorithmic complexity of O(2n3/3).



4.3 Gauss-Jordan Elimination 41

4.3 Gauss-Jordan Elimination

Gauss-Jordan elimination is a variant of Gauss elimination
which solves a linear system and, at the same time, can also
compute the inverse of a square matrix. The first step is to
formulate an augmented matrix from A, b and the unit matrix
I (with the same size of A). That is

B = [A|b|I] =













a11 ... a1n |b1| 1 0 ... 0
a21 ... a2n |b2| 0 1 ... 0

...
...

...
an1 ... ann |bn| 0 0 ... 1













, (4.17)

where the notation A|b denotes the augmented form of two
matrices A and b. The aim is to reduce B to the following
form by elementary row reductions in the similar way as those
carried out in Gauss elimination.













1 0 ... 0 |u1| a′11 ... a′1n

0 1 ... 0 |u2| a′21 ... a′2n
...

...
...

0 0 ... 1 |un| a′n1 ... a′nn













= [I|u|A−1], (4.18)

where A−1 = [a′ij ] is the inverse. This is better demonstrated
by an example.

Example 4.2: In order to solve the following system

Au =







1 2 3
−2 2 5
4 0 −5













u1

u2

u3






=







5
−2
14






= b,

we first write it in an augmented form

B =















1 2 3 | 5 | 1 0 0

−2 2 5 | −2 | 0 1 0

4 0 −5 | 14 | 0 0 1















.
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By elementary row operations, this could be changed into

B′ = [I|u|A−1] =















1 0 0 | 1 | 5
7 −5

7 −2
7

0 1 0 | 5 | −5
7

17
14

11
14

0 0 1 | −2 | 4
7 −4

7 −3
7















,

which gives

u =







1
5
−2






, A−1 =

1

14







10 −10 −4
−10 17 11
8 −8 −6






.

We can see that both the solution u and the inverse A−1 are
obtained in Gauss-Jordan elimination.

The Gauss-Jordan elimination is not quite stable numeri-
cally. In order to get better and stable schemes, common prac-
tice is to use pivoting. Basically, pivoting is a scaling procedure
by dividing all the elements in a row by the element with the
largest magnitude or norm. If necessary, rows can be exchanged
so the the largest element is moved so that it becomes the lead-
ing coefficient, especially on the diagonal position. This makes
all the scaled elements to be in the range [−1, 1]. Thus, excep-
tionally large numbers are removed, which makes the scheme
more numerically stable.

An important issue in both Gauss elimination and Gauss-
Jordan elimination is the non-zero requirement of leading co-
efficients such as a11 6= 0. For a11, it is possible to re-arrange
the equations to achieve this requirement. However, there is
no guarantee that other coefficients such as a22 − a21a12/a11

should be nonzero. If it is zero, there is a potential difficulty
due to the dividing by zero. In order to avoid this problem,
we can use other methods such as the pivoting method and LU
decomposition.
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4.4 LU Factorization

Any square matrix A can be written as the product of two
triangular matrices in the form

A = LU, (4.19)

where L and U are the lower and upper triangular matrices,
respectively. A lower (upper) triangular matrix has elements
only on the diagonal and below (above). That is

L =













β11 0 ... 0
β21 β22 ... 0
...

. . .

βn1 βn2 ... βnn













, (4.20)

and

U =













α11 ... α1,n−1 α1,n

. . .
...

0 ... αn−1,n−1 αn−1,n

0 ... 0 αnn













. (4.21)

The linear system Au = b can be written as two step

Au = (LU)u = L(Uu) = b, (4.22)

or
Uu = v, Lv = b, (4.23)

which are two linear systems with triangular matrices only, and
these systems can be solved by forward and back substitutions.
The solutions of vi are given by

v1 =
b1
β11

, vi =
1

βii
(bi −

i−1
∑

j=1

βijvj), (4.24)

where i = 2, 3, ..., n. The final solutions ui are then given by

un =
vn

αnn
, ui =

1

αii
(vi −

n
∑

j=i+1

αijuj), (4.25)
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where i = n− 1, ..., 1.
For triangular matrices such as L, there are some interesting

properties. The inverse of a lower (upper) triangular matrix is
also a lower (upper) triangular matrix. The determinant of the
triangular matrix is simply the product of its diagonal entries.
That is

det(L) = |L| =
n
∏

i=1

βii = β11β22...βnn. (4.26)

More interestingly, the eigenvalues of a triangular matrix are
the diagonal entries: β11, β22, ..., βnn. These properties are
convenient in determining the stability of an iteration scheme.

But there is another issue here and that is how to decom-
pose a square matrix A = [aij ] into L and U. As there are
n(n + 1)/2 coefficients αij and n(n + 1)/2 coefficients βij , so
there are n2 + n unknowns. For the equation (4.19), we know
that it could provide only n2 equations (as there are only n2

coefficients aij). They are

i
∑

k=1

βikαkj = aij , (i < j), (4.27)

j=i
∑

k=1

βikαkj = aij , (i = j), (4.28)

and
j
∑

k=1

βikαkj = aij , (i > j), (4.29)

which again form another system of n equations.
As n2 + n > n2, there are n free coefficients. Therefore,

the factorization or decomposition is not uniquely determined.
We have to impose some extra conditions. Fortunately, we can
always set either αii = 1 or βii = 1 where i = 1, 2, ..., n. If
we set βii = 1, we can use the Crout’s algorithm to determine
αij and βij . We have the coefficients for the upper triangular
matrix

αij = aij −
i−1
∑

k=1

βikαkj , (4.30)
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for (i = 1, 2, ..., j) and j = 1, 2, ..., n. For the lower triangular
matrix, we have

βij =
1

αjj
(aij −

j−1
∑

k=1

βikαkj), (4.31)

for i = j + 1, j + 2, ..., n.
The same issue appears again, that is, all the leading coef-

ficients αii must be non-zero. For sparse matrices with many
zero entries, this often causes some significant problems nu-
merically. Better methods such as iteration methods should be
used in this case.

4.5 Iteration Methods

For a linear system Au = b, the solution u = A−1b gener-
ally involves the inversion of a large matrix. The direct in-
version becomes impractical if the matrix is very large (say, if
n > 1000000). Many efficient algorithms have been developed
for solving such systems. Jacobi and Gauss-Seidel iteration
methods are just two examples.

4.5.1 Jacobi Iteration Method

The basic idea of the Jacobi-type iteration method is to de-
compose the n× n square matrix A into three simple matrices

A = D + L + U, (4.32)

where D is a diagonal matrix. L and U are the strictly lower
and upper triangular matrices, respectively. Here the ‘strict’
means that the lower (or upper) triangular matrices do not
include the diagonal elements. That is say, all the diagonal
elements of the triangular matrices are zeros.

It is worth pointing out that here the triangular matrices
L and U are different from those in the LU decomposition
where it requires a matrix product. In comparison with the
LU decomposition where LU = A, we have used the simple
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additions here and this makes the decomposition an easier task.
Using this decomposition, the linear system Au = b becomes

Au = (D + L + U)u = b, (4.33)

which can be written as the iteration procedure

Du(n+1) = b− (L + U)u(n). (4.34)

This can be used to calculate the next approximate solution
u(n+1) from current estimate u(n). As the inverse of any diag-
onal matrix D =diag[dii] is easy, we have

u(n+1) = D−1[b− (L + U)u(n)]. (4.35)

Writing in terms of the elements, we have

u
(n+1)
i =

1

dii
[bi −

∑

j 6=i

aiju
(n)
j ], (4.36)

where dii = aii are the diagonal elements only.
This iteration usually starts from an initial guess u(0) (usu-

ally, u(0) = 0). However, this iteration scheme is only stable
under the conditions that the square matrix is strictly diago-
nally dominant. That is to require that

|aii| >
n
∑

j=1,j 6=i

|aij |, (4.37)

for all i = 1, 2, ..., n.
In order to show how the iteration works, let us at look at

an example by solving the following linear system

5u1 + u2 − 2u3 = 5,

u1 + 4u2 = −10,

2u1 + 2u2 − 7u3 = −9. (4.38)

We know its exact solution is

u =







u1

u2

u3






=







2
−3
1






. (4.39)
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Now let us solve the system by the Jacobi-type iteration method.

Example 4.3: We first write the above simple system as the
compact matrix form Au = b or







5 1 −2
1 4 0
2 2 −7













u1

u2

u3






=







5
−10
−9






.

Then let us decompose the matrix A as

A =







5 1 −2
1 4 0
2 2 −7






= D + (L + U)

=







5 0 0
0 4 0
0 0 −7






+







0 0 0
1 0 0
2 2 0






+







0 1 −2
0 0 0
0 0 0






.

The inverse of D is simply

D−1 =







1/5 0 0
0 1/4 0
0 0 −1/7






.

The Jacobi-type iteration formula is

u(n+1) = D−1[b− (L + U)u(n)]

or






u1

u2

u3







n+1

=







1/5 0 0
0 1/4 0
0 0 −1/7







[







5
−10
−9






−







0 1 −2
1 0 0
2 2 0













u1

u2

u3







n

]

.

If we start from the initial guess u(0) =
(

0 0 0
)T

, we have

u(1) ≈







1
−2.5

1.2857






,u(2) ≈







2.0143
−2.7500
0.8571






,u(3) ≈







1.8929
3.0036
1.0755






,



48 Chapter 4. System of Linear Equations

u(4) ≈







2.0309
−2.9732
0.9684






, u(5) ≈







1.9820
−3.0077
1.0165






.

We can see that after 5 iterations, the approximate solution is

quite near the true solution u =
(

2 −3 1
)T

.

This is an issue here. If we interchange the second row
(equation) and the third row (equation), then the new diagonal
matrix is







5 0 0
0 2 0
0 0 0






,

which has no inverse as it is singular. This means the order of
the equations is important to ensure that the matrix is diago-
nally dominant.

Furthermore, if we interchange the first equation (row) and
second equation (row), we have an equivalent system







1 4 0
5 1 −2
2 2 −7













u1

u2

u3






=







−10
5
−9






.

Now the new decomposition becomes

A =







1 4 0
5 1 −2
2 2 −7







=







1 0 0
0 1 0
0 0 −7






+







0 0 0
5 0 0
2 2 0






+







0 4 0
0 0 −2
0 0 0






,

which gives the following iteration formula







u1

u2

u3







n+1

=







1 0 0
0 1 0
0 0 −1

7







[







−10
5
−9






−







0 4 0
5 0 −2
2 2 0













u1

u2

u3







n

]

.
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Starting from u(0) =
(

0 0 0
)T

again, we have

u(1) =







−10
5

1.2857






, u(2) =







−30
57.5714
−0.1429






, u(3) =







−240.28
154.71
9.16






, ...

We can see that it diverges. So what is the problem? How can
the order of the equation affect the results so significantly?

There are two important criteria for the iteration to con-
verge correctly, and they are: the inverse of D−1 must exist
and the spectral radius of the right matrix must be less than 1.
The first condition is obvious, if D−1 does not exist (say, when
any of the diagonal elements is zero), then we cannot carry out
the iteration process at all. The second condition requires

ρ(D−1) ≤ 1, ρ[D−1(L + U)] ≤ 1, (4.40)

where ρ(A) is the spectral radius of the matrix A. From the
diagonal matrix D, its largest absolute eigenvalue is 1. So
ρ(D−1) = max(|λi|) = 1 seems to be no problem. How about
the following matrix?

N = D−1(L + U) =







0 4 0
5 0 −2
−2/7 −2/7 0






. (4.41)

The three eigenvalues of N are λi = 4.590,−4.479,−0.111. So
its spectral radius is ρ(N) = max(|λi|) = 4.59 > 1. The itera-
tion scheme will diverge.

If we revisit our earlier example, we have

D−1 =







1/5 0 0
0 1/4 0
0 0 −1/7






, eig(D−1) =

1

5
,
1

4
,
−1

7
, (4.42)

and

N = D−1(L + U) =







0 1/5 −2/5
1/4 0 0
−2/7 −2/7 0






, (4.43)
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whose eigenvalues are

λ1 = 0.4739, λ2,3 = −0.2369± 0.0644i. (4.44)

So we have

ρ(D−1) = 1/4 < 1, ρ(N) = 0.4739 < 1. (4.45)

That is why the earlier iteration procedure is convergent.

4.5.2 Gauss-Seidel Iteration

In the Jacobi-type iterations, we have to store both u(n+1) and

u(n) as we have to use all the u
(n)
j values to compute the value

at the next level t = n + 1, this means that we cannot use
the running update when the new approximate has just been
computed

u
(n+1)
j → u

(n)
j , (j = 1, 2, ...).

If the vector size u is large (it usually is), then we can devise
other iteration procedure to save memory using the running
update. So only one vector storage is needed.

The Gauss-Seidel iteration procedure is such an iteration
procedure to use the running update and also provides an ef-
ficient way of solving the linear matrix equation Au = b. It
uses the same decomposition as the Jacobi-type iteration by
splitting A into

A = L + D + U, (4.46)

but the difference from the Jacobi method is that we use L +
D instead of D for the inverse so that the running update is
possible. The n-th step iteration is updated by

(L + D)u(n+1) = b−Uu(n), (4.47)

or

u(n+1) = (L + D)−1[b−Uu(n)]. (4.48)

This procedure, starting from an initial vector u(0), stops if a
prescribed criterion is reached.
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It is worth pointing out that the Gauss-Seidel iteration re-
quires the same criteria of convergence as the Jacobi-type iter-
ation method. The inverse of the matrix must exist, and the
largest spectral radius must be less than 1.

4.5.3 Relaxation Method

The above Gauss-Seidel iteration method is still slow, and the
relaxation method provides a more efficient iteration procedure.
A popular method is the successive over-relaxation method
which consists of two steps

v(n) = (L + D + U)u(n) − b, (4.49)

and

u(n+1) = u(n) − ω(L + D)−1v(n), (4.50)

where 0 < ω < 2 is the overrelaxation parameter. If we combine
the above equations and re-arrange, we have

u(n+1) = (1− ω)u(n) + ωũ(n), (4.51)

where ũ(n) = (L + D)−1(b − Uu(n)) is the standard Gauss-
Seidel procedure. Therefore, this method is essentially the
weighted average between the previous ieration and the succes-
sive Gauss-Seidel iteration. Clearly, if ω = 1, then it reduces
to the standard Gauss-Seidel iteration method.

Broadly speaking, a small value of 0 < ω < 1 corresponds
to under-relaxation with slower convergence while 1 < ω < 2
leads to over-relaxation and faster convergence. It has been
proved theoretically that the scheme will not converge if ω < 0
or ω > 2.

4.6 Nonlinear Equation

Sometimes, the algebraic equations we meet are nonlinear, and
direct inversion is not the best technique. In this case, more
elaborate techniques should be used.
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4.6.1 Simple Iterations

The nonlinear algebraic equation

A(u)u = b(u), or F(u) = A(u)u− b(u) = 0, (4.52)

can be solved using a simple iteration technique

A(u(n))u(n+1) = b(u(n)), n = 0, 1, 2, ... (4.53)

until ‖u(n+1) − u(n)‖ is sufficiently small. Iterations require a
starting vector u(0). This method is also referred to as the
successive substitution.

If this simple method does not work, the relaxation method
can be used. The relaxation technique first gives a tentative
new approximation u∗ from A(u(n))u∗ = b(u(n)), then we use

u(n+1) = ωu∗ + (1− ω)u(n), ω ∈ (0, 1], (4.54)

where ω is a prescribed relaxation parameter.

4.6.2 Newton-Raphson Method

The nonlinear equation (4.52) can also be solved using the
Newton-Raphson procedure. We approximate F(u) by a linear
function R(u;u(n)) in the vicinity of an existing approximation
u(n) to u:

R(u;u(n)) = F(u(n))+J(u(n))(u−u(n)), J(u) = ∇F, (4.55)

where J is the Jacobian of F(u) = (F1, F2, ..., FM )T . For u =
(u1, u2, ..., uM )T , we have

Jij =
∂Fi

∂uj
. (4.56)

To find the next approximation u(n+1) from R(u(n+1);u(n)) =
0, one has to solve a linear system with J as the coefficient
matrix

u(n+1) = u(n) − J−1F(u(n)), (4.57)

under a given termination criterion ‖u(n+1) − u(n)‖ ≤ ε.
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Chapter 5

Unconstrained

Optimization

5.1 Univariate Functions

The simplest optimization problem without any constraints is
probably the search of the maxima or minima of a univariate
function f(x). For unconstrained optimization problems, the
optimality occurs at the critical points given by the stationary
condition f ′(x) = 0. However, this stationary condition is just
a necessary condition, but it is not sufficient. If f ′(x∗) = 0 and
f ′′(x∗) > 0, it is a local minimum. Conversely, if f ′(x∗) = 0 and
f ′′(x∗) < 0, then it is a local maximum. However, if f ′(x∗) =
0 but f ′′(x) is indefinite (both positive and negative) when
x → x∗, then x∗ corresponds to a saddle point. For example,
f(x) = x3 has a saddle point x∗ = 0 because f ′(0) = 0 but f ′′

changes sign from f ′′(0+) > 0 to f ′′(0−) < 0.

Example 5.1: For example, in order to find the maximum or
minimum of an univariate function f(x)

f(x) = xe−x2

, −∞ < x <∞, (5.1)

we have to find first the stationary point x∗ when the first deriva-

55
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tive f ′(x) is zero. That is

df(x∗)
dx∗

= e−x2
∗ − 2x2

∗e
−x2

∗ = 0. (5.2)

Since exp(−x2
∗) 6= 0, we have

x∗ = ±
√

2

2
. (5.3)

From the basic calculus we know that the maximum requires
f ′′(x∗) ≤ 0 while minimum requires f ′′(x∗) ≥ 0. At x∗ =

√
2/2,

we have

f ′′(x∗) = (4x2
∗ − 6)x∗e−x2

∗ = −2
√

2e−1/2 < 0, (5.4)

so this point corresponds to a maximum f(x∗) = 1
2e

−1/2. Simi-

larly, x∗ = −
√

2/2, f ′′(x∗) = 2
√

2e−1/2 > 0, we have a minimum
f(x∗) = −1

2e
−1/2.

Since a maximum of a function f(x) can be converted into
a minimum of A − f(x) where A is usually a large positive
number (though A = 0 will do). For example, we know the
maximum of f(x) = e−x2

, x ∈ (−∞,∞) is 1 at x∗ = 0. This
problem can be converted to a minimum problem −f(x). For
this reason, the optimization problems can be either expressed
as minima or maxima depending the context and convenience
of finding the solutions.

5.2 Multivariate Functions

For functions of multivariate x = (x1, ..., xn)T , the optimiza-
tion can be expressed in the same way as the univariate opti-
mization problems.

minimize/maximize
x∈<n f(x). (5.5)

For a quadratic function f(x) it can be expanded using
Taylor series about a point x = x∗ so that x = x∗ + εu

f(x+εu) = f(x∗)+εuG1(x∗)+
1

2
ε2uT G2(x∗+εu)u+..., (5.6)
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where G1 and G2 are the gradient vector and the Hessian ma-
trix, respectively. ε is a small parameter, and u is a vector. For
example, f(x) = 1

2xT Ax + kT x + b, we have

f(x∗ + εu) = f(x∗) + εuT k +
1

2
ε2uT Au + ..., (5.7)

where

f(x∗) =
1

2
xT
∗ Ax∗ + kT x∗ + b. (5.8)

Thus, in order to study the local behaviour of a quadratic func-
tion, we only need to study G1 and G2. In addition, for sim-
plicity, we can take b = 0 as it is a constant vector anyway.

At a stationary point x∗, the first derivatives are zero or
G1(x∗) = 0, therefore, equation (5.6 becomes

f(x∗ + εu) ≈ f(x∗) +
1

2
ε2uT G2u. (5.9)

If G2 = A, then
Av = λv (5.10)

forms an eigenvalue problem. For an n×n matrix A, there will
be n eigenvalues λj(j = 1, ..., n) with n eigenvectors v. As we
have seen earlier that A is symmetric, these eigenvectors are
orthonormal. That is,

vT
i vj = δij . (5.11)

Near any stationary point x∗, if we take uj = vj as the local
coordinate systems, we then have

f(x∗ + εvj) = f(x∗) +
1

2
ε2λj , (5.12)

which means that the variations of f(x), when x moves away
from the stationary point x∗ along the direction vj , are char-
acterised by the eigenvalues. If λj > 0, |ε| > 0 will leads to
|∆f | = |f(x) − f(x∗)| > 0. In other words, f(x) will increase
as |ε| increases. Conversely, if λj < 0, f(x) will decrease as
|ε| > 0 increases. Obviously, in the special case λj = 0, the
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function f(x) will remain constant along the corresponding di-
rection of vj .

Example 5.2: We know that the function f(x, y) = xy has a
saddle point at (0, 0). It increases along the x = y direction and
decreases along x = −y direction. From the above analysis, we
know that x∗ = (x∗, y∗)T = (0, 0)T and f(x∗, y∗) = 0. We now
have

f(x∗ + εu) ≈ f(x∗) +
1

2
ε2uTAu,

where

A = ∇2f(x∗) =





∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂y

∂2f
∂y2



 =

(

0 1
1 0

)

.

The eigenvalue problem is simply

Av = λjvj , (j = 1, 2),

or
∣

∣

∣

∣

∣

−λj 1
1 −λj

∣

∣

∣

∣

∣

= 0,

whose solutions are
λj = ±1.

For λ1 = 1, the corresponding eigenvector is

v1 =

(√
2/2√
2/2

)

.

Similarly, for λ2 = −1, the eigenvector is

v2 =

( √
2/2

−
√

2/2

)

.

Since A is symmetric, v1 and v2 are orthonormal. Indeed this is
the case because ‖v1‖ = ‖v2‖ = 1 and

vT
1 v2 =

√
2

2
×
√

2

2
+

√
2

2
× (−

√
2

2
) = 0.
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Thus, we have

f(εvj) =
1

2
ε2λj , (j = 1, 2). (5.13)

As λ1 = 1 is positive, f increases along the direction v1 =√
2

2 (1 1)T which is indeed along the line x = y. Similarly, for

λ2 = −1, f will decrease along v2 =
√

2
2 (1 −1)T which is exactly

along the line x = −y. As there is no zero eigenvalue, the function
will not remain constant in the region around (0, 0).

5.3 Gradient-Based Methods

The gradient-based methods are iterative methods that exten-
sively use the information of the gradient of the function during
iterations. For the minimization of a function f(x), the essence
of this class of method is

x(n+1) = x(n) + αg(∇f,x(n)), (5.14)

where α is the step size which can vary during iterations. g(∇f)
is a function of the gradient∇f . Different methods use different
form of g(∇f,x(n)).

5.3.1 Newton’s Method

We know that Newton’s method is a popular iterative method
for finding the zeros of a nonlinear univariate function of f(x)
on the interval [a, b]. It can be modified for solving optimization
problems because it is equivalent to find the zero of the first
derivative f ′(x) once the objective function f(x) is given.

For a given function f(x) which are continuously differ-
entiable, we have the Taylor expansion about a known point
x = xn (with ∆x = x− xn)

f(x) = f(xn)+(∇f(xn))T ∆x+
1

2
∆xT∇2f(xn)∆x+..., (5.15)
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which is minimized near a critical point when ∆x is the solution
of the following linear equation

∇f(xn) +∇2f(xn)∆x = 0. (5.16)

This leads to
x = xn −G−1∇f(xn), (5.17)

where G = ∇2f(xn) is the Hessian matrix. If the iteration
procedure starts from the initial vector x(0) (usually taken to
be a guessed point in the domain), then Newton’s iteration
formula for the nth iteration is

x(n+1) = x(n) −G−1(x(n))f(x(n)). (5.18)

It is worth pointing out that if f(x) is quadratic, then the
solution can exactly be found in a single step. However, this
method is not efficient for non-quadratic functions.

In order to speed up the convergence, we can use a smaller
step size α ∈ (0, 1] so that we have modified Newton’s method

x(n+1) = x(n) − αG−1(x(n))f(x(n)). (5.19)

It sometimes might be time-consuming to calculate the Hes-
sian matrix for second derivatives. A good alternative is to use
an identity matrix G−1 = I, and we have the quasi-Newton
method

x(n+1) = x(n) − αI∇f(x(n)), (5.20)

which is essentially the steepest descent method.

5.3.2 Steepest Descent Method

The essence of this method is to find the lowest possible ob-
jective function f(x) from the current point x(n). From the
Taylor expansion of f(x) about x(n), we have

f(x(n+1)) = f(x(n) + ∆s) ≈ f(x(n) + (∇f(x(n)))T ∆s, (5.21)

where ∆s = x(n+1)−x(n) is the increment vector. Since we try
to find a lower (better) approximation to the objective function,
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it requires that the second term on the right hand is negative.
That is

f(x(n) + ∆s)− f(x(n)) = (∇f)T ∆s < 0. (5.22)

From vector analysis, we know the inner product uT v of two
vectors u and v is largest when they are parallel but in opposite
directions. Therefore, (∇f)T ∆s becomes the smallest when

∆s = −α∇f(x(n)), (5.23)

where α > 0 is the step size. This the case when the direc-
tion ∆s is along the steepest descent in the negative gradient
direction. As we seen earlier, this method is a quasi-Newton
method.

The choice of the step size α is very important. A very
small step size means slow movement towards the local mini-
mum, while a large step may overshoot and subsequently makes
it move far away from the local minimum. Therefore, the
step size α = α(n) should be different at each iteration step
and should be chosen so that it minimizes the objective func-
tion f(x(n+1)) = f(x(n), α(n)). Therefore, the steepest descent
method can be written as

f(x(n+1)) = f(x(n))− α(n)(∇f(x(n)))T∇f(x(n)). (5.24)

In each iteration, the gradient and the step size will be calcu-
lated. Again, a good initial guess of both the starting point
and the step size is useful.

Example 5.3: Let us minimize the function

f(x1, x2) = 10x2
1 + 5x1x2 + 10(x2 − 3)2,

where
(x1, x2) = [−10, 10]× [−15, 15],

using the steepest descent method starting with the initial x(0) =
(10, 15)T . We know that the gradient

∇f = (20x1 + 5x2, 5x1 + 20x2 − 60)T ,
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therefore
∇f(x(0)) = (275, 290)T .

In the first iteration, we have

x(1) = x(0) − α0

(

275
290

)

.

The step size α0 should be chosen such that f(x(1)) is at the
minimum, which means that

f(α0) = 10(10− 275α0)
2

+5(10− 275α0)(15− 290α0) + 10(12− 290α0)
2,

should be minimized. This becomes an optimization problem for
a single independent variable α0. All the techniques for univariate
optimization problems such as Newton’s method can be used to
find α0. We can also obtain the solution by setting

df

dα0
= −159725 + 3992000α0 = 0,

whose solution is α0 ≈ 0.04001.
At the second step, we have

∇f(x(1)) = (−3.078, 2.919)T , x(2) = x(1) − α1

(

−3.078
2.919

)

.

The minimization of f(α1) gives α1 ≈ 0.066, and the new location
of the steepest descent is

x(2) ≈ (−0.797, 3.202)T .

At the third iteration, we have

∇f(x(2)) = (0.060, 0.064)T , x(3) = x(2) − α2

(

0.060
0.064

)

.

The minimization of f(α2) leads to α2 ≈ 0.040, and thus

x(3) ≈ (−0.8000299, 3.20029)T .
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Then, the iterations continue until a prescribed tolerance is met.

From calculus, we know that we can set the first partial deriva-
tives equal to zero

∂f

∂x1
= 20x1 + 5x2 = 0,

∂f

∂x2
= 5x1 + 20x2 − 60 = 0,

we know that the minimum occurs exactly at

x∗ = (−4/5, 16/5)T = (−0.8, 3.2)T .

The steepest descent method gives almost the exact solution after
only 3 iterations.

In finding the step size αn in the above steepest descent
method, we have used the stationary condition df(αn)/dαn =
0. Well, you may say that if we use this stationary condition for
f(α0), why not use the same method to get the minimum point
of f(x) in the first place. There are two reasons here. The first
reason is that this is a simple example for demonstrating how
the steepest descent method works. The second reason is that
even for complicated multiple variable f(x1, ..., xp) (say p =
500), then f(αn) at any step n is still an univariate function,
and the optimization of such f(αn) is much simpler compared
with the original multivariate problem.

From our example, we know that the convergence from the
second iteration to the third iteration is slow. In fact, the
steepest descent is typically slow once the local minimization is
near. This is because near the local minimization the gradient
is nearly zero, and thus the rate of descent is also slow. If high
accuracy is need near the local minimum, other local search
methods should be used.

It is worth pointing out that there are many variations of
the steepest descent methods. If the optimization is to find the
maximum, then this method becomes the hill-climbing method
because the aim is to climb up the hill to the highest peak.
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5.4 Hooke-Jeeves Pattern Search

Many search algorithms such as the steepest descent method
experience slow convergence near the local minimum. They
are also memoryless because the pass information is not used
to produce accelerated move. The only information they use is
the current location x(n), gradient and value of the objective
itself at step n. If the past information such as the steps at
n−1 and n is properly used to generate new move at step n+1,
it may speed up the convergence. The Hooke-Jeeves pattern
search method is one of such methods that incorporate the past
history of iterations in producing a new search direction.

The Hooke-Jeeves pattern search method consists of two
moves: exploratory move and pattern move. The exploratory
moves explore the local behaviour and information of the ob-
jective function so as to identify any potential sloping valleys
if they exist. For any given step size (each coordinate direction
can have different increment) ∆i(i = 1, 2, ..., p), exploration
movement performs from an initial starting point along each
coordinate direction by increasing or decreasing ±∆i, if the
new value of the objective function does not increase (for mini-

mization problem), that is f(x
(n)
i ) ≤ f(x

(n−1)
i ), the exploratory

move is considered as successful. If it is not successful, then try
a step in the opposite direction, and the result is updated only if
it is successful. When all the p coordinates have been explored,
the resulting point forms a base point x(n).

The pattern move intends to move the current base x(n)

along the base line (x(n)−x(n−1)) from the previous (historical)
base point to the current base point. The move is carried out
by the following formula

x(n+1) = x(n) + [x(n) − x(n−1)]. (5.25)

Then x(n+1) forms a new temporary base point for further new
exploratory moves. If the pattern move produces improvement
(lower value of f(x)), the new base point x(n+1) is successfully
updated. If the pattern move does not lead to improvement
or lower value of the objective function, then the pattern move
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Hooke-Jeeves Pattern Search Algorithm

begin
Objective function f(x),x = (x1, ..., xp)

T

Initialize starting point x(0) and increments ∆i(i = 1, ..., p)
Initialize step reduction factor γ > 1 and tolerance ε > 0

while ( ||xn+1 − xn|| ≥ ε )
for all i = 1 to p,
Perform exploratory search by xi ±∆i

Update until successful f(x(n+1)) ≤ f(x(n))
If the move fails, try again using ∆i = ∆i/γ
end (for)
Perform pattern move:

x(n+1) = x(n) + (x(n)−x(n−1))
Update new base point x(n+1)

n = n+ 1
end (while)

end

Figure 5.1: Hooke-Jeeves pattern search algorithm.

is discarded and new search starts from x(n), and new search
moves should use smaller step size by reducing incrementsDi/γ
when γ > 1 is the step reduction factor. Iterations continue
until the prescribed tolerance ε is met. The algorithm is sum-
marised in the pseudo code shown in Fig. 5.1.

Example 5.4: Let us minimize

f(x) = x2
1 + 2x1x2 + 3x2

2,

using the Hooke-Jeeves pattern search. Suppose we start from
x(0) = (2, 2)T with an initial step size ∆ = 1 for both coordinates
x1 and x2. We know that f(x(0)) = 24.

First, the exploratory move in x1 with x(1) = (2 + 1, 2)T

produces f(x(1)) = 33 > 24. So this move is not successful, we
discard it, and try the opposite direction x(1) = (2 − 1, 2)T . It
gives f(x(1)) = 17 < 24, and it is a good move. So we keep it
and there is no need to reduce the step size ∆ = 1. Now we try



66 Chapter 5. Unconstrained Optimization

the other coordinate along x2, we know that x(1) = (1, 2 − 1)T

is a good move as it gives f(x(1)) = 6 < 24. Therefore, the base
point is x(1) = (1, 1)T .

We then perform the pattern move by using x(2) = x(1) +
(x(1) − x(0)), we have

x(2) = 2

(

1
1

)

−
(

2
2

)

=

(

0
0

)

.

This pattern move produces f(x(2)) = 0 and it is a successful
move. This is indeed the optimal solution as the minimum occurs
exactly at x∗ = (0, 0)T .



Chapter 6

Linear Mathematical

Programming

6.1 Linear Programming

Linear programming is a powerful mathematical modelling tech-
nique which is widely used in business planning, engineering
design, oil industry, and many other optimization applications.
The basic idea in linear programming is to find the maximum
or minimum under linear constraints.

For example, an Internet service provider (ISP) can pro-
vide two different services x1 and x2. The first service is, say,
the fixed monthly rate with limited download limits and band-
width, while the second service is the higher rate with no down-
load limit. The profit of the first service is αx1 while the sec-
ond is βx2, though the profit of the second product is higher
β > α > 0, so the total profit is

P (x) = αx1 + βx2, β/α > 1, (6.1)

which is the objective function because the aim of the ISP
company is to increase the profit as much as possible. Suppose
the provided service is limited by the total bandwidth of the
ISP company, thus at most n1 = 16 (in 1000 units) of the
first and at most n2 = 10 (in 1000 units) of the second can be

67
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provided per unit of time, say, each day. Therefore, we have

x1 ≤ n1, x2 ≤ n2. (6.2)

If the management of each of the two service packages take the
same staff time, so that a maximum of n = 20 (in 1000 units)
can be maintained, which means

x1 + x2 ≤ n. (6.3)

The additional constraints are that both x1 and x2 must be
non-negative since negative numbers are unrealistic. We now
have the following constraints

0 ≤ x1 ≤ n1, 0 ≤ x2 ≤ n2. (6.4)

The problem now is to find the best x1 and x2 so that the profit
P is a maximum. Mathematically, we have

maximize
(x1,x2)∈N 2 P (x1, x2) = αx1 + βx2,

subject to x1 + x2 ≤ n,
0 ≤ x1 ≤ n1, 0 ≤ x2 ≤ n2. (6.5)

Example 6.1: The feasible solutions to this problem can
be graphically represented as the inside region of the polygon
OABCD as shown in Fig. 6.1.

As the aim is to maximize the profit P , thus the optimal
solution is at the extreme point B with (n − n2, n2) and P =
α(n−n2)+βn2. For example, if α = 2, β = 3, n1 = 16, n2 = 10,
and n = 20, then the optimal solution is x1 = n − n2 = 10 and
x2 = n2 = 10 with the total profit P = 2×(20−10)+3×10 = 50
thousand pounds.

Since the solution (x1 and x2) must be integers, an interesting
thing is that the solution is independent of β/α if and only if
β/α > 1. However, the profit P does depend on α and β.

The number of feasible solutions are infinite if x1 and x2 are
real numbers. Even for x1, x2 ∈ N are integers, the number of
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-
0

6

x1

x2

D

(n1, 0)

C
P = αx1+ βx2

A
(0, n2) B

(n, 0)

(n−n2, n2)

feasible solutions

infeasible region

P

Figure 6.1: Schematic representation of linear programming. If
α = 2, β = 3, n1 = 16, n2 = 10 and n = 20, then the optimal
solution is at B(10, 10).

feasible solutions are quite large. Therefore, there is a need to
use a systematic method to find the optimal solution.

In order to find the best solution, we first plot out all the
constraints as straight lines, the feasible solution which satis-
fying all the constraints form the inside region of the polygon
OABCD. The vertices of the polygon form the set of the ex-
treme points. Then, we plot the objective function P as a
family of parallel lines (shown as dashed lines) so as to find
the maximum value of P . Obviously, the highest value of P
corresponds to the case when the objective line goes through
the extreme point B. Therefore, x1 = n − n2 and x2 = n2 at
the point B is the best solution.

The current example is simple because it has only two deci-
sion variables and three constraints, which can be solved easily
using a graphic approach. Many real-world problems involve
hundreds of or thousands of decisional variables, and graphic
approach is simply incapable of dealing with such complexity.
Therefore, a formal approach is needed. Many powerful meth-
ods have been developed over the last several decades, and the
most popular method is probably the simplex method.
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6.2 Simplex Method

The simplex method was introduced by George Dantzig in
1947. The simplex method essentially works in the following
way: For a given linear optimization problem such as the ex-
ample of the ISP service we discussed earlier, it assumes that
all the extreme points are known. If the extreme points are
not known, the first step is to determine these extreme points
or to check whether there any feasible solutions. With known
extreme points, it is easy to test whether an extreme point is
optimal or not using the algebraic relationship and the objec-
tive function. If the test for optimality is not passed, then move
to an adjacent extreme point to do the same test. This process
stops until an optimal extreme point is found or the unbounded
case occurs.

6.2.1 Basic Procedure

Mathematically, the simplex method first transforms the con-
straint inequalities into equalities by using slack variables.

To convert an inequality such as

5x1 + 6x2 ≤ 20, (6.6)

we can use a new variable x3 or s1 = 20 − 5x1 − 6x2 so that
the original inequality becomes an equality

5x1 + 6x2 + s1 = 20, (6.7)

with an auxiliary non-negativeness condition

s1 ≥ 0. (6.8)

Such a variable is referred to as a slack variable.
Thus, the inequalities in our example

x1 + x2 ≤ n, 0 ≤ x1 ≤ n1, 0 ≤ x2 ≤ n2, (6.9)

can be written, using three slack variables s1, s2, s3, as the fol-
lowing equalities

x1 + x2 + s1 = n, (6.10)



6.2 Simplex Method 71

x1 + s2 = n1, x2 + s3 = n2, (6.11)

and
xi ≥ 0 (i = 1, 2), sj ≥ 0(j = 1, 2, 3). (6.12)

The original problem (6.5) becomes

maximize
x∈<5 P (x) = αx1 + βx2 + 0s1 + 0s2 + 0s3,

subject to







1 1 1 0 0
1 0 0 1 0
0 1 0 0 1





















x1

x2

s1
s2
s3















=







n
n1

n2






,

xi ≥ 0, (i = 1, 2, ..., 5), (6.13)

which has two control variables (x1, x2) and three slack vari-
ables x3 = s1, x4 = s2, x5 = s3.

In general, a linear programming problem can be written
as the standard form

maximize
x∈<n f(x) = Z =

p
∑

i=1

αixi = αT x,

subject to Ax = b, xi ≥ 0 (i = 1, ..., p), (6.14)

where A is an q × p matrix, b = (b1, ..., bq)
T , and

x = [xp xs]
T = (x1, ..., xm, s1, ..., sp−m)T . (6.15)

This problem has p variables, and q equalities and all p vari-
ables are non-negative. In the standard form, all constraints
are expressed as equalities and all variables including slack vari-
ables are non-negative. Suppose q = 500, even the simplest
integer equalities xi + xj = 1 where i, j = 1, 2, ..., 500, would
give a huge number of combinations 2500. Thus the number of
basic feasible solutions or extreme points will be the order of
2500 ≈ 3×10150, which is larger than the number of particles in
the whole universe. This huge number of extreme points neces-
sitates a systematic and efficient search method. The simplex
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method is a powerful method to carry out such mathematical
programming task.

A basic solution to the linear system Ax = b of q linear
equations in p variables in the standard form is usually obtained
by setting p−q variables equal to zero, and subsequently solving
the resulting q× q linear system to get a unique solution of the
remaining q variables. The q variables (that are not bound
to zero) are called the basic variables of the basic solution.
The p− q variables at zero are called non-basic variables. Any
basic solution to this linear system is referred to as a basic
feasible solution (BFS) if all its variables are non-negative. The
important property of the basic feasible solutions is that there
is a unique corner point (extreme point) for each basic feasible
solution, and there is at least one basic feasible solution for
each corner or extreme point. These corner or extreme points
are points on the intersection of two adjacent boundary lines
such as A and B in Fig. 6.1. Two basic feasible solutions are
said to be adjacent if they have q−1 basic variables in common
in the standard form.

6.2.2 Augmented Form

The linear optimization problem is usually converted into the
following standard augmented form or the canonical form

(

1 −αT

0 A

)(

Z
x

)

=

(

0
b

)

, (6.16)

with the objective to maximize Z. In this canonical form, all
the constraints are expressed as equalities for all non-negative
variables. All the right hand sides for all constraints are also
non-negative, and each constraint equation has a single ba-
sic variable. The intention of writing in this canonical form
is to identify basic feasible solutions, and move from one ba-
sic feasible solution to another via a so-called pivot operation.
Geometrically speaking, this means to find all the corner or ex-
treme points first, then evaluate the objective function by going
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through the extreme points so as to determine if the current
basic feasible solution can be improved or not.

In the framework of the canonical form, the basic steps of
the simplex method are: 1) to find a basic feasible solution to
start the algorithm. Sometimes, it might be difficult to start,
this may either implies there is no feasible solution or it is nec-
essary to reformulate the problem in a slightly different way by
changing the canonical form so that a basic feasible solution
can be found; 2) to see if the current basic feasible solution
can be improved (even marginally) by increasing the non-basic
variables from zero to non-negative values; 3) stop the pro-
cess if the current feasible solution cannot be improved, which
means that is optimal. If the current feasible solution is not
optimal, then move to an adjacent basic feasible solution. This
adjacent basic feasible solution can be obtained by changing
the canonical form via elementary row operations.

The pivot manipulations are based on the fact that a linear
system will remain an equivalent system by multiplying a non-
zero constant on a row and adding it to the other row. This
procedure continues by going to the second step and repeat-
ing the evaluation of the objective function. The optimality of
the problem will be reached or stop the iteration if the solu-
tion becomes unbounded in the case that you can improve the
objective indefinitely.

6.2.3 A Case Study

Now we come back to our example, if we use α = 2, β = 3,
n1 = 16, n2 = 10 and n = 20, we then have











1 −2 −3 0 0 0
0 1 1 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
















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









Z
x1

x2

s1
s2
s3




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
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


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=


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



0
20
16
10











, (6.17)

where x1, x2, s1, ..., s3 ≥ 0. Now the first step is to identify a
corner point or basic feasible solution by setting non-isolated
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variables x1 = 0 and x2 = 0 (thus the basic variables are
s1, s2, s3). We now have

s1 = 20, s2 = 16, s3 = 10. (6.18)

The objective function Z = 0, which corresponds to the cor-
ner point O in Fig. 6.1. In the present canonical form, the
corresponding column associated with each basic variables has
only one non-zero entry (marked by a box) for each constraint
equality, and all other entries in the same column are zero. The
non-zero value usually converts into 1 if it is not unity. This is
shown as follows:

Z x1 x2 s1 s2 s3










1 −2 −3 0 0 0

0 1 1 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1











(6.19)

When we change the set or the bases of basic variables from
one set to another, we will aim to convert to a similar form
using pivot row operations. There are two ways of numbering
this matrix. One way is to call the first row [1 −2 −3 0 0 0]
as the zeroth row, so that all other rows correspond to their
corresponding constraint equation. The other way is simply to
use its order in the matrix, so [1−2−3 0 0 0] is simply the first
row. We will use these standard notations.

Now the question is if we can improve the objective by
increasing one of the non-basic variables x1 and x2? Obviously,
if we increase x1 by a unit, then Z will also increase by 2 units.
However, if we increase x2 by a unit, then Z will increase by 3
units. Since our objective is to increase Z as much as possible,
so we choose to increase x2. As the requirement of the non-
negativeness of all variables, we cannot increase x2 without
limit. So we increase x2 while holding x1 = 0, we have

s1 = 20− x2, s2 = 16, s3 = 10− x2. (6.20)

Thus, the highest possible value of x2 is x = 10 when s1 = s3 =
0. If x2 increases further, both s1 and s3 will become negative,
thus it is no longer a basic feasible solution.
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The next step is to use either by setting x1 = 0 and s1 = 0
as non-basic variables or by setting x1 = 0 and s3 = 0. Both
cases correspond to the point A in our example, so we simply
choose x1 = 0 and s3 = 0 as non-basic variables, and the
basic variables are thus x2, s1 and s2. Now we have to do
some pivot operations so that s3 will be replaced by x2 as a
new basic variable. Each constraint equation has only a single
basic variable in the new canonical form. This means that each
column corresponding to each basic variable should have only
a single non-zero entry (usually 1). In addition, the right hand
sides of all the constraints are non-negative and increase the
value of the objective function at the same time. In order to
convert the third column for x2 to the form with only a single
non-zero entry 1 (all other coefficients in the column should be
zero), we first multiply the fourth row by 3 and add it to the
first row, and the first row becomes

Z − 2x1 + 0x2 + 0s1 + 0s2 + 3s3 = 30. (6.21)

Then, we multiply the fourth row by −1 and add it to the
second row, we have

0Z + x1 + 0x2 + s1 + 0s2 − s3 = 10. (6.22)

So the new canonical form becomes
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, (6.23)

where the third, fourth, and fifth columns (for x2, s1 and s2,
respectively) have only one non-zero coefficient. All the right
hand sides are non-negative. From this canonical form, we can
find the basic feasible solution by setting non-basic variables
equal to zero. This is to set x1 = 0 and s3 = 0. We now have
the basic feasible solution

x2 = 10, s1 = 10, s2 = 16, (6.24)
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which corresponds to the corner pointA. The objective Z = 30.

Now again the question is whether we can improve the ob-
jective by increasing the non-basic variables. As the objective
function is

Z = 30 + 2x1 − 3s3, (6.25)

Z will increase 2 units if we increase x1 by 1, but Z will de-
crease −3 if we increase s3. Thus, the best way to improve the
objective is to increase x1. The question is what the limit of
x1 is. To answer this question, we hold s3 at 0, we have

s1 = 10− x1, s2 = 16− x1, x2 = 10. (6.26)

We can see if x1 can increase up to x1 = 10, after that s1
becomes negative, and this occurs when x1 = 10 and s1 =
0. This also suggests us that the new adjacent basic feasible
solution can be obtained by choosing s1 and s3 as the non-basic
variables. Therefore, we have to replace s1 with x1 so that the
new basic variables are x1, x2 and s2.

Using these basic variables, we have to make sure that the
second column (for x1) has only a single non-zero entry. Thus,
we multiply the second row by 2 and add it to the first row,
and the first row becomes

Z + 0x1 + 0x2 + 2s1 + 0s2 + s3 = 50. (6.27)

We then multiply the second row by −1 and add it to the third
row, we have

0Z + 0x1 + 0x2 − s1 + s2 + s3 = 6. (6.28)

Thus we have the following canonical form











1 0 0 2 0 1
0 1 0 1 0 −1
0 0 0 −1 1 1
0 0 1 0 0 1





























Z
x1

x2

s1
s2
s3



















=











50
10
6
10











, (6.29)
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whose basic feasible solution can be obtained by setting non-
basic variables s1 = s3 = 0. We have

x1 = 10, x2 = 10, s2 = 6, (6.30)

which corresponds to the extreme point B in Fig. 6.1. The
objective value is Z = 50 for this basic feasible solution. Let us
see if we can improve the objective further. Since the objective
becomes

Z = 50− 2s1 − s3, (6.31)

any increase of s1 or s3 from zero will decrease the objective
value. Therefore, this basic feasible solution is optimal. In-
deed, this is the same solution as that obtained from the graph
method. We can see that a major advantage is that we have
reached the optimal solution after searching a certain number
of extreme points, there is no need to evaluate the rest of the
extreme points. This is exactly why the simplex method is so
efficient.

The case study we used here is relatively simple, but it is
useful to show how the basic procedure works in linear pro-
gramming. For more practical applications, there are well-
established software packages which will do the work for you
once you have set up the objective and constraints properly.





Chapter 7

Nonlinear Optimization

As most of the real world problems are nonlinear, nonlinear
mathematical programming thus forms an important part of
mathematical optimization methods. A broad class of nonlin-
ear programming problems is about the minimization or maxi-
mization of f(x) subject to no constraints, and another impor-
tant class is the minimization of a quadratic objective function
subject to nonlinear constraints. There are many other nonlin-
ear programming problems as well.

Nonlinear programming problems are often classified ac-
cording to the convexity of the defining functions. An inter-
esting property of a convex function f is that the vanishing
of the gradient ∇f(x∗) = 0 guarantees that the point x∗ is a
global minimum or maximum of f . If a function is not convex
or concave, then it is much more difficult to find global minima
or maxima.

7.1 Penalty Method

For the simple function optimization with equality and inequal-
ity constraints, a common method is the penalty method. For
the optimization problem

minimize
x∈<n f(x), x = (x1, ..., xn)T ∈ <n,

subject to φi(x) = 0, (i = 1, ...,M),

79
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ψj(x) ≤ 0, (j = 1, ..., N), (7.1)

the idea is to define a penalty function Π(x, µi, νj) so that the
constrained problem can be transformed into an unconstrained
problem. Now we define

Π(x, µi, νj) = f(x) +
M
∑

i=1

µiφ
2
i (x) +

N
∑

j=1

νjψ
2
j (x), (7.2)

where µi � 1 and νj ≥ 0.

For example, in order to solve the following problem of the
Gill-Murray-Wright type

minimize
x∈< f(x) = 100(x− b)2 + 1,

subject to g(x) = x− a ≥ 0, (7.3)

where a > b is a given value, we can define a penalty function
Π(x) using a penalty parameter µ� 1. We have

Π(x, µ) = f(x) +
µ

2
g(x)T g(x)

= 100(x− b)2 + 1 +
µ

2
(x− a)2, (7.4)

where the typical value for µ is 2000 ∼ 10000.

This method essentially transforms a constrained problem
into an unconstrained one. From the stationary condition Π′(x) =
0, we have

200(x∗ − b)− µ(x∗ − a) = 0, (7.5)

which gives

x∗ =
200b+ µa

200 + µ
. (7.6)

For µ → ∞, we have x∗ → a. For µ = 2000, a = 2 and b = 1,
we have x∗ ≈ 1.9090. This means the solution depends on the
value of µ, and it is very difficult to use extremely large values
without causing extra computational difficulties.
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7.2 Lagrange Multipliers

Another powerful methods without the above limitation of us-
ing large µ is the method of Lagrange multipliers. If we want
to minimize a function f(x)

minimize
x∈<n f(x), x = (x1, ..., xn)T ∈ <n, (7.7)

subject to the following nonlinear equality constraint

g(x) = 0, (7.8)

then we can combine the objective function f(x) with the
equality to form a new function, called the Lagrangian

Π = f(x) + λg(x), (7.9)

where λ is the Lagrange multiplier, which is an unknown scalar
to be determined.

This essentially converts the constrained problem into an
unconstrained problem for Π(x), which is exactly the beauty
of this method. If we have M equalities,

gj(x) = 0, (j = 1, ...,M), (7.10)

then we need M Lagrange multipliers λj(j = 1, ...,M). We
thus have

Π(x, λj) = f(x) +
M
∑

j=1

λjgj(x). (7.11)

The requirement of stationary conditions leads to

∂Π

∂xi
=

∂f

∂xi
+

M
∑

j=1

λj
∂gj

∂xi
, (i = 1, ..., n), (7.12)

and
∂Π

∂λj
= gj = 0, (j = 1, ...,M). (7.13)

These M + n equations will determine the n-component of x

and M Lagrange multipliers. As ∂Π
∂gj

= λj , we can consider λj
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as the rate of the change of the quantity Π as a functional of gj .

Example 7.1: To solve the optimization problem

maximize
(x,y)∈<2 f(x, y) = xy2,

subject to the condition

g(x, y) = x2 + y2 − 1 = 0.

We define

Π = f(x, y) + λg(x, y) = xy2 + λ(x2 + y2 − 1).

The stationary conditions become

∂Π

∂x
= y2 + 2λx = 0,

∂Π

∂y
= 2xy + 2λy = 0,

and
∂Π

∂λ
= x2 + y2 − 1 = 0.

The condition xy+λy = 0 implies that y = 0 or λ = −x. The case
of y = 0 can be eliminated as it leads to x = 0 from y2+2λx = 0,
which does not satisfy the last condition x2 + y2 = 1. Therefore,
the only valid solution is

λ = −x.

From the first stationary condition, we have

y2 − 2x2 = 0, or y2 = 2x2.

Substituting this into the third stationary condition, we have

x2 − 2x2 − 1 = 0,

which gives
x = ±1.
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So we have four stationary points

P1(1,
√

2), P2(1,−
√

2), P3(−1,
√

2), P4(−1,−
√

(2)).

The values of function f(x, y) at these four points are

f(P1) = 2, f(P2) = 2, f(P3) = −2, f(P4) = −2.

Thus, the function reaches its maxima at (1,
√

2) and (1,−
√

2).
The Lagrange multiplier for this case is λ = −1.

7.3 Kuhn-Tucker Conditions

There is a counterpart of the Lagrange multipliers for the non-
linear optimization with constraint inequalities. The Kuhn-
Tucker conditions concern the requirement for a solution to be
optimal in nonlinear programming.

For the nonlinear optimization problem

minimize
x∈<n f(x),

subject to φi(x) = 0, (i = 1, ...,M),

ψj(x) ≤ 0, (j = 1, ..., N). (7.14)

If all the functions are continuously differentiable, at a local
minimum x∗, there exist constants λ0, λ1, ..., λq and µ1, ..., µp

such that

λ0∇f(x∗) +
M
∑

i=1

µi∇φi(x∗) +
N
∑

j=1

λj∇ψj(x∗) = 0, (7.15)

and

ψj(x∗) ≤ 0, λjψj(x∗) = 0, (j = 1, 2, ..., N), (7.16)

where λj ≥ 0, (i = 0, 1, ..., N). The constants satisfy the fol-
lowing condition

N
∑

j=0

λj +
M
∑

i=1

|µi| ≥ 0. (7.17)

This is essentially a generalised method of the Lagrange mul-
tipliers. However, there is a possibility of degeneracy when
λ0 = 0 under certain conditions.
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7.4 No Free Lunch Theorems

The methods used to solve a particular problem depend largely
on the type and characteristics of the optimization problem it-
self. There is no universal method that works for all problems,
and there is generally no guarantee to find the optimal solu-
tion in global optimization problems. In fact, there are several
so-called Wolpert and Macready’s ‘No Free Lunch Theorems’
(NLF theorems) which state that if any algorithm A outper-
forms another algorithm B in the search for an extremum of a
cost function, then algorithm B will outperform A over other
cost functions. NFL theorems apply to the scenario (either de-
terministic or stochastic) where a set of continuous (or discrete
or mixed) parameter θ maps the cost functions into a finite
set. Let nθ be the number of values of θ (either due to discrete
values or the finite machine precisions), and nf be the number
of values of the cost function. Then, the number of all possi-
ble combinations of cost functions is N = nnθ

f which is finite,
but usually huge. The NFL theorems prove that the average
performance over all possible cost functions is the same for all
search algorithms.

Mathematically, if P (sy
m|f,m,A) denotes the performance,

based on probability theory, of an algorithm A iterated m times
on a cost function f over the sample sm, then we have the
averaged performance for two algorithms

∑

f

P (sy
m|f,m,A) =

∑

f

P (sy
m|f,m,B), (7.18)

where sm = {(sx
m(1), sy

m(1)), ..., (sx
m(m), sy

m(m))} is a time-
ordered set of m distinct visited points with a sample of size
m. The interesting thing is that the performance is indepen-
dent of algorithm A itself. That is to say, all algorithms for
optimization will give the same performance when averaged
over all possible functions. This means that the universally
best method does not exist.

Well, you might say, there is no need to formulate new al-
gorithms because all algorithms will perform equally well. The
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truth is that the performance is measured in the statistical
sense and over all possible functions. This does not mean all
algorithms perform equally well over some specific functions.
The reality is that no optimization problems require averaged
performance over all possible functions. Even though, the NFL
theorems are valid mathematically, their influence on parame-
ter search and optimization is limited. For any specific set of
functions, some algorithms perform much better than others.
In fact, for any specific problem with specific functions, there
usually exist some algorithms that are more efficient than oth-
ers if we do not need to measure their average performance.
The main problem is probably how to find these better algo-
rithms for a given particular type of problem.

On the other hand, we have to emphasize on the best es-
timate or sub-optimal solutions under the given conditions if
the best optimality is not achievable. The knowledge about
the particular problem concerned is always helpful for the ap-
propriate choice of the best or most efficient methods for the
optimization procedure.

The optimization algorithms we discussed so far are con-
ventional methods and deterministic as there is no randomness
in these algorithms. The main advantage of these algorithms
is that they are well-established and benchmarked, but the dis-
advantages are that they could be trapped in a local optimum
and there is no guarantee that they will find the global opti-
mum even if you run the algorithms for infinite long because
the diversity of the solutions is limited.

Modern optimization algorithms such as genetic algorithms
and simulated annealing often involve a certain degree of ran-
domness so as to increase the diversity of the solutions and also
to avoid being trapped in a local optimum. The randomness
makes sure that it can ‘jump out’ any local optimum. Statis-
tically speaking it can find the global optima as the number of
iterations approaches infinite. The employment of randomness
is everywhere, especially in the metaheuristic methods such as
particle swarm optimization and simulated annealing. We will
study these methods in detail in the rest chapters of this book.





Part III

Metaheuristic Methods





Chapter 8

Tabu Search

Most of the algorithms discussed so far, especially, the gradient-
based search methods, are local search methods. The search
usually starts with a guess, and tries to improve the quality of
the solutions. For unimodal functions, the convexity guaran-
tees the final optimal solution is also a global optimum. For
multimodal objectives, it is likely the search will get stuck at
a local optimum. In order to get out a local optimum, certain
variations with randomness should be used. A typical exam-
ple is the genetic algorithm which is a global search algorithm.
Another excellent example is the simulated annealing which is
a global search method and guarantees to reach the global op-
timality as computing time approaches infinity. In reality, it
finds the global optimality very efficiently.

The algorithms we will discuss in the rest of the book are
metaheuristic methods, here meta- means ‘beyond’ or ‘higher
level’ and heuristic means ‘to find’ or ‘to discover by trial and
error’. These metaheuristic methods include the Tabu search,
ant colony optimization, particle swarm optimization, and sim-
ulated annealing. First, let us study the Tabu search.

8.1 Tabu Search

Tabu search, developed by Fred Glover in 1970s, is the search
strategy that uses memory and search history as its integrated

89
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component. As most of the successful search algorithms such
as gradient-based methods do not use memory, it seems that at
first it is difficult to see how memory will improve the search ef-
ficiency. Thus, the use of memory poses subtleties that may not
be immediately visible on the surface. This is because mem-
ory could introduce too many degrees of freedom, especially for
the adaptive memory use, which makes it almost impossible to
use the rigorous theorems-and-proof approach to establish the
convergence and efficiency of such algorithms. Therefore, even
though Tabu search works so well for certain problems, it is
difficult to analyse mathematically why it is so. Consequently,
Tabu search remains a heuristic approach. Two important is-
sues that are still under active research are how to use the
memory effectively and how to combine with other algorithms
to create more superior new generation algorithms.

Tabu search is an intensive local search algorithm and the
use of memory avoids the the potential cycling of local solu-
tions so as to increase the search efficiency. The recent tried or
visited solutions are recorded and put into a Tabu list and new
solutions should avoid those in the Tabu list.

The Tabu list is an important concept in Tabu search, and
it records the search moves as the recent history, and any new
search move should avoid this list of previous moves, this will
inevitably save time as previous moves are not repeated. Over
a large number of iterations, this Tabu list could save tremen-
dous amount of computing time and thus increase the search
efficiency significantly.

Let us illustrate the concept of the Tabu list through an
example. Suppose we want to go through each route (straight-
line) once and only once without repetition (see Fig. 8.1).

Example 8.1: If we start the travel from, say, point E, we
first go along EA and reach point A. Now put the route EA in the
Tabu list which is

Tabu list ={EA} ,
where we do not distinguish between EA and AE, though such
difference is important for directed graphs. When we reach point
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Figure 8.1: Passing through each line once and only once.

A, the next move can only be AB because EA is in the Tabu list
so going back is not allowed. We now update the Tabu list as

Tabu list ={EA, AB} .

At point B, there are four possible routes, but only three (BE,
BD, BC) are permissible routes because AB is now in the updated
Tabu list. We see that the length of the Tabu list is increasing
and flexible. Suppose we randomly choose the route BD to go to
point D. The Tabu list now becomes

Tabu list ={EA, AB, BD} .

Now at point D, we can either go along BC or along DE, but we
cannot go back along BD. So we randomly choose DE to reach
point E.

Tabu list ={EA, AB, BD, DE} .
At point E, we have three possible routes, but only EB is permis-
sible as the other two routes are forbidden. So we have to choose
route EB to go back to point B, and the current Tabu list becomes

Tabu list ={EA, AB, BD, DE, EB} .

Again at point B, there are four routes, but only BC is permissible
and all other three routes are in the Tabu list and thus not allowed.
So we have to go along BC to reach point C. The updated Tabu
list is

Tabu list ={EA, AB, BD, DE, EB, BC} .
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Now the only permissible route at point C is CD to go to point
D. Here we complete the task of going through each branch once
and only once. If we now update the Tabu list, we get

Tabu list ={EA, AB, BD, DE, EB, BC, CD} ,

which is the complete route map for this task.

Here we have used the whole history as the Tabu list. There
no reason why we must use the whole history, we can use it if the
computer memory is not an issue. More often, we only use part
of the history as an ongoing Tabu list, usually with a fixed length.
If we use a fixed length n = 5 in our example, then the last two
steps, the Tabu list should be replaced by

Tabu list ={AB, BD, DE, EB, BC} ,

and

Tabu list ={BD, DE, EB, BC, CD} .

We can see that the Tabu list serves as a way of mimick-
ing the way we humans tackle the problem by ‘trial and error’
(heuristically) and by memorizing the steps we have tried. This
is probably why the Tabu search is much more efficient than
memoryless search methods. Furthermore, the advantage of a
fixed length Tabu list is that it saves memory and is easy to
implement, but it has the disadvantage of incomplete informa-
tion. Effective usage of memory in Tabu search is still an area
of active research. In general, a Tabu list should be flexible with
enough information and should be easy for implementation in
any programming language.

Tabu search was originally developed together with the in-
teger programming, a special class of linear programming. The
Tabu list in combination with integer programmming can re-
duce the computing time by at least two orders for a given
problem, comparing the solely standard integer programming.
The Tabu search can also be used along with many other algo-
rithms.
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Figure 8.2: Travelling salesman problem for five cities and a
possible route (not optimal).

8.2 Travelling Salesman Problem

Travelling salesman problem (TSP) is an optimization problem
for a given number of cities (say, n) and their locations. The
cities are represented as nodes in a graph and the distances
between two cities are represented as the weight of a directed
edge or route between the two cities. The aim is to find a
path that visits each city once, and returning to the starting
city, minimizing the total distance travelled. This is a very
difficult problem as its only known solution to find the shortest
path requires a solution time that grows exponentially with
the problem size n. In fact, the travelling salesman problem
is an NP-hard problem, which means that there are no known
algorithms (of polynomial time) that exist.

For simplicity, we now look at the travelling salesman prob-
lem with only five cities: city 1 at (0,0), city 2 at (5,2), city
3 at (10,0), city 4 at (10,10), and city 5 at (0,10). Here the
unit is 1000 km. There are many possible routes. Is the route
2-3-1-5-4-2 optimal? If not, how to prove this?

Let us first try an exhaustive search. The Euclidean dis-
tance between any two cities i and j is given by

dij =
√

(xi − xj)2 + (yi − yj)2), (i, j = 1, 2, ..., 5), (8.1)

where (xi, yi) are the Cartesian coordinates of city i. This will
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give the following distance matrix d

d =















0 5.39 10.00 14.14 10.00
5.39 0 5.39 9.43 9.43
10.00 5.39 0 10.00 14.14
14.14 9.43 10.00 0 10.00
10.00 9.43 14.14 10.00 0















, (8.2)

where the diagonal elements are zero because the distance of a
city to itself is zero.

In order to avoid any potential problem in finding the short-
est distance, we now set the distance dii =∞ for i = 1, 2, .., 5.
This leads to

d =















∞ 5.39 10.00 14.14 10.00
5.39 ∞ 5.39 9.43 9.43
10.00 5.39 ∞ 10.00 14.14
14.14 9.43 10.00 ∞ 10.00
10.00 9.43 14.14 10.00 ∞















. (8.3)

As there are n = 5 cities, there are 5! = 120 ways of visiting
these cities such as 2-5-3-1-4-2, 5-4-1-2-3-5 (see Fig. 8.3) and
so on and so forth. For example, the route 2-5-3-1-4-2 has a
total distance

9.43 + 14.14 + 10.00 + 14.14 + 9.43 ≈ 57.14, (8.4)

while the route 5-4-1-2-3-5 has a total distance

10.00 + 14.14 + 5.39 + 5.39 + 14.14 ≈ 49.06. (8.5)

By searching over all the 120 combinations and calculating the
total distance for each case, we can finally find the shortest
route is 1-2-3-4-5-1 (or their ordered permutations such as 2-3-
4-5-1-2 and 4-5-1-2-3-4) with a distance 5.39 + 5.39 + 10.00 +
10.00 + 10.00 ≈ 40.78.

For n = 5, we can use the exhaustive search because n! =
120 is small. Now suppose n = 50, the number of possible
combinations is 50! ≈ 3.04 × 1064 while for n = 100 cities,
100! ≈ 9.3 × 10157. Even with all modern computers working



8.3 Tabu Search for TSP 95

s

s

s

ss

1

2

3

45

s

s

s

ss

1

2

3

45

Figure 8.3: Two different routes: 2-5-3-1-4-2 and 5-4-1-2-3-5.

in parallel, it would takes the time much longer than the age
of the universe to do such a huge number of calculations. So
we have to use other methods.

8.3 Tabu Search for TSP

Now let us use Tabu search for the travelling salesman problem.
As there is no known efficient method for solving such problems,
we use a method of systematic swapping. For example, when
n = 3 cities, any order is an optimal 1-2-3 or 2-3-1 and others.
For n = four cities, suppose we know that optimal route is 1-
2-3-4-1 (its ordered permutation 2-3-4-1-2 and others are the
same route). However, initially we start randomly from, say,
2-4-3-1-2. A simple swap between cities 3 and 4 leads to 2-3-4-
1-2 which is the optimal solution. Of course, we do not know
which two cities should be swapped, so we need a systematic
approach by swapping any two cities i and j. Furthermore, in
order to swap any two cities, say, 2 and 4, we can either simple
swap them or we can use a more systematical approach by
swapping 2 and 3, then 3 and 4. The latter version takes more
steps but it does provide a systematic way of implementing the
algorithms. Thus, we will use this latter approach.

For simplicity, we still use the same example of the five
cities. Suppose we start from a random route 2-5-3-1-4-2 (see
Fig. 8.3). In order to swap any two cities among these five
cities, we use the following swap indices by swapping two ad-
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jacent cities

swap =















2 1 3 4 5
1 3 2 4 5
1 2 4 3 5
1 2 3 5 4
5 2 3 4 1















, (8.6)

where the first row swaps the first two cities and the fifth row
swap the first and last (fifth) cities. In order to avoid repetition
of recent swaps, we use a Tabu list for the above index matrix

Tabu list =
(

0 0 0 0 0
)

, (8.7)

where the first element corresponds to the first row of the swap
index matrix. Now we also use a fixed length memory, say,
m = 2 which means that we only record two steps in recent
history.

From the initial route= [2 5 3 1 4] with an initial distance
d = 57.14, let us try the new route by swapping the first two
cities or route = route[swap(1)]. We have

route = [5 2 3 1 4], (8.8)

whose total distance is 48.96 which is shorter than d = 57.14
so we update the new shortest distance as d = 48.96. Here we
can update the Tabu list, but it is better to update it when we
find a better route after going through all the five swaps.

Now we generate the new route by swapping the second two
pair or route = route [swap(2)]. We now have

route = [2 3 5 1 4], (8.9)

whose the total distance is 53.10 which is larger than d so dis-
card this attempt and still use d = 48.96.

Similarly, try the next swap, we get

route = [2 5 1 3 4], (8.10)

with a distance 48.87, which is shorter than d = 48.96, so we
update d = 48.87. The next swap leads to route=[2 5 3 4 1]
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Figure 8.4: Current best route after first generation of swaps
and the final optimal route.

with a distance 53.10, so we discard it. The fifth swap gives
route=[4 5 3 1 2] with a distance 48.96 which is longer than
d = 48.87, so we also discard.

After running through all the possible five swaps, the cur-
rent best route is

route = [2 5 1 3 4], (8.11)

with d = 48.87. Now we have to update the Tabu list and it
becomes

Tabu list =
(

0 0 m 0 0
)

=
(

0 0 2 0 0
)

, (8.12)

here the entry corresponding to the third swap is recorded.

Now we have to start all the five sequential swaps again
from this current best route=[2 5 1 3 4]. The first swap leads
to route=[5 2 1 3 4] with a distance of 44.82 which is shorter
than 48.87. So the new distance is now d = 44.82. The second
swap, we got the new route

route = [2 1 5 3 4], (8.13)

whose distance is 48.96 so we discard it. As the next entry in
the Tabu list is 2, we will not carry out this swap. Similarly,
the next swap leads to route=[2 5 1 4 3] with a distance of 48.96
so we discard it. Finally, the fifth swap gives the route=[4 5 1 3
2] with a distance of 44.82 which is the same as the first swap,
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so there is no need to update. After all the four permissible
swaps, the current best route

route = [5 2 1 3 4], (8.14)

and the new Tabu list is

Tabu list =
(

2 0 1 0 0
)

. (8.15)

where the third element is reduced from 2 to 1, which means
the history is running and we can use the swap again later when
this entry becomes zero.

Starting yet again from the current best route=[5 2 1 3 4]
after the two generation swaps (see Fig. 8.4), the first swap is
not allowed because the first entry in the Tabu list is 2. So we
start the second swap which leads to

route = [5 1 2 3 4], (8.16)

which has a total distance d = 40.78 and this is the global
optimal route for this five cities (see Fig. 8.4).

The next swap leads to route=[5 2 1 4 3] with a distance of
53.10. As we continue, there is no further improvement in the
solution quality. As we do not know whether the current opti-
mal solution is the global optimality or not, we will continue the
search until a prescribed number of iterations or after certain
number of iterations with no further improvement in solution
quality. In this present case, the global optimal solution is the
route =[5 1 2 3 4] or 5-1-2-3-4-5 or its ordered permutations
such as 2-3-4-5-1-2 and others.

We have seen that the Tabu search only takes about 10 steps
to reach the global optimal route, and this is much more effi-
cient comparing with the 120 steps by the exhaustive method.
In addition, the Tabu list avoided at least 3 possible repeti-
tions, saving about 1/3 of the moves. In general, for problems
with large n, the computing time saved using Tabu search will
be more significant.



Chapter 9

Ant Colony

Optimization

From the Tabu search, we know that we can improve the search
efficiency by using memory. Another way of improving the
efficiency is to use the combination of randomness and memory.
The randomness will increase the diversity of the solutions so
as to avoid being trapped in local optima. The memory does
not means to use simple history records. In fact, there are other
forms of memory using chemical messenger such as pheromone
which is commonly used by ants, honeybees, and many other
insects. In this chapter, we will discuss the nature-inspired ant
colony optimization (ACO), which is a metaheuristic method.

9.1 Behaviour of Ants

Ants are social insects in habit and they live together in or-
ganized colonies whose population size can range from about
2 to 25 millions. When foraging, a swarm of ants or mo-
bile agents interact or communicate in their local environment.
Each ant can lay scent chemicals or pheromone so as to com-
municate with others, and each ant is also able to follow the
route marked with pheromone laid by other ants. When ants
find a food source, they will mark it with pheromone and also

99
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mark the trails to and from it. From the initial random for-
aging route, the pheromone concentration varies and the ants
follow the route with higher pheromone concentration, and the
pheromone is enhanced by increasing number of ants. As more
and more ants follow the same route, it becomes the favoured
path. Thus, some favourite route (often the shortest or more
efficient) emerges. This is actually a positive feedback mecha-
nism.

Emerging behaviour exists in an ant colony and such emer-
gence arises from simple interactions among individual ants.
Individual ants act according to simple and local information
(such as pheromone concentration) to carry out their activities.
Although there is no master ant overseeing the entire colony
and broadcasting instructions to the individual ants, organized
behaviour still emerges automatically. Therefore, such emer-
gent behaviour is similar to other self-organized phenomena
which occur in many processes in nature such as the pattern
formation in animal skins (tiger and zebra skins).

The foraging pattern of some ant species (such as the army
ants) can show extraordinary regularity. Army ants search for
food along some regular routes with an angle of about 123◦

apart. We do not know how they manage to follow such reg-
ularity, but studies show that they could move in an area and
build a bivouac and start foraging. On the first day, they for-
age in a random direction, say, the north and travel a few
hundred meters, then branch to cover a large area. The next
day, they will choose a different direction, which is about 123◦

from the direction on the previous day and cover a large area.
On the following day, they again choose a different direction
about 123◦ from the second day’s direction. In this way, they
cover the whole area over about 2 weeks and they move out to
a different location to build a bivouac and forage again.

The interesting thing is that they do not use the angle of
360◦/3 = 120◦ (this would mean that on the fourth day, they
will search on the empty area already foraged on the first day).
The beauty of this 123◦ angle is that it leaves an angle of about
10◦ from the direction on the first day. This means they cover
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Ant Colony Optimization

begin
Objective function f(x), x = (x1, ..., xn)T

[or f(xij) for routing problem where (i, j) ∈ {1, 2, ..., n}]
Define pheromone evaporate rate γ

while ( criterion )
for loop over all n dimensions (or nodes)
Generate new solutions
Evaluate the new solutions
Mark better locations/routes with pheromone δφij

Update pheromone: φij ← (1− γ)φij + δφij

end for
Daemon actions such as finding the current best

end while
Output the best results and pheromone distribution

end

Figure 9.1: Pseudo code of ant colony optimization.

the whole circle in 14 days without repeating (or covering an
previously-foraged area). This is an amazing phenomenon.

9.2 Ant Colony Optimization

Based on these characteristics of ant behaviour, scientists have
developed a number of powerful ant colony algorithms with
important progress made in recent years. Marco Dorigo pio-
neered the research in this area in 1992. In fact, we only use
some of the nature or the behaviour of ants and add some new
characteristics, we can devise a class of new algorithms.

The basin steps of the ant colony optimization (ACO) can
be summarized as the pseudo code shown in Fig. 9.1.

Two important issues here are: the probability of choosing
a route, and the evaporation rate of pheromone. There are a
few ways of solving these problems although it is still an area of
active research. Here we introduce the current best methods.
For a network routing problem, the probability of ants at a
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particular node i to choose the route from node i to node j is
given by

pij =
φα

ijd
β
ij

∑n
i,j=1 φ

α
ijd

β
ij

, (9.1)

where α > 0 and β > 0 are the influence parameters, and their
typical values are α ≈ β ≈ 2. φij is the pheromone concentra-
tion on the route between i and j, and dij the desirability of the
same route. Some a priori knowledge about the route such as
the distance sij is often used so that dij ∝ 1/sij , which implies
that shorter routes will be selected due to the travelling time
is shorter, and thus the pheromone concentration is higher.

This probability formula reflects the fact that ants would
normally follow the paths with higher pheromone concentra-
tion. In the simpler case when α = β = 1, the probability
of choosing a path by ants is proportional to the pheromone
concentration on the path. The denominator normalizes the
probability so that it is in the range between 0 and 1.

The pheromone concentration can change with time due to
the evaporation of pheromone. Furthermore, the advantage of
pheromone evaporation is that it could avoid the system being
trapped in local optima. If there is no evaporation, then the
path randomly chosen by the first ants will become the pre-
ferred path as the attraction of other ants by their pheromone.
For a constant rate γ of pheromone decay or evaporation, the
pheromone concentration usually varies with time exponen-
tially

φ(t) = φ0e
−γt, (9.2)

where φ0 is the initial concentration of pheromone and t is
the time. If γt � 1, then we have φ(t) ≈ (1 − γt)φ0. For
the unitary time increment ∆t = 1, the evaporation can be
approximated by φt+1 ← (1 − γ)φt. Therefore, we have the
simplified pheromone update formula:

φt+1
ij = (1− γ)φt

ij + δφt
ij , (9.3)

where γ ∈ [0, 1] is the rate of pheromone evaporation. The
increment δφt

ij is the amount of pheromone deposited at time
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t along route i to j when an ant travels a distance L. Usually
δφt

ij ∝ 1/L. If there are no ants on a route, then the pheromone
deposit is zero.

There are other variations to these basic procedures. A pos-
sible acceleration scheme is to use some bounds of the pheromone
concentration and only the ants with the current global best
solution(s) are allowed to deposit pheromone. In addition, cer-
tain ranking of solution fitness can also be used. These are hot
topics of current research.

9.3 Double Bridge Problem

A standard test problem for ant colony optimization is the sim-
plest double bridge problem with two branches (see Fig. 9.2)
where route (2) is shorter than route (1). The angles of these
two routes are equal at both point A and point B so that the
ants have equal chance (or 50-50 probability) of choosing each
route randomly at the initial stage at point A.

Initially, fifty percent of the ants would go along the longer
route (1) and the pheromone evaporates at a constant rate, but
the pheromone concentration will become smaller as route (1) is
longer and thus takes more time to travel through. Conversely,
the pheromone concentration on the shorter route will increase
steadily. After some iterations, almost all the ants will move
along the shorter routes. Figure 9.3 shows the initial snapshot
of 10 ants (5 on each route initially) and the snapshot after
5 iterations (or equivalent to 50 ants have moved along this
section). Well, there are 11 ants, and one has not decided
which route to follow as it just comes near to the entrance.
Almost all the ants (well, about 90% in this case) move along
the shorter route.

Here we only use two routes at the node, it is straightfor-
ward to extend it to the multiple routes at a node. It is ex-
pected that only the shortest route will be chosen ultimately.
As any complex network system is always made of individual
nodes, this algorithms can be extended to solve complex rout-
ing problems reasonably efficiently. In fact, the ant colony al-
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Figure 9.2: Test problem for routing performance: route (2) is
shorter than route (1).

r
r

r

r

r
r

r

r r
r

r

r
r

r
r

r

r

r
r

r
r

r

(a) (b)

Figure 9.3: Route selection via ACO: (a) initially, ants choose
each route with 50-50 probability, and (b) almost all ants move
along the shorter route after 5 iterations.

gorithms have been successfully applied to the Internet routing
problem, travelling salesman problem, combinatorial optimiza-
tion problem, and other NP-hard problems.

9.4 Multi-Peak Functions

As we know that ant colony optimization has successfully solved
NP-hard problems such as travelling salesman problems, it can
also be extended to solve the standard optimization problems
of multimodal functions. The only problem now is to figure
out how the ants will move on a n-dimensional hyper-surface.
For simplicity, we now make the discussion using the 2-D case
which can easily be extended to higher dimensions. On a 2D
landscape, ants can move in any direction or 0◦ ∼ 360◦, but
this will cause some problems. How to update the pheromone
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at a particular point as there are infinite number of points.
One solution is to track the history of each ant moves and
record the locations consecutively, and the other approach is
to use a moving neighbourhood or window. The ants ‘smell’
the pheromone concentration of their neighbourhood at any
particular location.

In addition, we can limit the number of directions the ants
can move. For example, ants are only allowed to move left and
right, and up and down (only 4 directions). We will use this
quantized approach here, which will make the implementation
much simpler. Furthermore, the objective function or land-
scape can be encoded into virtual food so that ants will move
the best locations where the best food sources are. This will
make the search process even more simpler. This simplified
algorithm is called Virtual Ant Algorithm (VAA) developed
by Xin-She Yang and his colleagues in 2006, which has been
successfully applied to optimization problems in engineering.

The following Keane function with multiple peaks is a stan-
dard test function

f(x, y) =
sin2(x− y) sin2(x+ y)

√

x2 + y2
, (9.4)

where
(x, y) ∈ [0, 10]× [0, 10].

This function without any constraint is symmetric and has two
highest peaks at (0, 1.39325) and (1.39325, 0). To make the
problem harder, it is usually optimized under two constraints:

x+ y ≤ 15, xy ≥ 3

4
. (9.5)

This makes the optimization difficult because it is now nearly
symmetric about x = y and the peaks occur in pairs where
one is higher than the other. In addition, the true maximum
is f(1.593, 0.471) ≈ 0.365, which is defined by a constraint
boundary.

Figure 9.4 shows the surface variations of the multi-peaked
function. If we use 50 roaming ants and let them move around



106 Chapter 9. Ant Colony Optimization

Figure 9.4: Surface variations of the multi-peak function.

for 25 iterations, then the pheromone concentrations (also equiv-
alent to the paths of ants) are displayed in Fig. 9.4.

It is worth pointing out that ant colony algorithms are the
right tool for combinatorial and discrete optimization. They
have the advantages over other stochastic algorithms such as
genetic algorithms and simulated annealing in dealing with dy-
namical network routing problems.

For continuous decision variables, its performance is still
under active research. For the present example, it took about
1500 evaluations of the objective function so as to find the
global optima. This is not as efficient as other metaheuristic
methods, especially comparing with particle swarm optimiza-
tion. This is partly because the handling of the pheromone
takes time. Is it possible to eliminate the pheromone and just
use the roaming ants? The answer is yes. Particle swarm op-
timization is just the right kind of algorithm for such further
modifications. This is the topic of the next chapter.



Chapter 10

Particle Swarm

Optimization

10.1 Swarm Intelligence

Particle swarm optimization (PSO) was developed by Kennedy
and Eberhart in 1995, based on the swarm behaviour such as
fish and bird schooling in nature. Many algorithms (such as ant
colony algorithms and virtual ant algorithms) use the behaviour
of the so-called swarm intelligence. Though particle swarm op-
timization has many similarities with genetic algorithms and
virtual ant algorithms, but it is much simpler because it does
not use mutation/crossover operators or pheromone. Instead,
it uses the real-number randomness and the global communica-
tion among the swarm particles. In this sense, it is also easier
to implement as there is no encoding or decoding of the param-
eters into binary strings as those in genetic algorithms.

This algorithm searches a space of an objective function
by adjusting the trajectories of individual agents, called par-
ticles, as the piecewise path formed by positional vectors in a
quasi-stochastic manner. The particle movement has two ma-
jor components: a stochastic component and a deterministic
component. The particle is attracted toward the position of
the current global best while at the same time it has a ten-
dency to move randomly. When a particle finds a location that
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Figure 10.1: Schematic representation of the motion of a parti-
cle in PSO, moving towards the global best g∗ and the current
best x∗

i for each particle i.

is better than any previously found locations, then it updates
it as the new current best for particle i. There is a current best
for all n particles. The aim is to find the global best among all
the current best until the objective no longer improves or after
a certain number of iterations.

10.2 PSO algorithms

The essential steps of the particle swarm optimization can be
summarized as the pseudo code shown in Fig. 10.2. The par-
ticle movement is schematically represented in Fig. 10.1 where
x∗

i is the current best for particle i, and g∗ ≈ min /max{f(xi)},
(i = 1, 2, ..., n) is the current global best.

Let xi and vi be the position vector and velocity for particle
i, respectively. The new velocity vector is determined by

vt+1
i = vt

i + αε1 � [g∗ − xt
i] + βε2 � [x∗

i − xt
i]. (10.1)

where ε1 and ε2 are two random vectors, and each entry taking
the value between 0 and 1. The Hadamard product of two
matrices u � v is defined as the entrywise product, that is
[u � v]ij = uijvij .

The initial values of x(i, j, t = 0) can be taken as the bound-
ary values [a = min(xj), b = max(xj)] and vt=0

i = 0.
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Particle Swarm Optimization

begin
Objective function f(x), x = (x1, ..., xp)

T

Initialize locations xi and velocity vi of n particles.
Initial minimum f t=0

min = min{f(x1), ..., f(xn)} (at t = 0)
while ( criterion )
t = t+ 1

for loop over all n particles and all p dimensions
Generate new velocity vt+1

i using equation (10.1)
Calculate new locations xt+1

i = xt
i + vt+1

i

Evaluate objective functions at new locations xt+1
i

Find the current minimum f t+1
min

end for
Find the current best x∗

i and current global best g∗

end while
Output the results x∗

i and g∗

end

Figure 10.2: Pseudo code of particle swarm optimization.

The parameters α and β are the learning parameters or
acceleration constants, which can typically be taken as, say,
α ≈ β ≈ 2. The new position can then be updated by

xt+1
i = xt

i + vt+1
i . (10.2)

Although v can be any values, it is usually bounded in some
range [0,vmax].

10.3 Accelerated PSO

There are many variations which extend the standard algo-
rithm, and the most noticeably the algorithms use inertia func-
tion θ(t) so that vt

i is replaced by θ(t)vt
i where θ takes the values

between 0 and 1. In the simplest case, the inertia function can
be take as a constant, say, θ ≈ 0.5 ∼ 0.9. This is equivalent to
introduce a virtual mass to stabilize the motion of the particles,
and thus the algorithm is expected to converge more quickly.
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The standard particle swarm optimization uses both the
current global best g∗ and the individual best x∗

i . The rea-
son of using the individual best is primarily to increase the
diversity in the quality solution, however, this diversity can
be simulated using the randomness. Subsequently, there is no
compelling reason for using the individual best. A simplified
version which could accelerate the convergence of the algorithm
is to use the global best only. Thus, in the accelerated particle
swarm optimization, the velocity vector is generated by

vt+1
i = vt

i + α(ε− 0.5) + β(g∗ − xi), (10.3)

where ε is a random variable with values from 0 to 1. The
update of the position is simply

xt+1
i = xt

i + vt+1
i . (10.4)

In order to increase the convergence even further, we can also
write the update of the location in a single step

xt+1
i = (1− β)xi + βg∗ + α(ε− 0.5). (10.5)

This simpler version will give the same order of convergence.
The typical values for this accelerated PSO are α ≈ 0.1 ∼
0.4 and β ≈ 0.1 ∼ 0.7, though α ≈ 0.2 and β ≈ 0.5 are
recommended for most unimodal objective functions.

A further accelerated PSO is to reduce the randomness as
iterations proceed. This mean that we can use a monotonically
decreasing function such as

α = α0e
−γt, or α = α0γ

t, (γ < 1), (10.6)

where α0 ≈ 0.5 ∼ 1 is the initial value of the randomness
parameter. t is the number of iterations or time steps. γ < 1 is
a control parameter. For example, in our implementation given
later in this chapter, we will use

α = 0.7t, (10.7)

where t ∈ [0, 10]. The implementation of the accelerated PSO
in Matlab and Octave is given later. Various studies show
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Figure 10.3: Multiple peaks with a global maximum at
(0.7634, 0.7634). We have used λ = 1.

that PSO algorithms can outperform genetic algorithms and
other conventional algorithms for solving many optimization
problems. This is partially due to that fact that the broadcast-
ing ability of current best estimates gives a better and quicker
convergence towards the optimality. However, this algorithm
is almost memoryless since it does not record the movement
paths of each particle, and it is expected that it can be further
improved using short-term memory in the similar fashion as
that in Tabu search.

10.4 Multimodal Functions

Multiple peak functions are often used to validate new algo-
rithms. We can construct the following function with multiple
peaks,

f(x, y) =
sin(x2 + y2)
√

x2 + y2
e−λ(x−y)2 , λ > 0, (10.8)
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where (x, y) ∈ [0, 5] × [0, 5]. Obviously, for a minimization
problem, we can write it as

f(x, y) = −sin(x2 + y2)
√

x2 + y2
e−λ(x−y)2 , λ > 0. (10.9)

Here we have designed our own test function, thought it is a
standard practice to benchmark new algorithms against the
test functions in the literature. In fact, various studies have
already benchmarked the PSO algorithms against standard test
functions. Later, we will also use the Michaelewicz function in
our implementation as a simple demo.

The reason we devised our own function is that this mul-
tiple peak function has a global maximum in the domain and
its location is independent of λ > 0. If λ is very small, say,
λ = 0.01, then it is very difficult to find the optimality for
many algorithms. Rosenbrock’s banana function has similar
properties.

The first derivatives of f are

∂f

∂x
=
e−λ(x−y)2

√

x2 + y2
{2x cos(x2 + y2)

−[
x

x2 + y2
+ 2λ(x− y)] tan(x2 + y2)}, (10.10)

∂f

∂y
=
e−λ(x−y)2

√

x2 + y2
{2y cos(x2 + y2)

−[
y

x2 + y2
+ 2λ(x− y)] tan(x2 + y2)}. (10.11)

As the function is symmetric in terms of x and y, the max-
ima must be on the line of x = y and are determined by

∂f

∂x
= 0,

∂f

∂y
= 0. (10.12)

By using x = y and x > 0, we have

2x cos(2x2)− 1

2x
sin(2x2) = 0, (10.13)
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Figure 10.4: Initial locations and final locations of 40 particles
after 10 iterations. The point marked with � corresponds to
the best estimate (x∗, y∗).

or

sin(2x2) = 4x2 cos(2x2), (10.14)

which has multiple solutions. The global maximum occurs at

x∗ = y∗ ≈ 0.7634. (10.15)

It is worth pointing out that the solution x∗ = y∗ is independent
of λ as long as λ > 0.

If we use 40 particles, the new locations of these particles
after 10 iterations (generations) are shown in Figure 10.4. The
final optimal solution at t = 10 is shown on the right (with the
best location marked with �).

10.5 Implementation

The accelerated particle swarm optimization has been imple-
mented using both Matlab and Octave. If you type the follow-
ing program and save it as, say, pso simpledemo.m, then launch
Matlab or Octave and change to the directory where the file
was saved. After typing in >pso simpledemo, it will find the
global optimal solution in less a minute on most modern per-
sonal computers.
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% The Particle Swarm Optimization

% (written by X S Yang, Cambridge University)

% Usage: pso(number_of_particles,Num_iterations)

% eg: best=pso_demo(20,10);

% where best=[xbest ybest zbest] %an n by 3 matrix

% xbest(i)/ybest(i) are the best at ith iteration

function [best]=pso_simpledemo(n,Num_iterations)

% n=number of particles

% Num_iterations=total number of iterations

if nargin<2, Num_iterations=10; end

if nargin<1, n=20; end

% Michaelewicz Function f*=-1.801 at [2.20319, 1.57049]

% Splitting two parts to avoid a long line for printing

str1=‘-sin(x)*(sin(x^2/3.14159))^20’;

str2=‘-sin(y)*(sin(2*y^2/3.14159))^20’;

funstr=strcat(str1,str2);

% Converting to an inline function and vectorization

f=vectorize(inline(funstr));

% range=[xmin xmax ymin ymax];

range=[0 4 0 4];

% ----------------------------------------------------

% Setting the parameters: alpha, beta

% Random amplitude of roaming particles alpha=[0,1]

% alpha=gamma^t=0.7^t;

% Speed of convergence (0->1)=(slow->fast)

beta=0.5;

% ----------------------------------------------------

% Grid values of the objective function

% These values are used for visualization only

Ngrid=100;

dx=(range(2)-range(1))/Ngrid;

dy=(range(4)-range(3))/Ngrid;

xgrid=range(1):dx:range(2);

ygrid=range(3):dy:range(4);

[x,y]=meshgrid(xgrid,ygrid);

z=f(x,y);

% Display the shape of the function to be optimized

figure(1);

surfc(x,y,z);

% ---------------------------------------------------

best=zeros(Num_iterations,3); % initialize history



10.5 Implementation 115

% ----- Start Particle Swarm Optimization -----------

% generating the initial locations of n particles

[xn,yn]=init_pso(n,range);

% Display the paths of particles in a figure

% with a contour of the objective function

figure(2);

% Start iterations

for i=1:Num_iterations,

% Show the contour of the function

contour(x,y,z,15); hold on;

% Find the current best location (xo,yo)

zn=f(xn,yn);

zn_min=min(zn);

xo=min(xn(zn==zn_min));

yo=min(yn(zn==zn_min));

zo=min(zn(zn==zn_min));

% Trace the paths of all roaming particles

% Display these roaming particles

plot(xn,yn,‘.’,xo,yo,‘*’); axis(range);

% The accelerated PSO with alpha=gamma^t

gamma=0.7; alpha=gamma.^i;

% Move all the particles to new locations

[xn,yn]=pso_move(xn,yn,xo,yo,alpha,beta,range);

drawnow;

% Use "hold on" to display paths of particles

hold off;

% History

best(i,1)=xo; best(i,2)=yo; best(i,3)=zo;

end %%%%% end of iterations

% ----- All subfunctions are listed here -----

% Intial locations of n particles

function [xn,yn]=init_pso(n,range)

xrange=range(2)-range(1);

yrange=range(4)-range(3);

xn=rand(1,n)*xrange+range(1);

yn=rand(1,n)*yrange+range(3);

% Move all the particles toward (xo,yo)

function [xn,yn]=pso_move(xn,yn,xo,yo,a,b,range)

nn=size(yn,2); %a=alpha, b=beta

xn=xn.*(1-b)+xo.*b+a.*(rand(1,nn)-0.5);

yn=yn.*(1-b)+yo.*b+a.*(rand(1,nn)-0.5);

[xn,yn]=findrange(xn,yn,range);
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Figure 10.5: Michaelewicz function with a global minimum at
about (2.202, 1.571).

% Make sure the particles are within the range

function [xn,yn]=findrange(xn,yn,range)

nn=length(yn);

for i=1:nn,

if xn(i)<=range(1), xn(i)=range(1); end

if xn(i)>=range(2), xn(i)=range(2); end

if yn(i)<=range(3), yn(i)=range(3); end

if yn(i)>=range(4), yn(i)=range(4); end

end

Let us look at the Michaelewicz function (for two indepen-
dent variables)

f(x, y) = −{sin(x)[sin(
x2

π
)]2m + sin(y)[sin(

2y2

π
)]2m}, (10.16)

where m = 10. The stationary conditions fx = fy = 0 require
that

−4m

π
x sin(x) cos(

x2

π
)− cos(x) sin(

x2

π
) = 0, (10.17)

and

−8m

π
y sin(x) cos(

2y2

π
)− cos(y) sin(

2y2

π
) = 0. (10.18)
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Figure 10.6: Initial locations and final locations of 20 particles
after 10 iterations. The point marked with � corresponds to
the best estimate (x∗, y∗).

The solution at (0, 0) is trivial, and the minimum f∗≈−1.801
occurs at about (2.202,1.571) (see Fig. 10.5).

If we run the program, we will get the global optimum after
about 200 evaluations of the objective function (for 20 particles
and 10 iterations). The results are shown in Fig. 10.6.

10.6 Constraints

The implementation we discussed in the previous section is for
unstrained problems. For constrained optimization, there are
many ways to implement the constraint equalities and inequal-
ities. However, we will only discussed two approaches: direct
implementation and transform to unconstrained optimization.

The simplest direct implementation is to check all the new
particle locations to see if they satisfy all the constraints. The
new locations are discarded if the constraints are not met, and
new locations are replaced by newly generated locations until
all the constraints are met. Then, the new solutions are eval-
uated using the standard PSO procedure. In this way, all the
new locations should be in the feasible region, and all infeasible
solutions are not selected. For example, in order to maximize
f(x) subjected to a constraint g(x) ≤ 0, the standard PSO
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as discussed earlier is used, however, the new locations xi of
the n particles are checked at each iteration so that they must
satisfy g(xi) ≤ 0. If any xi does not satisfy the constraint, it
is then replaced by a new (different) location x̃i which satisfies
the constraint.

Alternatively, we can transform it to an unconstrained prob-
lem by using penalty method or Lagrange multipliers as dis-
cussed in Chapter 7. Using a penalty parameter ν � 1 in our
simple example here, we have the following penalty function

Π(x, ν) = f(x) + νg(x)2. (10.19)

For any fixed value of ν which will determine the accuracy
of the corresponding solutions, we can then optimize Π as a
standard unstrained optimization problem.

There are other variations of particle swarm optimization,
and PSO algorithms are often combined with other existing
algorithms to produce new hybrid algorithms. In fact, it is still
an active area of research with many new studies published
each year.
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Simulated Annealing

11.1 Fundamental Concepts

Simulated annealing (SA) is a random search technique for
global optimization problems, and it mimics the annealing pro-
cess in material processing when a metal cools and freezes into
a crystalline state with minimum energy and larger crystal
size so as to reduce the defects in metallic structures. The an-
nealing process involves the careful control of temperature and
cooling rate (often called annealing schedule).

The application of simulated annealing into optimization
problems was pioneered by Kirkpatrick, Gelatt and Vecchi in
1983. Since then, there have been extensive studies. Unlike the
gradient-based methods and other deterministic search meth-
ods which have the disadvantage of be trapped into local min-
ima, the main advantage of the simulated annealing is its ability
to avoid being trapped in local minima. In fact, it has been
proved that the simulated annealing will converge to its global
optimality if enough randomness is used in combination with
very slow cooling.

Metaphorically speaking, this is equivalent to dropping some
bouncing balls over a landscape, and as the balls bounce and
loose energy, they settle down to some local minima. If the balls
are allowed to bounce enough times and loose energy slowly
enough, some of the balls will eventually fall into the global
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lowest locations, hence the global minimum will be reached.

The basic idea of the simulated annealing algorithm is to
use random search which not only accepts changes that im-
prove the objective function, but also keeps some changes that
are not ideal. In a minimization problem, for example, any
better moves or changes that decrease the cost (or the value)
of the objective function f will be accepted, however, some
changes that increase f will also be accepted with a probabil-
ity p. This probability p, also called the transition probability,
is determined by

p = e−
δE
kT , (11.1)

where k is the Boltzmann’s constant, and T is the tempera-
ture for controlling the annealing process. δE is the change of
the energy level. This transition probability is based on the
Boltzmann distribution in physics. The simplest way to link
δE with the change of the objective function δf is to use

δE = γδf, (11.2)

where γ is a real constant. For simplicity without losing gen-
erality, we can use k = 1 and γ = 1. Thus, the probability p
simply becomes

p(δf, T ) = e−
δf

T . (11.3)

Whether or not we accept a change, we usually use a random
number r as a threshold. Thus, if p > r or

p = e−
δf

T > r, (11.4)

it is accepted.

11.2 Choice of Parameters

Here the choice of the right temperature is crucially important.
For a given change δf , if T is too high (T → ∞), then p → 1,
which means almost all changes will be accepted. If T is too
low (T → 0), then any δf > 0 (worse solution) will rarely be
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accepted as p→ 0 and thus the diversity of the solution is lim-
ited, but any improvement δf will almost always be accepted.
In fact, the special case T → 0 corresponds to the gradient-
based method because only better solutions are accepted, and
system is essentially climbing up or descending along a hill.
Therefore, if T is too high, the system is at a high energy state
on the topological landscape, and the minima are not easily
reached. If T is too low, the system may be trapped in a local
minimum (not necessarily the global minimum), and there is
not enough energy for the system to jump out the local mini-
mum to explore other potential global minima. So the proper
temperature should be calculated.

Another important issue is how to control the annealing or
cooling process so that the system cools down gradually from
a higher temperature to ultimately freeze to a global minimum
state. There are many ways of controlling the cooling rate or
the decrease of the temperature.

Two commonly used annealing schedules (or cooling sched-
ules) are: linear and geometric cooling. For a linear cooling
process, we have T = T0 − βt or T → T − δT , where T0 is
the initial temperature, and t is the pseudo time for iterations.
β is the cooling rate, and it should be chosen in such as way
that T → 0 when t→ tf (maximum number of iterations), this
usually gives β = T0/tf .

The geometric cooling essentially decreases the temperature
by a cooling factor 0 < α < 1 so that T is replaced by αT or

T (t) = T0α
t, t = 1, 2, ..., tf . (11.5)

The advantage of the second method is that T → 0 when t→
∞, and thus there is no need to specify the maximum number of
iterations tf . For this reason, we will use this geometric cooling
schedule. The cooling process should be slow enough to allow
the system to stabilise easily. In practise, α = 0.7 ∼ 0.9 is
commonly used.

In addition, for a given temperature, multiple evaluations
of the objective function are needed. If too few evaluations,
there is a danger that the system will not stabilise and subse-
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Simulated Annealing Algorithm

begin
Objective function f(x), x = (x1, ..., xp)

T

Initialize initial temperature T0 and initial guess x(0)

Set final temperature Tf and max number of iterations N
Define cooling schedule T 7→ αT , (0 < α < 1)

while ( T > Tf and n < N )
Move randomly to new locations: xn+1 = xn + randn
Calculate δf = fn+1(xn+1)− fn(xn)
Accept the new solution if better

if not improved
Generate a random number r
Accept if p = exp[−δf/kT ] > r
end if

Update the best x∗ and f∗
end while

end

Figure 11.1: Simulated annealing algorithm.

quently will not converge to its global optimality. If too many
evaluations, it is time-consuming, and the system will usually
converge too slowly as the number of iterations to achieve sta-
bility might be exponential to the problem size. Therefore,
there is a balance of the number of evaluations and solution
quality. We can either do many evaluations at a few temper-
ature levels or do few evaluations at many temperature levels.
There are two major ways to set the number of iterations: fixed
or varied. The first uses a fixed number of iterations at each
temperature, while the second intends to increase the number
of iterations at lower temperatures so that the local minima
can be fully explored.

11.3 SA Algorithm

The pseudo code of the simulated annealing algorithm is shown
in Fig. 11.1. In order to find a suitable starting temperature T0,
we can use any information about the objective function. If we
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Figure 11.2: Contour of Rosenbrock function with a global min-
imum f∗ = 0 at (1, 1), and locations of the final 10 particles at
the end of the simulated annealing.

know the maximum change max(δf) of the objective function,
we can use this to estimate an initial temperature T0 for a
given probability p0. That is T0 ≈ −max(δf)

ln p0
. If we do not know

the possible maximum change of the objective function, we can
use a heuristic approach. We can start evaluations from a very
high temperature (so that almost all changes are accepted) and
reduce the temperature quickly until about 50% or 60% the
worse moves are accepted, and then use this temperature as
the new initial temperature T0 for proper and relatively slow
cooling processing.

For the final temperature, it should be zero in theory so that
no worse move can be accepted. However, if Tf → 0, more
unnecessary evaluations are needed. In practice, we simply
choose a very small value, say, Tf = 10−10 ∼ 10−5, depending
on the required quality of the solutions and time constraints.

11.4 Implementation

Based on the guidelines of choosing the important parameters
such as cooling rate, initial and final temperatures, and the bal-
anced number of iterations, we can implement the simulated
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Figure 11.3: 500 evaluations during the simulated annealing.
The final global best is marked with �.

annealing using both Matlab and Octave. The implemented
Matlab and Octave program is given below. Some of the sim-
ulations of the related test functions are explained in detail in
the examples.

Example 11.1: For Rosenbrock’s function

f(x, y) = (1− x)2 + 100(y − x2)2,

we know that its global minimum f∗ = 0 occurs at (1, 1) (see Fig.
11.2). This is a standard test function and quite tough for most
algorithms. However, using the program given below, we can find
this global minimum easily and the 500 evaluations during the
simulated annealing are shown in Fig. 11.3.

% Find the minimum of a function by Simulated Annealing

% Programmed by X S Yang (Cambridge University)

% Usage: sa_simpledemo

disp(‘Simulating ... it will take a minute or so!’);

% Rosenbrock test function with f*=0 at (1,1)

fstr=‘(1-x)^2+100*(y-x^2)^2’;

% Convert into an inline function

f=vectorize(inline(fstr));

% Show the topography of the objective function

range=[-2 2 -2 2];
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xgrid=range(1):0.1:range(2);

ygrid=range(3):0.1:range(4);

[x,y]=meshgrid(xgrid,ygrid);

surfc(x,y,f(x,y));

% Initializing parameters and settings

T_init = 1.0; % initial temperature

T_min = 1e-10; % finial stopping temperature

% (eg., T_min=1e-10)

F_min = -1e+100; % Min value of the function

max_rej=500; % Maximum number of rejections

max_run=100; % Maximum number of runs

max_accept = 15; % Maximum number of accept

k = 1; % Boltzmann constant

alpha=0.9; % Cooling factor

Enorm=1e-5; % Energy norm (eg, Enorm=1e-8)

guess=[2 2]; % Initial guess

% Initializing the counters i,j etc

i= 0; j = 0;

accept = 0; totaleval = 0;

% Initializing various values

T = T_init;

E_init = f(guess(1),guess(2));

E_old = E_init; E_new=E_old;

best=guess; % initially guessed values

% Starting the simulated annealling

while ((T > T_min) & (j <= max_rej) & E_new>F_min)

i = i+1;

% Check if max numbers of run/accept are met

if (i >= max_run) | (accept >= max_accept)

% Cooling according to a cooling schedule

T = alpha*T;

totaleval = totaleval + i;

% reset the counters

i = 1; accept = 1;

end

% Function evaluations at new locations

ns=guess+rand(1,2)*randn;

E_new = f(ns(1),ns(2));

% Decide to accept the new solution

DeltaE=E_new-E_old;

% Accept if improved

if (-DeltaE > Enorm)
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Figure 11.4: Egg crate function with a global minimum f∗ = 0
at (0, 0).

best = ns; E_old = E_new;

accept=accept+1; j = 0;

end

% Accept with a small probability if not improved

if (DeltaE<=Enorm & exp(-DeltaE/(k*T))>rand );

best = ns; E_old = E_new;

accept=accept+1;

else

j=j+1;

end

% Update the estimated optimal solution

f_opt=E_old;

end

% Display the final results

disp(strcat(‘Obj function :’,fstr));

disp(strcat(‘Evaluations :’, num2str(totaleval)));

disp(strcat(‘Best location:’, num2str(best)));

disp(strcat(‘Best estimate:’, num2str(f_opt)));

Example 11.2: Using the above program, we can also simulate
a more complicated function, often called the egg crate function,
whose global minimum f∗ = 0 is at (0, 0). The objective function
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Figure 11.5: The paths of particles during simulated annealing.

for two variables is

f(x, y) = x2 + y2 + 25[sin2(x) + sin2(y)],

in the domain (x, y) ∈ [−5, 5] × [−5, 5]. The landscape of the
egg crate function is shown in Fig. 11.4, and the paths of par-
ticles during simulated annealing are shown in Fig. 11.5. It is
worth pointing that the random generator we used in the program
rand(1,2)<1/2 leads to discrete motion along several major di-
rections, which may improve the convergence for certain class of
functions. However, for the Rosenbrock test function, this dis-
crete approach does not work well. For continuous movement in
all directions, simply use the random function rand(1,2) that is
given in this simple demo program. It would takes about 2500
evaluations to get an accuracy with three decimal places.





Chapter 12

Multiobjective

Optimization

All the optimization problems we discussed so far have only a
single objective. In reality, we often have to optimize multiple
objectives simultaneously. For example, we may want to im-
prove the performance of a product while trying to minimize
the cost at the time. In this case, we are dealing with multiob-
jective optimization problems. Many new concepts have to be
introduced for multiobjective optimization.

12.1 Pareto Optimality

Any multiobjective optimization problem can generally be writ-
ten as

minimize/maximize
x∈<n f(x) = [f1(x), f2(x), ..., fp(x)],

subject to gj(x) ≥ 0, j = 1, 2, ...,M, (12.1)

hk(x) = 0, k = 1, 2, ..., N, (12.2)

where x = (x1, x2, ..., xn)T is the vector of decision variables.
In some formulations used in the literature, inequalities gj(j =
1, ..., N) can also include any equalities because an equality
φ(x) = 0 can be converted into two inequalities φ(x) ≤ 0 and
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φ(x) ≥ 0. However, for clarity, we list here the equalities and
inequalities separately.

The space F = <n spanned by the vectors of decision vari-
ables x is called the search space. The space S = <p formed
by all the possible values of objective functions is called the
solution space or objective space. Comparing with the sin-
gle objective function whose solution space is (at most) <, the
solution space for multiobjective optimization is considerably
much larger. In addition, as we know that we are dealing with
multiobjectives f(x) = [fi], for simplicity, we can write fi as
f(x) without causing any confusion.

Multiobjective optimization problems, unlike a single objec-
tive optimization problem, do not necessarily have an optimal
solution that minimizes all the multiobjective functions simul-
taneously. Often, different objectives may conflict each other
and the optimal parameters of some objectives usually do not
lead to optimality of other objectives (sometimes make them
worse). For example, we want first-class quality service on our
holidays and at the same time we want to pay as little as pos-
sible. The high-quality service (one objective) will inevitably
cost much more, and this is in conflict with the other objective
(minimize cost).

Therefore, among these often conflicting objectives, we have
to choose some tradeoff or a certain balance of objectives. If
none of these are possible, we must choose a list of preferences
so that which objectives should be achieved first. More im-
portantly, we have to compare different objectives and make
a compromise. This usually requires a formulation of a new
evaluation modelling problem, and one of the most popular
approaches to such modelling is to find a scalar-valued func-
tion that represents weighted combinations or preference order
of all objectives. Such a scalar function is often referred to as
the preference function or utility function. A simple way to
construct this scalar function is to use the weighted sum

u(f1(x), ..., fp(x)) =
p
∑

i=1

αifi(x), (12.3)
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where αi are the weighting coefficients.
A point x∗ ∈ <n is called a Pareto optimal solution or

non-inferior solution to the optimization problem if there is no
x ∈ <n satisfying fi(x) ≤ fi(x∗), (i = 1, 2, ..., p). In other
words, x∗ is Pareto optimal if there exists no feasible vector (of
decision variables in the search space) which would decrease
some objectives without causing an increase in at least one
other objective simultaneously.

Unlike the single objective optimization with a single opti-
mal solution, multiobjective optimization will lead to a set of
solutions, called the Pareto optimal set P∗, and the decision
vectors x∗ for the set solutions are thus called non-dominated.
The set x∗ in the search space that corresponds to the Pareto
optimal solutions is also an efficient set in literature. The set
(or plot) of the objective functions of these non-dominated deci-
sion vectors in the Pareto optimal set forms the so-called Pareto
front P (or Pareto frontier). Now let us define the dominance
of a vector x (or any vectors u and v).

A vector u = (u1, .., un)T ∈ F is said to dominate vector
v = (v1, ..., vn)T if and only if ui ≤ vi for ∀i ∈ {1, ..., n} and ∃i ∈
{1, ..., n} : ui < vi. This ‘partial less’ relationship is denoted by

u ≺ v, (12.4)

which is equivalent to

∀i ∈ {1, ..., n} : ui ≤ vi ∧ ∃i ∈ {1, ..., n} : ui < vi. (12.5)

Similarly, we can define another dominance relationship �

u � v ⇐⇒ u ≺ v ∨ u = v. (12.6)

Using these notations, the Pareto front P can be defined as the
set of non-dominated solutions so that

P = {s ∈ S
∣

∣

∣∃/ s′ ∈ S : s′ ≺ s}, (12.7)

or in term of the Pareto optimal set in the search space

P∗ = {x ∈ F
∣

∣

∣∃/ x′ ∈ F : f(x′) ≺ f(x)}. (12.8)
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Furthermore, a point x∗ ∈ F is called a non-dominated so-
lution if no solution can be found that dominates it. A vector is
called ideal if it contains the decision variables that correspond
to the optima of objectives when each objective is considered
separately.

The identification of the Pareto front is not an easy task,
and it often requires a parametric analysis, say, by treating all
but one objective, say, fi in a p-objective optimization problem
so that fi is a function of f1, ..., fi−1, fi+1, ..., and fp. By
maximizing the fi when varying the values of the other p − 1
objectives so that the solutions will trace out the Pareto front.

Example 12.1: For example, we have four Internet service
providers A, B, C and D. We have two objectives to choose their
service 1) as cheap as possible, and 2) higher bandwidth. They
are listed below:

IP provider Cost (£) Bandwidth (Mb)
A 20 12
B 25 16
C 30 8
D 40 16

From the table, we know that option C is dominated by A
and B because both objectives are improved (low cost and faster).
Option D is dominated by B. Thus, solution C is an inferior solu-
tion, so is D. Both solutions A and B are non-inferior solutions
or non-dominated solutions. However, which solution ( A or B)
to choose is not easy as provider A outperforms B on the first
objective (cheaper) while B outperforms A on another objective
(faster). In this case, we say these two solutions are incomparable.
The set of the non-dominated solutions A and B forms the Pareto
front which is a mutually incomparable set.

For a minimization problem with two objectives, the basic
concepts of non-dominated set, Pareto front, and ideal vectors
are shown in Fig. 12.1.
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Figure 12.1: Non-dominated set, Pareto front and ideal vectors
in a minimization problem with two objectives f1 and f2.

12.2 Weighted Sum Method

The classical three-objective functions are commonly used for
testing multi-objective optimization algorithms. These func-
tions are

f1(x, y) = x2 + (y − 1)2, (12.9)

f2(x, y) = (x− 1)2 + y2 + 2, (12.10)

f3(x, y) = x2 + (y + 1)2 + 1, (12.11)

where (x, y) ∈ [−2, 2]× [−2, 2].
Many solution algorithms intend to combine the multi-objective

functions into one scalar objective using the weighted sum of
objective functions

F (x) = αf1(x) + βf2(x) + ...+ γfN (x). (12.12)

The important issue arises in assigning the weighting coeffi-
cients (α, β, ..., γ) because the solution is strongly dependent
on the chosen weighting coefficients.

If we combine all the three functions into one f(x, y) using
weighted sums, we have

f(x, y) = αf1 + βf2 + γf3, α+ β + γ = 1. (12.13)

The stationary point is determined by

∂f

∂x
= 0,

∂f

∂y
= 0, (12.14)
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Figure 12.2: Three-objective functions with the global mini-
mum at x∗ = β, y∗ = α− γ.

which lead to

2α+ 2β(x− 1) + 2γ = 0, (12.15)

and

2α(y − 1) + 2βy + 2γ(y + 1) = 0. (12.16)

The solutions are

x∗ = β, y∗ = α− γ. (12.17)

This implies that x∗ ∈ [0, 1] and y∗ ∈ [−1, 1]. Consequently,
f1 ∈ [0, 5], f2 ∈ [2, 4] and f3 ∈ [1, 6]. In addition, the solution
or the optimal location varies with the weighting coefficients
α, β and γ. In the simplest case α = β = γ = 1/3, we have

x∗ =
1

3
, y∗ = 0. (12.18)

This location is marked with a solid bar in Figure 12.2.

Now the original multiobjective optimization problem has
been transformed into a single objective optimization problem.
Thus, the solution methods for solving single objective prob-
lems are all valid. For example, we can use the particle swarm
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Figure 12.3: Final locations of 40 particles after 5 iterations.
The optimal point is at (1/3, 0) marked with ◦.

to find the optimal for given parameters α, β and γ. Figure
12.3 shows the final locations of 40 particles at t = 5 iterations.
We can see that the particles converge towards the true optimal
location marked with ◦.

However, there is an important question to be answered.
The combined weighted sum transforms the optimization prob-
lem into a single objective, this is not necessarily equivalent to
the original multiobjective problem because the extra weight-
ing coefficients could be arbitrary, while the final solutions still
depend on these coefficients. Furthermore, there are so many
ways to construct the weighted sum function and there is not
any easy guideline to choose which form is the best for a given
problem. When there is no rule to follow, the simplest choice
obviously is to use the linear form. But there is no reason why
the weighted sum should be linear. In fact, we can use other
combinations such as the following quadratic weighted sum

Π(x) =
N
∑

i=1

αif
2
i (x) = α1f

2
1 (x) + ...+ αNf

2
N (x), (12.19)

and the others.
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Another important issue is that how to choose the weighting
coefficients as the solutions depend on these coefficients. The
choice of weighting coefficients is essentially to assign a prefer-
ence order by the decision maker to the multiobjectives. This
leads to a more general concept of utility function (or pref-
erence function) which reflects the preference of the decision
maker(s).

12.3 Utility Method

The weighted sum method is essentially a deterministic value
method if we consider the weighting coefficients as the ranking
coefficients. This implicitly assumes that the consequence of
each ranking alternative can be characterized with certainty.
This method can be used to explore the implications of alter-
native value judgement. Utility method, on the other hand,
considers uncertainty in the criteria values for each alterna-
tive, which is a more realistic method because there is always
some degree of uncertainty about the outcome of a particular
alternative.

Utility (or preference) function can be associated with risk
attitude or preference. For example, if you are offered a choice
between a guaranteed £500 and a 50/50 chance of zero and
£1000. How much are you willing to pay to take the gamble?
The expected payoff of each choice is £500 and thus it is fair
to pay 0.5× 1000 + (1− 0.5)× 0 = £500 for such a gamble. A
risk-seeking decision maker would risk a lower payoff in order to
have a chance to win a higher prize, while a risk-averse decision
maker would be happy with the safe choice of £500.

For a risk-neutral decision maker, the choice is indifferent
between a guaranteed £500 and the 50/50 gamble since both
choices have the same expected value of £500. In reality, the
risk preference can vary from person to person and may depend
on the type of problem. The utility function can have many
forms, and one of the simplest is the exponential utility (of
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Figure 12.4: Finding the Pareto solution with maximum utility
in a maximization problem with two objectives.

representing preference)

u(x) =
1− e−(x−xa)/ρ

1− e−(xb−xa)/ρ
, (12.20)

where xa and xb are the lowest and highest level of x, and ρ is
called the risk tolerance of the decision maker.

The utility function defines combinations of objective values
f1, ..., fp which a decision maker finds equally acceptable or
indifference. So the contours of the constant utility are referred
to as the indifference curves. The optimization now becomes
the maximization of the utility. For a maximization problem
with two objectives f1 and f2, the idea of the utility contours
(indifference curves), Pareto front and the Pareto solution with
maximum utility (point A) are shown in Fig. 12.4. When the
utility function touches the Pareto front in the feasible region,
it then provides a maximum utility Pareto solution (marked
with A).

For two objectives f1 and f2, the utility function can be con-
structed in different ways. For example, the combined product
takes the following form

U(f1, f2) = kfα
1 f

β
2 , (12.21)

where α and β are non-negative exponents and k a scaling
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factor. The aggregated utility function is given by

U(f1, f2) = αf1 + βf2 + [1− (α+ β)]f1f2. (12.22)

There are many other forms. The aim of utility function con-
structed by the decision maker is to form a mapping U : <p 7→
< so that the total utility function has a monotonic and/or
convexity properties for easy analysis. It will also improve the
quality of the Pareto solution(s) with maximum utility. Let us
look at a simple example.

Example 12.2: For the simple two-objective optimization prob-
lem:

maximize
(x,y)∈<2 f1(x, y) = x+ y, f2(x, y) = x,

subject to
x+ αy ≤ 5, x ≥ 0, y ≥ 0,

where 0 < α < 1. Let us use the simple utility function

U = f1f2,

which combines the two objectives. The line connecting the two
corner points (5, 0) and (0, 5/α) forms the Pareto front (see Fig.
12.5). It is easy to check that the Pareto solution with maximum
utility is U = 25 at A(5, 0) when the utility contours touch the
Pareto front with the maximum possible utility.

The complexity of multiobjective optimization makes the
construction of the utility function a difficult task as it can
be constructed in many ways. A general and yet widely-used
utility function is often written in the following additive form

maximize
x∈<n U(fk(x)) =

K
∑

j=1

πj

p
∑

i=1

αiuijk, (12.23)

where U(fk) is the expected utility of alternative k. p is the
number of objectives and K is the number of possible scenarios.
πj is the probability assigned to scenario j. uijk is the value of
a single criterion utility function for objective i, scenario j and
alternative k.
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Figure 12.5: Pareto front is the line connecting A(5, 0) and
B(0, 5/α). The Pareto solution with maximum utility is U∗ =
25 at point A.

12.4 Metaheuristic Search

So far, we have seen that finding solutions of multiobjective
optimization is usually difficult, even by the simple weighted
sum method and utility function. However, there are other
promising methods that work well for multiobjective optimiza-
tion problems, especially the metaheuristic methods such as
simulated annealing and particle swarm optimization.

Here we will use the particle swarm optimization to find
solutions for multiobjective optimization problems. The basic
idea is to modify the standard PSO algorithms so that they can
deal with the multiobjectives at the same time. This is better
demonstrated by an example.

From the multimodal test function (10.8), we know that it
has a single global maximum. If we extend its domain to a
large set, then it will have two global maxima. Now we have

f(x, y)=
sin(x2 + y2)
√

x2 + y2
e−λ(x−y)2, (x, y)∈ [−5, 5]×[−5, 5],

where λ > 0. For λ = 0.05, the function is shown in Fig. 12.6.
This function has two equal global maxima at (0.7634, 0.7634)
and (−0.7634,−0.7634). If we run the standard PSO, it will
only find one of the two global optima. In order to find all
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Figure 12.6: Multimodal function with two equal global max-
ima.

the (two) global optima, we have to modify the PSO. In fact,
there are many ways to do this and one of the simplest way to
achieve this is to use the recursive method.

In the recursive method, we call the standard PSO many
times. As the initial starting point is a random guess, it will
find one optimum each time we call it. If we call the PSO re-
cursively, statistically speaking, all the optima will be founded.
For our test function here, we called the accelerated PSO for
1000 times. It found one peak at (0.7634,0.7634) in 497 runs,
the other peak in 498 runs, and trapped at local peaks in 5
runs. Two snapshots of the 1000 runs were shown in Fig. 12.7
so that all optima are found statistically.

The implementation of this recursive PSO using Matlab and
Octave is given below. Since it is a recursive process, it will
take a few minutes (depending on the speed of the computer).

% The Recursive PSO for Multiobjective Optimization

% (written by X S Yang, Cambridge University)

% Usage: pso_multi(number_of_runs)

% eg: best=pso_multi(100);
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Figure 12.7: Recursive PSO runs converge to two global peaks.

% where best <=> locations of global optima

function [best]=pso_multi(Num_run)

% Num_run=number of recursive iterations (=10 default)

if nargin<1, Num_run=10; end

disp(‘Running PSO recursively!’);

disp(‘Please wait for a few minutes ...’);

n=20; % number of particles;

Num_steps=10; % number of pseudo time steps

% This function has two global optima f*=0.851

% at (0.7634,0.7634) and (-0.7634,-0.7634).

fstr=‘sin(x^2+y^2)/sqrt(x^2+y^2)*exp(-0.05*(x-y)^2)’

% Converting to an inline function

f=vectorize(inline(fstr));

% range=[xmin xmax ymin ymax];

range=[-5 5 -5 5];

% -------------------------------------------------

% Grid values of the objective function

% These values are used for visualization only

Ngrid=100;

dx=(range(2)-range(1))/Ngrid;

dy=(range(4)-range(3))/Ngrid;

xgrid=range(1):dx:range(2);
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ygrid=range(3):dy:range(4);

[x,y]=meshgrid(xgrid,ygrid);

z=f(x,y);

% Display the shape of the function to be optimized

surfc(x,y,z); drawnow;

% Run the PSO recursively for, say, 10 times

for i=1:Num_run,

best(i,:)=pso(f,range,n,Num_steps);

end

% ------------------------------------------------

% Standard Accelerated PSO (for finding maxima)

function [best]=pso(f,range,n,Num_steps)

% here best=[xbest ybest fbest]

% Speed of convergence (0->1)=(slow->fast)

beta=0.5;

% ----- Start Particle Swarm Optimization --------

% generating the initial locations of n particles

[xn,yn]=init_pso(n,range);

% Iterations as pseudo time

for i=1:Num_steps,

% Find the current best location (xo,yo)

zn=f(xn,yn);

zn_max=max(zn);

xo=max(xn(zn==zn_max));

yo=max(yn(zn==zn_max));

zo=max(zn(zn==zn_max));

% Accelerated PSO with randomness: alpha=gamma^t

gamma=0.7; alpha=gamma.^i;

% Move all particle to new locations

[xn,yn]=pso_move(xn,yn,xo,yo,alpha,beta,range);

end %%%%% end of iterations

% Return the finding as the current best

best(1)=xo; best(2)=yo; best(3)=zo;

% -----------------------------------------------

% All subfunctions are listed here

% Intial locations of particles

function [xn,yn]=init_pso(n,range)
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xrange=range(2)-range(1);

yrange=range(4)-range(3);

xn=rand(1,n)*xrange+range(1);

yn=rand(1,n)*yrange+range(3);

% Move all the particles toward to (xo,yo)

function [xn,yn]=pso_move(xn,yn,xo,yo,a,b,range)

nn=size(yn,2); %%%%% a=alpha, b=beta

xn=xn.*(1-b)+xo.*b+a.*(rand(1,nn)-0.5);

yn=yn.*(1-b)+yo.*b+a.*(rand(1,nn)-0.5);

[xn,yn]=findrange(xn,yn,range);

% Make sure the particles are inside the range

function [xn,yn]=findrange(xn,yn,range)

nn=length(yn);

for i=1:nn,

if xn(i)<=range(1), xn(i)=range(1); end

if xn(i)>=range(2), xn(i)=range(2); end

if yn(i)<=range(3), yn(i)=range(3); end

if yn(i)>=range(4), yn(i)=range(4); end

end

12.5 Other Algorithms

There are other powerful algorithms that we have not addressed
in this book. These include genetic algorithms, virtual bee algo-
rithms, harmony search, random-restart hill climbing, dynamic
programming, stochastic optimization, evolution strategy and
many other evolutionary algorithms. For example, genetic al-
gorithms (and their stochastic various variants) have been used
to solve many practical optimization problems such as schedul-
ing problems and engineering design problems. Readers inter-
ested in these modern techniques can refer to more advanced
literature.

The optimization algorithms we have discussed in this book
are mainly for the optimization problems with explicit objective
functions. However, in reality, it is often difficult to quantify
what we want to achieve, but we still try to optimize certain
things such as the degree of enjoyment of a quality service on
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our holidays. In other cases, it is not possible and/or there is
no explicit form of objective function. For example, we want
to design an aircraft wing so that it is most aerodynamically
efficient. If we know nothing about the modern aircraft de-
sign, suppose we have to start from scratch, what shape it
should be and how to quantify the efficiency (lift or some ratio
of power to lift)? What is the explicit form of the objective
function? This is a very difficult task. One approach is to try
various shapes by carrying out experimental tests of these var-
ious shapes. Alternatively, we can use computer simulations
(e.g., computational fluid dynamics) for a given shape. Start-
ing from an initial shape (say, an ellipsoid), what is the new
shape we should generate? We usually have to run many itera-
tions of computer simulations, changing design (both computer
models and physical models) and evaluating their performance
(objectives) again and again.

Whatever the objectives are, we have to evaluate the ob-
jectives many times. In most cases, the evaluations of the ob-
jective functions consume a lot of computational power (which
costs money) and design time. Any efficient algorithm that can
reduce the number of objective evaluations will save both time
and money. Although, we have mainly focused on the opti-
mization algorithms for objectives which are explicitly known,
however, these algorithms will still be applicable to the cases
where the objectives are not known explicitly. In most cases,
certain modifications are required to suit a particular appli-
cation. This is an exciting area of active research, and more
publications are emerging each year.
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